WorldWideScience

Sample records for integrating visual information

  1. Visualization and Integrated Data Mining of Disparate Information

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Jeffrey D.(OMNIVIZ, INC); Albright, Cory L.(BATTELLE (PACIFIC NW LAB)); Calapristi, Augustin J.(BATTELLE (PACIFIC NW LAB)); Chen, Guang (OMNIVIZ, INC); Crow, Vernon L.(BATTELLE (PACIFIC NW LAB)); Decker, Scott D.(BATTELLE (PACIFIC NW LAB)); Groch, Kevin M.(BATTELLE (PACIFIC NW LAB)); Havre, Susan L.(BATTELLE (PACIFIC NW LAB)); Malard, Joel (BATTELLE (PACIFIC NW LAB)); Martin, Tonya J.(BATTELLE (PACIFIC NW LAB)); Miller, Nancy E.(BATTELLE (PACIFIC NW LAB)); Monroe, Philip J.(OMNIVIZ, INC); Nowell, Lucy T.(BATTELLE (PACIFIC NW LAB)); Payne, Deborah A.(BATTELLE (PACIFIC NW LAB)); Reyes Spindola, Jorge F.(BATTELLE (PACIFIC NW LAB)); Scarberry, Randall E.(OMNIVIZ, INC); Sofia, Heidi J.(BATTELLE (PACIFIC NW LAB)); Stillwell, Lisa C.(OMNIVIZ, INC); Thomas, Gregory S.(BATTELLE (PACIFIC NW LAB)); Thurston, Sarah J.(OMNIVIZ, INC); Williams, Leigh K.(BATTELLE (PACIFIC NW LAB)); Zabriskie, Sean J.(OMNIVIZ, INC); MG Hicks

    2001-05-11

    The volumes and diversity of information in the discovery, development, and business processes within the chemical and life sciences industries require new approaches for analysis. Traditional list- or spreadsheet-based methods are easily overwhelmed by large amounts of data. Furthermore, generating strong hypotheses and, just as importantly, ruling out weak ones, requires integration across different experimental and informational sources. We have developed a framework for this integration, including common conceptual data models for multiple data types and linked visualizations that provide an overview of the entire data set, a measure of how each data record is related to every other record, and an assessment of the associations within the data set.

  2. Integration of auditory and visual speech information

    NARCIS (Netherlands)

    Hall, M.; Smeele, P.M.T.; Kuhl, P.K.

    1998-01-01

    The integration of auditory and visual speech is observed when modes specify different places of articulation. Influences of auditory variation on integration were examined using consonant identifi-cation, plus quality and similarity ratings. Auditory identification predicted auditory-visual

  3. Integration of auditory and visual communication information in the primate ventrolateral prefrontal cortex.

    Science.gov (United States)

    Sugihara, Tadashi; Diltz, Mark D; Averbeck, Bruno B; Romanski, Lizabeth M

    2006-10-25

    The integration of auditory and visual stimuli is crucial for recognizing objects, communicating effectively, and navigating through our complex world. Although the frontal lobes are involved in memory, communication, and language, there has been no evidence that the integration of communication information occurs at the single-cell level in the frontal lobes. Here, we show that neurons in the macaque ventrolateral prefrontal cortex (VLPFC) integrate audiovisual communication stimuli. The multisensory interactions included both enhancement and suppression of a predominantly auditory or a predominantly visual response, although multisensory suppression was the more common mode of response. The multisensory neurons were distributed across the VLPFC and within previously identified unimodal auditory and visual regions (O'Scalaidhe et al., 1997; Romanski and Goldman-Rakic, 2002). Thus, our study demonstrates, for the first time, that single prefrontal neurons integrate communication information from the auditory and visual domains, suggesting that these neurons are an important node in the cortical network responsible for communication.

  4. Integration of Visual and Vestibular Information Used to Discriminate Rotational Self-Motion

    Directory of Open Access Journals (Sweden)

    Florian Soyka

    2011-10-01

    Full Text Available Do humans integrate visual and vestibular information in a statistically optimal fashion when discriminating rotational self-motion stimuli? Recent studies are inconclusive as to whether such integration occurs when discriminating heading direction. In the present study eight participants were consecutively rotated twice (2s sinusoidal acceleration on a chair about an earth-vertical axis in vestibular-only, visual-only and visual-vestibular trials. The visual stimulus was a video of a moving stripe pattern, synchronized with the inertial motion. Peak acceleration of the reference stimulus was varied and participants reported which rotation was perceived as faster. Just-noticeable differences (JND were estimated by fitting psychometric functions. The visual-vestibular JND measurements are too high compared to the predictions based on the unimodal JND estimates and there is no JND reduction between visual-vestibular and visual-alone estimates. These findings may be explained by visual capture. Alternatively, the visual precision may not be equal between visual-vestibular and visual-alone conditions, since it has been shown that visual motion sensitivity is reduced during inertial self-motion. Therefore, measuring visual-alone JNDs with an underlying uncorrelated inertial motion might yield higher visual-alone JNDs compared to the stationary measurement. Theoretical calculations show that higher visual-alone JNDs would result in predictions consistent with the JND measurements for the visual-vestibular condition.

  5. Immediate integration of prosodic information from speech and visual information from pictures in the absence of focused attention: a mismatch negativity study.

    Science.gov (United States)

    Li, X; Yang, Y; Ren, G

    2009-06-16

    Language is often perceived together with visual information. Recent experimental evidences indicated that, during spoken language comprehension, the brain can immediately integrate visual information with semantic or syntactic information from speech. Here we used the mismatch negativity to further investigate whether prosodic information from speech could be immediately integrated into a visual scene context or not, and especially the time course and automaticity of this integration process. Sixteen Chinese native speakers participated in the study. The materials included Chinese spoken sentences and picture pairs. In the audiovisual situation, relative to the concomitant pictures, the spoken sentence was appropriately accented in the standard stimuli, but inappropriately accented in the two kinds of deviant stimuli. In the purely auditory situation, the speech sentences were presented without pictures. It was found that the deviants evoked mismatch responses in both audiovisual and purely auditory situations; the mismatch negativity in the purely auditory situation peaked at the same time as, but was weaker than that evoked by the same deviant speech sounds in the audiovisual situation. This pattern of results suggested immediate integration of prosodic information from speech and visual information from pictures in the absence of focused attention.

  6. The integration of visual context information in facial emotion recognition in 5- to 15-year-olds.

    Science.gov (United States)

    Theurel, Anne; Witt, Arnaud; Malsert, Jennifer; Lejeune, Fleur; Fiorentini, Chiara; Barisnikov, Koviljka; Gentaz, Edouard

    2016-10-01

    The current study investigated the role of congruent visual context information in the recognition of facial emotional expression in 190 participants from 5 to 15years of age. Children performed a matching task that presented pictures with different facial emotional expressions (anger, disgust, happiness, fear, and sadness) in two conditions: with and without a visual context. The results showed that emotions presented with visual context information were recognized more accurately than those presented in the absence of visual context. The context effect remained steady with age but varied according to the emotion presented and the gender of participants. The findings demonstrated for the first time that children from the age of 5years are able to integrate facial expression and visual context information, and this integration improves facial emotion recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Integration of Visual and Proprioceptive Limb Position Information in Human Posterior Parietal, Premotor, and Extrastriate Cortex.

    Science.gov (United States)

    Limanowski, Jakub; Blankenburg, Felix

    2016-03-02

    The brain constructs a flexible representation of the body from multisensory information. Previous work on monkeys suggests that the posterior parietal cortex (PPC) and ventral premotor cortex (PMv) represent the position of the upper limbs based on visual and proprioceptive information. Human experiments on the rubber hand illusion implicate similar regions, but since such experiments rely on additional visuo-tactile interactions, they cannot isolate visuo-proprioceptive integration. Here, we independently manipulated the position (palm or back facing) of passive human participants' unseen arm and of a photorealistic virtual 3D arm. Functional magnetic resonance imaging (fMRI) revealed that matching visual and proprioceptive information about arm position engaged the PPC, PMv, and the body-selective extrastriate body area (EBA); activity in the PMv moreover reflected interindividual differences in congruent arm ownership. Further, the PPC, PMv, and EBA increased their coupling with the primary visual cortex during congruent visuo-proprioceptive position information. These results suggest that human PPC, PMv, and EBA evaluate visual and proprioceptive position information and, under sufficient cross-modal congruence, integrate it into a multisensory representation of the upper limb in space. The position of our limbs in space constantly changes, yet the brain manages to represent limb position accurately by combining information from vision and proprioception. Electrophysiological recordings in monkeys have revealed neurons in the posterior parietal and premotor cortices that seem to implement and update such a multisensory limb representation, but this has been difficult to demonstrate in humans. Our fMRI experiment shows that human posterior parietal, premotor, and body-selective visual brain areas respond preferentially to a virtual arm seen in a position corresponding to one's unseen hidden arm, while increasing their communication with regions conveying visual

  8. VisComposer: A Visual Programmable Composition Environment for Information Visualization

    Directory of Open Access Journals (Sweden)

    Honghui Mei

    2018-03-01

    Full Text Available As the amount of data being collected has increased, the need for tools that can enable the visual exploration of data has also grown. This has led to the development of a variety of widely used programming frameworks for information visualization. Unfortunately, such frameworks demand comprehensive visualization and coding skills and require users to develop visualization from scratch. An alternative is to create interactive visualization design environments that require little to no programming. However, these tools only supports a small portion of visual forms.We present a programmable integrated development environment (IDE, VisComposer, that supports the development of expressive visualization using a drag-and-drop visual interface. VisComposer exposes the programmability by customizing desired components within a modularized visualization composition pipeline, effectively balancing the capability gap between expert coders and visualization artists. The implemented system empowers users to compose comprehensive visualizations with real-time preview and optimization features, and supports prototyping, sharing and reuse of the effects by means of an intuitive visual composer. Visual programming and textual programming integrated in our system allow users to compose more complex visual effects while retaining the simplicity of use. We demonstrate the performance of VisComposer with a variety of examples and an informal user evaluation. Keywords: Information Visualization, Visualization authoring, Interactive development environment

  9. The working memory Ponzo illusion: Involuntary integration of visuospatial information stored in visual working memory.

    Science.gov (United States)

    Shen, Mowei; Xu, Haokui; Zhang, Haihang; Shui, Rende; Zhang, Meng; Zhou, Jifan

    2015-08-01

    Visual working memory (VWM) has been traditionally viewed as a mental structure subsequent to visual perception that stores the final output of perceptual processing. However, VWM has recently been emphasized as a critical component of online perception, providing storage for the intermediate perceptual representations produced during visual processing. This interactive view holds the core assumption that VWM is not the terminus of perceptual processing; the stored visual information rather continues to undergo perceptual processing if necessary. The current study tests this assumption, demonstrating an example of involuntary integration of the VWM content, by creating the Ponzo illusion in VWM: when the Ponzo illusion figure was divided into its individual components and sequentially encoded into VWM, the temporally separated components were involuntarily integrated, leading to the distorted length perception of the two horizontal lines. This VWM Ponzo illusion was replicated when the figure components were presented in different combinations and presentation order. The magnitude of the illusion was significantly correlated between VWM and perceptual versions of the Ponzo illusion. These results suggest that the information integration underling the VWM Ponzo illusion is constrained by the laws of visual perception and similarly affected by the common individual factors that govern its perception. Thus, our findings provide compelling evidence that VWM functions as a buffer serving perceptual processes at early stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information

    Science.gov (United States)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo

    2018-06-01

    Initiatives of open data promote the online publication and sharing of large amounts of geologic data. How to retrieve information and discover knowledge from the big data is an ongoing challenge. In this paper, we developed an ontology-driven data integration and visualization pilot system for exploring information of regional geologic time, paleontology, and fundamental geology. The pilot system (http://www2.cs.uidaho.edu/%7Emax/gts/)

  11. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase two, volume 4 : web-based bridge information database--visualization analytics and distributed sensing.

    Science.gov (United States)

    2012-03-01

    This report introduces the design and implementation of a Web-based bridge information visual analytics system. This : project integrates Internet, multiple databases, remote sensing, and other visualization technologies. The result : combines a GIS ...

  12. Assessment of visual communication by information theory

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.

    1994-01-01

    This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.

  13. Sensory processing patterns predict the integration of information held in visual working memory.

    Science.gov (United States)

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Information processing in the primate visual system - An integrated systems perspective

    Science.gov (United States)

    Van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  15. Information Processing in the Primate Visual System: An Integrated Systems Perspective

    Science.gov (United States)

    van Essen, David C.; Anderson, Charles H.; Felleman, Daniel J.

    1992-01-01

    The primate visual system contains dozens of distinct areas in the cerebral cortex and several major subcortical structures. These subdivisions are extensively interconnected in a distributed hierarchical network that contains several intertwined processing streams. A number of strategies are used for efficient information processing within this hierarchy. These include linear and nonlinear filtering, passage through information bottlenecks, and coordinated use of multiple types of information. In addition, dynamic regulation of information flow within and between visual areas may provide the computational flexibility needed for the visual system to perform a broad spectrum of tasks accurately and at high resolution.

  16. On the assessment of visual communication by information theory

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.

    1993-01-01

    This assessment of visual communication integrates the optical design of the image-gathering device with the digital processing for image coding and restoration. Results show that informationally optimized image gathering ordinarily can be relied upon to maximize the information efficiency of decorrelated data and the visual quality of optimally restored images.

  17. Visualizing Cloud Properties and Satellite Imagery: A Tool for Visualization and Information Integration

    Science.gov (United States)

    Chee, T.; Nguyen, L.; Smith, W. L., Jr.; Spangenberg, D.; Palikonda, R.; Bedka, K. M.; Minnis, P.; Thieman, M. M.; Nordeen, M.

    2017-12-01

    Providing public access to research products including cloud macro and microphysical properties and satellite imagery are a key concern for the NASA Langley Research Center Cloud and Radiation Group. This work describes a web based visualization tool and API that allows end users to easily create customized cloud product and satellite imagery, ground site data and satellite ground track information that is generated dynamically. The tool has two uses, one to visualize the dynamically created imagery and the other to provide access to the dynamically generated imagery directly at a later time. Internally, we leverage our practical experience with large, scalable application practices to develop a system that has the largest potential for scalability as well as the ability to be deployed on the cloud to accommodate scalability issues. We build upon NASA Langley Cloud and Radiation Group's experience with making real-time and historical satellite cloud product information, satellite imagery, ground site data and satellite track information accessible and easily searchable. This tool is the culmination of our prior experience with dynamic imagery generation and provides a way to build a "mash-up" of dynamically generated imagery and related kinds of information that are visualized together to add value to disparate but related information. In support of NASA strategic goals, our group aims to make as much scientific knowledge, observations and products available to the citizen science, research and interested communities as well as for automated systems to acquire the same information for data mining or other analytic purposes. This tool and the underlying API's provide a valuable research tool to a wide audience both as a standalone research tool and also as an easily accessed data source that can easily be mined or used with existing tools.

  18. Temporal integration windows for naturalistic visual sequences.

    Directory of Open Access Journals (Sweden)

    Scott L Fairhall

    Full Text Available There is increasing evidence that the brain possesses mechanisms to integrate incoming sensory information as it unfolds over time-periods of 2-3 seconds. The ubiquity of this mechanism across modalities, tasks, perception and production has led to the proposal that it may underlie our experience of the subjective present. A critical test of this claim is that this phenomenon should be apparent in naturalistic visual experiences. We tested this using movie-clips as a surrogate for our day-to-day experience, temporally scrambling them to require (re- integration within and beyond the hypothesized 2-3 second interval. Two independent experiments demonstrate a step-wise increase in the difficulty to follow stimuli at the hypothesized 2-3 second scrambling condition. Moreover, only this difference could not be accounted for by low-level visual properties. This provides the first evidence that this 2-3 second integration window extends to complex, naturalistic visual sequences more consistent with our experience of the subjective present.

  19. Information, entropy and fidelity in visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1992-01-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering and display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  20. Information, entropy, and fidelity in visual communication

    Science.gov (United States)

    Huck, Friedrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-ur

    1992-10-01

    This paper presents an assessment of visual communication that integrates the critical limiting factors of image gathering an display with the digital processing that is used to code and restore images. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image.

  1. Kinesthetic information disambiguates visual motion signals.

    Science.gov (United States)

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.; Albers, D.; Walker, R.; Jusufi, I.; Hansen, C. D.; Roberts, J. C.

    2011-01-01

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  3. Visual comparison for information visualization

    KAUST Repository

    Gleicher, M.

    2011-09-07

    Data analysis often involves the comparison of complex objects. With the ever increasing amounts and complexity of data, the demand for systems to help with these comparisons is also growing. Increasingly, information visualization tools support such comparisons explicitly, beyond simply allowing a viewer to examine each object individually. In this paper, we argue that the design of information visualizations of complex objects can, and should, be studied in general, that is independently of what those objects are. As a first step in developing this general understanding of comparison, we propose a general taxonomy of visual designs for comparison that groups designs into three basic categories, which can be combined. To clarify the taxonomy and validate its completeness, we provide a survey of work in information visualization related to comparison. Although we find a great diversity of systems and approaches, we see that all designs are assembled from the building blocks of juxtaposition, superposition and explicit encodings. This initial exploration shows the power of our model, and suggests future challenges in developing a general understanding of comparative visualization and facilitating the development of more comparative visualization tools. © The Author(s) 2011.

  4. Treelink: data integration, clustering and visualization of phylogenetic trees.

    Science.gov (United States)

    Allende, Christian; Sohn, Erik; Little, Cedric

    2015-12-29

    Phylogenetic trees are central to a wide range of biological studies. In many of these studies, tree nodes need to be associated with a variety of attributes. For example, in studies concerned with viral relationships, tree nodes are associated with epidemiological information, such as location, age and subtype. Gene trees used in comparative genomics are usually linked with taxonomic information, such as functional annotations and events. A wide variety of tree visualization and annotation tools have been developed in the past, however none of them are intended for an integrative and comparative analysis. Treelink is a platform-independent software for linking datasets and sequence files to phylogenetic trees. The application allows an automated integration of datasets to trees for operations such as classifying a tree based on a field or showing the distribution of selected data attributes in branches and leafs. Genomic and proteonomic sequences can also be linked to the tree and extracted from internal and external nodes. A novel clustering algorithm to simplify trees and display the most divergent clades was also developed, where validation can be achieved using the data integration and classification function. Integrated geographical information allows ancestral character reconstruction for phylogeographic plotting based on parsimony and likelihood algorithms. Our software can successfully integrate phylogenetic trees with different data sources, and perform operations to differentiate and visualize those differences within a tree. File support includes the most popular formats such as newick and csv. Exporting visualizations as images, cluster outputs and genomic sequences is supported. Treelink is available as a web and desktop application at http://www.treelinkapp.com .

  5. Sketchy Rendering for Information Visualization.

    Science.gov (United States)

    Wood, J; Isenberg, P; Isenberg, T; Dykes, J; Boukhelifa, N; Slingsby, A

    2012-12-01

    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These primitives allow higher-level graphical features such as bar charts, line charts, treemaps and node-link diagrams to be drawn in a sketchy style with a specified degree of sketchiness. The framework is designed to be easily integrated into existing visualization implementations with minimal programming modification or design effort. We show examples of use for statistical graphics, conveying spatial imprecision and for enhancing aesthetic and narrative qualities of visualization. We evaluate user perception of sketchiness of areal features through a series of stimulus-response tests in order to assess users' ability to place sketchiness on a ratio scale, and to estimate area. Results suggest relative area judgment is compromised by sketchy rendering and that its influence is dependent on the shape being rendered. They show that degree of sketchiness may be judged on an ordinal scale but that its judgement varies strongly between individuals. We evaluate higher-level impacts of sketchiness through user testing of scenarios that encourage user engagement with data visualization and willingness to critique visualization design. Results suggest that where a visualization is clearly sketchy, engagement may be increased and that attitudes to participating in visualization annotation are more positive. The results of our work have implications for effective information visualization design that go beyond the traditional role of sketching as a tool for prototyping or its use for an indication of general uncertainty.

  6. Learning STEM Through Integrative Visual Representations

    Science.gov (United States)

    Virk, Satyugjit Singh

    Previous cognitive models of memory have not comprehensively taken into account the internal cognitive load of chunking isolated information and have emphasized the external cognitive load of visual presentation only. Under the Virk Long Term Working Memory Multimedia Model of cognitive load, drawing from the Cowan model, students presented with integrated animations of the key neural signal transmission subcomponents where the interrelationships between subcomponents are visually and verbally explicit, were hypothesized to perform significantly better on free response and diagram labeling questions, than students presented with isolated animations of these subcomponents. This is because the internal attentional cognitive load of chunking these concepts is greatly reduced and hence the overall cognitive load is less for the integrated visuals group than the isolated group, despite the higher external load for the integrated group of having the interrelationships between subcomponents presented explicitly. Experiment 1 demonstrated that integrating the subcomponents of the neuron significantly enhanced comprehension of the interconnections between cellular subcomponents and approached significance for enhancing comprehension of the layered molecular correlates of the cellular structures and their interconnections. Experiment 2 corrected time on task confounds from Experiment 1 and focused on the cellular subcomponents of the neuron only. Results from the free response essay subcomponent subscores did demonstrate significant differences in favor of the integrated group as well as some evidence from the diagram labeling section. Results from free response, short answer and What-If (problem solving), and diagram labeling detailed interrelationship subscores demonstrated the integrated group did indeed learn the extra material they were presented with. This data demonstrating the integrated group learned the extra material they were presented with provides some initial

  7. Behavior Selection of Mobile Robot Based on Integration of Multimodal Information

    Science.gov (United States)

    Chen, Bin; Kaneko, Masahide

    Recently, biologically inspired robots have been developed to acquire the capacity for directing visual attention to salient stimulus generated from the audiovisual environment. On purpose to realize this behavior, a general method is to calculate saliency maps to represent how much the external information attracts the robot's visual attention, where the audiovisual information and robot's motion status should be involved. In this paper, we represent a visual attention model where three modalities, that is, audio information, visual information and robot's motor status are considered, while the previous researches have not considered all of them. Firstly, we introduce a 2-D density map, on which the value denotes how much the robot pays attention to each spatial location. Then we model the attention density using a Bayesian network where the robot's motion statuses are involved. Secondly, the information from both of audio and visual modalities is integrated with the attention density map in integrate-fire neurons. The robot can direct its attention to the locations where the integrate-fire neurons are fired. Finally, the visual attention model is applied to make the robot select the visual information from the environment, and react to the content selected. Experimental results show that it is possible for robots to acquire the visual information related to their behaviors by using the attention model considering motion statuses. The robot can select its behaviors to adapt to the dynamic environment as well as to switch to another task according to the recognition results of visual attention.

  8. A biologically inspired neural model for visual and proprioceptive integration including sensory training.

    Science.gov (United States)

    Saidi, Maryam; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Lari, Abdolaziz Azizi

    2013-12-01

    Humans perceive the surrounding world by integration of information through different sensory modalities. Earlier models of multisensory integration rely mainly on traditional Bayesian and causal Bayesian inferences for single causal (source) and two causal (for two senses such as visual and auditory systems), respectively. In this paper a new recurrent neural model is presented for integration of visual and proprioceptive information. This model is based on population coding which is able to mimic multisensory integration of neural centers in the human brain. The simulation results agree with those achieved by casual Bayesian inference. The model can also simulate the sensory training process of visual and proprioceptive information in human. Training process in multisensory integration is a point with less attention in the literature before. The effect of proprioceptive training on multisensory perception was investigated through a set of experiments in our previous study. The current study, evaluates the effect of both modalities, i.e., visual and proprioceptive training and compares them with each other through a set of new experiments. In these experiments, the subject was asked to move his/her hand in a circle and estimate its position. The experiments were performed on eight subjects with proprioception training and eight subjects with visual training. Results of the experiments show three important points: (1) visual learning rate is significantly more than that of proprioception; (2) means of visual and proprioceptive errors are decreased by training but statistical analysis shows that this decrement is significant for proprioceptive error and non-significant for visual error, and (3) visual errors in training phase even in the beginning of it, is much less than errors of the main test stage because in the main test, the subject has to focus on two senses. The results of the experiments in this paper is in agreement with the results of the neural model

  9. Creativity, Complexity, and Precision: Information Visualization for (Landscape) Architecture

    DEFF Research Database (Denmark)

    Buscher, Monika; Christensen, Michael; Mogensen, Preben Holst

    2000-01-01

    Drawing on ethnographic studies of (landscape) architects at work, this paper presents a human-centered approach to information visualization. A 3D collaborative electronic workspace allows people to configure, save and browse arrangements of heterogeneous work materials. Spatial arrangements...... and links are created and maintained as an integral part of ongoing work with `live' documents and objects. The result is an extension of the physical information space of the architects' studio that utilizes the potential of electronic data storage, visualization and network technologies to support work...... with information in context...

  10. On the effects of multimodal information integration in multitasking.

    Science.gov (United States)

    Stock, Ann-Kathrin; Gohil, Krutika; Huster, René J; Beste, Christian

    2017-07-07

    There have recently been considerable advances in our understanding of the neuronal mechanisms underlying multitasking, but the role of multimodal integration for this faculty has remained rather unclear. We examined this issue by comparing different modality combinations in a multitasking (stop-change) paradigm. In-depth neurophysiological analyses of event-related potentials (ERPs) were conducted to complement the obtained behavioral data. Specifically, we applied signal decomposition using second order blind identification (SOBI) to the multi-subject ERP data and source localization. We found that both general multimodal information integration and modality-specific aspects (potentially related to task difficulty) modulate behavioral performance and associated neurophysiological correlates. Simultaneous multimodal input generally increased early attentional processing of visual stimuli (i.e. P1 and N1 amplitudes) as well as measures of cognitive effort and conflict (i.e. central P3 amplitudes). Yet, tactile-visual input caused larger impairments in multitasking than audio-visual input. General aspects of multimodal information integration modulated the activity in the premotor cortex (BA 6) as well as different visual association areas concerned with the integration of visual information with input from other modalities (BA 19, BA 21, BA 37). On top of this, differences in the specific combination of modalities also affected performance and measures of conflict/effort originating in prefrontal regions (BA 6).

  11. Integration of visual and inertial cues in the perception of angular self-motion

    NARCIS (Netherlands)

    Winkel, K.N. de; Soyka, F.; Barnett-Cowan, M.; Bülthoff, H.H.; Groen, E.L.; Werkhoven, P.J.

    2013-01-01

    The brain is able to determine angular self-motion from visual, vestibular, and kinesthetic information. There is compelling evidence that both humans and non-human primates integrate visual and inertial (i.e., vestibular and kinesthetic) information in a statistically optimal fashion when

  12. Implicit integration in a case of integrative visual agnosia.

    Science.gov (United States)

    Aviezer, Hillel; Landau, Ayelet N; Robertson, Lynn C; Peterson, Mary A; Soroker, Nachum; Sacher, Yaron; Bonneh, Yoram; Bentin, Shlomo

    2007-05-15

    We present a case (SE) with integrative visual agnosia following ischemic stroke affecting the right dorsal and the left ventral pathways of the visual system. Despite his inability to identify global hierarchical letters [Navon, D. (1977). Forest before trees: The precedence of global features in visual perception. Cognitive Psychology, 9, 353-383], and his dense object agnosia, SE showed normal global-to-local interference when responding to local letters in Navon hierarchical stimuli and significant picture-word identity priming in a semantic decision task for words. Since priming was absent if these features were scrambled, it stands to reason that these effects were not due to priming by distinctive features. The contrast between priming effects induced by coherent and scrambled stimuli is consistent with implicit but not explicit integration of features into a unified whole. We went on to show that possible/impossible object decisions were facilitated by words in a word-picture priming task, suggesting that prompts could activate perceptually integrated images in a backward fashion. We conclude that the absence of SE's ability to identify visual objects except through tedious serial construction reflects a deficit in accessing an integrated visual representation through bottom-up visual processing alone. However, top-down generated images can help activate these visual representations through semantic links.

  13. Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.

    Science.gov (United States)

    Fetsch, Christopher R; Deangelis, Gregory C; Angelaki, Dora E

    2010-05-01

    The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.

  14. Visual-auditory integration for visual search: a behavioral study in barn owls

    Directory of Open Access Journals (Sweden)

    Yael eHazan

    2015-02-01

    Full Text Available Barn owls are nocturnal predators that rely on both vision and hearing for survival. The optic tectum of barn owls, a midbrain structure involved in selective attention, has been used as a model for studying visual- auditory integration at the neuronal level. However, behavioral data on visual- auditory integration in barn owls are lacking. The goal of this study was to examine if the integration of visual and auditory signals contributes to the process of guiding attention towards salient stimuli. We attached miniature wireless video cameras on barn owls' heads (OwlCam to track their target of gaze. We first provide evidence that the area centralis (a retinal area with a maximal density of photoreceptors is used as a functional fovea in barn owls. Thus, by mapping the projection of the area centralis on the OwlCam's video frame, it is possible to extract the target of gaze. For the experiment, owls were positioned on a high perch and four food items were scattered in a large arena on the floor. In addition, a hidden loudspeaker was positioned in the arena. The positions of the food items and speaker were changed every session. Video sequences from the OwlCam were saved for offline analysis while the owls spontaneously scanned the room and the food items with abrupt gaze shifts (head saccades. From time to time during the experiment, a brief sound was emitted from the speaker. The fixation points immediately following the sounds were extracted and the distances between the gaze position and the nearest items and loudspeaker were measured. The head saccades were rarely towards the location of the sound source but to salient visual features in the room, such as the door knob or the food items. However, among the food items, the one closest to the loudspeaker had the highest probability of attracting a gaze shift. This result supports the notion that auditory signals are integrated with visual information for the selection of the next visual search

  15. Preprocessing of emotional visual information in the human piriform cortex.

    Science.gov (United States)

    Schulze, Patrick; Bestgen, Anne-Kathrin; Lech, Robert K; Kuchinke, Lars; Suchan, Boris

    2017-08-23

    This study examines the processing of visual information by the olfactory system in humans. Recent data point to the processing of visual stimuli by the piriform cortex, a region mainly known as part of the primary olfactory cortex. Moreover, the piriform cortex generates predictive templates of olfactory stimuli to facilitate olfactory processing. This study fills the gap relating to the question whether this region is also capable of preprocessing emotional visual information. To gain insight into the preprocessing and transfer of emotional visual information into olfactory processing, we recorded hemodynamic responses during affective priming using functional magnetic resonance imaging (fMRI). Odors of different valence (pleasant, neutral and unpleasant) were primed by images of emotional facial expressions (happy, neutral and disgust). Our findings are the first to demonstrate that the piriform cortex preprocesses emotional visual information prior to any olfactory stimulation and that the emotional connotation of this preprocessing is subsequently transferred and integrated into an extended olfactory network for olfactory processing.

  16. Iowa Flood Information System: Towards Integrated Data Management, Analysis and Visualization

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2012-04-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  17. Cortical Integration of Audio-Visual Information

    Science.gov (United States)

    Vander Wyk, Brent C.; Ramsay, Gordon J.; Hudac, Caitlin M.; Jones, Warren; Lin, David; Klin, Ami; Lee, Su Mei; Pelphrey, Kevin A.

    2013-01-01

    We investigated the neural basis of audio-visual processing in speech and non-speech stimuli. Physically identical auditory stimuli (speech and sinusoidal tones) and visual stimuli (animated circles and ellipses) were used in this fMRI experiment. Relative to unimodal stimuli, each of the multimodal conjunctions showed increased activation in largely non-overlapping areas. The conjunction of Ellipse and Speech, which most resembles naturalistic audiovisual speech, showed higher activation in the right inferior frontal gyrus, fusiform gyri, left posterior superior temporal sulcus, and lateral occipital cortex. The conjunction of Circle and Tone, an arbitrary audio-visual pairing with no speech association, activated middle temporal gyri and lateral occipital cortex. The conjunction of Circle and Speech showed activation in lateral occipital cortex, and the conjunction of Ellipse and Tone did not show increased activation relative to unimodal stimuli. Further analysis revealed that middle temporal regions, although identified as multimodal only in the Circle-Tone condition, were more strongly active to Ellipse-Speech or Circle-Speech, but regions that were identified as multimodal for Ellipse-Speech were always strongest for Ellipse-Speech. Our results suggest that combinations of auditory and visual stimuli may together be processed by different cortical networks, depending on the extent to which speech or non-speech percepts are evoked. PMID:20709442

  18. Family genome browser: visualizing genomes with pedigree information.

    Science.gov (United States)

    Juan, Liran; Liu, Yongzhuang; Wang, Yongtian; Teng, Mingxiang; Zang, Tianyi; Wang, Yadong

    2015-07-15

    Families with inherited diseases are widely used in Mendelian/complex disease studies. Owing to the advances in high-throughput sequencing technologies, family genome sequencing becomes more and more prevalent. Visualizing family genomes can greatly facilitate human genetics studies and personalized medicine. However, due to the complex genetic relationships and high similarities among genomes of consanguineous family members, family genomes are difficult to be visualized in traditional genome visualization framework. How to visualize the family genome variants and their functions with integrated pedigree information remains a critical challenge. We developed the Family Genome Browser (FGB) to provide comprehensive analysis and visualization for family genomes. The FGB can visualize family genomes in both individual level and variant level effectively, through integrating genome data with pedigree information. Family genome analysis, including determination of parental origin of the variants, detection of de novo mutations, identification of potential recombination events and identical-by-decent segments, etc., can be performed flexibly. Diverse annotations for the family genome variants, such as dbSNP memberships, linkage disequilibriums, genes, variant effects, potential phenotypes, etc., are illustrated as well. Moreover, the FGB can automatically search de novo mutations and compound heterozygous variants for a selected individual, and guide investigators to find high-risk genes with flexible navigation options. These features enable users to investigate and understand family genomes intuitively and systematically. The FGB is available at http://mlg.hit.edu.cn/FGB/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. People-oriented Information Visualization Design

    Science.gov (United States)

    Chen, Zhiyong; Zhang, Bolun

    2018-04-01

    In the 21st century with rapid development, in the wake of the continuous progress of science and technology, human society enters the information era and the era of big data, and the lifestyle and aesthetic system also change accordingly, so the emerging field of information visualization is increasingly popular. Information visualization design is the process of visualizing all kinds of tedious information data, so as to quickly accept information and save time-cost. Along with the development of the process of information visualization, information design, also becomes hotter and hotter, and emotional design, people-oriented design is an indispensable part of in the design of information. This paper probes information visualization design through emotional analysis of information design based on the social context of people-oriented experience from the perspective of art design. Based on the three levels of emotional information design: instinct level, behavior level and reflective level research, to explore and discuss information visualization design.

  20. Visual Information Communications International Conference

    CERN Document Server

    Nguyen, Quang Vinh; Zhang, Kang; VINCI'09

    2010-01-01

    Visual Information Communication is based on VINCI'09, The Visual Information Communications International Conference, September 2009 in Sydney, Australia. Topics covered include The Arts of Visual Layout, Presentation & Exploration, The Design of Visual Attributes, Symbols & Languages, Methods for Visual Analytics and Knowledge Discovery, Systems, Interfaces and Applications of Visualization, Methods for Multimedia Data Recognition & Processing. This cutting-edge book addresses the issues of knowledge discovery, end-user programming, modeling, rapid systems prototyping, education, and design activities. Visual Information Communications is an edited volume whose contributors include well-established researchers worldwide, from diverse disciplines including architects, artists, engineers, and scientists. Visual Information Communication is designed for a professional audience composed of practitioners and researchers working in the field of digital design and visual communications. This volume i...

  1. Visualizing information across multidimensional post-genomic structured and textual databases.

    Science.gov (United States)

    Tao, Ying; Friedman, Carol; Lussier, Yves A

    2005-04-15

    Visualizing relationships among biological information to facilitate understanding is crucial to biological research during the post-genomic era. Although different systems have been developed to view gene-phenotype relationships for specific databases, very few have been designed specifically as a general flexible tool for visualizing multidimensional genotypic and phenotypic information together. Our goal is to develop a method for visualizing multidimensional genotypic and phenotypic information and a model that unifies different biological databases in order to present the integrated knowledge using a uniform interface. We developed a novel, flexible and generalizable visualization tool, called PhenoGenesviewer (PGviewer), which in this paper was used to display gene-phenotype relationships from a human-curated database (OMIM) and from an automatic method using a Natural Language Processing tool called BioMedLEE. Data obtained from multiple databases were first integrated into a uniform structure and then organized by PGviewer. PGviewer provides a flexible query interface that allows dynamic selection and ordering of any desired dimension in the databases. Based on users' queries, results can be visualized using hierarchical expandable trees that present views specified by users according to their research interests. We believe that this method, which allows users to dynamically organize and visualize multiple dimensions, is a potentially powerful and promising tool that should substantially facilitate biological research. PhenogenesViewer as well as its support and tutorial are available at http://www.dbmi.columbia.edu/pgviewer/ Lussier@dbmi.columbia.edu.

  2. The processing of visual and auditory information for reaching movements.

    Science.gov (United States)

    Glazebrook, Cheryl M; Welsh, Timothy N; Tremblay, Luc

    2016-09-01

    Presenting target and non-target information in different modalities influences target localization if the non-target is within the spatiotemporal limits of perceptual integration. When using auditory and visual stimuli, the influence of a visual non-target on auditory target localization is greater than the reverse. It is not known, however, whether or how such perceptual effects extend to goal-directed behaviours. To gain insight into how audio-visual stimuli are integrated for motor tasks, the kinematics of reaching movements towards visual or auditory targets with or without a non-target in the other modality were examined. When present, the simultaneously presented non-target could be spatially coincident, to the left, or to the right of the target. Results revealed that auditory non-targets did not influence reaching trajectories towards a visual target, whereas visual non-targets influenced trajectories towards an auditory target. Interestingly, the biases induced by visual non-targets were present early in the trajectory and persisted until movement end. Subsequent experimentation indicated that the magnitude of the biases was equivalent whether participants performed a perceptual or motor task, whereas variability was greater for the motor versus the perceptual tasks. We propose that visually induced trajectory biases were driven by the perceived mislocation of the auditory target, which in turn affected both the movement plan and subsequent control of the movement. Such findings provide further evidence of the dominant role visual information processing plays in encoding spatial locations as well as planning and executing reaching action, even when reaching towards auditory targets.

  3. Aspects of ontology visualization and integration

    NARCIS (Netherlands)

    Dmitrieva, Joelia Borisovna

    2011-01-01

    In this thesis we will describe and discuss methodologies for ontology visualization and integration. Two visualization methods will be elaborated. In one method the ontology is visualized with the node-link technique, and with the other method the ontology is visualized with the containment

  4. Information efficiency in visual communication

    Science.gov (United States)

    Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1993-01-01

    This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.

  5. Information efficiency in visual communication

    Science.gov (United States)

    Alter-Gartenberg, Rachel; Rahman, Zia-ur

    1993-08-01

    This paper evaluates the quantization process in the context of the end-to-end performance of the visual-communication channel. Results show that the trade-off between data transmission and visual quality revolves around the information in the acquired signal, not around its energy. Improved information efficiency is gained by frequency dependent quantization that maintains the information capacity of the channel and reduces the entropy of the encoded signal. Restorations with energy bit-allocation lose both in sharpness and clarity relative to restorations with information bit-allocation. Thus, quantization with information bit-allocation is preferred for high information efficiency and visual quality in optimized visual communication.

  6. Object representation in the bottlenose dolphin (Tursiops truncatus): integration of visual and echoic information.

    Science.gov (United States)

    Harley, H E; Roitblat, H L; Nachtigall, P E

    1996-04-01

    A dolphin performed a 3-alternative matching-to-sample task in different modality conditions (visual/echoic, both vision and echolocation: visual, vision only; echoic, echolocation only). In Experiment 1, training occurred in the dual-modality (visual/echoic) condition. Choice accuracy in tests of all conditions was above chance without further training. In Experiment 2, unfamiliar objects with complementary similarity relations in vision and echolocation were presented in single-modality conditions until accuracy was about 70%. When tested in the visual/echoic condition, accuracy immediately rose (95%), suggesting integration across modalities. In Experiment 3, conditions varied between presentation of sample and alternatives. The dolphin successfully matched familiar objects in the cross-modal conditions. These data suggest that the dolphin has an object-based representational system.

  7. Visual feature integration theory: past, present, and future.

    Science.gov (United States)

    Quinlan, Philip T

    2003-09-01

    Visual feature integration theory was one of the most influential theories of visual information processing in the last quarter of the 20th century. This article provides an exposition of the theory and a review of the associated data. In the past much emphasis has been placed on how the theory explains performance in various visual search tasks. The relevant literature is discussed and alternative accounts are described. Amendments to the theory are also set out. Many other issues concerning internal processes and representations implicated by the theory are reviewed. The article closes with a synopsis of what has been learned from consideration of the theory, and it is concluded that some of the issues may remain intractable unless appropriate neuroscientific investigations are carried out.

  8. SCSODC: Integrating Ocean Data for Visualization Sharing and Application

    Science.gov (United States)

    Xu, C.; Li, S.; Wang, D.; Xie, Q.

    2014-02-01

    The South China Sea Ocean Data Center (SCSODC) was founded in 2010 in order to improve collecting and managing of ocean data of the South China Sea Institute of Oceanology (SCSIO). The mission of SCSODC is to ensure the long term scientific stewardship of ocean data, information and products - collected through research groups, monitoring stations and observation cruises - and to facilitate the efficient use and distribution to possible users. However, data sharing and applications were limited due to the characteristics of distribution and heterogeneity that made it difficult to integrate the data. To surmount those difficulties, the Data Sharing System has been developed by the SCSODC using the most appropriate information management and information technology. The Data Sharing System uses open standards and tools to promote the capability to integrate ocean data and to interact with other data portals or users and includes a full range of processes such as data discovery, evaluation and access combining C/S and B/S mode. It provides a visualized management interface for the data managers and a transparent and seamless data access and application environment for users. Users are allowed to access data using the client software and to access interactive visualization application interface via a web browser. The architecture, key technologies and functionality of the system are discussed briefly in this paper. It is shown that the system of SCSODC is able to implement web visualization sharing and seamless access to ocean data in a distributed and heterogeneous environment.

  9. Encoding color information for visual tracking: Algorithms and benchmark.

    Science.gov (United States)

    Liang, Pengpeng; Blasch, Erik; Ling, Haibin

    2015-12-01

    While color information is known to provide rich discriminative clues for visual inference, most modern visual trackers limit themselves to the grayscale realm. Despite recent efforts to integrate color in tracking, there is a lack of comprehensive understanding of the role color information can play. In this paper, we attack this problem by conducting a systematic study from both the algorithm and benchmark perspectives. On the algorithm side, we comprehensively encode 10 chromatic models into 16 carefully selected state-of-the-art visual trackers. On the benchmark side, we compile a large set of 128 color sequences with ground truth and challenge factor annotations (e.g., occlusion). A thorough evaluation is conducted by running all the color-encoded trackers, together with two recently proposed color trackers. A further validation is conducted on an RGBD tracking benchmark. The results clearly show the benefit of encoding color information for tracking. We also perform detailed analysis on several issues, including the behavior of various combinations between color model and visual tracker, the degree of difficulty of each sequence for tracking, and how different challenge factors affect the tracking performance. We expect the study to provide the guidance, motivation, and benchmark for future work on encoding color in visual tracking.

  10. Constructing and Reading Visual Information: Visual Literacy for Library and Information Science Education

    Science.gov (United States)

    Ma, Yan

    2015-01-01

    This article examines visual literacy education and research for library and information science profession to educate the information professionals who will be able to execute and implement the ACRL (Association of College and Research Libraries) Visual Literacy Competency Standards successfully. It is a continuing call for inclusion of visual…

  11. Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.

    Science.gov (United States)

    Atilgan, Huriye; Town, Stephen M; Wood, Katherine C; Jones, Gareth P; Maddox, Ross K; Lee, Adrian K C; Bizley, Jennifer K

    2018-02-07

    How and where in the brain audio-visual signals are bound to create multimodal objects remains unknown. One hypothesis is that temporal coherence between dynamic multisensory signals provides a mechanism for binding stimulus features across sensory modalities. Here, we report that when the luminance of a visual stimulus is temporally coherent with the amplitude fluctuations of one sound in a mixture, the representation of that sound is enhanced in auditory cortex. Critically, this enhancement extends to include both binding and non-binding features of the sound. We demonstrate that visual information conveyed from visual cortex via the phase of the local field potential is combined with auditory information within auditory cortex. These data provide evidence that early cross-sensory binding provides a bottom-up mechanism for the formation of cross-sensory objects and that one role for multisensory binding in auditory cortex is to support auditory scene analysis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. The quality of visual information about the lower extremities influences visuomotor coordination during virtual obstacle negotiation.

    Science.gov (United States)

    Kim, Aram; Kretch, Kari S; Zhou, Zixuan; Finley, James M

    2018-05-09

    Successful negotiation of obstacles during walking relies on the integration of visual information about the environment with ongoing locomotor commands. When information about the body and environment are removed through occlusion of the lower visual field, individuals increase downward head pitch angle, reduce foot placement precision, and increase safety margins during crossing. However, whether these effects are mediated by loss of visual information about the lower extremities, the obstacle, or both remains to be seen. Here, we used a fully immersive, virtual obstacle negotiation task to investigate how visual information about the lower extremities is integrated with information about the environment to facilitate skillful obstacle negotiation. Participants stepped over virtual obstacles while walking on a treadmill with one of three types of visual feedback about the lower extremities: no feedback, end-point feedback, or a link-segment model. We found that absence of visual information about the lower extremities led to an increase in the variability of leading foot placement after crossing. The presence of a visual representation of the lower extremities promoted greater downward head pitch angle during the approach to and subsequent crossing of an obstacle. In addition, having greater downward head pitch was associated with closer placement of the trailing foot to the obstacle, further placement of the leading foot after the obstacle, and higher trailing foot clearance. These results demonstrate that the fidelity of visual information about the lower extremities influences both feed-forward and feedback aspects of visuomotor coordination during obstacle negotiation.

  13. SCSODC: Integrating Ocean Data for Visualization Sharing and Application

    International Nuclear Information System (INIS)

    Xu, C; Xie, Q; Li, S; Wang, D

    2014-01-01

    The South China Sea Ocean Data Center (SCSODC) was founded in 2010 in order to improve collecting and managing of ocean data of the South China Sea Institute of Oceanology (SCSIO). The mission of SCSODC is to ensure the long term scientific stewardship of ocean data, information and products – collected through research groups, monitoring stations and observation cruises – and to facilitate the efficient use and distribution to possible users. However, data sharing and applications were limited due to the characteristics of distribution and heterogeneity that made it difficult to integrate the data. To surmount those difficulties, the Data Sharing System has been developed by the SCSODC using the most appropriate information management and information technology. The Data Sharing System uses open standards and tools to promote the capability to integrate ocean data and to interact with other data portals or users and includes a full range of processes such as data discovery, evaluation and access combining C/S and B/S mode. It provides a visualized management interface for the data managers and a transparent and seamless data access and application environment for users. Users are allowed to access data using the client software and to access interactive visualization application interface via a web browser. The architecture, key technologies and functionality of the system are discussed briefly in this paper. It is shown that the system of SCSODC is able to implement web visualization sharing and seamless access to ocean data in a distributed and heterogeneous environment

  14. Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.

    Science.gov (United States)

    Morrill, Ryan J; Hasenstaub, Andrea R

    2018-03-14

    The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.

  15. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF.

    Directory of Open Access Journals (Sweden)

    Nouman Ali

    Full Text Available With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR, high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT and Speeded-Up Robust Features (SURF. The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.

  16. The effect of a concurrent working memory task and temporal offsets on the integration of auditory and visual speech information.

    Science.gov (United States)

    Buchan, Julie N; Munhall, Kevin G

    2012-01-01

    Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.

  17. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    Directory of Open Access Journals (Sweden)

    Jean-Louis eHoneine

    2014-10-01

    Full Text Available Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a subtract or integrate sensory inputs, (b move from allocentric to egocentric reference or vice versa, and (c adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1-2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training

  18. Time-interval for integration of stabilizing haptic and visual information in subjects balancing under static and dynamic conditions

    Science.gov (United States)

    Honeine, Jean-Louis; Schieppati, Marco

    2014-01-01

    Maintaining equilibrium is basically a sensorimotor integration task. The central nervous system (CNS) continually and selectively weights and rapidly integrates sensory inputs from multiple sources, and coordinates multiple outputs. The weighting process is based on the availability and accuracy of afferent signals at a given instant, on the time-period required to process each input, and possibly on the plasticity of the relevant pathways. The likelihood that sensory inflow changes while balancing under static or dynamic conditions is high, because subjects can pass from a dark to a well-lit environment or from a tactile-guided stabilization to loss of haptic inflow. This review article presents recent data on the temporal events accompanying sensory transition, on which basic information is fragmentary. The processing time from sensory shift to reaching a new steady state includes the time to (a) subtract or integrate sensory inputs; (b) move from allocentric to egocentric reference or vice versa; and (c) adjust the calibration of motor activity in time and amplitude to the new sensory set. We present examples of processes of integration of posture-stabilizing information, and of the respective sensorimotor time-intervals while allowing or occluding vision or adding or subtracting tactile information. These intervals are short, in the order of 1–2 s for different postural conditions, modalities and deliberate or passive shift. They are just longer for haptic than visual shift, just shorter on withdrawal than on addition of stabilizing input, and on deliberate than unexpected mode. The delays are the shortest (for haptic shift) in blind subjects. Since automatic balance stabilization may be vulnerable to sensory-integration delays and to interference from concurrent cognitive tasks in patients with sensorimotor problems, insight into the processing time for balance control represents a critical step in the design of new balance- and locomotion training devices

  19. Information visualization to user-friendly interface construction for information retrieval systems

    Directory of Open Access Journals (Sweden)

    Jessica Monique de Lira Vieira

    2011-10-01

    Full Text Available The information presented through visualization help the Information Retrieval System (IRS to reach its main goal: to retrieve relevant information that meets the informational needs of its users. The objective of this article is to describe and analyze techniques proposed by the Information Visualization area and interface models discussed in Information Science Literature, which applied to graphical interface construction would facilitate the appropriation of information by the users of IRS and would help them to search, browse and retrieve information. The methodology consists of a literature review focusing on the potential contribution of the visual representation of information in the development of user-friendly interfaces to IRS, as well as identification and analyses of visualizations used as interfaces by IRS. The use of visualizations is of great importance in the communication between SRI and users, because the information presented through visual representation are better understood by user and allow the discovery of new knowledge.

  20. Optimization of Visual Information Presentation for Visual Prosthesis

    Directory of Open Access Journals (Sweden)

    Fei Guo

    2018-01-01

    Full Text Available Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis.

  1. Optimization of Visual Information Presentation for Visual Prosthesis

    Science.gov (United States)

    Gao, Yong

    2018-01-01

    Visual prosthesis applying electrical stimulation to restore visual function for the blind has promising prospects. However, due to the low resolution, limited visual field, and the low dynamic range of the visual perception, huge loss of information occurred when presenting daily scenes. The ability of object recognition in real-life scenarios is severely restricted for prosthetic users. To overcome the limitations, optimizing the visual information in the simulated prosthetic vision has been the focus of research. This paper proposes two image processing strategies based on a salient object detection technique. The two processing strategies enable the prosthetic implants to focus on the object of interest and suppress the background clutter. Psychophysical experiments show that techniques such as foreground zooming with background clutter removal and foreground edge detection with background reduction have positive impacts on the task of object recognition in simulated prosthetic vision. By using edge detection and zooming technique, the two processing strategies significantly improve the recognition accuracy of objects. We can conclude that the visual prosthesis using our proposed strategy can assist the blind to improve their ability to recognize objects. The results will provide effective solutions for the further development of visual prosthesis. PMID:29731769

  2. Designing the visualization of information

    CSIR Research Space (South Africa)

    Engelbrecht, L

    2015-04-01

    Full Text Available The construction of an artifact to visually represent information is usually required by Information Visualization research projects. The end product of design science research is also an artifact and therefore it can be argued that design science...

  3. Integrating mechanisms of visual guidance in naturalistic language production.

    Science.gov (United States)

    Coco, Moreno I; Keller, Frank

    2015-05-01

    Situated language production requires the integration of visual attention and linguistic processing. Previous work has not conclusively disentangled the role of perceptual scene information and structural sentence information in guiding visual attention. In this paper, we present an eye-tracking study that demonstrates that three types of guidance, perceptual, conceptual, and structural, interact to control visual attention. In a cued language production experiment, we manipulate perceptual (scene clutter) and conceptual guidance (cue animacy) and measure structural guidance (syntactic complexity of the utterance). Analysis of the time course of language production, before and during speech, reveals that all three forms of guidance affect the complexity of visual responses, quantified in terms of the entropy of attentional landscapes and the turbulence of scan patterns, especially during speech. We find that perceptual and conceptual guidance mediate the distribution of attention in the scene, whereas structural guidance closely relates to scan pattern complexity. Furthermore, the eye-voice span of the cued object and its perceptual competitor are similar; its latency mediated by both perceptual and structural guidance. These results rule out a strict interpretation of structural guidance as the single dominant form of visual guidance in situated language production. Rather, the phase of the task and the associated demands of cross-modal cognitive processing determine the mechanisms that guide attention.

  4. Perceived visual informativeness (PVI): construct and scale development to assess visual information in printed materials.

    Science.gov (United States)

    King, Andy J; Jensen, Jakob D; Davis, LaShara A; Carcioppolo, Nick

    2014-01-01

    There is a paucity of research on the visual images used in health communication messages and campaign materials. Even though many studies suggest further investigation of these visual messages and their features, few studies provide specific constructs or assessment tools for evaluating the characteristics of visual messages in health communication contexts. The authors conducted 2 studies to validate a measure of perceived visual informativeness (PVI), a message construct assessing visual messages presenting statistical or indexical information. In Study 1, a 7-item scale was created that demonstrated good internal reliability (α = .91), as well as convergent and divergent validity with related message constructs such as perceived message quality, perceived informativeness, and perceived attractiveness. PVI also converged with a preference for visual learning but was unrelated to a person's actual vision ability. In addition, PVI exhibited concurrent validity with a number of important constructs including perceived message effectiveness, decisional satisfaction, and three key public health theory behavior predictors: perceived benefits, perceived barriers, and self-efficacy. Study 2 provided more evidence that PVI is an internally reliable measure and demonstrates that PVI is a modifiable message feature that can be tested in future experimental work. PVI provides an initial step to assist in the evaluation and testing of visual messages in campaign and intervention materials promoting informed decision making and behavior change.

  5. Visual-motor integration functioning in a South African middle ...

    African Journals Online (AJOL)

    Visual-motor integration functioning has been identified as playing an integral role in different aspects of a child's development. Sensory-motor development is not only foundational to the physical maturation process, but is also imperative for progress with formal learning activities. Deficits in visual-motor integration have ...

  6. Designing Data Visualizations Representing Informational Relationships

    CERN Document Server

    Steele, Julie

    2011-01-01

    Data visualization is an efficient and effective medium for communicating large amounts of information, but the design process can often seem like an unexplainable creative endeavor. This concise book aims to demystify the design process by showing you how to use a linear decision-making process to encode your information visually. Delve into different kinds of visualization, including infographics and visual art, and explore the influences at work in each one. Then learn how to apply these concepts to your design process. Learn data visualization classifications, including explanatory, expl

  7. End-User Development of Information Visualization

    DEFF Research Database (Denmark)

    Pantazos, Kostas; Lauesen, Søren; Vatrapu, Ravi

    2013-01-01

    such as data manipulation, but no formal training in programming. 18 visualization tools were surveyed from an enduser developer perspective. The results of this survey study show that end-user developers need better tools to create and modify custom visualizations. A closer collaboration between End......This paper investigates End-User Development of Information Visualization. More specifically, we investigated how existing visualization tools allow end-user developers to construct visualizations. End-user developers have some developing or scripting skills to perform relatively advanced tasks......-User Development and Information Visualization researchers could contribute towards the development of better tools to support custom visualizations. In addition, as empirical evaluations of these tools are lacking both research communities should focus more on this aspect. The study serves as a starting point...

  8. Information measures for terrain visualization

    Science.gov (United States)

    Bonaventura, Xavier; Sima, Aleksandra A.; Feixas, Miquel; Buckley, Simon J.; Sbert, Mateu; Howell, John A.

    2017-02-01

    Many quantitative and qualitative studies in geoscience research are based on digital elevation models (DEMs) and 3D surfaces to aid understanding of natural and anthropogenically-influenced topography. As well as their quantitative uses, the visual representation of DEMs can add valuable information for identifying and interpreting topographic features. However, choice of viewpoints and rendering styles may not always be intuitive, especially when terrain data are augmented with digital image texture. In this paper, an information-theoretic framework for object understanding is applied to terrain visualization and terrain view selection. From a visibility channel between a set of viewpoints and the component polygons of a 3D terrain model, we obtain three polygonal information measures. These measures are used to visualize the information associated with each polygon of the terrain model. In order to enhance the perception of the terrain's shape, we explore the effect of combining the calculated information measures with the supplementary digital image texture. From polygonal information, we also introduce a method to select a set of representative views of the terrain model. Finally, we evaluate the behaviour of the proposed techniques using example datasets. A publicly available framework for both the visualization and the view selection of a terrain has been created in order to provide the possibility to analyse any terrain model.

  9. Brain networks underlying mental imagery of auditory and visual information.

    Science.gov (United States)

    Zvyagintsev, Mikhail; Clemens, Benjamin; Chechko, Natalya; Mathiak, Krystyna A; Sack, Alexander T; Mathiak, Klaus

    2013-05-01

    Mental imagery is a complex cognitive process that resembles the experience of perceiving an object when this object is not physically present to the senses. It has been shown that, depending on the sensory nature of the object, mental imagery also involves correspondent sensory neural mechanisms. However, it remains unclear which areas of the brain subserve supramodal imagery processes that are independent of the object modality, and which brain areas are involved in modality-specific imagery processes. Here, we conducted a functional magnetic resonance imaging study to reveal supramodal and modality-specific networks of mental imagery for auditory and visual information. A common supramodal brain network independent of imagery modality, two separate modality-specific networks for imagery of auditory and visual information, and a common deactivation network were identified. The supramodal network included brain areas related to attention, memory retrieval, motor preparation and semantic processing, as well as areas considered to be part of the default-mode network and multisensory integration areas. The modality-specific networks comprised brain areas involved in processing of respective modality-specific sensory information. Interestingly, we found that imagery of auditory information led to a relative deactivation within the modality-specific areas for visual imagery, and vice versa. In addition, mental imagery of both auditory and visual information widely suppressed the activity of primary sensory and motor areas, for example deactivation network. These findings have important implications for understanding the mechanisms that are involved in generation of mental imagery. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Robot vision language RVL/V: An integration scheme of visual processing and manipulator control

    International Nuclear Information System (INIS)

    Matsushita, T.; Sato, T.; Hirai, S.

    1984-01-01

    RVL/V is a robot vision language designed to write a program for visual processing and manipulator control of a hand-eye system. This paper describes the design of RVL/V and the current implementation of the system. Visual processing is performed on one-dimensional range data of the object surface. Model-based instructions execute object detection, measurement and view control. The hierarchy of visual data and processing is introduced to give RVL/V generality. A new scheme to integrate visual information and manipulator control is proposed. The effectiveness of the model-based visual processing scheme based on profile data is demonstrated by a hand-eye experiment

  11. Development of Integrated Information System for Travel Bureau Company

    Science.gov (United States)

    Karma, I. G. M.; Susanti, J.

    2018-01-01

    Related to the effectiveness of decision-making by the management of travel bureau company, especially by managers, information serves frequent delays or incomplete. Although already computer-assisted, the existing application-based is used only handle one particular activity only, not integrated. This research is intended to produce an integrated information system that handles the overall operational activities of the company. By applying the object-oriented system development approach, the system is built with Visual Basic. Net programming language and MySQL database package. The result is a system that consists of 4 (four) separated program packages, including Reservation System, AR System, AP System and Accounting System. Based on the output, we can conclude that this system is able to produce integrated information that related to the problem of reservation, operational and financial those produce up-to-date information in order to support operational activities and decisionmaking process by related parties.

  12. Integration of genomic information with biological networks using Cytoscape.

    Science.gov (United States)

    Bauer-Mehren, Anna

    2013-01-01

    Cytoscape is an open-source software for visualizing, analyzing, and modeling biological networks. This chapter explains how to use Cytoscape to analyze the functional effect of sequence variations in the context of biological networks such as protein-protein interaction networks and signaling pathways. The chapter is divided into five parts: (1) obtaining information about the functional effect of sequence variation in a Cytoscape readable format, (2) loading and displaying different types of biological networks in Cytoscape, (3) integrating the genomic information (SNPs and mutations) with the biological networks, and (4) analyzing the effect of the genomic perturbation onto the network structure using Cytoscape built-in functions. Finally, we briefly outline how the integrated data can help in building mathematical network models for analyzing the effect of the sequence variation onto the dynamics of the biological system. Each part is illustrated by step-by-step instructions on an example use case and visualized by many screenshots and figures.

  13. Disentangling brain activity related to the processing of emotional visual information and emotional arousal.

    Science.gov (United States)

    Kuniecki, Michał; Wołoszyn, Kinga; Domagalik, Aleksandra; Pilarczyk, Joanna

    2018-05-01

    Processing of emotional visual information engages cognitive functions and induces arousal. We aimed to examine the modulatory role of emotional valence on brain activations linked to the processing of visual information and those linked to arousal. Participants were scanned and their pupil size was measured while viewing negative and neutral images. The visual noise was added to the images in various proportions to parametrically manipulate the amount of visual information. Pupil size was used as an index of physiological arousal. We show that arousal induced by the negative images, as compared to the neutral ones, is primarily related to greater amygdala activity while increasing visibility of negative content to enhanced activity in the lateral occipital complex (LOC). We argue that more intense visual processing of negative scenes can occur irrespective of the level of arousal. It may suggest that higher areas of the visual stream are fine-tuned to process emotionally relevant objects. Both arousal and processing of emotional visual information modulated activity within the ventromedial prefrontal cortex (vmPFC). Overlapping activations within the vmPFC may reflect the integration of these aspects of emotional processing. Additionally, we show that emotionally-evoked pupil dilations are related to activations in the amygdala, vmPFC, and LOC.

  14. Within- and cross-modal distance information disambiguate visual size-change perception.

    Directory of Open Access Journals (Sweden)

    Peter W Battaglia

    2010-03-01

    Full Text Available Perception is fundamentally underconstrained because different combinations of object properties can generate the same sensory information. To disambiguate sensory information into estimates of scene properties, our brains incorporate prior knowledge and additional "auxiliary" (i.e., not directly relevant to desired scene property sensory information to constrain perceptual interpretations. For example, knowing the distance to an object helps in perceiving its size. The literature contains few demonstrations of the use of prior knowledge and auxiliary information in combined visual and haptic disambiguation and almost no examination of haptic disambiguation of vision beyond "bistable" stimuli. Previous studies have reported humans integrate multiple unambiguous sensations to perceive single, continuous object properties, like size or position. Here we test whether humans use visual and haptic information, individually and jointly, to disambiguate size from distance. We presented participants with a ball moving in depth with a changing diameter. Because no unambiguous distance information is available under monocular viewing, participants rely on prior assumptions about the ball's distance to disambiguate their -size percept. Presenting auxiliary binocular and/or haptic distance information augments participants' prior distance assumptions and improves their size judgment accuracy-though binocular cues were trusted more than haptic. Our results suggest both visual and haptic distance information disambiguate size perception, and we interpret these results in the context of probabilistic perceptual reasoning.

  15. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream.

    Science.gov (United States)

    Martin, Chris B; Douglas, Danielle; Newsome, Rachel N; Man, Louisa Ly; Barense, Morgan D

    2018-02-02

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. © 2018, Martin et al.

  16. Integrative and distinctive coding of visual and conceptual object features in the ventral visual stream

    Science.gov (United States)

    Douglas, Danielle; Newsome, Rachel N; Man, Louisa LY

    2018-01-01

    A significant body of research in cognitive neuroscience is aimed at understanding how object concepts are represented in the human brain. However, it remains unknown whether and where the visual and abstract conceptual features that define an object concept are integrated. We addressed this issue by comparing the neural pattern similarities among object-evoked fMRI responses with behavior-based models that independently captured the visual and conceptual similarities among these stimuli. Our results revealed evidence for distinctive coding of visual features in lateral occipital cortex, and conceptual features in the temporal pole and parahippocampal cortex. By contrast, we found evidence for integrative coding of visual and conceptual object features in perirhinal cortex. The neuroanatomical specificity of this effect was highlighted by results from a searchlight analysis. Taken together, our findings suggest that perirhinal cortex uniquely supports the representation of fully specified object concepts through the integration of their visual and conceptual features. PMID:29393853

  17. Principles of Information Visualization for Business Research

    OpenAIRE

    Ioan I. ANDONE

    2008-01-01

    In the era of data-centric-science, a large number of visualization tools have been created to help researchers understand increasingly rich business databases. Information visualization is a process of constructing a visual presentation of business quantitative data, especially prepared for managerial use. Interactive information visualization provide researchers with remarkable tools for discovery and innovation. By combining powerful data mining methods with user-controlled interfaces, use...

  18. Integrated visualization of remote sensing data using Google Earth

    Science.gov (United States)

    Castella, M.; Rigo, T.; Argemi, O.; Bech, J.; Pineda, N.; Vilaclara, E.

    2009-09-01

    The need for advanced visualization tools for meteorological data has lead in the last years to the development of sophisticated software packages either by observing systems manufacturers or by third-party solution providers. For example, manufacturers of remote sensing systems such as weather radars or lightning detection systems include zoom, product selection, archive access capabilities, as well as quantitative tools for data analysis, as standard features which are highly appreciated in weather surveillance or post-event case study analysis. However, the fact that each manufacturer has its own visualization system and data formats hampers the usability and integration of different data sources. In this context, Google Earth (GE) offers the possibility of combining several graphical information types in a unique visualization system which can be easily accessed by users. The Meteorological Service of Catalonia (SMC) has been evaluating the use of GE as a visualization platform for surveillance tasks in adverse weather events. First experiences are related to the integration in real-time of remote sensing data: radar, lightning, and satellite. The tool shows the animation of the combined products in the last hour, giving a good picture of the meteorological situation. One of the main advantages of this product is that is easy to be installed in many computers and does not need high computational requirements. Besides this, the capability of GE provides information about the most affected areas by heavy rain or other weather phenomena. On the opposite, the main disadvantage is that the product offers only qualitative information, and quantitative data is only available though the graphical display (i.e. trough color scales but not associated to physical values that can be accessed by users easily). The procedure developed to run in real time is divided in three parts. First of all, a crontab file launches different applications, depending on the data type

  19. Exploring the Link between Visual Perception, Visual-Motor Integration, and Reading in Normal Developing and Impaired Children using DTVP-2.

    Science.gov (United States)

    Bellocchi, Stéphanie; Muneaux, Mathilde; Huau, Andréa; Lévêque, Yohana; Jover, Marianne; Ducrot, Stéphanie

    2017-08-01

    Reading is known to be primarily a linguistic task. However, to successfully decode written words, children also need to develop good visual-perception skills. Furthermore, motor skills are implicated in letter recognition and reading acquisition. Three studies have been designed to determine the link between reading, visual perception, and visual-motor integration using the Developmental Test of Visual Perception version 2 (DTVP-2). Study 1 tests how visual perception and visual-motor integration in kindergarten predict reading outcomes in Grade 1, in typical developing children. Study 2 is aimed at finding out if these skills can be seen as clinical markers in dyslexic children (DD). Study 3 determines if visual-motor integration and motor-reduced visual perception can distinguish DD children according to whether they exhibit or not developmental coordination disorder (DCD). Results showed that phonological awareness and visual-motor integration predicted reading outcomes one year later. DTVP-2 demonstrated similarities and differences in visual-motor integration and motor-reduced visual perception between children with DD, DCD, and both of these deficits. DTVP-2 is a suitable tool to investigate links between visual perception, visual-motor integration and reading, and to differentiate cognitive profiles of children with developmental disabilities (i.e. DD, DCD, and comorbid children). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  1. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  2. Imprinting modulates processing of visual information in the visual wulst of chicks

    Directory of Open Access Journals (Sweden)

    Uchimura Motoaki

    2006-11-01

    Full Text Available Abstract Background Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. Results A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. Conclusion These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium.

  3. Keeping in Touch With the Visual System: Spatial Alignment and Multisensory Integration of Visual-Somatosensory Inputs

    Directory of Open Access Journals (Sweden)

    Jeannette Rose Mahoney

    2015-08-01

    Full Text Available Correlated sensory inputs coursing along the individual sensory processing hierarchies arrive at multisensory convergence zones in cortex where inputs are processed in an integrative manner. The exact hierarchical level of multisensory convergence zones and the timing of their inputs are still under debate, although increasingly, evidence points to multisensory integration at very early sensory processing levels. The objective of the current study was to determine, both psychophysically and electrophysiologically, whether differential visual-somatosensory integration patterns exist for stimuli presented to the same versus opposite hemifields. Using high-density electrical mapping and complementary psychophysical data, we examined multisensory integrative processing for combinations of visual and somatosensory inputs presented to both left and right spatial locations. We assessed how early during sensory processing visual-somatosensory (VS interactions were seen in the event-related potential and whether spatial alignment of the visual and somatosensory elements resulted in differential integration effects. Reaction times to all VS pairings were significantly faster than those to the unisensory conditions, regardless of spatial alignment, pointing to engagement of integrative multisensory processing in all conditions. In support, electrophysiological results revealed significant differences between multisensory simultaneous VS and summed V+S responses, regardless of the spatial alignment of the constituent inputs. Nonetheless, multisensory effects were earlier in the aligned conditions, and were found to be particularly robust in the case of right-sided inputs (beginning at just 55ms. In contrast to previous work on audio-visual and audio-somatosensory inputs, the current work suggests a degree of spatial specificity to the earliest detectable multisensory integrative effects in response to visual-somatosensory pairings.

  4. Integrated Data Visualization and Virtual Reality Tool

    Science.gov (United States)

    Dryer, David A.

    1998-01-01

    The Integrated Data Visualization and Virtual Reality Tool (IDVVRT) Phase II effort was for the design and development of an innovative Data Visualization Environment Tool (DVET) for NASA engineers and scientists, enabling them to visualize complex multidimensional and multivariate data in a virtual environment. The objectives of the project were to: (1) demonstrate the transfer and manipulation of standard engineering data in a virtual world; (2) demonstrate the effects of design and changes using finite element analysis tools; and (3) determine the training and engineering design and analysis effectiveness of the visualization system.

  5. Novel Scientific Visualization Interfaces for Interactive Information Visualization and Sharing

    Science.gov (United States)

    Demir, I.; Krajewski, W. F.

    2012-12-01

    As geoscientists are confronted with increasingly massive datasets from environmental observations to simulations, one of the biggest challenges is having the right tools to gain scientific insight from the data and communicate the understanding to stakeholders. Recent developments in web technologies make it easy to manage, visualize and share large data sets with general public. Novel visualization techniques and dynamic user interfaces allow users to interact with data, and modify the parameters to create custom views of the data to gain insight from simulations and environmental observations. This requires developing new data models and intelligent knowledge discovery techniques to explore and extract information from complex computational simulations or large data repositories. Scientific visualization will be an increasingly important component to build comprehensive environmental information platforms. This presentation provides an overview of the trends and challenges in the field of scientific visualization, and demonstrates information visualization and communication tools in the Iowa Flood Information System (IFIS), developed within the light of these challenges. The IFIS is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to and visualization of flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, and other flood-related data for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and

  6. Street navigation using visual information on mobile phones

    DEFF Research Database (Denmark)

    Nguyen, Phuong Giang; Andersen, Hans Jørgen; Høilund, Carsten

    2010-01-01

    Applications with street navigation have been recently introduced on mobile phone devices. A major part of existing systems use integrated GPS as input for indicating the location. However, these systems often fail or make abrupt shifts in urban environment due to occlusion of satellites....... Furthermore, they only give the position of a person and not the object of his attention, which is just as important for localization based services. In this paper we introduce a system using mobile phones built-in cameras for navigation and localization using visual information in accordance with the way we...

  7. Creation of integrated information model of 'Ukryttya' object premises and industrial site conditions to support works

    International Nuclear Information System (INIS)

    Postil, S.D.; Ermolenko, A.I.; Ivanov, V.V.; Kotlyarov, V.T.

    2004-01-01

    Data integration is made using standard AutoCAD utility and special software developed in Visual Basic for Application language. Mutual transfer is realized between the applications prepared in Access and AutoCAD with displaying the submitted information. The work demonstrates a possibility to apply integrated information model for investigating radiation field's change and analysis regularities in premises and on industrial site area, development and visualization, with the use of computer animation means, of movement routes, displaying of emergency situations being forecast with the help of computer graphics means, integration of raster display of structures and vector computer model of objects

  8. Insensitivity of visual short-term memory to irrelevant visual information

    OpenAIRE

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-01-01

    Several authors have hypothesised that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996a). Experiment 1 replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of ...

  9. Visual Learning in Application of Integration

    Science.gov (United States)

    Bt Shafie, Afza; Barnachea Janier, Josefina; Bt Wan Ahmad, Wan Fatimah

    Innovative use of technology can improve the way how Mathematics should be taught. It can enhance student's learning the concepts through visualization. Visualization in Mathematics refers to us of texts, pictures, graphs and animations to hold the attention of the learners in order to learn the concepts. This paper describes the use of a developed multimedia courseware as an effective tool for visual learning mathematics. The focus is on the application of integration which is a topic in Engineering Mathematics 2. The course is offered to the foundation students in the Universiti Teknologi of PETRONAS. Questionnaire has been distributed to get a feedback on the visual representation and students' attitudes towards using visual representation as a learning tool. The questionnaire consists of 3 sections: Courseware Design (Part A), courseware usability (Part B) and attitudes towards using the courseware (Part C). The results showed that students demonstrated the use of visual representation has benefited them in learning the topic.

  10. Harnessing the web information ecosystem with wiki-based visualization dashboards.

    Science.gov (United States)

    McKeon, Matt

    2009-01-01

    We describe the design and deployment of Dashiki, a public website where users may collaboratively build visualization dashboards through a combination of a wiki-like syntax and interactive editors. Our goals are to extend existing research on social data analysis into presentation and organization of data from multiple sources, explore new metaphors for these activities, and participate more fully in the web!s information ecology by providing tighter integration with real-time data. To support these goals, our design includes novel and low-barrier mechanisms for editing and layout of dashboard pages and visualizations, connection to data sources, and coordinating interaction between visualizations. In addition to describing these technologies, we provide a preliminary report on the public launch of a prototype based on this design, including a description of the activities of our users derived from observation and interviews.

  11. Collinear facilitation and contour integration in autism: evidence for atypical visual integration.

    Science.gov (United States)

    Jachim, Stephen; Warren, Paul A; McLoughlin, Niall; Gowen, Emma

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger's Syndrome) using two psychophysical tasks thought to rely on integrative processing-collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i) reduced collinear facilitation, despite equivalent performance without flankers; and (ii) less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.

  12. Collinear facilitation and contour integration in autism: evidence for atypical visual integration

    Directory of Open Access Journals (Sweden)

    Stephen eJachim

    2015-03-01

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by impaired social interaction, atypical communication and a restricted repertoire of interests and activities. Altered sensory and perceptual experiences are also common, and a notable perceptual difference between individuals with ASD and controls is their superior performance in visual tasks where it may be beneficial to ignore global context. This superiority may be the result of atypical integrative processing. To explore this claim we investigated visual integration in adults with ASD (diagnosed with Asperger’s Syndrome using two psychophysical tasks thought to rely on integrative processing - collinear facilitation and contour integration. We measured collinear facilitation at different flanker orientation offsets and contour integration for both open and closed contours. Our results indicate that compared to matched controls, ASD participants show (i reduced collinear facilitation, despite equivalent performance without flankers and (ii less benefit from closed contours in contour integration. These results indicate weaker visuospatial integration in adults with ASD and suggest that further studies using these types of paradigms would provide knowledge on how contextual processing is altered in ASD.

  13. Visual search, visual streams, and visual architectures.

    Science.gov (United States)

    Green, M

    1991-10-01

    Most psychological, physiological, and computational models of early vision suggest that retinal information is divided into a parallel set of feature modules. The dominant theories of visual search assume that these modules form a "blackboard" architecture: a set of independent representations that communicate only through a central processor. A review of research shows that blackboard-based theories, such as feature-integration theory, cannot easily explain the existing data. The experimental evidence is more consistent with a "network" architecture, which stresses that: (1) feature modules are directly connected to one another, (2) features and their locations are represented together, (3) feature detection and integration are not distinct processing stages, and (4) no executive control process, such as focal attention, is needed to integrate features. Attention is not a spotlight that synthesizes objects from raw features. Instead, it is better to conceptualize attention as an aperture which masks irrelevant visual information.

  14. The Dynamics and Neural Correlates of Audio-Visual Integration Capacity as Determined by Temporal Unpredictability, Proactive Interference, and SOA.

    Science.gov (United States)

    Wilbiks, Jonathan M P; Dyson, Benjamin J

    2016-01-01

    Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus.

  15. Making Information Visual: Seventh Grade Art Information and Visual Literacy

    Science.gov (United States)

    Shoemaker, Joel; Schau, Elizabeth; Ayers, Rachael

    2008-01-01

    Seventh grade students entering South East Junior High in Iowa City come from eight elementary feeder schools, as well as from schools around the world. Their information literacy skills and knowledge of reference sources vary, but since all seventh graders and new eighth graders are required to take one trimester of Visual Studies, all entering…

  16. Enhancing situational awareness by means of visualization and information integration of sensor networks

    Science.gov (United States)

    Timonen, Jussi; Vankka, Jouko

    2013-05-01

    This paper presents a solution for information integration and sharing architecture, which is able to receive data simultaneously from multiple different sensor networks. Creating a Common Operational Picture (COP) object along with the base map of the building plays a key role in the research. The object is combined with desired map sources and then shared to the mobile devices worn by soldiers in the field. The sensor networks we used focus on location techniques indoors, and a simple set of symbols is created to present the information, as an addition to NATO APP6B symbols. A core element in this research is the MUSAS (Mobile Urban Situational Awareness System), a demonstration environment that implements central functionalities. Information integration of the system is handled by the Internet Connection Engine (Ice) middleware, as well as the server, which hosts COP information and maps. The entire system is closed, such that it does not need any external service, and the information transfer with the mobile devices is organized by a tactical 5 GHz WLAN solution. The demonstration environment is implemented using only commercial off-theshelf (COTS) products. We have presented a field experiment event in which the system was able to integrate and share real time information of a blue force tracking system, received signal strength indicator (RSSI) based intrusion detection system, and a robot using simultaneous location and mapping technology (SLAM), where all the inputs were based on real activities. The event was held in a training area on urban area warfare.

  17. A Novel Visual Data Mining Module for the Geographical Information System gvSIG

    Directory of Open Access Journals (Sweden)

    Romel Vázquez-Rodríguez

    2013-01-01

    Full Text Available The exploration of large GIS models containing spatio-temporal information is a challenge. In this paper we propose the integration of scientific visualization (ScVis techniques into geographic information systems (GIS as an alternative for the visual analysis of data. Providing GIS with such tools improves the analysis and understanding of datasets with very low spatial density and allows to find correlations between variables in time and space. In this regard, we present a new visual data mining tool for the GIS gvSIG. This tool has been implemented as a gvSIG module and contains several ScVis techniques for multiparameter data with a wide range of possibilities to explore interactively the data. The developed module is a powerful visual data mining and data visualization tool to obtain knowledge from multiple datasets in time and space. A real case study with meteorological data from Villa Clara province (Cuba is presented, where the implemented visualization techniques were used to analyze the available datasets. Although it is tested with meteorological data, the developed module is of general application in the sense that it can be used in multiple application fields related with Earth Sciences.

  18. Octopus vulgaris uses visual information to determine the location of its arm.

    Science.gov (United States)

    Gutnick, Tamar; Byrne, Ruth A; Hochner, Binyamin; Kuba, Michael

    2011-03-22

    Octopuses are intelligent, soft-bodied animals with keen senses that perform reliably in a variety of visual and tactile learning tasks. However, researchers have found them disappointing in that they consistently fail in operant tasks that require them to combine central nervous system reward information with visual and peripheral knowledge of the location of their arms. Wells claimed that in order to filter and integrate an abundance of multisensory inputs that might inform the animal of the position of a single arm, octopuses would need an exceptional computing mechanism, and "There is no evidence that such a system exists in Octopus, or in any other soft bodied animal." Recent electrophysiological experiments, which found no clear somatotopic organization in the higher motor centers, support this claim. We developed a three-choice maze that required an octopus to use a single arm to reach a visually marked goal compartment. Using this operant task, we show for the first time that Octopus vulgaris is capable of guiding a single arm in a complex movement to a location. Thus, we claim that octopuses can combine peripheral arm location information with visual input to control goal-directed complex movements. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Data Visualization and Infographics In Visual Communication Design Education at The Age of Information

    Directory of Open Access Journals (Sweden)

    Banu Inanc Uyan Dur

    2014-06-01

    Full Text Available Scientific and technologic developments in the last century facilitate people’s lives while also causing them to face more information. Information design has become much more important as a result of the chaos created by the unprocessed heap of data and information traffic. Therefore, people need designed information like infographics and data visualisation today. Design of information, which is among the most significant requirements of our age, has become a subject which needs to be dealt with more systematically in the education of visual communication design. Visual design of information and data is important not only for increasing perceptibility but also revealing the patterns within complex information, and being educative, persuasive and guiding depending on the content and objective. In this sense, incorporating data visualization and infographics works into the education of visual communication design would have significant contributions to train designers with sufficient qualification to meet the requirements of today’s world. This study examines the current/potential expansion of data visualization and infographics in the education of visual communication design  at the age of information. With respect to students, it deals with its effects to the design method, process and perception and its contributions to the multidisciplinary design approach.

  20. Integrative real-time geographic visualization of energy resources

    International Nuclear Information System (INIS)

    Sorokine, A.; Shankar, M.; Stovall, J.; Bhaduri, B.; King, T.; Fernandez, S.; Datar, N.; Omitaomu, O.

    2009-01-01

    'Full text:' Several models forecast that climatic changes will increase the frequency of disastrous events like droughts, hurricanes, and snow storms. Responding to these events and also to power outages caused by system errors such as the 2003 North American blackout require an interconnect-wide real-time monitoring system for various energy resources. Such a system should be capable of providing situational awareness to its users in the government and energy utilities by dynamically visualizing the status of the elements of the energy grid infrastructure and supply chain in geographic contexts. We demonstrate an approach that relies on Google Earth and similar standard-based platforms as client-side geographic viewers with a data-dependent server component. The users of the system can view status information in spatial and temporal contexts. These data can be integrated with a wide range of geographic sources including all standard Google Earth layers and a large number of energy and environmental data feeds. In addition, we show a real-time spatio-temporal data sharing capability across the users of the system, novel methods for visualizing dynamic network data, and a fine-grain access to very large multi-resolution geographic datasets for faster delivery of the data. The system can be extended to integrate contingency analysis results and other grid models to assess recovery and repair scenarios in the case of major disruption. (author)

  1. Deficit in visual temporal integration in autism spectrum disorders.

    Science.gov (United States)

    Nakano, Tamami; Ota, Haruhisa; Kato, Nobumasa; Kitazawa, Shigeru

    2010-04-07

    Individuals with autism spectrum disorders (ASD) are superior in processing local features. Frith and Happe conceptualize this cognitive bias as 'weak central coherence', implying that a local enhancement derives from a weakness in integrating local elements into a coherent whole. The suggested deficit has been challenged, however, because individuals with ASD were not found to be inferior to normal controls in holistic perception. In these opposing studies, however, subjects were encouraged to ignore local features and attend to the whole. Therefore, no one has directly tested whether individuals with ASD are able to integrate local elements over time into a whole image. Here, we report a weakness of individuals with ASD in naming familiar objects moved behind a narrow slit, which was worsened by the absence of local salient features. The results indicate that individuals with ASD have a clear deficit in integrating local visual information over time into a global whole, providing direct evidence for the weak central coherence hypothesis.

  2. A visual retrieval environment for hypermedia information system

    Energy Technology Data Exchange (ETDEWEB)

    Lucarella, D; Zanzi, A [ENEL s.p.a., Centro Ricerca di Automatica, Cologno Monzese, Milan (Italy)

    1995-03-01

    The authors a graph-based object model that may be used as a uniform framework for direct manipulation of multimedia information. After an introduction motivating the need for abstraction and structuring mechanisms in hypermedia systems, the authors introduce the data model and the notion of perspective, a form of data abstraction that acts as a user interface to the system, providing control over the visibility of the objects and their properties. A perspective is defined to include an intention and an extension. The authors present a visual retrieval environment that effectively combines filtering, browsing, and navigation to provide an integrated view of the retrieval problem. Design and implementation issues are outlined for MORE (Multimedia Object Retrieval Environment), a prototype system relying on the proposed model. The focus is on the main user interface functionalities, and actual interaction sessions are presented including schema creation, information loading, and information retrieval

  3. Representation and Integration of Scientific Information

    Science.gov (United States)

    1998-01-01

    The objective of this Joint Research Interchange with NASA-Ames was to investigate how the Tsimmis technology could be used to represent and integrate scientific information. The main goal of the Tsimmis project is to allow a decision maker to find information of interest from such sources, fuse it, and process it (e.g., summarize it, visualize it, discover trends). Another important goal is the easy incorporation of new sources, as well the ability to deal with sources whose structure or services evolve. During the Interchange we had research meetings approximately every month or two. The funds provided by NASA supported work that lead to the following two papers: Fusion Queries over Internet Databases; Efficient Query Subscription Processing in a Multicast Environment.

  4. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    Science.gov (United States)

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  5. Information theoretic analysis of canny edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2011-06-01

    In general edge detection evaluation, the edge detectors are examined, analyzed, and compared either visually or with a metric for specific an application. This analysis is usually independent of the characteristics of the image-gathering, transmission and display processes that do impact the quality of the acquired image and thus, the resulting edge image. We propose a new information theoretic analysis of edge detection that unites the different components of the visual communication channel and assesses edge detection algorithms in an integrated manner based on Shannon's information theory. The edge detection algorithm here is considered to achieve high performance only if the information rate from the scene to the edge approaches the maximum possible. Thus, by setting initial conditions of the visual communication system as constant, different edge detection algorithms could be evaluated. This analysis is normally limited to linear shift-invariant filters so in order to examine the Canny edge operator in our proposed system, we need to estimate its "power spectral density" (PSD). Since the Canny operator is non-linear and shift variant, we perform the estimation for a set of different system environment conditions using simulations. In our paper we will first introduce the PSD of the Canny operator for a range of system parameters. Then, using the estimated PSD, we will assess the Canny operator using information theoretic analysis. The information-theoretic metric is also used to compare the performance of the Canny operator with other edge-detection operators. This also provides a simple tool for selecting appropriate edgedetection algorithms based on system parameters, and for adjusting their parameters to maximize information throughput.

  6. Linking attentional processes and conceptual problem solving: visual cues facilitate the automaticity of extracting relevant information from diagrams.

    Science.gov (United States)

    Rouinfar, Amy; Agra, Elise; Larson, Adam M; Rebello, N Sanjay; Loschky, Lester C

    2014-01-01

    This study investigated links between visual attention processes and conceptual problem solving. This was done by overlaying visual cues on conceptual physics problem diagrams to direct participants' attention to relevant areas to facilitate problem solving. Participants (N = 80) individually worked through four problem sets, each containing a diagram, while their eye movements were recorded. Each diagram contained regions that were relevant to solving the problem correctly and separate regions related to common incorrect responses. Problem sets contained an initial problem, six isomorphic training problems, and a transfer problem. The cued condition saw visual cues overlaid on the training problems. Participants' verbal responses were used to determine their accuracy. This study produced two major findings. First, short duration visual cues which draw attention to solution-relevant information and aid in the organizing and integrating of it, facilitate both immediate problem solving and generalization of that ability to new problems. Thus, visual cues can facilitate re-representing a problem and overcoming impasse, enabling a correct solution. Importantly, these cueing effects on problem solving did not involve the solvers' attention necessarily embodying the solution to the problem, but were instead caused by solvers attending to and integrating relevant information in the problems into a solution path. Second, this study demonstrates that when such cues are used across multiple problems, solvers can automatize the extraction of problem-relevant information extraction. These results suggest that low-level attentional selection processes provide a necessary gateway for relevant information to be used in problem solving, but are generally not sufficient for correct problem solving. Instead, factors that lead a solver to an impasse and to organize and integrate problem information also greatly facilitate arriving at correct solutions.

  7. The Dynamics and Neural Correlates of Audio-Visual Integration Capacity as Determined by Temporal Unpredictability, Proactive Interference, and SOA.

    Directory of Open Access Journals (Sweden)

    Jonathan M P Wilbiks

    Full Text Available Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations are combined with the temporal unpredictability of the critical frame (Experiment 2, or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4. Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus.

  8. A Critical Review of the Integration of Geographic Information System and Building Information Modelling at the Data Level

    Directory of Open Access Journals (Sweden)

    Junxiang Zhu

    2018-02-01

    Full Text Available The benefits brought by the integration of Building Information Modelling (BIM and Geographic Information Systems (GIS are being proved by more and more research. The integration of the two systems is difficult for many reasons. Among them, data incompatibility is the most significant, as BIM and GIS data are created, managed, analyzed, stored, and visualized in different ways in terms of coordinate systems, scope of interest, and data structures. The objective of this paper is to review the relevant research papers to (1 identify the most relevant data models used in BIM/GIS integration and understand their advantages and disadvantages; (2 consider the possibility of other data models that are available for data level integration; and (3 provide direction on the future of BIM/GIS data integration.

  9. Predictors of Visual-Motor Integration in Children with Intellectual Disability

    Science.gov (United States)

    Memisevic, Haris; Sinanovic, Osman

    2012-01-01

    The aim of this study was to assess the influence of sex, age, level and etiology of intellectual disability on visual-motor integration in children with intellectual disability. The sample consisted of 90 children with intellectual disability between 7 and 15 years of age. Visual-motor integration was measured using the Acadia test of…

  10. Insensitivity of visual short-term memory to irrelevant visual information.

    Science.gov (United States)

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-07-01

    Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.

  11. Visual and non-visual motion information processing during pursuit eye tracking in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Trillenberg, Peter; Sprenger, Andreas; Talamo, Silke; Herold, Kirsten; Helmchen, Christoph; Verleger, Rolf; Lencer, Rebekka

    2017-04-01

    Despite many reports on visual processing deficits in psychotic disorders, studies are needed on the integration of visual and non-visual components of eye movement control to improve the understanding of sensorimotor information processing in these disorders. Non-visual inputs to eye movement control include prediction of future target velocity from extrapolation of past visual target movement and anticipation of future target movements. It is unclear whether non-visual input is impaired in patients with schizophrenia. We recorded smooth pursuit eye movements in 21 patients with schizophrenia spectrum disorder, 22 patients with bipolar disorder, and 24 controls. In a foveo-fugal ramp task, the target was either continuously visible or was blanked during movement. We determined peak gain (measuring overall performance), initial eye acceleration (measuring visually driven pursuit), deceleration after target extinction (measuring prediction), eye velocity drifts before onset of target visibility (measuring anticipation), and residual gain during blanking intervals (measuring anticipation and prediction). In both patient groups, initial eye acceleration was decreased and the ability to adjust eye acceleration to increasing target acceleration was impaired. In contrast, neither deceleration nor eye drift velocity was reduced in patients, implying unimpaired non-visual contributions to pursuit drive. Disturbances of eye movement control in psychotic disorders appear to be a consequence of deficits in sensorimotor transformation rather than a pure failure in adding cognitive contributions to pursuit drive in higher-order cortical circuits. More generally, this deficit might reflect a fundamental imbalance between processing external input and acting according to internal preferences.

  12. Spatial integration in mouse primary visual cortex

    OpenAIRE

    Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura

    2013-01-01

    Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in ...

  13. Cognitive and Developmental Influences in Visual-Motor Integration Skills in Young Children

    Science.gov (United States)

    Decker, Scott L.; Englund, Julia A.; Carboni, Jessica A.; Brooks, Janell H.

    2011-01-01

    Measures of visual-motor integration skills continue to be widely used in psychological assessments with children. However, the construct validity of many visual-motor integration measures remains unclear. In this study, we investigated the relative contributions of maturation and cognitive skills to the development of visual-motor integration…

  14. Spatiotopic updating of visual feature information.

    Science.gov (United States)

    Zimmermann, Eckart; Weidner, Ralph; Fink, Gereon R

    2017-10-01

    Saccades shift the retina with high-speed motion. In order to compensate for the sudden displacement, the visuomotor system needs to combine saccade-related information and visual metrics. Many neurons in oculomotor but also in visual areas shift their receptive field shortly before the execution of a saccade (Duhamel, Colby, & Goldberg, 1992; Nakamura & Colby, 2002). These shifts supposedly enable the binding of information from before and after the saccade. It is a matter of current debate whether these shifts are merely location based (i.e., involve remapping of abstract spatial coordinates) or also comprise information about visual features. We have recently presented fMRI evidence for a feature-based remapping mechanism in visual areas V3, V4, and VO (Zimmermann, Weidner, Abdollahi, & Fink, 2016). In particular, we found fMRI adaptation in cortical regions representing a stimulus' retinotopic as well as its spatiotopic position. Here, we asked whether spatiotopic adaptation exists independently from retinotopic adaptation and which type of information is behaviorally more relevant after saccade execution. We first adapted at the saccade target location only and found a spatiotopic tilt aftereffect. Then, we simultaneously adapted both the fixation and the saccade target location but with opposite tilt orientations. As a result, adaptation from the fixation location was carried retinotopically to the saccade target position. The opposite tilt orientation at the retinotopic location altered the effects induced by spatiotopic adaptation. More precisely, it cancelled out spatiotopic adaptation at the saccade target location. We conclude that retinotopic and spatiotopic visual adaptation are independent effects.

  15. Integrating and Visualizing Tropical Cyclone Data Using the Real Time Mission Monitor

    Science.gov (United States)

    Goodman, H. Michael; Blakeslee, Richard; Conover, Helen; Hall, John; He, Yubin; Regner, Kathryn

    2009-01-01

    The Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the NASA Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery, radar, surface and airborne instrument data sets, model output parameters, lightning location observations, aircraft navigation data, soundings, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. RTMM is extremely valuable for optimizing individual Earth science airborne field experiments. Flight planners, scientists, and managers appreciate the contributions that RTMM makes to their flight projects. A broad spectrum of interdisciplinary scientists used RTMM during field campaigns including the hurricane-focused 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA), 2007 NOAA-NASA Aerosonde Hurricane Noel flight, 2007 Tropical Composition, Cloud, and Climate Coupling (TC4), plus a soil moisture (SMAP-VEX) and two arctic research experiments (ARCTAS) in 2008. Improving and evolving RTMM is a continuous process. RTMM recently integrated the Waypoint Planning Tool, a Java-based application that enables aircraft mission scientists to easily develop a pre-mission flight plan through an interactive point-and-click interface. Individual flight legs are automatically calculated "on the fly". The resultant flight plan is then immediately posted to the Google Earth-based RTMM for interested scientists to view the planned flight track and subsequently compare it to the actual real time flight progress. We are planning additional capabilities to RTMM including collaborations with the Jet Propulsion

  16. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.

    Science.gov (United States)

    Memel, Molly; Ryan, Lee

    2017-06-01

    The ability to remember associations between previously unrelated pieces of information is often impaired in older adults (Naveh-Benjamin, 2000). Unitization, the process of creating a perceptually or semantically integrated representation that includes both items in an associative pair, attenuates age-related associative deficits (Bastin et al., 2013; Ahmad et al., 2015; Zheng et al., 2015). Compared to non-unitized pairs, unitized pairs may rely less on hippocampally-mediated binding associated with recollection, and more on familiarity-based processes mediated by perirhinal cortex (PRC) and parahippocampal cortex (PHC). While unitization of verbal materials improves associative memory in older adults, less is known about the impact of visual integration. The present study determined whether visual integration improves associative memory in older adults by minimizing the need for hippocampal (HC) recruitment and shifting encoding to non-hippocampal medial temporal structures, such as the PRC and PHC. Young and older adults were presented with a series of objects paired with naturalistic scenes while undergoing fMRI scanning, and were later given an associative memory test. Visual integration was varied by presenting the object either next to the scene (Separated condition) or visually integrated within the scene (Combined condition). Visual integration improved associative memory among young and older adults to a similar degree by increasing the hit rate for intact pairs, but without increasing false alarms for recombined pairs, suggesting enhanced recollection rather than increased reliance on familiarity. Also contrary to expectations, visual integration resulted in increased hippocampal activation in both age groups, along with increases in PRC and PHC activation. Activation in all three MTL regions predicted discrimination performance during the Separated condition in young adults, while only a marginal relationship between PRC activation and performance was

  17. Securing information display by use of visual cryptography.

    Science.gov (United States)

    Yamamoto, Hirotsugu; Hayasaki, Yoshio; Nishida, Nobuo

    2003-09-01

    We propose a secure display technique based on visual cryptography. The proposed technique ensures the security of visual information. The display employs a decoding mask based on visual cryptography. Without the decoding mask, the displayed information cannot be viewed. The viewing zone is limited by the decoding mask so that only one person can view the information. We have developed a set of encryption codes to maintain the designed viewing zone and have demonstrated a display that provides a limited viewing zone.

  18. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  19. Visual feature integration indicated by pHase-locked frontal-parietal EEG signals.

    Science.gov (United States)

    Phillips, Steven; Takeda, Yuji; Singh, Archana

    2012-01-01

    The capacity to integrate multiple sources of information is a prerequisite for complex cognitive ability, such as finding a target uniquely identifiable by the conjunction of two or more features. Recent studies identified greater frontal-parietal synchrony during conjunctive than non-conjunctive (feature) search. Whether this difference also reflects greater information integration, rather than just differences in cognitive strategy (e.g., top-down versus bottom-up control of attention), or task difficulty is uncertain. Here, we examine the first possibility by parametrically varying the number of integrated sources from one to three and measuring phase-locking values (PLV) of frontal-parietal EEG electrode signals, as indicators of synchrony. Linear regressions, under hierarchical false-discovery rate control, indicated significant positive slopes for number of sources on PLV in the 30-38 Hz, 175-250 ms post-stimulus frequency-time band for pairs in the sagittal plane (i.e., F3-P3, Fz-Pz, F4-P4), after equating conditions for behavioural performance (to exclude effects due to task difficulty). No such effects were observed for pairs in the transverse plane (i.e., F3-F4, C3-C4, P3-P4). These results provide support for the idea that anterior-posterior phase-locking in the lower gamma-band mediates integration of visual information. They also provide a potential window into cognitive development, seen as developing the capacity to integrate more sources of information.

  20. D Web Visualization of Environmental Information - Integration of Heterogeneous Data Sources when Providing Navigation and Interaction

    Science.gov (United States)

    Herman, L.; Řezník, T.

    2015-08-01

    3D information is essential for a number of applications used daily in various domains such as crisis management, energy management, urban planning, and cultural heritage, as well as pollution and noise mapping, etc. This paper is devoted to the issue of 3D modelling from the levels of buildings to cities. The theoretical sections comprise an analysis of cartographic principles for the 3D visualization of spatial data as well as a review of technologies and data formats used in the visualization of 3D models. Emphasis was placed on the verification of available web technologies; for example, X3DOM library was chosen for the implementation of a proof-of-concept web application. The created web application displays a 3D model of the city district of Nový Lískovec in Brno, the Czech Republic. The developed 3D visualization shows a terrain model, 3D buildings, noise pollution, and other related information. Attention was paid to the areas important for handling heterogeneous input data, the design of interactive functionality, and navigation assistants. The advantages, limitations, and future development of the proposed concept are discussed in the conclusions.

  1. Temporal windows in visual processing: "prestimulus brain state" and "poststimulus phase reset" segregate visual transients on different temporal scales.

    Science.gov (United States)

    Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David

    2014-01-22

    Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.

  2. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    International Nuclear Information System (INIS)

    Kuiper, J.; Ayers, A.; Johnson, R.; Tolbert-Smith, M.

    1996-01-01

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems

  3. Executive functions as predictors of visual-motor integration in children with intellectual disability.

    Science.gov (United States)

    Memisevic, Haris; Sinanovic, Osman

    2013-12-01

    The goal of this study was to assess the relationship between visual-motor integration and executive functions, and in particular, the extent to which executive functions can predict visual-motor integration skills in children with intellectual disability. The sample consisted of 90 children (54 boys, 36 girls; M age = 11.3 yr., SD = 2.7, range 7-15) with intellectual disabilities of various etiologies. The measure of executive functions were 8 subscales of the Behavioral Rating Inventory of Executive Function (BRIEF) consisting of Inhibition, Shifting, Emotional Control, Initiating, Working memory, Planning, Organization of material, and Monitoring. Visual-motor integration was measured with the Acadia test of visual-motor integration (VMI). Regression analysis revealed that BRIEF subscales explained 38% of the variance in VMI scores. Of all the BRIEF subscales, only two were statistically significant predictors of visual-motor integration: Working memory and Monitoring. Possible implications of this finding are further elaborated.

  4. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    Science.gov (United States)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  5. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Science.gov (United States)

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  6. Food recognition and recipe analysis: integrating visual content, context and external knowledge

    OpenAIRE

    Herranz, Luis; Min, Weiqing; Jiang, Shuqiang

    2018-01-01

    The central role of food in our individual and social life, combined with recent technological advances, has motivated a growing interest in applications that help to better monitor dietary habits as well as the exploration and retrieval of food-related information. We review how visual content, context and external knowledge can be integrated effectively into food-oriented applications, with special focus on recipe analysis and retrieval, food recommendation, and the restaurant context as em...

  7. Effects of Audio-Visual Integration on the Detection of Masked Speech and Non-Speech Sounds

    Science.gov (United States)

    Eramudugolla, Ranmalee; Henderson, Rachel; Mattingley, Jason B.

    2011-01-01

    Integration of simultaneous auditory and visual information about an event can enhance our ability to detect that event. This is particularly evident in the perception of speech, where the articulatory gestures of the speaker's lips and face can significantly improve the listener's detection and identification of the message, especially when that…

  8. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2008-01-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  9. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2007-12-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  10. Integrating Spherical Panoramas and Maps for Visualization of Cultural Heritage Objects Using Virtual Reality Technology.

    Science.gov (United States)

    Koeva, Mila; Luleva, Mila; Maldjanski, Plamen

    2017-04-11

    Development and virtual representation of 3D models of Cultural Heritage (CH) objects has triggered great interest over the past decade. The main reason for this is the rapid development in the fields of photogrammetry and remote sensing, laser scanning, and computer vision. The advantages of using 3D models for restoration, preservation, and documentation of valuable historical and architectural objects have been numerously demonstrated by scientists in the field. Moreover, 3D model visualization in virtual reality has been recognized as an efficient, fast, and easy way of representing a variety of objects worldwide for present-day users, who have stringent requirements and high expectations. However, the main focus of recent research is the visual, geometric, and textural characteristics of a single concrete object, while integration of large numbers of models with additional information-such as historical overview, detailed description, and location-are missing. Such integrated information can be beneficial, not only for tourism but also for accurate documentation. For that reason, we demonstrate in this paper an integration of high-resolution spherical panoramas, a variety of maps, GNSS, sound, video, and text information for representation of numerous cultural heritage objects. These are then displayed in a web-based portal with an intuitive interface. The users have the opportunity to choose freely from the provided information, and decide for themselves what is interesting to visit. Based on the created web application, we provide suggestions and guidelines for similar studies. We selected objects, which are located in Bulgaria-a country with thousands of years of history and cultural heritage dating back to ancient civilizations. The methods used in this research are applicable for any type of spherical or cylindrical images and can be easily followed and applied in various domains. After a visual and metric assessment of the panoramas and the evaluation of

  11. Dynamic visual noise reduces confidence in short-term memory for visual information.

    Science.gov (United States)

    Kemps, Eva; Andrade, Jackie

    2012-05-01

    Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.

  12. Visual Communication as an Information Activity

    Science.gov (United States)

    Benoît, Gerald

    2015-01-01

    Visual literacy discussions and guidelines in LIS practice tend to be principle-driven concepts but are limited to an LIS discourse. In a casual tone, this paper reviews other expressions of what it means to be "informed" through visual means by using examples from literature, philosophy, and how end-users may think about visual…

  13. Integrated Visualization of Multi-sensor Ocean Data across the Web

    Science.gov (United States)

    Platt, F.; Thompson, C. K.; Roberts, J. T.; Tsontos, V. M.; Hin Lam, C.; Arms, S. C.; Quach, N.

    2017-12-01

    Whether for research or operational decision support, oceanographic applications rely on the visualization of multivariate in situ and remote sensing data as an integral part of analysis workflows. However, given their inherently 3D-spatial and temporally dynamic nature, the visual representation of marine in situ data in particular poses a challenge. The Oceanographic In situ data Interoperability Project (OIIP) is a collaborative project funded under the NASA/ACCESS program that seeks to leverage and enhance higher TRL (technology readiness level) informatics technologies to address key data interoperability and integration issues associated with in situ ocean data, including the dearth of effective web-based visualization solutions. Existing web tools for the visualization of key in situ data types - point, profile, trajectory series - are limited in their support for integrated, dynamic and coordinated views of the spatiotemporal characteristics of the data. Via the extension of the JPL Common Mapping Client (CMC) software framework, OIIP seeks to provide improved visualization support for oceanographic in situ data sets. More specifically, this entails improved representation of both horizontal and vertical aspects of these data, which inherently are depth resolved and time referenced, as well as the visual synchronization with relevant remotely-sensed gridded data products, such as sea surface temperature and salinity. Electronic tagging datasets, which are a focal use case for OIIP, provide a representative, if somewhat complex, visualization challenge in this regard. Critical to the achievement of these development objectives has been compilation of a well-rounded set of visualization use cases and requirements based on a series of end-user consultations aimed at understanding their satellite-in situ visualization needs. Here we summarize progress on aspects of the technical work and our approach.

  14. Gymnasts utilize visual and auditory information for behavioural synchronization in trampolining.

    Science.gov (United States)

    Heinen, T; Koschnick, J; Schmidt-Maaß, D; Vinken, P M

    2014-08-01

    In synchronized trampolining, two gymnasts perform the same routine at the same time. While trained gymnasts are thought to coordinate their own movements with the movements of another gymnast by detecting relevant movement information, the question arises how visual and auditory information contribute to the emergence of synchronicity between both gymnasts. Therefore the aim of this study was to examine the role of visual and auditory information in the emergence of coordinated behaviour in synchronized trampolining. Twenty female gymnasts were asked to synchronize their leaps with the leaps of a model gymnast, while visual and auditory information was manipulated. The results revealed that gymnasts needed more leaps to reach synchronicity when only either auditory (12.9 leaps) or visual information (10.8 leaps) was available, as compared to when both auditory and visual information was available (8.1 leaps). It is concluded that visual and auditory information play significant roles in synchronized trampolining, whilst visual information seems to be the dominant source for emerging behavioural synchronization, and auditory information supports this emergence.

  15. Visual Information and Support Surface for Postural Control in Visual Search Task.

    Science.gov (United States)

    Huang, Chia-Chun; Yang, Chih-Mei

    2016-10-01

    When standing on a reduced support surface, people increase their reliance on visual information to control posture. This assertion was tested in the current study. The effects of imposed motion and support surface on postural control during visual search were investigated. Twelve participants (aged 21 ± 1.8 years; six men and six women) stood on a reduced support surface (45% base of support). In a room that moved back and forth along the anteroposterior axis, participants performed visual search for a given letter in an article. Postural sway variability and head-room coupling were measured. The results of head-room coupling, but not postural sway, supported the assertion that people increase reliance on visual information when standing on a reduced support surface. Whether standing on a whole or reduced surface, people stabilized their posture to perform the visual search tasks. Compared to a fixed target, searching on a hand-held target showed greater head-room coupling when standing on a reduced surface. © The Author(s) 2016.

  16. Visual information constrains early and late stages of spoken-word recognition in sentence context.

    Science.gov (United States)

    Brunellière, Angèle; Sánchez-García, Carolina; Ikumi, Nara; Soto-Faraco, Salvador

    2013-07-01

    Audiovisual speech perception has been frequently studied considering phoneme, syllable and word processing levels. Here, we examined the constraints that visual speech information might exert during the recognition of words embedded in a natural sentence context. We recorded event-related potentials (ERPs) to words that could be either strongly or weakly predictable on the basis of the prior semantic sentential context and, whose initial phoneme varied in the degree of visual saliency from lip movements. When the sentences were presented audio-visually (Experiment 1), words weakly predicted from semantic context elicited a larger long-lasting N400, compared to strongly predictable words. This semantic effect interacted with the degree of visual saliency over a late part of the N400. When comparing audio-visual versus auditory alone presentation (Experiment 2), the typical amplitude-reduction effect over the auditory-evoked N100 response was observed in the audiovisual modality. Interestingly, a specific benefit of high- versus low-visual saliency constraints occurred over the early N100 response and at the late N400 time window, confirming the result of Experiment 1. Taken together, our results indicate that the saliency of visual speech can exert an influence over both auditory processing and word recognition at relatively late stages, and thus suggest strong interactivity between audio-visual integration and other (arguably higher) stages of information processing during natural speech comprehension. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Evolutionary relevance facilitates visual information processing.

    Science.gov (United States)

    Jackson, Russell E; Calvillo, Dusti P

    2013-11-03

    Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  18. Development of driver’s assistant system of additional visual information of blind areas for Gazelle Next

    Science.gov (United States)

    Makarov, V.; Korelin, O.; Koblyakov, D.; Kostin, S.; Komandirov, A.

    2018-02-01

    The article is devoted to the development of the Advanced Driver Assistance Systems (ADAS) for the GAZelle NEXT car. This project is aimed at developing a visual information system for the driver integrated into the windshield racks. The developed system implements the following functions: assistance in maneuvering and parking; Recognition of road signs; Warning the driver about the possibility of a frontal collision; Control of "blind" zones; "Transparent" vision in the windshield racks, widening the field of view, behind them; Visual and sound information about the traffic situation; Control and descent from the lane of the vehicle; Monitoring of the driver’s condition; navigation system; All-round review. The scheme of action of sensors of the developed system of visual information of the driver is provided. The moments of systems on a prototype of a vehicle are considered. Possible changes in the interior and dashboard of the car are given. The results of the implementation are aimed at the implementation of the system - improved informing of the driver about the environment and the development of an ergonomic interior for this system within the new Functional Salon of the Gazelle Next vehicle equipped with a visual information system for the driver.

  19. Experience and information loss in auditory and visual memory.

    Science.gov (United States)

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  20. Exploring the Integration of Data Mining and Data Visualization

    Science.gov (United States)

    Zhang, Yi

    2011-01-01

    Due to the rapid advances in computing and sensing technologies, enormous amounts of data are being generated everyday in various applications. The integration of data mining and data visualization has been widely used to analyze these massive and complex data sets to discover hidden patterns. For both data mining and visualization to be…

  1. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    Science.gov (United States)

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Integration of today's digital state with tomorrow's visual environment

    Science.gov (United States)

    Fritsche, Dennis R.; Liu, Victor; Markandey, Vishal; Heimbuch, Scott

    1996-03-01

    New developments in visual communication technologies, and the increasingly digital nature of the industry infrastructure as a whole, are converging to enable new visual environments with an enhanced visual component in interaction, entertainment, and education. New applications and markets can be created, but this depends on the ability of the visual communications industry to provide market solutions that are cost effective and user friendly. Industry-wide cooperation in the development of integrated, open architecture applications enables the realization of such market solutions. This paper describes the work being done by Texas Instruments, in the development of its Digital Light ProcessingTM technology, to support the development of new visual communications technologies and applications.

  3. Evolutionary Relevance Facilitates Visual Information Processing

    Directory of Open Access Journals (Sweden)

    Russell E. Jackson

    2013-07-01

    Full Text Available Visual search of the environment is a fundamental human behavior that perceptual load affects powerfully. Previously investigated means for overcoming the inhibitions of high perceptual load, however, generalize poorly to real-world human behavior. We hypothesized that humans would process evolutionarily relevant stimuli more efficiently than evolutionarily novel stimuli, and evolutionary relevance would mitigate the repercussions of high perceptual load during visual search. Animacy is a significant component to evolutionary relevance of visual stimuli because perceiving animate entities is time-sensitive in ways that pose significant evolutionary consequences. Participants completing a visual search task located evolutionarily relevant and animate objects fastest and with the least impact of high perceptual load. Evolutionarily novel and inanimate objects were located slowest and with the highest impact of perceptual load. Evolutionary relevance may importantly affect everyday visual information processing.

  4. Is the auditory sensory memory sensitive to visual information?

    Science.gov (United States)

    Besle, Julien; Fort, Alexandra; Giard, Marie-Hélène

    2005-10-01

    The mismatch negativity (MMN) component of auditory event-related brain potentials can be used as a probe to study the representation of sounds in auditory sensory memory (ASM). Yet it has been shown that an auditory MMN can also be elicited by an illusory auditory deviance induced by visual changes. This suggests that some visual information may be encoded in ASM and is accessible to the auditory MMN process. It is not known, however, whether visual information affects ASM representation for any audiovisual event or whether this phenomenon is limited to specific domains in which strong audiovisual illusions occur. To highlight this issue, we have compared the topographies of MMNs elicited by non-speech audiovisual stimuli deviating from audiovisual standards on the visual, the auditory, or both dimensions. Contrary to what occurs with audiovisual illusions, each unimodal deviant elicited sensory-specific MMNs, and the MMN to audiovisual deviants included both sensory components. The visual MMN was, however, different from a genuine visual MMN obtained in a visual-only control oddball paradigm, suggesting that auditory and visual information interacts before the MMN process occurs. Furthermore, the MMN to audiovisual deviants was significantly different from the sum of the two sensory-specific MMNs, showing that the processes of visual and auditory change detection are not completely independent.

  5. Pathview Web: user friendly pathway visualization and data integration.

    Science.gov (United States)

    Luo, Weijun; Pant, Gaurav; Bhavnasi, Yeshvant K; Blanchard, Steven G; Brouwer, Cory

    2017-07-03

    Pathway analysis is widely used in omics studies. Pathway-based data integration and visualization is a critical component of the analysis. To address this need, we recently developed a novel R package called Pathview. Pathview maps, integrates and renders a large variety of biological data onto molecular pathway graphs. Here we developed the Pathview Web server, as to make pathway visualization and data integration accessible to all scientists, including those without the special computing skills or resources. Pathview Web features an intuitive graphical web interface and a user centered design. The server not only expands the core functions of Pathview, but also provides many useful features not available in the offline R package. Importantly, the server presents a comprehensive workflow for both regular and integrated pathway analysis of multiple omics data. In addition, the server also provides a RESTful API for programmatic access and conveniently integration in third-party software or workflows. Pathview Web is openly and freely accessible at https://pathview.uncc.edu/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Turkish Preschool Teachers' Beliefs on Integrated Curriculum: Integration of Visual Arts with Other Activities

    Science.gov (United States)

    Ozturk, Elif; Erden, Feyza Tantekin

    2011-01-01

    This study investigates preschool teachers' beliefs about integrated curriculum and, more specifically, their beliefs about integration of visual arts with other activities. The participants of this study consisted of 255 female preschool teachers who are employed in preschools in Ankara, Turkey. For the study, teachers were asked to complete…

  8. Object Representations in Human Visual Cortex Formed Through Temporal Integration of Dynamic Partial Shape Views.

    Science.gov (United States)

    Orlov, Tanya; Zohary, Ehud

    2018-01-17

    We typically recognize visual objects using the spatial layout of their parts, which are present simultaneously on the retina. Therefore, shape extraction is based on integration of the relevant retinal information over space. The lateral occipital complex (LOC) can represent shape faithfully in such conditions. However, integration over time is sometimes required to determine object shape. To study shape extraction through temporal integration of successive partial shape views, we presented human participants (both men and women) with artificial shapes that moved behind a narrow vertical or horizontal slit. Only a tiny fraction of the shape was visible at any instant at the same retinal location. However, observers perceived a coherent whole shape instead of a jumbled pattern. Using fMRI and multivoxel pattern analysis, we searched for brain regions that encode temporally integrated shape identity. We further required that the representation of shape should be invariant to changes in the slit orientation. We show that slit-invariant shape information is most accurate in the LOC. Importantly, the slit-invariant shape representations matched the conventional whole-shape representations assessed during full-image runs. Moreover, when the same slit-dependent shape slivers were shuffled, thereby preventing their spatiotemporal integration, slit-invariant shape information was reduced dramatically. The slit-invariant representation of the various shapes also mirrored the structure of shape perceptual space as assessed by perceptual similarity judgment tests. Therefore, the LOC is likely to mediate temporal integration of slit-dependent shape views, generating a slit-invariant whole-shape percept. These findings provide strong evidence for a global encoding of shape in the LOC regardless of integration processes required to generate the shape percept. SIGNIFICANCE STATEMENT Visual objects are recognized through spatial integration of features available simultaneously on

  9. Questionnaire-based person trip visualization and its integration to quantitative measurements in Myanmar

    Science.gov (United States)

    Kimijiama, S.; Nagai, M.

    2016-06-01

    With telecommunication development in Myanmar, person trip survey is supposed to shift from conversational questionnaire to GPS survey. Integration of both historical questionnaire data to GPS survey and visualizing them are very important to evaluate chronological trip changes with socio-economic and environmental events. The objectives of this paper are to: (a) visualize questionnaire-based person trip data, (b) compare the errors between questionnaire and GPS data sets with respect to sex and age and (c) assess the trip behaviour in time-series. Totally, 345 individual respondents were selected through random stratification to assess person trip using a questionnaire and GPS survey for each. Conversion of trip information such as a destination from the questionnaires was conducted by using GIS. The results show that errors between the two data sets in the number of trips, total trip distance and total trip duration are 25.5%, 33.2% and 37.2%, respectively. The smaller errors are found among working-age females mainly employed with the project-related activities generated by foreign investment. The trip distant was yearly increased. The study concluded that visualization of questionnaire-based person trip data and integrating them to current quantitative measurements are very useful to explore historical trip changes and understand impacts from socio-economic events.

  10. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  11. Sketchy Rendering for Information Visualization

    NARCIS (Netherlands)

    Wood, Jo; Isenberg, Petra; Isenberg, Tobias; Dykes, Jason; Boukhelifa, Nadia; Slingsby, Aidan

    2012-01-01

    We present and evaluate a framework for constructing sketchy style information visualizations that mimic data graphics drawn by hand. We provide an alternative renderer for the Processing graphics environment that redefines core drawing primitives including line, polygon and ellipse rendering. These

  12. Processing reafferent and exafferent visual information for action and perception.

    Science.gov (United States)

    Reichenbach, Alexandra; Diedrichsen, Jörn

    2015-01-01

    A recent study suggests that reafferent hand-related visual information utilizes a privileged, attention-independent processing channel for motor control. This process was termed visuomotor binding to reflect its proposed function: linking visual reafferences to the corresponding motor control centers. Here, we ask whether the advantage of processing reafferent over exafferent visual information is a specific feature of the motor processing stream or whether the improved processing also benefits the perceptual processing stream. Human participants performed a bimanual reaching task in a cluttered visual display, and one of the visual hand cursors could be displaced laterally during the movement. We measured the rapid feedback responses of the motor system as well as matched perceptual judgments of which cursor was displaced. Perceptual judgments were either made by watching the visual scene without moving or made simultaneously to the reaching tasks, such that the perceptual processing stream could also profit from the specialized processing of reafferent information in the latter case. Our results demonstrate that perceptual judgments in the heavily cluttered visual environment were improved when performed based on reafferent information. Even in this case, however, the filtering capability of the perceptual processing stream suffered more from the increasing complexity of the visual scene than the motor processing stream. These findings suggest partly shared and partly segregated processing of reafferent information for vision for motor control versus vision for perception.

  13. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.

    Science.gov (United States)

    Thorvaldsdóttir, Helga; Robinson, James T; Mesirov, Jill P

    2013-03-01

    Data visualization is an essential component of genomic data analysis. However, the size and diversity of the data sets produced by today's sequencing and array-based profiling methods present major challenges to visualization tools. The Integrative Genomics Viewer (IGV) is a high-performance viewer that efficiently handles large heterogeneous data sets, while providing a smooth and intuitive user experience at all levels of genome resolution. A key characteristic of IGV is its focus on the integrative nature of genomic studies, with support for both array-based and next-generation sequencing data, and the integration of clinical and phenotypic data. Although IGV is often used to view genomic data from public sources, its primary emphasis is to support researchers who wish to visualize and explore their own data sets or those from colleagues. To that end, IGV supports flexible loading of local and remote data sets, and is optimized to provide high-performance data visualization and exploration on standard desktop systems. IGV is freely available for download from http://www.broadinstitute.org/igv, under a GNU LGPL open-source license.

  14. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  15. An Information-Theoretic-Cluster Visualization for Self-Organizing Maps.

    Science.gov (United States)

    Brito da Silva, Leonardo Enzo; Wunsch, Donald C

    2018-06-01

    Improved data visualization will be a significant tool to enhance cluster analysis. In this paper, an information-theoretic-based method for cluster visualization using self-organizing maps (SOMs) is presented. The information-theoretic visualization (IT-vis) has the same structure as the unified distance matrix, but instead of depicting Euclidean distances between adjacent neurons, it displays the similarity between the distributions associated with adjacent neurons. Each SOM neuron has an associated subset of the data set whose cardinality controls the granularity of the IT-vis and with which the first- and second-order statistics are computed and used to estimate their probability density functions. These are used to calculate the similarity measure, based on Renyi's quadratic cross entropy and cross information potential (CIP). The introduced visualizations combine the low computational cost and kernel estimation properties of the representative CIP and the data structure representation of a single-linkage-based grouping algorithm to generate an enhanced SOM-based visualization. The visual quality of the IT-vis is assessed by comparing it with other visualization methods for several real-world and synthetic benchmark data sets. Thus, this paper also contains a significant literature survey. The experiments demonstrate the IT-vis cluster revealing capabilities, in which cluster boundaries are sharply captured. Additionally, the information-theoretic visualizations are used to perform clustering of the SOM. Compared with other methods, IT-vis of large SOMs yielded the best results in this paper, for which the quality of the final partitions was evaluated using external validity indices.

  16. ICT Integration in Mathematics Initial Teacher Training and Its Impact on Visualization: The Case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions…

  17. Interactions of visual attention and quality perception

    NARCIS (Netherlands)

    Redi, J.A.; Liu, H.; Zunino, R.; Heynderickx, I.E.J.R.

    2011-01-01

    Several attempts to integrate visual saliency information in quality metrics are described in literature, albeit with contradictory results. The way saliency is integrated in quality metrics should reflect the mechanisms underlying the interaction between image quality assessment and visual

  18. Training haptic stiffness discrimination: time course of learning with or without visual information and knowledge of results.

    Science.gov (United States)

    Teodorescu, Kinneret; Bouchigny, Sylvain; Korman, Maria

    2013-08-01

    In this study, we explored the time course of haptic stiffness discrimination learning and how it was affected by two experimental factors, the addition of visual information and/or knowledge of results (KR) during training. Stiffness perception may integrate both haptic and visual modalities. However, in many tasks, the visual field is typically occluded, forcing stiffness perception to be dependent exclusively on haptic information. No studies to date addressed the time course of haptic stiffness perceptual learning. Using a virtual environment (VE) haptic interface and a two-alternative forced-choice discrimination task, the haptic stiffness discrimination ability of 48 participants was tested across 2 days. Each day included two haptic test blocks separated by a training block Additional visual information and/or KR were manipulated between participants during training blocks. Practice repetitions alone induced significant improvement in haptic stiffness discrimination. Between days, accuracy was slightly improved, but decision time performance was deteriorated. The addition of visual information and/or KR had only temporary effects on decision time, without affecting the time course of haptic discrimination learning. Learning in haptic stiffness discrimination appears to evolve through at least two distinctive phases: A single training session resulted in both immediate and latent learning. This learning was not affected by the training manipulations inspected. Training skills in VE in spaced sessions can be beneficial for tasks in which haptic perception is critical, such as surgery procedures, when the visual field is occluded. However, training protocols for such tasks should account for low impact of multisensory information and KR.

  19. Visual Data Analysis as an Integral Part of Environmental Management

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Joerg; Bethel, E. Wes; Horsman, Jennifer L.; Hubbard, Susan S.; Krishnan, Harinarayan; Romosan,, Alexandru; Keating, Elizabeth H.; Monroe, Laura; Strelitz, Richard; Moore, Phil; Taylor, Glenn; Torkian, Ben; Johnson, Timothy C.; Gorton, Ian

    2012-10-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (DOE/EM) currently supports an effort to understand and predict the fate of nuclear contaminants and their transport in natural and engineered systems. Geologists, hydrologists, physicists and computer scientists are working together to create models of existing nuclear waste sites, to simulate their behavior and to extrapolate it into the future. We use visualization as an integral part in each step of this process. In the first step, visualization is used to verify model setup and to estimate critical parameters. High-performance computing simulations of contaminant transport produces massive amounts of data, which is then analyzed using visualization software specifically designed for parallel processing of large amounts of structured and unstructured data. Finally, simulation results are validated by comparing simulation results to measured current and historical field data. We describe in this article how visual analysis is used as an integral part of the decision-making process in the planning of ongoing and future treatment options for the contaminated nuclear waste sites. Lessons learned from visually analyzing our large-scale simulation runs will also have an impact on deciding on treatment measures for other contaminated sites.

  20. Spatial integration in mouse primary visual cortex.

    Science.gov (United States)

    Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura

    2013-08-01

    Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.

  1. Does Temporal Integration Occur for Unrecognizable Words in Visual Crowding?

    Science.gov (United States)

    Zhou, Jifan; Lee, Chia-Lin; Li, Kuei-An; Tien, Yung-Hsuan; Yeh, Su-Ling

    2016-01-01

    Visual crowding—the inability to see an object when it is surrounded by flankers in the periphery—does not block semantic activation: unrecognizable words due to visual crowding still generated robust semantic priming in subsequent lexical decision tasks. Based on the previous finding, the current study further explored whether unrecognizable crowded words can be temporally integrated into a phrase. By showing one word at a time, we presented Chinese four-word idioms with either a congruent or incongruent ending word in order to examine whether the three preceding crowded words can be temporally integrated to form a semantic context so as to affect the processing of the ending word. Results from both behavioral (Experiment 1) and Event-Related Potential (Experiment 2 and 3) measures showed congruency effect in only the non-crowded condition, which does not support the existence of unconscious multi-word integration. Aside from four-word idioms, we also found that two-word (modifier + adjective combination) integration—the simplest kind of temporal semantic integration—did not occur in visual crowding (Experiment 4). Our findings suggest that integration of temporally separated words might require conscious awareness, at least under the timing conditions tested in the current study. PMID:26890366

  2. The duration of uncertain times: audiovisual information about intervals is integrated in a statistically optimal fashion.

    Directory of Open Access Journals (Sweden)

    Jess Hartcher-O'Brien

    Full Text Available Often multisensory information is integrated in a statistically optimal fashion where each sensory source is weighted according to its precision. This integration scheme isstatistically optimal because it theoretically results in unbiased perceptual estimates with the highest precisionpossible.There is a current lack of consensus about how the nervous system processes multiple sensory cues to elapsed time.In order to shed light upon this, we adopt a computational approach to pinpoint the integration strategy underlying duration estimationof audio/visual stimuli. One of the assumptions of our computational approach is that the multisensory signals redundantly specify the same stimulus property. Our results clearly show that despite claims to the contrary, perceived duration is the result of an optimal weighting process, similar to that adopted for estimates of space. That is, participants weight the audio and visual information to arrive at the most precise, single duration estimate possible. The work also disentangles how different integration strategies - i.e. consideringthe time of onset/offset ofsignals - might alter the final estimate. As such we provide the first concrete evidence of an optimal integration strategy in human duration estimates.

  3. Integrated Visualization Environment for Science Mission Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed work will provide NASA with an integrated visualization environment providing greater insight and a more intuitive representation of large technical...

  4. The visual illustration of complex process information during abnormal incidents

    International Nuclear Information System (INIS)

    Heimbuerger, H.; Kautto, A.; Norros, L.; Ranta, J.

    1985-01-01

    One of the proposed solutions to the man-process interface problem in nuclear power plants is the integration of a system in the control room that can provide the operator with a display of a minimum set of critical plant parameters defining the safety status of the plant. Such a system has been experimentally validated using the Loviisa training simulator during the fall of 1982. The project was a joint effort between Combustion Engineering Inc., the Halden Reactor Project, Imatran Voima Oy and VTT. Alarm systems are used in nuclear power plants to tell the control room operators that an unexpected change in the plant operation state has occurred. One difficulty in using the alarms for checking the actions of the operator is that the conventional way of realizing the alarm systems implies that several alarms are active also during normal operation. The coding and representation of alarm information will be discussed in the paper. An important trend in control room design is the move away from direct, concrete indication of process parameters towards use of more abstract/logical representation of information as a basis for plant supervision. Recent advances in computer graphics provide the possibility that, in the future, visual information will be utilized to make the essential dynamics of the process more intelligible. A set of criteria for use of visual information will be necessary. The paper discusses practical aspects for the realisation of such criteria in the context of nuclear power plant. The criteria of the decomposition of the process information concerning the sub-goals safety and availability and also the tentative results of the conceptualization of a PWR-process are discussed in the paper

  5. The Visual Uncertainty Paradigm for Controlling Screen-Space Information in Visualization

    Science.gov (United States)

    Dasgupta, Aritra

    2012-01-01

    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual…

  6. Defective imitation of finger configurations in patients with damage in the right or left hemispheres: An integration disorder of visual and somatosensory information?

    Science.gov (United States)

    Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto

    2017-04-01

    To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Astronomical Data and Information Visualization

    Science.gov (United States)

    Goodman, Alyssa A.

    2010-01-01

    As the size and complexity of data sets increases, the need to "see" them more clearly increases as well. In the past, many scientists saw "fancy" data and information visualization as necessary for "outreach," but not for research. In this talk, I wlll demonstrate, using specific examples, why more and more scientists--not just astronomers--are coming to rely upon the development of new visualization strategies not just to present their data, but to understand it. Principal examples will be drawn from the "Astronomical Medicine" project at Harvard's Initiative in Innovative Computing, and from the "Seamless Astronomy" effort, which is co-sponsored by the VAO (NASA/NSF) and Microsoft Research.

  8. The role of visual spatial attention in audiovisual speech perception

    DEFF Research Database (Denmark)

    Andersen, Tobias; Tiippana, K.; Laarni, J.

    2009-01-01

    Auditory and visual information is integrated when perceiving speech, as evidenced by the McGurk effect in which viewing an incongruent talking face categorically alters auditory speech perception. Audiovisual integration in speech perception has long been considered automatic and pre-attentive b......Auditory and visual information is integrated when perceiving speech, as evidenced by the McGurk effect in which viewing an incongruent talking face categorically alters auditory speech perception. Audiovisual integration in speech perception has long been considered automatic and pre...... from each of the faces and from the voice on the auditory speech percept. We found that directing visual spatial attention towards a face increased the influence of that face on auditory perception. However, the influence of the voice on auditory perception did not change suggesting that audiovisual...... integration did not change. Visual spatial attention was also able to select between the faces when lip reading. This suggests that visual spatial attention acts at the level of visual speech perception prior to audiovisual integration and that the effect propagates through audiovisual integration...

  9. The role of pulvinar in the transmission of information in the visual hierarchy.

    Science.gov (United States)

    Cortes, Nelson; van Vreeswijk, Carl

    2012-01-01

    VISUAL RECEPTIVE FIELD (RF) ATTRIBUTES IN VISUAL CORTEX OF PRIMATES HAVE BEEN EXPLAINED MAINLY FROM CORTICAL CONNECTIONS: visual RFs progress from simple to complex through cortico-cortical pathways from lower to higher levels in the visual hierarchy. This feedforward flow of information is paired with top-down processes through the feedback pathway. Although the hierarchical organization explains the spatial properties of RFs, is unclear how a non-linear transmission of activity through the visual hierarchy can yield smooth contrast response functions in all level of the hierarchy. Depending on the gain, non-linear transfer functions create either a bimodal response to contrast, or no contrast dependence of the response in the highest level of the hierarchy. One possible mechanism to regulate this transmission of visual contrast information from low to high level involves an external component that shortcuts the flow of information through the hierarchy. A candidate for this shortcut is the Pulvinar nucleus of the thalamus. To investigate representation of stimulus contrast a hierarchical model network of ten cortical areas is examined. In each level of the network, the activity from the previous layer is integrated and then non-linearly transmitted to the next level. The arrangement of interactions creates a gradient from simple to complex RFs of increasing size as one moves from lower to higher cortical levels. The visual input is modeled as a Gaussian random input, whose width codes for the contrast. This input is applied to the first area. The output activity ratio among different contrast values is analyzed for the last level to observe sensitivity to a contrast and contrast invariant tuning. For a purely cortical system, the output of the last area can be approximately contrast invariant, but the sensitivity to contrast is poor. To account for an alternative visual processing pathway, non-reciprocal connections from and to a parallel pulvinar like structure

  10. Differential contribution of visual and auditory information to accurately predict the direction and rotational motion of a visual stimulus.

    Science.gov (United States)

    Park, Seoung Hoon; Kim, Seonjin; Kwon, MinHyuk; Christou, Evangelos A

    2016-03-01

    Vision and auditory information are critical for perception and to enhance the ability of an individual to respond accurately to a stimulus. However, it is unknown whether visual and auditory information contribute differentially to identify the direction and rotational motion of the stimulus. The purpose of this study was to determine the ability of an individual to accurately predict the direction and rotational motion of the stimulus based on visual and auditory information. In this study, we recruited 9 expert table-tennis players and used table-tennis service as our experimental model. Participants watched recorded services with different levels of visual and auditory information. The goal was to anticipate the direction of the service (left or right) and the rotational motion of service (topspin, sidespin, or cut). We recorded their responses and quantified the following outcomes: (i) directional accuracy and (ii) rotational motion accuracy. The response accuracy was the accurate predictions relative to the total number of trials. The ability of the participants to predict the direction of the service accurately increased with additional visual information but not with auditory information. In contrast, the ability of the participants to predict the rotational motion of the service accurately increased with the addition of auditory information to visual information but not with additional visual information alone. In conclusion, this finding demonstrates that visual information enhances the ability of an individual to accurately predict the direction of the stimulus, whereas additional auditory information enhances the ability of an individual to accurately predict the rotational motion of stimulus.

  11. Vision and visual information processing in cubozoans

    DEFF Research Database (Denmark)

    Bielecki, Jan

    relationship between acuity and light sensitivity. Animals have evolved a wide variety of solutions to this problem such as folded membranes, to have a larger receptive surfaces, and lenses, to focus light onto the receptive membranes. On the neural capacity side, complex eyes demand huge processing network...... animals in a wide range of behaviours. It is intuitive that a complex eye is energetically very costly, not only in components but also in neural involvement. The increasing behavioural demand added pressure on design specifications and eye evolution is considered an optimization of the inverse...... fit their need. Visual neuroethology integrates optics, sensory equipment, neural network and motor output to explain how animals can perform behaviour in response to a specific visual stimulus. In this doctoral thesis, I will elucidate the individual steps in a visual neuroethological pathway...

  12. Information visualization of the minority game

    Science.gov (United States)

    Jiang, W.; Herbert, R. D.; Webber, R.

    2008-02-01

    Many dynamical systems produce large quantities of data. How can the system be understood from the output data? Often people are simply overwhelmed by the data. Traditional tools such as tables and plots are often not adequate, and new techniques are needed to help people to analyze the system. In this paper, we propose the use of two spacefilling visualization tools to examine the output from a complex agent-based financial model. We measure the effectiveness and performance of these tools through usability experiments. Based on the experimental results, we develop two new visualization techniques that combine the advantages and discard the disadvantages of the information visualization tools. The model we use is an evolutionary version of the Minority Game which simulates a financial market.

  13. Information visualization of the minority game

    International Nuclear Information System (INIS)

    Jiang, W; Herbert, R D; Webber, R

    2008-01-01

    Many dynamical systems produce large quantities of data. How can the system be understood from the output data? Often people are simply overwhelmed by the data. Traditional tools such as tables and plots are often not adequate, and new techniques are needed to help people to analyze the system. In this paper, we propose the use of two spacefilling visualization tools to examine the output from a complex agent-based financial model. We measure the effectiveness and performance of these tools through usability experiments. Based on the experimental results, we develop two new visualization techniques that combine the advantages and discard the disadvantages of the information visualization tools. The model we use is an evolutionary version of the Minority Game which simulates a financial market

  14. RE Data Explorer: Informing Variable Renewable Energy Grid Integration for Low Emission Development

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-08

    The RE Data Explorer, developed by the National Renewable Energy Laboratory, is an innovative web-based analysis tool that utilizes geospatial and spatiotemporal renewable energy data to visualize, execute, and support analysis of renewable energy potential under various user-defined scenarios. This analysis can inform high-level prospecting, integrated planning, and policy making to enable low emission development.

  15. State of the art/science: Visual methods and information behavior research

    DEFF Research Database (Denmark)

    Hartel, Jenna; Sonnenwald, Diane H.; Lundh, Anna

    2012-01-01

    This panel reports on methodological innovation now underway as information behavior scholars begin to experiment with visual methods. The session launches with a succinct introduction to visual methods by Jenna Hartel and then showcases three exemplar visual research designs. First, Dianne Sonne...... will have gained: knowledge of the state of the art/science of visual methods in information behavior research; an appreciation for the richness the approach brings to the specialty; and a platform to take new visual research designs forward....

  16. EFFECT OF THE AMOUNT OF ALLOWED VISUAL INFORMATION ON ACROBATIC SKILL LEARNING

    Directory of Open Access Journals (Sweden)

    L. Morenilla

    2010-09-01

    Full Text Available

     

    ABSTRACT

    Postural control is the result of different sensorial information integration. During complex movements, such as acrobatic skills when a subject jumps and turns on the transversal axis, sensorial conflicts can appear, especially among visual and vestibular inputs. The importance of these conflicts during learning and posterior execution of an acrobatic manoeuvre is not clear. An experimental study was carried out where we controlled the environmental illumination of flying and landing phases of an acrobatic skill execution (forward tucked somersault during the learning process. We obtained significant differences between different practice groups, showing better results those subjects who accomplished their practice without illumination during the landing phase. Our results suggest that although visual information might be important to perform the take-off phase correctly, it doesn’t seem to be a determining factor on its final phase (landing and could even interfere with vestibular information.
    KEYWORDS: sensorymotor integration, vision, vestibular information, acrobatic activities

     

    RESUMEN

    El control postural es el resultado de la integración de diferentes informaciones sensoriales. En la ejecución de movimientos complejos, como las habilidades acrobáticas basadas en saltar y girar en torno al eje transversal, pueden aparecer conflictos sensoriales, especialmente entre la información visual y la vestibular. La repercusión de estos conflictos sobre el aprendizaje y dominio de este tipo de habilidad no esta clara. Se realizó un estudio experimental, en el cual la iluminación del ambiente fue

  17. Supporting Knowledge Integration in Chemistry with a Visualization-Enhanced Inquiry Unit

    Science.gov (United States)

    Chiu, Jennifer L.; Linn, Marcia C.

    2014-01-01

    This paper describes the design and impact of an inquiry-oriented online curriculum that takes advantage of dynamic molecular visualizations to improve students' understanding of chemical reactions. The visualization-enhanced unit uses research-based guidelines following the knowledge integration framework to help students develop coherent…

  18. Information theoretical assessment of visual communication with wavelet coding

    Science.gov (United States)

    Rahman, Zia-ur

    1995-06-01

    A visual communication channel can be characterized by the efficiency with which it conveys information, and the quality of the images restored from the transmitted data. Efficient data representation requires the use of constraints of the visual communication channel. Our information theoretic analysis combines the design of the wavelet compression algorithm with the design of the visual communication channel. Shannon's communication theory, Wiener's restoration filter, and the critical design factors of image gathering and display are combined to provide metrics for measuring the efficiency of data transmission, and for quantitatively assessing the visual quality of the restored image. These metrics are: a) the mutual information (Eta) between the radiance the radiance field and the restored image, and b) the efficiency of the channel which can be roughly measured by as the ratio (Eta) /H, where H is the average number of bits being used to transmit the data. Huck, et al. (Journal of Visual Communication and Image Representation, Vol. 4, No. 2, 1993) have shown that channels desinged to maximize (Eta) , also maximize. Our assessment provides a framework for designing channels which provide the highest possible visual quality for a given amount of data under the critical design limitations of the image gathering and display devices. Results show that a trade-off exists between the maximum realizable information of the channel and its efficiency: an increase in one leads to a decrease in the other. The final selection of which of these quantities to maximize is, of course, application dependent.

  19. Integrating genomic information with protein sequence and 3D atomic level structure at the RCSB protein data bank.

    Science.gov (United States)

    Prlic, Andreas; Kalro, Tara; Bhattacharya, Roshni; Christie, Cole; Burley, Stephen K; Rose, Peter W

    2016-12-15

    The Protein Data Bank (PDB) now contains more than 120,000 three-dimensional (3D) structures of biological macromolecules. To allow an interpretation of how PDB data relates to other publicly available annotations, we developed a novel data integration platform that maps 3D structural information across various datasets. This integration bridges from the human genome across protein sequence to 3D structure space. We developed novel software solutions for data management and visualization, while incorporating new libraries for web-based visualization using SVG graphics. The new views are available from http://www.rcsb.org and software is available from https://github.com/rcsb/. andreas.prlic@rcsb.orgSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  20. SVIP-N 1.0: An integrated visualization platform for neutronics analysis

    International Nuclear Information System (INIS)

    Luo Yuetong; Long Pengcheng; Wu Guoyong; Zeng Qin; Hu Liqin; Zou Jun

    2010-01-01

    Post-processing is an important part of neutronics analysis, and SVIP-N 1.0 (scientific visualization integrated platform for neutronics analysis) is designed to ease post-processing of neutronics analysis through visualization technologies. Main capabilities of SVIP-N 1.0 include: (1) ability of manage neutronics analysis result; (2) ability to preprocess neutronics analysis result; (3) ability to visualization neutronics analysis result data in different way. The paper describes the system architecture and main features of SVIP-N, some advanced visualization used in SVIP-N 1.0 and some preliminary applications, such as ITER.

  1. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    Our goal is to explore the use of hearing and touch to convey graphical and pictorial information to visually impaired people. Our focus is on dynamic, interactive display of visual information using existing, widely available devices, such as smart phones and tablets with touch sensitive screens. We propose a new approach for acoustic-tactile representation of visual signals that can be implemented on a touch screen and allows the user to actively explore a two-dimensional layout consisting of one or more objects with a finger or a stylus while listening to auditory feedback via stereo headphones. The proposed approach is acoustic-tactile because sound is used as the primary source of information for object localization and identification, while touch is used for pointing and kinesthetic feedback. A static overlay of raised-dot tactile patterns can also be added. A key distinguishing feature of the proposed approach is the use of spatial sound (directional and distance cues) to facilitate the active exploration of the layout. We consider a variety of configurations for acoustic-tactile rendering of object size, shape, identity, and location, as well as for the overall perception of simple layouts and scenes. While our primary goal is to explore the fundamental capabilities and limitations of representing visual information in acoustic-tactile form, we also consider a number of relatively simple configurations that can be tied to specific applications. In particular, we consider a simple scene layout consisting of objects in a linear arrangement, each with a distinct tapping sound, which we compare to a ''virtual cane.'' We will also present a configuration that can convey a ''Venn diagram.'' We present systematic subjective experiments to evaluate the effectiveness of the proposed display for shape perception, object identification and localization, and 2-D layout perception, as well as the applications. Our experiments were conducted with visually blocked

  2. Rule-based Information Integration

    NARCIS (Netherlands)

    de Keijzer, Ander; van Keulen, Maurice

    2005-01-01

    In this report, we show the process of information integration. We specifically discuss the language used for integration. We show that integration consists of two phases, the schema mapping phase and the data integration phase. We formally define transformation rules, conversion, evolution and

  3. Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking.

    Science.gov (United States)

    Lin, Zhicheng; He, Sheng

    2012-10-25

    Object identities ("what") and their spatial locations ("where") are processed in distinct pathways in the visual system, raising the question of how the what and where information is integrated. Because of object motions and eye movements, the retina-based representations are unstable, necessitating nonretinotopic representation and integration. A potential mechanism is to code and update objects according to their reference frames (i.e., frame-centered representation and integration). To isolate frame-centered processes, in a frame-to-frame apparent motion configuration, we (a) presented two preceding or trailing objects on the same frame, equidistant from the target on the other frame, to control for object-based (frame-based) effect and space-based effect, and (b) manipulated the target's relative location within its frame to probe frame-centered effect. We show that iconic memory, visual priming, and backward masking depend on objects' relative frame locations, orthogonal of the retinotopic coordinate. These findings not only reveal that iconic memory, visual priming, and backward masking can be nonretinotopic but also demonstrate that these processes are automatically constrained by contextual frames through a frame-centered mechanism. Thus, object representation is robustly and automatically coupled to its reference frame and continuously being updated through a frame-centered, location-specific mechanism. These findings lead to an object cabinet framework, in which objects ("files") within the reference frame ("cabinet") are orderly coded relative to the frame.

  4. Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information

    Directory of Open Access Journals (Sweden)

    Fabian Draht

    2017-06-01

    Full Text Available Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.

  5. Experience-Dependency of Reliance on Local Visual and Idiothetic Cues for Spatial Representations Created in the Absence of Distal Information.

    Science.gov (United States)

    Draht, Fabian; Zhang, Sijie; Rayan, Abdelrahman; Schönfeld, Fabian; Wiskott, Laurenz; Manahan-Vaughan, Denise

    2017-01-01

    Spatial encoding in the hippocampus is based on a range of different input sources. To generate spatial representations, reliable sensory cues from the external environment are integrated with idiothetic cues, derived from self-movement, that enable path integration and directional perception. In this study, we examined to what extent idiothetic cues significantly contribute to spatial representations and navigation: we recorded place cells while rodents navigated towards two visually identical chambers in 180° orientation via two different paths in darkness and in the absence of reliable auditory or olfactory cues. Our goal was to generate a conflict between local visual and direction-specific information, and then to assess which strategy was prioritized in different learning phases. We observed that, in the absence of distal cues, place fields are initially controlled by local visual cues that override idiothetic cues, but that with multiple exposures to the paradigm, spaced at intervals of days, idiothetic cues become increasingly implemented in generating an accurate spatial representation. Taken together, these data support that, in the absence of distal cues, local visual cues are prioritized in the generation of context-specific spatial representations through place cells, whereby idiothetic cues are deemed unreliable. With cumulative exposures to the environments, the animal learns to attend to subtle idiothetic cues to resolve the conflict between visual and direction-specific information.

  6. Gunslinger Effect and Müller-Lyer Illusion: Examining Early Visual Information Processing for Late Limb-Target Control.

    Science.gov (United States)

    Roberts, James W; Lyons, James; Garcia, Daniel B L; Burgess, Raquel; Elliott, Digby

    2017-07-01

    The multiple process model contends that there are two forms of online control for manual aiming: impulse regulation and limb-target control. This study examined the impact of visual information processing for limb-target control. We amalgamated the Gunslinger protocol (i.e., faster movements following a reaction to an external trigger compared with the spontaneous initiation of movement) and Müller-Lyer target configurations into the same aiming protocol. The results showed the Gunslinger effect was isolated at the early portions of the movement (peak acceleration and peak velocity). Reacted aims reached a longer displacement at peak deceleration, but no differences for movement termination. The target configurations manifested terminal biases consistent with the illusion. We suggest the visual information processing demands imposed by reacted aims can be adapted by integrating early feedforward information for limb-target control.

  7. Neural mechanisms of information storage in visual short-term memory.

    Science.gov (United States)

    Serences, John T

    2016-11-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Neural Mechanisms of Information Storage in Visual Short-Term Memory

    Science.gov (United States)

    Serences, John T.

    2016-01-01

    The capacity to briefly memorize fleeting sensory information supports visual search and behavioral interactions with relevant stimuli in the environment. Traditionally, studies investigating the neural basis of visual short term memory (STM) have focused on the role of prefrontal cortex (PFC) in exerting executive control over what information is stored and how it is adaptively used to guide behavior. However, the neural substrates that support the actual storage of content-specific information in STM are more controversial, with some attributing this function to PFC and others to the specialized areas of early visual cortex that initially encode incoming sensory stimuli. In contrast to these traditional views, I will review evidence suggesting that content-specific information can be flexibly maintained in areas across the cortical hierarchy ranging from early visual cortex to PFC. While the factors that determine exactly where content-specific information is represented are not yet entirely clear, recognizing the importance of task-demands and better understanding the operation of non-spiking neural codes may help to constrain new theories about how memories are maintained at different resolutions, across different timescales, and in the presence of distracting information. PMID:27668990

  9. Visual-Auditory Integration during Speech Imitation in Autism

    Science.gov (United States)

    Williams, Justin H. G.; Massaro, Dominic W.; Peel, Natalie J.; Bosseler, Alexis; Suddendorf, Thomas

    2004-01-01

    Children with autistic spectrum disorder (ASD) may have poor audio-visual integration, possibly reflecting dysfunctional "mirror neuron" systems which have been hypothesised to be at the core of the condition. In the present study, a computer program, utilizing speech synthesizer software and a "virtual" head (Baldi), delivered speech stimuli for…

  10. Visual-Haptic Integration: Cue Weights are Varied Appropriately, to Account for Changes in Haptic Reliability Introduced by Using a Tool

    OpenAIRE

    Chie Takahashi; Simon J Watt

    2011-01-01

    Tools such as pliers systematically change the relationship between an object's size and the hand opening required to grasp it. Previous work suggests the brain takes this into account, integrating visual and haptic size information that refers to the same object, independent of the similarity of the ‘raw’ visual and haptic signals (Takahashi et al., VSS 2009). Variations in tool geometry also affect the reliability (precision) of haptic size estimates, however, because they alter the change ...

  11. Retinal oscillations carry visual information to cortex

    Directory of Open Access Journals (Sweden)

    Kilian Koepsell

    2009-04-01

    Full Text Available Thalamic relay cells fire action potentials that transmit information from retina to cortex. The amount of information that spike trains encode is usually estimated from the precision of spike timing with respect to the stimulus. Sensory input, however, is only one factor that influences neural activity. For example, intrinsic dynamics, such as oscillations of networks of neurons, also modulate firing pattern. Here, we asked if retinal oscillations might help to convey information to neurons downstream. Specifically, we made whole-cell recordings from relay cells to reveal retinal inputs (EPSPs and thalamic outputs (spikes and then analyzed these events with information theory. Our results show that thalamic spike trains operate as two multiplexed channels. One channel, which occupies a low frequency band (<30 Hz, is encoded by average firing rate with respect to the stimulus and carries information about local changes in the visual field over time. The other operates in the gamma frequency band (40-80 Hz and is encoded by spike timing relative to retinal oscillations. At times, the second channel conveyed even more information than the first. Because retinal oscillations involve extensive networks of ganglion cells, it is likely that the second channel transmits information about global features of the visual scene.

  12. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.

    Science.gov (United States)

    Zhou, Zhiyi; Bernard, Melanie R; Bonds, A B

    2008-04-02

    Spatiotemporal relationships among contour segments can influence synchronization of neural responses in the primary visual cortex. We performed a systematic study to dissociate the impact of spatial and temporal factors in the signaling of contour integration via synchrony. In addition, we characterized the temporal evolution of this process to clarify potential underlying mechanisms. With a 10 x 10 microelectrode array, we recorded the simultaneous activity of multiple cells in the cat primary visual cortex while stimulating with drifting sine-wave gratings. We preserved temporal integrity and systematically degraded spatial integrity of the sine-wave gratings by adding spatial noise. Neural synchronization was analyzed in the time and frequency domains by conducting cross-correlation and coherence analyses. The general association between neural spike trains depends strongly on spatial integrity, with coherence in the gamma band (35-70 Hz) showing greater sensitivity to the change of spatial structure than other frequency bands. Analysis of the temporal dynamics of synchronization in both time and frequency domains suggests that spike timing synchronization is triggered nearly instantaneously by coherent structure in the stimuli, whereas frequency-specific oscillatory components develop more slowly, presumably through network interactions. Our results suggest that, whereas temporal integrity is required for the generation of synchrony, spatial integrity is critical in triggering subsequent gamma band synchronization.

  13. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    OpenAIRE

    MEMISEVIC Haris; HADZIC Selmir

    2015-01-01

    Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegbo...

  14. A Motor-Skills Programme to Enhance Visual Motor Integration of Selected Pre-School Learners

    Science.gov (United States)

    Africa, Eileen K.; van Deventer, Karel J.

    2017-01-01

    Pre-schoolers are in a window period for motor skill development. Visual-motor integration (VMI) is the foundation for academic and sport skills. Therefore, it must develop before formal schooling. This study attempted to improve VMI skills. VMI skills were measured with the "Beery-Buktenica developmental test of visual-motor integration 6th…

  15. Collinear integration affects visual search at V1.

    Science.gov (United States)

    Chow, Hiu Mei; Jingling, Li; Tseng, Chia-huei

    2013-08-29

    Perceptual grouping plays an indispensable role in figure-ground segregation and attention distribution. For example, a column pops out if it contains element bars orthogonal to uniformly oriented element bars. Jingling and Tseng (2013) have reported that contextual grouping in a column matters to visual search behavior: When a column is grouped into a collinear (snakelike) structure, a target positioned on it became harder to detect than on other noncollinear (ladderlike) columns. How and where perceptual grouping interferes with selective attention is still largely unknown. This article contributes to this little-studied area by asking whether collinear contour integration interacts with visual search before or after binocular fusion. We first identified that the previously mentioned search impairment occurs with a distractor of five or nine elements but not one element in a 9 × 9 search display. To pinpoint the site of this effect, we presented the search display with a short collinear bar (one element) to one eye and the extending collinear bars to the other eye, such that when properly fused, the combined binocular collinear length (nine elements) exceeded the critical length. No collinear search impairment was observed, implying that collinear information before binocular fusion shaped participants' search behavior, although contour extension from the other eye after binocular fusion enhanced the effect of collinearity on attention. Our results suggest that attention interacts with perceptual grouping as early as V1.

  16. Integration of visual and inertial cues in perceived heading of self-motion

    NARCIS (Netherlands)

    Winkel, K.N. de; Weesie, H.M.; Werkhoven, P.J.; Groen, E.L.

    2010-01-01

    In the present study, we investigated whether the perception of heading of linear self-motion can be explained by Maximum Likelihood Integration (MLI) of visual and non-visual sensory cues. MLI predicts smaller variance for multisensory judgments compared to unisensory judgments. Nine participants

  17. An integrative view of storage of low- and high-level visual dimensions in visual short-term memory.

    Science.gov (United States)

    Magen, Hagit

    2017-03-01

    Efficient performance in an environment filled with complex objects is often achieved through the temporal maintenance of conjunctions of features from multiple dimensions. The most striking finding in the study of binding in visual short-term memory (VSTM) is equal memory performance for single features and for integrated multi-feature objects, a finding that has been central to several theories of VSTM. Nevertheless, research on binding in VSTM focused almost exclusively on low-level features, and little is known about how items from low- and high-level visual dimensions (e.g., colored manmade objects) are maintained simultaneously in VSTM. The present study tested memory for combinations of low-level features and high-level representations. In agreement with previous findings, Experiments 1 and 2 showed decrements in memory performance when non-integrated low- and high-level stimuli were maintained simultaneously compared to maintaining each dimension in isolation. However, contrary to previous findings the results of Experiments 3 and 4 showed decrements in memory performance even when integrated objects of low- and high-level stimuli were maintained in memory, compared to maintaining single-dimension objects. Overall, the results demonstrate that low- and high-level visual dimensions compete for the same limited memory capacity, and offer a more comprehensive view of VSTM.

  18. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    Science.gov (United States)

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  19. Enhancing creative problem solving in an integrated visual art and geometry program: A pilot study

    NARCIS (Netherlands)

    Schoevers, E.M.; Kroesbergen, E.H.; Pitta-Pantazi, D.

    2017-01-01

    This article describes a new pedagogical method, an integrated visual art and geometry program, which has the aim to increase primary school students' creative problem solving and geometrical ability. This paper presents the rationale for integrating visual art and geometry education. Furthermore

  20. Integration of Geographical Information Systems and Geophysical Applications with Distributed Computing Technologies.

    Science.gov (United States)

    Pierce, M. E.; Aktas, M. S.; Aydin, G.; Fox, G. C.; Gadgil, H.; Sayar, A.

    2005-12-01

    We examine the application of Web Service Architectures and Grid-based distributed computing technologies to geophysics and geo-informatics. We are particularly interested in the integration of Geographical Information System (GIS) services with distributed data mining applications. GIS services provide the general purpose framework for building archival data services, real time streaming data services, and map-based visualization services that may be integrated with data mining and other applications through the use of distributed messaging systems and Web Service orchestration tools. Building upon on our previous work in these areas, we present our current research efforts. These include fundamental investigations into increasing XML-based Web service performance, supporting real time data streams, and integrating GIS mapping tools with audio/video collaboration systems for shared display and annotation.

  1. Effects of temporal integration on the shape of visual backward masking functions.

    Science.gov (United States)

    Francis, Gregory; Cho, Yang Seok

    2008-10-01

    Many studies of cognition and perception use a visual mask to explore the dynamics of information processing of a target. Especially important in these applications is the time between the target and mask stimuli. A plot of some measure of target visibility against stimulus onset asynchrony is called a masking function, which can sometimes be monotonic increasing but other times is U-shaped. Theories of backward masking have long hypothesized that temporal integration of the target and mask influences properties of masking but have not connected the influence of integration with the shape of the masking function. With two experiments that vary the spatial properties of the target and mask, the authors provide evidence that temporal integration of the stimuli plays a critical role in determining the shape of the masking function. The resulting data both challenge current theories of backward masking and indicate what changes to the theories are needed to account for the new data. The authors further discuss the implication of the findings for uses of backward masking to explore other aspects of cognition.

  2. The relevance of visual information on learning sounds in infancy

    NARCIS (Netherlands)

    ter Schure, S.M.M.

    2016-01-01

    Newborn infants are sensitive to combinations of visual and auditory speech. Does this ability to match sounds and sights affect how infants learn the sounds of their native language? And are visual articulations the only type of visual information that can influence sound learning? This

  3. Visualization of hierarchically structured information for human-computer interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Suh Hyun; Lee, J. K.; Choi, I. K.; Kye, S. C.; Lee, N. K. [Dongguk University, Seoul (Korea)

    2001-11-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchically structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance. In this report, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks. 15 refs., 19 figs., 32 tabs. (Author)

  4. The relationship between better-eye and integrated visual field mean deviation and visual disability.

    Science.gov (United States)

    Arora, Karun S; Boland, Michael V; Friedman, David S; Jefferys, Joan L; West, Sheila K; Ramulu, Pradeep Y

    2013-12-01

    visual disability are obtained using either MD. Unlike better-eye MD, IVF measurements require extra software/calculation. As such, information from studies using better-eye MD can be more easily integrated into clinical decision-making, making better-eye MD a robust and meaningful method for reporting VF loss severity. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  5. Extraction of Information of Audio-Visual Contents

    Directory of Open Access Journals (Sweden)

    Carlos Aguilar

    2011-10-01

    Full Text Available In this article we show how it is possible to use Channel Theory (Barwise and Seligman, 1997 for modeling the process of information extraction realized by audiences of audio-visual contents. To do this, we rely on the concepts pro- posed by Channel Theory and, especially, its treatment of representational systems. We then show how the information that an agent is capable of extracting from the content depends on the number of channels he is able to establish between the content and the set of classifications he is able to discriminate. The agent can endeavor the extraction of information through these channels from the totality of content; however, we discuss the advantages of extracting from its constituents in order to obtain a greater number of informational items that represent it. After showing how the extraction process is endeavored for each channel, we propose a method of representation of all the informative values an agent can obtain from a content using a matrix constituted by the channels the agent is able to establish on the content (source classifications, and the ones he can understand as individual (destination classifications. We finally show how this representation allows reflecting the evolution of the informative items through the evolution of audio-visual content.

  6. A Dynamic Bayesian Observer Model Reveals Origins of Bias in Visual Path Integration.

    Science.gov (United States)

    Lakshminarasimhan, Kaushik J; Petsalis, Marina; Park, Hyeshin; DeAngelis, Gregory C; Pitkow, Xaq; Angelaki, Dora E

    2018-06-20

    Path integration is a strategy by which animals track their position by integrating their self-motion velocity. To identify the computational origins of bias in visual path integration, we asked human subjects to navigate in a virtual environment using optic flow and found that they generally traveled beyond the goal location. Such a behavior could stem from leaky integration of unbiased self-motion velocity estimates or from a prior expectation favoring slower speeds that causes velocity underestimation. Testing both alternatives using a probabilistic framework that maximizes expected reward, we found that subjects' biases were better explained by a slow-speed prior than imperfect integration. When subjects integrate paths over long periods, this framework intriguingly predicts a distance-dependent bias reversal due to buildup of uncertainty, which we also confirmed experimentally. These results suggest that visual path integration in noisy environments is limited largely by biases in processing optic flow rather than by leaky integration. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Data Entities and Information System Matrix for Integrated Agriculture Information System (IAIS)

    Science.gov (United States)

    Budi Santoso, Halim; Delima, Rosa

    2018-03-01

    Integrated Agriculture Information System is a system that is developed to process data, information, and knowledge in Agriculture sector. Integrated Agriculture Information System brings valuable information for farmers: (1) Fertilizer price; (2) Agriculture technique and practise; (3) Pest management; (4) Cultivation; (5) Irrigation; (6) Post harvest processing; (7) Innovation in agriculture processing. Integrated Agriculture Information System contains 9 subsystems. To bring an integrated information to the user and stakeholder, it needs an integrated database approach. Thus, researchers describes data entity and its matrix relate to subsystem in Integrated Agriculture Information System (IAIS). As a result, there are 47 data entities as entities in single and integrated database.

  8. Structural information theory and visual form

    NARCIS (Netherlands)

    Leeuwenberg, E.L.J.; Kaernbach, C.; Schroeger, E.; Mueller, H.

    2003-01-01

    The paper attends to basic characteristics of visual form as approached by Structural information theory, or SIT, (Leeuwenberg, Van der Helm and Van Lier). The introduction provides a global survey of this approach. The main part of the paper focuses on three characteristics of SIT. Each one is made

  9. Considerations for the composition of visual scene displays: potential contributions of information from visual and cognitive sciences.

    Science.gov (United States)

    Wilkinson, Krista M; Light, Janice; Drager, Kathryn

    2012-09-01

    Aided augmentative and alternative (AAC) interventions have been demonstrated to facilitate a variety of communication outcomes in persons with intellectual disabilities. Most aided AAC systems rely on a visual modality. When the medium for communication is visual, it seems likely that the effectiveness of intervention depends in part on the effectiveness and efficiency with which the information presented in the display can be perceived, identified, and extracted by communicators and their partners. Understanding of visual-cognitive processing - that is, how a user attends, perceives, and makes sense of the visual information on the display - therefore seems critical to designing effective aided AAC interventions. In this Forum Note, we discuss characteristics of one particular type of aided AAC display, that is, Visual Scene Displays (VSDs) as they may relate to user visual and cognitive processing. We consider three specific ways in which bodies of knowledge drawn from the visual cognitive sciences may be relevant to the composition of VSDs, with the understanding the direct research with children with complex communication needs is necessary to verify or refute our speculations.

  10. Integrated care information technology.

    Science.gov (United States)

    Rowe, Ian; Brimacombe, Phil

    2003-02-21

    Counties Manukau District Health Board (CMDHB) uses information technology (IT) to drive its Integrated Care strategy. IT enables the sharing of relevant health information between care providers. This information sharing is critical to closing the gaps between fragmented areas of the health system. The tragic case of James Whakaruru demonstrates how people have been falling through those gaps. The starting point of the Integrated Care strategic initiative was the transmission of electronic discharges and referral status messages from CMDHB's secondary provider, South Auckland Health (SAH), to GPs in the district. Successful pilots of a Well Child system and a diabetes disease management system embracing primary and secondary providers followed this. The improved information flowing from hospital to GPs now enables GPs to provide better management for their patients. The Well Child system pilot helped improve reported immunization rates in a high health need area from 40% to 90%. The diabetes system pilot helped reduce the proportion of patients with HbA1c rang:9 from 47% to 16%. IT has been implemented as an integral component of an overall Integrated Care strategic initiative. Within this context, Integrated Care IT has helped to achieve significant improvements in care outcomes, broken down barriers between health system silos, and contributed to the establishment of a system of care continuum that is better for patients.

  11. Organization and visualization of medical images in radiotherapy

    International Nuclear Information System (INIS)

    Lorang, T.

    2001-05-01

    In modern radiotherapy, various imaging equipment is used to acquire views from inside human bodies. Tomographic imaging equipment is acquiring stacks of cross-sectional images, software implementations derive three-dimensional volumes from planar images to allow for visualization of reconstructed cross-sections at any orientation and location and higher-level visualization systems allow for transparent views and surface rendering. Of upcoming interest in radiotherapy is mutual information, the integration of information from multiple imaging equipment res. from the same imaging equipment at different time stamps and varying acquisition parameters. Huge amounts of images are acquired nowadays at radiotherapy centers, requiring organization of images with respect to patient, acquisition and equipment to allow for visualization of images in a comparative and integrative manner. Especially for integration of image information from different equipment, geometrical information is required to allow for registration of images res. volumes. DICOM 3.0 has been introduced as a standard for information interchange with respect to medical imaging. Geometric information of cross-sections, demographic information of patients and medical information of acquisitions and equipment are covered by this standard, allowing for a high-level automation with respect to organization and visualization of medical images. Reconstructing cross-sectional images from volumes at any orientation and location is required for the purpose of registration and multi-planar views. Resampling and addressing of discrete volume data need be implemented efficiently to allow for simultaneous visualization of multiple cross-sectional images, especially with respect to multiple, non-isotropy volume data sets. (author)

  12. Conditioning Influences Audio-Visual Integration by Increasing Sound Saliency

    Directory of Open Access Journals (Sweden)

    Fabrizio Leo

    2011-10-01

    Full Text Available We investigated the effect of prior conditioning of an auditory stimulus on audiovisual integration in a series of four psychophysical experiments. The experiments factorially manipulated the conditioning procedure (picture vs monetary conditioning and multisensory paradigm (2AFC visual detection vs redundant target paradigm. In the conditioning sessions, subjects were presented with three pure tones (= conditioned stimulus, CS that were paired with neutral, positive, or negative unconditioned stimuli (US, monetary: +50 euro cents,.–50 cents, 0 cents; pictures: highly pleasant, unpleasant, and neutral IAPS. In a 2AFC visual selective attention paradigm, detection of near-threshold Gabors was improved by concurrent sounds that had previously been paired with a positive (monetary or negative (picture outcome relative to neutral sounds. In the redundant target paradigm, sounds previously paired with positive (monetary or negative (picture outcomes increased response speed to both auditory and audiovisual targets similarly. Importantly, prior conditioning did not increase the multisensory response facilitation (ie, (A + V/2 – AV or the race model violation. Collectively, our results suggest that prior conditioning primarily increases the saliency of the auditory stimulus per se rather than influencing audiovisual integration directly. In turn, conditioned sounds are rendered more potent for increasing response accuracy or speed in detection of visual targets.

  13. Ray-based approach to integrated 3D visual communication

    Science.gov (United States)

    Naemura, Takeshi; Harashima, Hiroshi

    2001-02-01

    For a high sense of reality in the next-generation communications, it is very important to realize three-dimensional (3D) spatial media, instead of existing 2D image media. In order to comprehensively deal with a variety of 3D visual data formats, the authors first introduce the concept of "Integrated 3D Visual Communication," which reflects the necessity of developing a neutral representation method independent of input/output systems. Then, the following discussions are concentrated on the ray-based approach to this concept, in which any visual sensation is considered to be derived from a set of light rays. This approach is a simple and straightforward to the problem of how to represent 3D space, which is an issue shared by various fields including 3D image communications, computer graphics, and virtual reality. This paper mainly presents the several developments in this approach, including some efficient methods of representing ray data, a real-time video-based rendering system, an interactive rendering system based on the integral photography, a concept of virtual object surface for the compression of tremendous amount of data, and a light ray capturing system using a telecentric lens. Experimental results demonstrate the effectiveness of the proposed techniques.

  14. From Information Management to Information Visualization

    Science.gov (United States)

    Karami, Mahtab

    2016-01-01

    Summary Objective The development and implementation of a dashboard of medical imaging department (MID) performance indicators. Method Several articles discussing performance measures of imaging departments were searched for this study. All the related measures were extracted. Then, a panel of imaging experts were asked to rate these measures with an open ended question to seek further potential indicators. A second round was performed to confirm the performance rating. The indicators and their ratings were then reviewed by an executive panel. Based on the final panel’s rating, a list of indicators to be used was developed. A team of information technology consultants were asked to determine a set of user interface requirements for the building of the dashboard. In the first round, based on the panel’s rating, a list of main features or requirements to be used was determined. Next, Qlikview was utilized to implement the dashboard to visualize a set of selected KPI metrics. Finally, an evaluation of the dashboard was performed. Results 92 MID indicators were identified. On top of this, 53 main user interface requirements to build of the prototype of dashboard were determined. Then, the project team successfully implemented a prototype of radiology management dashboards into study site. The visual display that was designed was rated highly by users. Conclusion To develop a dashboard, management of information is essential. It is recommended that a quality map be designed for the MID. It can be used to specify the sequence of activities, their related indicators and required data for calculating these indicators. To achieve both an effective dashboard and a comprehensive view of operations, it is necessary to design a data warehouse for gathering data from a variety of systems. Utilizing interoperability standards for exchanging data among different systems can be also effective in this regard. PMID:27437043

  15. A link between visual disambiguation and visual memory.

    Science.gov (United States)

    Hegdé, Jay; Kersten, Daniel

    2010-11-10

    Sensory information in the retinal image is typically too ambiguous to support visual object recognition by itself. Theories of visual disambiguation posit that to disambiguate, and thus interpret, the incoming images, the visual system must integrate the sensory information with previous knowledge of the visual world. However, the underlying neural mechanisms remain unclear. Using functional magnetic resonance imaging (fMRI) of human subjects, we have found evidence for functional specialization for storing disambiguating information in memory versus interpreting incoming ambiguous images. Subjects viewed two-tone, "Mooney" images, which are typically ambiguous when seen for the first time but are quickly disambiguated after viewing the corresponding unambiguous color images. Activity in one set of regions, including a region in the medial parietal cortex previously reported to play a key role in Mooney image disambiguation, closely reflected memory for previously seen color images but not the subsequent disambiguation of Mooney images. A second set of regions, including the superior temporal sulcus, showed the opposite pattern, in that their responses closely reflected the subjects' percepts of the disambiguated Mooney images on a stimulus-to-stimulus basis but not the memory of the corresponding color images. Functional connectivity between the two sets of regions was stronger during those trials in which the disambiguated percept was stronger. This functional interaction between brain regions that specialize in storing disambiguating information in memory versus interpreting incoming ambiguous images may represent a general mechanism by which previous knowledge disambiguates visual sensory information.

  16. VarB Plus: An Integrated Tool for Visualization of Genome Variation Datasets

    KAUST Repository

    Hidayah, Lailatul

    2012-07-01

    Research on genomic sequences has been improving significantly as more advanced technology for sequencing has been developed. This opens enormous opportunities for sequence analysis. Various analytical tools have been built for purposes such as sequence assembly, read alignments, genome browsing, comparative genomics, and visualization. From the visualization perspective, there is an increasing trend towards use of large-scale computation. However, more than power is required to produce an informative image. This is a challenge that we address by providing several ways of representing biological data in order to advance the inference endeavors of biologists. This thesis focuses on visualization of variations found in genomic sequences. We develop several visualization functions and embed them in an existing variation visualization tool as extensions. The tool we improved is named VarB, hence the nomenclature for our enhancement is VarB Plus. To the best of our knowledge, besides VarB, there is no tool that provides the capability of dynamic visualization of genome variation datasets as well as statistical analysis. Dynamic visualization allows users to toggle different parameters on and off and see the results on the fly. The statistical analysis includes Fixation Index, Relative Variant Density, and Tajima’s D. Hence we focused our efforts on this tool. The scope of our work includes plots of per-base genome coverage, Principal Coordinate Analysis (PCoA), integration with a read alignment viewer named LookSeq, and visualization of geo-biological data. In addition to description of embedded functionalities, significance, and limitations, future improvements are discussed. The result is four extensions embedded successfully in the original tool, which is built on the Qt framework in C++. Hence it is portable to numerous platforms. Our extensions have shown acceptable execution time in a beta testing with various high-volume published datasets, as well as positive

  17. The effect of social context on the use of visual information

    OpenAIRE

    Streuber, Stephan; Knoblich, Gunther; Sebanz, Natalie; Buelthoff, Heinrich H.; de la Rosa, Stephan

    2011-01-01

    Social context modulates action kinematics. Less is known about whether social context also affects the use of task relevant visual information. We tested this hypothesis by examining whether the instruction to play table tennis competitively or cooperatively affected the kind of visual cues necessary for successful table tennis performance. In two experiments, participants played table tennis in a dark room with only the ball, net, and table visible. Visual information about both players' ac...

  18. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin; Kuester, Falk

    2010-01-01

    data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented

  19. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    Science.gov (United States)

    Akristiniy, Vera A.; Dikova, Elena A.

    2018-03-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  20. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    Directory of Open Access Journals (Sweden)

    Akristiniy Vera A.

    2018-01-01

    Full Text Available The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account the influence of high-rise buildings on objects of cultural heritage and valuable historical buildings of the city. Practical application of the visual-landscape analysis provides an opportunity to assess the influence of hypothetical location of high-rise buildings on the perception of a historically developed environment and optimal building parameters. The contents of the main stages in the conduct of the visual - landscape analysis and their key aspects, concerning the construction of predicted zones of visibility of the significant historically valuable urban development objects and hypothetically planned of the high-rise buildings are revealed. The obtained data are oriented to the successive development of the planning and typological structure of the city territory and preservation of the compositional influence of valuable fragments of the historical environment in the structure of the urban landscape. On their basis, an information database is formed to determine the permissible urban development parameters of the high-rise buildings for the preservation of the compositional integrity of the urban area.

  1. Documentary management of the sport audio-visual information in the generalist televisions

    OpenAIRE

    Jorge Caldera Serrano; Felipe Alonso

    2007-01-01

    The management of the sport audio-visual documentation of the Information Systems of the state, zonal and local chains is analyzed within the framework. For it it is made makes a route by the documentary chain that makes the sport audio-visual information with the purpose of being analyzing each one of the parameters, showing therefore a series of recommendations and norms for the preparation of the sport audio-visual registry. Evidently the audio-visual sport documentation difference i...

  2. Novel names extend for how long preschool children sample visual information.

    Science.gov (United States)

    Carvalho, Paulo F; Vales, Catarina; Fausey, Caitlin M; Smith, Linda B

    2018-04-01

    Known words can guide visual attention, affecting how information is sampled. How do novel words, those that do not provide any top-down information, affect preschoolers' visual sampling in a conceptual task? We proposed that novel names can also change visual sampling by influencing how long children look. We investigated this possibility by analyzing how children sample visual information when they hear a sentence with a novel name versus without a novel name. Children completed a match-to-sample task while their moment-to-moment eye movements were recorded using eye-tracking technology. Our analyses were designed to provide specific information on the properties of visual sampling that novel names may change. Overall, we found that novel words prolonged the duration of each sampling event but did not affect sampling allocation (which objects children looked at) or sampling organization (how children transitioned from one object to the next). These results demonstrate that novel words change one important dynamic property of gaze: Novel words can entrain the cognitive system toward longer periods of sustained attention early in development. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Probabilistic XML in Information Integration

    NARCIS (Netherlands)

    de Keijzer, Ander; Shim, J.; Casati, F.

    2006-01-01

    Information integration is a difficult research problem. In an ambient environment, where devices can connect and disconnect arbitrarily, the problem only increases, because data sources may become available at any time, but can also disappear. In such an environment, information integration needs

  4. Visual-Motor Integration in Children with Prader-Willi Syndrome

    Science.gov (United States)

    Lo, S. T.; Collin, P. J. L.; Hokken-Koelega, A. C. S.

    2015-01-01

    Background: Prader-Willi syndrome (PWS) is characterised by hypotonia, hypogonadism, short stature, obesity, behavioural problems, intellectual disability, and delay in language, social and motor development. There is very limited knowledge about visual-motor integration in children with PWS. Method: Seventy-three children with PWS aged 7-17 years…

  5. Learning and Prediction of Slip from Visual Information

    Science.gov (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  6. Reading interest and information needs of persons with visual impairment in Nigeria

    Directory of Open Access Journals (Sweden)

    ’Niran Adetoro

    2010-01-01

    Full Text Available Information materials can only become usable to persons with visual impairment when they are transcribed into alternative formats. Over time, the transcription and provision of alternative formats in Nigeria by libraries has not been based on users’ reading interest and information needs. This study delves into the reading interests and information needs of persons with visual impairment in Nigeria. Survey research design was adopted and the study purposively focused on southwestern Nigeria. Using stratified proportionate random sampling techniques, data was gathered by questionnaires namely the Visually Impaired Adult Questionnaire VIAQ (= 0.75 and Visually Impaired Student Questionnaire VISQ (= 0.78 from fourteen selected libraries stratified into non-governmental, public, tertiary institutions and secondary schools. Of the 563 copies of the questionnaire that were administered, 401 (71.3% were successfully completed and used for the study. The study found that adults with visual impairment had high reading interests in religious, business, and entertainment materials, among others. Secondary school respondents had high reading interest in art subjects, reference materials, manuals and animal story materials. Both respondents showed high information needs in expected and relevant areas. Braille materials (58.3% are the most preferred source of information generally. Adult respondents preferred Braille (72.4%, while the secondary school respondents preferred Talking books/audio recordings (55%. Transcription and provision of information materials for the visually impaired through libraries should be based on knowledge of their reading interest and information needs.

  7. DIGI-vis: Distributed interactive geospatial information visualization

    KAUST Repository

    Ponto, Kevin

    2010-03-01

    Geospatial information systems provide an abundance of information for researchers and scientists. Unfortunately this type of data can usually only be analyzed a few megapixels at a time, giving researchers a very narrow view into these voluminous data sets. We propose a distributed data gathering and visualization system that allows researchers to view these data at hundreds of megapixels simultaneously. This system allows scientists to view real-time geospatial information at unprecedented levels expediting analysis, interrogation, and discovery. ©2010 IEEE.

  8. Storytelling and Visualization: An Extended Survey

    OpenAIRE

    Chao Tong; Richard Roberts; Rita Borgo; Sean Walton; Robert S. Laramee; Kodzo Wegba; Aidong Lu; Yun Wang; Huamin Qu; Qiong Luo; Xiaojuan Ma

    2018-01-01

    Throughout history, storytelling has been an effective way of conveying information and knowledge. In the field of visualization, storytelling is rapidly gaining momentum and evolving cutting-edge techniques that enhance understanding. Many communities have commented on the importance of storytelling in data visualization. Storytellers tend to be integrating complex visualizations into their narratives in growing numbers. In this paper, we present a survey of storytelling literature in visual...

  9. Situational analysis of communication of HIV and AIDS information to persons with visual impairment: a case of Kang'onga Production Centre in Ndola, Zambia.

    Science.gov (United States)

    Chintende, Grace Nsangwe; Sitali, Doreen; Michelo, Charles; Mweemba, Oliver

    2017-04-04

    Despite the increases in health promotion and educational programs on HIV and AIDS, lack of information and communication on HIV and AIDS for the visually impaired persons continues. The underlying factors that create the information and communication gaps have not been fully explored in Zambia. It is therefore important that, this situational analysis on HIV and AIDS information dissemination to persons with visual impairments at Kang'onga Production Centre in Ndola was conducted. The study commenced in December 2014 to May 2015. A qualitative case study design was employed. The study used two focus group discussions with males and females. Each group comprised twelve participants. Eight in-depth interviews involving the visually impaired persons and five key informants working with visually impaired persons were conducted. Data was analysed thematically using NVIVO 8 software. Ethical clearance was sought from Excellency in Research Ethics and Science. Reference Number 2014-May-030. It was established that most visually impaired people lacked knowledge on the cause, transmission and treatment of HIV and AIDS resulting in misconceptions. It was revealed that health promoters and people working with the visually impaired did not have specific HIV and AIDS information programs in Zambia. Further, it was discovered that the media, information education communication and health education were channels through which the visually impaired accessed HIV and AIDS information. Discrimination, stigma, lack of employment opportunities, funding and poverty were among the many challenges identified which the visually impaired persons faced in accessing HIV and AIDS information. Integration of the visually impaired in HIV and AIDS programs would increase funding for economic empowerment and health promotions in order to improve communication on HIV and AIDS information. The study showed that, the visually impaired persons in Zambia are not catered for in the dissemination of HIV

  10. Object integration requires attention: Visual search for Kanizsa figures in parietal extinction.

    Science.gov (United States)

    Gögler, Nadine; Finke, Kathrin; Keller, Ingo; Müller, Hermann J; Conci, Markus

    2016-11-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective attention. Here, we combined these two approaches to investigate object integration in visual search in a group of five patients with left-sided parietal extinction. Our search paradigm was designed to assess the effect of left- and right-grouped nontargets on detecting a Kanizsa target square. The results revealed comparable reaction time (RT) performance in patients and controls when they were presented with displays consisting of a single to-be-grouped item that had to be classified as target vs. nontarget. However, when display size increased to two items, patients showed an extinction-specific pattern of enhanced RT costs for nontargets that induced a partial shape grouping on the right, i.e., in the attended hemifield (relative to the ungrouped baseline). Together, these findings demonstrate a competitive advantage for right-grouped objects, which in turn indicates that in parietal extinction, attentional competition between objects particularly limits integration processes in the contralesional, i.e., left hemifield. These findings imply a crucial contribution of selective attentional resources to visual object integration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Chromatic Information and Feature Detection in Fast Visual Analysis.

    Directory of Open Access Journals (Sweden)

    Maria M Del Viva

    Full Text Available The visual system is able to recognize a scene based on a sketch made of very simple features. This ability is likely crucial for survival, when fast image recognition is necessary, and it is believed that a primal sketch is extracted very early in the visual processing. Such highly simplified representations can be sufficient for accurate object discrimination, but an open question is the role played by color in this process. Rich color information is available in natural scenes, yet artist's sketches are usually monochromatic; and, black-and-white movies provide compelling representations of real world scenes. Also, the contrast sensitivity of color is low at fine spatial scales. We approach the question from the perspective of optimal information processing by a system endowed with limited computational resources. We show that when such limitations are taken into account, the intrinsic statistical properties of natural scenes imply that the most effective strategy is to ignore fine-scale color features and devote most of the bandwidth to gray-scale information. We find confirmation of these information-based predictions from psychophysics measurements of fast-viewing discrimination of natural scenes. We conclude that the lack of colored features in our visual representation, and our overall low sensitivity to high-frequency color components, are a consequence of an adaptation process, optimizing the size and power consumption of our brain for the visual world we live in.

  12. A Digital Mixed Methods Research Design: Integrating Multimodal Analysis with Data Mining and Information Visualization for Big Data Analytics

    Science.gov (United States)

    O'Halloran, Kay L.; Tan, Sabine; Pham, Duc-Son; Bateman, John; Vande Moere, Andrew

    2018-01-01

    This article demonstrates how a digital environment offers new opportunities for transforming qualitative data into quantitative data in order to use data mining and information visualization for mixed methods research. The digital approach to mixed methods research is illustrated by a framework which combines qualitative methods of multimodal…

  13. Stroboscopic visual training improves information encoding in short-term memory.

    Science.gov (United States)

    Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen R

    2012-11-01

    The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.

  14. Audio-visual onset differences are used to determine syllable identity for ambiguous audio-visual stimulus pairs.

    Science.gov (United States)

    Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke

    2013-01-01

    Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.

  15. Visual communication - Information and fidelity. [of images

    Science.gov (United States)

    Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1993-01-01

    This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.

  16. Parallel development of contour integration and visual contrast sensitivity at low spatial frequencies

    DEFF Research Database (Denmark)

    Benedek, Krisztina; Janáky, Márta; Braunitzer, Gábor

    2010-01-01

    It has been suggested that visual contrast sensitivity and contour integration functions exhibit a late maturation during adolescence. However, the relationship between these functions has not been investigated. The aim of this study was to assess the development of visual contrast sensitivity...

  17. Auditory-visual speech integration by prelinguistic infants: perception of an emergent consonant in the McGurk effect.

    Science.gov (United States)

    Burnham, Denis; Dodd, Barbara

    2004-12-01

    The McGurk effect, in which auditory [ba] dubbed onto [ga] lip movements is perceived as "da" or "tha," was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4 1/2-month-olds were tested in a habituation-test paradigm, in which an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [(delta)a] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [(delta)a], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [(delta)a] were no more familiar than [ba]. These results are consistent with infants' perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. Copyright 2004 Wiley Periodicals, Inc.

  18. What You See Is What You Remember: Visual Chunking by Temporal Integration Enhances Working Memory.

    Science.gov (United States)

    Akyürek, Elkan G; Kappelmann, Nils; Volkert, Marc; van Rijn, Hedderik

    2017-12-01

    Human memory benefits from information clustering, which can be accomplished by chunking. Chunking typically relies on expertise and strategy, and it is unknown whether perceptual clustering over time, through temporal integration, can also enhance working memory. The current study examined the attentional and working memory costs of temporal integration of successive target stimulus pairs embedded in rapid serial visual presentation. ERPs were measured as a function of behavioral reports: One target, two separate targets, or two targets reported as a single integrated target. N2pc amplitude, reflecting attentional processing, depended on the actual number of successive targets. The memory-related CDA and P3 components instead depended on the perceived number of targets irrespective of their actual succession. The report of two separate targets was associated with elevated amplitude, whereas integrated as well as actual single targets exhibited lower amplitude. Temporal integration thus provided an efficient means of processing sensory input, offloading working memory so that the features of two targets were consolidated and maintained at a cost similar to that of a single target.

  19. A Visual Profile of Queensland Indigenous Children.

    Science.gov (United States)

    Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M

    2016-03-01

    Little is known about the prevalence of refractive error, binocular vision, and other visual conditions in Australian Indigenous children. This is important given the association of these visual conditions with reduced reading performance in the wider population, which may also contribute to the suboptimal reading performance reported in this population. The aim of this study was to develop a visual profile of Queensland Indigenous children. Vision testing was performed on 595 primary schoolchildren in Queensland, Australia. Vision parameters measured included visual acuity, refractive error, color vision, nearpoint of convergence, horizontal heterophoria, fusional vergence range, accommodative facility, AC/A ratio, visual motor integration, and rapid automatized naming. Near heterophoria, nearpoint of convergence, and near fusional vergence range were used to classify convergence insufficiency (CI). Although refractive error (Indigenous, 10%; non-Indigenous, 16%; p = 0.04) and strabismus (Indigenous, 0%; non-Indigenous, 3%; p = 0.03) were significantly less common in Indigenous children, CI was twice as prevalent (Indigenous, 10%; non-Indigenous, 5%; p = 0.04). Reduced visual information processing skills were more common in Indigenous children (reduced visual motor integration [Indigenous, 28%; non-Indigenous, 16%; p < 0.01] and slower rapid automatized naming [Indigenous, 67%; non-Indigenous, 59%; p = 0.04]). The prevalence of visual impairment (reduced visual acuity) and color vision deficiency was similar between groups. Indigenous children have less refractive error and strabismus than their non-Indigenous peers. However, CI and reduced visual information processing skills were more common in this group. Given that vision screenings primarily target visual acuity assessment and strabismus detection, this is an important finding as many Indigenous children with CI and reduced visual information processing may be missed. Emphasis should be placed on identifying

  20. The effect of integration masking on visual processing in perceptual categorization.

    Science.gov (United States)

    Hélie, Sébastien

    2017-08-01

    Learning to recognize and categorize objects is an essential cognitive skill allowing animals to function in the world. However, animals rarely have access to a canonical view of an object in an uncluttered environment. Hence, it is essential to study categorization under noisy, degraded conditions. In this article, we explore how the brain processes categorization stimuli in low signal-to-noise conditions using multivariate pattern analysis. We used an integration masking paradigm with mask opacity of 50%, 60%, and 70% inside a magnetic resonance imaging scanner. The results show that mask opacity affects blood-oxygen-level dependent (BOLD) signal in visual processing areas (V1, V2, V3, and V4) but does not affect the BOLD signal in brain areas traditionally associated with categorization (prefrontal cortex, striatum, hippocampus). This suggests that when a stimulus is difficult to extract from its background (e.g., low signal-to-noise ratio), the visual system extracts the stimulus and that activity in areas typically associated with categorization are not affected by the difficulty level of the visual conditions. We conclude with implications of this result for research on visual attention, categorization, and the integration of these fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Directory of Open Access Journals (Sweden)

    Jiagui Qu

    Full Text Available Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  2. Effects of visual working memory on brain information processing of irrelevant auditory stimuli.

    Science.gov (United States)

    Qu, Jiagui; Rizak, Joshua D; Zhao, Lun; Li, Minghong; Ma, Yuanye

    2014-01-01

    Selective attention has traditionally been viewed as a sensory processing modulator that promotes cognitive processing efficiency by favoring relevant stimuli while inhibiting irrelevant stimuli. However, the cross-modal processing of irrelevant information during working memory (WM) has been rarely investigated. In this study, the modulation of irrelevant auditory information by the brain during a visual WM task was investigated. The N100 auditory evoked potential (N100-AEP) following an auditory click was used to evaluate the selective attention to auditory stimulus during WM processing and at rest. N100-AEP amplitudes were found to be significantly affected in the left-prefrontal, mid-prefrontal, right-prefrontal, left-frontal, and mid-frontal regions while performing a high WM load task. In contrast, no significant differences were found between N100-AEP amplitudes in WM states and rest states under a low WM load task in all recorded brain regions. Furthermore, no differences were found between the time latencies of N100-AEP troughs in WM states and rest states while performing either the high or low WM load task. These findings suggested that the prefrontal cortex (PFC) may integrate information from different sensory channels to protect perceptual integrity during cognitive processing.

  3. DEVELOPMENT OF FINE MOTOR COORDINATION AND VISUAL-MOTOR INTEGRATION IN PRESCHOOL CHILDREN

    Directory of Open Access Journals (Sweden)

    Haris MEMISEVIC

    2013-03-01

    Full Text Available Fine motor skills are prerequisite for many everyday activities and they are a good predictor of a child's later academic outcome. The goal of the present study was to assess the effects of age on the development of fine motor coordination and visual-motor integration in preschool children. The sample for this study consisted of 276 preschool children from Canton Sara­jevo, Bosnia and Herzegovina. We assessed children's motor skills with Beery Visual Motor Integration Test and Lafayette Pegboard Test. Data were analyzed with one-way ANOVA, followed by planned com­parisons between the age groups. We also performed a regression analysis to assess the influence of age and motor coordination on visual-motor integration. The results showed that age has a great effect on the development of fine motor skills. Furthermore, the results indicated that there are possible sensitive periods at preschool age in which the development of fine motor skills is accelerated. Early intervention specialists should make a thorough evaluations of fine motor skills in preschool children and make motor (rehabilitation programs for children at risk of fine motor delays.

  4. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  5. Visual Working Memory Supports the Inhibition of Previously Processed Information: Evidence from Preview Search

    Science.gov (United States)

    Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay

    2012-01-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…

  6. An Investigation of Visual Contour Integration Ability in Relation to Writing Performance in Primary School Students

    Science.gov (United States)

    Li-Tsang, Cecilia W. P.; Wong, Agnes S. K.; Chan, Jackson Y.; Lee, Amos Y. T.; Lam, Miko C. Y.; Wong, C. W.; Lu, Zhonglin

    2012-01-01

    A previous study found a visual deficit in contour integration in English readers with dyslexia (Simmers & Bex, 2001). Visual contour integration may play an even more significant role in Chinese handwriting particularly due to its logographic presentation (Lam, Au, Leung, & Li-Tsang, 2011). The current study examined the relationship…

  7. Suppressed visual looming stimuli are not integrated with auditory looming signals: Evidence from continuous flash suppression.

    Science.gov (United States)

    Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond

    2015-01-01

    Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.

  8. Individual variation in the propensity for prospective thought is associated with functional integration between visual and retrosplenial cortex.

    Science.gov (United States)

    Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan

    2018-02-01

    It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a

  9. Integrated inventory information system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Kunte, P.D.

    The nature of oceanographic data and the management of inventory level information are described in Integrated Inventory Information System (IIIS). It is shown how a ROSCOPO (report on observations/samples collected during oceanographic programme...

  10. Visual Ecology and the Development of Visually Guided Behavior in the Cuttlefish

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Darmaillacq

    2017-06-01

    Full Text Available Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and visual-processing centers of their brain. Adults detect their prey visually, navigate using visual cues such as landmarks or the e-vector of polarized light and display intense visual patterns during mating and agonistic encounters. Although much is known about the visual system in adult cuttlefish, few studies have investigated its development and that of visually-guided behavior in juveniles. This review summarizes the results of studies of visual development in embryos and young juveniles. The visual system is the last to develop, as in vertebrates, and is functional before hatching. Indeed, embryonic exposure to prey, shelters or complex background alters postembryonic behavior. Visual acuity and lateralization, and polarization sensitivity improve throughout the first months after hatching. The production of body patterning in juveniles is not the simple stimulus-response process commonly presented in the literature. Rather, it likely requires the complex integration of visual information, and is subject to inter-individual differences. Though the focus of this review is vision in cuttlefish, it is important to note that other senses, particularly sensitivity to vibration and to waterborne chemical signals, also play a role in behavior. Considering the multimodal sensory dimensions of natural stimuli and their integration and processing by individuals offer new exciting avenues of future inquiry.

  11. Visual Ecology and the Development of Visually Guided Behavior in the Cuttlefish.

    Science.gov (United States)

    Darmaillacq, Anne-Sophie; Mezrai, Nawel; O'Brien, Caitlin E; Dickel, Ludovic

    2017-01-01

    Cuttlefish are highly visual animals, a fact reflected in the large size of their eyes and visual-processing centers of their brain. Adults detect their prey visually, navigate using visual cues such as landmarks or the e -vector of polarized light and display intense visual patterns during mating and agonistic encounters. Although much is known about the visual system in adult cuttlefish, few studies have investigated its development and that of visually-guided behavior in juveniles. This review summarizes the results of studies of visual development in embryos and young juveniles. The visual system is the last to develop, as in vertebrates, and is functional before hatching. Indeed, embryonic exposure to prey, shelters or complex background alters postembryonic behavior. Visual acuity and lateralization, and polarization sensitivity improve throughout the first months after hatching. The production of body patterning in juveniles is not the simple stimulus-response process commonly presented in the literature. Rather, it likely requires the complex integration of visual information, and is subject to inter-individual differences. Though the focus of this review is vision in cuttlefish, it is important to note that other senses, particularly sensitivity to vibration and to waterborne chemical signals, also play a role in behavior. Considering the multimodal sensory dimensions of natural stimuli and their integration and processing by individuals offer new exciting avenues of future inquiry.

  12. Unveiling the mystery of visual information processing in human brain.

    Science.gov (United States)

    Diamant, Emanuel

    2008-08-15

    It is generally accepted that human vision is an extremely powerful information processing system that facilitates our interaction with the surrounding world. However, despite extended and extensive research efforts, which encompass many exploration fields, the underlying fundamentals and operational principles of visual information processing in human brain remain unknown. We still are unable to figure out where and how along the path from eyes to the cortex the sensory input perceived by the retina is converted into a meaningful object representation, which can be consciously manipulated by the brain. Studying the vast literature considering the various aspects of brain information processing, I was surprised to learn that the respected scholarly discussion is totally indifferent to the basic keynote question: "What is information?" in general or "What is visual information?" in particular. In the old days, it was assumed that any scientific research approach has first to define its basic departure points. Why was it overlooked in brain information processing research remains a conundrum. In this paper, I am trying to find a remedy for this bizarre situation. I propose an uncommon definition of "information", which can be derived from Kolmogorov's Complexity Theory and Chaitin's notion of Algorithmic Information. Embracing this new definition leads to an inevitable revision of traditional dogmas that shape the state of the art of brain information processing research. I hope this revision would better serve the challenging goal of human visual information processing modeling.

  13. Effects of body lean and visual information on the equilibrium maintenance during stance.

    Science.gov (United States)

    Duarte, Marcos; Zatsiorsky, Vladimir M

    2002-09-01

    Maintenance of equilibrium was tested in conditions when humans assume different leaning postures during upright standing. Subjects ( n=11) stood in 13 different body postures specified by visual center of pressure (COP) targets within their base of support (BOS). Different types of visual information were tested: continuous presentation of visual target, no vision after target presentation, and with simultaneous visual feedback of the COP. The following variables were used to describe the equilibrium maintenance: the mean of the COP position, the area of the ellipse covering the COP sway, and the resultant median frequency of the power spectral density of the COP displacement. The variability of the COP displacement, quantified by the COP area variable, increased when subjects occupied leaning postures, irrespective of the kind of visual information provided. This variability also increased when vision was removed in relation to when vision was present. Without vision, drifts in the COP data were observed which were larger for COP targets farther away from the neutral position. When COP feedback was given in addition to the visual target, the postural control system did not control stance better than in the condition with only visual information. These results indicate that the visual information is used by the postural control system at both short and long time scales.

  14. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory.

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a "sensory recruitment" model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  15. Multi-voxel decoding and the topography of maintained information during visual working memory

    Directory of Open Access Journals (Sweden)

    Sue-Hyun eLee

    2016-02-01

    Full Text Available The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis that demonstrate decoding of the maintained content in visual cortex, providing support for a ‘sensory recruitment’ model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance.

  16. Multi-Voxel Decoding and the Topography of Maintained Information During Visual Working Memory

    Science.gov (United States)

    Lee, Sue-Hyun; Baker, Chris I.

    2016-01-01

    The ability to maintain representations in the absence of external sensory stimulation, such as in working memory, is critical for guiding human behavior. Human functional brain imaging studies suggest that visual working memory can recruit a network of brain regions from visual to parietal to prefrontal cortex. In this review, we focus on the maintenance of representations during visual working memory and discuss factors determining the topography of those representations. In particular, we review recent studies employing multi-voxel pattern analysis (MVPA) that demonstrate decoding of the maintained content in visual cortex, providing support for a “sensory recruitment” model of visual working memory. However, there is some evidence that maintained content can also be decoded in areas outside of visual cortex, including parietal and frontal cortex. We suggest that the ability to maintain representations during working memory is a general property of cortex, not restricted to specific areas, and argue that it is important to consider the nature of the information that must be maintained. Such information-content is critically determined by the task and the recruitment of specific regions during visual working memory will be both task- and stimulus-dependent. Thus, the common finding of maintained information in visual, but not parietal or prefrontal, cortex may be more of a reflection of the need to maintain specific types of visual information and not of a privileged role of visual cortex in maintenance. PMID:26912997

  17. Experiences of Individuals With Visual Impairments in Integrated Physical Education: A Retrospective Study.

    Science.gov (United States)

    Haegele, Justin A; Zhu, Xihe

    2017-12-01

    The purpose of this retrospective study was to examine the experiences of adults with visual impairments during school-based integrated physical education (PE). An interpretative phenomenological analysis (IPA) research approach was used and 16 adults (ages 21-48 years; 10 women, 6 men) with visual impairments acted as participants for this study. The primary sources of data were semistructured audiotaped telephone interviews and reflective field notes, which were recorded during and immediately following each interview. Thematic development was undertaken utilizing a 3-step analytical process guided by IPA. Based on the data analysis, 3 interrelated themes emerged from the participant transcripts: (a) feelings about "being put to the side," frustration and inadequacy; (b) "She is blind, she can't do it," debilitating feelings from physical educators' attitudes; and (c) "not self-esteem raising," feelings about peer interactions. The 1st theme described the participants' experiences and ascribed meaning to exclusionary practices. The 2nd theme described the participants' frustration over being treated differently by their PE teachers because of their visual impairments. Lastly, "not self-esteem raising," feelings about peer interactions demonstrated how participants felt about issues regarding challenging social situations with peers in PE. Utilizing an IPA approach, the researchers uncovered 3 interrelated themes that depicted central feelings, experiences, and reflections, which informed the meaning of the participants' PE experiences. The emerged themes provide unique insight into the embodied experiences of those with visual impairments in PE and fill a previous gap in the extant literature.

  18. Everyday Information Behaviour of the Visually Impaired in China

    Science.gov (United States)

    Wang, Sufang; Yu, Jieli

    2017-01-01

    Introduction: Visually impaired people in China are socially excluded in multiple ways, such as employment, social status and information access. The purpose of this study is to examine their information needs and information seeking behaviour. Method: Two ways of data collection were employed: a telephone survey with a questionnaire in the first…

  19. NMDA receptor antagonist ketamine impairs feature integration in visual perception

    NARCIS (Netherlands)

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground

  20. Auditory-visual integration of emotional signals in a virtual environment for cynophobia.

    Science.gov (United States)

    Taffou, Marine; Chapoulie, Emmanuelle; David, Adrien; Guerchouche, Rachid; Drettakis, George; Viaud-Delmon, Isabelle

    2012-01-01

    Cynophobia (dog phobia) has both visual and auditory relevant components. In order to investigate the efficacy of virtual reality (VR) exposure-based treatment for cynophobia, we studied the efficiency of auditory-visual environments in generating presence and emotion. We conducted an evaluation test with healthy participants sensitive to cynophobia in order to assess the capacity of auditory-visual virtual environments (VE) to generate fear reactions. Our application involves both high fidelity visual stimulation displayed in an immersive space and 3D sound. This specificity enables us to present and spatially manipulate fearful stimuli in the auditory modality, the visual modality and both. Our specific presentation of animated dog stimuli creates an environment that is highly arousing, suggesting that VR is a promising tool for cynophobia treatment and that manipulating auditory-visual integration might provide a way to modulate affect.

  1. Measuring the performance of visual to auditory information conversion.

    Directory of Open Access Journals (Sweden)

    Shern Shiou Tan

    Full Text Available BACKGROUND: Visual to auditory conversion systems have been in existence for several decades. Besides being among the front runners in providing visual capabilities to blind users, the auditory cues generated from image sonification systems are still easier to learn and adapt to compared to other similar techniques. Other advantages include low cost, easy customizability, and universality. However, every system developed so far has its own set of strengths and weaknesses. In order to improve these systems further, we propose an automated and quantitative method to measure the performance of such systems. With these quantitative measurements, it is possible to gauge the relative strengths and weaknesses of different systems and rank the systems accordingly. METHODOLOGY: Performance is measured by both the interpretability and also the information preservation of visual to auditory conversions. Interpretability is measured by computing the correlation of inter image distance (IID and inter sound distance (ISD whereas the information preservation is computed by applying Information Theory to measure the entropy of both visual and corresponding auditory signals. These measurements provide a basis and some insights on how the systems work. CONCLUSIONS: With an automated interpretability measure as a standard, more image sonification systems can be developed, compared, and then improved. Even though the measure does not test systems as thoroughly as carefully designed psychological experiments, a quantitative measurement like the one proposed here can compare systems to a certain degree without incurring much cost. Underlying this research is the hope that a major breakthrough in image sonification systems will allow blind users to cost effectively regain enough visual functions to allow them to lead secure and productive lives.

  2. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity

    OpenAIRE

    Bavik, Claes; Henry, Susan Hayes; Zhang, Yan; Mitts, Kyoko; McGinn, Tim; Budzynski, Ewa; Pashko, Andriy; Lieu, Kuo Lee; Zhong, Sheng; Blumberg, Bruce; Kuksa, Vladimir; Orme, Mark; Scott, Ian; Fawzi, Ahmad; Kubota, Ryo

    2015-01-01

    © 2015 Bavik et al. Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this ...

  3. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    Science.gov (United States)

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-08-01

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  4. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity

    Directory of Open Access Journals (Sweden)

    Mark eLaing

    2015-10-01

    Full Text Available The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we use amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only or auditory-visual (AV trials in the scanner. On AV trials, the auditory and visual signal could have the same (AV congruent or different modulation rates (AV incongruent. Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for auditory-visual integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  5. Visual information transfer across eye movements in the monkey

    NARCIS (Netherlands)

    Khayat, Paul S.; Spekreijse, Henk; Roelfsema, Pieter R.

    2004-01-01

    During normal viewing, the eyes move from one location to another in order to sample the visual environment. Information acquired before the eye movement facilitates post-saccadic processing. This "preview effect" indicates that some information is maintained in transsaccadic memory and combined

  6. Brain activity related to integrative processes in visual object recognition

    DEFF Research Database (Denmark)

    Gerlach, Christian; Aaside, C T; Humphreys, G W

    2002-01-01

    We report evidence from a PET activation study that the inferior occipital gyri (likely to include area V2) and the posterior parts of the fusiform and inferior temporal gyri are involved in the integration of visual elements into perceptual wholes (single objects). Of these areas, the fusiform a......) that perceptual and memorial processes can be dissociated on both functional and anatomical grounds. No evidence was obtained for the involvement of the parietal lobes in the integration of single objects....

  7. Altered visual information processing systems in bipolar disorder: evidence from visual MMN and P3

    Directory of Open Access Journals (Sweden)

    Toshihiko eMaekawa

    2013-07-01

    Full Text Available Objective: Mismatch negativity (MMN and P3 are unique ERP components that provide objective indices of human cognitive functions such as short-term memory and prediction. Bipolar disorder (BD is an endogenous psychiatric disorder characterized by extreme shifts in mood, energy, and ability to function socially. BD patients usually show cognitive dysfunction, and the goal of this study was to access their altered visual information processing via visual MMN (vMMN and P3 using windmill pattern stimuli.Methods: Twenty patients with BD and 20 healthy controls matched for age, gender, and handedness participated in this study. Subjects were seated in front of a monitor and listened to a story via earphones. Two types of windmill patterns (standard and deviant and white circle (target stimuli were randomly presented on the monitor. All stimuli were presented in random order at 200-ms durations with an 800-ms inter-stimulus interval. Stimuli were presented at 80% (standard, 10% (deviant, and 10% (target probabilities. The participants were instructed to attend to the story and press a button as soon as possible when the target stimuli were presented. Event-related potentials were recorded throughout the experiment using 128-channel EEG equipment. vMMN was obtained by subtracting standard from deviant stimuli responses, and P3 was evoked from the target stimulus.Results: Mean reaction times for target stimuli in the BD group were significantly higher than those in the control group. Additionally, mean vMMN-amplitudes and peak P3-amplitudes were significantly lower in the BD group than in controls.Conclusions: Abnormal vMMN and P3 in patients indicate a deficit of visual information processing in bipolar disorder, which is consistent with their increased reaction time to visual target stimuli.Significance: Both bottom-up and top-down visual information processing are likely altered in BD.

  8. The Effect of a Computerized Visual Perception and Visual-Motor Integration Training Program on Improving Chinese Handwriting of Children with Handwriting Difficulties

    Science.gov (United States)

    Poon, K. W.; Li-Tsang, C. W .P.; Weiss, T. P. L.; Rosenblum, S.

    2010-01-01

    This study aimed to investigate the effect of a computerized visual perception and visual-motor integration training program to enhance Chinese handwriting performance among children with learning difficulties, particularly those with handwriting problems. Participants were 26 primary-one children who were assessed by educational psychologists and…

  9. Effects of a Memory and Visual-Motor Integration Program for Older Adults Based on Self-Efficacy Theory.

    Science.gov (United States)

    Kim, Eun Hwi; Suh, Soon Rim

    2017-06-01

    This study was conducted to verify the effects of a memory and visual-motor integration program for older adults based on self-efficacy theory. A non-equivalent control group pretest-posttest design was implemented in this quasi-experimental study. The participants were 62 older adults from senior centers and older adult welfare facilities in D and G city (Experimental group=30, Control group=32). The experimental group took part in a 12-session memory and visual-motor integration program over 6 weeks. Data regarding memory self-efficacy, memory, visual-motor integration, and depression were collected from July to October of 2014 and analyzed with independent t-test and Mann-Whitney U test using PASW Statistics (SPSS) 18.0 to determine the effects of the interventions. Memory self-efficacy (t=2.20, p=.031), memory (Z=-2.92, p=.004), and visual-motor integration (Z=-2.49, p=.013) increased significantly in the experimental group as compared to the control group. However, depression (Z=-0.90, p=.367) did not decrease significantly. This program is effective for increasing memory, visual-motor integration, and memory self-efficacy in older adults. Therefore, it can be used to improve cognition and prevent dementia in older adults. © 2017 Korean Society of Nursing Science

  10. Information matching the content of visual working memory is prioritized for conscious access.

    Science.gov (United States)

    Gayet, Surya; Paffen, Chris L E; Van der Stigchel, Stefan

    2013-12-01

    Visual working memory (VWM) is used to retain relevant information for imminent goal-directed behavior. In the experiments reported here, we found that VWM helps to prioritize relevant information that is not yet available for conscious experience. In five experiments, we demonstrated that information matching VWM content reaches visual awareness faster than does information not matching VWM content. Our findings suggest a functional link between VWM and visual awareness: The content of VWM is recruited to funnel down the vast amount of sensory input to that which is relevant for subsequent behavior and therefore requires conscious access.

  11. Asymmetric temporal integration of layer 4 and layer 2/3 inputs in visual cortex.

    Science.gov (United States)

    Hang, Giao B; Dan, Yang

    2011-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices. We found that the integration is sublinear and temporally asymmetric, with larger responses if layer 2/3 input preceded layer 4 input. The sublinearity depended on inhibition, and the asymmetry was largely attributable to the difference between the two inhibitory inputs. Interestingly, the asymmetric integration was specific to pyramidal neurons, and it strongly affected their spiking output. Thus via cortical inhibition, the temporal order of activation of layer 2/3 and layer 4 pathways can exert powerful control of cortical output during visual processing.

  12. Object integration requires attention: visual search for Kanizsa figures in parietal extinction

    OpenAIRE

    Gögler, N.; Finke, K.; Keller, I.; Muller, Hermann J.; Conci, M.

    2016-01-01

    The contribution of selective attention to object integration is a topic of debate: integration of parts into coherent wholes, such as in Kanizsa figures, is thought to arise either from pre-attentive, automatic coding processes or from higher-order processes involving selective attention. Previous studies have attempted to examine the role of selective attention in object integration either by employing visual search paradigms or by studying patients with unilateral deficits in selective att...

  13. Local and global limits on visual processing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Marc S Tibber

    Full Text Available Schizophrenia has been linked to impaired performance on a range of visual processing tasks (e.g. detection of coherent motion and contour detection. It has been proposed that this is due to a general inability to integrate visual information at a global level. To test this theory, we assessed the performance of people with schizophrenia on a battery of tasks designed to probe voluntary averaging in different visual domains. Twenty-three outpatients with schizophrenia (mean age: 40±8 years; 3 female and 20 age-matched control participants (mean age 39±9 years; 3 female performed a motion coherence task and three equivalent noise (averaging tasks, the latter allowing independent quantification of local and global limits on visual processing of motion, orientation and size. All performance measures were indistinguishable between the two groups (ps>0.05, one-way ANCOVAs, with one exception: participants with schizophrenia pooled fewer estimates of local orientation than controls when estimating average orientation (p = 0.01, one-way ANCOVA. These data do not support the notion of a generalised visual integration deficit in schizophrenia. Instead, they suggest that distinct visual dimensions are differentially affected in schizophrenia, with a specific impairment in the integration of visual orientation information.

  14. Information Visualization Techniques for Effective Cross-Discipline Communication

    Science.gov (United States)

    Fisher, Ward

    2013-04-01

    Collaboration between research groups in different fields is a common occurrence, but it can often be frustrating due to the absence of a common vocabulary. This lack of a shared context can make expressing important concepts and discussing results difficult. This problem may be further exacerbated when communicating to an audience of laypeople. Without a clear frame of reference, simple concepts are often rendered difficult-to-understand at best, and unintelligible at worst. An easy way to alleviate this confusion is with the use of clear, well-designed visualizations to illustrate an idea, process or conclusion. There exist a number of well-described machine-learning and statistical techniques which can be used to illuminate the information present within complex high-dimensional datasets. Once the information has been separated from the data, clear communication becomes a matter of selecting an appropriate visualization. Ideally, the visualization is information-rich but data-scarce. Anything from a simple bar chart, to a line chart with confidence intervals, to an animated set of 3D point-clouds can be used to render a complex idea as an easily understood image. Several case studies will be presented in this work. In the first study, we will examine how a complex statistical analysis was applied to a high-dimensional dataset, and how the results were succinctly communicated to an audience of microbiologists and chemical engineers. Next, we will examine a technique used to illustrate the concept of the singular value decomposition, as used in the field of computer vision, to a lay audience of undergraduate students from mixed majors. We will then examine a case where a simple animated line plot was used to communicate an approach to signal decomposition, and will finish with a discussion of the tools available to create these visualizations.

  15. What is the optimal architecture for visual information routing?

    Science.gov (United States)

    Wolfrum, Philipp; von der Malsburg, Christoph

    2007-12-01

    Analyzing the design of networks for visual information routing is an underconstrained problem due to insufficient anatomical and physiological data. We propose here optimality criteria for the design of routing networks. For a very general architecture, we derive the number of routing layers and the fanout that minimize the required neural circuitry. The optimal fanout l is independent of network size, while the number k of layers scales logarithmically (with a prefactor below 1), with the number n of visual resolution units to be routed independently. The results are found to agree with data of the primate visual system.

  16. INTEGRATION ASPECTS OF THE LANGUAGE OF THE MAP IN THE VISUALIZATION OF INFORMATION IN THE INTERNET ERA

    Directory of Open Access Journals (Sweden)

    A. K. Suvorov

    2014-01-01

    Full Text Available Development of new principles of the language maps associated with the use of the Internet, computers and mobile devices. It is shown that the mapping in the modern society with the use of the Internet is based on ready-made visual images of reality, realization of creative opportunities of people by manipulating these images, posting on the Internet of personal information, implementation of project, mapping and other works on the remote services using Web connection. Describes the developed by the author hermeneutic principles of mapping.

  17. Integrating Data Clustering and Visualization for the Analysis of 3D Gene Expression Data

    Energy Technology Data Exchange (ETDEWEB)

    Data Analysis and Visualization (IDAV) and the Department of Computer Science, University of California, Davis, One Shields Avenue, Davis CA 95616, USA,; nternational Research Training Group ``Visualization of Large and Unstructured Data Sets,' ' University of Kaiserslautern, Germany; Computational Research Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA; Genomics Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA; Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley CA 94720, USA,; Computer Science Division,University of California, Berkeley, CA, USA,; Computer Science Department, University of California, Irvine, CA, USA,; All authors are with the Berkeley Drosophila Transcription Network Project, Lawrence Berkeley National Laboratory,; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Biggin, Mark D.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; Keranen, Soile V. E.; Eisen, Michael B.; Knowles, David W.; Malik, Jitendra; Hagen, Hans; Hamann, Bernd

    2008-05-12

    The recent development of methods for extracting precise measurements of spatial gene expression patterns from three-dimensional (3D) image data opens the way for new analyses of the complex gene regulatory networks controlling animal development. We present an integrated visualization and analysis framework that supports user-guided data clustering to aid exploration of these new complex datasets. The interplay of data visualization and clustering-based data classification leads to improved visualization and enables a more detailed analysis than previously possible. We discuss (i) integration of data clustering and visualization into one framework; (ii) application of data clustering to 3D gene expression data; (iii) evaluation of the number of clusters k in the context of 3D gene expression clustering; and (iv) improvement of overall analysis quality via dedicated post-processing of clustering results based on visualization. We discuss the use of this framework to objectively define spatial pattern boundaries and temporal profiles of genes and to analyze how mRNA patterns are controlled by their regulatory transcription factors.

  18. Information theoretic analysis of edge detection in visual communication

    Science.gov (United States)

    Jiang, Bo; Rahman, Zia-ur

    2010-08-01

    Generally, the designs of digital image processing algorithms and image gathering devices remain separate. Consequently, the performance of digital image processing algorithms is evaluated without taking into account the artifacts introduced into the process by the image gathering process. However, experiments show that the image gathering process profoundly impacts the performance of digital image processing and the quality of the resulting images. Huck et al. proposed one definitive theoretic analysis of visual communication channels, where the different parts, such as image gathering, processing, and display, are assessed in an integrated manner using Shannon's information theory. In this paper, we perform an end-to-end information theory based system analysis to assess edge detection methods. We evaluate the performance of the different algorithms as a function of the characteristics of the scene, and the parameters, such as sampling, additive noise etc., that define the image gathering system. The edge detection algorithm is regarded to have high performance only if the information rate from the scene to the edge approaches the maximum possible. This goal can be achieved only by jointly optimizing all processes. People generally use subjective judgment to compare different edge detection methods. There is not a common tool that can be used to evaluate the performance of the different algorithms, and to give people a guide for selecting the best algorithm for a given system or scene. Our information-theoretic assessment becomes this new tool to which allows us to compare the different edge detection operators in a common environment.

  19. Improving Multisensor Positioning of Land Vehicles with Integrated Visual Odometry for Next-Generation Self-Driving Cars

    Directory of Open Access Journals (Sweden)

    Muhammed Tahsin Rahman

    2018-01-01

    Full Text Available For their complete realization, autonomous vehicles (AVs fundamentally rely on the Global Navigation Satellite System (GNSS to provide positioning and navigation information. However, in area such as urban cores, parking lots, and under dense foliage, which are all commonly frequented by AVs, GNSS signals suffer from blockage, interference, and multipath. These effects cause high levels of errors and long durations of service discontinuity that mar the performance of current systems. The prevalence of vision and low-cost inertial sensors provides an attractive opportunity to further increase the positioning and navigation accuracy in such GNSS-challenged environments. This paper presents enhancements to existing multisensor integration systems utilizing the inertial navigation system (INS to aid in Visual Odometry (VO outlier feature rejection. A scheme called Aided Visual Odometry (AVO is developed and integrated with a high performance mechanization architecture utilizing vehicle motion and orientation sensors. The resulting solution exhibits improved state covariance convergence and navigation accuracy, while reducing computational complexity. Experimental verification of the proposed solution is illustrated through three real road trajectories, over two different land vehicles, and using two low-cost inertial measurement units (IMUs.

  20. Visual sensory networks and effective information transfer in animal groups.

    Science.gov (United States)

    Strandburg-Peshkin, Ariana; Twomey, Colin R; Bode, Nikolai W F; Kao, Albert B; Katz, Yael; Ioannou, Christos C; Rosenthal, Sara B; Torney, Colin J; Wu, Hai Shan; Levin, Simon A; Couzin, Iain D

    2013-09-09

    Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative spatial positions: each individual is considered to interact with all neighbors within a fixed distance (metric range), a fixed number of nearest neighbors (topological range), a 'shell' of near neighbors (Voronoi range), or some combination (Figure 1A). However, conclusive evidence to support these assumptions is lacking. Here, we employ a novel approach that considers individual movement decisions to be based explicitly on the sensory information available to the organism. In other words, we consider that while spatial relations do inform interactions between individuals, they do so indirectly, through individuals' detection of sensory cues. We reconstruct computationally the visual field of each individual throughout experiments designed to investigate information propagation within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual sensing allows us to more accurately predict the propagation of behavioral change in these groups during leadership events. Furthermore, we find that structural properties of visual interaction networks differ markedly from those of metric and topological counterparts, suggesting that previous assumptions may not appropriately reflect information flow in animal groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A medical application integrating remote 3D visualization tools to access picture archiving and communication system on mobile devices.

    Science.gov (United States)

    He, Longjun; Ming, Xing; Liu, Qian

    2014-04-01

    With computing capability and display size growing, the mobile device has been used as a tool to help clinicians view patient information and medical images anywhere and anytime. However, for direct interactive 3D visualization, which plays an important role in radiological diagnosis, the mobile device cannot provide a satisfactory quality of experience for radiologists. This paper developed a medical system that can get medical images from the picture archiving and communication system on the mobile device over the wireless network. In the proposed application, the mobile device got patient information and medical images through a proxy server connecting to the PACS server. Meanwhile, the proxy server integrated a range of 3D visualization techniques, including maximum intensity projection, multi-planar reconstruction and direct volume rendering, to providing shape, brightness, depth and location information generated from the original sectional images for radiologists. Furthermore, an algorithm that changes remote render parameters automatically to adapt to the network status was employed to improve the quality of experience. Finally, performance issues regarding the remote 3D visualization of the medical images over the wireless network of the proposed application were also discussed. The results demonstrated that this proposed medical application could provide a smooth interactive experience in the WLAN and 3G networks.

  2. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment

    Directory of Open Access Journals (Sweden)

    Katja eFiehler

    2014-08-01

    Full Text Available When interacting with our environment we generally make use of egocentric and allocentric object information by coding object positions relative to the observer or relative to the environment, respectively. Bayesian theories suggest that the brain integrates both sources of information optimally for perception and action. However, experimental evidence for egocentric and allocentric integration is sparse and has only been studied using abstract stimuli lacking ecological relevance. Here, we investigated the use of egocentric and allocentric information during memory-guided reaching to images of naturalistic scenes. Participants encoded a breakfast scene containing six objects on a table (local objects and three objects in the environment (global objects. After a 2s delay, a visual test scene reappeared for 1s in which one local object was missing (=target and of the remaining, one, three or five local objects or one of the global objects were shifted to the left or to the right. The offset of the test scene prompted participants to reach to the target as precisely as possible. Only local objects served as potential reach targets and thus were task-relevant. When shifting objects we predicted accurate reaching if participants only used egocentric coding of object position and systematic shifts of reach endpoints if allocentric information were used for movement planning. We found that reaching movements were largely affected by allocentric shifts showing an increase in endpoint errors in the direction of object shifts with the number of local objects shifted. No effect occurred when one local or one global object was shifted. Our findings suggest that allocentric cues are indeed used by the brain for memory-guided reaching towards targets in naturalistic visual scenes. Moreover, the integration of egocentric and allocentric object information seems to depend on the extent of changes in the scene.

  3. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 4 : use of knowledge integrated visual analytics system in supporting bridge management.

    Science.gov (United States)

    2009-12-01

    The goals of integration should be: Supporting domain oriented data analysis through the use of : knowledge augmented visual analytics system. In this project, we focus on: : Providing interactive data exploration for bridge managements. : ...

  4. Integrated Compliance Information System (ICIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The purpose of ICIS is to meet evolving Enforcement and Compliance business needs for EPA and State users by integrating information into a single integrated data...

  5. Spatial integration and cortical dynamics.

    OpenAIRE

    Gilbert, C D; Das, A; Ito, M; Kapadia, M; Westheimer, G

    1996-01-01

    Cells in adult primary visual cortex are capable of integrating information over much larger portions of the visual field than was originally thought. Moreover, their receptive field properties can be altered by the context within which local features are presented and by changes in visual experience. The substrate for both spatial integration and cortical plasticity is likely to be found in a plexus of long-range horizontal connections, formed by cortical pyramidal cells, which link cells wi...

  6. Amplitude-modulated stimuli reveal auditory-visual interactions in brain activity and brain connectivity.

    Science.gov (United States)

    Laing, Mark; Rees, Adrian; Vuong, Quoc C

    2015-01-01

    The temporal congruence between auditory and visual signals coming from the same source can be a powerful means by which the brain integrates information from different senses. To investigate how the brain uses temporal information to integrate auditory and visual information from continuous yet unfamiliar stimuli, we used amplitude-modulated tones and size-modulated shapes with which we could manipulate the temporal congruence between the sensory signals. These signals were independently modulated at a slow or a fast rate. Participants were presented with auditory-only, visual-only, or auditory-visual (AV) trials in the fMRI scanner. On AV trials, the auditory and visual signal could have the same (AV congruent) or different modulation rates (AV incongruent). Using psychophysiological interaction analyses, we found that auditory regions showed increased functional connectivity predominantly with frontal regions for AV incongruent relative to AV congruent stimuli. We further found that superior temporal regions, shown previously to integrate auditory and visual signals, showed increased connectivity with frontal and parietal regions for the same contrast. Our findings provide evidence that both activity in a network of brain regions and their connectivity are important for AV integration, and help to bridge the gap between transient and familiar AV stimuli used in previous studies.

  7. Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study.

    Science.gov (United States)

    Keshavarz, Behrang; Berti, Stefan

    2014-02-01

    Illusory self-motion (known as vection) describes the sensation of ego-motion in the absence of physical movement. Vection typically occurs in stationary observers being exposed to visual information that suggest self-motion (e.g. simulators, virtual reality). In the present study, we tested whether sensory integration of visual information triggers vection: participants (N=13) perceived patterns of moving altered black-and-white vertical stripes on a screen that was divided into a central and a surrounding peripheral visual field. In both fields the pattern was either moving or stationary, resulting in four combinations of central and peripheral motions: (1) central and peripheral stripes moved into the same direction, (2) central and peripheral stripes moved in opposite directions, or (3) either the central or (4) the peripheral stripes were stable while the other stripes were in motion. This stimulation induced vection: Results showed significantly higher vection ratings when the stationary center of the pattern was surrounded by a moving periphery. Event-related potentials mirrored this finding: The occipital N2 was largest with stationary central and moving peripheral stripes. Our findings suggest that sensory integration of peripheral and central visual information triggers the perception of vection. Furthermore, we found evidence that neural processes precede the subjective perception of vection strength prior to the actual onset of vection. We will discuss our findings with respect to the role of stimulus eccentricity, stimulus' depth, and neural correlates involved during the genesis of vection. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Visuo-perceptual capabilities predict sensitivity for coinciding auditory and visual transients in multi-element displays.

    Science.gov (United States)

    Meyerhoff, Hauke S; Gehrer, Nina A

    2017-01-01

    In order to obtain a coherent representation of the outside world, auditory and visual information are integrated during human information processing. There is remarkable variance among observers in the capability to integrate auditory and visual information. Here, we propose that visuo-perceptual capabilities predict detection performance for audiovisually coinciding transients in multi-element displays due to severe capacity limitations in audiovisual integration. In the reported experiment, we employed an individual differences approach in order to investigate this hypothesis. Therefore, we measured performance in a useful-field-of-view task that captures detection performance for briefly presented stimuli across a large perceptual field. Furthermore, we measured sensitivity for visual direction changes that coincide with tones within the same participants. Our results show that individual differences in visuo-perceptual capabilities predicted sensitivity for the presence of audiovisually synchronous events among competing visual stimuli. To ensure that this correlation does not stem from superordinate factors, we also tested performance in an unrelated working memory task. Performance in this task was independent of sensitivity for the presence of audiovisually synchronous events. Our findings strengthen the proposed link between visuo-perceptual capabilities and audiovisual integration. The results also suggest that basic visuo-perceptual capabilities provide the basis for the subsequent integration of auditory and visual information.

  9. POSSIBILITIES FOR INNOVATIVE SCIENTIFIC APPROACH: INFORMATION VISUALIZATION AND EXPERIMENT IN INTELLIGENCE RESEARCH

    Directory of Open Access Journals (Sweden)

    Dejan Ulcej

    2013-09-01

    Full Text Available In addition to universal social changes, the information revolution also brought a lot of innovation to the workings of intelligence services, which are traditionally the part of the national security system that is conducting data analyses and for which information is the primary product. If in the past the main problem and challenge has been the timely acquisition of data, today most agencies are faced with an entirely different problem - information overload. This problem is being tackled by technical as well as systemic measures that combine various types of intelligence work. However, there are still unanswered questions regarding the applicability of intelligence products for decision makers. Here we have to point out information visualization as the subject of an interdisciplinary scientific research that definitely shows a lot of potential in the context of the defense science as well. This article points out three key requirements that allow the application of information visualization to defense research: (1 the concept of the intelligence cycle can be used as a good basis for the information that is subject to visualization; (2 the quality of decision-making support information depends on proper visualization; (3 the first two requirements offer a stable theoretical and empirical basis for the introduction of innovative scientific methods in the field of defense science, such as experiments.

  10. Higher integrity of the motor and visual pathways in long-term video game players.

    Science.gov (United States)

    Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan

    2015-01-01

    Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.

  11. Visual Cycle Modulation as an Approach toward Preservation of Retinal Integrity.

    Directory of Open Access Journals (Sweden)

    Claes Bavik

    Full Text Available Increased exposure to blue or visible light, fluctuations in oxygen tension, and the excessive accumulation of toxic retinoid byproducts places a tremendous amount of stress on the retina. Reduction of visual chromophore biosynthesis may be an effective method to reduce the impact of these stressors and preserve retinal integrity. A class of non-retinoid, small molecule compounds that target key proteins of the visual cycle have been developed. The first candidate in this class of compounds, referred to as visual cycle modulators, is emixustat hydrochloride (emixustat. Here, we describe the effects of emixustat, an inhibitor of the visual cycle isomerase (RPE65, on visual cycle function and preservation of retinal integrity in animal models. Emixustat potently inhibited isomerase activity in vitro (IC50 = 4.4 nM and was found to reduce the production of visual chromophore (11-cis retinal in wild-type mice following a single oral dose (ED50 = 0.18 mg/kg. Measure of drug effect on the retina by electroretinography revealed a dose-dependent slowing of rod photoreceptor recovery (ED50 = 0.21 mg/kg that was consistent with the pattern of visual chromophore reduction. In albino mice, emixustat was shown to be effective in preventing photoreceptor cell death caused by intense light exposure. Pre-treatment with a single dose of emixustat (0.3 mg/kg provided a ~50% protective effect against light-induced photoreceptor cell loss, while higher doses (1-3 mg/kg were nearly 100% effective. In Abca4-/- mice, an animal model of excessive lipofuscin and retinoid toxin (A2E accumulation, chronic (3 month emixustat treatment markedly reduced lipofuscin autofluorescence and reduced A2E levels by ~60% (ED50 = 0.47 mg/kg. Finally, in the retinopathy of prematurity rodent model, treatment with emixustat during the period of ischemia and reperfusion injury produced a ~30% reduction in retinal neovascularization (ED50 = 0.46mg/kg. These data demonstrate the ability of

  12. Comparison of Syllabi and Inclusion of Recommendations for Interdisciplinary Integration of Visual Arts Contents

    Directory of Open Access Journals (Sweden)

    Eda Birsa

    2017-09-01

    Full Text Available We applied qualitative analysis to the syllabi of all subjects from the 1st up to the 5th grade of basic school in Slovenia in order to find out in what ways they contain recommendations for interdisciplinary integration. We classified them into three categories: references to subjects, implicit references, and explicit references. The classification into these categories has shown that certain concepts foreseen for integration with visual arts education in individual subjects for a certain grade or for a particular educational cycle cannot be found in the visual arts syllabus.

  13. Real-Time Lane Detection on Suburban Streets Using Visual Cue Integration

    Directory of Open Access Journals (Sweden)

    Shehan Fernando

    2014-04-01

    Full Text Available The detection of lane boundaries on suburban streets using images obtained from video constitutes a challenging task. This is mainly due to the difficulties associated with estimating the complex geometric structure of lane boundaries, the quality of lane markings as a result of wear, occlusions by traffic, and shadows caused by road-side trees and structures. Most of the existing techniques for lane boundary detection employ a single visual cue and will only work under certain conditions and where there are clear lane markings. Also, better results are achieved when there are no other on-road objects present. This paper extends our previous work and discusses a novel lane boundary detection algorithm specifically addressing the abovementioned issues through the integration of two visual cues. The first visual cue is based on stripe-like features found on lane lines extracted using a two-dimensional symmetric Gabor filter. The second visual cue is based on a texture characteristic determined using the entropy measure of the predefined neighbourhood around a lane boundary line. The visual cues are then integrated using a rule-based classifier which incorporates a modified sequential covering algorithm to improve robustness. To separate lane boundary lines from other similar features, a road mask is generated using road chromaticity values estimated from CIE L*a*b* colour transformation. Extraneous points around lane boundary lines are then removed by an outlier removal procedure based on studentized residuals. The lane boundary lines are then modelled with Bezier spline curves. To validate the algorithm, extensive experimental evaluation was carried out on suburban streets and the results are presented.

  14. How the Nature of Information Affects Binding in Visual Working Memory

    OpenAIRE

    Walt, Nicola

    2007-01-01

    The question of whether binding information affects the capacity of visual working memory has not been established to date. Different trends in thought have hypothesized different effects for the way information is stored in this memory system. Using a change-detection paradigm this study tested the binding of colour with colour (Experiment 1) and colour with shape (Experiment 2) in visual working memory with the aim of replicating the previously found decrement in binding perf...

  15. Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans.

    Science.gov (United States)

    Putzar, Lisa; Gondan, Matthias; Röder, Brigitte

    2012-01-01

    People treated for bilateral congenital cataracts offer a model to study the influence of visual deprivation in early infancy on visual and multisensory development. We investigated cross-modal integration capabilities in cataract patients using a simple detection task that provided redundant information to two different senses. In both patients and controls, redundancy gains were consistent with coactivation models, indicating an integrated processing of modality-specific information. This finding is in contrast with recent studies showing impaired higher-level multisensory interactions in cataract patients. The present results suggest that basic cross-modal integrative processes for simple short stimuli do not depend on visual and/or crossmodal input since birth.

  16. Basic multisensory functions can be acquired after congenital visual pattern deprivation in humans

    DEFF Research Database (Denmark)

    Putzar, L.; Gondan, Matthias; Röder, B.

    2012-01-01

    People treated for bilateral congenital cataracts offer a model to study the influence of visual deprivation in early infancy on visual and multisensory development. We investigated cross-modal integration capabilities in cataract patients using a simple detection task that provided redundant...... information to two different senses. In both patients and controls, redundancy gains were consistent with coactivation models, indicating an integrated processing of modality-specific information. This finding is in contrast with recent studies showing impaired higher-level multisensory interactions...... in cataract patients. The present results suggest that basic cross-modal integrative processes for simple short stimuli do not depend on visual and/or crossmodal input since birth....

  17. Information Integration; The process of integration, evolution and versioning

    NARCIS (Netherlands)

    de Keijzer, Ander; van Keulen, Maurice

    2005-01-01

    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration

  18. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    Science.gov (United States)

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  19. Property Integration: Componentless Design Techniques and Visualization Tools

    DEFF Research Database (Denmark)

    El-Halwagi, Mahmoud M; Glasgow, I.M.; Eden, Mario Richard

    2004-01-01

    integration is defined as a functionality-based, holistic approach to the allocation and manipulation of streams and processing units, which is based on tracking, adjusting, assigning, and matching functionalities throughout the process. Revised lever arm rules are devised to allow optimal allocation while...... maintaining intra- and interstream conservation of the property-based clusters. The property integration problem is mapped into the cluster domain. This dual problem is solved in terms of clusters and then mapped to the primal problem in the property domain. Several new rules are derived for graphical...... techniques. Particularly, systematic rules and visualization techniques for the identification of optimal mixing of streams and their allocation to units. Furthermore, a derivation of the correspondence between clustering arms and fractional contribution of streams is presented. This correspondence...

  20. Integrated information theory of consciousness: an updated account.

    Science.gov (United States)

    Tononi, G

    2012-12-01

    This article presents an updated account of integrated information theory of consciousness (liT) and some of its implications. /IT stems from thought experiments that lead to phenomenological axioms (existence, compositionality, information, integration, exclusion) and corresponding ontological postulates. The information axiom asserts that every experience is spec~fic - it is what it is by differing in its particular way from a large repertoire of alternatives. The integration axiom asserts that each experience is unified- it cannot be reduced to independent components. The exclusion axiom asserts that every experience is definite - it is limited to particular things and not others and flows at a particular speed and resolution. /IT formalizes these intuitions with postulates. The information postulate states that only "differences that make a difference" from the intrinsic perpective of a system matter: a mechanism generates cause-effect information if its present state has selective past causes and selective future effects within a system. The integration postulate states that only information that is irreducible matters: mechanisms generate integrated information only to the extent that the information they generate cannot be partitioned into that generated within independent components. The exclusion postulate states that only maxima of integrated information matter: a mechanism specifies only one maximally irreducible set of past causes and future effects - a concept. A complex is a set of elements specifying a maximally irreducible constellation of concepts, where the maximum is evaluated over elements and at the optimal spatiatemporal scale. Its concepts specify a maximally integrated conceptual information structure or quale, which is identical with an experience. Finally, changes in information integration upon exposure to the environment reflect a system's ability to match the causal structure of the world. After introducing an updated definition of

  1. Regional Logistics Information Resources Integration Patterns and Countermeasures

    Science.gov (United States)

    Wu, Hui; Shangguan, Xu-ming

    Effective integration of regional logistics information resources can provide collaborative services in information flow, business flow and logistics for regional logistics enterprises, which also can reduce operating costs and improve market responsiveness. First, this paper analyzes the realistic significance on the integration of regional logistics information. Second, this paper brings forward three feasible patterns on the integration of regional logistics information resources, These three models have their own strengths and the scope of application and implementation, which model is selected will depend on the specific business and the regional distribution of enterprises. Last, this paper discusses the related countermeasures on the integration of regional logistics information resources, because the integration of regional logistics information is a systems engineering, when the integration is advancing, the countermeasures should pay close attention to the current needs and long-term development of regional enterprises.

  2. Generalized information fusion and visualization using spatial voting and data modeling

    Science.gov (United States)

    Jaenisch, Holger M.; Handley, James W.

    2013-05-01

    We present a novel and innovative information fusion and visualization framework for multi-source intelligence (multiINT) data using Spatial Voting (SV) and Data Modeling. We describe how different sources of information can be converted into numerical form for further processing downstream, followed by a short description of how this information can be fused using the SV grid. As an illustrative example, we show the modeling of cyberspace as cyber layers for the purpose of tracking cyber personas. Finally we describe a path ahead for creating interactive agile networks through defender customized Cyber-cubes for network configuration and attack visualization.

  3. Guidelines to Visualize Vessels in a Geographic Information System

    OpenAIRE

    Rodighiero, Dario

    2010-01-01

    In information systems the data representation covers a great importance. In fact the visualization of information is the last point of contact between the user and the information system. This is the space where the communication takes place. In real-time monitoring systems, this passage covers a great importance, especially for reasons related to the time and the transparency of relevant information. These factors are fundamental to vessel monitoring systems. This is the beginning where we ...

  4. Too much information: visual research ethics in the age of wearable cameras.

    Science.gov (United States)

    Mok, Tze Ming; Cornish, Flora; Tarr, Jen

    2015-06-01

    When everything you see is data, what ethical principles apply? This paper argues that first-person digital recording technologies challenge traditional institutional approaches to research ethics, but that this makes ethics governance more important, not less so. We review evolving ethical concerns across four fields: Visual ethics; ubiquitous computing; mobile health; and grey literature from applied or market research. Collectively, these bodies of literature identify new challenges to traditional notions of informed consent, anonymity, confidentiality, privacy, beneficence and maleficence. Challenges come from the ever-increasing power, breadth and multi-functional integration of recording technologies, and the ubiquity and normalization of their use by participants. Some authors argue that these evolving relationships mean that institutional ethics governance procedures are irrelevant or no longer apply. By contrast, we argue that the fundamental principles of research ethics frameworks have become even more important for the protection of research participants, and that institutional frameworks need to adapt to keep pace with the ever-increasing power of recording technologies and the consequent risks to privacy. We conclude with four recommendations for efforts to ensure that contemporary visual recording research is held appropriately accountable to ethical standards: (i) minimizing the detail, scope, integration and retention of captured data, and limiting its accessibility; (ii) formulating an approach to ethics that takes in both the 'common rule' approaches privileging anonymity and confidentiality together with principles of contextual judgement and consent as an ongoing process; (iii) developing stronger ethical regulation of research outside academia; (iv) engaging the public and research participants in the development of ethical guidelines.

  5. Information Technology and Transcription of Reading Materials for the Visually Impaired Persons in Nigeria

    Science.gov (United States)

    Nkiko, Christopher; Atinmo, Morayo I.; Michael-Onuoha, Happiness Chijioke; Ilogho, Julie E.; Fagbohun, Michael O.; Ifeakachuku, Osinulu; Adetomiwa, Basiru; Usman, Kazeem Omeiza

    2018-01-01

    Studies have shown inadequate reading materials for the visually impaired in Nigeria. Information technology has greatly advanced the provision of information to the visually impaired in other industrialized climes. This study investigated the extent of application of information technology to the transcription of reading materials for the…

  6. Impairments in part-whole representations of objects in two cases of integrative visual agnosia.

    Science.gov (United States)

    Behrmann, Marlene; Williams, Pepper

    2007-10-01

    How complex multipart visual objects are represented perceptually remains a subject of ongoing investigation. One source of evidence that has been used to shed light on this issue comes from the study of individuals who fail to integrate disparate parts of visual objects. This study reports a series of experiments that examine the ability of two such patients with this form of agnosia (integrative agnosia; IA), S.M. and C.R., to discriminate and categorize exemplars of a rich set of novel objects, "Fribbles", whose visual similarity (number of shared parts) and category membership (shared overall shape) can be manipulated. Both patients performed increasingly poorly as the number of parts required for differentiating one Fribble from another increased. Both patients were also impaired at determining when two Fribbles belonged in the same category, a process that relies on abstracting spatial relations between parts. C.R., the less impaired of the two, but not S.M., eventually learned to categorize the Fribbles but required substantially more training than normal perceivers. S.M.'s failure is not attributable to a problem in learning to use a label for identification nor is it obviously attributable to a visual memory deficit. Rather, the findings indicate that, although the patients may be able to represent a small number of parts independently, in order to represent multipart images, the parts need to be integrated or chunked into a coherent whole. It is this integrative process that is impaired in IA and appears to play a critical role in the normal object recognition of complex images.

  7. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Science.gov (United States)

    Meuwese, Julia D I; van Loon, Anouk M; Scholte, H Steven; Lirk, Philipp B; Vulink, Nienke C C; Hollmann, Markus W; Lamme, Victor A F

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  8. NMDA receptor antagonist ketamine impairs feature integration in visual perception.

    Directory of Open Access Journals (Sweden)

    Julia D I Meuwese

    Full Text Available Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA receptors in monkeys can abolish neural signals related to figure-ground segregation and feature integration. However, it is unknown whether this also affects perceptual integration itself. Therefore, we tested whether ketamine, a non-competitive NMDA receptor antagonist, reduces feature integration in humans. We administered a subanesthetic dose of ketamine to healthy subjects who performed a texture discrimination task in a placebo-controlled double blind within-subject design. We found that ketamine significantly impaired performance on the texture discrimination task compared to the placebo condition, while performance on a control fixation task was much less impaired. This effect is not merely due to task difficulty or a difference in sedation levels. We are the first to show a behavioral effect on feature integration by manipulating the NMDA receptor in humans.

  9. Documents for Visually Impaired Users in the Light of Library and Information Science

    Directory of Open Access Journals (Sweden)

    Jiří Tomáš Stodola

    2012-12-01

    Full Text Available The article aims to show that the classical document paradigm in information science has the greatest potential to grasp the issues related to the providing information to persons with visual disabilities and it aims to check whether the FRBR study is usable in this area. The article is divided into two parts. In the first part, the paradigmatic turns in information science are briefly presented and there is examined their impact on the issues connected with users with visual disabilities. The second part briefly describes the structure of the bibliographic universe and there is examined how it is possible to create a model of documents for users with visual impairment and of associated processes. The model of the bibliographic universe is applied to the situation of the really existing documents for visually impaired users. Methodologically, the article is based on the information system analysis. There is used an entity-relationship approach to a model of the bibliographic universe.

  10. Storage of features, conjunctions and objects in visual working memory.

    Science.gov (United States)

    Vogel, E K; Woodman, G F; Luck, S J

    2001-02-01

    Working memory can be divided into separate subsystems for verbal and visual information. Although the verbal system has been well characterized, the storage capacity of visual working memory has not yet been established for simple features or for conjunctions of features. The authors demonstrate that it is possible to retain information about only 3-4 colors or orientations in visual working memory at one time. Observers are also able to retain both the color and the orientation of 3-4 objects, indicating that visual working memory stores integrated objects rather than individual features. Indeed, objects defined by a conjunction of four features can be retained in working memory just as well as single-feature objects, allowing many individual features to be retained when distributed across a small number of objects. Thus, the capacity of visual working memory must be understood in terms of integrated objects rather than individual features.

  11. An Experimental Comparison of a Co-Design Visualizing Personal Drug Information and Patient Information Leaflets: Usability Aspects.

    Science.gov (United States)

    Khodambashi, Soudabeh; Haugland, Dagrun; Ellingsberg, Anette; Kottum, Hanne; Sund, Janne Kutschera; Nytrø, Øystein

    2017-01-01

    Providing patients with specific information about their own drugs can reduce unintentional misuse and improve compliance. Searching for information is time-consuming when information is not personalized and is written using medical vocabulary that is difficult for patients to understand. In this study we explored patient information needs regarding visualizing of drug information and interrelationships by conducting a total of four co-design workshops with patients, other users and pharmacists. We developed a prototype and drug ontology to support reasoning about drug interactions. We evaluated individual performance in finding information, understanding the drug interactions, and learning from the provided information in the prototype compared to using patient information leaflets (PILs). We concluded that interactive visualization of drug information helps individuals find information about drugs, their side effects and interactions more quickly and correctly compared to using PILs. Our study is limited to co-morbid patients with transient ischaemic attack with several chronic diseases.

  12. Does Visualization Matter? The Role of Interactive Data Visualization to Make Sense of Information

    Directory of Open Access Journals (Sweden)

    Arif Perdana

    2018-05-01

    Full Text Available As part of business analytics (BA technologies, reporting and visualization play essential roles in mitigating users’ limitations (i.e., being inexperienced, having limited knowledge, and relying on simplified information. Reporting and visualization can potentially enhance users’ sense-making, thus permitting them to focus more on the information’s message rather than numerical analysis. To better understand the role of reporting and visualization in a contextualized environment, we investigate using interactive data visualization (IDV within accounting. We aim to understand whether IDV can help enhance non-professional investors’ ability to make sense of foundational financial statement analyses. This study conducted an experiment using a sample of 324 nonprofessional investors. Our findings indicate that nonprofessional investors who use IDV are more heuristically adept than non-professional investors who use non-IDV. These findings enrich the theoretical understanding of business analytics’ use in accounting decision making. The results of this study also suggest several practical courses of action, such as promoting wider use of IDV and making affordable IDV more broadly available, particularly for non-professional investors.

  13. Visual-Haptic Integration: Cue Weights are Varied Appropriately, to Account for Changes in Haptic Reliability Introduced by Using a Tool

    Directory of Open Access Journals (Sweden)

    Chie Takahashi

    2011-10-01

    Full Text Available Tools such as pliers systematically change the relationship between an object's size and the hand opening required to grasp it. Previous work suggests the brain takes this into account, integrating visual and haptic size information that refers to the same object, independent of the similarity of the ‘raw’ visual and haptic signals (Takahashi et al., VSS 2009. Variations in tool geometry also affect the reliability (precision of haptic size estimates, however, because they alter the change in hand opening caused by a given change in object size. Here, we examine whether the brain appropriately adjusts the weights given to visual and haptic size signals when tool geometry changes. We first estimated each cue's reliability by measuring size-discrimination thresholds in vision-alone and haptics-alone conditions. We varied haptic reliability using tools with different object-size:hand-opening ratios (1:1, 0.7:1, and 1.4:1. We then measured the weights given to vision and haptics with each tool, using a cue-conflict paradigm. The weight given to haptics varied with tool type in a manner that was well predicted by the single-cue reliabilities (MLE model; Ernst and Banks, 2002. This suggests that the process of visual-haptic integration appropriately accounts for variations in haptic reliability introduced by different tool geometries.

  14. Attention affects visual perceptual processing near the hand.

    Science.gov (United States)

    Cosman, Joshua D; Vecera, Shaun P

    2010-09-01

    Specialized, bimodal neural systems integrate visual and tactile information in the space near the hand. Here, we show that visuo-tactile representations allow attention to influence early perceptual processing, namely, figure-ground assignment. Regions that were reached toward were more likely than other regions to be assigned as foreground figures, and hand position competed with image-based information to bias figure-ground assignment. Our findings suggest that hand position allows attention to influence visual perceptual processing and that visual processes typically viewed as unimodal can be influenced by bimodal visuo-tactile representations.

  15. Authoritarianism, cognitive rigidity, and the processing of ambiguous visual information.

    Science.gov (United States)

    Duncan, Lauren E; Peterson, Bill E

    2014-01-01

    Intolerance of ambiguity and cognitive rigidity are unifying aspects of authoritarianism as defined by Adorno, Frenkel-Brunswik, Levinson, and Sanford (1982/1950), who hypothesized that authoritarians view the world in absolute terms (e.g., good or evil). Past studies have documented the relationship between authoritarianism and intolerance of ambiguity and rigidity. Frenkel-Brunswik (1949) hypothesized that this desire for absolutism was rooted in perceptual processes. We present a study with three samples that directly tests the relationship between right wing authoritarianism (RWA) and the processing of ideologically neutral but ambiguous visual stimuli. As hypothesized, in all three samples we found that RWA was related to the slower processing of visual information that required participants to recategorize objects. In a fourth sample, RWA was unrelated to speed of processing visual information that did not require recategorization. Overall, results suggest a relationship between RWA and rigidity in categorization.

  16. Integrated Information Management (IIM)

    National Research Council Canada - National Science Library

    McIlvain, Jason

    2007-01-01

    Information Technology is the core capability required to align our resources and increase our effectiveness on the battlefield by integrating and coordinating our preventative measures and responses...

  17. What is beautiful is useful: visual appeal and expected information quality

    NARCIS (Netherlands)

    van der Geest, Thea; van Dongelen, Raymond

    2009-01-01

    Would users, when having a first glance on websites, expect that visually appealing websites contain better information than websites that are less appealing? And if they looked longer, would that change their judgment? We created two versions for 12 homepages of websites, one with low visual

  18. Developing Visualization Techniques for Semantics-based Information Networks

    Science.gov (United States)

    Keller, Richard M.; Hall, David R.

    2003-01-01

    Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.

  19. Design and Development of a Linked Open Data-Based Health Information Representation and Visualization System: Potentials and Preliminary Evaluation

    Science.gov (United States)

    Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur

    2014-01-01

    Background Healthcare organizations around the world are challenged by pressures to reduce cost, improve coordination and outcome, and provide more with less. This requires effective planning and evidence-based practice by generating important information from available data. Thus, flexible and user-friendly ways to represent, query, and visualize health data becomes increasingly important. International organizations such as the World Health Organization (WHO) regularly publish vital data on priority health topics that can be utilized for public health policy and health service development. However, the data in most portals is displayed in either Excel or PDF formats, which makes information discovery and reuse difficult. Linked Open Data (LOD)—a new Semantic Web set of best practice of standards to publish and link heterogeneous data—can be applied to the representation and management of public level health data to alleviate such challenges. However, the technologies behind building LOD systems and their effectiveness for health data are yet to be assessed. Objective The objective of this study is to evaluate whether Linked Data technologies are potential options for health information representation, visualization, and retrieval systems development and to identify the available tools and methodologies to build Linked Data-based health information systems. Methods We used the Resource Description Framework (RDF) for data representation, Fuseki triple store for data storage, and Sgvizler for information visualization. Additionally, we integrated SPARQL query interface for interacting with the data. We primarily use the WHO health observatory dataset to test the system. All the data were represented using RDF and interlinked with other related datasets on the Web of Data using Silk—a link discovery framework for Web of Data. A preliminary usability assessment was conducted following the System Usability Scale (SUS) method. Results We developed an LOD

  20. Design and development of a linked open data-based health information representation and visualization system: potentials and preliminary evaluation.

    Science.gov (United States)

    Tilahun, Binyam; Kauppinen, Tomi; Keßler, Carsten; Fritz, Fleur

    2014-10-25

    Healthcare organizations around the world are challenged by pressures to reduce cost, improve coordination and outcome, and provide more with less. This requires effective planning and evidence-based practice by generating important information from available data. Thus, flexible and user-friendly ways to represent, query, and visualize health data becomes increasingly important. International organizations such as the World Health Organization (WHO) regularly publish vital data on priority health topics that can be utilized for public health policy and health service development. However, the data in most portals is displayed in either Excel or PDF formats, which makes information discovery and reuse difficult. Linked Open Data (LOD)-a new Semantic Web set of best practice of standards to publish and link heterogeneous data-can be applied to the representation and management of public level health data to alleviate such challenges. However, the technologies behind building LOD systems and their effectiveness for health data are yet to be assessed. The objective of this study is to evaluate whether Linked Data technologies are potential options for health information representation, visualization, and retrieval systems development and to identify the available tools and methodologies to build Linked Data-based health information systems. We used the Resource Description Framework (RDF) for data representation, Fuseki triple store for data storage, and Sgvizler for information visualization. Additionally, we integrated SPARQL query interface for interacting with the data. We primarily use the WHO health observatory dataset to test the system. All the data were represented using RDF and interlinked with other related datasets on the Web of Data using Silk-a link discovery framework for Web of Data. A preliminary usability assessment was conducted following the System Usability Scale (SUS) method. We developed an LOD-based health information representation, querying

  1. Integrated Reporting Information System -

    Data.gov (United States)

    Department of Transportation — The Integrated Reporting Information System (IRIS) is a flexible and scalable web-based system that supports post operational analysis and evaluation of the National...

  2. Visualization of Safety Assessment Result Using GIS in SITES

    International Nuclear Information System (INIS)

    Yun, Bong-Yo; Park, Joo Wan; Park, Se-Moon; Kim, Chang-Lak

    2006-01-01

    Site Information and Total Environmental database management System (SITES) is an integrated program for overall data analysis, environmental monitoring, and safety analysis that are produced from the site investigation and environmental assessment of the relevant nuclear facility. SITES is composed of three main modules such as Site Environment Characterization database for Unified and Reliable Evaluation system (SECURE), Safety Assessment INTegration system (SAINT) and Site Useful Data Analysis and ALarm system (SUDAL). The visualization function of safety assessment and environmental monitoring results is designed. This paper is to introduce the visualization design method using Geographic Information System (GIS) for SITES

  3. Integration of Information Technologies in Enterprise Application Development

    Directory of Open Access Journals (Sweden)

    Iulia SURUGIU

    2012-05-01

    Full Text Available Healthcare enterprises are disconnected. In the era of integrated information systems and Internet explosion, the necessity of information systems integration reside from business process evolution, on the one hand, and from information technology tendencies, on the other hand. In order to become more efficient and adaptive to change, healthcare organizations are tremendously preoccupied of business process automation, flexibility and complexity. The need of information systems integration arise from these goals, explaining, at the same time, the special interest in EAI. Extensible software integration architectures and business orientation of process modeling and information systems functionalities, the same as open-connectivity, accessibility and virtualization lead to most suitable integration solutions: SOA and BPM architectural styles in a cloud computing environment.

  4. The OpenEarth Framework (OEF) for the 3D Visualization of Integrated Earth Science Data

    Science.gov (United States)

    Nadeau, David; Moreland, John; Baru, Chaitan; Crosby, Chris

    2010-05-01

    Data integration is increasingly important as we strive to combine data from disparate sources and assemble better models of the complex processes operating at the Earth's surface and within its interior. These data are often large, multi-dimensional, and subject to differing conventions for data structures, file formats, coordinate spaces, and units of measure. When visualized, these data require differing, and sometimes conflicting, conventions for visual representations, dimensionality, symbology, and interaction. All of this makes the visualization of integrated Earth science data particularly difficult. The OpenEarth Framework (OEF) is an open-source data integration and visualization suite of applications and libraries being developed by the GEON project at the University of California, San Diego, USA. Funded by the NSF, the project is leveraging virtual globe technology from NASA's WorldWind to create interactive 3D visualization tools that combine and layer data from a wide variety of sources to create a holistic view of features at, above, and beneath the Earth's surface. The OEF architecture is open, cross-platform, modular, and based upon Java. The OEF's modular approach to software architecture yields an array of mix-and-match software components for assembling custom applications. Available modules support file format handling, web service communications, data management, user interaction, and 3D visualization. File parsers handle a variety of formal and de facto standard file formats used in the field. Each one imports data into a general-purpose common data model supporting multidimensional regular and irregular grids, topography, feature geometry, and more. Data within these data models may be manipulated, combined, reprojected, and visualized. The OEF's visualization features support a variety of conventional and new visualization techniques for looking at topography, tomography, point clouds, imagery, maps, and feature geometry. 3D data such as

  5. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  6. Some technological aspects of an evaluation and visualisation component for the safeguards integrated information system

    International Nuclear Information System (INIS)

    Belenki, A.; Nishiwaki, Y.; Matsuoka, H.; Fedoseeva, I.

    2001-01-01

    According to Safeguards strengthening measures which include both Measures under Comprehensive Safeguards Agreements and Measures under Model Additional Protocol, the Agency receives much more information than some years before. It seems reasonable to develop an integrated information system (IIS) because information evaluation and review are important parts of Safeguards assessments. An integrated information system can include the following components: information search, primary messages selection, evaluation of received information, data storage, visualisation and evaluation of State's nuclear programme (SNP) and elaboration of management decisions. Hereby, IIS is a human-computer system where all components listed above are implemented. Within the framework of SNP a human factor plays an important role. SNP has a number of special properties such as uniqueness, multi-dimensions, subjectivity of its state evaluation, time variation, incompleteness of its description and the mentioned above human factor. For realistic simulation of SNP development it is necessary to reduce usage of quantitative methods and apply methods which are closer to perception of the outward things by a human being. This task requires to convert all available information, both qualitative and quantitative, into a special format. The format requires methods which are being developed on the basis of pragmatic, visual and Zadeh's linguistic variables which define corresponding scales. A pragmatic scale is defined on a basic metric scale taking into account a particular pragmatic cut of SNP. In other words pragmatic scale maps a pragmatic cut of the problem which is important from the point of view of IIS goal. By using pragmatic scales it is possible, for example, to estimate the speed of development of processes existing within the framework of SNP. The visual variable allows to solve the following engineering tasks: input of the expert's evaluations in the system and interpretations of its

  7. Integration of Information Technologies in Enterprise Application Development

    OpenAIRE

    Iulia SURUGIU

    2012-01-01

    Healthcare enterprises are disconnected. In the era of integrated information systems and Internet explosion, the necessity of information systems integration reside from business process evolution, on the one hand, and from information technology tendencies, on the other hand. In order to become more efficient and adaptive to change, healthcare organizations are tremendously preoccupied of business process automation, flexibility and complexity. The need of information systems integration ar...

  8. Effects of Audio-Visual Information on the Intelligibility of Alaryngeal Speech

    Science.gov (United States)

    Evitts, Paul M.; Portugal, Lindsay; Van Dine, Ami; Holler, Aline

    2010-01-01

    Background: There is minimal research on the contribution of visual information on speech intelligibility for individuals with a laryngectomy (IWL). Aims: The purpose of this project was to determine the effects of mode of presentation (audio-only, audio-visual) on alaryngeal speech intelligibility. Method: Twenty-three naive listeners were…

  9. The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.

    Science.gov (United States)

    Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal

    2016-01-01

    Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.

  10. Integration and Visualization of Epigenome and Mobilome Data in Crops

    OpenAIRE

    Robakowska Hyzorek, Dagmara; Mirouze, Marie; Larmande, Pierre

    2016-01-01

    International audience; In the coming years, the study of the interaction between the epigenome and the mobilome is likely to give insights on the role of TEs on genome stability and evolution. In the present project we have created tools to collect epigenetic datasets from different laboratories and databases and translate them to a standard format to be integrated, analyzed and finally visualized.

  11. Extracting Semantic Information from Visual Data: A Survey

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2016-03-01

    Full Text Available The traditional environment maps built by mobile robots include both metric ones and topological ones. These maps are navigation-oriented and not adequate for service robots to interact with or serve human users who normally rely on the conceptual knowledge or semantic contents of the environment. Therefore, the construction of semantic maps becomes necessary for building an effective human-robot interface for service robots. This paper reviews recent research and development in the field of visual-based semantic mapping. The main focus is placed on how to extract semantic information from visual data in terms of feature extraction, object/place recognition and semantic representation methods.

  12. Attention modulates trans-saccadic integration.

    Science.gov (United States)

    Stewart, Emma E M; Schütz, Alexander C

    2018-01-01

    With every saccade, humans must reconcile the low resolution peripheral information available before a saccade, with the high resolution foveal information acquired after the saccade. While research has shown that we are able to integrate peripheral and foveal vision in a near-optimal manner, it is still unclear which mechanisms may underpin this important perceptual process. One potential mechanism that may moderate this integration process is visual attention. Pre-saccadic attention is a well documented phenomenon, whereby visual attention shifts to the location of an upcoming saccade before the saccade is executed. While it plays an important role in other peri-saccadic processes such as predictive remapping, the role of attention in the integration process is as yet unknown. This study aimed to determine whether the presentation of an attentional distractor during a saccade impaired trans-saccadic integration, and to measure the time-course of this impairment. Results showed that presenting an attentional distractor impaired integration performance both before saccade onset, and during the saccade, in selected subjects who showed integration in the absence of a distractor. This suggests that visual attention may be a mechanism that facilitates trans-saccadic integration. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  13. Integration of bio-inspired, control-based visual and olfactory data for the detection of an elusive target

    Science.gov (United States)

    Duong, Tuan A.; Duong, Nghi; Le, Duong

    2017-01-01

    In this paper, we present an integration technique using a bio-inspired, control-based visual and olfactory receptor system to search for elusive targets in practical environments where the targets cannot be seen obviously by either sensory data. Bio-inspired Visual System is based on a modeling of extended visual pathway which consists of saccadic eye movements and visual pathway (vertebrate retina, lateral geniculate nucleus and visual cortex) to enable powerful target detections of noisy, partial, incomplete visual data. Olfactory receptor algorithm, namely spatial invariant independent component analysis, that was developed based on data of old factory receptor-electronic nose (enose) of Caltech, is adopted to enable the odorant target detection in an unknown environment. The integration of two systems is a vital approach and sets up a cornerstone for effective and low-cost of miniaturized UAVs or fly robots for future DOD and NASA missions, as well as for security systems in Internet of Things environments.

  14. Neural substrates of reliability-weighted visual-tactile multisensory integration

    Directory of Open Access Journals (Sweden)

    Michael S Beauchamp

    2010-06-01

    Full Text Available As sensory systems deteriorate in aging or disease, the brain must relearn the appropriate weights to assign each modality during multisensory integration. Using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI of human subjects, we tested a model for the neural mechanisms of sensory weighting, termed “weighted connections”. This model holds that the connection weights between early and late areas vary depending on the reliability of the modality, independent of the level of early sensory cortex activity. When subjects detected viewed and felt touches to the hand, a network of brain areas was active, including visual areas in lateral occipital cortex, somatosensory areas in inferior parietal lobe, and multisensory areas in the intraparietal sulcus (IPS. In agreement with the weighted connection model, the connection weight measured with structural equation modeling between somatosensory cortex and IPS increased for somatosensory-reliable stimuli, and the connection weight between visual cortex and IPS increased for visual-reliable stimuli. This double dissociation of connection strengths was similar to the pattern of behavioral responses during incongruent multisensory stimulation, suggesting that weighted connections may be a neural mechanism for behavioral reliability weighting.for behavioral reliability weighting.

  15. OOMM--Object-Oriented Matrix Modelling: an instrument for the integration of the Brasilia Regional Health Information System.

    Science.gov (United States)

    Cammarota, M; Huppes, V; Gaia, S; Degoulet, P

    1998-01-01

    The development of Health Information Systems is widely determined by the establishment of the underlying information models. An Object-Oriented Matrix Model (OOMM) is described which target is to facilitate the integration of the overall health system. The model is based on information modules named micro-databases that are structured in a three-dimensional network: planning, health structures and information systems. The modelling tool has been developed as a layer on top of a relational database system. A visual browser facilitates the development and maintenance of the information model. The modelling approach has been applied to the Brasilia University Hospital since 1991. The extension of the modelling approach to the Brasilia regional health system is considered.

  16. A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment

    Science.gov (United States)

    Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei

    2017-07-01

    This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.

  17. Interactions between visual working memory and visual attention

    NARCIS (Netherlands)

    Olivers, C.N.L.

    2008-01-01

    Visual attention is the collection of mechanisms by which relevant visual information is selected, and irrelevant visual information is ignored. Visual working memory is the mechanism by which relevant visual information is retained, and irrelevant information is suppressed. In addition to this

  18. Widespread correlation patterns of fMRI signal across visual cortex reflect eccentricity organization

    Science.gov (United States)

    Arcaro, Michael J; Honey, Christopher J; Mruczek, Ryan EB; Kastner, Sabine; Hasson, Uri

    2015-01-01

    The human visual system can be divided into over two-dozen distinct areas, each of which contains a topographic map of the visual field. A fundamental question in vision neuroscience is how the visual system integrates information from the environment across different areas. Using neuroimaging, we investigated the spatial pattern of correlated BOLD signal across eight visual areas on data collected during rest conditions and during naturalistic movie viewing. The correlation pattern between areas reflected the underlying receptive field organization with higher correlations between cortical sites containing overlapping representations of visual space. In addition, the correlation pattern reflected the underlying widespread eccentricity organization of visual cortex, in which the highest correlations were observed for cortical sites with iso-eccentricity representations including regions with non-overlapping representations of visual space. This eccentricity-based correlation pattern appears to be part of an intrinsic functional architecture that supports the integration of information across functionally specialized visual areas. DOI: http://dx.doi.org/10.7554/eLife.03952.001 PMID:25695154

  19. Using Visualization in Cockpit Decision Support Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aragon, Cecilia R.

    2005-07-01

    In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.

  20. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration.

    Science.gov (United States)

    Stropahl, Maren; Debener, Stefan

    2017-01-01

    There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI) users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users ( n  = 18), untreated mild to moderately hearing impaired individuals (n = 18) and normal hearing controls ( n  = 17). Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the auditory system

  1. Auditory cross-modal reorganization in cochlear implant users indicates audio-visual integration

    Directory of Open Access Journals (Sweden)

    Maren Stropahl

    2017-01-01

    Full Text Available There is clear evidence for cross-modal cortical reorganization in the auditory system of post-lingually deafened cochlear implant (CI users. A recent report suggests that moderate sensori-neural hearing loss is already sufficient to initiate corresponding cortical changes. To what extend these changes are deprivation-induced or related to sensory recovery is still debated. Moreover, the influence of cross-modal reorganization on CI benefit is also still unclear. While reorganization during deafness may impede speech recovery, reorganization also has beneficial influences on face recognition and lip-reading. As CI users were observed to show differences in multisensory integration, the question arises if cross-modal reorganization is related to audio-visual integration skills. The current electroencephalography study investigated cortical reorganization in experienced post-lingually deafened CI users (n = 18, untreated mild to moderately hearing impaired individuals (n = 18 and normal hearing controls (n = 17. Cross-modal activation of the auditory cortex by means of EEG source localization in response to human faces and audio-visual integration, quantified with the McGurk illusion, were measured. CI users revealed stronger cross-modal activations compared to age-matched normal hearing individuals. Furthermore, CI users showed a relationship between cross-modal activation and audio-visual integration strength. This may further support a beneficial relationship between cross-modal activation and daily-life communication skills that may not be fully captured by laboratory-based speech perception tests. Interestingly, hearing impaired individuals showed behavioral and neurophysiological results that were numerically between the other two groups, and they showed a moderate relationship between cross-modal activation and the degree of hearing loss. This further supports the notion that auditory deprivation evokes a reorganization of the

  2. Textual and Visual Information in eWOM: A Gap Between Preferences in Information Search and Diffusion

    DEFF Research Database (Denmark)

    Lee, Geunhee; Tussyadiah, Iis

    2010-01-01

    This article examines the gap between travel-related information search and diffusion by online users in order to better understand the important role of visual information in electronic word of mouth (eWOM). Several analyses were conducted to investigate differences in travelers' preferences...

  3. Can Cultural Behavior Have a Negative Impact on the Development of Visual Integration Pathways?

    Science.gov (United States)

    Pretorius, E.; Naude, H.; van Vuuren, C. J.

    2002-01-01

    Contends that cultural practices such as carrying the baby on the mother's back for prolonged periods can impact negatively on development of visual integration during the sensorimotor stage pathways by preventing adequate or enough crawling. Maintains that crawling is essential for cross- modality integration and that higher mental functions may…

  4. An Artificial Flexible Visual Memory System Based on an UV-Motivated Memristor.

    Science.gov (United States)

    Chen, Shuai; Lou, Zheng; Chen, Di; Shen, Guozhen

    2018-02-01

    For the mimicry of human visual memory, a prominent challenge is how to detect and store the image information by electronic devices, which demands a multifunctional integration to sense light like eyes and to memorize image information like the brain by transforming optical signals to electrical signals that can be recognized by electronic devices. Although current image sensors can perceive simple images in real time, the image information fades away when the external image stimuli are removed. The deficiency between the state-of-the-art image sensors and visual memory system inspires the logical integration of image sensors and memory devices to realize the sensing and memory process toward light information for the bionic design of human visual memory. Hence, a facile architecture is designed to construct artificial flexible visual memory system by employing an UV-motivated memristor. The visual memory arrays can realize the detection and memory process of UV light distribution with a patterned image for a long-term retention and the stored image information can be reset by a negative voltage sweep and reprogrammed to the same or an other image distribution, which proves the effective reusability. These results provide new opportunities for the mimicry of human visual memory and enable the flexible visual memory device to be applied in future wearable electronics, electronic eyes, multifunctional robotics, and auxiliary equipment for visual handicapped. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Maintenance information management using access/visual basic

    International Nuclear Information System (INIS)

    Memory A, Michael; Cumbia W, Brad

    1998-01-01

    The Accelerator Electronic Support Group (AES) is the group responsible for maintaining over 100 subsystems of the Nuclear Physics Accelerator at Jefferson Lab. Presently, there are 30 employees in the AES group. It is each individual's responsibility to make entries into the AES Database. This Access/Visual Basic based database is the center for all work performed to the Accelerator by the AES group. At any time, an AES technologist can supply valuable information needed to track pending maintenance, data analysis of recurring problems, inventory tracking and the ability to export all of this information to a web based electronic log generated by Jefferson Lab Operations Group

  6. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    Directory of Open Access Journals (Sweden)

    Na Shu

    Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  7. Information theoretical assessment of visual communication with subband coding

    Science.gov (United States)

    Rahman, Zia-ur; Fales, Carl L.; Huck, Friedrich O.

    1994-09-01

    A well-designed visual communication channel is one which transmits the most information about a radiance field with the fewest artifacts. The role of image processing, encoding and restoration is to improve the quality of visual communication channels by minimizing the error in the transmitted data. Conventionally this role has been analyzed strictly in the digital domain neglecting the effects of image-gathering and image-display devices on the quality of the image. This results in the design of a visual communication channel which is `suboptimal.' We propose an end-to-end assessment of the imaging process which incorporates the influences of these devices in the design of the encoder and the restoration process. This assessment combines Shannon's communication theory with Wiener's restoration filter and with the critical design factors of the image gathering and display devices, thus providing the metrics needed to quantify and optimize the end-to-end performance of the visual communication channel. Results show that the design of the image-gathering device plays a significant role in determining the quality of the visual communication channel and in designing the analysis filters for subband encoding.

  8. Animation as a Visual Indicator of Positional Uncertainty in Geographic Information

    DEFF Research Database (Denmark)

    Kessler, Carsten; Lotstein, Enid

    2018-01-01

    Effectively communicating the uncertainty that is inherent in any kind of geographic information remains a challenge. This paper investigates the efficacy of animation as a visual variable to represent positional uncertainty in a web mapping context. More specifically, two different kinds...... of animation (a ‘bouncing’ and a ‘rubberband’ effect) have been compared to two static visual variables (symbol size and transparency), as well as different combinations of those variables in an online experiment with 163 participants. The participants’ task was to identify the most and least uncertain point...... visualizations using symbol size and transparency. Somewhat contradictory to those results, the participants showed a clear preference for those static visualizations....

  9. An Integrated Biomechanical Model for Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2012-01-01

    When gravitational unloading occurs upon entry to space, astronauts experience a major shift in the distribution of their bodily fluids, with a net headward movement. Measurements have shown that intraocular pressure spikes, and there is a strong suspicion that intracranial pressure also rises. Some astronauts in both short- and long-duration spaceflight develop visual acuity changes, which may or may not reverse upon return to earth gravity. To date, of the 36 U.S. astronauts who have participated in long-duration space missions on the International Space Station, 15 crew members have developed minor to severe visual decrements and anatomical changes. These ophthalmic changes include hyperopic shift, optic nerve distension, optic disc edema, globe flattening, choroidal folds, and elevated cerebrospinal fluid pressure. In order to understand the physical mechanisms behind these phenomena, NASA is developing an integrated model that appropriately captures whole-body fluids transport through lumped-parameter models for the cerebrospinal and cardiovascular systems. This data feeds into a finite element model for the ocular globe and retrobulbar subarachnoid space through time-dependent boundary conditions. Although tissue models and finite element representations of the corneo-scleral shell, retina, choroid and optic nerve head have been integrated to study pathological conditions such as glaucoma, the retrobulbar subarachnoid space behind the eye has received much less attention. This presentation will describe the development and scientific foundation of our holistic model.

  10. Visual speech information: a help or hindrance in perceptual processing of dysarthric speech.

    Science.gov (United States)

    Borrie, Stephanie A

    2015-03-01

    This study investigated the influence of visual speech information on perceptual processing of neurologically degraded speech. Fifty listeners identified spastic dysarthric speech under both audio (A) and audiovisual (AV) conditions. Condition comparisons revealed that the addition of visual speech information enhanced processing of the neurologically degraded input in terms of (a) acuity (percent phonemes correct) of vowels and consonants and (b) recognition (percent words correct) of predictive and nonpredictive phrases. Listeners exploited stress-based segmentation strategies more readily in AV conditions, suggesting that the perceptual benefit associated with adding visual speech information to the auditory signal-the AV advantage-has both segmental and suprasegmental origins. Results also revealed that the magnitude of the AV advantage can be predicted, to some degree, by the extent to which an individual utilizes syllabic stress cues to inform word recognition in AV conditions. Findings inform the development of a listener-specific model of speech perception that applies to processing of dysarthric speech in everyday communication contexts.

  11. Using lighting and visual information to alter driver behavior.

    Science.gov (United States)

    2012-08-01

    Inappropriate traffic speeds are a major cause of traffic fatalities. Since driving is a task with a substantial contribution : from vision, the use of lighting and visual information such as signage could assist in providing appropriate cues to : en...

  12. Using Lighting And Visual Information To Alter Driver Behavior

    Science.gov (United States)

    2012-08-01

    Inappropriate traffic speeds are a major cause of traffic fatalities. Since driving is a task with a substantial contribution : from vision, the use of lighting and visual information such as signage could assist in providing appropriate cues to : en...

  13. Efficient Algorithms for Searching the Minimum Information Partition in Integrated Information Theory

    Science.gov (United States)

    Kitazono, Jun; Kanai, Ryota; Oizumi, Masafumi

    2018-03-01

    The ability to integrate information in the brain is considered to be an essential property for cognition and consciousness. Integrated Information Theory (IIT) hypothesizes that the amount of integrated information ($\\Phi$) in the brain is related to the level of consciousness. IIT proposes that to quantify information integration in a system as a whole, integrated information should be measured across the partition of the system at which information loss caused by partitioning is minimized, called the Minimum Information Partition (MIP). The computational cost for exhaustively searching for the MIP grows exponentially with system size, making it difficult to apply IIT to real neural data. It has been previously shown that if a measure of $\\Phi$ satisfies a mathematical property, submodularity, the MIP can be found in a polynomial order by an optimization algorithm. However, although the first version of $\\Phi$ is submodular, the later versions are not. In this study, we empirically explore to what extent the algorithm can be applied to the non-submodular measures of $\\Phi$ by evaluating the accuracy of the algorithm in simulated data and real neural data. We find that the algorithm identifies the MIP in a nearly perfect manner even for the non-submodular measures. Our results show that the algorithm allows us to measure $\\Phi$ in large systems within a practical amount of time.

  14. Three-dimensional visualization of functional brain tissue and functional magnetic resonance imaging-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex

    International Nuclear Information System (INIS)

    Han Tong; Cui Shimin; Tong Xiaoguang; Liu Li; Xue Kai; Liu Meili; Liang Siquan; Zhang Yunting; Zhi Dashi

    2011-01-01

    Objective: To assess the value of three -dimensional visualization of functional brain tissue and the functional magnetic resonance imaging (fMRI)-integrated neuronavigation in the resection of brain tumor adjacent to motor cortex. Method: Sixty patients with tumor located in the central sulcus were enrolled. Thirty patients were randomly assigned to function group and 30 to control group. Patients in function group underwent fMRI to localize the functional brain tissues. Then the function information was transferred to the neurosurgical navigator. The patients in control group underwent surgery with navigation without function information. The therapeutic effect, excision rate. improvement of motor function, and survival quality during follow-up were analyzed. Result: All patients in function group were accomplished visualization of functional brain tissues and fMRI-integrated neuronavigation. The locations of tumors, central sulcus and motor cortex were marked during the operation. The fMRI -integrated information played a great role in both pre- and post-operation. Pre-operation: designing the location of the skin flap and window bone, determining the relationship between the tumor and motor cortex, and designing the pathway for the resection. Post- operation: real-time navigation of relationship between the tumor and motor cortex, assisting to localize the motor cortex using interoperation ultra-sound for correcting the displacement by the CSF outflow and collapsing tumor. The patients in the function group had better results than the patients in the control group in therapeutic effect (u=2.646, P=0.008), excision rate (χ = 7.200, P<0.01), improvement of motor function (u=2.231, P=0.026), and survival quality (KPS u c = 2.664, P=0.008; Zubrod -ECOG -WHO u c =2.135, P=0.033). Conclusions: Using preoperative three -dimensional visualization of cerebral function tissue and the fMRI-integrated neuronavigation technology, combining intraoperative accurate

  15. Integration of real-time operational data in geographical information for power and gas business; Integrando em tempo real os dados operacionais aos sistemas geo referenciados do negocio gas e energia

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, Fernando Jose de Carvalho; Carvalho, Ronaldo Jose Seixas de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Strategical Management of Data and Information of the Gas e Energia, has as its being reason, the provision of right information, in the right place and in the right time, based on the correct sources, adding strategic value to Business. The SCADA systems (Supervisory Control and Data Acquisition), give to the Thermoelectrical Plant Operators and Electrical Transporting Operators the integration with the operational stations, measurement and energy delivery. The Geographical Information Systems - GIS, give the maps visualization with geopolitics aspects, gas pipeline infrastructure and satellite images. The Historical Data systems, have as its requirements the interface between many SCADA systems by means of accompaniment of historical data, real time data of the common variables of the process (outflow, pressure, temperature, egg.) and KPI's visualization - typical performance indicators of energy systems (non-availability, generation efficiency and distribution, egg.). Based on the business systemic vision, the Real-Time Enterprise Architecture - Real Time data integration and Performance Indicators based on the GIS software platform was developed in the Gas e Energia enterprise scenario. The present action has, as its focus, the dynamic visualization in real-time of the integrated data to the GIS infrastructure of the Gas Pipelines and Thermoelectrical Plants, guaranteeing the integrity, the audit trail of the information and a pro active vision for the Management of the Gas e Energia Business. (author)

  16. Integration of real-time operational data in geographical information for power and gas business; Integrando em tempo real os dados operacionais aos sistemas geo referenciados do negocio gas e energia

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, Fernando Jose de Carvalho; Carvalho, Ronaldo Jose Seixas de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    The Strategical Management of Data and Information of the Gas e Energia, has as its being reason, the provision of right information, in the right place and in the right time, based on the correct sources, adding strategic value to Business. The SCADA systems (Supervisory Control and Data Acquisition), give to the Thermoelectrical Plant Operators and Electrical Transporting Operators the integration with the operational stations, measurement and energy delivery. The Geographical Information Systems - GIS, give the maps visualization with geopolitics aspects, gas pipeline infrastructure and satellite images. The Historical Data systems, have as its requirements the interface between many SCADA systems by means of accompaniment of historical data, real time data of the common variables of the process (outflow, pressure, temperature, egg.) and KPI's visualization - typical performance indicators of energy systems (non-availability, generation efficiency and distribution, egg.). Based on the business systemic vision, the Real-Time Enterprise Architecture - Real Time data integration and Performance Indicators based on the GIS software platform was developed in the Gas e Energia enterprise scenario. The present action has, as its focus, the dynamic visualization in real-time of the integrated data to the GIS infrastructure of the Gas Pipelines and Thermoelectrical Plants, guaranteeing the integrity, the audit trail of the information and a pro active vision for the Management of the Gas e Energia Business. (author)

  17. The effect of visual information on verbal communication process in remote conversation

    OpenAIRE

    國田, 祥子; 中條, 和光

    2005-01-01

    This article examined how visual information affects verbal communication process in remote communication. In the experiment twenty pairs of subjects performed a collaborative task remotely via video and audio links or audio link only. During the task used in this experiment one of a pair (an instruction-giver) gave direction with a map to the other of the pair (an instruction-receiver). We recorded and analyzed contents of utterances. Consequently, the existence of visual information did not...

  18. Audio-Visual Speech Recognition Using Lip Information Extracted from Side-Face Images

    Directory of Open Access Journals (Sweden)

    Koji Iwano

    2007-03-01

    Full Text Available This paper proposes an audio-visual speech recognition method using lip information extracted from side-face images as an attempt to increase noise robustness in mobile environments. Our proposed method assumes that lip images can be captured using a small camera installed in a handset. Two different kinds of lip features, lip-contour geometric features and lip-motion velocity features, are used individually or jointly, in combination with audio features. Phoneme HMMs modeling the audio and visual features are built based on the multistream HMM technique. Experiments conducted using Japanese connected digit speech contaminated with white noise in various SNR conditions show effectiveness of the proposed method. Recognition accuracy is improved by using the visual information in all SNR conditions. These visual features were confirmed to be effective even when the audio HMM was adapted to noise by the MLLR method.

  19. Visual working memory supports the inhibition of previously processed information: evidence from preview search.

    Science.gov (United States)

    Al-Aidroos, Naseem; Emrich, Stephen M; Ferber, Susanne; Pratt, Jay

    2012-06-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search. We evaluated this proposal by testing three predictions. First, Experiments 1 and 2 demonstrate that preview inhibition is more effective when the number of previewed distractors is below VWM capacity than above; an effect that can only be observed at small preview set sizes (Experiment 2A) and when observers are allowed to move their eyes freely (Experiment 2B). Second, Experiment 3 shows that, when quantified as the number of inhibited distractors, the magnitude of the preview effect is stable across different search difficulties. Third, Experiment 4 demonstrates that individual differences in preview inhibition are correlated with individual differences in VWM capacity. These findings provide converging evidence that VWM supports the inhibition of previewed distractors. More generally, these findings demonstrate how VWM contributes to the efficiency of human visual information processing--VWM prioritizes new information by inhibiting old information from being reselected for attention.

  20. Definition of information technology architectures for continuous data management and medical device integration in diabetes.

    Science.gov (United States)

    Hernando, M Elena; Pascual, Mario; Salvador, Carlos H; García-Sáez, Gema; Rodríguez-Herrero, Agustín; Martínez-Sarriegui, Iñaki; Gómez, Enrique J

    2008-09-01

    The growing availability of continuous data from medical devices in diabetes management makes it crucial to define novel information technology architectures for efficient data storage, data transmission, and data visualization. The new paradigm of care demands the sharing of information in interoperable systems as the only way to support patient care in a continuum of care scenario. The technological platforms should support all the services required by the actors involved in the care process, located in different scenarios and managing diverse information for different purposes. This article presents basic criteria for defining flexible and adaptive architectures that are capable of interoperating with external systems, and integrating medical devices and decision support tools to extract all the relevant knowledge to support diabetes care.

  1. A Visual Interface Diagram For Mapping Functions In Integrated Products

    DEFF Research Database (Denmark)

    Ingerslev, Mattias; Oliver Jespersen, Mikkel; Göhler, Simon Moritz

    2015-01-01

    In product development there is a recognized tendency towards increased functionality for each new product generation. This leads to more integrated and complex products, with the risk of development delays and quality issues as a consequence of lacking overview and transparency. The work described...... of visualizing relations between parts and functions in highly integrated mechanical products. The result is an interface diagram that supports design teams in communication, decision making and design management. The diagram gives the designer an overview of the couplings and dependencies within a product...... in this article has been conducted in collaboration with Novo Nordisk on the insulin injection device FlexTouch® as case product. The FlexTouch® reflects the characteristics of an integrated product with several functions shared between a relatively low number of parts. In this article we present a novel way...

  2. 3D visualization of integrated ground penetrating radar data and EM-61 data to determine buried objects and their characteristics

    International Nuclear Information System (INIS)

    Kadioğlu, Selma; Daniels, Jeffrey J

    2008-01-01

    This paper is based on an interactive three-dimensional (3D) visualization of two-dimensional (2D) ground penetrating radar (GPR) data and their integration with electromagnetic induction (EMI) using EM-61 data in a 3D volume. This method was used to locate and identify near-surface buried old industrial remains with shape, depth and type (metallic/non-metallic) in a brownfield site. The aim of the study is to illustrate a new approach to integrating two data sets in a 3D image for monitoring and interpretation of buried remains, and this paper methodically indicates the appropriate amplitude–colour and opacity function constructions to activate buried remains in a transparent 3D view. The results showed that the interactive interpretation of the integrated 3D visualization was done using generated transparent 3D sub-blocks of the GPR data set that highlighted individual anomalies in true locations. Colour assignments and formulating of opacity of the data sets were the keys to the integrated 3D visualization and interpretation. This new visualization provided an optimum visual comparison and an interpretation of the complex data sets to identify and differentiate the metallic and non-metallic remains and to control the true interpretation on exact locations with depth. Therefore, the integrated 3D visualization of two data sets allowed more successful identification of the buried remains

  3. Creation of integrated information model of premises (blocks B, G, RDAS and deaerator) state of 'Ukryttia' object to support works

    International Nuclear Information System (INIS)

    Postil, S.D.; Ermolenko, A.I.; Ivanov, V.V.; Kotlyarov, V.T.

    2003-01-01

    The principles of organization of connection between the attachments prepared in Access and AutoCAD are developed,and a technology of transfer from one application into another with displaying of delivered information is realized.Information models of Reactor Department Auxiliary Systems (RDAS) block premises from axes 25 to 51,and from rows 'U' to 'Yu', deaerator stack from axes 34 to 68,and from row 'B' to 'D', and turbine hall from axes 34 to 68 and from row 'A' to 'B',are created.The possibility is shown of using integrated information model to develop and visualize by means of computer animation the access routes in 'Ukryttia' object premises,to integrate raster image of structure and vector computer model of Object

  4. Deconstructing visual scenes in cortex: gradients of object and spatial layout information.

    Science.gov (United States)

    Harel, Assaf; Kravitz, Dwight J; Baker, Chris I

    2013-04-01

    Real-world visual scenes are complex cluttered, and heterogeneous stimuli engaging scene- and object-selective cortical regions including parahippocampal place area (PPA), retrosplenial complex (RSC), and lateral occipital complex (LOC). To understand the unique contribution of each region to distributed scene representations, we generated predictions based on a neuroanatomical framework adapted from monkey and tested them using minimal scenes in which we independently manipulated both spatial layout (open, closed, and gradient) and object content (furniture, e.g., bed, dresser). Commensurate with its strong connectivity with posterior parietal cortex, RSC evidenced strong spatial layout information but no object information, and its response was not even modulated by object presence. In contrast, LOC, which lies within the ventral visual pathway, contained strong object information but no background information. Finally, PPA, which is connected with both the dorsal and the ventral visual pathway, showed information about both objects and spatial backgrounds and was sensitive to the presence or absence of either. These results suggest that 1) LOC, PPA, and RSC have distinct representations, emphasizing different aspects of scenes, 2) the specific representations in each region are predictable from their patterns of connectivity, and 3) PPA combines both spatial layout and object information as predicted by connectivity.

  5. Information visualization courses for students with a computer science background.

    Science.gov (United States)

    Kerren, Andreas

    2013-01-01

    Linnaeus University offers two master's courses in information visualization for computer science students with programming experience. This article briefly describes the syllabi, exercises, and practices developed for these courses.

  6. Attention and Visual Motor Integration in Young Children with Uncorrected Hyperopia.

    Science.gov (United States)

    Kulp, Marjean Taylor; Ciner, Elise; Maguire, Maureen; Pistilli, Maxwell; Candy, T Rowan; Ying, Gui-Shuang; Quinn, Graham; Cyert, Lynn; Moore, Bruce

    2017-10-01

    Among 4- and 5-year-old children, deficits in measures of attention, visual-motor integration (VMI) and visual perception (VP) are associated with moderate, uncorrected hyperopia (3 to 6 diopters [D]) accompanied by reduced near visual function (near visual acuity worse than 20/40 or stereoacuity worse than 240 seconds of arc). To compare attention, visual motor, and visual perceptual skills in uncorrected hyperopes and emmetropes attending preschool or kindergarten and evaluate their associations with visual function. Participants were 4 and 5 years of age with either hyperopia (≥3 to ≤6 D, astigmatism ≤1.5 D, anisometropia ≤1 D) or emmetropia (hyperopia ≤1 D; astigmatism, anisometropia, and myopia each attention (sustained, receptive, and expressive), VMI, and VP. Binocular visual acuity, stereoacuity, and accommodative accuracy were also assessed at near. Analyses were adjusted for age, sex, race/ethnicity, and parent's/caregiver's education. Two hundred forty-four hyperopes (mean, +3.8 ± [SD] 0.8 D) and 248 emmetropes (+0.5 ± 0.5 D) completed testing. Mean sustained attention score was worse in hyperopes compared with emmetropes (mean difference, -4.1; P Attention score was worse in 4 to 6 D hyperopes compared with emmetropes (by -2.6, P = .01). Hyperopes with reduced near visual acuity (20/40 or worse) had worse scores than emmetropes (-6.4, P attention; -3.0, P = .004 for Receptive Attention; -0.7, P = .006 for VMI; -1.3, P = .008 for VP). Hyperopes with stereoacuity of 240 seconds of arc or worse scored significantly worse than emmetropes (-6.7, P attention; -3.4, P = .03 for Expressive Attention; -2.2, P = .03 for Receptive Attention; -0.7, P = .01 for VMI; -1.7, P visual function generally performed similarly to emmetropes. Moderately hyperopic children were found to have deficits in measures of attention. Hyperopic children with reduced near visual function also had lower scores on VMI and VP than emmetropic children.

  7. Cultivating Common Ground: Integrating Standards-Based Visual Arts, Math and Literacy in High-Poverty Urban Classrooms

    Science.gov (United States)

    Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline

    2014-01-01

    The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…

  8. The effect of combined sensory and semantic components on audio-visual speech perception in older adults

    Directory of Open Access Journals (Sweden)

    Corrina eMaguinness

    2011-12-01

    Full Text Available Previous studies have found that perception in older people benefits from multisensory over uni-sensory information. As normal speech recognition is affected by both the auditory input and the visual lip-movements of the speaker, we investigated the efficiency of audio and visual integration in an older population by manipulating the relative reliability of the auditory and visual information in speech. We also investigated the role of the semantic context of the sentence to assess whether audio-visual integration is affected by top-down semantic processing. We presented participants with audio-visual sentences in which the visual component was either blurred or not blurred. We found that there was a greater cost in recall performance for semantically meaningless speech in the audio-visual blur compared to audio-visual no blur condition and this effect was specific to the older group. Our findings have implications for understanding how aging affects efficient multisensory integration for the perception of speech and suggests that multisensory inputs may benefit speech perception in older adults when the semantic content of the speech is unpredictable.

  9. Tactile search for change has less memory than visual search for change.

    Science.gov (United States)

    Yoshida, Takako; Yamaguchi, Ayumi; Tsutsui, Hideomi; Wake, Tenji

    2015-05-01

    Haptic perception of a 2D image is thought to make heavy demands on working memory. During active exploration, humans need to store the latest local sensory information and integrate it with kinesthetic information from hand and finger locations in order to generate a coherent perception. This tactile integration has not been studied as extensively as visual shape integration. In the current study, we compared working-memory capacity for tactile exploration to that of visual exploration as measured in change-detection tasks. We found smaller memory capacity during tactile exploration (approximately 1 item) compared with visual exploration (2-10 items). These differences generalized to position memory and could not be attributed to insufficient stimulus-exposure durations, acuity differences between modalities, or uncertainty over the position of items. This low capacity for tactile memory suggests that the haptic system is almost amnesic when outside the fingertips and that there is little or no cross-position integration.

  10. Four-dimensional microscope- integrated optical coherence tomography to enhance visualization in glaucoma surgeries.

    Science.gov (United States)

    Pasricha, Neel Dave; Bhullar, Paramjit Kaur; Shieh, Christine; Viehland, Christian; Carrasco-Zevallos, Oscar Mijail; Keller, Brenton; Izatt, Joseph Adam; Toth, Cynthia Ann; Challa, Pratap; Kuo, Anthony Nanlin

    2017-01-01

    We report the first use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT) capable of live four-dimensional (4D) (three-dimensional across time) imaging intraoperatively to directly visualize tube shunt placement and trabeculectomy surgeries in two patients with severe open-angle glaucoma and elevated intraocular pressure (IOP) that was not adequately managed by medical intervention or prior surgery. We performed tube shunt placement and trabeculectomy surgery and used SS-MIOCT to visualize and record surgical steps that benefitted from the enhanced visualization. In the case of tube shunt placement, SS-MIOCT successfully visualized the scleral tunneling, tube shunt positioning in the anterior chamber, and tube shunt suturing. For the trabeculectomy, SS-MIOCT successfully visualized the scleral flap creation, sclerotomy, and iridectomy. Postoperatively, both patients did well, with IOPs decreasing to the target goal. We found the benefit of SS-MIOCT was greatest in surgical steps requiring depth-based assessments. This technology has the potential to improve clinical outcomes.

  11. Rehearsal in serial memory for visual-spatial information: evidence from eye movements.

    Science.gov (United States)

    Tremblay, Sébastien; Saint-Aubin, Jean; Jalbert, Annie

    2006-06-01

    It is well established that rote rehearsal plays a key role in serial memory for lists of verbal items. Although a great deal of research has informed us about the nature of verbal rehearsal, much less attention has been devoted to rehearsal in serial memory for visual-spatial information. By using the dot task--a visual-spatial analogue of the classical verbal serial recall task--with delayed recall, performance and eyetracking data were recorded in order to establish whether visual-spatial rehearsal could be evidenced by eye movement. The use of eye movement as a form of rehearsal is detectable (Experiment 1), and it seems to contribute to serial memory performance over and above rehearsal based on shifts of spatial attention (Experiments 1 and 2).

  12. Information Integration Platform for Patient-Centric Healthcare Services: Design, Prototype and Dependability Aspects

    Directory of Open Access Journals (Sweden)

    Yohanes Baptista Dafferianto Trinugroho

    2014-03-01

    Full Text Available Technology innovations have pushed today’s healthcare sector to an unprecedented new level. Various portable and wearable medical and fitness devices are being sold in the consumer market to provide the self-empowerment of a healthier lifestyle to society. Many vendors provide additional cloud-based services for devices they manufacture, enabling the users to visualize, store and share the gathered information through the Internet. However, most of these services are integrated with the devices in a closed “silo” manner, where the devices can only be used with the provided services. To tackle this issue, an information integration platform (IIP has been developed to support communications between devices and Internet-based services in an event-driven fashion by adopting service-oriented architecture (SOA principles and a publish/subscribe messaging pattern. It follows the “Internet of Things” (IoT idea of connecting everyday objects to various networks and to enable the dissemination of the gathered information to the global information space through the Internet. A patient-centric healthcare service environment is chosen as the target scenario for the deployment of the platform, as this is a domain where IoT can have a direct positive impact on quality of life enhancement. This paper describes the developed platform, with emphasis on dependability aspects, including availability, scalability and security.

  13. Ambient visual information confers a context-specific, long-term benefit on memory for haptic scenes.

    Science.gov (United States)

    Pasqualotto, Achille; Finucane, Ciara M; Newell, Fiona N

    2013-09-01

    We investigated the effects of indirect, ambient visual information on haptic spatial memory. Using touch only, participants first learned an array of objects arranged in a scene and were subsequently tested on their recognition of that scene which was always hidden from view. During haptic scene exploration, participants could either see the surrounding room or were blindfolded. We found a benefit in haptic memory performance only when ambient visual information was available in the early stages of the task but not when participants were initially blindfolded. Specifically, when ambient visual information was available a benefit on performance was found in a subsequent block of trials during which the participant was blindfolded (Experiment 1), and persisted over a delay of one week (Experiment 2). However, we found that the benefit for ambient visual information did not transfer to a novel environment (Experiment 3). In Experiment 4 we further investigated the nature of the visual information that improved haptic memory and found that geometric information about a surrounding (virtual) room rather than isolated object landmarks, facilitated haptic scene memory. Our results suggest that vision improves haptic memory for scenes by providing an environment-centred, allocentric reference frame for representing object location through touch. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The Effects of Presentation Method and Information Density on Visual Search Ability and Working Memory Load

    Science.gov (United States)

    Chang, Ting-Wen; Kinshuk; Chen, Nian-Shing; Yu, Pao-Ta

    2012-01-01

    This study investigates the effects of successive and simultaneous information presentation methods on learner's visual search ability and working memory load for different information densities. Since the processing of information in the brain depends on the capacity of visual short-term memory (VSTM), the limited information processing capacity…

  15. Integrating building information modeling and health and safety for onsite construction.

    Science.gov (United States)

    Ganah, Abdulkadir; John, Godfaurd A

    2015-03-01

    Health and safety (H&S) on a construction site can either make or break a contractor, if not properly managed. The usage of Building Information Modeling (BIM) for H&S on construction execution has the potential to augment practitioner understanding of their sites, and by so doing reduce the probability of accidents. This research explores BIM usage within the construction industry in relation to H&S communication. In addition to an extensive literature review, a questionnaire survey was conducted to gather information on the embedment of H&S planning with the BIM environment for site practitioners. The analysis of responses indicated that BIM will enhance the current approach of H&S planning for construction site personnel. From the survey, toolbox talk will have to be integrated with the BIM environment, because it is the predominantly used procedure for enhancing H&S issues within construction sites. The advantage is that personnel can visually understand H&S issues as work progresses during the toolbox talk onsite.

  16. Architecture for Teraflop Visualization

    Energy Technology Data Exchange (ETDEWEB)

    Breckenridge, A.R.; Haynes, R.A.

    1999-04-09

    Sandia Laboratories' computational scientists are addressing a very important question: How do we get insight from the human combined with the computer-generated information? The answer inevitably leads to using scientific visualization. Going one technology leap further is teraflop visualization, where the computing model and interactive graphics are an integral whole to provide computing for insight. In order to implement our teraflop visualization architecture, all hardware installed or software coded will be based on open modules and dynamic extensibility principles. We will illustrate these concepts with examples in our three main research areas: (1) authoring content (the computer), (2) enhancing precision and resolution (the human), and (3) adding behaviors (the physics).

  17. Theoretical information reuse and integration

    CERN Document Server

    Rubin, Stuart

    2016-01-01

    Information Reuse and Integration addresses the efficient extension and creation of knowledge through the exploitation of Kolmogorov complexity in the extraction and application of domain symmetry. Knowledge, which seems to be novel, can more often than not be recast as the image of a sequence of transformations, which yield symmetric knowledge. When the size of those transformations and/or the length of that sequence of transforms exceeds the size of the image, then that image is said to be novel or random. It may also be that the new knowledge is random in that no such sequence of transforms, which produces it exists, or is at least known. The nine chapters comprising this volume incorporate symmetry, reuse, and integration as overt operational procedures or as operations built into the formal representations of data and operators employed. Either way, the aforementioned theoretical underpinnings of information reuse and integration are supported.

  18. Autonomous Preference-Aware Information Services Integration for High Response in Integrated Faded Information Field Systems

    Science.gov (United States)

    Lu, Xiaodong; Mori, Kinji

    The market and users' requirements have been rapidly changing and diversified. Under these heterogeneous and dynamic situations, not only the system structure itself, but also the accessible information services would be changed constantly. To cope with the continuously changing conditions of service provision and utilization, Faded Information Field (FIF) has been proposed, which is a agent-based distributed information service system architecture. In the case of a mono-service request, the system is designed to improve users' access time and preserve load balancing through the information structure. However, with interdependent requests of multi-service increasing, adaptability and timeliness have to be assured by the system. In this paper, the relationship that exists among the correlated services and the users' preferences for separate and integrated services is clarified. Based on these factors, the autonomous preference-aware information services integration technology to provide one-stop service for users multi-service requests is proposed. As compared to the conventional system, we show that proposed technology is able to reduce the total access time.

  19. Using Visualization in Cockpit Decision Support Systems

    Science.gov (United States)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  20. Four-dimensional Microscope-Integrated Optical Coherence Tomography to Visualize Suture Depth in Strabismus Surgery.

    Science.gov (United States)

    Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N

    2017-02-14

    The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.

  1. Invertebrate neurobiology: visual direction of arm movements in an octopus.

    Science.gov (United States)

    Niven, Jeremy E

    2011-03-22

    An operant task in which octopuses learn to locate food by a visual cue in a three-choice maze shows that they are capable of integrating visual and mechanosensory information to direct their arm movements to a goal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Bandwidth Optimization On Design Of Visual Display Information System Based Networking At Politeknik Negeri Bali

    Science.gov (United States)

    Sudiartha, IKG; Catur Bawa, IGNB

    2018-01-01

    Information can not be separated from the social life of the community, especially in the world of education. One of the information fields is academic calendar information, activity agenda, announcement and campus activity news. In line with technological developments, text-based information is becoming obsolete. For that need creativity to present information more quickly, accurately and interesting by exploiting the development of digital technology and internet. In this paper will be developed applications for the provision of information in the form of visual display, applied to computer network system with multimedia applications. Network-based applications provide ease in updating data through internet services, attractive presentations with multimedia support. The application “Networking Visual Display Information Unit” can be used as a medium that provides information services for students and academic employee more interesting and ease in updating information than the bulletin board. The information presented in the form of Running Text, Latest Information, Agenda, Academic Calendar and Video provide an interesting presentation and in line with technological developments at the Politeknik Negeri Bali. Through this research is expected to create software “Networking Visual Display Information Unit” with optimal bandwidth usage by combining local data sources and data through the network. This research produces visual display design with optimal bandwidth usage and application in the form of supporting software.

  3. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  4. Perceptual stimulus-A Bayesian-based integration of multi-visual-cue approach and its application

    Institute of Scientific and Technical Information of China (English)

    XUE JianRu; ZHENG NanNing; ZHONG XiaoPin; PING LinJiang

    2008-01-01

    With the view that visual cue could be taken as a kind of stimulus, the study of the mechanism in the visual perception process by using visual cues in their probabilistic representation eventually leads to a class of statistical integration of multiple visual cues (IMVC) methods which have been applied widely in perceptual grouping, video analysis, and other basic problems in computer vision. In this paper, a survey on the basic ideas and recent advances of IMVC methods is presented, and much focus is on the models and algorithms of IMVC for video analysis within the framework of Bayesian estimation. Furthermore, two typical problems in video analysis, robust visual tracking and "switching problem" in multi-target tracking (MTT) are taken as test beds to verify a series of Bayesian-based IMVC methods proposed by the authors. Furthermore, the relations between the statistical IMVC and the visual per-ception process, as well as potential future research work for IMVC, are discussed.

  5. Environment, safety, and health information technology systems integration.

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, David A.; Bayer, Gregory W.

    2006-02-01

    The ES&H Information Systems department, motivated by the numerous isolated information technology systems under its control, undertook a significant integration effort. This effort was planned and executed over the course of several years and parts of it still continue today. The effect was to help move the ES&H Information Systems department toward integration with the corporate Information Solutions and Services center.

  6. Cognitive and psychological science insights to improve climate change data visualization

    Science.gov (United States)

    Harold, Jordan; Lorenzoni, Irene; Shipley, Thomas F.; Coventry, Kenny R.

    2016-12-01

    Visualization of climate data plays an integral role in the communication of climate change findings to both expert and non-expert audiences. The cognitive and psychological sciences can provide valuable insights into how to improve visualization of climate data based on knowledge of how the human brain processes visual and linguistic information. We review four key research areas to demonstrate their potential to make data more accessible to diverse audiences: directing visual attention, visual complexity, making inferences from visuals, and the mapping between visuals and language. We present evidence-informed guidelines to help climate scientists increase the accessibility of graphics to non-experts, and illustrate how the guidelines can work in practice in the context of Intergovernmental Panel on Climate Change graphics.

  7. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  8. Quantifying the impact on navigation performance in visually impaired: Auditory information loss versus information gain enabled through electronic travel aids.

    Directory of Open Access Journals (Sweden)

    Alex Kreilinger

    Full Text Available This study's purpose was to analyze and quantify the impact of auditory information loss versus information gain provided by electronic travel aids (ETAs on navigation performance in people with low vision. Navigation performance of ten subjects (age: 54.9±11.2 years with visual acuities >1.0 LogMAR was assessed via the Graz Mobility Test (GMT. Subjects passed through a maze in three different modalities: 'Normal' with visual and auditory information available, 'Auditory Information Loss' with artificially reduced hearing (leaving only visual information, and 'ETA' with a vibrating ETA based on ultrasonic waves, thereby facilitating visual, auditory, and tactile information. Main performance measures comprised passage time and number of contacts. Additionally, head tracking was used to relate head movements to motion direction. When comparing 'Auditory Information Loss' to 'Normal', subjects needed significantly more time (p<0.001, made more contacts (p<0.001, had higher relative viewing angles (p = 0.002, and a higher percentage of orientation losses (p = 0.011. The only significant difference when comparing 'ETA' to 'Normal' was a reduced number of contacts (p<0.001. Our study provides objective, quantifiable measures of the impact of reduced hearing on the navigation performance in low vision subjects. Significant effects of 'Auditory Information Loss' were found for all measures; for example, passage time increased by 17.4%. These findings show that low vision subjects rely on auditory information for navigation. In contrast, the impact of the ETA was not significant but further analysis of head movements revealed two different coping strategies: half of the subjects used the ETA to increase speed, whereas the other half aimed at avoiding contacts.

  9. Audiovisual Integration Delayed by Stimulus Onset Asynchrony Between Auditory and Visual Stimuli in Older Adults.

    Science.gov (United States)

    Ren, Yanna; Yang, Weiping; Nakahashi, Kohei; Takahashi, Satoshi; Wu, Jinglong

    2017-02-01

    Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21-24 years) and 20 older adults (61-80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., -50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.

  10. Proscription supports robust perceptual integration by suppression in human visual cortex.

    Science.gov (United States)

    Rideaux, Reuben; Welchman, Andrew E

    2018-04-17

    Perception relies on integrating information within and between the senses, but how does the brain decide which pieces of information should be integrated and which kept separate? Here we demonstrate how proscription can be used to solve this problem: certain neurons respond best to unrealistic combinations of features to provide 'what not' information that drives suppression of unlikely perceptual interpretations. First, we present a model that captures both improved perception when signals are consistent (and thus should be integrated) and robust estimation when signals are conflicting. Second, we test for signatures of proscription in the human brain. We show that concentrations of inhibitory neurotransmitter GABA in a brain region intricately involved in integrating cues (V3B/KO) correlate with robust integration. Finally, we show that perturbing excitation/inhibition impairs integration. These results highlight the role of proscription in robust perception and demonstrate the functional purpose of 'what not' sensors in supporting sensory estimation.

  11. Multisensory teamwork: using a tactile or an auditory display to exchange gaze information improves performance in joint visual search.

    Science.gov (United States)

    Wahn, Basil; Schwandt, Jessika; Krüger, Matti; Crafa, Daina; Nunnendorf, Vanessa; König, Peter

    2016-06-01

    In joint tasks, adjusting to the actions of others is critical for success. For joint visual search tasks, research has shown that when search partners visually receive information about each other's gaze, they use this information to adjust to each other's actions, resulting in faster search performance. The present study used a visual, a tactile and an auditory display, respectively, to provide search partners with information about each other's gaze. Results showed that search partners performed faster when the gaze information was received via a tactile or auditory display in comparison to receiving it via a visual display or receiving no gaze information. Findings demonstrate the effectiveness of tactile and auditory displays for receiving task-relevant information in joint tasks and are applicable to circumstances in which little or no visual information is available or the visual modality is already taxed with a demanding task such as air-traffic control. Practitioner Summary: The present study demonstrates that tactile and auditory displays are effective for receiving information about actions of others in joint tasks. Findings are either applicable to circumstances in which little or no visual information is available or when the visual modality is already taxed with a demanding task.

  12. Information Integration Technology Demonstration (IITD)

    National Research Council Canada - National Science Library

    Loe, Richard

    2001-01-01

    The objectives of the Information Integration Technology Demonstration (IITD) were to investigate, design a software architecture and demonstrate a capability to display intelligence data from multiple disciplines...

  13. Audio visual information materials for risk communication

    International Nuclear Information System (INIS)

    Gunji, Ikuko; Tabata, Rimiko; Ohuchi, Naomi

    2005-07-01

    Japan Nuclear Cycle Development Institute (JNC), Tokai Works set up the Risk Communication Study Team in January, 2001 to promote mutual understanding between the local residents and JNC. The Team has studied risk communication from various viewpoints and developed new methods of public relations which are useful for the local residents' risk perception toward nuclear issues. We aim to develop more effective risk communication which promotes a better mutual understanding of the local residents, by providing the risk information of the nuclear fuel facilities such a Reprocessing Plant and other research and development facilities. We explain the development process of audio visual information materials which describe our actual activities and devices for the risk management in nuclear fuel facilities, and our discussion through the effectiveness measurement. (author)

  14. The influence of visual information on auditory processing in individuals with congenital amusia: An ERP study.

    Science.gov (United States)

    Lu, Xuejing; Ho, Hao T; Sun, Yanan; Johnson, Blake W; Thompson, William F

    2016-07-15

    While most normal hearing individuals can readily use prosodic information in spoken language to interpret the moods and feelings of conversational partners, people with congenital amusia report that they often rely more on facial expressions and gestures, a strategy that may compensate for deficits in auditory processing. In this investigation, we used EEG to examine the extent to which individuals with congenital amusia draw upon visual information when making auditory or audio-visual judgments. Event-related potentials (ERP) were elicited by a change in pitch (up or down) between two sequential tones paired with a change in spatial position (up or down) between two visually presented dots. The change in dot position was either congruent or incongruent with the change in pitch. Participants were asked to judge (1) the direction of pitch change while ignoring the visual information (AV implicit task), and (2) whether the auditory and visual changes were congruent (AV explicit task). In the AV implicit task, amusic participants performed significantly worse in the incongruent condition than control participants. ERPs showed an enhanced N2-P3 response to incongruent AV pairings for control participants, but not for amusic participants. However when participants were explicitly directed to detect AV congruency, both groups exhibited enhanced N2-P3 responses to incongruent AV pairings. These findings indicate that amusics are capable of extracting information from both modalities in an AV task, but are biased to rely on visual information when it is available, presumably because they have learned that auditory information is unreliable. We conclude that amusic individuals implicitly draw upon visual information when judging auditory information, even though they have the capacity to explicitly recognize conflicts between these two sensory channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Social media interruption affects the acquisition of visually, not aurally, acquired information during a pathophysiology lecture.

    Science.gov (United States)

    Marone, Jane R; Thakkar, Shivam C; Suliman, Neveen; O'Neill, Shannon I; Doubleday, Alison F

    2018-06-01

    Poor academic performance from extensive social media usage appears to be due to students' inability to multitask between distractions and academic work. However, the degree to which visually distracted students can acquire lecture information presented aurally is unknown. This study examined the ability of students visually distracted by social media to acquire information presented during a voice-over PowerPoint lecture, and to compare performance on examination questions derived from information presented aurally vs. that presented visually. Students ( n = 20) listened to a 42-min cardiovascular pathophysiology lecture containing embedded cartoons while taking notes. The experimental group ( n = 10) was visually, but not aurally, distracted by social media during times when cartoon information was presented, ~40% of total lecture time. Overall performance among distracted students on a follow-up, open-note quiz was 30% poorer than that for controls ( P < 0.001). When the modality of presentation (visual vs. aural) was compared, performance decreased on examination questions from information presented visually. However, performance on questions from information presented aurally was similar to that of controls. Our findings suggest the ability to acquire information during lecture may vary, depending on the degree of competition between the modalities of the distraction and the lecture presentation. Within the context of current literature, our findings also suggest that timing of the distraction relative to delivery of material examined affects performance more than total distraction time. Therefore, when delivering lectures, instructors should incorporate organizational cues and active learning strategies that assist students in maintaining focus and acquiring relevant information.

  16. Once upon a Spacetime: Visual Storytelling in Cognitive and Geotemporal Information Spaces

    Directory of Open Access Journals (Sweden)

    Eva Mayr

    2018-03-01

    Full Text Available Stories are an essential mode, not only of human communication—but also of thinking. This paper reflects on the internalization of stories from a cognitive perspective and outlines a visualization framework for supporting the analysis of narrative geotemporal data. We discuss the strengths and limitations of standard techniques for representing spatiotemporal data (coordinated views, animation or slideshow, layer superimposition, juxtaposition, and space-time cube representation and think about their effects on mental representations of a story. Many current visualization systems offer multiple views and allow the user to investigate different aspects of a story. From a cognitive point of view, it is important to assist users in reconnecting these multiple perspectives into a coherent picture—e.g., by utilizing coherence techniques like seamless transitions. A case study involving visualizing biographical narratives illustrates how the design of advanced visualization systems can be cognitively and conceptually grounded to support the construction of an integrated internal representation.

  17. Perceptual Dependencies in Information Visualization Assessed by Complex Visual Search

    NARCIS (Netherlands)

    Berg, Ronald van den; Cornelissen, Frans W.; Roerdink, Jos B.T.M.

    A common approach for visualizing data sets is to map them to images in which distinct data dimensions are mapped to distinct visual features, such as color, size and orientation. Here, we consider visualizations in which different data dimensions should receive equal weight and attention. Many of

  18. Beta, but not gamma, band oscillations index visual form-motion integration.

    Directory of Open Access Journals (Sweden)

    Charles Aissani

    Full Text Available Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept or as pairs of bars oscillating independently along cardinal axes (unbound percept. We found that beta (15-25 Hz, but not gamma (55-85 Hz oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.

  19. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Directory of Open Access Journals (Sweden)

    Levente L Orbán

    Full Text Available Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  20. Unsupervised Neural Network Quantifies the Cost of Visual Information Processing.

    Science.gov (United States)

    Orbán, Levente L; Chartier, Sylvain

    2015-01-01

    Untrained, "flower-naïve" bumblebees display behavioural preferences when presented with visual properties such as colour, symmetry, spatial frequency and others. Two unsupervised neural networks were implemented to understand the extent to which these models capture elements of bumblebees' unlearned visual preferences towards flower-like visual properties. The computational models, which are variants of Independent Component Analysis and Feature-Extracting Bidirectional Associative Memory, use images of test-patterns that are identical to ones used in behavioural studies. Each model works by decomposing images of floral patterns into meaningful underlying factors. We reconstruct the original floral image using the components and compare the quality of the reconstructed image to the original image. Independent Component Analysis matches behavioural results substantially better across several visual properties. These results are interpreted to support a hypothesis that the temporal and energetic costs of information processing by pollinators served as a selective pressure on floral displays: flowers adapted to pollinators' cognitive constraints.

  1. Visualization rhetoric: framing effects in narrative visualization.

    Science.gov (United States)

    Hullman, Jessica; Diakopoulos, Nicholas

    2011-12-01

    Narrative visualizations combine conventions of communicative and exploratory information visualization to convey an intended story. We demonstrate visualization rhetoric as an analytical framework for understanding how design techniques that prioritize particular interpretations in visualizations that "tell a story" can significantly affect end-user interpretation. We draw a parallel between narrative visualization interpretation and evidence from framing studies in political messaging, decision-making, and literary studies. Devices for understanding the rhetorical nature of narrative information visualizations are presented, informed by the rigorous application of concepts from critical theory, semiotics, journalism, and political theory. We draw attention to how design tactics represent additions or omissions of information at various levels-the data, visual representation, textual annotations, and interactivity-and how visualizations denote and connote phenomena with reference to unstated viewing conventions and codes. Classes of rhetorical techniques identified via a systematic analysis of recent narrative visualizations are presented, and characterized according to their rhetorical contribution to the visualization. We describe how designers and researchers can benefit from the potentially positive aspects of visualization rhetoric in designing engaging, layered narrative visualizations and how our framework can shed light on how a visualization design prioritizes specific interpretations. We identify areas where future inquiry into visualization rhetoric can improve understanding of visualization interpretation. © 2011 IEEE

  2. An integrated theory of attention and decision making in visual signal detection.

    Science.gov (United States)

    Smith, Philip L; Ratcliff, Roger

    2009-04-01

    The simplest attentional task, detecting a cued stimulus in an otherwise empty visual field, produces complex patterns of performance. Attentional cues interact with backward masks and with spatial uncertainty, and there is a dissociation in the effects of these variables on accuracy and on response time. A computational theory of performance in this task is described. The theory links visual encoding, masking, spatial attention, visual short-term memory (VSTM), and perceptual decision making in an integrated dynamic framework. The theory assumes that decisions are made by a diffusion process driven by a neurally plausible, shunting VSTM. The VSTM trace encodes the transient outputs of early visual filters in a durable form that is preserved for the time needed to make a decision. Attention increases the efficiency of VSTM encoding, either by increasing the rate of trace formation or by reducing the delay before trace formation begins. The theory provides a detailed, quantitative account of attentional effects in spatial cuing tasks at the level of response accuracy and the response time distributions. (c) 2009 APA, all rights reserved

  3. Visualizing Mobility of Public Transportation System.

    Science.gov (United States)

    Zeng, Wei; Fu, Chi-Wing; Arisona, Stefan Müller; Erath, Alexander; Qu, Huamin

    2014-12-01

    Public transportation systems (PTSs) play an important role in modern cities, providing shared/massive transportation services that are essential for the general public. However, due to their increasing complexity, designing effective methods to visualize and explore PTS is highly challenging. Most existing techniques employ network visualization methods and focus on showing the network topology across stops while ignoring various mobility-related factors such as riding time, transfer time, waiting time, and round-the-clock patterns. This work aims to visualize and explore passenger mobility in a PTS with a family of analytical tasks based on inputs from transportation researchers. After exploring different design alternatives, we come up with an integrated solution with three visualization modules: isochrone map view for geographical information, isotime flow map view for effective temporal information comparison and manipulation, and OD-pair journey view for detailed visual analysis of mobility factors along routes between specific origin-destination pairs. The isotime flow map linearizes a flow map into a parallel isoline representation, maximizing the visualization of mobility information along the horizontal time axis while presenting clear and smooth pathways from origin to destinations. Moreover, we devise several interactive visual query methods for users to easily explore the dynamics of PTS mobility over space and time. Lastly, we also construct a PTS mobility model from millions of real passenger trajectories, and evaluate our visualization techniques with assorted case studies with the transportation researchers.

  4. Causes of blindness and visual impairment among students in integrated schools for the blind in Nepal.

    Science.gov (United States)

    Shrestha, Jyoti Baba; Gnyawali, Subodh; Upadhyay, Madan Prasad

    2012-12-01

    To identify the causes of blindness and visual impairment among students in integrated schools for the blind in Nepal. A total of 778 students from all 67 integrated schools for the blind in Nepal were examined using the World Health Organization/Prevention of Blindness Eye Examination Record for Children with Blindness and Low Vision during the study period of 3 years. Among 831 students enrolled in the schools, 778 (93.6%) participated in the study. Mean age of students examined was 13.7 years, and the male to female ratio was 1.4:1. Among the students examined, 85.9% were blind, 10% had severe visual impairment and 4.1% were visually impaired. The cornea (22.8%) was the most common anatomical site of visual impairment, its most frequent cause being vitamin A deficiency, followed by the retina (18.4%) and lens (17.6%). Hereditary and childhood factors were responsible for visual loss in 27.9% and 22.0% of students, respectively. Etiology could not be determined in 46% of cases. Overall, 40.9% of students had avoidable causes of visual loss. Vision could be improved to a level better than 6/60 in 3.6% of students refracted. More than one third of students were visually impaired for potentially avoidable reasons, indicating lack of eye health awareness and eye care services in the community. The cause of visual impairment remained unknown in a large number of students, which indicates the need for introduction of modern diagnostic tools.

  5. The influence of auditory and visual information on the perception of crispy food

    NARCIS (Netherlands)

    Pocztaruk, R.D.; Abbink, J.H.; Wijk, de R.A.; Frasca, L.C.D.; Gaviao, M.B.D.; Bilt, van de A.

    2011-01-01

    The influence of auditory and/or visual information on the perception of crispy food and on the physiology of chewing was investigated. Participants chewed biscuits of three different levels of crispness under four experimental conditions: no masking, auditory masking, visual masking, and auditory

  6. How does interhemispheric communication in visual word recognition work? Deciding between early and late integration accounts of the split fovea theory.

    Science.gov (United States)

    Van der Haegen, Lise; Brysbaert, Marc; Davis, Colin J

    2009-02-01

    It has recently been shown that interhemispheric communication is needed for the processing of foveally presented words. In this study, we examine whether the integration of information happens at an early stage, before word recognition proper starts, or whether the integration is part of the recognition process itself. Two lexical decision experiments are reported in which words were presented at different fixation positions. In Experiment 1, a masked form priming task was used with primes that had two adjacent letters transposed. The results showed that although the fixation position had a substantial influence on the transposed letter priming effect, the priming was not smaller when the transposed letters were sent to different hemispheres than when they were projected to the same hemisphere. In Experiment 2, stimuli were presented that either had high frequency hemifield competitors or could be identified unambiguously on the basis of the information in one hemifield. Again, the lexical decision times did not vary as a function of hemifield competitors. These results are consistent with the early integration account, as presented in the SERIOL model of visual word recognition.

  7. Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study

    Directory of Open Access Journals (Sweden)

    Romain Chaumillon

    2018-02-01

    Full Text Available The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD analyses of visually evoked potential (VEP that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE. Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization.

  8. Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study.

    Science.gov (United States)

    Chaumillon, Romain; Blouin, Jean; Guillaume, Alain

    2018-01-01

    The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization.

  9. Interhemispheric Transfer Time Asymmetry of Visual Information Depends on Eye Dominance: An Electrophysiological Study

    Science.gov (United States)

    Chaumillon, Romain; Blouin, Jean; Guillaume, Alain

    2018-01-01

    The interhemispheric transfer of information is a fundamental process in the human brain. When a visual stimulus appears eccentrically in one visual-hemifield, it will first activate the contralateral hemisphere but also the ipsilateral one with a slight delay due to the interhemispheric transfer. This interhemispheric transfer of visual information is believed to be faster from the right to the left hemisphere in right-handers. Such an asymmetry is considered as a relevant fact in the context of the lateralization of the human brain. We show here using current source density (CSD) analyses of visually evoked potential (VEP) that, in right-handers and, to a lesser extent in left-handers, this asymmetry is in fact dependent on the sighting eye dominance, the tendency we have to prefer one eye for monocular tasks. Indeed, in right-handers, a faster interhemispheric transfer of visual information from the right to left hemisphere was observed only in participants with a right dominant eye (DE). Right-handers with a left DE showed the opposite pattern, with a faster transfer from the left to the right hemisphere. In left-handers, albeit a smaller number of participants has been tested and hence confirmation is required, only those with a right DE showed an asymmetrical interhemispheric transfer with a faster transfer from the right to the left hemisphere. As a whole these results demonstrate that eye dominance is a fundamental determinant of asymmetries in interhemispheric transfer of visual information and suggest that it is an important factor of brain lateralization. PMID:29515351

  10. Proposal for a system of indicators to assess the visual quality of the urban landscape in informal settlements

    Directory of Open Access Journals (Sweden)

    Johana Andrea Mesa-Carranza

    2016-04-01

    define the urban landscape; the main components that comprise it are identified and, from these, an indicator system is proposed to assess their visual quality, low integration inherent ecological, aesthetic and cultural dimensions factors, which help define the diagnosis of each proposed addition to establish an evaluation system that favors improving the visual quality of informal urban landscape, providing results that help the design process and the preservation or improvement of the same component.Keywords: Landscape design, urban design, cultural landscape, natural landscape, landscape protection.Recibido: marzo 10/2014Evaluado: marzo 2/2015Aceptado: agosto 12/2015Publicación: 12 de abril de 2016.               Actualización: 12 de abril de 2016

  11. Asymmetric Temporal Integration of Layer 4 and Layer 2/3 Inputs in Visual Cortex

    OpenAIRE

    Hang, Giao B.; Dan, Yang

    2010-01-01

    Neocortical neurons in vivo receive concurrent synaptic inputs from multiple sources, including feedforward, horizontal, and feedback pathways. Layer 2/3 of the visual cortex receives feedforward input from layer 4 and horizontal input from layer 2/3. Firing of the pyramidal neurons, which carries the output to higher cortical areas, depends critically on the interaction of these pathways. Here we examined synaptic integration of inputs from layer 4 and layer 2/3 in rat visual cortical slices...

  12. Integration trumps selection in object recognition

    Science.gov (United States)

    Saarela, Toni P.; Landy, Michael S.

    2015-01-01

    Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154

  13. Integration trumps selection in object recognition.

    Science.gov (United States)

    Saarela, Toni P; Landy, Michael S

    2015-03-30

    Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Design and implementation of an interface supporting information navigation tasks using hyperbolic visualization technique

    International Nuclear Information System (INIS)

    Lee, J. K.; Choi, I. K.; Jun, S. H.; Park, K. O.; Seo, Y. S.; Seo, S. M.; Koo, I. S.; Jang, M. H.

    2001-01-01

    Visualization techniques can be used to support operator's information navigation tasks on the system especially consisting of an enormous volume of information, such as operating information display system and computerized operating procedure system in advanced control room of nuclear power plants. By offering an easy understanding environment of hierarchially structured information, these techniques can reduce the operator's supplementary navigation task load. As a result of that, operators can pay more attention on the primary tasks and ultimately improve the cognitive task performance, in this thesis, an interface was designed and implemented using hyperbolic visualization technique, which is expected to be applied as a means of optimizing operator's information navigation tasks

  15. Information loss in visual assessments of medical images

    International Nuclear Information System (INIS)

    Niimi, Takanaga; Imai, Kuniharu; Maeda, Hisatoshi; Ikeda, Mitsuru

    2007-01-01

    We applied information theory to quantify information losses in assessing contrast-detail (C-D) analysis. Images of a C-D phantom were acquired with a flat panel detector (FPD) and a computed radiography (CR) by changing surface entrance doses. Six phantom radiographs (FPD: five images; CR: one image) were prepared for visual evaluations. Thirteen radiographers and two radiologists participated in the observation test. Detectability was defined as the shortest length of the cylinders of which border the observers could recognize from the background, and was recorded using row number. Information content was defined as the entropy Σp i log(1/p i ) with detection probabilities p i , which were calculated from distribution of detection rate of the ith column. Information loss, in unit of bits, was calculated as the difference between information obtained and information content when all the columns were detected. The information losses decreased with the increase in cylinder diameters and with the increase in surface entrance dose. Because the information loss varies depending on distribution of detection rate, this method of using the information theory was expected to be more sensitive in evaluating the C-D image quality than using the averaged values of detectability

  16. Integrated Risk Information System (IRIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA?s Integrated Risk Information System (IRIS) is a compilation of electronic reports on specific substances found in the environment and their potential to cause...

  17. Auditory, Tactile, and Audiotactile Information Processing Following Visual Deprivation

    Science.gov (United States)

    Occelli, Valeria; Spence, Charles; Zampini, Massimiliano

    2013-01-01

    We highlight the results of those studies that have investigated the plastic reorganization processes that occur within the human brain as a consequence of visual deprivation, as well as how these processes give rise to behaviorally observable changes in the perceptual processing of auditory and tactile information. We review the evidence showing…

  18. FY1995 study on three-dimensional integrated information environment toward human media; 1995 nendo human media e muketa sanjigen togo joho kankyo no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    In the next generation media environment, it is required to remove the boundary between virtual and real environment. The integration of these heterogeneous environments will enhance the applicability and availability of the human media. The aim of this work is to pioneer the new technology of 3-D integrated information environment in which both virtual and real environment are embedded, and to give a guide into the construction of human media. Our results consists of three parts as follows : (1) As a benchmark of the 3-D integrated information environment, the immersive television which has surrounding multi-projection displays was investigated. (2) A new method to synthesize arbitrary 3-D viewpoint images from 2-D real images was developed. On the other hand, a new concept of ray data description was introduced to represent whole visual data of 3-D real space. In the new concept, the whole visual data is treated as a set of ray data. New methods for superimposing and handling ray data were proposed. Potential applicability of the methods were clarified. (3) In order to enhance the reality of operations under the virtual environment, quantitative analysis was performed assuming that the HMD (Head Mounted Display) was used for displaying 3-D space information. (NEDO)

  19. Visualizing Volume to Help Students Understand the Disk Method on Calculus Integral Course

    Science.gov (United States)

    Tasman, F.; Ahmad, D.

    2018-04-01

    Many research shown that students have difficulty in understanding the concepts of integral calculus. Therefore this research is interested in designing a classroom activity integrated with design research method to assist students in understanding the integrals concept especially in calculating the volume of rotary objects using disc method. In order to support student development in understanding integral concepts, this research tries to use realistic mathematical approach by integrating geogebra software. First year university student who takes a calculus course (approximately 30 people) was chosen to implement the classroom activity that has been designed. The results of retrospective analysis show that visualizing volume of rotary objects using geogebra software can assist the student in understanding the disc method as one way of calculating the volume of a rotary object.

  20. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  1. Visualizing Contour Trees within Histograms

    DEFF Research Database (Denmark)

    Kraus, Martin

    2010-01-01

    Many of the topological features of the isosurfaces of a scalar volume field can be compactly represented by its contour tree. Unfortunately, the contour trees of most real-world volume data sets are too complex to be visualized by dot-and-line diagrams. Therefore, we propose a new visualization...... that is suitable for large contour trees and efficiently conveys the topological structure of the most important isosurface components. This visualization is integrated into a histogram of the volume data; thus, it offers strictly more information than a traditional histogram. We present algorithms...... to automatically compute the graph layout and to calculate appropriate approximations of the contour tree and the surface area of the relevant isosurface components. The benefits of this new visualization are demonstrated with the help of several publicly available volume data sets....

  2. Weighted integration of short-term memory and sensory signals in the oculomotor system.

    Science.gov (United States)

    Deravet, Nicolas; Blohm, Gunnar; de Xivry, Jean-Jacques Orban; Lefèvre, Philippe

    2018-05-01

    Oculomotor behaviors integrate sensory and prior information to overcome sensory-motor delays and noise. After much debate about this process, reliability-based integration has recently been proposed and several models of smooth pursuit now include recurrent Bayesian integration or Kalman filtering. However, there is a lack of behavioral evidence in humans supporting these theoretical predictions. Here, we independently manipulated the reliability of visual and prior information in a smooth pursuit task. Our results show that both smooth pursuit eye velocity and catch-up saccade amplitude were modulated by visual and prior information reliability. We interpret these findings as the continuous reliability-based integration of a short-term memory of target motion with visual information, which support modeling work. Furthermore, we suggest that saccadic and pursuit systems share this short-term memory. We propose that this short-term memory of target motion is quickly built and continuously updated, and constitutes a general building block present in all sensorimotor systems.

  3. Visualized materials of information on HLW geological disposal for promotion of public understanding

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Yoshikawa, Hideki; Kashiwazaki, Hiroshi

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). The images of repository operation, output data of technical calculations regarding geological disposal were visualized. We can use them practically as one of the useful explanation tools to support visitor's understanding. The visualized materials are attached to this report with the DVD-R media, furthermore, background information of each visualized materials was documented. (author)

  4. Visual and cross-modal cues increase the identification of overlapping visual stimuli in Balint's syndrome.

    Science.gov (United States)

    D'Imperio, Daniela; Scandola, Michele; Gobbetto, Valeria; Bulgarelli, Cristina; Salgarello, Matteo; Avesani, Renato; Moro, Valentina

    2017-10-01

    Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. We report a detailed analysis of clinical symptoms and an 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint's syndrome, a rare and invasive visual-spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Cross-modal integration improved the patient's ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual-perceptual deficits.

  5. Integration issues of information engineering based I-CASE tools

    OpenAIRE

    Kurbel, Karl; Schnieder, Thomas

    1994-01-01

    Problems and requirements regarding integration of methods and tools across phases of the software-development life cycle are discussed. Information engineering (IE) methodology and I-CASE (integrated CASE) tools supporting IE claim to have an integrated view across major stages of enterprise-wide information-system development: information strategy planning, business area analysis, system design, and construction. In the main part of this paper, two comprehensive I-CASE tools, ADW (Applicati...

  6. Constituents of Music and Visual-Art Related Pleasure - A Critical Integrative Literature Review.

    Science.gov (United States)

    Tiihonen, Marianne; Brattico, Elvira; Maksimainen, Johanna; Wikgren, Jan; Saarikallio, Suvi

    2017-01-01

    The present literature review investigated how pleasure induced by music and visual-art has been conceptually understood in empirical research over the past 20 years. After an initial selection of abstracts from seven databases (keywords: pleasure, reward, enjoyment, and hedonic), twenty music and eleven visual-art papers were systematically compared. The following questions were addressed: (1) What is the role of the keyword in the research question? (2) Is pleasure considered a result of variation in the perceiver's internal or external attributes? (3) What are the most commonly employed methods and main variables in empirical settings? Based on these questions, our critical integrative analysis aimed to identify which themes and processes emerged as key features for conceptualizing art-induced pleasure. The results demonstrated great variance in how pleasure has been approached: In the music studies pleasure was often a clear object of investigation, whereas in the visual-art studies the term was often embedded into the context of an aesthetic experience, or used otherwise in a descriptive, indirect sense. Music studies often targeted different emotions, their intensity or anhedonia. Biographical and background variables and personality traits of the perceiver were often measured. Next to behavioral methods, a common method was brain imaging which often targeted the reward circuitry of the brain in response to music. Visual-art pleasure was also frequently addressed using brain imaging methods, but the research focused on sensory cortices rather than the reward circuit alone. Compared with music research, visual-art research investigated more frequently pleasure in relation to conscious, cognitive processing, where the variations of stimulus features and the changing of viewing modes were regarded as explanatory factors of the derived experience. Despite valence being frequently applied in both domains, we conclude, that in empirical music research pleasure

  7. A Brief Period of Postnatal Visual Deprivation Alters the Balance between Auditory and Visual Attention.

    Science.gov (United States)

    de Heering, Adélaïde; Dormal, Giulia; Pelland, Maxime; Lewis, Terri; Maurer, Daphne; Collignon, Olivier

    2016-11-21

    Is a short and transient period of visual deprivation early in life sufficient to induce lifelong changes in how we attend to, and integrate, simple visual and auditory information [1, 2]? This question is of crucial importance given the recent demonstration in both animals and humans that a period of blindness early in life permanently affects the brain networks dedicated to visual, auditory, and multisensory processing [1-16]. To address this issue, we compared a group of adults who had been treated for congenital bilateral cataracts during early infancy with a group of normally sighted controls on a task requiring simple detection of lateralized visual and auditory targets, presented alone or in combination. Redundancy gains obtained from the audiovisual conditions were similar between groups and surpassed the reaction time distribution predicted by Miller's race model. However, in comparison to controls, cataract-reversal patients were faster at processing simple auditory targets and showed differences in how they shifted attention across modalities. Specifically, they were faster at switching attention from visual to auditory inputs than in the reverse situation, while an opposite pattern was observed for controls. Overall, these results reveal that the absence of visual input during the first months of life does not prevent the development of audiovisual integration but enhances the salience of simple auditory inputs, leading to a different crossmodal distribution of attentional resources between auditory and visual stimuli. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Numerical integration methods and layout improvements in the context of dynamic RNA visualization.

    Science.gov (United States)

    Shabash, Boris; Wiese, Kay C

    2017-05-30

    RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward

  9. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  10. How cortical neurons help us see: visual recognition in the human brain

    OpenAIRE

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us under...

  11. Multimodal cues provide redundant information for bumblebees when the stimulus is visually salient, but facilitate red target detection in a naturalistic background

    Science.gov (United States)

    Corcobado, Guadalupe; Trillo, Alejandro

    2017-01-01

    Our understanding of how floral visitors integrate visual and olfactory cues when seeking food, and how background complexity affects flower detection is limited. Here, we aimed to understand the use of visual and olfactory information for bumblebees (Bombus terrestris terrestris L.) when seeking flowers in a visually complex background. To explore this issue, we first evaluated the effect of flower colour (red and blue), size (8, 16 and 32 mm), scent (presence or absence) and the amount of training on the foraging strategy of bumblebees (accuracy, search time and flight behaviour), considering the visual complexity of our background, to later explore whether experienced bumblebees, previously trained in the presence of scent, can recall and make use of odour information when foraging in the presence of novel visual stimuli carrying a familiar scent. Of all the variables analysed, flower colour had the strongest effect on the foraging strategy. Bumblebees searching for blue flowers were more accurate, flew faster, followed more direct paths between flowers and needed less time to find them, than bumblebees searching for red flowers. In turn, training and the presence of odour helped bees to find inconspicuous (red) flowers. When bees foraged on red flowers, search time increased with flower size; but search time was independent of flower size when bees foraged on blue flowers. Previous experience with floral scent enhances the capacity of detection of a novel colour carrying a familiar scent, probably by elemental association influencing attention. PMID:28898287

  12. VISUAL3D - An EIT network on visualization of geomodels

    Science.gov (United States)

    Bauer, Tobias

    2017-04-01

    When it comes to interpretation of data and understanding of deep geological structures and bodies at different scales then modelling tools and modelling experience is vital for deep exploration. Geomodelling provides a platform for integration of different types of data, including new kinds of information (e.g., new improved measuring methods). EIT Raw Materials, initiated by the EIT (European Institute of Innovation and Technology) and funded by the European Commission, is the largest and strongest consortium in the raw materials sector worldwide. The VISUAL3D network of infrastructure is an initiative by EIT Raw Materials and aims at bringing together partners with 3D-4D-visualisation infrastructure and 3D-4D-modelling experience. The recently formed network collaboration interlinks hardware, software and expert knowledge in modelling visualization and output. A special focus will be the linking of research, education and industry and integrating multi-disciplinary data and to visualize the data in three and four dimensions. By aiding network collaborations we aim at improving the combination of geomodels with differing file formats and data characteristics. This will create an increased competency in modelling visualization and the ability to interchange and communicate models more easily. By combining knowledge and experience in geomodelling with expertise in Virtual Reality visualization partners of EIT Raw Materials but also external parties will have the possibility to visualize, analyze and validate their geomodels in immersive VR-environments. The current network combines partners from universities, research institutes, geological surveys and industry with a strong background in geological 3D-modelling and 3D visualization and comprises: Luleå University of Technology, Geological Survey of Finland, Geological Survey of Denmark and Greenland, TUBA Freiberg, Uppsala University, Geological Survey of France, RWTH Aachen, DMT, KGHM Cuprum, Boliden, Montan

  13. Utilization and Organization of Visually Presented Information. Final Report.

    Science.gov (United States)

    Dick, A. O.

    The experiments discussed in this report do not have a direct relationship to each other but represent work on a series of sub-issues within the general framework of visual processing of information. Because of this discreteness, the report is organized into a series of papers. The first is a general review of tachistoscopic work on iconic memory…

  14. Impaired Integration of Emotional Faces and Affective Body Context in a Rare Case of Developmental Visual Agnosia

    Science.gov (United States)

    Aviezer, Hillel; Hassin, Ran. R.; Bentin, Shlomo

    2011-01-01

    In the current study we examined the recognition of facial expressions embedded in emotionally expressive bodies in case LG, an individual with a rare form of developmental visual agnosia who suffers from severe prosopagnosia. Neuropsychological testing demonstrated that LG‘s agnosia is characterized by profoundly impaired visual integration. Unlike individuals with typical developmental prosopagnosia who display specific difficulties with face identity (but typically not expression) recognition, LG was also impaired at recognizing isolated facial expressions. By contrast, he successfully recognized the expressions portrayed by faceless emotional bodies handling affective paraphernalia. When presented with contextualized faces in emotional bodies his ability to detect the emotion expressed by a face did not improve even if it was embedded in an emotionally-congruent body context. Furthermore, in contrast to controls, LG displayed an abnormal pattern of contextual influence from emotionally-incongruent bodies. The results are interpreted in the context of a general integration deficit in developmental visual agnosia, suggesting that impaired integration may extend from the level of the face to the level of the full person. PMID:21482423

  15. Integrated Information Systems Across the Weather-Climate Continuum

    Science.gov (United States)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  16. EFFICIENCY INDICATORS INFORMATION MANAGEMENT IN INTEGRATED SECURITY SYSTEMS

    Directory of Open Access Journals (Sweden)

    N. S. Rodionova

    2014-01-01

    Full Text Available Summary. Introduction of information technology to improve the efficiency of security activity leads to the need to consider a number of negative factors associated with in consequence of the use of these technologies as a key element of modern security systems. One of the most notable factor is the exposure to information processes in protection systems security threats. This largely relates to integrated security systems (ISS is the system of protection with the highest level of informatization security functions. Significant damage to protected objects that they could potentially incur as a result of abnormal operation ISS, puts a very actual problem of assessing factors that reduce the efficiency of the ISS to justify the ways and methods to improve it. Because of the nature of threats and blocking distortion of information in the ISS of interest are: the volume undistorted ISF working environment, as a characteristic of data integrity; time access to information as a feature of its availability. This in turn leads to the need to use these parameters as the performance characteristics of information processes in the ISS - the completeness and timeliness of information processing. The article proposes performance indicators of information processes in integrated security systems in terms of optimal control procedures to protect information from unauthorized access. Set the considered parameters allows to conduct comprehensive security analysis of integrated security systems, and to provide recommendations to improve the management of information security procedures in them.

  17. Risk Informed Structural Systems Integrity Management

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper is predominantly a conceptual contribution with an appraisal of major developments in risk informed structural integrity management for offshore installations together with a discussion of their merits and the challenges which still lie ahead. Starting point is taken in a selected...... overview of research and development contributions which have formed the basis for Risk Based Inspection Planning (RBI) as we know it today. Thereafter an outline of the methodical basis for risk informed structural systems integrity management, i.e. the Bayesian decision analysis is provided in summary....... The main focus is here directed on RBI for offshore facilities subject to fatigue damages. New ideas and methodical frameworks in the area of robustness and resilience modeling of structural systems are then introduced, and it is outlined how these may adequately be utilized to enhance Structural Integrity...

  18. Optimal multiple-information integration inherent in a ring neural network

    International Nuclear Information System (INIS)

    Takiyama, Ken

    2017-01-01

    Although several behavioral experiments have suggested that our neural system integrates multiple sources of information based on the certainty of each type of information in the manner of maximum-likelihood estimation, it is unclear how the maximum-likelihood estimation is implemented in our neural system. Here, I investigate the relationship between maximum-likelihood estimation and a widely used ring-type neural network model that is used as a model of visual, motor, or prefrontal cortices. Without any approximation or ansatz, I analytically demonstrate that the equilibrium of an order parameter in the neural network model exactly corresponds to the maximum-likelihood estimation when the strength of the symmetrical recurrent synaptic connectivity within a neural population is appropriately stronger than that of asymmetrical connectivity, that of local and external inputs, and that of symmetrical or asymmetrical connectivity between different neural populations. In this case, strengths of local and external inputs or those of symmetrical connectivity between different neural populations exactly correspond to the input certainty in maximum-likelihood estimation. Thus, my analysis suggests appropriately strong symmetrical recurrent connectivity as a possible candidate for implementing the maximum-likelihood estimation within our neural system. (paper)

  19. Proceedings IEEE Visualization Conference and IEEE Information Visualization Conference (VIS'07 and INFOVIS'07, Sacramento CA, USA, October 28-November 1, 2007)

    NARCIS (Netherlands)

    Chen, M.; Hansen, C.; North, C.; Pang, A.; Wijk, van J.J.

    2007-01-01

    These are the proceedings of the IEEE Visualization Conference 2007 (Vis 2007) and the IEEE Information Visualization Conference 2007 (InfoVis 2007) held during October 28 to November 1, 2007 in Sacramento, California. The power of using computing technology to create useful, effective imagery for

  20. Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course

    Science.gov (United States)

    Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio

    2012-01-01

    In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…

  1. CSIR's new integrated electronic library information-system

    CSIR Research Space (South Africa)

    Michie, A

    1995-08-01

    Full Text Available The CSIR has developed a CDROM-based electronic library information system which provides the ability to reproduce and search for published information and colour brochures on the computer screen. The system integrates this information with online...

  2. Visualization of Information Based on Tweets from Meteorological, Climatological, and Geophysical Agency: BMKG

    Directory of Open Access Journals (Sweden)

    Mira Chandra Kirana

    2018-05-01

    Full Text Available Indonesia is a country with high rate of natural disaster, so any information about early warning of natural disaster are very important. Social media such as Twitter become one of tools for spreading information about natural disaster warning from account of  Meteorology, Climatology and Geophysics Agency (BMKG, therefore, the effectiveness of this kind of method for providing information have not known yet. The statement becomes the reason that the visualization is needed to analyze the information spread of natural disaster early warning with Twitter. This study is performed in 3 steps, which is retrieving, preprocessing then visualization. Retrieving process is used to get the tweet data of BMKG account in twitter then save into database, while preprocessing is done to process tweet data that has been saved in database by grouping the data according to the category, which includes Meteorology, Climatology, and Geophysics according to existing keyword, also reduce tweet data that is unimportant like BMKG's reply tweet toward other user's question. Visualization stage uses the result of preprocessing data into line chart graphic, bar chart and pie chart. Highest information spreading from BMKG tweet happened in Geophysics at March with 25987 re-tweets, while the highest peak happened at 2 March 2016 with information about 8.3 SR earthquake in Mentawai islands, West Sumatera with total of 6145 re-tweets.

  3. How cortical neurons help us see: visual recognition in the human brain

    Science.gov (United States)

    Blumberg, Julie; Kreiman, Gabriel

    2010-01-01

    Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex. PMID:20811161

  4. #FluxFlow: Visual Analysis of Anomalous Information Spreading on Social Media.

    Science.gov (United States)

    Zhao, Jian; Cao, Nan; Wen, Zhen; Song, Yale; Lin, Yu-Ru; Collins, Christopher

    2014-12-01

    We present FluxFlow, an interactive visual analysis system for revealing and analyzing anomalous information spreading in social media. Everyday, millions of messages are created, commented, and shared by people on social media websites, such as Twitter and Facebook. This provides valuable data for researchers and practitioners in many application domains, such as marketing, to inform decision-making. Distilling valuable social signals from the huge crowd's messages, however, is challenging, due to the heterogeneous and dynamic crowd behaviors. The challenge is rooted in data analysts' capability of discerning the anomalous information behaviors, such as the spreading of rumors or misinformation, from the rest that are more conventional patterns, such as popular topics and newsworthy events, in a timely fashion. FluxFlow incorporates advanced machine learning algorithms to detect anomalies, and offers a set of novel visualization designs for presenting the detected threads for deeper analysis. We evaluated FluxFlow with real datasets containing the Twitter feeds captured during significant events such as Hurricane Sandy. Through quantitative measurements of the algorithmic performance and qualitative interviews with domain experts, the results show that the back-end anomaly detection model is effective in identifying anomalous retweeting threads, and its front-end interactive visualizations are intuitive and useful for analysts to discover insights in data and comprehend the underlying analytical model.

  5. A content analysis of visual cancer information: prevalence and use of photographs and illustrations in printed health materials.

    Science.gov (United States)

    King, Andy J

    2015-01-01

    Researchers and practitioners have an increasing interest in visual components of health information and health communication messages. This study contributes to this evolving body of research by providing an account of the visual images and information featured in printed cancer communication materials. Using content analysis, 147 pamphlets and 858 images were examined to determine how frequently images are used in printed materials, what types of images are used, what information is conveyed visually, and whether or not current recommendations for the inclusion of visual content were being followed. Although visual messages were found to be common in printed health materials, existing recommendations about the inclusion of visual content were only partially followed. Results are discussed in terms of how relevant theoretical frameworks in the areas of behavior change and visual persuasion seem to be used in these materials, as well as how more theory-oriented research is necessary in visual messaging efforts.

  6. REALIZATION OF VISUAL TECHNIQUE DIDACTIC APPROACH IN ALGORITHMIC TRAINING OF STUDENTS THROUGH INFORMATION AND COMMUNICATION TECHNOLOGIES OF EDUCATIONAL ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Sergii Voloshynov

    2016-12-01

    Full Text Available The article examines the development of visual learning theory, states functions of accuracy and peculiarities of visual technique realization in modern studying process, it defines the concept of “Visual learning environment” and didactic role of interactive and multimedia visualization processes. Author examines the problem of determination of cognitive visualization potential in algorithmic training of students through information and communication technologies of educational environment. This article specifies functions of visual aids use and implementation features of the specified principle in modern educational process and proves the didactic role of interactive multimedia visualization process that stimulates cognitive activity of student and activates perceptive mechanism of teaching information. It analyzes problem of cognitive visualization potential capacity signification while training future marine personnel using informational communicative educational environment.

  7. An integrated audio-visual impact tool for wind turbine installations

    International Nuclear Information System (INIS)

    Lymberopoulos, N.; Belessis, M.; Wood, M.; Voutsinas, S.

    1996-01-01

    An integrated software tool was developed for the design of wind parks that takes into account their visual and audio impact. The application is built on a powerful hardware platform and is fully operated through a graphic user interface. The topography, the wind turbines and the daylight conditions are realised digitally. The wind park can be animated in real time and the user can take virtual walks in it while the set-up of the park can be altered interactively. In parallel, the wind speed levels on the terrain, the emitted noise intensity, the annual energy output and the cash flow can be estimated at any stage of the session and prompt the user for rearrangements. The tool has been used to visually simulate existing wind parks in St. Breok, UK and Andros Island, Greece. The results lead to the conclusion that such a tool can assist to the public acceptance and licensing procedures of wind parks. (author)

  8. Information Security Management - Part Of The Integrated Management System

    Science.gov (United States)

    Manea, Constantin Adrian

    2015-07-01

    The international management standards allow their integrated approach, thereby combining aspects of particular importance to the activity of any organization, from the quality management systems or the environmental management of the information security systems or the business continuity management systems. Although there is no national or international regulation, nor a defined standard for the Integrated Management System, the need to implement an integrated system occurs within the organization, which feels the opportunity to integrate the management components into a cohesive system, in agreement with the purpose and mission publicly stated. The issues relating to information security in the organization, from the perspective of the management system, raise serious questions to any organization in the current context of electronic information, reason for which we consider not only appropriate but necessary to promote and implement an Integrated Management System Quality - Environment - Health and Operational Security - Information Security

  9. Ontology Based Resolution of Semantic Conflicts in Information Integration

    Institute of Scientific and Technical Information of China (English)

    LU Han; LI Qing-zhong

    2004-01-01

    Semantic conflict is the conflict caused by using different ways in heterogeneous systems to express the same entity in reality.This prevents information integration from accomplishing semantic coherence.Since ontology helps to solve semantic problems, this area has become a hot topic in information integration.In this paper, we introduce semantic conflict into information integration of heterogeneous applications.We discuss the origins and categories of the conflict, and present an ontology-based schema mapping approach to eliminate semantic conflicts.

  10. Storytelling and Visualization: An Extended Survey

    Directory of Open Access Journals (Sweden)

    Chao Tong

    2018-03-01

    Full Text Available Throughout history, storytelling has been an effective way of conveying information and knowledge. In the field of visualization, storytelling is rapidly gaining momentum and evolving cutting-edge techniques that enhance understanding. Many communities have commented on the importance of storytelling in data visualization. Storytellers tend to be integrating complex visualizations into their narratives in growing numbers. In this paper, we present a survey of storytelling literature in visualization and present an overview of the common and important elements in storytelling visualization. We also describe the challenges in this field as well as a novel classification of the literature on storytelling in visualization. Our classification scheme highlights the open and unsolved problems in this field as well as the more mature storytelling sub-fields. The benefits offer a concise overview and a starting point into this rapidly evolving research trend and provide a deeper understanding of this topic.

  11. Audio-Visual Speech Recognition Using MPEG-4 Compliant Visual Features

    Directory of Open Access Journals (Sweden)

    Petar S. Aleksic

    2002-11-01

    Full Text Available We describe an audio-visual automatic continuous speech recognition system, which significantly improves speech recognition performance over a wide range of acoustic noise levels, as well as under clean audio conditions. The system utilizes facial animation parameters (FAPs supported by the MPEG-4 standard for the visual representation of speech. We also describe a robust and automatic algorithm we have developed to extract FAPs from visual data, which does not require hand labeling or extensive training procedures. The principal component analysis (PCA was performed on the FAPs in order to decrease the dimensionality of the visual feature vectors, and the derived projection weights were used as visual features in the audio-visual automatic speech recognition (ASR experiments. Both single-stream and multistream hidden Markov models (HMMs were used to model the ASR system, integrate audio and visual information, and perform a relatively large vocabulary (approximately 1000 words speech recognition experiments. The experiments performed use clean audio data and audio data corrupted by stationary white Gaussian noise at various SNRs. The proposed system reduces the word error rate (WER by 20% to 23% relatively to audio-only speech recognition WERs, at various SNRs (0–30 dB with additive white Gaussian noise, and by 19% relatively to audio-only speech recognition WER under clean audio conditions.

  12. Semantic congruency but not temporal synchrony enhances long-term memory performance for audio-visual scenes.

    Science.gov (United States)

    Meyerhoff, Hauke S; Huff, Markus

    2016-04-01

    Human long-term memory for visual objects and scenes is tremendous. Here, we test how auditory information contributes to long-term memory performance for realistic scenes. In a total of six experiments, we manipulated the presentation modality (auditory, visual, audio-visual) as well as semantic congruency and temporal synchrony between auditory and visual information of brief filmic clips. Our results show that audio-visual clips generally elicit more accurate memory performance than unimodal clips. This advantage even increases with congruent visual and auditory information. However, violations of audio-visual synchrony hardly have any influence on memory performance. Memory performance remained intact even with a sequential presentation of auditory and visual information, but finally declined when the matching tracks of one scene were presented separately with intervening tracks during learning. With respect to memory performance, our results therefore show that audio-visual integration is sensitive to semantic congruency but remarkably robust against asymmetries between different modalities.

  13. Visualization of Anatomical Information in Near-Infrared Imaging for Robotic Urological Surgery

    DEFF Research Database (Denmark)

    Savarimuthu, Thiusius Rajeeth; Minnillo, Brian; Taylor, Russels

    2011-01-01

    investigation of nerves, blood vessels, and tumors has received prior attention, we present a new prototype system for real-time multimodal image registration that focuses on the visualization of the urinary tract. By providing an accurate registration between stereo video images and a near infrared imager, we......Commercial telerobotic surgery systems for soft tissue surgery are generally limited to visual imaging, though it is possible to simultaneously view picture-in-picture visualization of another workstation. However, it is not easy to correlate such information with the primary endoscopic view since...

  14. A Real-Time Construction Safety Monitoring System for Hazardous Gas Integrating Wireless Sensor Network and Building Information Modeling Technologies.

    Science.gov (United States)

    Cheung, Weng-Fong; Lin, Tzu-Hsuan; Lin, Yu-Cheng

    2018-02-02

    In recent years, many studies have focused on the application of advanced technology as a way to improve management of construction safety management. A Wireless Sensor Network (WSN), one of the key technologies in Internet of Things (IoT) development, enables objects and devices to sense and communicate environmental conditions; Building Information Modeling (BIM), a revolutionary technology in construction, integrates database and geometry into a digital model which provides a visualized way in all construction lifecycle management. This paper integrates BIM and WSN into a unique system which enables the construction site to visually monitor the safety status via a spatial, colored interface and remove any hazardous gas automatically. Many wireless sensor nodes were placed on an underground construction site and to collect hazardous gas level and environmental condition (temperature and humidity) data, and in any region where an abnormal status is detected, the BIM model will alert the region and an alarm and ventilator on site will start automatically for warning and removing the hazard. The proposed system can greatly enhance the efficiency in construction safety management and provide an important reference information in rescue tasks. Finally, a case study demonstrates the applicability of the proposed system and the practical benefits, limitations, conclusions, and suggestions are summarized for further applications.

  15. Visual Criterion for Understanding the Notion of Convergence if Integrals in One Parameter

    Science.gov (United States)

    Alves, Francisco Regis Vieira

    2014-01-01

    Admittedly, the notion of generalized integrals in one parameter has a fundamental role. En virtue that, in this paper, we discuss and characterize an approach for to promote the visualization of this scientific mathematical concept. We still indicate the possibilities of graphical interpretation of formal properties related to notion of…

  16. The Role of Sensory-Motor Information in Object Recognition: Evidence from Category-Specific Visual Agnosia

    Science.gov (United States)

    Wolk, D.A.; Coslett, H.B.; Glosser, G.

    2005-01-01

    The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…

  17. Design Issues and Information Contents of the Provincial Government Websites of Indonesia: A Content Analysis on Visual Messages

    Directory of Open Access Journals (Sweden)

    Achmad Syarief

    2009-07-01

    Full Text Available A website is not just merely act as an object of displaying information, but it also represents a contextual medium of communication through visuals and contents. The interplay of website design elements builds up meanings that affect users beyond what previous communication practices have uncovered. Previous research acknowledges that visuals and contents have significant effects in attracting users’ attention and trust. Thus, the ability of a website to provide credible information through visuals and contents to target users is therefore plays great importance in the success of a website. However, although a considerable number of researches on website design have been performed, study in understanding the characteristics of site’s visual appearances and information contents for the purpose of promoting local investment in Indonesia has been very limited. This paper addresses visual design issues and information contents of eighteen provincial government websites of Indonesia. Through content analysis, the paper comparatively examines visual appearances, information contents, and functions of each website, in order to determine visual characteristics and contents that suit the purpose of promoting local potencies. The paper focuses on commonality, discrepancy, and pattern of contents, provide suggestions to improve the use of provincial government website design of Indonesia.

  18. Perception of audio-visual speech synchrony in Spanish-speaking children with and without specific language impairment.

    Science.gov (United States)

    Pons, Ferran; Andreu, Llorenç; Sanz-Torrent, Monica; Buil-Legaz, Lucía; Lewkowicz, David J

    2013-06-01

    Speech perception involves the integration of auditory and visual articulatory information, and thus requires the perception of temporal synchrony between this information. There is evidence that children with specific language impairment (SLI) have difficulty with auditory speech perception but it is not known if this is also true for the integration of auditory and visual speech. Twenty Spanish-speaking children with SLI, twenty typically developing age-matched Spanish-speaking children, and twenty Spanish-speaking children matched for MLU-w participated in an eye-tracking study to investigate the perception of audiovisual speech synchrony. Results revealed that children with typical language development perceived an audiovisual asynchrony of 666 ms regardless of whether the auditory or visual speech attribute led the other one. Children with SLI only detected the 666 ms asynchrony when the auditory component preceded [corrected] the visual component. None of the groups perceived an audiovisual asynchrony of 366 ms. These results suggest that the difficulty of speech processing by children with SLI would also involve difficulties in integrating auditory and visual aspects of speech perception.

  19. Development of the JNC geological disposal technical information integration system subjected for repository design and safety assessment

    International Nuclear Information System (INIS)

    Ishihara, Yoshinao; Ito, Takashi; Kobayashi, Shigeki; Neyama, Atsushi

    2004-02-01

    On this work, system manufacture about disposal technology and safety assessment field was performed towards construction of the JNC Geological Disposal Technical Information Integration System which systematized three fields of technical information acquired in investigation (site characteristic investigation) of geology environmental conditions, disposal technology (design of deep repository), and performance/safety assessment. The technical information database managed focusing on the technical information concerning individual research of an examination, analysis, etc. and the parameter set database managed focusing on the set up data set used in case of comprehensive evaluation are examined. In order to support and promote share and use of the technical information registered and managed by the database, utility functions, such as a technical information registration function, technical information search/browse function, analysis support function, and visualization function, are considered, and the system realized in these functions is built. The built system is installed in the server of JNC, and the functional check examination is carried out. (author)

  20. Information Integration Architecture Development

    OpenAIRE

    Faulkner, Stéphane; Kolp, Manuel; Nguyen, Duy Thai; Coyette, Adrien; Do, Thanh Tung; 16th International Conference on Software Engineering and Knowledge Engineering

    2004-01-01

    Multi-Agent Systems (MAS) architectures are gaining popularity for building open, distributed, and evolving software required by systems such as information integration applications. Unfortunately, despite considerable work in software architecture during the last decade, few research efforts have aimed at truly defining patterns and languages for designing such multiagent architectures. We propose a modern approach based on organizational structures and architectural description lan...

  1. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  2. Math for visualization, visualizing math

    NARCIS (Netherlands)

    Wijk, van J.J.; Hart, G.; Sarhangi, R.

    2013-01-01

    I present an overview of our work in visualization, and reflect on the role of mathematics therein. First, mathematics can be used as a tool to produce visualizations, which is illustrated with examples from information visualization, flow visualization, and cartography. Second, mathematics itself

  3. Motor-auditory-visual integration: The role of the human mirror neuron system in communication and communication disorders.

    Science.gov (United States)

    Le Bel, Ronald M; Pineda, Jaime A; Sharma, Anu

    2009-01-01

    The mirror neuron system (MNS) is a trimodal system composed of neuronal populations that respond to motor, visual, and auditory stimulation, such as when an action is performed, observed, heard or read about. In humans, the MNS has been identified using neuroimaging techniques (such as fMRI and mu suppression in the EEG). It reflects an integration of motor-auditory-visual information processing related to aspects of language learning including action understanding and recognition. Such integration may also form the basis for language-related constructs such as theory of mind. In this article, we review the MNS system as it relates to the cognitive development of language in typically developing children and in children at-risk for communication disorders, such as children with autism spectrum disorder (ASD) or hearing impairment. Studying MNS development in these children may help illuminate an important role of the MNS in children with communication disorders. Studies with deaf children are especially important because they offer potential insights into how the MNS is reorganized when one modality, such as audition, is deprived during early cognitive development, and this may have long-term consequences on language maturation and theory of mind abilities. Readers will be able to (1) understand the concept of mirror neurons, (2) identify cortical areas associated with the MNS in animal and human studies, (3) discuss the use of mu suppression in the EEG for measuring the MNS in humans, and (4) discuss MNS dysfunction in children with (ASD).

  4. Visual cues and listening effort: individual variability.

    Science.gov (United States)

    Picou, Erin M; Ricketts, Todd A; Hornsby, Benjamin W Y

    2011-10-01

    To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and 2 presentation modalities (audio only [AO] and auditory-visual [AV]). Signal-to-noise ratios were adjusted to provide matched speech recognition across audio-only and AV noise conditions. Also measured were subjective perceptions of listening effort and 2 predictive variables: (a) lipreading ability and (b) WMC. Objective and subjective results indicated that listening effort increased in the presence of noise, but on average the addition of visual cues did not significantly affect the magnitude of listening effort. Although there was substantial individual variability, on average participants who were better lipreaders or had larger WMCs demonstrated reduced listening effort in noise in AV conditions. Overall, the results support the hypothesis that integrating auditory and visual cues requires cognitive resources in some participants. The data indicate that low lipreading ability or low WMC is associated with relatively effortful integration of auditory and visual information in noise.

  5. Heads First: Visual Aftereffects Reveal Hierarchical Integration of Cues to Social Attention.

    Directory of Open Access Journals (Sweden)

    Sarah Cooney

    Full Text Available Determining where another person is attending is an important skill for social interaction that relies on various visual cues, including the turning direction of the head and body. This study reports a novel high-level visual aftereffect that addresses the important question of how these sources of information are combined in gauging social attention. We show that adapting to images of heads turned 25° to the right or left produces a perceptual bias in judging the turning direction of subsequently presented bodies. In contrast, little to no change in the judgment of head orientation occurs after adapting to extremely oriented bodies. The unidirectional nature of the aftereffect suggests that cues from the human body signaling social attention are combined in a hierarchical fashion and is consistent with evidence from single-cell recording studies in nonhuman primates showing that information about head orientation can override information about body posture when both are visible.

  6. The Use of Illusory Visual Information in Perception and Action

    NARCIS (Netherlands)

    D.D.J. de Grave (Denise)

    2005-01-01

    markdownabstract__Abstract__ Humans constantly interact with objects in the environment (e.g. grasp a pencil for writing or pick up a cup of tea) without making many mistakes in these performed actions. To guide these actions, visual information is used. In order to accurately grasp and pick up

  7. Developing visual images for communicating information about ...

    African Journals Online (AJOL)

    African Journal of AIDS Research ... The objective of this study was to design visuals or pictograms illustrating various ARV side effects and to ... adherence, patient education, South Africa, visual aids, visual communication, visual literacy

  8. PENGEMBANGAN ACADEMIC INFORMATION DASHBOARD EXECUTIVE (A-INDEX DENGAN PENTAHO DATA INTEGRATION DAN QLIKVIEW

    Directory of Open Access Journals (Sweden)

    Herry Sofyan

    2016-01-01

    Full Text Available Information Dashboard Executive (INDEX is a visual representation of data in the form of dashboards that are used to get a snapshot of performance in every business process so as to facilitate the executives took a quick response. Pentaho is a BI application is free open source software (FOSS and runs on top of the Java platform. QlikView is focused on simplifying decision making for business users across the organization. Processing needs to be able to optimize data analysis functions of PDPT is developing an interactive dashboard visualization data. The dashboard will be built using the data pentaho integration as a gateway connecting between database applications with Data PDPT and data visualization are developed by using QlikView. Software development methodologies in application development work is incremental method which is a combination of linear and iterative method with parallel modifications in the process the iterative process so that the project done faster.The results of this study are is the data representation of the modeling query is constructed able to describe the activity / student profiles in a certain semester. The data representations constructed include active distribution per class, per student graduation force distribution, distribution of student status, distribution provinces of origin of students per class, the distribution of the number of class participants, distribution of credits lecturers and distribution of subject.

  9. Modular multiple sensors information management for computer-integrated surgery.

    Science.gov (United States)

    Vaccarella, Alberto; Enquobahrie, Andinet; Ferrigno, Giancarlo; Momi, Elena De

    2012-09-01

    In the past 20 years, technological advancements have modified the concept of modern operating rooms (ORs) with the introduction of computer-integrated surgery (CIS) systems, which promise to enhance the outcomes, safety and standardization of surgical procedures. With CIS, different types of sensor (mainly position-sensing devices, force sensors and intra-operative imaging devices) are widely used. Recently, the need for a combined use of different sensors raised issues related to synchronization and spatial consistency of data from different sources of information. In this study, we propose a centralized, multi-sensor management software architecture for a distributed CIS system, which addresses sensor information consistency in both space and time. The software was developed as a data server module in a client-server architecture, using two open-source software libraries: Image-Guided Surgery Toolkit (IGSTK) and OpenCV. The ROBOCAST project (FP7 ICT 215190), which aims at integrating robotic and navigation devices and technologies in order to improve the outcome of the surgical intervention, was used as the benchmark. An experimental protocol was designed in order to prove the feasibility of a centralized module for data acquisition and to test the application latency when dealing with optical and electromagnetic tracking systems and ultrasound (US) imaging devices. Our results show that a centralized approach is suitable for minimizing synchronization errors; latency in the client-server communication was estimated to be 2 ms (median value) for tracking systems and 40 ms (median value) for US images. The proposed centralized approach proved to be adequate for neurosurgery requirements. Latency introduced by the proposed architecture does not affect tracking system performance in terms of frame rate and limits US images frame rate at 25 fps, which is acceptable for providing visual feedback to the surgeon in the OR. Copyright © 2012 John Wiley & Sons, Ltd.

  10. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    Science.gov (United States)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  11. Geoscience information integration and visualization research of Shandong Province, China based on ArcGIS engine

    Science.gov (United States)

    Xu, Mingzhu; Gao, Zhiqiang; Ning, Jicai

    2014-10-01

    To improve the access efficiency of geoscience data, efficient data model and storage solutions should be used. Geoscience data is usually classified by format or coordinate system in existing storage solutions. When data is large, it is not conducive to search the geographic features. In this study, a geographical information integration system of Shandong province, China was developed based on the technology of ArcGIS Engine, .NET, and SQL Server. It uses Geodatabase spatial data model and ArcSDE to organize and store spatial and attribute data and establishes geoscience database of Shangdong. Seven function modules were designed: map browse, database and subject management, layer control, map query, spatial analysis and map symbolization. The system's characteristics of can be browsed and managed by geoscience subjects make the system convenient for geographic researchers and decision-making departments to use the data.

  12. FACILITATING INTEGRATED SPATIO-TEMPORAL VISUALIZATION AND ANALYSIS OF HETEROGENEOUS ARCHAEOLOGICAL AND PALAEOENVIRONMENTAL RESEARCH DATA

    Directory of Open Access Journals (Sweden)

    C. Willmes

    2012-07-01

    Full Text Available In the context of the Collaborative Research Centre 806 "Our way to Europe" (CRC806, a research database is developed for integrating data from the disciplines of archaeology, the geosciences and the cultural sciences to facilitate integrated access to heterogeneous data sources. A practice-oriented data integration concept and its implementation is presented in this contribution. The data integration approach is based on the application of Semantic Web Technology and is applied to the domains of archaeological and palaeoenvironmental data. The aim is to provide integrated spatio-temporal access to an existing wealth of data to facilitate research on the integrated data basis. For the web portal of the CRC806 research database (CRC806-Database, a number of interfaces and applications have been evaluated, developed and implemented for exposing the data to interactive analysis and visualizations.

  13. The Dilution Effect and Information Integration in Perceptual Decision Making.

    Science.gov (United States)

    Hotaling, Jared M; Cohen, Andrew L; Shiffrin, Richard M; Busemeyer, Jerome R

    2015-01-01

    In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies), may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.

  14. The Dilution Effect and Information Integration in Perceptual Decision Making.

    Directory of Open Access Journals (Sweden)

    Jared M Hotaling

    Full Text Available In cognitive science there is a seeming paradox: On the one hand, studies of human judgment and decision making have repeatedly shown that people systematically violate optimal behavior when integrating information from multiple sources. On the other hand, optimal models, often Bayesian, have been successful at accounting for information integration in fields such as categorization, memory, and perception. This apparent conflict could be due, in part, to different materials and designs that lead to differences in the nature of processing. Stimuli that require controlled integration of information, such as the quantitative or linguistic information (commonly found in judgment studies, may lead to suboptimal performance. In contrast, perceptual stimuli may lend themselves to automatic processing, resulting in integration that is closer to optimal. We tested this hypothesis with an experiment in which participants categorized faces based on resemblance to a family patriarch. The amount of evidence contained in the top and bottom halves of each test face was independently manipulated. These data allow us to investigate a canonical example of sub-optimal information integration from the judgment and decision making literature, the dilution effect. Splitting the top and bottom halves of a face, a manipulation meant to encourage controlled integration of information, produced farther from optimal behavior and larger dilution effects. The Multi-component Information Accumulation model, a hybrid optimal/averaging model of information integration, successfully accounts for key accuracy, response time, and dilution effects.

  15. Development of a Disaster Information Visualization Dashboard: A Case Study of Three Typhoons in Taiwan in 2016

    Science.gov (United States)

    Su, Wen-Ray; Tsai, Yuan-Fan; Huang, Kuei-Chin; Hsieh, Ching-En

    2017-04-01

    To facilitate disaster response and enhance the effectiveness of disaster prevention and relief, people and emergency response personnel should be able to rapidly acquire and understand information when disasters occur. However, in existing disaster platforms information is typically presented in text tables, static charts, and maps with points. These formats do not make it easy for users to understand the overall situation. Therefore, this study converts data into human-readable charts by using data visualization techniques, and builds a disaster information dashboard that is concise, attractive and flexible. This information dashboard integrates temporally and spatially correlated data, disaster statistics according to category and county, lists of disasters, and any other relevant information. The graphs are animated and interactive. The dashboard allows users to filter the data according to their needs and thus to assimilate the information more rapidly. In this study, we applied the information dashboard to the analysis of landslides during three typhoon events in 2016: Typhoon Nepartak, Typhoon Meranti and Typhoon Megi. According to the statistical results in the dashboard, the order of frequency of the disaster categories in all three events combined was rock fall, roadbed loss, slope slump, road blockage and debris flow. Disasters occurred mainly in the areas that received the most rainfall. Typhoons Nepartak and Meranti mainly affected Taitung, and Typhoon Megi mainly affected Kaohsiung. The towns Xiulin, Fengbin, Fenglin and Guangfu in Hualian County were all issued with debris flow warnings in all three typhoon events. The disaster information dashboard developed in this study allows the user to rapidly assess the overall disaster situation. It clearly and concisely reveals interactions between time, space and disaster type, and also provides comprehensive details about the disaster. The dashboard provides a foundation for future disaster visualization

  16. Brain activity patterns uniquely supporting visual feature integration after traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Anjali eRaja Beharelle

    2011-12-01

    Full Text Available Traumatic brain injury (TBI patients typically respond more slowly and with more variability than controls during tasks of attention requiring speeded reaction time. These behavioral changes are attributable, at least in part, to diffuse axonal injury (DAI, which affects integrated processing in distributed systems. Here we use a multivariate method sensitive to distributed neural activity to compare brain activity patterns of patients with chronic phase moderate-to-severe TBI to those of controls during performance on a visual feature-integration task assessing complex attentional processes that has previously shown sensitivity to TBI. The TBI patients were carefully screened to be free of large focal lesions that can affect performance and brain activation independently of DAI. The task required subjects to hold either one or three features of a target in mind while suppressing responses to distracting information. In controls, the multi-feature condition activated a distributed network including limbic, prefrontal, and medial temporal structures. TBI patients engaged this same network in the single-feature and baseline conditions. In multi-feature presentations, TBI patients alone activated additional frontal, parietal, and occipital regions. These results are consistent with neuroimaging studies using tasks assessing different cognitive domains, where increased spread of brain activity changes was associated with TBI. Our results also extend previous findings that brain activity for relatively moderate task demands in TBI patients is similar to that associated with of high task demands in controls.

  17. An integrated healthcare enterprise information portal and healthcare information system framework.

    Science.gov (United States)

    Hsieh, S L; Lai, Feipei; Cheng, P H; Chen, J L; Lee, H H; Tsai, W N; Weng, Y C; Hsieh, S H; Hsu, K P; Ko, L F; Yang, T H; Chen, C H

    2006-01-01

    The paper presents an integrated, distributed Healthcare Enterprise Information Portal (HEIP) and Hospital Information Systems (HIS) framework over wireless/wired infrastructure at National Taiwan University Hospital (NTUH). A single sign-on solution for the hospital customer relationship management (CRM) in HEIP has been established. The outcomes of the newly developed Outpatient Information Systems (OIS) in HIS are discussed. The future HEIP blueprints with CRM oriented features: e-Learning, Remote Consultation and Diagnosis (RCD), as well as on-Line Vaccination Services are addressed. Finally, the integrated HEIP and HIS architectures based on the middleware technologies are proposed along with the feasible approaches. The preliminary performance of multi-media, time-based data exchanges over the wireless HEIP side is collected to evaluate the efficiency of the architecture.

  18. Image-Enabled Discourse: Investigating the Creation of Visual Information as Communicative Practice

    Science.gov (United States)

    Snyder, Jaime

    2012-01-01

    Anyone who has clarified a thought or prompted a response during a conversation by drawing a picture has exploited the potential of image making as an interactive tool for conveying information. Images are increasingly ubiquitous in daily communication, in large part due to advances in visually enabled information and communication technologies…

  19. INTEGRATED INFORMATION SYSTEM ARCHITECTURE PROVIDING BEHAVIORAL FEATURE

    Directory of Open Access Journals (Sweden)

    Vladimir N. Shvedenko

    2016-11-01

    Full Text Available The paper deals with creation of integrated information system architecture capable of supporting management decisions using behavioral features. The paper considers the architecture of information decision support system for production system management. The behavioral feature is given to an information system, and it ensures extraction, processing of information, management decision-making with both automated and automatic modes of decision-making subsystem being permitted. Practical implementation of information system with behavior is based on service-oriented architecture: there is a set of independent services in the information system that provides data of its subsystems or data processing by separate application under the chosen variant of the problematic situation settlement. For creation of integrated information system with behavior we propose architecture including the following subsystems: data bus, subsystem for interaction with the integrated applications based on metadata, business process management subsystem, subsystem for the current state analysis of the enterprise and management decision-making, behavior training subsystem. For each problematic situation a separate logical layer service is created in Unified Service Bus handling problematic situations. This architecture reduces system information complexity due to the fact that with a constant amount of system elements the number of links decreases, since each layer provides communication center of responsibility for the resource with the services of corresponding applications. If a similar problematic situation occurs, its resolution is automatically removed from problem situation metamodel repository and business process metamodel of its settlement. In the business process performance commands are generated to the corresponding centers of responsibility to settle a problematic situation.

  20. Visual Education

    DEFF Research Database (Denmark)

    Buhl, Mie; Flensborg, Ingelise

    2010-01-01

    The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating the functi......The intrinsic breadth of various types of images creates new possibilities and challenges for visual education. The digital media have moved the boundaries between images and other kinds of modalities (e.g. writing, speech and sound) and have augmented the possibilities for integrating...... to emerge in the interlocutory space of a global visual repertoire and diverse local interpretations. The two perspectives represent challenges for future visual education which require visual competences, not only within the arts but also within the subjects of natural sciences, social sciences, languages...

  1. Unconscious Cross-Modal Priming of Auditory Sound Localization by Visual Words

    Science.gov (United States)

    Ansorge, Ulrich; Khalid, Shah; Laback, Bernhard

    2016-01-01

    Little is known about the cross-modal integration of unconscious and conscious information. In the current study, we therefore tested whether the spatial meaning of an unconscious visual word, such as "up", influences the perceived location of a subsequently presented auditory target. Although cross-modal integration of unconscious…

  2. A Quality-Driven Methodology for Information Systems Integration

    Directory of Open Access Journals (Sweden)

    Iyad Zikra

    2017-10-01

    Full Text Available Information systems integration is an essential instrument for organizations to attain advantage in today’s growing and fast changing business and technology landscapes. Integration solutions generate added value by combining the functionality and services of heterogeneous and diverse systems. Existing integration environments tend to rely heavily on technical, platform-dependent skills. Consequently, the solutions that they enable are not optimally aligned with the envisioned business goals of the organization. Furthermore, the gap between the goals and the solutions complicates the task of evaluating the quality of integration solutions. To address these challenges, we propose a quality-driven, model-driven methodology for designing and developing integration solutions. The methodology spans organizational and systems design details, providing a holistic view of the integration solution and its underlying business goals. A multi-view meta-model provides the basis for the integration design. Quality factors that affect various aspects of the integration solution guide and inform the progress of the methodology. An example business case is presented to demonstrate the application of the methodology.

  3. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-07-24

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date.CONCLUSIONS: Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  4. Design of smart home sensor visualizations for older adults.

    Science.gov (United States)

    Le, Thai; Reeder, Blaine; Chung, Jane; Thompson, Hilaire; Demiris, George

    2014-01-01

    Smart home sensor systems provide a valuable opportunity to continuously and unobtrusively monitor older adult wellness. However, the density of sensor data can be challenging to visualize, especially for an older adult consumer with distinct user needs. We describe the design of sensor visualizations informed by interviews with older adults. The goal of the visualizations is to present sensor activity data to an older adult consumer audience that supports both longitudinal detection of trends and on-demand display of activity details for any chosen day. The design process is grounded through participatory design with older adult interviews during a six-month pilot sensor study. Through a secondary analysis of interviews, we identified the visualization needs of older adults. We incorporated these needs with cognitive perceptual visualization guidelines and the emotional design principles of Norman to develop sensor visualizations. We present a design of sensor visualization that integrate both temporal and spatial components of information. The visualization supports longitudinal detection of trends while allowing the viewer to view activity within a specific date. Appropriately designed visualizations for older adults not only provide insight into health and wellness, but also are a valuable resource to promote engagement within care.

  5. Integration of multidisciplinary technologies for real time target visualization and verification for radiotherapy.

    Science.gov (United States)

    Chang, Wen-Chung; Chen, Chin-Sheng; Tai, Hung-Chi; Liu, Chia-Yuan; Chen, Yu-Jen

    2014-01-01

    The current practice of radiotherapy examines target coverage solely from digitally reconstructed beam's eye view (BEV) in a way that is indirectly accessible and that is not in real time. We aimed to visualize treatment targets in real time from each BEV. The image data of phantom or patients from ultrasound (US) and computed tomography (CT) scans were captured to perform image registration. We integrated US, CT, US/CT image registration, robotic manipulation of US, a radiation treatment planning system, and a linear accelerator to constitute an innovative target visualization system. The performance of this algorithm segmented the target organ in CT images, transformed and reconstructed US images to match each orientation, and generated image registration in real time mode with acceptable accuracy. This image transformation allowed physicians to visualize the CT image-reconstructed target via a US probe outside the BEV that was non-coplanar to the beam's plane. It allowed the physicians to remotely control the US probe that was equipped on a robotic arm to dynamically trace and real time monitor the coverage of the target within the BEV during a simulated beam-on situation. This target visualization system may provide a direct remotely accessible and real time way to visualize, verify, and ensure tumor targeting during radiotherapy.

  6. Integrated risk information system (IRIS)

    Energy Technology Data Exchange (ETDEWEB)

    Tuxen, L. [Environmental Protection Agency, Washington, DC (United States)

    1990-12-31

    The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

  7. Visual data mining and analysis of software repositories

    NARCIS (Netherlands)

    Voinea, S.L.; Telea, A.C.

    2007-01-01

    In this article we describe an ongoing effort to integrate information visualization techniques into the process of configuration management for software systems. Our focus is to help software engineers manage the evolution of large and complex software systems by offering them effective and

  8. Students and teachers as developers of visual designs with AR for visual arts education

    DEFF Research Database (Denmark)

    Buhl, Mie

    mobile technology and Augmented Reality (AR). The project exemplified a strategy for visual learning design where diverse stakeholders’ competences were involved throughout the design process. Visual arts education in Denmark is challenged by the national curricula’s requirement of integrating digital...... technology in visual learning processes. Since 1984, information technology has been mandatory in the school subject as well as in teacher education (ref.). Still, many digital resources such as Photoshop and Paint, offer remediating more traditional means for pictorial production, which give rise......). Design Based Research and Educational Technology: Rethinking Technology and the Research Agenda. Educational Technology & Society, 11 (4), 2008, pp. 29–40Beetham, H. (2007): An approach to learning activity design. In: Beetham, H. & Sharpe, R. (eds.) Rethinking pedagogy for a digital age. Designing...

  9. Information Systems Integration and Enterprise Application Integration (EAI) Adoption: A Case from Financial Services

    Science.gov (United States)

    Lam, Wing

    2007-01-01

    Increasingly, organizations find that they need to integrate large number of information systems in order to support enterprise-wide business initiatives such as e-business, supply chain management and customer relationship management. To date, organizations have largely tended to address information systems (IS) integration in an ad-hoc manner.…

  10. Development of an integrated medical supply information system

    Science.gov (United States)

    Xu, Eric; Wermus, Marek; Blythe Bauman, Deborah

    2011-08-01

    The integrated medical supply inventory control system introduced in this study is a hybrid system that is shaped by the nature of medical supply, usage and storage capacity limitations of health care facilities. The system links demand, service provided at the clinic, health care service provider's information, inventory storage data and decision support tools into an integrated information system. ABC analysis method, economic order quantity model, two-bin method and safety stock concept are applied as decision support models to tackle inventory management issues at health care facilities. In the decision support module, each medical item and storage location has been scrutinised to determine the best-fit inventory control policy. The pilot case study demonstrates that the integrated medical supply information system holds several advantages for inventory managers, since it entails benefits of deploying enterprise information systems to manage medical supply and better patient services.

  11. Three dimensional visualization breakthrough in analysis and communication of technical information for nuclear waste management

    International Nuclear Information System (INIS)

    Alexander, D.H.; Cerny, B.A.; Hill, E.R.; Krupka, K.M.; Smoot, J.L.; Smith, D.R.; Waldo, K.

    1990-11-01

    Computer graphics systems that provide interactive display and manipulation of three-dimensional data are powerful tools for the analysis and communication of technical information required for characterization and design of a geologic repository for nuclear waste. Greater understanding of site performance and repository design information is possible when performance-assessment modeling results can be visually analyzed in relation to site geologic and hydrologic information and engineering data for surface and subsurface facilities. In turn, this enhanced visualization capability provides better communication between technical staff and program management with respect to analysis of available information and prioritization of program planning. A commercially-available computer system was used to demonstrate some of the current technology for three-dimensional visualization within the architecture of systems for nuclear waste management. This computer system was used to interactively visualize and analyze the information for two examples: (1) site-characterization and engineering data for a potential geologic repository at Yucca Mountain, Nevada; and (2) three-dimensional simulations of a hypothetical release and transport of contaminants from a source of radionuclides to the vadose zone. Users may assess the three-dimensional distribution of data and modeling results by interactive zooming, rotating, slicing, and peeling operations. For those parts of the database where information is sparse or not available, the software incorporates models for the interpolation and extrapolation of data over the three-dimensional space of interest. 12 refs., 4 figs

  12. Integrating Patient-Reported Outcomes into Spine Surgical Care through Visual Dashboards: Lessons Learned from Human-Centered Design

    Science.gov (United States)

    Hartzler, Andrea L.; Chaudhuri, Shomir; Fey, Brett C.; Flum, David R.; Lavallee, Danielle

    2015-01-01

    Introduction: The collection of patient-reported outcomes (PROs) draws attention to issues of importance to patients—physical function and quality of life. The integration of PRO data into clinical decisions and discussions with patients requires thoughtful design of user-friendly interfaces that consider user experience and present data in personalized ways to enhance patient care. Whereas most prior work on PROs focuses on capturing data from patients, little research details how to design effective user interfaces that facilitate use of this data in clinical practice. We share lessons learned from engaging health care professionals to inform design of visual dashboards, an emerging type of health information technology (HIT). Methods: We employed human-centered design (HCD) methods to create visual displays of PROs to support patient care and quality improvement. HCD aims to optimize the design of interactive systems through iterative input from representative users who are likely to use the system in the future. Through three major steps, we engaged health care professionals in targeted, iterative design activities to inform the development of a PRO Dashboard that visually displays patient-reported pain and disability outcomes following spine surgery. Findings: Design activities to engage health care administrators, providers, and staff guided our work from design concept to specifications for dashboard implementation. Stakeholder feedback from these health care professionals shaped user interface design features, including predefined overviews that illustrate at-a-glance trends and quarterly snapshots, granular data filters that enable users to dive into detailed PRO analytics, and user-defined views to share and reuse. Feedback also revealed important considerations for quality indicators and privacy-preserving sharing and use of PROs. Conclusion: Our work illustrates a range of engagement methods guided by human-centered principles and design

  13. Integrating Patient-Reported Outcomes into Spine Surgical Care through Visual Dashboards: Lessons Learned from Human-Centered Design.

    Science.gov (United States)

    Hartzler, Andrea L; Chaudhuri, Shomir; Fey, Brett C; Flum, David R; Lavallee, Danielle

    2015-01-01

    The collection of patient-reported outcomes (PROs) draws attention to issues of importance to patients-physical function and quality of life. The integration of PRO data into clinical decisions and discussions with patients requires thoughtful design of user-friendly interfaces that consider user experience and present data in personalized ways to enhance patient care. Whereas most prior work on PROs focuses on capturing data from patients, little research details how to design effective user interfaces that facilitate use of this data in clinical practice. We share lessons learned from engaging health care professionals to inform design of visual dashboards, an emerging type of health information technology (HIT). We employed human-centered design (HCD) methods to create visual displays of PROs to support patient care and quality improvement. HCD aims to optimize the design of interactive systems through iterative input from representative users who are likely to use the system in the future. Through three major steps, we engaged health care professionals in targeted, iterative design activities to inform the development of a PRO Dashboard that visually displays patient-reported pain and disability outcomes following spine surgery. Design activities to engage health care administrators, providers, and staff guided our work from design concept to specifications for dashboard implementation. Stakeholder feedback from these health care professionals shaped user interface design features, including predefined overviews that illustrate at-a-glance trends and quarterly snapshots, granular data filters that enable users to dive into detailed PRO analytics, and user-defined views to share and reuse. Feedback also revealed important considerations for quality indicators and privacy-preserving sharing and use of PROs. Our work illustrates a range of engagement methods guided by human-centered principles and design recommendations for optimizing PRO Dashboards for patient

  14. An information integration theory of consciousness

    Directory of Open Access Journals (Sweden)

    Tononi Giulio

    2004-11-01

    Full Text Available Abstract Background Consciousness poses two main problems. The first is understanding the conditions that determine to what extent a system has conscious experience. For instance, why is our consciousness generated by certain parts of our brain, such as the thalamocortical system, and not by other parts, such as the cerebellum? And why are we conscious during wakefulness and much less so during dreamless sleep? The second problem is understanding the conditions that determine what kind of consciousness a system has. For example, why do specific parts of the brain contribute specific qualities to our conscious experience, such as vision and audition? Presentation of the hypothesis This paper presents a theory about what consciousness is and how it can be measured. According to the theory, consciousness corresponds to the capacity of a system to integrate information. This claim is motivated by two key phenomenological properties of consciousness: differentiation – the availability of a very large number of conscious experiences; and integration – the unity of each such experience. The theory states that the quantity of consciousness available to a system can be measured as the Φ value of a complex of elements. Φ is the amount of causally effective information that can be integrated across the informational weakest link of a subset of elements. A complex is a subset of elements with Φ>0 that is not part of a subset of higher Φ. The theory also claims that the quality of consciousness is determined by the informational relationships among the elements of a complex, which are specified by the values of effective information among them. Finally, each particular conscious experience is specified by the value, at any given time, of the variables mediating informational interactions among the elements of a complex. Testing the hypothesis The information integration theory accounts, in a principled manner, for several neurobiological observations

  15. Neurophysiology underlying influence of stimulus reliability on audiovisual integration.

    Science.gov (United States)

    Shatzer, Hannah; Shen, Stanley; Kerlin, Jess R; Pitt, Mark A; Shahin, Antoine J

    2018-01-24

    We tested the predictions of the dynamic reweighting model (DRM) of audiovisual (AV) speech integration, which posits that spectrotemporally reliable (informative) AV speech stimuli induce a reweighting of processing from low-level to high-level auditory networks. This reweighting decreases sensitivity to acoustic onsets and in turn increases tolerance to AV onset asynchronies (AVOA). EEG was recorded while subjects watched videos of a speaker uttering trisyllabic nonwords that varied in spectrotemporal reliability and asynchrony of the visual and auditory inputs. Subjects judged the stimuli as in-sync or out-of-sync. Results showed that subjects exhibited greater AVOA tolerance for non-blurred than blurred visual speech and for less than more degraded acoustic speech. Increased AVOA tolerance was reflected in reduced amplitude of the P1-P2 auditory evoked potentials, a neurophysiological indication of reduced sensitivity to acoustic onsets and successful AV integration. There was also sustained visual alpha band (8-14 Hz) suppression (desynchronization) following acoustic speech onsets for non-blurred vs. blurred visual speech, consistent with continuous engagement of the visual system as the speech unfolds. The current findings suggest that increased spectrotemporal reliability of acoustic and visual speech promotes robust AV integration, partly by suppressing sensitivity to acoustic onsets, in support of the DRM's reweighting mechanism. Increased visual signal reliability also sustains the engagement of the visual system with the auditory system to maintain alignment of information across modalities. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Constituents of Music and Visual-Art Related Pleasure – A Critical Integrative Literature Review

    Directory of Open Access Journals (Sweden)

    Marianne Tiihonen

    2017-07-01

    Full Text Available The present literature review investigated how pleasure induced by music and visual-art has been conceptually understood in empirical research over the past 20 years. After an initial selection of abstracts from seven databases (keywords: pleasure, reward, enjoyment, and hedonic, twenty music and eleven visual-art papers were systematically compared. The following questions were addressed: (1 What is the role of the keyword in the research question? (2 Is pleasure considered a result of variation in the perceiver’s internal or external attributes? (3 What are the most commonly employed methods and main variables in empirical settings? Based on these questions, our critical integrative analysis aimed to identify which themes and processes emerged as key features for conceptualizing art-induced pleasure. The results demonstrated great variance in how pleasure has been approached: In the music studies pleasure was often a clear object of investigation, whereas in the visual-art studies the term was often embedded into the context of an aesthetic experience, or used otherwise in a descriptive, indirect sense. Music studies often targeted different emotions, their intensity or anhedonia. Biographical and background variables and personality traits of the perceiver were often measured. Next to behavioral methods, a common method was brain imaging which often targeted the reward circuitry of the brain in response to music. Visual-art pleasure was also frequently addressed using brain imaging methods, but the research focused on sensory cortices rather than the reward circuit alone. Compared with music research, visual-art research investigated more frequently pleasure in relation to conscious, cognitive processing, where the variations of stimulus features and the changing of viewing modes were regarded as explanatory factors of the derived experience. Despite valence being frequently applied in both domains, we conclude, that in empirical music

  17. Constituents of Music and Visual-Art Related Pleasure – A Critical Integrative Literature Review

    Science.gov (United States)

    Tiihonen, Marianne; Brattico, Elvira; Maksimainen, Johanna; Wikgren, Jan; Saarikallio, Suvi

    2017-01-01

    The present literature review investigated how pleasure induced by music and visual-art has been conceptually understood in empirical research over the past 20 years. After an initial selection of abstracts from seven databases (keywords: pleasure, reward, enjoyment, and hedonic), twenty music and eleven visual-art papers were systematically compared. The following questions were addressed: (1) What is the role of the keyword in the research question? (2) Is pleasure considered a result of variation in the perceiver’s internal or external attributes? (3) What are the most commonly employed methods and main variables in empirical settings? Based on these questions, our critical integrative analysis aimed to identify which themes and processes emerged as key features for conceptualizing art-induced pleasure. The results demonstrated great variance in how pleasure has been approached: In the music studies pleasure was often a clear object of investigation, whereas in the visual-art studies the term was often embedded into the context of an aesthetic experience, or used otherwise in a descriptive, indirect sense. Music studies often targeted different emotions, their intensity or anhedonia. Biographical and background variables and personality traits of the perceiver were often measured. Next to behavioral methods, a common method was brain imaging which often targeted the reward circuitry of the brain in response to music. Visual-art pleasure was also frequently addressed using brain imaging methods, but the research focused on sensory cortices rather than the reward circuit alone. Compared with music research, visual-art research investigated more frequently pleasure in relation to conscious, cognitive processing, where the variations of stimulus features and the changing of viewing modes were regarded as explanatory factors of the derived experience. Despite valence being frequently applied in both domains, we conclude, that in empirical music research pleasure

  18. Introduction to Information Visualization (InfoVis) Techniques for Model-Based Systems Engineering

    Science.gov (United States)

    Sindiy, Oleg; Litomisky, Krystof; Davidoff, Scott; Dekens, Frank

    2013-01-01

    This paper presents insights that conform to numerous system modeling languages/representation standards. The insights are drawn from best practices of Information Visualization as applied to aerospace-based applications.

  19. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.

    Directory of Open Access Journals (Sweden)

    Takatoshi Higuchi

    Full Text Available The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms after the ball release (R+150, occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150, and a condition with no occlusion (NO. Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1. Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001, additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05. The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay.

  20. Haptic over visual information in the distribution of visual attention after tool-use in near and far space.

    Science.gov (United States)

    Park, George D; Reed, Catherine L

    2015-10-01

    Despite attentional prioritization for grasping space near the hands, tool-use appears to transfer attentional bias to the tool's end/functional part. The contributions of haptic and visual inputs to attentional distribution along a tool were investigated as a function of tool-use in near (Experiment 1) and far (Experiment 2) space. Visual attention was assessed with a 50/50, go/no-go, target discrimination task, while a tool was held next to targets appearing near the tool-occupied hand or tool-end. Target response times (RTs) and sensitivity (d-prime) were measured at target locations, before and after functional tool practice for three conditions: (1) open-tool: tool-end visible (visual + haptic inputs), (2) hidden-tool: tool-end visually obscured (haptic input only), and (3) short-tool: stick missing tool's length/end (control condition: hand occupied but no visual/haptic input). In near space, both open- and hidden-tool groups showed a tool-end, attentional bias (faster RTs toward tool-end) before practice; after practice, RTs near the hand improved. In far space, the open-tool group showed no bias before practice; after practice, target RTs near the tool-end improved. However, the hidden-tool group showed a consistent tool-end bias despite practice. Lack of short-tool group results suggested that hidden-tool group results were specific to haptic inputs. In conclusion, (1) allocation of visual attention along a tool due to tool practice differs in near and far space, and (2) visual attention is drawn toward the tool's end even when visually obscured, suggesting haptic input provides sufficient information for directing attention along the tool.