Improved integrating-sphere throughput with a lens and nonimaging concentrator.
Chenault, D B; Snail, K A; Hanssen, L M
1995-12-01
A reflectometer design utilizing an integrating sphere with a lens and nonimaging concentrator is described. Compared with previous designs where a collimator was used to restrict the detector field of view, the concentrator-lens combination significantly increases the throughput of the reflectometer. A procedure for designing lens-concentrators is given along with the results of parametric studies. The measured angular response of a lens-concentrator system is compared with ray-trace predictions and with the response of an ideal system.
New Structure for a Six-Port Reflectometer in Monolithic Microwave Integrated-Circuit Technology
Wiedmann , Frank; Huyart , Bernard; Bergeault , Eric; Jallet , Louis
1997-01-01
International audience; This paper presents a new structure for a six-port reflectometer which due to its simplicity can be implemented very easily in monolithic microwave integrated-circuit (MMIC) technology. It uses nonmatched diode detectors with a high input impedance which are placed around a phase shifter in conjunction with a power divider for the reference detector. The circuit has been fabricated using the F20 GaAs process of the GEC–Marconi foundry and operates between 1.3 GHz and 3...
Path integral representations on the complex sphere
Energy Technology Data Exchange (ETDEWEB)
Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2007-08-15
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S{sub 3C}. The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
Path integral representations on the complex sphere
International Nuclear Information System (INIS)
Grosche, C.
2007-08-01
In this paper we discuss the path integral representations for the coordinate systems on the complex sphere S 3C . The Schroedinger equation, respectively the path integral, separates in exactly 21 orthogonal coordinate systems. We enumerate these coordinate systems and we are able to present the path integral representations explicitly in the majority of the cases. In each solution the expansion into the wave-functions is stated. Also, the kernel and the corresponding Green function can be stated in closed form in terms of the invariant distance on the sphere, respectively on the hyperboloid. (orig.)
On the simplified path integral on spheres
Energy Technology Data Exchange (ETDEWEB)
Bastianelli, Fiorenzo [Universita di Bologna, Dipartimento di Fisica ed Astronomia, Bologna (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Corradini, Olindo [Universita degli Studi di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Modena (Italy); INFN, Sezione di Bologna, Bologna (Italy); Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany)
2017-11-15
We have recently studied a simplified version of the path integral for a particle on a sphere, and more generally on maximally symmetric spaces, and proved that Riemann normal coordinates allow the use of a quadratic kinetic term in the particle action. The emerging linear sigma model contains a scalar effective potential that reproduces the effects of the curvature. We present here further details of the construction, and extend its perturbative evaluation to orders high enough to read off the type-A trace anomalies of a conformal scalar in dimensions d = 14 and d = 16. (orig.)
Integrated optics reflectometer
Couch, Philip R; Murphy, Kent A.; Gunther, Michael F; Gause, Charles B
2017-01-31
An apparatus includes a laser source configured to output laser light at a target frequency, and a measurement unit configured to measure a deviation between an actual frequency outputted by the laser source at a current period of time and the target frequency of the laser source. The apparatus includes a feedback control unit configured to, based on the measured deviation between the actual and target frequencies, control the laser source to maintain a constant frequency of laser output from the laser source so that the frequency of laser light transmitted from the laser source is adjusted to the target frequency. The feedback control unit can control the laser source to maintain a linear rate of change in the frequency of its laser light output, and compensate for characteristics of the measurement unit utilized for frequency measurement. A method is provided for performing the feedback control of the laser source.
Vacuum-ultraviolet reflectometer
Allen, T. H.; Dillow, C. F.; Linford, R. M. F.
1977-01-01
Baffle, three-blade chopper, and split spherical mirror transmit alternating dual beam into integrating sphere. Alternating reference and sample beams are detected by high gain photomultiplier and modified logarithmic ratiometer. Device is useful in fusion research, high power laser work, and spectrometer or monochromator construction.
Reflectometer design using nonimaging optics.
Snail, K A
1987-12-15
A new type of two-stage reflectometer is proposed for the measurement of directional hemispherical reflectance. The proposed reflectometer consists of a primary collecting mirror coupled to a secondary mirror chosen to eliminate the Fresnel variation of the detector (or source) response. The secondary mirror shape needed is an inverted nonimaging compound parabolic concentrator (CPC). For direct mode operation, the detector is placed at the larger CPC aperture. Ray tracing of a CPC/ellipsoid reflectometer indicates that the throughput is high and isotropic. Design trade-offs and two-stage reflectometers employing a hemisphere and dual paraboloid primary are also discussed.
CSIR Research Space (South Africa)
Monem, S
2015-12-01
Full Text Available light propagation mechanisms inside the tissues. In this work, two calibration models based on measurements adopting integrating sphere systems have been used to determine the optical properties of the studied solid phantoms. Integrating sphere...
Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance
Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.
1991-01-01
A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.
Reflectometer measurements on LHD
International Nuclear Information System (INIS)
Tokuzawa, T.; Kawahata, K.; Pavlichenko, R.O.; Tanaka, K.; Ejiri, A.
2000-01-01
Pulsed radar reflectometer is the suitable reflectometer technique, in order to study the effect of the strong magnetic shear on polarization of microwave in the Large Helical Device (LHD). Because pulsed radar reflectometry is measured the delay time of the reflected wave, it can be distinguished between X-mode and O-mode polarized wave. At X-mode operation it is found the position of the ergodic edge layer is steady in spite of the increased density in the core region during neutral beam is injected. If the electron density is not reached to the critical cutoff one, the pulsed radar system could be used as a delayometer. The measured delayometer signal is almost in agreement with the numerical calculation using the assumption which the polarization of the propagated wave into the plasma is decided at the edge region, nevertheless the angle of the magnetic field line to the magnetic axis is changed in the propagated direction of the launched wave. (author)
Luminosity class of neutron reflectometers
Energy Technology Data Exchange (ETDEWEB)
Pleshanov, N.K., E-mail: pnk@pnpi.spb.ru
2016-10-21
The formulas that relate neutron fluxes at reflectometers with differing q-resolutions are derived. The reference luminosity is defined as a maximum flux for measurements with a standard resolution. The methods of assessing the reference luminosity of neutron reflectometers are presented for monochromatic and white beams, which are collimated with either double diaphragm or small angle Soller systems. The values of the reference luminosity for unified parameters define luminosity class of reflectometers. The luminosity class characterizes (each operation mode of) the instrument by one number and can be used to classify operating reflectometers and optimize designed reflectometers. As an example the luminosity class of the neutron reflectometer NR-4M (reactor WWR-M, Gatchina) is found for four operation modes: 2.1 (monochromatic non-polarized beam), 1.9 (monochromatic polarized beam), 1.5 (white non-polarized beam), 1.1 (white polarized beam); it is shown that optimization of measurements may increase the flux at the sample up to two orders of magnitude with monochromatic beams and up to one order of magnitude with white beams. A fan beam reflectometry scheme with monochromatic neutrons is suggested, and the expected increase in luminosity is evaluated. A tuned-phase chopper with a variable TOF resolution is recommended for reflectometry with white beams.
Liouvillian integrability of gravitating static isothermal fluid spheres
International Nuclear Information System (INIS)
Iacono, Roberto; Llibre, Jaume
2014-01-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = −1 and n = −3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = −5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R 2 , and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = −1, −3, −5, which descend from the existence of invariant algebraic curves of degree one, and for n = −6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely
Liouvillian integrability of gravitating static isothermal fluid spheres
Energy Technology Data Exchange (ETDEWEB)
Iacono, Roberto, E-mail: roberto.iacono@enea.it [ENEA-C. R. Casaccia, Via Anguillarese 301, 00123 Roma (Italy); Llibre, Jaume, E-mail: jllibre@mat.uab.cat [Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)
2014-10-01
We examine the integrability properties of the Einstein field equations for static, spherically symmetric fluid spheres, complemented with an isothermal equation of state, ρ = np. In this case, Einstein's equations can be reduced to a nonlinear, autonomous second order ordinary differential equation (ODE) for m/R (m is the mass inside the radius R) that has been solved analytically only for n = -1 and n = -3, yielding the cosmological solutions by De Sitter and Einstein, respectively, and for n = -5, case for which the solution can be derived from the De Sitter's one using a symmetry of Einstein's equations. The solutions for these three cases are of Liouvillian type, since they can be expressed in terms of elementary functions. Here, we address the question of whether Liouvillian solutions can be obtained for other values of n. To do so, we transform the second order equation into an equivalent autonomous Lotka–Volterra quadratic polynomial differential system in R² and characterize the Liouvillian integrability of this system using Darboux theory. We find that the Lotka–Volterra system possesses Liouvillian first integrals for n = -1, -3, -5, which descend from the existence of invariant algebraic curves of degree one, and for n = -6, a new solvable case, associated to an invariant algebraic curve of higher degree (second). For any other value of n, eventual first integrals of the Lotka–Volterra system, and consequently of the second order ODE for the mass function must be non-Liouvillian. This makes the existence of other solutions of the isothermal fluid sphere problem with a Liouvillian metric quite unlikely.
Amplitude modulation reflectometer for FTU
International Nuclear Information System (INIS)
Zerbini, M.; Buratti, P.; Centioli, C.; Amadeo, P.
1995-06-01
Amplitude modulation (AM) reflectometry is a modification of the classical frequency sweep technique which allows to perform unambiguous phase delay measurements. An eight-channel AM reflectometer has been realized for the measurement of density profiles on the FTU tokamak in the range. The characteristics of the instrument have been determined in extensive laboratory tests; particular attention has been devoted to the effect of interference with parasitic reflections. The reflectometer is now operating on FTU. Some examples of the first experimental data are discussed
Classification of integrable Volterra-type lattices on the sphere: isotropic case
International Nuclear Information System (INIS)
Adler, V E
2008-01-01
The symmetry approach is used for classification of integrable isotropic vector Volterra lattices on the sphere. The list of integrable lattices consists mainly of new equations. Their symplectic structure and associated PDE of vector NLS type are discussed
Directory of Open Access Journals (Sweden)
Oleksandr Popov
2015-06-01
Full Text Available Purpose: exposure of conceptual and strategic positions of the complex marketing of sphere of physical culture and sport in the conditions of European integration of regional center. Material and Methods: analysis of literary sources, analysis of documents of legislative, normatively-legal and programmatic maintenance, analysis of the systems, questioning as a questionnaire. Results: the analysis of the systems of terms of development of sphere of physical culture and sport is carried out by the study of modern tendencies, interests of young people and habitants of regional center; complex description of conceptual and strategic positions of the relatively complex marketing of sphere of physical culture and sport is presented in the conditions of European integration of regional center. Conclusions: it is set that the decision of tasks in relation to conditioning for development of sphere of physical culture and sport must come true with the observance of certain principles; got founding in relation to development of marketing plan of forming of sporting image Kharkiv.
Integral measurements using the 'sphere method'. The case of carbon
International Nuclear Information System (INIS)
Haouat, G.; Lachkar, J.; Patin, Y.; Cocu, F.; Sigaud, J.; Cotten, D.
1977-01-01
The time-of-flight spectrum of direct and scattered neutrons with a 10cm diameter carbon sphere. (The direct neutron energy is 14.81MeV, the basic time-of-flight being 6m). The time-of-flight spectrum of the neutrons from T(d,n) 4 He is given in the same experimental conditions (without the carbon sphere) [fr
The neutron reflectometer at `SINQ`
Energy Technology Data Exchange (ETDEWEB)
Clemens, D [Lab. for Neutron Scattering ETH Zurich, Zurich (Switzerland) and Paul Scherrer Institute, Villigen (Switzerland)
1996-11-01
SINQ`s dedicated reflectometer will be a flexible instrument in many respect. A `white beam time of flight` as well as a `constant wavelength` setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users` instrument. (author) 9 figs., 2 tabs., 30 refs.
The neutron reflectometer at 'SINQ'
International Nuclear Information System (INIS)
Clemens, D.
1996-01-01
SINQ's dedicated reflectometer will be a flexible instrument in many respect. A 'white beam time of flight' as well as a 'constant wavelength' setup are possible for reflectometric experiments in a vertical scattering geometry. The phase controlled double chopper at the beginning of the instrument together with properly chosen time channels at the detector allow for the variation of the temporal resolution. Collimation slits serve to determine the angular resolution. In combination, the resolution can be tailored to the experimental needs. Additionally, one can adjust the illumination of the sample by setting the sample table and the detector to an appropriate distance. A mounting for exchangeable mirrors can be used to supply polarized neutrons by a multilayer polarizer or monochromatic neutrons by a multilayer monochromator. When it is equipped with a supermirror as a deflecting unit one can maintain a horizontal sample position which makes reflectometry on liquid samples practicable. Remanent polarizers are assigned for the changing over of the neutron polarization. A 1 T electromagnet installed on the sample manipulation table and polarization analyzers complete the polarized reflectometry setup. Alternately, an x-y-detector and single detectors will be available. By 1997/1998 the neutron reflectometer will be operational as a users' instrument. (author) 9 figs., 2 tabs., 30 refs
Microwave Imaging Reflectometer for TEXTOR
International Nuclear Information System (INIS)
T. Munsat; E. Mazzucato; H. Park; B.H. Deng; C.W. Domier; N.C. Luhmann, Jr.; J. Wang; Z.G. Xia; A.J.H. Donne; and M. van de Pol
2002-01-01
Understanding the behavior of fluctuations in magnetically confined plasmas is essential to the advancement of turbulence-based transport physics. Though microwave reflectometry has proven to be an extremely useful and sensitive tool for measuring small density fluctuations in some circumstances, this technique has been shown to have limited viability for large amplitude, high kq fluctuations and/or core measurements. To this end, a new instrument based on 2-D imaging reflectometry has been developed to measure density fluctuations over an extended plasma region in the TEXTOR tokamak. This technique is made possible by collecting an extended spectrum of reflected waves with large-aperture imaging optics. Details of the imaging reflectometry concept, as well as technical details of the TEXTOR instrument will be presented. Data from roof-of-principle experiments on TEXTOR using a prototype system is presented, as well as results from a systematic off-line study of the advantages and limitations of the imaging reflectometer
Characterization of Lubricants on Ball Bearings by FT-IR Using an Integrating Sphere
Street, K. W.; Pepper, S. V.; Wright, A. A.; Grady, B.
2007-01-01
Fourier Transform-Infrared reflectance microspectroscopy has been used extensively for the examination of coatings on nonplanar surfaces such as ball bearings. While this technique offers considerable advantages, practical application has many drawbacks, some of which are easily overcome by the use of integrating sphere technology. This paper describes the use of an integrating sphere for the quantification of thin layers of lubricant on the surface of ball bearings and the parameters which require optimization in order to obtain reliable data. Several applications of the technique are discussed including determination of lubricant load on 12.7 mm steel ball bearings and the examination of degraded lubricant on post mortem specimens.
Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup
International Nuclear Information System (INIS)
Leyre, S.; Coutino-Gonzalez, E.; Hofkens, J.; Joos, J. J.; Poelman, D.; Smet, P. F.; Ryckaert, J.; Meuret, Y.; Durinck, G.; Hanselaer, P.; Deconinck, G.
2014-01-01
An integrating sphere-based setup to obtain a quick and reliable determination of the internal quantum efficiency of strongly scattering luminescent materials is presented. In literature, two distinct but similar measurement procedures are frequently mentioned: a “two measurement” and a “three measurement” approach. Both methods are evaluated by applying the rigorous integrating sphere theory. It was found that both measurement procedures are valid. Additionally, the two methods are compared with respect to the uncertainty budget of the obtained values of the quantum efficiency. An inter-laboratory validation using the two distinct procedures was performed. The conclusions from the theoretical study were confirmed by the experimental data
Moments of Inertia of Disks and Spheres without Integration
Hong, Seok-Cheol; Hong, Seok-In
2013-01-01
Calculation of moments of inertia is often challenging for introductory-level physics students due to the use of integration, especially in non-Cartesian coordinates. Methods that do not employ calculus have been described for finding the rotational inertia of thin rods and other simple bodies. In this paper we use the parallel axis theorem and…
Hamiltonization and Integrability of the Chaplygin Sphere in R^n
Jovanovic, Bozidar
2009-01-01
The paper studies a natural $n$-dimensional generalization of the classical nonholonomic Chaplygin sphere problem. We prove that for a specific choice of the inertia operator, the restriction of the generalized problem onto zero value of the SO(n-1)-momentum mapping becomes an integrable Hamiltonian system after an appropriate time reparametrization.
Integrating sphere-based setup as an accurate system for optical properties measurements
CSIR Research Space (South Africa)
Abdalmonem, S
2010-09-01
Full Text Available Determination of the optical properties of solid and liquid samples has great importance. Since the integrating sphere-based setup is used to measure the amount of reflected and transmitted light by the examined samples, optical properties could...
European Defence Community: origins of integration in the defence sphere
Directory of Open Access Journals (Sweden)
Іван Васильович Яковюк
2017-12-01
Full Text Available There is a tendency among non-historians to force «practioners» of the discipline to justify why the study of a particular episode of the past is so important and to articulate the lessons to be learned from the experience. The fate of international constitutions and treaties is particularly prone to demands of this kind. After all, «constitutional borrowing» has long been a common feature of international law and politics. This article will address one such Treaty from the past. But it does not aspire to preserving its historical integrity; rather to awaken interest in it in the first place. The European Defence Community (EDC was an ambitious initiative in the first years of the 1950s. Leading European countries had different foreign policy agendas towards it. The EDC. could have been a crucial milestone on the long path towards European integration. European Defense Community (EDC, an abortive attempt by western European powers, with United States support, to counterbalance the overwhelming conventional military ascendancy of the Soviet Union in Europe by the formation of a supranational European army and, in the process, to subsume West German forces into a European force, avoiding the tendentious problem of West German rearmament. One can trace the U.S. influence from the very first stages of the EDC. negotiations. Even in the agreement of the EDC., the footprints of U.S. policies can be observed, bringing the NATO Alliance to the forefront. The EDC. is also interrelated with the Marshall Plan, which leads us to think that the EDC. was not solely a European dream as has been widely argued, but rather an instrument of U.S. foreign policy, which could be resorted to as and when needed. Influenced by the Korean War, the French politician René Pleven evolved a plan that later was put forward by the French foreign minister Robert Schuman at a meeting of the Council of Europe in 1951. Though the weaker
The ATF two-frequency correlation reflectometer
International Nuclear Information System (INIS)
Hanson, G.R.; Wilgen, J.B.; Anabitarte, E.; Bell, J.D.; Harris, J.H.; Dunlap, J.L.; Thomas, C.E.
1990-01-01
The Advanced Toroidal Facility (ATF) density fluctuation reflectometer system consists of two individual reflectometers operating in the 30- to 40-GHz band. Each reflectometer consists of a tunable microwave source and a quadrature phase detector connected to the same antenna system. This arrangement allows two-frequency operation along the same radial chord for radial coherence measurements. The technique used in making radial coherence measurements is discussed and the results of such experiments are given. Initial experiments have shown high coherence when the frequencies of the two reflectometers are tuned close together and a clear loss of coherence as the radial separation of the cutoff layers is increased by increasing the frequency separation of the two reflectometers. Recent results have shown that local measurements of density fluctuations in plasmas with electron cyclotron heating (ECH) are possible and that detailed structure can be seen in the fluctuation spectra. In addition, radial correlation lengths have been found to be from 0.5 to 1.0 cm in ECH plasmas, with some frequency structures having correlation lengths up to 3 cm. In plasmas with neutral beam injection (NBI), the radial correlation lengths in the edge region have been found to be approximately 0.1--0.2 cm. 4 figs
Initial studies of reflectometer for ITER
International Nuclear Information System (INIS)
Luhmann, N.C. Jr.
1993-12-01
ITER-related activities taking place over the last year were concentrated primarily on the area of advanced reflectometry systems. In particular, we have concentrated on reflectometer systems for density profile and density fluctuation studies on ITER. This interest has led us to spend much of our time investigating the pulsed radar time-of-flight reflectometer approaches (i.e. moderate pulse and ultrashort pulse). Pulsed radar systems offer the ability to make detailed profile measurements using fixed frequency sources, avoiding the need for highly stable sweepable sources as required by the more traditional FM radar systems
Total luminous flux measurement for flexible surface sources with an integrating sphere photometer
International Nuclear Information System (INIS)
Yu, Hsueh-Ling; Liu, Wen-Chun
2014-01-01
Applying an integrating sphere photometer for total luminous flux measurement is a widely used method. However, the measurement accuracy depends on the spatial uniformity of the integrating sphere, especially when the test sample has a different light distribution from that of the standard source. Therefore, spatial correction is needed to eliminate the effect caused by non-uniformity. To reduce the inconvenience of spatial correction but retain the measurement accuracy, a new type of working standard is designed for flexible and curved surface sources. Applying this new type standard source, the measurement deviation due to different orientations is reduced by an order of magnitude compared with using a naked incandescent lamp as the standard source. (paper)
Integrating sphere based reflectance measurements for small-area semiconductor samples
Saylan, S.; Howells, C. T.; Dahlem, M. S.
2018-05-01
This article describes a method that enables reflectance spectroscopy of small semiconductor samples using an integrating sphere, without the use of additional optical elements. We employed an inexpensive sample holder to measure the reflectance of different samples through 2-, 3-, and 4.5-mm-diameter apertures and applied a mathematical formulation to remove the bias from the measured spectra caused by illumination of the holder. Using the proposed method, the reflectance of samples fabricated using expensive or rare materials and/or low-throughput processes can be measured. It can also be incorporated to infer the internal quantum efficiency of small-area, research-level solar cells. Moreover, small samples that reflect light at large angles and develop scattering may also be measured reliably, by virtue of an integrating sphere insensitive to directionalities.
Assessing the consistency of optical properties measured in four integrating spheres
Czech Academy of Sciences Publication Activity Database
Lukeš, Petr; Homolová, Lucie; Navrátil, M.; Hanuš, Jan
2017-01-01
Roč. 38, č. 13 (2017), s. 3817-3830 ISSN 0143-1161 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LM2015061 Institutional support: RVO:67179843 Keywords : Artificial material * Canopy radiative transfer * Directional hemispherical reflectances * Integrating spheres * Leaf optical property * Measurement protocol * Standard deviation * Statistically significant difference Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 1.724, year: 2016
On the use of small integrating spheres to improve the linearity range of RASNIKS systems
International Nuclear Information System (INIS)
Alberdi, J.; Burgos, C.; Ferrando, A.; Molinero, A.; Schvachkin, V.; Figueroa, C.F.; Matorras, F.; Rodrigo, T.; Ruiz, A.; Vila, I.
1997-10-01
Rasniks elements will be used in the CMS alignment system. The large displacements of the different sub detectors expected in the CMS experiment demands large linearity response of this system. By the use of a small integrating sphere we have optimized the source definition such that a factor three improvement in the linearity range with respect to conventional Rasniks configurations is obtained. The response range reached coincides with the maximum one can get with the components used in the test
2-D Reflectometer Modeling for Optimizing the ITER Low-field Side Reflectometer System
International Nuclear Information System (INIS)
Kramer, G.J.; Nazikian, R.; Valeo, E.J.; Budny, R.V.; Kessel, C.; Johnson, D.
2005-01-01
The response of a low-field side reflectometer system for ITER is simulated with a 2?D reflectometer code using a realistic plasma equilibrium. It is found that the reflected beam will often miss its launch point by as much as 40 cm and that a vertical array of receiving antennas is essential in order to observe a reflection on the low-field side of ITER
The LHC Beam Pipe Waveguide Mode Reflectometer
Kroyer, T; Caspers, Friedhelm; Sulek, Z; Williams, L R
2007-01-01
The waveguide-mode reflectometer for obstacle detection in the LHC beam pipe has been intensively used for more than 18 months. The âﾜAssemblyâ version is based on the synthetic pulse method using a modern vector network analyzer. It has mode selective excitation couplers for the first TE and TM mode and uses a specially developed waveguide mode dispersion compensation algorithm with external software. In addition there is a similar âﾜIn Situâ version of the reflectometer which uses permanently installed microwave couplers at the end of each of the nearly 3 km long LHC arcs. During installation a considerable number of unexpected objects have been found in the beam pipes and subsequently removed. Operational statistics and lessons learned are presented and the overall performance is discussed.
Phase ramping and modulation of reflectometer signals
International Nuclear Information System (INIS)
Conway, G.D.; Bartlett, D.V.; Stoff, P.E.
1999-01-01
The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (> 1 fringe) variations with two quite different time scales (2-10 ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the are modulated synchronously with the phase fringes. The slow fringes appear to result radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2-D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (authors)
Phase ramping and modulation of reflectometer signals
International Nuclear Information System (INIS)
Conway, G.; Bartlett, D.; Stott, P.
1999-06-01
The phase and amplitude signals of JET heterodyne reflectometers show varying levels of high frequency turbulence superimposed on a slow changing mean. The phase signal also shows multi-radian (>1 fringe) variations with two quite different time scales (2-10ms and sub-ms). In both cases the mean reflected power, together with turbulent phase and amplitude fluctuation levels, are modulated synchronously with the phase fringes. The slow fringes appear to result from radial movement of the cutoff layer with the amplitude modulation possibly due to multiple reflection between plasma and wall. The fast fringes occur in intermittent bursts and appear to be phase runaway resulting from antenna misalignment. Using a 2D physical optics simulation code it is possible to replicate the fast bursts of phase runaway from steady-state turbulence and misaligned antennas. This offers a possible alternative explanation for some of the observations of bursting turbulence seen in reflectometer signals. (author)
The polarized neutron reflectometer 'Reverans'
Energy Technology Data Exchange (ETDEWEB)
Radzhabov, A.K. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)]. E-mail: akr@pnpi.spb.ru; Gordeev, G.P. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Lazebnik, I.M. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Axelrod, L.A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation); Zabenkin, V.N. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300 (Russian Federation)
2007-07-15
The polarized neutron reflectometer 'Reverans' with a vertical plane of scattering is being installed at the VVR-M reactor (Gatchina, Russia). It will be used for research on phase boundaries, interfaces and free surfaces. Systems under study can be both magnetic and nonmagnetic ones. At present the installation of the reflectometer is at the final stage. The parameters and abilities of the reflectometer are presented.
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Jacob C.; Branden, Henrik
2006-10-19
This paper demonstrates a method to determine thebidirectional transfer distribution function (BTDF) using an integratingsphere. Information about the sample's angle dependent scattering isobtained by making transmittance measurements with the sample atdifferent distances from the integrating sphere. Knowledge about theilluminated area of the sample and the geometry of the sphere port incombination with the measured data combines to an system of equationsthat includes the angle dependent transmittance. The resulting system ofequations is an ill-posed problem which rarely gives a physical solution.A solvable system is obtained by using Tikhonov regularization on theill-posed problem. The solution to this system can then be used to obtainthe BTDF. Four bulk-scattering samples were characterised using both twogoniophotometers and the described method to verify the validity of thenew method. The agreement shown is great for the more diffuse samples.The solution to the low-scattering samples contains unphysicaloscillations, butstill gives the correct shape of the solution. Theorigin of the oscillations and why they are more prominent inlow-scattering samples are discussed.
Determination of Lubricants on Ball Bearings by FT-IR using an Integrating Sphere
Street, K. W.; Pepper, S. V.; Wright, A.
2003-01-01
The lifetime determination of space lubricants is done at our facility by accelerated testing. Several micrograms of lubricant are deposited on the surface of a ball by syringing tens of micro liters of dilute lubricant solution. The solvent evaporates and the mass of lubricant is determined by twenty weighings near the balance reliability limit. This process is timely but does not produce a good correlation between the mass of lubricant and the volume of solution applied, as would be expected. The amount of lubricant deposited on a ball can be determined directly by Fourier Transform - Infrared Spectroscopy using an integrating sphere. In this paper, we discuss reasons for choosing this methodology, optimization of quantification conditions and potential applications for the technique. The volume of lubricant solution applied to the ball gives better correlation to the IR intensity than does the weight.
Development of the HANARO Neutron Reflectometer
International Nuclear Information System (INIS)
Lee, Jeong Soo; Lee, Chang Hee; Seong, Baek Seok; Hong, Kwang Pyo; Choi, Byung Hoon; Kim, Ki Yun
2006-10-01
This report contains the development process of a neutron reflectometer which was installed at the HANARO. This also contains the process of reflectivity measurement and analysis for thin films by using the instrument. In order to evaluate the instrument's performance, the result of reflectivity measurement and analysis on the reference samples such as a d-PS and a SiO 2 with different thicknesses was described. Finally, this report contains a measurement and analysis result of reflectivity for various thin films to certify the possibility of the instrument's utilization
Thennadil, Suresh N; Chen, Yi-Chieh
2017-02-01
The usual approach for estimating bulk optical properties using an integrating sphere measurement setup is by acquiring spectra from three measurement modes namely collimated transmittance (T c ), total transmittance (T d ), and total diffuse reflectance (R d ), followed by the inversion of these measurements using the adding-doubling method. At high scattering levels, accurate acquisition of T c becomes problematic due to the presence of significant amounts of forward-scattered light in this measurement which is supposed to contain only unscattered light. In this paper, we propose and investigate the effectiveness of using alternative sets of integrating sphere measurements that avoid the use of T c and could potentially increase the upper limit of concentrations of suspensions at which bulk optical property measurements can be obtained in the visible-near-infrared (Vis-NIR) region of the spectrum. We examine the possibility of replacing T c with one or more reflectance measurements at different sample thicknesses. We also examine the possibility of replacing both the collimated (T c ) and total transmittance (T d ) measurements with reflectance measurements taken from different sample thicknesses. The analysis presented here indicates that replacing T c with a reflectance measurement can reduce the errors in the bulk scattering properties when scattering levels are high. When only multiple reflectance measurements are used, good estimates of the bulk optical properties can be obtained when the absorption levels are low. In addition, we examine whether there is any advantage in using three measurements instead of two to obtain the reduced bulk scattering coefficient and the bulk absorption coefficient. This investigation is made in the context of chemical and biological suspensions which have a much larger range of optical properties compared to those encountered with tissue.
Yao, Kexin; Zeng, Huachun
2012-01-01
) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2
Ricceri, Biagio
2006-12-01
Given a bounded domain [Omega][subset of]Rn, we prove that if is a C1 function whose gradient is Lipschitzian in Rn+1 and non-zero at 0, then, for each r>0 small enough, the restriction of the integral functional to the sphere has a unique global minimum and a unique global maximum.
Ricceri, Biagio
2005-01-01
We deal with the integral functional of the calculus of variations assuming that the gradient of the integrand is Lipschitzian. We then prove that if this gradient does not vanish at zero, then the functional has a unique minimum and a unique maximum on each sphere, centered at zero, with radius small enough.
Gaigalas, A K; Wang, Lili; Karpiak, V; Zhang, Yu-Zhong; Choquette, Steven
2012-01-01
A commercial spectrometer with an integrating sphere (IS) detector was used to measure the scattering cross section of microspheres. Analysis of the measurement process showed that two measurements of the absorbance, one with the cuvette placed in the normal spectrometer position, and the second with the cuvette placed inside the IS, provided enough information to separate the contributions from scattering and molecular absorption. Measurements were carried out with microspheres with different diameters. The data was fitted with a model consisting of the difference of two terms. The first term was the Lorenz-Mie (L-M) cross section which modeled the total absorbance due to scattering. The second term was the integral of the L-M differential cross section over the detector acceptance angle. The second term estimated the amount of forward scattered light that entered the detector. A wavelength dependent index of refraction was used in the model. The agreement between the model and the data was good between 300 nm and 800 nm. The fits provided values for the microsphere diameter, the concentration, and the wavelength dependent index of refraction. For wavelengths less than 300 nm, the scattering cross section had significant spectral structure which was inversely related to the molecular absorption. This work addresses the measurement and interpretation of the scattering cross section for wavelengths between 300 nm and 800 nm.
On the inversion of geodetic integrals defined over the sphere using 1-D FFT
García, R. V.; Alejo, C. A.
2005-08-01
An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.
Werth, Alexandra; Liakat, Sabbir; Dong, Anqi; Woods, Callie M.; Gmachl, Claire F.
2018-05-01
An integrating sphere is used to enhance the collection of backscattered light in a noninvasive glucose sensor based on quantum cascade laser spectroscopy. The sphere enhances signal stability by roughly an order of magnitude, allowing us to use a thermoelectrically (TE) cooled detector while maintaining comparable glucose prediction accuracy levels. Using a smaller TE-cooled detector reduces form factor, creating a mobile sensor. Principal component analysis has predicted principal components of spectra taken from human subjects that closely match the absorption peaks of glucose. These principal components are used as regressors in a linear regression algorithm to make glucose concentration predictions, over 75% of which are clinically accurate.
The new polarized neutron reflectometer in Juelich
International Nuclear Information System (INIS)
Ruecker, U.; Alefeld, B.; Bergs, W.; Kentzinger, E.; Brueckel, T.
1999-01-01
On the basis of the HADAS spectrometer in the guide hall of the Juelich research reactor FRJ-2 a polarized neutron reflectometer is build with a 2D-position sensitive detector system. The new spectrometer is optimized for reflectivity and diffuse magnetic scattering measurements with small incident angles on thin magnetic films with thicknesses in the nm range. The polarization analyzer covers the whole detector area, so that a range of 2.5 deg in the scattering angle can be measured simultaneously. The analyzer consists of a stack of supermirrors tilted against the scattering plane. In this reflection geometry, the momentum transfer resolution of the instrument is not reduced, but the sample height is limited to 17 mm. For the monochromator, polarizer and collimation different setups have been compared on the basis of Monte-Carlo calculations: a focusing elliptical supermirror monochromator, a cylindrical mirror, a focusing pyrolytic graphite double monochromator and a double monochromator with bent perfect Si crystals. (author)
Laboratory Characterization of an Imaging Reflectometer System
International Nuclear Information System (INIS)
Munsat, T.; Mazzucato, E.; Park, H.; Domier, C.W.; Luhmann, N.C. Jr.; Donne, A.J.H.; Pol, M. van de
2003-01-01
While microwave reflectometry has proven to be a sensitive tool for measuring electron density fluctuations in many circumstances, it has also been shown to have limited viability for core measurements and/or conditions of strong turbulence. To this end, a new instrument based on 2-D imaging reflectometry has been developed to measure density fluctuations over an extended plasma region in the TEXTOR tokamak. Laboratory characterization of this instrument has been performed using corrugated reflecting targets as an approximation to plasma reflections including 2-D turbulent fluctuations of various magnitude and poloidal wavenumber. Within this approximation, the imaging reflectometer can recover the spectral and spatial characteristics of the reflection layer lost to or otherwise inaccessible to conventional techniques
[Determination of Bloodstain Age by UV Visible Integrating Sphere Reflection Spectrum].
Yan, L Q; Gao, Y
2016-10-01
To establish a method for rapid identification of bloodstain age. Under laboratory conditions （20 ℃, 25 ℃ and 30 ℃）, an integrating sphere ISR-240A was used as a reflection accessory on an UV-2450 UV-vis spectrophotometer, and a standard white board of BaSO₄ was used as reference, the reflection spectrums of bloodstain from human ears' venous blood were measured at regular intervals. The reflection radios R ₅₄₁ and R ₅₇₇ at a specific wavelength were collected and the value of R ₅₄₁/ R ₅₇₇ was calculated. The linear fitting and regression analysis were done by SPSS 17.0. The results of regression analysis showed that R ² of the ratios of bloodstain age to UV visible reflectivity in specific wavelengths were larger than 0.8 within 8 hours and under certain circumstances. The regression equation was established. The bloodstain age had significant correlation with the value of R ₅₄₁/ R ₅₇₇. The method of inspection is simple, rapid and nondestructive with a good reliability, and can be used to identify the bloodstain age within 8 hours elapsed-time standards under laboratory conditions. Copyright© by the Editorial Department of Journal of Forensic Medicine
In vitro double-integrating-sphere optical properties of tissues between 630 and 1064 nm
Beek, J. F.; Blokland, P.; Posthumus, P.; Aalders, M.; Pickering, J. W.; Sterenborg, H. J. C. M.; van Gemert, M. J. C.
1997-11-01
The optical properties (absorption and scattering coefficients and the scattering anisotropy factor) were measured in vitro for cartilage, liver, lung, muscle, myocardium, skin, and tumour (colon adenocarcinoma CC 531) at 630, 632.8, 790, 850 and 1064 nm. Rabbits, rats, piglets, goats, and dogs were used to obtain the tissues. A double-integrating-sphere setup with an intervening sample was used to determine the reflectance, and the diffuse and collimated transmittances of the sample. The inverse adding - doubling algorithm was used to determine the optical properties from the measurements. The overall results were comparable to those available in the literature, although only limited data are available at 790 - 850 nm. The results were reproducible for a specific sample at a specific wavelength. However, when comparing the results of different samples of the same tissue or different lasers with approximately the same wavelength (e.g. argon dye laser at 630 nm and HeNe laser at 632.8 nm) variations are large. We believe these variations in optical properties should be explained by biological variations of the tissues. In conclusion, we report on an extensive set of in vitro absorption and scattering properties of tissues measured with the same equipment and software, and by the same group. Although the accuracy of the method requires further improvement, it is highly likely that the other existing data in the literature have a similar level of accuracy.
A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.
2009-09-01
Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.
A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
International Nuclear Information System (INIS)
Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G
2009-01-01
Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup
A pulsed source neutron reflectometer for surface studies
International Nuclear Information System (INIS)
Penfold, J.; Williams, W.G.
1985-05-01
A design for a neutron reflectometer for surface studies to be constructed at the SNS is presented. Examples of its use to study problems in surface chemistry, surface magnetism and low dimensional structures are highlighted. (author)
TREFF: Reflectometer and instrument component test beamline at MLZ
Directory of Open Access Journals (Sweden)
Peter Link
2017-11-01
Full Text Available TREFF is a high resolution polarized neutron reflectometer and instrument component test beamline resulting in a highly modular instrument providing a flexible beam line for various applications.
Spectrum of density turbulence measured by microwave reflectometer
International Nuclear Information System (INIS)
Ding Xuantong; Cao Janyong; Xu Deming; Zhang Hongying; Yang Qinwei
1993-01-01
The principle of measuring lower frequency density turbulence with microwave reflectometer is presented. Preliminary results from the HL-1 tokamak have been obtained and compared with the results measured by means of electrostatic probe
Energy Technology Data Exchange (ETDEWEB)
Blake, Thomas A.; Johnson, Timothy J.; Tonkyn, Russell G.; Forland, Brenda M.; Myers, Tanya L.; Brauer, Carolyn S.; Su, Yin-Fong; Bernacki, Bruce E.; Hanssen, Leonard; Gonzalez, Gerardo
2018-01-01
Infrared integrating sphere measurements of solid samples are important in providing reference data for contact, standoff and remote sensing applications. At the Pacific Northwest National Laboratory (PNNL) we have developed protocols to measure both the directional-hemispherical ( and diffuse (d) reflectances of powders, liquids, and disks of powders and solid materials using a commercially available, matte gold-coated integrating sphere and Fourier transform infrared spectrometer. Detailed descriptions of the sphere alignment and its use for making these reflectance measurements are given. Diffuse reflectance values were found to be dependent on the bidirectional reflection distribution function (BRDF) of the sample and the solid angle intercepted by the sphere’s specular exclusion port. To determine how well the sphere and protocols produce quantitative reflectance data, measurements were made of three diffuse and two specular standards prepared by the National institute of Standards and Technology (NIST, USA), LabSphere Infragold and Spectralon standards, hand-loaded sulfur and talc powder samples, and water. The five NIST standards behaved as expected: the three diffuse standards had a high degree of “diffuseness,” d/ = D > 0.9, whereas the two specular standards had D ≤ 0.03. The average absolute differences between the NIST and PNNL measurements of the NIST standards for both directional-hemispherical and diffuse reflectances are on the order of 0.01 reflectance units. Other quantitative differences between the PNNL-measured and calibration (where available) or literature reflectance values for these standards and materials are given and the possible origins of discrepancies are discussed. Random uncertainties and estimates of systematic uncertainties are presented. Corrections necessary to provide better agreement between the PNNL reflectance values as measured for the NIST standards and the NIST reflectance values for these same standards are also
Yao, Kexin
2012-01-10
A synthetic approach has been devised to convert conventional Stöber silica (SiO 2) spheres into a new type of porous structural platform for supporting multicomponent catalysts. With this approach, we have first prepared zinc-doped SiO 2 (Zn-SiO 2) hollow spheres, on which zinc oxide (ZnO) phase and ruthenium (Ru) nanoparticles have been deposited and assembled sequentially in solution phase. A series of complex Ru/ZnO/Zn-SiO 2 nanocatalysts has been thus been integrated onto the zinc-doped SiO 2 supports after additional thermal treatment and reduction. To test their workability under harsh reactive environments, we have further evaluated the above prepared catalysts using arene hydrogenation as model reactions. These integrated nanocatalysts have shown superior activity, high robustness, and easy recovery in the studied heterogeneous catalysis. © 2011 American Chemical Society.
Laser cooling of neutral atoms by red-shifted diffuse light in an optical integral sphere cavity
International Nuclear Information System (INIS)
Wang Yuzhu; Chen Hongxin; Cai Weiquan; Liu Liang; Zhou Shanyu; Shu Wei; Li Fosheng
1994-01-01
In this paper, we report a cooling and deceleration experiment of a thermal beam by using a nearly resonant red-shifted diffuse light in an optical integral sphere cavity. With this red-shifted diffuse light, a part of thermal sodium atoms is cooled to 380m/s and the velocity width of cooled atoms is about 20m/s. The mechanism of this kind of laser cooling and the experimental results are discussed. (author). 12 refs, 5 figs
AMOR - the versatile reflectometer at SINQ
Clemens, D.; Gross, P.; Keller, P.; Schlumpf, N.; Könnecke, M.
2000-03-01
We report on a new facility for neutron reflectometry situated at the end position of a cold neutron guide at the Swiss Spallation Neutron Source SINQ. The instrument is a flexible apparatus, adaptable to the needs of the user's individual experiment. Principally designed to operate in the time-of-flight mode it is also capable to exploit the fact that SINQ is a continuous source because PSI's developments in the field of thin film multilayers are fruitfully applied. By means of multilayer monochromators it can be converted into a constant wavelength reflectometer. Polarized neutron reflectometry on AMOR takes advantage of remanent FeCo/Ti:N supermirrors and multilayers which can be operated in a way that no spin flippers are needed. The time and angular contributions to the resolution in momentum transfer are separately determinable in TOF mode. The total length of the instrument is adjustable in order to optimize resolution together with the illumination of the sample's surface. Large sample environments can be placed on the sample table that is actively isolated against vibrations. Single detectors and an EMBL 3He area detector can be chosen, alternatively. The instrument concept as well as parameters of its components are presented.
A new neutron reflectometer at Australia's HIFAR research reactor
International Nuclear Information System (INIS)
James, M.; Nelson, A.; Schulz, J.C.; Jones, M.J.; Studer, A.J.; Hathaway, P.
2005-01-01
A new neutron reflectometer has been built at Australia's 10MW HIFAR research reactor. The X172 reflectometer operates in a monochromatic, angular dispersive mode collecting reflectivity data as a function of angle. The incident neutron beam is monochromated by a pair of pyrolytic graphite crystals (λ=2.43A) before being collimated using a pair of motorised sintered B 4 C slits. Detection of the reflected neutron beam is via a 10-atmosphere, helium-3, linear position sensitive detector. Examples of data collected using the X172 reflectometer at air-solid and solid-liquid interfaces are given. Neutron reflectivity values as low as 10 -5 have been measured on this instrument
International Nuclear Information System (INIS)
Tomes, John J; Finlayson, Chris E
2016-01-01
We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values. (paper)
Tomes, John J.; Finlayson, Chris E.
2016-09-01
We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.
Directory of Open Access Journals (Sweden)
Yolanda Villanueva-Palero
2017-06-01
Full Text Available Quantitative photoacoustic imaging in biomedicine relies on accurate measurements of relevant material properties of target absorbers. Here, we present a method for simultaneous measurements of the absorption coefficient and Grüneisen parameter of small volume of liquid scattering and absorbing media using a coupled-integrating sphere system which we refer to as quantitative photoacoustic integrating sphere (QPAIS platform. The derived equations do not require absolute magnitudes of optical energy and pressure values, only calibration of the setup using aqueous ink dilutions is necessary. As a demonstration, measurements with blood samples from various human donors are done at room and body temperatures using an incubator. Measured absorption coefficient values are consistent with known oxygen saturation dependence of blood absorption at 750 nm, whereas measured Grüneisen parameter values indicate variability among five different donors. An increasing Grüneisen parameter value with both hematocrit and temperature is observed. These observations are consistent with those reported in literature.
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
The correlation functions of homonuclear hard-sphere chain fluids are studied using the Wertheim integral equation theory for associating fluids and the Monte Carlo simulation method. The molecular model used in the simulations is the freely jointed hard-sphere chain with spheres that are tangentially connected. In the Wertheim theory, such a chain molecule is described by sticky hard spheres with two independent attraction sites on the surface of each sphere. The OZ-like equation for this associating fluid is analytically solved using the polymer-PY closure and by imposing a single bonding condition. By equating the mean chain length of this associating hard sphere fluid to the fixed length of the hard-sphere chains used in simulation, we find that the correlation functions for the chain fluids are accurately predicted. From the Wertheim theory we also obtain predictions for the overall correlation functions that include intramolecular correlations. In addition, the results for the average intermolecular correlation functions from the Wertheim theory and from the Chiew theory are compared with simulation results, and the differences between these theories are discussed
International Nuclear Information System (INIS)
Nilsson, Annica M.; Jonsson, Andreas; Jonsson, Jacob C.; Roos, Arne
2011-01-01
For most integrating sphere measurements, the difference in light distribution between a specular reference beam and a diffused sample beam can result in significant errors. The problem becomes especially pronounced in integrating spheres that include a port for reflectance or diffuse transmittance measurements. The port is included in many standard spectrophotometers to facilitate a multipurpose instrument, however, absorption around the port edge can result in a detected signal that is too low. The absorption effect is especially apparent for low-angle scattering samples, because a significant portion of the light is scattered directly onto that edge. In this paper, a method for more accurate transmittance measurements of low-angle light-scattering samples is presented. The method uses a standard integrating sphere spectrophotometer, and the problem with increased absorption around the port edge is addressed by introducing a diffuser between the sample and the integrating sphere during both reference and sample scan. This reduces the discrepancy between the two scans and spreads the scattered light over a greater portion of the sphere wall. The problem with multiple reflections between the sample and diffuser is successfully addressed using a correction factor. The method is tested for two patterned glass samples with low-angle scattering and in both cases the transmittance accuracy is significantly improved.
Horibe, Takuro; Ishii, Katsunori; Fukutomi, Daichi; Awazu, Kunio
2015-12-30
An estimation error of the scattering coefficient of hemoglobin in the high absorption wavelength range has been observed in optical property calculations of blood-rich tissues. In this study, the relationship between the accuracy of diffuse reflectance measurement in the integrating sphere and calculated scattering coefficient was evaluated with a system to calculate optical properties combined with an integrating sphere setup and the inverse Monte Carlo simulation. Diffuse reflectance was measured with the integrating sphere using a small incident port diameter and optical properties were calculated. As a result, the estimation error of the scattering coefficient was improved by accurate measurement of diffuse reflectance. In the high absorption wavelength range, the accuracy of diffuse reflectance measurement has an effect on the calculated scattering coefficient.
ASIC-enabled High Resolution Optical Time Domain Reflectometer
Skendzic, Sandra
Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and
Directory of Open Access Journals (Sweden)
Subbotin Artem Sergeevich
2014-04-01
Full Text Available Integration is one of the results of the world industrial and economic processes globalization. Integration of production and commercial units and formation of modern structures of corporate level are one of current trends of development of the organization and management, both science, and practice. Formation and development of integrated structures became an important modern phenomenon in the organization of corporate level. Integration processes in organizations to large extend influence the relation of competitive strengths on the market and as a result the competitive ability of its objects. It is accepted to distinguish vertically and horizontally integrated structures. The use of the integrated structures allows providing steady development of investment and construction activity within state-private partnership, and thanks to its flexible structure it is capable to react to changes of external and internal factors quickly and adequately. Moreover, it is necessary to point out the possibility of using the cluster model in the process of describing functioning of integrated structures.
Czech Academy of Sciences Publication Activity Database
Potúčková, M.; Červená, L.; Kupková, L.; Lhotáková, Z.; Lukeš, Petr; Hanuš, Jan; Novotný, Jan; Albrechtová, J.
2016-01-01
Roč. 16, č. 11 (2016), č. článku 1801. ISSN 1424-8220 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : broadleaved leaf * broadleaved plants * conifers * contact probe * integration sphere * needle * spectroradiometer * spectroscopy Subject RIV: EH - Ecology, Behaviour Impact factor: 2.677, year: 2016
International Nuclear Information System (INIS)
Ezhov, A.A.
1978-01-01
On the basis of the integral equation for neutron transport in a homogeneous isotropically-scattering sphere with an absolutely black central part an initial value problem has been formulated which permits the construction of a numerical scheme to find the neutron flux density
Energy Technology Data Exchange (ETDEWEB)
Ojala, K
1994-12-31
The effect of various factors on the efficiency of infrared dryers has been studied by modelling and simulation of radiative heat transfer in these dryers. Generally, 20-35 % of the radiation from electrical IR dryers becomes absorbed by the web, whereas in the case of a gas-fired dryer 30-50 % of the energy becomes absorbed. The efficiency is strongly dependent on the dryer design, power, geometry, cleanness, and the material to be dried. Ways to improve the efficiency of installed dryers are proposed and tested. The escape of radiation from the system can be reduced, the optical properties of the surfaces can be improved, the amount of cooling can be reduced in low power circumstances, and the way of installation can be changed. A very promising method is to install the dryer far from the web and attach side flanges of high emissivity beside the dryer. The spectral properties of papers and dryer materials are studied with an FTIR spectrometer using integrating sphere techniques. The heat and mass transfer processes inside the paper during drying has been studied. The drying model was applied to the simulation of the wetting experiments. The approximate magnitude for the permeability of liquid water inside the web was determined by adapting the liquid movement to these results. Applying this enhanced model, the flows of liquid water and vapor inside paper have been studied during the drying process on a hot cylinder
Monte Carlo simulation of the spear reflectometer at LANSCE
International Nuclear Information System (INIS)
Smith, G.S.
1995-01-01
The Monte Carlo instrument simulation code, MCLIB, contains elements to represent several components found in neutron spectrometers including slits, choppers, detectors, sources and various samples. Using these elements to represent the components of a neutron scattering instrument, one can simulate, for example, an inelastic spectrometer, a small angle scattering machine, or a reflectometer. In order to benchmark the code, we chose to compare simulated data from the MCLIB code with an actual experiment performed on the SPEAR reflectometer at LANSCE. This was done by first fitting an actual SPEAR data set to obtain the model scattering-length-density profile, Β(z), for the sample and the substrate. Then these parameters were used as input values for the sample scattering function. A simplified model of SPEAR was chosen which contained all of the essential components of the instrument. A code containing the MCLIB subroutines was then written to simulate this simplified instrument. The resulting data was then fit and compared to the actual data set in terms of the statistics, resolution and accuracy
Observation of energetic particle mode by using microwave reflectometer
International Nuclear Information System (INIS)
Tokuzawa, T.; Kawahata, K.; Sakakibara, S.; Toi, K.; Osakabe, M.; Yamamoto, S.
2006-01-01
Two heterodyne reflectometer systems are utilized for the fluctuation measurement in the Large Helical Device (LHD). By using the extraordinary polarized wave, we can measure the corresponding value to the combined fluctuation with the electron density and the magnetic field in the plasma core region even if the radial electron density profile is flat. E-band system has three channels of fixed frequencies of 78, 72, 65 GHz. The system is very convenient to observe magnetohydrodynamics (MHD) phenomena such as energetic particle driven Alfven eigenmodes, even if the system works as an interferometer mode. The detailed behaviour of the energetic particle mode is studied when low-n MHD burst is occurred. It seems to be caused that the spatial distribution of high energy particle is changed by such a MHD-burst. Also to know the radial distribution of MHD mode, frequency swept R-band reflectometer is applied for the first time. It seems to be successfully detected the energetic particle mode and toroidal Alfven eigenmode. (author)
DEFF Research Database (Denmark)
Trenz, Hans-Jörg
2015-01-01
In modern societies, the public sphere represents the intermediary realm that supports the communication of opinions, the discovery of problems that need to be dealt with collectively, the channeling of these problems through the filter of the media and political institutions, and the realization...... of the collective will of the people in the act of democratic self-government. The concept of the public sphere is used across the fields of media and communication research, cultural studies and the humanities, the history of ideas, legal and constitutional studies as well as democracy studies. Historically......, public spheres have undergone structural transformations that were closely connected to the emergence of different mass media. More recently, they are subject to trends of transnationalization and digitalization in politics and society....
International Nuclear Information System (INIS)
Graessle, D.E.; Fitch, J.J.; Ingram, R.; Zhang Juda, J.; Blake, R.L.
1995-01-01
Preparations have been underway to construct and test a facility for grazing incidence reflectance calibrations of flat mirrors at the National Synchrotron Light Source. The purpose is to conduct calibrations on witness flats to the coating process of the flight mirrors for NASA's Advanced X-ray Astrophysics Facility (AXAF). The x-ray energy range required is 50 eV--12 keV. Three monochromatic beamlines (X8C, X8A, U3A) will provide energy tunability over this entire range. The goal is to calibrate the AXAF flight mirrors with uncertainties approaching 1%. A portable end station with a precision-positioning reflectometer has been developed for this work. We have resolved the vacuum cleanliness requirements to preserve the coating integrity of the flats with the strict grazing-angle certainty requirements placed on the rotational control system of the reflectometer. A precision positioning table permits alignment of the system to the synchrotron beam to within 10 arcsec; the reflectometer's rotational control system can then produce grazing angle accuracy to within less than 2 arcsec, provided that the electron orbit is stable. At 10--12 keV, this degree of angular accuracy is necessary to achieve the calibration accuracy required for AXAF. However the most important energy regions for the synchrotron calibration are in the 2000--3200 eV range, where the M-edge absorption features of the coating element, iridium, appear, and the 300--700 eV range of the Ir N edges. The detail versus energy exhibited in these features cannot be traced adequately without a tunable energy source, which necessitates a synchrotron for this work. We present the mechanical designs, motion control systems, detection and measurement capabilities, and selected procedures for our measurements, as well as reflectance data
International Nuclear Information System (INIS)
Chang, J.; Sandler, S.I.
1995-01-01
We have extended the Wertheim integral equation theory to mixtures of hard spheres with two attraction sites in order to model homonuclear hard-sphere chain fluids, and then solved these equations with the polymer-Percus--Yevick closure and the ideal chain approximation to obtain the average intermolecular and overall radial distribution functions. We obtain explicit expressions for the contact values of these distribution functions and a set of one-dimensional integral equations from which the distribution functions can be calculated without iteration or numerical Fourier transformation. We compare the resulting predictions for the distribution functions with Monte Carlo simulation results we report here for five selected binary mixtures. It is found that the accuracy of the prediction of the structure is the best for dimer mixtures and declines with increasing chain length and chain-length asymmetry. For the equation of state, we have extended the dimer version of the thermodynamic perturbation theory to the hard-sphere chain mixture by introducing the dimer mixture as an intermediate reference system. The Helmholtz free energy of chain fluids is then expressed in terms of the free energy of the hard-sphere mixture and the contact values of the correlation functions of monomer and dimer mixtures. We compared with the simulation results, the resulting equation of state is found to be the most accurate among existing theories with a relative average error of 1.79% for 4-mer/8-mer mixtures, which is the worst case studied in this work. copyright 1995 American Institute of Physics
International Nuclear Information System (INIS)
Calderon, M.A.G.; Simonet, F.
1984-12-01
The feasibility of a swept microwave reflectometer, with one antenna only, for plasma electron density measurement is studied. Experimental results obtained in the laboratory by simulating the plasma with a metallic mirror are presented
First results of the SOL reflectometer on Alcator C-Moda)
Lau, C.; Hanson, G.; Lin, Y.; Wilgen, J.; Wukitch, S.; Labombard, B.; Wallace, G.
2012-10-01
A swept-frequency X-mode reflectometer has been built on Alcator C-Mod to measure the scrape-off layer (SOL) density profiles adjacent to the lower hybrid launcher. The reflectometer system operates between 100 and 146 GHz at sweep rates from 10 μs to 1 ms and covers a density range of ˜1016-1020 m-3 at B0 = 5-5.4 T. This paper discusses the analysis of reflectometer density profiles and presents first experimental results of SOL density profile modifications due to the application of lower hybrid range-of-frequencies power to L-mode discharges. Comparison between density profiles measured by the X-mode reflectometer and scanning Langmuir probes is also shown.
Circuit Design to Stabilize the Reflectometer Local Oscillator Signals
International Nuclear Information System (INIS)
Kung CC; Kramer GJ; Johnson E; Solomon W; Nazikian R.
2005-01-01
Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations when the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver
Application of Time Domain Reflectometers in Urban Settings ...
Time domain reflectometers (TDRs) are sensors that measure the volumetric water content of soils and porous media. The sensors consist of stainless steel rods connected to a circuit board in an epoxy housing. An electromagnetic pulse is propagated along the rods. The time, or period, required for the signal to travel down the rods and back varies with the volumetric water content of the surrounding media and temperature. A calibration curve is needed for the specific media. TDRs were developed mostly for agricultural applications; however, the technology has also been applied to forestry and ecological research. This study demonstrates the use of TDRs for quantifying drainage properties in low impact development (LID) stormwater controls, specifically permeable pavement and rain garden systems. TDRs were successfully used to monitor the responses of urban fill, engineered bioretention media, and the aggregate storage layer under permeable pavement to multiple rain events of varying depth, intensity, and duration. The hydrologic performance of permeable pavement and rain garden systems has previously been quantified for underdrain systems, but there have been few studies of systems that drain to the underlying soils. We know of no published studies outlining the use of TDR technology to document drainage properties in media other than soil. In this study TDRs were installed at multiple locations and depths in underlying urban fill soils, engineered bior
Homodyne reflectometer for NBI interlock on Large Helical Device
International Nuclear Information System (INIS)
Tanaka, Kenji; Ito, Yasuhiko; Kawahata, Kazuo; Tokuzawa, Tokihiko; Osakabe, Masaki; Takeiri, Yasuhiko; Ejiri, Akira
2001-01-01
Neutral Beam Injection (NBI) under low density causes serious damage on vacuum vessel wall. It is necessary to stop NBI when electron density becomes lower than 1x10 19 m -3 . This needs reliable density monitor for NBI interlock. A three-channel homodyne reflectometer was installed on Large Helical Device (LHD) and was used for NBI interlock. 28.5, 34.9 and 40.2 GHz Gunn oscillators were used with O mode injection. Their O mode cut off density correspond to 1x10 19 , 1.5x10 19 and 2x10 19 m -3 respectively. The simple homodyne detection is presently used. When the density reaches to the cutoff density, the reflected signals are detected. The reflected signal consists of DC signal due to local and reflected power, and AC signal due to position of cut off layer and density fluctuation. Since the change of DC signal at lower and higher than cut off density was very small, root mean square (RMS) value of AC signal were used for interlock signal. This interlock system is successfully working from the beginning of the NBI experiments campaign on LHD. (author)
Circuit Design to Stabilize the Reflectometer Local Oscillator Signals
Energy Technology Data Exchange (ETDEWEB)
Kung, C. C.; Kramer, G. J.; Johnson, E.; Solomon, W.; Nazikian, R.
2005-10-04
Reflectometry, which uses the microwave radar technique to probe the magnetically confined fusion plasmas, is a very powerful tool to observe the density fluctuations in the fusion plasmas. Typically, two or more microwave beams of different frequencies are used to study the plasma density fluctuations. The frequency separation between these two beams of the PPPL designed reflectometer system upgrade on the DIII-D tokamak can be varied over 18 GHz. Due to the performance of the associated electronics, the local oscillator (LO) power level at the LO port of the I/Q demodulator suffers more than 12 dB of power fluctuations when the frequency separation is varied. Thus, the I/Q demodulator performance is impaired. In order to correct this problem, a power leveling circuit is introduced in the PPPL upgrade. According to the test results, the LO power fluctuation was regulated to be within 1 dB for greater than 16 dB of input power variation over the full dynamic bandwidth of the receiver.
Scrape-off layer reflectometer for Alcator C-Moda)
Lau, Cornwall; Hanson, Greg; Wilgen, John; Lin, Yijun; Wukitch, Steve
2010-10-01
A swept-frequency X-mode reflectometer is being built for Alcator C-Mod to measure the scrape-off layer density profiles at the top, middle, and bottom locations in front of both the new lower hybrid launcher and the new ion cyclotron range of frequencies antenna. The system is planned to operate between 100 and 146 GHz at sweep rates from 10 μs to 1 ms, and will cover a density range of approximately 1016-1020 m-3 at B0=5-5.4 T. To minimize the effects of density fluctuations, both differential phase and full phase reflectometry will be employed. Design, test data, and calibration results of this electronics system will be discussed. To reduce attenuation losses, tallguide (TE01) will be used for most of the transmission line system. Simulations of high mode conversion in tallguide components, such as e-plane hyperbolic secant radius of curvature bends, tapers, and horn antennas will be shown. Experimental measurements of the total attenuation losses of these components in the lower hybrid waveguide run will also be presented.
Direct detection of lower hybrid wave using a reflectometer on Alcator C-Moda)
Shiraiwa, S.; Baek, S.; Dominguez, A.; Marmar, E.; Parker, R.; Kramer, G. J.
2010-10-01
The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.
Performance of a reflectometer at continuous wave and pulsed neutron sources
International Nuclear Information System (INIS)
Fitzsimmons, M.R.
1995-01-01
The Monte-Carlo simulations presented here involve simulations of reflectivity measurements of one sample using a reflectometer of traditional geometry at different neutron sources. The same reflectometer was used in all simulations. Only the characteristics of the neutron source, and the technique used to measure neutron wavelength were changed. In the case of the CW simulation, a monochromating crystal was used to select a nearly monochromatic beam (MB) from the neutron spectrum. In the simulations of the pulse sources, the time needed to traverse a fixed distance was measured, from which neutron wavelength is deduced
Development of a novel fast frequency modulation scheme for the JET multi-channel reflectometer
International Nuclear Information System (INIS)
Deliyanakis, N.
1999-10-01
A novel frequency modulation scheme has been developed for the multi-channel reflectometer used to measure density profiles and density fluctuations on the JET tokamak. This reflectometer normally uses slow frequency sweeping, combined with fixed-frequency operation, to measure the group delay, as well as plasma fluctuations, at 10 different microwave frequencies. The novel scheme uses continuous frequency modulation on a time-scale much faster than that of plasma fluctuations, the main aim being to make the group delay measurement more robust against plasma fluctuations. This paper discusses the theoretical background of the scheme, gives a detailed description of the system, and presents results from plasma measurements. (author)
International Nuclear Information System (INIS)
Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A
2009-01-01
The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.
PLATYPUS - A Time-of-Flight Neutron Reflectometer at the OPAL Facility
International Nuclear Information System (INIS)
James, Michael; Brule, Alain
2005-01-01
Full text: Neutron reflectometry is used to probe the structure of surfaces, thin-films or buried interfaces as well as processes occurring at surfaces and interfaces. Applications cover adsorbed surfactant layers, self-assembled monolayers, biological membranes, electrochemical and catalytic interfaces, polymer coatings and photosensitive films. The PLATYPUS neutron reflectometer has been recognised as one of the highest priority instruments to be constructed at the new 20MW OPAL research reactor at Lucas Heights. The instrument will be capable of collecting data from solid, liquid and magnetic samples using a broad wavelength band of polarised or non-polarised neutrons. Details of the design and construction of the PLATYPUS reflectometer will be given. (authors)
Optimization of the SNS magnetism reflectometer neutron-guide optics using Monte Carlo simulations
Klose, F
2002-01-01
The magnetism reflectometer at the spallation neutron source SNS will employ advanced neutron optics to achieve high data rate, improved resolution, and extended dynamic range. Optical components utilized will include a multi-channel polygonal curved bender and a tapered neutron-focusing guide section. The results of a neutron beam interacting with these devices are rather complex. Additional complexity arises due to the spectral/time-emission profile of the moderator and non-perfect neutron optical coatings. While analytic formulae for the individual components provide some design guidelines, a realistic performance assessment of the whole instrument can only be achieved by advanced simulation methods. In this contribution, we present guide optics optimizations for the magnetism reflectometer using Monte Carlo simulations. We compare different instrument configurations and calculate the resulting data rates. (orig.)
Microprocessor-controlled time domain reflectometer for dynamic shock position measurements
International Nuclear Information System (INIS)
Virchow, C.F.; Conrad, G.E.; Holt, D.M.; Hodson, E.K.
1980-01-01
Time-domain reflectometry is used in a novel way to measure dynamically shock propagation in various media. The primary component in this measurement system is a digital time domain reflectometer, which uses local intelligence, a Motorola 6800 microprocessor, to make the unit adaptable and versatile. The recorder, its operating theory and its method of implementation are described and typical data are reviewed. Applications include nuclear explosion yield estimates and explosive energy flow measurements
The quantum 2-sphere as a complex quantum manifold
International Nuclear Information System (INIS)
Chu Chongsun; Ho Peiming; Zumino, B.
1996-01-01
We describe the quantum sphere of Podles for c=0 by means of a stereographic projection which is analogous to that which exibits the classical sphere as a complex manifold. We show that the algebra of functions and the differential calculus on the sphere are covariant under the coaction of fractional transformations with SU q (2) coefficients as well as under the action of SU q (2) vector fields. Going to the classical limit we obtain the Poisson sphere. Finally, we study the invariant integration of functions on the sphere and find its relation with the translationally invariant integration on the complex quantum plane. (orig.)
DEFF Research Database (Denmark)
Fiig, Christina
The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public......The paper holds a critical discussion of the Habermasian model of the public sphere and proposes a revised model of a general public...
Directory of Open Access Journals (Sweden)
Markéta Potůčková
2016-10-01
Full Text Available Laboratory spectroscopy in visible and infrared regions is an important tool for studies dealing with plant ecophysiology and early recognition of plant stress due to changing environmental conditions. Leaf optical properties are typically acquired with a spectroradiometer coupled with an integration sphere (IS in a laboratory or with a contact probe (CP, which has the advantage of operating flexibility and the provision of repetitive in-situ reflectance measurements. Experiments comparing reflectance spectra measured with different devices and device settings are rarely reported in literature. Thus, in our study we focused on a comparison of spectra collected with two ISs on identical samples ranging from a Spectralon and coloured papers as reference standards to vegetation samples with broadleaved (Nicotiana Rustica L. and coniferous (Picea abies L. Karst. leaf types. First, statistical measures such as mean absolute difference, median of differences, standard deviation and paired-sample t-test were applied in order to evaluate differences between collected reflectance values. The possibility of linear transformation between spectra was also tested. Moreover, correlation between normalised differential indexes (NDI derived for each device and all combinations of wavelengths between 450 nm and 1800 nm were assessed. Finally, relationships between laboratory measured leaf compounds (total chlorophyll, carotenoids and water content, NDI and selected spectral indices often used in remote sensing were studied. The results showed differences between spectra acquired with different devices. While differences were negligible in the case of the Spectralon and they were possible to be modelled with a linear transformation in the case of coloured papers, the spectra collected with the CP and the ISs differed significantly in the case of vegetation samples. Regarding the spectral indices calculated from the reflectance data collected with the three
Energy Technology Data Exchange (ETDEWEB)
Bencivenni, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Czerwinski, E. [Institute of Physics, Jagiellonian University, Krakow (Poland); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Robertis, G. [INFN Sezione di Bari, Bari (Italy); Domenici, D. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Erriquez, O. [INFN Sezione di Bari, Bari (Italy); Dipartimento di Fisica, Università degli Studi di Bari, Bari (Italy); Fanizzi, G., E-mail: Giampiero.Fanizzi@ba.infn.it [INFN Sezione di Bari, Bari (Italy); Dipartimento di Fisica, Università degli Studi di Bari, Bari (Italy); Felici, G. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Liuzzi, R.; Loddo, F.; Mongelli, M. [INFN Sezione di Bari, Bari (Italy); Morello, G. [INFN gruppo collegato di Cosenza, Cosenza (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Ranieri, A.; Valentino, V. [INFN Sezione di Bari, Bari (Italy)
2013-01-11
A Time Domain Reflectometer implemented in a single cost-effective Field Programmable Gate Array device is shown to achieve a precision around 100 ps. The Time to Digital Converter section of the device is based on a tapped delay line followed by an encoder and shows both Differential and Integral Non-Linearity below one least significant bit. The same Field Programmable Gate Array houses an 8051 8-bits microprocessor, for the control of the pulse signals generation, the acquisition and the first treatment of raw data. Principles of operation, architecture, performance and preliminary trials on the prototype are presented in this paper. As an example of possible application, the proposed circuit has been usefully used to perform the quality control of the micro-strip anodic planes of the Gas Electron Multiplier Inner Tracker of the KLOE-2 experiment.
A time-of-flight neutron reflectometer for surface and interfacial studies
International Nuclear Information System (INIS)
Penfold, J.; Ward, R.C.; Williams, W.G.
1987-03-01
A time-of-flight neutron reflectometer constructed for surface and interfacial studies, and installed at the ISIS pulsed neutron source, is described. One of its important design features is its inclined incident beam, since this allows both liquid and solid surface phenomena to be investigated. Measurements are presented to show the performance of the instrument, and new representative results, which include studies of liquid surfaces, Langmuir-Blodgett films, and thin film multilayers, are included as illustrations of the scientific potential of the method. (author)
International Nuclear Information System (INIS)
Shaulov, S.B.; Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I.; Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I.; Tkaczyk, W.; Finger, M.; Sonsky, M.
2009-01-01
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10 16 -10 18 eV.
Energy Technology Data Exchange (ETDEWEB)
Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Besshapov, S.P.; Kabanova, N.V.; Sysoeva, T.I. [P.N.Lebedev Physical Institute, Russian Academy of Sciences, Leninsky prospect 53, Moscow 119991 (Russian Federation); Antonov, R.A.; Anyuhina, A.M.; Bronvech, E.A.; Chernov, D.V.; Galkin, V.I. [Skobeltsyn Institute of Nuclear Physics, Lomonosov State University, Moscow 119992 (Russian Federation); Tkaczyk, W. [Department of Experimental Physics of University of Lodz (Poland); Finger, M. [Karlov University, Prague (Czech Republic); Sonsky, M. [COMPAS Consortium, Turnov (Czech Republic)
2009-12-15
The expedition carried out in March, 2008 to Lake Baikal became an important stage in the development of the SPHERE experiment. During the expedition the SPHERE-2 installation was hoisted, for the first time, on a tethered balloon, APA, to a height of 700 m over the lake surface covered with ice and snow. A series of test measurements were made. Preliminary results of the data processing are presented. The next plan of the SPHERE experiment is to begin a set of statistics for constructing the CR spectrum in the energy range 10{sup 16}-10{sup 18} eV.
GINA-A polarized neutron reflectometer at the Budapest Neutron Centre
Energy Technology Data Exchange (ETDEWEB)
Bottyan, L.; Merkel, D. G.; Nagy, B.; Sajti, Sz.; Deak, L.; Endroczi, G. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Fuezi, J. [Wigner RCP, SZFKI, H-1525 Budapest, P.O. Box 49 (Hungary); University of Pecs, Pollack Mihaly Faculty of Engineering and Information Technology, H-7602 Pecs, P.O. Box 219 (Hungary); Petrenko, A. V. [Frank Laboratory of Neutron Physics, JINR, Joliot-Curie 6, Dubna, 141980 (Russian Federation); Major, J. [Wigner RCP, RMKI, H-1525 Budapest, P.O. Box 49 (Hungary); Max-Planck-Institut fuer Intelligente Systeme (formerly Max-Planck-Institut fuer Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)
2013-01-15
The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed 'Grazing Incidence Neutron Apparatus' at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 A are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 Multiplication-Sign 20 mm{sup 2} sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 Multiplication-Sign 10{sup -5} have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [{sup 62}Ni/{sup nat}Ni]{sub 5} isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.
GINA--a polarized neutron reflectometer at the Budapest Neutron Centre.
Bottyán, L; Merkel, D G; Nagy, B; Füzi, J; Sajti, Sz; Deák, L; Endrőczi, G; Petrenko, A V; Major, J
2013-01-01
The setup, capabilities, and operation parameters of the neutron reflectometer GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the Budapest Neutron Centre, are introduced. GINA, a dance-floor-type, constant-energy, angle-dispersive reflectometer is equipped with a 2D position-sensitive detector to study specular and off-specular scattering. Wavelength options between 3.2 and 5.7 Å are available for unpolarized and polarized neutrons. Spin polarization and analysis are achieved by magnetized transmission supermirrors and radio-frequency adiabatic spin flippers. As a result of vertical focusing by a five-element pyrolytic graphite monochromator, the reflected intensity from a 20 × 20 mm(2) sample has been doubled. GINA is dedicated to studies of magnetic films and heterostructures, but unpolarized options for non-magnetic films, membranes, and other surfaces are also provided. Shortly after its startup, reflectivity values as low as 3 × 10(-5) have been measured by the instrument. The instrument capabilities are demonstrated by a non-polarized and a polarized reflectivity experiment on a Si wafer and on a magnetic film of [(62)Ni/(nat)Ni](5) isotope-periodic layer composition. The facility is now open for the international user community. Its further development is underway establishing new sample environment options and spin analysis of off-specularly scattered radiation as well as further decreasing the background.
SuperADAM: upgraded polarized neutron reflectometer at the Institut Laue-Langevin.
Devishvili, A; Zhernenkov, K; Dennison, A J C; Toperverg, B P; Wolff, M; Hjörvarsson, B; Zabel, H
2013-02-01
A new neutron reflectometer SuperADAM has recently been built and commissioned at the Institut Laue-Langevin, Grenoble, France. It replaces the previous neutron reflectometer ADAM. The new instrument uses a solid state polarizer/wavelength filter providing a highly polarized (up to 98.6%) monochromatic neutron flux of 8 × 10(4) n cm(-2) s(-1) with monochromatization Δλ∕λ = 0.7% and angular divergence Δα = 0.2 mrad. The instrument includes both single and position sensitive detectors. The position sensitive detector allows simultaneous measurement of specular reflection and off-specular scattering. Polarization analysis for both specular reflection and off-specular scattering is achieved using either mirror analyzers or a (3)He spin filter cell. High efficiency detectors, low background, and high flux provides a dynamic range of up to seven decades in reflectivity. Detailed specifications and the instrument capabilities are illustrated with examples of recently collected data in the fields of thin film magnetism and thin polymer films.
The sphere-PAC fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.
2000-01-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
The sphere-pac fuel code 'SPHERE-3'
International Nuclear Information System (INIS)
Wallin, H.; Nordstroem, L.A.; Hellwig, C.
2001-01-01
Sphere-pac fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-pac fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
Graphs with Eulerian unit spheres
Knill, Oliver
2015-01-01
d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...
International Nuclear Information System (INIS)
Berenstein, David; Dzienkowski, Eric; Lashof-Regas, Robin
2015-01-01
We construct various exact analytical solutions of the SO(3) BMN matrix model that correspond to rotating fuzzy spheres and rotating fuzzy tori. These are also solutions of Yang Mills theory compactified on a sphere times time and they are also translationally invariant solutions of the N=1"∗ field theory with a non-trivial charge density. The solutions we construct have a ℤ_N symmetry, where N is the rank of the matrices. After an appropriate ansatz, we reduce the problem to solving a set of polynomial equations in 2N real variables. These equations have a discrete set of solutions for each value of the angular momentum. We study the phase structure of the solutions for various values of N. Also the continuum limit where N→∞, where the problem reduces to finding periodic solutions of a set of coupled differential equations. We also study the topology change transition from the sphere to the torus.
DEFF Research Database (Denmark)
Delory, Gregory T.; Luhmann, Janet G.; Brain, David
2012-01-01
events at Mars associated with solar flares and coronal mass ejections, which includes the identification of interplanetary shocks. MGS observations of energetic particles at varying geometries between the Earth and Mars that include shocks produced by halo, limb, and backsided events provide a unique......We report the observation of galactic cosmic rays and solar energetic particles by the Electron Reflectometer instrument aboard the Mars Global Surveyor (MGS) spacecraft from May of 1999 to the mission conclusion in November 2006. Originally designed to detect low-energy electrons, the Electron...... recorded high energy galactic cosmic rays with similar to 45% efficiency. Comparisons of this data to galactic cosmic ray proton fluxes obtained from the Advanced Composition Explorer yield agreement to within 10% and reveal the expected solar cycle modulation as well as shorter timescale variations. Solar...
Using the time domain reflectometer to check for a locate a fault
International Nuclear Information System (INIS)
Ramphal, M.; Sadok, E.
1995-01-01
The Time Domain Reflectometer (TDR) is one of the most useful tools for finding cable faults (opens, shorts, bad cable splices). The TDR is connected to the end of the line and shows the distance to the fault. It uses a low voltage signal that will not damage the line or interfere with nearby lines. The TDR sends a pulse or energy down the cable under test; when the pulse encounters the end of the cable or any cable fault, a portion of the pulse energy is reflected. The elapsed time of the reflected pulse is and indication of the distance to the fault. The shape of the reflected pulse uniquely identifies the type of cable fault. (author)
Saerbeck, T; Klose, F; Le Brun, A P; Füzi, J; Brule, A; Nelson, A; Holt, S A; James, M
2012-08-01
This review presents the implementation and full characterization of the polarization equipment of the time-of-flight neutron reflectometer PLATYPUS at the Australian Nuclear Science and Technology Organisation (ANSTO). The functionality and efficiency of individual components are evaluated and found to maintain a high neutron beam polarization with a maximum of 99.3% through polarizing Fe/Si supermirrors. Neutron spin-flippers with efficiencies of 99.7% give full control over the incident and scattered neutron spin direction over the whole wavelength spectrum available in the instrument. The first scientific experiments illustrate data correction mechanisms for finite polarizations and reveal an extraordinarily high reproducibility for measuring magnetic thin film samples. The setup is now fully commissioned and available for users through the neutron beam proposal system of the Bragg Institute at ANSTO.
On the torus cobordant cohomology spheres
Indian Academy of Sciences (India)
Let a compact Lie group G act on a smooth integral cohomology sphere with G = .... is a compact connected Lie group, (X, A) is a G space and H. ∗ ..... [15] Hsiang W-Y, Cohomology theory of topological transformation groups (New York,.
Norra, Stefan
2009-07-01
In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. No geological exogenic force has altered the earth's surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe's urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere
ORGANIZATION IN CONTEMPORARY PUBLIC SPHERE
Directory of Open Access Journals (Sweden)
Rosemarie HAINES
2013-12-01
Full Text Available The critical analysis of Habermas’ Public Sphere Theory and the comparative undertaking to the current day enables us to assert that in contemporary society, public sphere is no longer a political public sphere, this dimension being completed by a societal dimension, the public sphere has extended and now we can talk about partial public spheres in an ever more commercial environment. The new rebuilding and communication technologies create a new type of public character: the visible sphere – non-located, non-dialogical and open. Information and communication are more and more involved in the restructuring of capitalism on an international scale and the reorganization of leadership and management systems. The reevaluation of the public sphere, public opinion, communication allows us to define public sphere according to the profound mutations from today’s democratic societies.
Instability of extremal relativistic charged spheres
International Nuclear Information System (INIS)
Anninos, Peter; Rothman, Tony
2002-01-01
With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood
Guthrie, Forbes; Saidel-Keesing, Maish
2011-01-01
The only book focused on designing VMware vSphere implementations.VMware vSphere is the most widely deployed virtualization platform today. Considered the most robust and sophisticated hypervisor product, vSphere is the de facto standard for businesses, both large and small. This book is the only one of its kind to concisely explain how to execute a successful vSphere architecture, tailored to meet your company's needs. Expert authors share with you the factors that shape the design of a vSphere implementation. Learn how to make the right design decisions for your environment.Explores the late
Energy Technology Data Exchange (ETDEWEB)
Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.; Wang, G.; Sung, C.; Peebles, W. A. [Physics and Astronomy Department, University of California, Los Angeles, California 90095 (United States); Bobrek, M. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6006 (United States)
2016-11-15
A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layer density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.
International Nuclear Information System (INIS)
Govindarajan, T R; Padmanabhan, Pramod; Shreecharan, T
2010-01-01
We study polynomial deformations of the fuzzy sphere, specifically given by the cubic or the Higgs algebra. We derive the Higgs algebra by quantizing the Poisson structure on a surface in R 3 . We find that several surfaces, differing by constants, are described by the Higgs algebra at the fuzzy level. Some of these surfaces have a singularity and we overcome this by quantizing this manifold using coherent states for this nonlinear algebra. This is seen in the measure constructed from these coherent states. We also find the star product for this non-commutative algebra as a first step in constructing field theories on such fuzzy spaces.
Falling-sphere radioactive viscometry
International Nuclear Information System (INIS)
Souza, R. de.
1987-01-01
In this work the falling sphere viscometric method was studies experimentally using a sphere tagged with 198 Au radiosotopo, the objective being the demosntration of the advantages of this technique in relation to the traditional method. The utilisation of the falling radioactive sphere permits the point-point monitoring of sphere position as a function of count rate. The fall tube wall and end effects were determined by this technique. Tests were performed with spheres of different diameters in four tubes. The application of this technique demosntrated the wall and end effects in sphere speed. The case of sphere fall in the steady slow regime allowed the determination of the terminal velocity, showing the increase of botton end effect as the sphere approaches the tube base. In the case the transient slow regime, the sphere was initially in a state of respose near the top surface. The data obtained show the influence of the free surface and wall on the sphere acceleration. These experimental data were applied to the Basset equation on order to verify the behaviour of the terms in this equation. (author) [pt
AMOR - the time-of-flight neutron reflectometer at SINQ/PSI
Gupta, Mukul; Gutberlet, T.; Stahn, J.; Keller, P.; Clemens, D.
2004-07-01
The apparatus for multioptional reflectometry (AMOR) at SINQ/PSI is a versatile reflectometer operational in the time-of-flight (TOF) mode (in a wavelength range of 0.15 nm <λ < 1.3 nm) as well as in the monochromatic (theta-2theta) mode with both polarized and unpolarized neutrons. AMOR is designed to perform reflectometry measurements in horizontal sample-plane geometry which allows studying both solid-liquid and liquid-liquid interfaces. A pulsed cold neutron beam from the end position of the neutron guide is produced by a dual-chopper system (side-by-side) having two windows at 180^{circ} and rotatable with a maximum frequency of 200 Hz. In the TOF mode, the chopper frequency, width of the gating window and the chopper-detector distance can be selected independently providing a wide range of q-resolution (Delta q/q=1-10&%slash;). Remanent FeCoV/Ti : N supermirrors are used as polarizer/analyzer with a polarization efficiency of sim97&%slash;. For the monochromatic wavelength mode, a Ni/Ti multilayer is used as a monochromator, giving sim50&%slash; reflectivity at a wavelength of 0.47 nm. In the present work, a detailed description of the instrument and setting-up of the polarization option is described. Results from some of the recent studies with polarized neutrons and measurements on liquid surfaces are presented.
The energy-dispersive reflectometer at BESSY II: a challenge for thin film analysis
Pietsch, U; Geue, T; Neissendorfer, F; Brezsesinski, G; Symietz, C; Moehwald, H; Gudat, W
2001-01-01
Installed in 1999 the energy-dispersive reflectometer at the 13.2 bending magnet employs the exponentially decaying white X-ray emission spectrum of the 1.7 GeV storage ring of BESSY II outside the vacuum. Using an energy-dispersive detector specular and longitudinal-diffuse reflectivity spectra of thin films can be recorded simultaneously between 0.2 A sup - sup 1
In situ polarized 3He system for the Magnetism Reflectometer at the Spallation Neutron Source.
Tong, X; Jiang, C Y; Lauter, V; Ambaye, H; Brown, D; Crow, L; Gentile, T R; Goyette, R; Lee, W T; Parizzi, A; Robertson, J L
2012-07-01
We report on the in situ polarized (3)He neutron polarization analyzer developed for the time-of-flight Magnetism Reflectometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Using the spin exchange optical pumping method, we achieved a (3)He polarization of 76% ± 1% and maintained it for the entire three-day duration of the test experiment. Based on transmission measurements with unpolarized neutrons, we show that the average analyzing efficiency of the (3)He system is 98% for the neutron wavelength band of 2-5 Å. Using a highly polarized incident neutron beam produced by a supermirror bender polarizer, we obtained a flipping ratio of >100 with a transmission of 25% for polarized neutrons, averaged over the wavelength band of 2-5 Å. After the cell was depolarized for transmission measurements, it was reproducibly polarized and this performance was maintained for three weeks. A high quality polarization analysis experiment was performed on a reference sample of Fe/Cr multilayer with strong spin-flip off-specular scattering. Using a combination of the position sensitive detector, time-of-flight method, and the excellent parameters of the (3)He cell, the polarization analysis of the two-dimensional maps of reflected, refracted, and off-specular scattered intensity above and below the horizon were obtained, simultaneously.
Directory of Open Access Journals (Sweden)
Alina Ailinca
2013-04-01
Full Text Available Economic integration in Europe knows different stages and degrees of integration, Economic and Monetary Union (EMU being the penultimate stage which involves harmonizing fiscal and monetary policies. In this respect, in the desire to show the contribution to the increasing of economic integration in the European Union (EU, the article sets as the objectives, in tandem national-European, the identification of discrepancies of social indicators of EU countries in report to the targets of the Europe 2020 strategy. Thus, we used an approach based on a case study of EU countries, comparing the performance of social indicators in EU countries against European targets. The results showed that the Nordic countries are the closest to the social objectives of the Union, offering a good performance of these indicators. The prior work in the literature identifies many types of social models, from which the Nordic model is described as the one that provides the highest level of social welfare. Thus, the value of the study consists in clearly pointing out the qualities of the Nordic social model, arguing with figures and information why it may be more appropriate to its expanded implementation at the level of the European Union. As far as social policies of EU member states may be at least partially adapted to meet the performance of Nordic social model, the research can have several benefic implications, especially for policy makers.
Analytic functionals on the sphere
Morimoto, Mitsuo
1998-01-01
This book treats spherical harmonic expansion of real analytic functions and hyperfunctions on the sphere. Because a one-dimensional sphere is a circle, the simplest example of the theory is that of Fourier series of periodic functions. The author first introduces a system of complex neighborhoods of the sphere by means of the Lie norm. He then studies holomorphic functions and analytic functionals on the complex sphere. In the one-dimensional case, this corresponds to the study of holomorphic functions and analytic functionals on the annular set in the complex plane, relying on the Laurent series expansion. In this volume, it is shown that the same idea still works in a higher-dimensional sphere. The Fourier-Borel transformation of analytic functionals on the sphere is also examined; the eigenfunction of the Laplacian can be studied in this way.
Spheres: from Ground Development to ISS Operations
Katterhagen, A.
2016-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.
Porritt, L. A.; Quane, S.; Russell, K.
2011-12-01
Pele's tears are a well known curiosity commonly associated with low viscosity basaltic explosive eruptions. However, these pyroclasts are rarely studied in detail and there is no full explanation for their formation. These intriguing pyroclasts have smooth glassy surfaces, vesiculated interiors, and fluidal morphologies tending towards droplets and then spheres as they decrease in size to Pele's tears from the 1959 fire-fountaining eruption of Kilauea Iki involving size and density measurements. Using thin section and SEM analysis we also consider their internal and external morphologies, porosity and bubble size distributions, and surface textures. Finally we consider the mechanisms of magma fragmentation, timescales of relaxation, and cooling rates that are responsible for their formation.
Panoramic stereo sphere vision
Feng, Weijia; Zhang, Baofeng; Röning, Juha; Zong, Xiaoning; Yi, Tian
2013-01-01
Conventional stereo vision systems have a small field of view (FOV) which limits their usefulness for certain applications. While panorama vision is able to "see" in all directions of the observation space, scene depth information is missed because of the mapping from 3D reference coordinates to 2D panoramic image. In this paper, we present an innovative vision system which builds by a special combined fish-eye lenses module, and is capable of producing 3D coordinate information from the whole global observation space and acquiring no blind area 360°×360° panoramic image simultaneously just using single vision equipment with one time static shooting. It is called Panoramic Stereo Sphere Vision (PSSV). We proposed the geometric model, mathematic model and parameters calibration method in this paper. Specifically, video surveillance, robotic autonomous navigation, virtual reality, driving assistance, multiple maneuvering target tracking, automatic mapping of environments and attitude estimation are some of the applications which will benefit from PSSV.
Spherical Approximation on Unit Sphere
Directory of Open Access Journals (Sweden)
Eman Samir Bhaya
2018-01-01
Full Text Available In this paper we introduce a Jackson type theorem for functions in LP spaces on sphere And study on best approximation of functions in spaces defined on unit sphere. our central problem is to describe the approximation behavior of functions in spaces for by modulus of smoothness of functions.
First results from the new reflectometer, D17B at the Institut Laue Langevin
International Nuclear Information System (INIS)
Cubitt, R.; Lauter, H.
1999-01-01
D17B will be a reflectometer with the maximum flexibility in resolution, methods of data acquisition and sample environment. The instrument will be able to cover a q-range of 0.001 to 0.4 A -1 and measure reflectivities of the order of 10 -8 . Due to the straightened guide and super-mirror focusing sections, the peak flux will be a factor of seven larger than D17. With a continuous source of neutrons such it is possible to measure reflectivity as a function of q using either a monochromatic beam or by time-of flight (TOF). D17B will have both these option available. The monochromatic method has the advantage of being able to utilize the peak wavelength flux at all points in the scan and is the most efficient method of dealing with polarising neutrons and spin-flipping for magnetic experiments. However the TOF method offers a greater flexibility of resolution and enables certain experiments like dynamics of fixed geometry to be carried out which are not possible with the monochromatic method. The detector will have an area of 250 x 500 mm with a resolution of 1.5 x 3 mm and will be able to be moved between 1 and 3.5 m from the sample position to enable a wide q-range of off-specular scattering to be detected. The reflection plane will be horizontal thus experiments involving free liquid surfaces will not be carried out in this instrument. Details of the present status of the instrument and first experimental results are presented. (author)
Magnetism reflectometer study shows LiF layers improve efficiency in spin valve devices
Energy Technology Data Exchange (ETDEWEB)
Bardoel, Agatha A [ORNL; Lauter, Valeria [ORNL; Szulczewski, Greg J [ORNL
2012-01-01
New, more efficient materials for spin valves - a device used in magnetic sensors, random access memories, and hard disk drives - may be on the way based on research using the magnetism reflectometer at Oak Ridge National Laboratory (ORNL). Spin valve devices work by means of two or more conducting magnetic material layers that alternate their electrical resistance depending on the layers alignment. Giant magnetoresistance is a quantum mechanical effect first observed in thin film structures about 20 years ago. The effect is observed as a significant change in electrical resistance, depending on whether the magnetization of adjacent ferromagnetic layers is in a parallel or an antiparallel magnetic alignment. 'What we are doing here is developing new materials. The search for new materials suitable for injecting and transferring carriers with a preferential spin orientation is most important for the development of spintronics,' said Valeria Lauter, lead instrument scientist on the magnetism reflectometer at the Spallation Neutron Source (SNS), who collaborated on the experiment. The researchers discovered that the conductivity of such materials is improved when an organic polymer semiconductor layer is placed between the magnetic materials. Organic semiconductors are now the material of choice for future spin valve devices because they preserve spin coherence over longer times and distances than conventional semiconductors. While research into spin valves has been ongoing, research into organic semiconductors is recent. Previous research has shown that a 'conductivity mismatch' exists in spin valve systems in which ferromagnetic metal electrodes interface with such organic semiconductors as Alq3 ({pi}-conjugated molecule tris(8-hydroxy-quinoline) aluminium). This mismatch limits the efficient injection of the electrons from the electrodes at the interface with the semiconductor material. However, lithium fluoride (LiF), commonly used in light
Lemaillet, Paul; Bouchard, Jean-Pierre; Hwang, Jeeseong; Allen, David W.
2015-12-01
There is a need for a common reference point that will allow for the comparison of the optical properties of tissue-mimicking phantoms. After a brief review of the methods that have been used to measure the phantoms for a contextual backdrop to our approach, this paper reports on the establishment of a standardized double-integrating-sphere platform to measure absorption and reduced scattering coefficients of tissue-mimicking biomedical phantoms. The platform implements a user-friendly graphical user interface in which variations of experimental configurations and model-based analysis are implemented to compute the coefficients based on a modified inverse adding-doubling algorithm allowing a complete uncertainty evaluation. Repeatability and validation of the measurement results of solid phantoms are demonstrated for three samples of different thicknesses, d=5.08 mm, 7.09 mm, and 9.92 mm, with an absolute error estimate of 4.0% to 5.0% for the absorption coefficient and 11% to 12% for the reduced scattering coefficient (k=2). The results are in accordance with those provided by the manufacturer. Measurements with different polarization angles of the incident light are also presented, and the resulting optical properties were determined to be equivalent within the estimated uncertainties.
International Nuclear Information System (INIS)
Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Loesche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.
2006-01-01
An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 A -1 . A detailed description of this flexible instrument and its performance characteristics in various operating modes are given
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Public sphere as assemblage: the cultural politics of roadside memorialization.
Campbell, Elaine
2013-09-01
This paper investigates contemporary academic accounts of the public sphere. In particular, it takes stock of post-Habermasian public sphere scholarship, and acknowledges a lively and variegated debate concerning the multiple ways in which individuals engage in contemporary political affairs. A critical eye is cast over a range of key insights which have come to establish the parameters of what 'counts' as a/the public sphere, who can be involved, and where and how communicative networks are established. This opens up the conceptual space for re-imagining a/the public sphere as an assemblage. Making use of recent developments in Deleuzian-inspired assemblage theory - most especially drawn from DeLanda's (2006) 'new philosophy of society' - the paper sets out an alternative perspective on the notion of the public sphere, and regards it as a space of connectivity brought into being through a contingent and heterogeneous assemblage of discursive, visual and performative practices. This is mapped out with reference to the cultural politics of roadside memorialization. However, a/the public sphere as an assemblage is not simply a 'social construction' brought into being through a logic of connectivity, but is an emergent and ephemeral space which reflexively nurtures and assembles the cultural politics (and political cultures) of which it is an integral part. The discussion concludes, then, with a consideration of the contribution of assemblage theory to public sphere studies. (Also see Campbell 2009a). © London School of Economics and Political Science 2013.
Absorption of continuum radiation in a resonant expanding gaseous sphere
International Nuclear Information System (INIS)
Shaparev, N Y
2014-01-01
The paper deals with absorption of external continuum radiation in a self-similarly expanding gaseous sphere. Frequency probability and integral probability of radiation absorption in the resonance frequency range are determined depending on the expansion velocity gradient and thickness of the optical medium. It is shown that expansion results in a reduced optical thickness of the medium and enhanced integral absorption. (paper)
Public Sphere as Digital Assemblage
DEFF Research Database (Denmark)
Salovaara-Moring, Inka
the 1990s onwards digitalization brought concepts of network and complexity into the theoretical discourse. This relational turn changed the social ontology of the public sphere into a dynamic and complex system, erasing the division between the fields of reality (the world), representation (discourse......Normative theories of public sphere have struggled with the topic of materiality. The historical narrative of the ‘public sphere’ situated the phenomenon in specific spaces, where practices (public deliberation) and language (discourse) constructed political agencies, and further publics. From......), and subjectivity (agency). This changed the public sphere into an assemblage consisting of both human and non-human actors interactingin a highly dynamic, networked environment. This paper proposes a framework for considering this new materiality in the field of the public sphere: the assemblage and complexity...
Differential Calculus on Quantum Spheres
Welk, Martin
1998-01-01
We study covariant differential calculus on the quantum spheres S_q^2N-1. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including a particular first order calculus obtained by factorization, higher order calculi and a symmetry concept.
Integrating Sphere-based Weathering Device
Federal Laboratory Consortium — Description:In the artificial ultraviolet (UV) weathering of materials, a need exists for weathering devices that can uniformly illuminate test specimens with a high...
SPHERES: From Ground Development to Operations on ISS
Katterhagen, A.
2015-01-01
SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of
Generalized coherent state approach to star products and applications to the fuzzy sphere
International Nuclear Information System (INIS)
Alexanian, G.; Pinzul, A.; Stern, A.
2001-01-01
We construct a star product associated with an arbitrary two-dimensional Poisson structure using generalized coherent states on the complex plane. From our approach one easily recovers the star product for the fuzzy torus, and also one for the fuzzy sphere. For the latter we need to define the 'fuzzy' stereographic projection to the plane and the fuzzy sphere integration measure, which in the commutative limit reduce to the usual formulae for the sphere
On the sedimentation velocity of spheres in a polymeric liquid
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Hassager, Ole
1996-01-01
A Lagrangian finite element method is used to simulate the transient sedimentation of spheres in polymeric liquids. The liquid is described by an integral constitutive equation of the Rivlin-Sawyers type. The simulations show a marked increase in the drag, which is apparently related to the elong......A Lagrangian finite element method is used to simulate the transient sedimentation of spheres in polymeric liquids. The liquid is described by an integral constitutive equation of the Rivlin-Sawyers type. The simulations show a marked increase in the drag, which is apparently related...... to the elongational flow in the wake. Furthermore, the results indicate that the sedimenting sphere geometry is a possible candidate for a rheometer capable of providing information about fluids in extensional flows....
International Nuclear Information System (INIS)
Alekseev, A E; Potapov, V T; Vdovenko, V S; Simikin, D E; Gorshkov, B G
2016-01-01
In the present paper we propose a novel method for optical time-domain reflectometer (OTDR)–reflectogram contrast enhancement via compensation of nonlinear distortions of propagating probe pulse, which arise due to the self-phase modulation (SPM) effect in optical fiber. The compensation is performed via preliminary frequency modulation (chirp) of the initial probe pulse according to the specific law. As a result the OTDR contrast at some distant predefined fiber point is fully restored to the value of non-distorted probe pulse at the beginning of the fiber line. As a result, the performance of the phase OTDR increases. The point of full SPM compensation could be shifted to any other point of the fiber line via preliminary frequency modulation index change. The feasibility of the proposed method is theoretically proved and experimentally demonstrated. (paper)
International Nuclear Information System (INIS)
Crunelle, C; Wuilpart, M; Caucheteur, C; Mégret, P
2009-01-01
In this note, we present a quasi-distributed temperature monitoring system based on the concatenation of identical low-reflective fiber Bragg gratings (FBGs) and interrogated by means of an optical time-domain reflectometer (OTDR). An original wavelength-sensitive system placed before the OTDR detector is used to analyze the reflected signal. This system allows the height of the FBG reflection peaks in the OTDR trace to depend on their resonance wavelength, and therefore to the local temperature. In addition, a simple but original reference method is proposed. The configuration of the whole interrogating device is kept very basic, as a standard OTDR and some passive components are used. The cost of the overall system is therefore very limited. In this note, the wavelength-sensitive system is studied in details, as well as the reference method. Experimental results are reported. (technical design note)
Clifford coherent state transforms on spheres
Dang, Pei; Mourão, José; Nunes, João P.; Qian, Tao
2018-01-01
We introduce a one-parameter family of transforms, U(m)t,t > 0, from the Hilbert space of Clifford algebra valued square integrable functions on the m-dimensional sphere, L2(Sm , dσm) ⊗Cm+1, to the Hilbert spaces, ML2(R m + 1 ∖ { 0 } , dμt) , of solutions of the Euclidean Dirac equation on R m + 1 ∖ { 0 } which are square integrable with respect to appropriate measures, dμt. We prove that these transforms are unitary isomorphisms of the Hilbert spaces and are extensions of the Segal-Bargman coherent state transform, U(1) :L2(S1 , dσ1) ⟶ HL2(C ∖ { 0 } , dμ) , to higher dimensional spheres in the context of Clifford analysis. In Clifford analysis it is natural to replace the analytic continuation from Sm to SCm as in (Hall, 1994; Stenzel, 1999; Hall and Mitchell, 2002) by the Cauchy-Kowalewski extension from Sm to R m + 1 ∖ { 0 } . One then obtains a unitary isomorphism from an L2-Hilbert space to a Hilbert space of solutions of the Dirac equation, that is to a Hilbert space of monogenic functions.
Troubleshooting vSphere storage
Preston, Mike
2013-01-01
This is a step-by-step example-oriented tutorial aimed at showing the reader how to troubleshoot a variety of vSphere storage problems, and providing the reader with solutions that can be completed with minimal effort and time in order to limit damage to work.If you are a vSphere administrator, this is the book for you. This book will provide you with 'need to know' information about the various storage transports that ESXi utilizes, the tools and techniques we can use to identify problems, and the fundamental knowledge and steps to take to troubleshoot storage-related issues. Prior knowledge
Training of Industrial Sphere Managers in a Specially Organized Education Environment
Gorshenina, Margarita; Firsova, Elena
2016-01-01
The professional activity of industrial sphere managers has an integrated character and includes managerial, economic and production activity. Due to this the structure of readiness of industrial sphere managers for professional activity is composed of three components: subject, reflexive and technological ones. The objective of this paper…
Surface phenomena and the evolution of radiating fluid spheres in general relativity
International Nuclear Information System (INIS)
Herrera, L.; Jimenez, J.; Esculpi, M.; Ibanez, J.
1989-01-01
A method used to study the evolution of radiating spheres (Herrera, Jimenez, and Ruggeri) is extended to the case in which surface phenomena are taken into account. The equations have been integrated numerically for a model derived from the Schwarzschild interior solution, bringing out the effects of surface tension on the evolution of the spheres. 17 refs
Spheres of discharge of springs
Springer, Abraham E.; Stevens, Lawrence E.
2009-02-01
Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.
Neuroscience in the public sphere.
O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene
2012-04-26
The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere. Copyright © 2012 Elsevier Inc. All rights reserved.
Neuroscience in the Public Sphere
O'Connor, Cliodhna; Rees, Geraint; Joffe, Helene
2012-01-01
The media are increasingly fascinated by neuroscience. Here, we consider how neuroscientific discoveries are thematically represented in the popular press and the implications this has for society. In communicating research, neuroscientists should be sensitive to the social consequences neuroscientific information may have once it enters the public sphere.
Tessellating the Sphere with Regular Polygons
Soto-Johnson, Hortensia; Bechthold, Dawn
2004-01-01
Tessellations in the Euclidean plane and regular polygons that tessellate the sphere are reviewed. The regular polygons that can possibly tesellate the sphere are spherical triangles, squares and pentagons.
Determinants and conformal anomalies of GJMS operators on spheres
Dowker, J. S.
2011-03-01
The conformal anomalies and functional determinants of the Branson-GJMS operators, P2k, on the d-dimensional sphere are evaluated in explicit terms for any d and k such that k rational multiplicative anomaly, which vanishes for odd d. Taking the mode system on the sphere as the union of Neumann and Dirichlet ones on the hemisphere is a basic part of the method and leads to a heuristic explanation of the non-existence of 'super-critical' operators, 2k > d for even d. Significant use is made of the Barnes zeta function. The results are given in terms of ratios of determinants of operators on a (d + 1)-dimensional bulk dual sphere. For odd dimensions, the log determinant is written in terms of multiple sine functions and agreement is found with holographic computations, yielding an integral over a Plancherel measure. The N-D determinant ratio is also found explicitly for even dimensions. Ehrhart polynomials are encountered.
Capillary holdup between vertical spheres
Directory of Open Access Journals (Sweden)
S. Zeinali Heris
2009-12-01
Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.
Archaic artifacts resembling celestial spheres
Dimitrakoudis, S.; Papaspyrou, P.; Petoussis, V.; Moussas, X.
We present several bronze artifacts from the Archaic Age in Greece (750-480 BC) that resemble celestial spheres or forms of other astronomical significance. They are studied in the context of the Dark Age transition from Mycenaean Age astronomical themes to the philosophical and practical revival of astronomy in the Classical Age with its plethora of astronomical devices. These artifacts, mostly votive in nature are spherical in shape and appear in a variety of forms their most striking characteristic being the depiction of meridians and/or an equator. Most of those artifacts come from Thessaly, and more specifically from the temple of Itonia Athena at Philia, a religious center of pan-Hellenic significance. Celestial spheres, similar in form to the small artifacts presented in this study, could be used to measure latitudes, or estimate the time at a known place, and were thus very useful in navigation.
Spheres of Justice within Schools
DEFF Research Database (Denmark)
Sabbagh, Clara; Resh, Nura; Mor, Michal
2006-01-01
This article argues that there are distinct spheres of justice within education and examines a range of justice norms and distribution rules that characterize the daily life of schools and classrooms. Moving from the macro to micro level, we identify the following five areas: the right to education......, the allocation of (or selection into) learning places, teaching–learning practices, teachers’ treatment of students, and student evaluations of grade distribution. We discuss the literature on the beliefs by students and teachers about the just distribution of educational goods in these five domains......, and on the practices used in the actual allocation of these goods. In line with normative ‘spheres of justice’ arguments in social theory, we conclude that the ideals of social justice within schools vary strongly according to the particular resource to be distributed. Moreover, these ideals often do not correspond...
The optical levitation of spheres
International Nuclear Information System (INIS)
Roosen, G.
1979-01-01
In this article we are dealing with optical levitation, that is the possibility of maintaining particles in a stable equilibrium position in air or vacuum by means of laser beams. In the first part, we review the methods used to calculate the force exerted on a sphere by a laser beam. The axial and transverse force components could be obtained either by applying Debye theory to laser beams which have a non-uniform energy distribution or by using, in the case of large spheres, a geometrical optics approach. From the results achieved with the geometrical optics approach, we derive, in a second part, the required stable equilibrium conditions for a sphere placed either in a vertical beam or in two horizontal ones having the same axis but opposite direction. In the last part, we describe in detail the levitation experiments carried out using either a vertical or two horizontal beams. In conclusion, we point out some applications of optical levitation, emphasizing especially the suspension by optical levitation of the targets used in laser fusion experiments. (author) [fr
Lowe, Scott
2011-01-01
A new and updated edition of bestselling Mastering VMware vSphere 4 Written by leading VMware expert, this book covers all the features and capabilities of VMware vSphere. You'll learn how to install, configure, operate, manage, and secure the latest release.Covers all the new features and capabilities of the much-anticipated new release of VMware vSphereDiscusses the planning, installation, operation, and management for the latest releaseReviews migration to the latest vSphere softwareOffers hands-on instruction and clear explanations with real-world examples Mastering VMware vSphere is the
The sphere-PAC fuel code 'SPHERE-3'
Energy Technology Data Exchange (ETDEWEB)
Wallin, H
2000-07-01
Sphere-PAC fuel is an advanced nuclear fuel, in which the cladding tube is filled with small fuel spheres instead of the more usual fuel pellets. At PSI, the irradiation behaviour of sphere-PAC fuel is calculated using the computer code SPHERE-3. The paper describes the present status of the SPHERE-3 code, and some results of the qualification process against experimental data. (author)
A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS
Bota Anton Florin
2009-01-01
The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou
Building the Platform of Digital Earth with Sphere Split Bricks
Directory of Open Access Journals (Sweden)
WANG Jinxin
2015-06-01
Full Text Available Discrete global grids, a modeling framework for big geo-spatial data, is always used to build the Digital Earth platform. Based on the sphere split bricks (Earth system spatial grids, it can not only build the true three-dimensional digital Earth model, but also can achieve integration, fusion, expression and application of the spatial data which locates on, under or above the Earth subsurface. The theoretical system of spheroid geodesic QTM octree grid is discussed, including the partition principle, analysis of grid geometry features and coding/ decoding method etc, and a prototype system of true-3D digital Earth platform with the sphere split bricks is developed. The functions of the system mainly include the arbitrary sphere segmentation and the visualization of physical models of underground, surface and aerial entities. Results show that the sphere geodesic QTM octree grid has many application advantages, such as simple subdivision rules, the grid system neat, clear geometric features, strong applicability etc. In particular, it can be extended to the ellipsoid, so it can be used for organization, management, integration and application of the global spatial big data.
Generating perfect fluid spheres in general relativity
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-06-01
Ever since Karl Schwarzschild’s 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star—a static spherically symmetric blob of fluid with position-independent density—the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres.
Generating perfect fluid spheres in general relativity
International Nuclear Information System (INIS)
Boonserm, Petarpa; Visser, Matt; Weinfurtner, Silke
2005-01-01
Ever since Karl Schwarzschild's 1916 discovery of the spacetime geometry describing the interior of a particular idealized general relativistic star--a static spherically symmetric blob of fluid with position-independent density--the general relativity community has continued to devote considerable time and energy to understanding the general-relativistic static perfect fluid sphere. Over the last 90 years a tangle of specific perfect fluid spheres has been discovered, with most of these specific examples seemingly independent from each other. To bring some order to this collection, in this article we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres
SURFACES OF HARD-SPHERE SYSTEMS
Directory of Open Access Journals (Sweden)
Dietrich Stoyan
2014-07-01
Full Text Available In various situations surfaces appear that are formed by systems of hard spheres. Examples are porous layers as surfaces of sand heaps and biofilms or fracture surfaces of concrete. The present paper considers models where a statistically homogeneous system of hard spheres with random radii is intersected by a plane and the surface is formed by the spheres with centers close to this plane. Formulae are derived for various characteristics of such surfaces: for the porosity profile, i.e. the local porosity in dependence on the distance from the section plane and for the geometry of the sphere caps that look above the section plane.It turns out that these characteristics only depend on the first-order characteristics of the sphere system, its sphere density and the sphere radius distribution.Comparison with empirically studied biofilms shows that the model is realistic.
Fusion breeder sphere - PAC blanket design
International Nuclear Information System (INIS)
Sullivan, J.D.; Palmer, B.J.F.
1987-11-01
There is a considerable world-wide effort directed toward the production of materials for fusion reactors. Many ceramic fabrication groups are working on making lithium ceramics in a variety of forms, to be incorporated into the tritium breeding blanket which will surround the fusion reactor. Current blanket designs include ceramic in either monolithic or packed sphere bed (sphere-pac) forms. The major thrust at AECL is the production of lithium aluminate spheres to be incorporated in a sphere-pac bed. Contemporary studies on breeder blanket design offer little insight into the requirements on the sizes of the spheres. This study examined the parameters which determine the properties of pressure drop and coolant requirements. It was determined that an optimised sphere-pac bed would be composed of two diameters of spheres: 75 weight % at 3 mm and 25 weight % at 0.3 mm
Directory of Open Access Journals (Sweden)
Yongqian Li
2017-03-01
Full Text Available A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively.
Energy Technology Data Exchange (ETDEWEB)
Wang, G. [University of California, Los Angeles, CA 90095 (United States)]. E-mail: wangg@fusion.gat.com; Peebles, W.A. [University of California, Los Angeles, CA 90095 (United States); Doyle, E.J. [University of California, Los Angeles, CA 90095 (United States); Rhodes, T.L. [University of California, Los Angeles, CA 90095 (United States); Zeng, L. [University of California, Los Angeles, CA 90095 (United States); Nguyen, X. [University of California, Los Angeles, CA 90095 (United States); Osborne, T.H. [General Atomics, San Diego, CA 92186-5608 (United States); Snyder, P.B. [General Atomics, San Diego, CA 92186-5608 (United States); Kramer, G.J. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Nazikian, R. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Groebner, R.J. [General Atomics, San Diego, CA 92186-5608 (United States); Burrell, K.H. [General Atomics, San Diego, CA 92186-5608 (United States); Leonard, A.W. [General Atomics, San Diego, CA 92186-5608 (United States); Fenstermacher, M.E. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Strait, E.J. [General Atomics, San Diego, CA 92186-5608 (United States)
2007-06-15
High-resolution quadrature reflectometer measurements of density fluctuation levels have been obtained on DIII-D for H-mode edge pedestal studies. Initial results are presented from the L-H transition to the first ELM for two cases: (i) a low pedestal beta discharge, in which density turbulence in the pedestal has little change during the ELM-free phase, and (ii) a high pedestal beta discharge in which both density and magnetic turbulence are observed to increase before the first ELM. These high beta data are consistent with the existence of electromagnetic turbulence suggested by some transport models. During Type-I ELM cycles, when little magnetic turbulence can be observed, pedestal turbulence increases just after an ELM crash and then decreases before next ELM strikes, in contrast to a drop after ELM crash and then it re-grows when strong magnetic turbulence shows similar behavior. Clear ELM precursors are observed on {<=}20% of Type-I ELMs observed to date.
Guthrie, Forbes
2013-01-01
Achieve the performance, scalability, and ROI your business needs What can you do at the start of a virtualization deployment to make things run more smoothly? If you plan, deploy, maintain, and optimize vSphere solutions in your company, this unique book provides keen insight and solutions. From hardware selection, network layout, and security considerations to storage and hypervisors, this book explains the design decisions you'll face and how to make the right choices. Written by two virtualization experts and packed with real-world strategies and examples, VMware v
Characterisation of the IPNE Bonner sphere spectrometer by comparison with the PTB system
International Nuclear Information System (INIS)
Alevra, A.V.; Plostinaru, V.D.
2002-01-01
An existing set of Bonner spheres of the Institute for Physics and Nuclear Engineering in Bucharest has been modified following the PTB design for application of an 3 He-filled SP9 counter. By simple interpolations of the fluence responses of the PTB spheres, a preliminary fluence response matrix could be established for the IPNE Bonner sphere set. For further adjustments of the preliminary responses and for validation of the final fluence response matrix of the Romanian Bonner sphere spectrometer, calibration measurements with a reference 252 Cf neutron source and joint measurements, including the PTB Bonner sphere spectrometer, were performed in a few neutron fields differing substantially in their spectral distributions. It is estimated that the integral neutron fluences and dose-equivalent values can now be determined with the Romanian spectrometer with uncertainties of about ±4% and ±8%, respectively
Poisson denoising on the sphere
Schmitt, J.; Starck, J. L.; Fadili, J.; Grenier, I.; Casandjian, J. M.
2009-08-01
In the scope of the Fermi mission, Poisson noise removal should improve data quality and make source detection easier. This paper presents a method for Poisson data denoising on sphere, called Multi-Scale Variance Stabilizing Transform on Sphere (MS-VSTS). This method is based on a Variance Stabilizing Transform (VST), a transform which aims to stabilize a Poisson data set such that each stabilized sample has an (asymptotically) constant variance. In addition, for the VST used in the method, the transformed data are asymptotically Gaussian. Thus, MS-VSTS consists in decomposing the data into a sparse multi-scale dictionary (wavelets, curvelets, ridgelets...), and then applying a VST on the coefficients in order to get quasi-Gaussian stabilized coefficients. In this present article, the used multi-scale transform is the Isotropic Undecimated Wavelet Transform. Then, hypothesis tests are made to detect significant coefficients, and the denoised image is reconstructed with an iterative method based on Hybrid Steepest Descent (HST). The method is tested on simulated Fermi data.
Method for producing small hollow spheres
International Nuclear Information System (INIS)
Hendricks, C.D.
1979-01-01
A method is described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T >approx. 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
The Positive Freedom of the Public Sphere
DEFF Research Database (Denmark)
Hansen, Ejvind
2015-01-01
calls for new reflections on the possible relationship between media, public sphere and democracy. This paper argues that we should change the questions that are raised when we try to assess the public sphere. It is argued that the traditional (Enlightenment) focus upon negative liberties and the truth-value......The relationship between democracy and the media since the appearance of Habermas' major texts in the 1960s has been articulated through theories of the public sphere. The structure of the public sphere is significantly influenced by the communicative media, and the emergence of the internet thus...
Energy Technology Data Exchange (ETDEWEB)
Wang, Guiding [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Peebles, W. A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Doyle, E. J. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Crocker, N. A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Wannberg, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics and Astronomy and Plasma Science and Technology Inst. (PSTI); Lau, Cornwall H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hanson, Gregory R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Doane, John L. [General Atomics, San Diego, CA (United States)
2017-10-19
The present design concept for the ITER low-field-side reflectometer transmission line (TL) consists of an ~40 m long, 6.35 cm diameter helically corrugated waveguide (WG) together with ten 90° miter bends. This paper presents an evaluation of the TL performance at low frequencies (33-50 GHz) where the predicted HE11 mode ohmic and mode conversion losses start to increase significantly. Quasi-optical techniques were used to form a near Gaussian beam to efficiently couple radiation in this frequency range into the WG. We observed that the output beams from the guide remained linearly polarized with cross-polarization power levels of ~1.5%-3%. The polarization rotation due to the helical corrugations was in the range ~1°-3°. The radiated beam power profiles typically show excellent Gaussian propagation characteristics at distances >20 cm from the final exit aperture. The round trip propagation loss was found to be ~2.5 dB at 50 GHz and ~6.5 dB at 35 GHz, showing an inverse increase with frequency. This was consistent with updated calculations of miter bend and ohmic losses. At low frequencies (33-50 GHz), the mode purity remained very good at the exit of the waveguide, and the losses are perfectly acceptable for operation in ITER. Finally, the primary challenge may come from the future addition of a Gaussian telescope and other filter components within the corrugated guide, which will likely introduce additional perturbations to the beam profile and an increase in mode-conversion loss.
Study of density fluctuation in L-mode and H-mode plasmas on JFT-2M by microwave reflectometer
International Nuclear Information System (INIS)
Shinohara, Kouji
1997-08-01
We propose the model which can explain the runaway phase. The model takes account of the scattered wave which is caused by the density fluctuation near the cut-off layer. We should take a new approach instead of the conventional phase measurement in order to derive the information of the density fluctuation from the data with the runaway phase. The complex spectrum and the rotary spectrum analyses are useful tools to analyze such data. The density fluctuation in L-mode and H-mode plasmas is discussed by using this new approach. We have observed that the reduction of the density fluctuation is localized in the edge region where the sheared electric field is produced. The fluctuations in the range of frequency lower than 100 kHz are mainly reduced. Two interesting features have been observed. One is the detection of the coherent mode around 100 kHz in H-mode. This mode appears about 10 ms after L to H transition. The timing corresponds to the formation of a steep density and temperature gradient in the edge region. The other is the enhancement of the fluctuations with the frequency higher than 300 kHz in H-mode in contrast to the reduction of the fluctuations with the frequency lower than 100 kHz. The Doppler shift is observed in the complex auto-power spectrum of the reflected wave when the plasma is actively moved. We have confirmed that the movement of the plasma is appropriately measured by using the low pass filter. The reflectometer can be used to measure the density profile by using a low pass filter even when the runaway phase phenomenon occurs. (author). 150 refs
International Nuclear Information System (INIS)
Dowker, J S
2013-01-01
I give some scalar field theory calculations on a d-dimensional lune of arbitrary angle, evaluating, numerically, the effective action which is expressed as a simple quadrature, for conformal coupling. Using this, the entanglement and Rényi entropies are computed. Massive fields are also considered and a renormalization to make the (one-loop) effective action vanish for infinite mass is suggested and used, not entirely successfully. However a universal coefficient is derived from the large mass expansion. From the deformation of the corresponding lune result, I conjecture that the effective action on all odd manifolds with a simple conical singularity has an extremum when the singularity disappears. For the round sphere, I show how to convert the quadrature form of the conformal Laplacian determinant into the more usual sum of Riemann ζ-functions (and log 2). (paper)
Garakhin, S. A.; Zabrodin, I. G.; Zuev, S. E.; Kas'kov, I. A.; Lopatin, A. Ya.; Nechay, A. N.; Polkovnikov, V. N.; Salashchenko, N. N.; Tsybin, N. N.; Chkhalo, N. I.; Svechnikov, M. V.
2017-05-01
We describe a laboratory reflectometer developed at the IPM RAS for precision measurements of spectral and angular dependences of the reflection and transmission coefficients of optical elements in a wavelength range of 5-50 nm. The radiation is monochromatised using a high-resolution Czerny-Turner spectrometer with a plane diffraction grating and two spherical collimating mirrors. A toroidal mirror focuses the probe monochromatic beam on a sample. The X-ray source is a highly ionised plasma produced in the interaction of a high-power laser beam with a solid target at an intensity of 1011-1012 W cm-2. To stabilise the emission characteristics, the target executes translatory and rotary motions in such a way that every pulse irradiates a new spot. The short-focus lens is protected from contamination by erosion products with the use of a specially designed electromagnetic system. The samples under study are mounted on a goniometer is accommodated in a dedicated chamber, which provides five degrees of freedom for samples up to 500 mm in diameter and two degrees of freedom for a detector. The sample mass may range up to 10 kg. The X-ray radiation is recorded with a detector composed of a CsI photocathode and two microchannel plates. A similar detector monitors the probe beam intensity. The spectral reflectometer resolution is equal to 0.030 nm with the use of ruled gratings with a density of 900 lines mm-1 (spectral range: 5-20 nm) and to 0.067 nm for holographic gratings with a density of 400 lines mm-1 (spectral range: 10-50 nm). We analyse the contribution of higher diffraction orders to the probe signal intensity and the ways of taking it into account in the measurements. Examples are given which serve to illustrate the reflectometer application to the study of multilayer mirrors and filters.
THEORETICAL FOUNDATIONS OF SUSTAINABLE DEVELOPMENT OF THE AGRI-FOOD SPHERE
Directory of Open Access Journals (Sweden)
V. Samofatova
2017-10-01
Full Text Available The article highlights the historical preconditions and principles of sustainable development of theagri-food sphere. The analysis of the evolution of the categorical content of sustainable development iscarried out. It has been noted that the main ideology of sustainable development is the integration andharmonization of the ecological, economic and social spheres of society. It is shown that the concept ofsustainable development has an interdisciplinary character, so it should be considered in many aspects andstudied from different angles. The basic advantages of sustainable development for the agri-food sphere areoutlined.
Electric dipoles on the Bloch sphere
Vutha, Amar C.
2014-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic & molecular physics.
Reversible thermal gelation in soft spheres
DEFF Research Database (Denmark)
Kapnistos, M.; Vlassopoulos, D.; Fytas, G.
2000-01-01
Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...
Electric dipoles on the Bloch sphere
International Nuclear Information System (INIS)
Vutha, Amar C
2015-01-01
The time evolution of a two-level quantum mechanical system can be geometrically described using the Bloch sphere. By mapping the Bloch sphere evolution onto the dynamics of oscillating electric dipoles, we provide a physically intuitive link between classical electromagnetism and the electric dipole transitions of atomic and molecular physics. (paper)
Energy Technology Data Exchange (ETDEWEB)
Moreau, Ph [Association Euratom-CEA, Centre d` Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; [Universite de Provence, 13 - Marseille (France)
1997-12-01
The density profile of fusion plasmas can be investigated by the reflectometry diagnostic. The measurement principle is based on the radar techniques which calculate the phase shift of a millimeter wave propagating into the plasma and reflected at a cut-off layer. We have tried to describe the density fluctuation effects upon detected signal to understand the disturbing mechanisms which prevent, sometime, the measurement of the phase. First, we have tried to understand the mechanisms and the origin of the turbulence which is responsible for phase disturbance. We point out the role of collisionality {nu}{sup *} and plasma radiation (with the Hugill normalised parameter H) which control the instability. We also demonstrate that the phase delay of the probing wave is very sensitive to the plasma MHD phenomena and is less affected by the micro-turbulence. The second part of this work is the development and the use of a new heterodyne reflectometer. This new diagnostic uses O-mode beam polarisation and works on the 26-36 GHz frequency range. It launches simultaneously into the plasma two frequencies separated by 320 MHz and we can study them separately or with the amplitude modulation technique. It possesses a better sensitivity than the previous homodyne reflectometer and a higher frequency agility. Its heterodyne detection allows us to separate phase and amplitude informations from the detected signal. (author) 93 refs.
Anomalies, conformal manifolds, and spheres
Energy Technology Data Exchange (ETDEWEB)
Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada); Hsin, Po-Shen [Department of Physics, Princeton University,Princeton, NJ 08544 (United States); Komargodski, Zohar; Schwimmer, Adam [Weizmann Institute of Science,Rehovot 76100 (Israel); Seiberg, Nathan [School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Theisen, Stefan [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Golm (Germany)
2016-03-04
The two-point function of exactly marginal operators leads to a universal contribution to the trace anomaly in even dimensions. We study aspects of this trace anomaly, emphasizing its interpretation as a sigma model, whose target space M is the space of conformal field theories (a.k.a. the conformal manifold). When the underlying quantum field theory is supersymmetric, this sigma model has to be appropriately supersymmetrized. As examples, we consider in some detail N=(2,2) and N=(0,2) supersymmetric theories in d=2 and N=2 supersymmetric theories in d=4. This reasoning leads to new information about the conformal manifolds of these theories, for example, we show that the manifold is Kähler-Hodge and we further argue that it has vanishing Kähler class. For N=(2,2) theories in d=2 and N=2 theories in d=4 we also show that the relation between the sphere partition function and the Kähler potential of M follows immediately from the appropriate sigma models that we construct. Along the way we find several examples of potential trace anomalies that obey the Wess-Zumino consistency conditions, but can be ruled out by a more detailed analysis.
Theorising Public and Private Spheres
Directory of Open Access Journals (Sweden)
Sima Remina
2016-12-01
Full Text Available The 19th century saw an expression of women’s ardent desire for freedom, emancipation and assertion in the public space. Women hardly managed to assert themselves at all in the public sphere, as any deviation from their traditional role was seen as unnatural. The human soul knows no gender distinctions, so we can say that women face the same desire for fulfillment as men do. Today, women are more and more encouraged to develop their skills by undertaking activities within the public space that are different from those that form part of traditional domestic chores. The woman of the 19th century felt the need to be useful to society, to make her contribution visible in a variety of domains. A woman does not have to become masculine to get power. If she is successful in any important job, this does not mean that she thinks like a man, but that she thinks like a woman. Women have broken through the walls that cut them off from public life, activity and ambition. There are no hindrances that can prevent women from taking their place in society.
TWO FERROMAGNETIC SPHERES IN HOMOGENEOUS MAGNETIC FIELD
Directory of Open Access Journals (Sweden)
Yury A. Krasnitsky
2018-01-01
Full Text Available The problem of two spherical conductors is studied quite in detail with bispherical coordinates usage and has numerous appendices in an electrostatics. The boundary-value problem about two ferromagnetic spheres enclosed on homogeneous and infinite environment in which the lack of spheres exists like homogeneous magnetic field is considered. The solution of Laplace's equation in the bispherical system of coordinates allows us to find the potential and field distribution in all spaces, including area between spheres. The boundary conditions in potential continuity and in ordinary density constituent of spheres surfaces induction flux are used. It is supposed that spheres are identical, and magnetic permeability of their material is expressed in >> 0. The problem about falling of electromagnetic plane wave on the system of two spheres, which possesses electrically small sizes, can be considered as quasistationary. The scalar potentials received as a result of Laplace's equation solution are represented by the series containing Legendre polynomials. The concept of two spheres system effective permeability is introduced. It is equal to the advantage in magnitude of magnetic induction flux vector through a certain system’s section arising due to its magnetic properties. Necessary ratios for the effective permeability referred to the central system’s section are obtained. Particularly, the results can be used during the analysis of ferroxcube core clearance, which influences on the magnetic antenna properties.
Unsteady flow over a decelerating rotating sphere
Turkyilmazoglu, M.
2018-03-01
Unsteady flow analysis induced by a decelerating rotating sphere is the main concern of this paper. A revolving sphere in a still fluid is supposed to slow down at an angular velocity rate that is inversely proportional to time. The governing partial differential equations of motion are scaled in accordance with the literature, reducing to the well-documented von Kármán equations in the special circumstance near the pole. Both numerical and perturbation approaches are pursued to identify the velocity fields, shear stresses, and suction velocity far above the sphere. It is detected that an induced flow surrounding the sphere acts accordingly to adapt to the motion of the sphere up to some critical unsteadiness parameters at certain latitudes. Afterward, the decay rate of rotation ceases such that the flow at the remaining azimuths starts revolving freely. At a critical unsteadiness parameter corresponding to s = -0.681, the decelerating sphere rotates freely and requires no more torque. At a value of s exactly matching the rotating disk flow at the pole identified in the literature, the entire flow field around the sphere starts revolving faster than the disk itself. Increasing values of -s almost diminish the radial outflow. This results in jet flows in both the latitudinal and meridional directions, concentrated near the wall region. The presented mean flow results will be useful for analyzing the instability features of the flow, whether of a convective or absolute nature.
Analysis of the Level of Development of the Socio-labour Sphere of Ukrainian Regions
Directory of Open Access Journals (Sweden)
Bibikova Viktoriia V.
2013-12-01
Full Text Available The goal of the article is the study of the level of development of the socio-labour sphere of Ukrainian regions. In order to achieve the goal, the article develops a complex scorecard, which takes into account all elements of the socio-labour sphere (socio-labour relations, labour market system of labour reimbursement, social accompaniment of labour activity, professional development of economically active population, level and quality of labour life, safety and security of labour. On the basis of the use of the developed scorecard, the article conducts an integral assessment of the level of development of the socio-labour sphere of regions. In order to get more objective information about the state of the labour sphere of Ukraine, the article uses its subjective assessments by population. In the result of the analysis, it reveals a lack of progressive changes of the socio-labour sphere in majority (60% of Ukrainian regions, availability of significant differentiation of regions by the level of its development and the irregular character of changes of separate elements of the labour sphere both within one administrative and territorial unit and among different regions of Ukraine. The article justifies a necessity of conduct of regular diagnostics of the state of the socio-labour sphere of Ukrainian regions with the use of a developed scorecard.
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao; Zhang, Deqing; Li, Guangtao
2017-09-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array.
Finding a source inside a sphere
International Nuclear Information System (INIS)
Tsitsas, N L; Martin, P A
2012-01-01
A sphere excited by an interior point source or a point dipole gives a simplified yet realistic model for studying a variety of applications in medical imaging. We suppose that there is an exterior field (transmission problem) and that the total field on the sphere is known. We give analytical inversion algorithms for determining the interior physical characteristics of the sphere as well as the location, strength and orientation of the source/dipole. We start with static problems (Laplace’s equation) and then proceed to acoustic problems (Helmholtz equation). (paper)
Acoustic levitation of a large solid sphere
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-07-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Acoustic levitation of a large solid sphere
Energy Technology Data Exchange (ETDEWEB)
Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)
2016-07-25
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
Spheres of SA Government, responsibilities and delivery
CSIR Research Space (South Africa)
Oelofse, Suzanna HH
2010-09-01
Full Text Available The institutional framework for government in South Africa was established in 1996 with the adoption of the first democratic Constitution. National, provincial and local government was established as three elected spheres of government, each...
Gender, Diversity and the European Public Sphere
DEFF Research Database (Denmark)
Pristed Nielsen, Helene
2009-01-01
This paper argues that feminist criticism of Habermasian theory leads to new ways of approaching empirical analyses of public sphere deliberation, and gives some concrete indications of which methodological consequences such a critique may lead to....
Hydrodynamic interaction between bacteria and passive sphere
Zhang, Bokai; Ding, Yang; Xu, Xinliang
2017-11-01
Understanding hydrodynamic interaction between bacteria and passive sphere is important for identifying rheological properties of bacterial and colloidal suspension. Over the past few years, scientists mainly focused on bacterial influences on tracer particle diffusion or hydrodynamic capture of a bacteria around stationary boundary. Here, we use superposition of singularities and regularized method to study changes in bacterial swimming velocity and passive sphere diffusion, simultaneously. On this basis, we present a simple two-bead model that gives a unified interpretation of passive sphere diffusion and bacterial swimming. The model attributes both variation of passive sphere diffusion and changes of speed of bacteria to an effective mobility. Using the effective mobility of bacterial head and tail as an input function, the calculations are consistent with simulation results at a broad range of tracer diameters, incident angles and bacterial shapes.
Acoustic levitation of a large solid sphere
International Nuclear Information System (INIS)
Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.
2016-01-01
We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.
African Journals Online (AJOL)
\\376\\377\\000s\\000e\\000r\\000i\\000a\\000n\\000e\\000.\\000c\\000a\\000m\\000a\\000r\\000a
2011-03-09
Mar 9, 2011 ... Council for the Development of Social Science Research in Africa, 2010 .... Ambadiang: Public Sphere, Linguistic Sphericules and Discourse Communities in Africa ...... eds., Media, Ritual, Identity, London: Routledge, pp.
Higher-dimensional relativistic-fluid spheres
International Nuclear Information System (INIS)
Patel, L. K.; Ahmedabad, Gujarat Univ.
1997-01-01
They consider the hydrostatic equilibrium of relativistic-fluid spheres for a D-dimensional space-time. Three physically viable interior solutions of the Einstein field equations corresponding to perfect-fluid spheres in a D-dimensional space-time are obtained. When D = 4 they reduce to the Tolman IV solution, the Mehra solution and the Finch-Skea solution. The solutions are smoothly matched with the D-dimensional Schwarzschild exterior solution at the boundary r = a of the fluid sphere. Some physical features and other related details of the solutions are briefly discussed. A brief description of two other new solutions for higher-dimensional perfect-fluid spheres is also given
Elastic spheres can walk on water.
Belden, Jesse; Hurd, Randy C; Jandron, Michael A; Bower, Allan F; Truscott, Tadd T
2016-02-04
Incited by public fascination and engineering application, water-skipping of rigid stones and spheres has received considerable study. While these objects can be coaxed to ricochet, elastic spheres demonstrate superior water-skipping ability, but little is known about the effect of large material compliance on water impact physics. Here we show that upon water impact, very compliant spheres naturally assume a disk-like geometry and dynamic orientation that are favourable for water-skipping. Experiments and numerical modelling reveal that the initial spherical shape evolves as elastic waves propagate through the material. We find that the skipping dynamics are governed by the wave propagation speed and by the ratio of material shear modulus to hydrodynamic pressure. With these insights, we explain why softer spheres skip more easily than stiffer ones. Our results advance understanding of fluid-elastic body interaction during water impact, which could benefit inflatable craft modelling and, more playfully, design of elastic aquatic toys.
which spheres of government are responsible
African Journals Online (AJOL)
XXX
basic guidelines for a land use management system in the municipality. 38. The issue ... property in Linden to permit the establishment of a restaurant and gift shop. 40. The .... spheres of government do not operate in sealed compartments. 65.
Scintillation forward spectrometer of the SPHERE setup
International Nuclear Information System (INIS)
Anisimov, Yu.S.; Afanas'ev, S.V.; Bondarev, V.K.
1991-01-01
The construction of the forward spectrometer for the 4π SPHERE setup to study multiple production of particles in nucleus-nucleus interactions is described. The measured parameters of the spectrometer detectors are presented. 7 refs.; 14 figs.; 1 tab
Determinants and conformal anomalies of GJMS operators on spheres
Energy Technology Data Exchange (ETDEWEB)
Dowker, J S, E-mail: dowker@man.ac.uk [Theory Group, School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom)
2011-03-18
The conformal anomalies and functional determinants of the Branson-GJMS operators, P{sub 2k}, on the d-dimensional sphere are evaluated in explicit terms for any d and k such that k {<=} d/2 (if d is even). The determinants are given in terms of multiple gamma functions and a rational multiplicative anomaly, which vanishes for odd d. Taking the mode system on the sphere as the union of Neumann and Dirichlet ones on the hemisphere is a basic part of the method and leads to a heuristic explanation of the non-existence of 'super-critical' operators, 2k > d for even d. Significant use is made of the Barnes zeta function. The results are given in terms of ratios of determinants of operators on a (d + 1)-dimensional bulk dual sphere. For odd dimensions, the log determinant is written in terms of multiple sine functions and agreement is found with holographic computations, yielding an integral over a Plancherel measure. The N-D determinant ratio is also found explicitly for even dimensions. Ehrhart polynomials are encountered.
Determinants and conformal anomalies of GJMS operators on spheres
International Nuclear Information System (INIS)
Dowker, J S
2011-01-01
The conformal anomalies and functional determinants of the Branson-GJMS operators, P 2k , on the d-dimensional sphere are evaluated in explicit terms for any d and k such that k ≤ d/2 (if d is even). The determinants are given in terms of multiple gamma functions and a rational multiplicative anomaly, which vanishes for odd d. Taking the mode system on the sphere as the union of Neumann and Dirichlet ones on the hemisphere is a basic part of the method and leads to a heuristic explanation of the non-existence of 'super-critical' operators, 2k > d for even d. Significant use is made of the Barnes zeta function. The results are given in terms of ratios of determinants of operators on a (d + 1)-dimensional bulk dual sphere. For odd dimensions, the log determinant is written in terms of multiple sine functions and agreement is found with holographic computations, yielding an integral over a Plancherel measure. The N-D determinant ratio is also found explicitly for even dimensions. Ehrhart polynomials are encountered.
Anisotropic fluid spheres of embedding class one using Karmarkar condition
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Maharaj, S.D. [School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, Private Bag X54001, Durban (South Africa)
2017-05-15
We obtain a new anisotropic solution for spherically symmetric spacetimes by analyzing the Karmarkar embedding condition. For this purpose we construct a suitable form of one of the gravitational potentials to obtain a closed form solution. This form of the remaining gravitational potential allows us to solve the embedding equation and integrate the field equations. The resulting new anisotropic solution is well behaved, which can be utilized to construct realistic static fluid spheres. Also we estimated the masses and radii of fluid spheres for LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30 by using observational data set values. The masses and radii obtained show that our anisotropic solution can represent fluid spheres to a very good degree of accuracy. The physical validity of the solution depends on the parameter values of a, b and c. The solution is well behaved for the wide range of parameters values 0.00393 ≤ a ≤ 0.0055, 0.0002 ≤ b ≤ 0.0025 and 0.0107 ≤ c ≤ 0.0155. The range of corresponding physical parameters for the different compact stars are 0.3266 ≤ v{sub r0} ≤ 0.3708, 0.1583 ≤ v{sub t0} ≤ 0.2558, 0.3256 ≤ z{sub s} ≤ 0.4450 and 4.3587 ≤ Γ{sub 0} ≤ 5.6462. (orig.)
Transnational Chinese Sphere in Singapore: Dynamics, Transformations and Characteristics
Directory of Open Access Journals (Sweden)
Hong Liu
2012-01-01
Full Text Available Based upon an empirical analysis of Singaporean Chinese’s intriguing and changing linkages with China over the past half century, this paper suggests that multi-layered interactions between the Chinese diaspora and the homeland have led to the formulation of an emerging transnational Chinese social sphere, which has three main characteristics: First, it is a space for communication by ethnic Chinese abroad with their hometown/ homeland through steady and extensive flows of people, ideas, goods and capital that transcend the nation-state borders, although states also play an important role in shaping the nature and characteristics of these flows. Second, this transnational social sphere constitutes a dynamic interface between economy, politics and culture, which has contributed to creating a collective diasporic identity as well as social and business networks. Third, the key institutional mechanism of the transnational social sphere is various types of Chinese organizations – ranging from hometown associations to professional organizations – which serve as integral components of Chinese social and business networks.
Geometrical Dynamics in a Transitioning Superconducting Sphere
Directory of Open Access Journals (Sweden)
Claycomb J. R.
2006-10-01
Full Text Available Recent theoretical works have concentrated on calculating the Casimir effect in curved spacetime. In this paper we outline the forward problem of metrical variation due to the Casimir effect for spherical geometries. We consider a scalar quantum field inside a hollow superconducting sphere. Metric equations are developed describing the evolution of the scalar curvature after the sphere transitions to the normal state.
International Nuclear Information System (INIS)
Morstin, K.; Kawecka, B.; Booz, J.
1985-01-01
A space transformation has been applied that enables the transport equation to be efficiently solved for spheres exposed to radiations of almost arbitrary angular distribution. Depth dose distributions in the ICRU sphere have been calculated with the 1-D ANISN transport code for neutron energies from thermal up to 20 MeV and for photons up to 15 MeV. Several irradiation geometries are considered. For deep-penetrating radiations, maximum possible dose equivalent index significantly exceeds Hsub(10) star
Hardy type inequalities on the sphere
Directory of Open Access Journals (Sweden)
Xiaomei Sun
2017-06-01
Full Text Available Abstract In this paper, we consider the L p $L^{p}$ -Hardy inequalities on the sphere. By the divergence theorem, we establish the L p $L^{p}$ -Hardy inequalities on the sphere. Furthermore, we also obtain their best constants. Our results can be regarded as the extension of Xiao’s (J. Math. Inequal. 10:793-805, 2016.
vSphere virtual machine management
Fitzhugh, Rebecca
2014-01-01
This book follows a step-by-step tutorial approach with some real-world scenarios that vSphere businesses will be required to overcome every day. This book also discusses creating and configuring virtual machines and also covers monitoring virtual machine performance and resource allocation options. This book is for VMware administrators who want to build their knowledge of virtual machine administration and configuration. It's assumed that you have some experience with virtualization administration and vSphere.
vSphere high performance cookbook
Sarkar, Prasenjit
2013-01-01
vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.
Vescovi, D.; Berzi, D.; Richard, P.; Brodu, N.
2014-05-01
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature.
International Nuclear Information System (INIS)
Vescovi, D.; Berzi, D.; Richard, P.; Brodu, N.
2014-01-01
We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed average volume fraction and distance between the walls. The results of the numerical simulations are used to derive boundary conditions appropriated in the cases of large and small bumpiness. Those boundary conditions are, then, employed to numerically integrate the differential equations of Extended Kinetic Theory, where the breaking of the molecular chaos assumption at volume fraction larger than 0.49 is taken into account in the expression of the dissipation rate. We show that the Extended Kinetic Theory is in very good agreement with the numerical simulations, even for coefficients of restitution as low as 0.50. When the bumpiness is increased, we observe that some of the flowing particles are stuck in the gaps between the wall spheres. As a consequence, the walls are more dissipative than expected, and the flows resemble simple shear flows, i.e., flows of rather constant volume fraction and granular temperature
A FEW CONSIDERATIONS REGARDING THE SPHERE OF FINANCIAL RELATIONS
Directory of Open Access Journals (Sweden)
Bota Anton Florin
2009-05-01
Full Text Available The author discusses his financial affairs sphere, looking at this issue under a double aspect: analysis of the financial relations sphere and analyzing the financial activity sphere. Analysis of the financial relations sphere is made on the basis of fou
The Separate Spheres Model of Gendered Inequality.
Miller, Andrea L; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality.
Directory of Open Access Journals (Sweden)
Andrea L Miller
Full Text Available Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals' endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology.
The Separate Spheres Model of Gendered Inequality
Miller, Andrea L.; Borgida, Eugene
2016-01-01
Research on role congruity theory and descriptive and prescriptive stereotypes has established that when men and women violate gender stereotypes by crossing spheres, with women pursuing career success and men contributing to domestic labor, they face backlash and economic penalties. Less is known, however, about the types of individuals who are most likely to engage in these forms of discrimination and the types of situations in which this is most likely to occur. We propose that psychological research will benefit from supplementing existing research approaches with an individual differences model of support for separate spheres for men and women. This model allows psychologists to examine individual differences in support for separate spheres as they interact with situational and contextual forces. The separate spheres ideology (SSI) has existed as a cultural idea for many years but has not been operationalized or modeled in social psychology. The Separate Spheres Model presents the SSI as a new psychological construct characterized by individual differences and a motivated system-justifying function, operationalizes the ideology with a new scale measure, and models the ideology as a predictor of some important gendered outcomes in society. As a first step toward developing the Separate Spheres Model, we develop a new measure of individuals’ endorsement of the SSI and demonstrate its reliability, convergent validity, and incremental predictive validity. We provide support for the novel hypotheses that the SSI predicts attitudes regarding workplace flexibility accommodations, income distribution within families between male and female partners, distribution of labor between work and family spheres, and discriminatory workplace behaviors. Finally, we provide experimental support for the hypothesis that the SSI is a motivated, system-justifying ideology. PMID:26800454
The thermal conductivity of beds of spheres
International Nuclear Information System (INIS)
McElroy, D.L.; Weaver, F.J.; Shapiro, M.; Longest, A.W.; Yarbrough, D.W.
1987-01-01
The thermal conductivities (k) of beds of solid and hollow microspheres were measured using two radial heat flow techniques. One technique provided k-data at 300 K for beds with the void spaces between particles filled with argon, nitrogen, or helium from 5 kPa to 30 MPa. The other technique provided k-data with air at atmospheric pressure from 300 to 1000 K. The 300 K technique was used to study bed systems with high k-values that can be varied by changing the gas type and gas pressure. Such systems can be used to control the operating temperature of an irradiation capsule. The systems studied included beds of 500 μm dia solid Al 2 O 3 , the same Al 2 O 3 spheres mixed with spheres of silica--alumina or with SiC shards, carbon spheres, and nickel spheres. Both techniques were used to determine the k-value of beds of hollow spheres with solid shells of Al 2 O 3 , Al 2 O 3 /center dot/7 w/o Cr 2 O 3 , and partially stabilized ZrO 2 . The hollow microspheres had diameters from 2100 to 3500 μm and wall thicknesses from 80 to 160 μm. 12 refs., 7 figs., 4 tabs
DEFF Research Database (Denmark)
Emerek, Ruth
2004-01-01
Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...
Silo outflow of soft frictionless spheres
Ashour, Ahmed; Trittel, Torsten; Börzsönyi, Tamás; Stannarius, Ralf
2017-12-01
Outflow of granular materials from silos is a remarkably complex physical phenomenon that has been extensively studied with simple objects like monodisperse hard disks in two dimensions (2D) and hard spheres in 2D and 3D. For those materials, empirical equations were found that describe the discharge characteristics. Softness adds qualitatively new features to the dynamics and to the character of the flow. We report a study of the outflow of soft, practically frictionless hydrogel spheres from a quasi-2D bin. Prominent features are intermittent clogs, peculiar flow fields in the container, and a pronounced dependence of the flow rate and clogging statistics on the container fill height. The latter is a consequence of the ineffectiveness of Janssen's law: the pressure at the bottom of a bin containing hydrogel spheres grows linearly with the fill height.
Fuzzy spheres from inequivalent coherent states quantizations
International Nuclear Information System (INIS)
Gazeau, Jean Pierre; Huguet, Eric; Lachieze-Rey, Marc; Renaud, Jacques
2007-01-01
The existence of a family of coherent states (CS) solving the identity in a Hilbert space allows, under certain conditions, to quantize functions defined on the measure space of CS parameters. The application of this procedure to the 2-sphere provides a family of inequivalent CS quantizations based on the spin spherical harmonics (the CS quantization from usual spherical harmonics appears to give a trivial issue for the Cartesian coordinates). We compare these CS quantizations to the usual (Madore) construction of the fuzzy sphere. Due to these differences, our procedure yields new types of fuzzy spheres. Moreover, the general applicability of CS quantization suggests similar constructions of fuzzy versions of a large variety of sets
Glass transition in soft-sphere dispersions
International Nuclear Information System (INIS)
RamIrez-Gonzalez, P E; Medina-Noyola, M
2009-01-01
The concept of dynamic equivalence among mono-disperse soft-sphere fluids is employed in the framework of the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics to calculate the ideal glass transition phase diagram of model soft-sphere colloidal dispersions in the softness-concentration state space. The slow dynamics predicted by this theory near the glass transition is compared with available experimental data for the decay of the intermediate scattering function of colloidal dispersions of soft-microgel particles. Increasing deviations from this simple scheme occur for increasingly softer potentials, and this is studied here using the Rogers-Young static structure factor of the soft-sphere systems as the input of the SCGLE theory, without assuming a priori the validity of the equivalence principle above.
Willmore energy estimates in conformal Berger spheres
International Nuclear Information System (INIS)
Barros, Manuel; Ferrandez, Angel
2011-01-01
Highlights: → The Willmore energy is computed in a wide class of surfaces. → Isoperimetric inequalities for the Willmore energy of Hopf tori are obtained. → The best possible lower bound is achieved on isoareal Hopf tori. - Abstract: We obtain isoperimetric inequalities for the Willmore energy of Hopf tori in a wide class of conformal structures on the three sphere. This class includes, on the one hand, the family of conformal Berger spheres and, on the other hand, a one parameter family of Lorentzian conformal structures. This allows us to give the best possible lower bound of Willmore energies concerning isoareal Hopf tori.
Does Negative Type Characterize the Round Sphere?
DEFF Research Database (Denmark)
Kokkendorff, Simon Lyngby
2007-01-01
We discuss the measure theoretic metric invariants extent, mean distance and symmetry ratio and their relation to the concept of negative type of a metric space. A conjecture stating that a compact Riemannian manifold with symmetry ratio 1 must be a round sphere, was put forward in a previous paper....... We resolve this conjecture in the class of Riemannian symmetric spaces by showing, that a Riemannian manifold with symmetry ratio 1 must be of negative type and that the only compact Riemannian symmetric spaces of negative type are the round spheres....
Scattering by two spheres: Theory and experiment
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
of suspended sediments. The scattering properties of single regular-shaped particles have been studied in depth by several authors in the past. However, single particle scattering cannot explain all features of scattering by suspended sediment. When the concentration of particles exceeds a certain limit...... on three issues: (1) to develop a simplified theory for scattering by two elastical spheres; (2) to measure the scattering by two spheres in a water tank, and (3) to compare the theoretical/numerical results with the measured data. A number of factors influencing multiple scattering, including...
Bolander, Brian
2014-01-01
An easy-to-follow guide full of hands-on examples of real-world design best practices. Each topic is explained and placed in context, and for the more inquisitive, there are more details on the concepts used.If you wish to learn about vSphere best practices and how to apply them when designing virtual, high performance, reliable datacenters that support business critical applications to work more efficiently and to prepare for official certifications, this is the book for you. Readers should possess a good working knowledge of vSphere as well as servers, storage, and networking.
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Nuclear reactor using fuel sphere for combustion and fuel spheres for breeding
International Nuclear Information System (INIS)
Yamashita, Kiyonobu.
1995-01-01
The present invention concerns a pebble bed-type reactor which can efficiently convert parent nuclides to fission nuclides. Fuel spheres for combustion having fission nuclides as main fuels, and fuel spheres for breeding having parent nuclides as main fuels are used separately, in the pebble bed-type reactor. According to the present invention, fuel spheres for breeding can be stayed in a reactor core for a long period of time, so that parent nuclides can be sufficiently converted into fission nuclides. In addition, since fuel spheres for breeding are loaded repeatedly, the amount thereof to be used is reduced. Therefore, the amount of the fuel spheres for breeding is small even when they are re-processed. On the other hand, since the content of the fission nuclides in the fuel spheres for breeding is not great, they can be put to final storage. This is attributable that although the fuel spheres for breeding contain fission nuclides generated by conversion, the fission nuclides are annihilated by nuclear fission reactions at the same time with the generation thereof. (I.S.)
The Music of the Spheres: Cross-Curricular Perspectives on Music and Science
Rogers, George L.
2016-01-01
The integration of music and science is embodied in the music of the spheres, the ancient concept that the universe is ordered in a manner consistent with principles of musical harmony. This idea boasts a long history, from the teachings of Pythagoras (ca. 600 BC) through Isaac Newton in the eighteenth century, and makes a fascinating…
Non-hard sphere thermodynamic perturbation theory.
Zhou, Shiqi
2011-08-21
A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics
Stacked spheres and lower bound theorem
Indian Academy of Sciences (India)
BASUDEB DATTA
2011-11-20
Nov 20, 2011 ... Preliminaries. Lower bound theorem. On going work. Definitions. An n-simplex is a convex hull of n + 1 affinely independent points. (called vertices) in some Euclidean space R. N . Stacked spheres and lower bound theorem. Basudeb Datta. Indian Institute of Science. 2 / 27 ...
New interior solution describing relativistic fluid sphere
Indian Academy of Sciences (India)
Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...
1/4-pinched contact sphere theorem
DEFF Research Database (Denmark)
Ge, Jian; Huang, Yang
2016-01-01
Given a closed contact 3-manifold with a compatible Riemannian metric, we show that if the sectional curvature is 1/4-pinched, then the contact structure is universally tight. This result improves the Contact Sphere Theorem in [EKM12], where a 4/9-pinching constant was imposed. Some tightness...
Performance and Politics in the Public Sphere
Directory of Open Access Journals (Sweden)
Pia Wiegmink
2011-12-01
Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.
Performance and Politics in the Public Sphere
Directory of Open Access Journals (Sweden)
Pia Wiegmink
2011-12-01
Full Text Available Pia Wiegmink’s timely examination of the transforming transnational spaces of protest in a globalizing and technologically mediated public sphere in “Performance and Politics in the Public Sphere” offers a well-researched review of contemporary theory surrounding ideas of the political (Chantal Mouffe, the public sphere (Jürgen Habermas, the transnational public sphere (Nancy Fraser, and the reterritorialized transnational public sphere (Markus Schroer as the basis for her analysis of how the performance of political action in public—virtual or physical—is transformed by the capacity of the local to be played on a global stage, thus turning the citizen-actor into a cosmopolitan, transnational force. Tracing examples from the Seattle protests against the World Trade Organization meetings in 1999 by the Global Justice Movement to the work of the Electronic Disturbance Theater, from the civil rights movement to the subject matter of her larger study, “The Church of Life After Shopping,” “Billionaires for Bush,” and “The Yes Men,” Wiegmink provides an important analysis of the “alternative aesthetics” of the counterpublics’ formation, dissent, and action in and against hegemony. This selection is taken from her monograph, Protest EnACTed: Activist Performance in the Contemporary United States, a strong, cultural studies–focused contribution to transnational American Studies.
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.; Schaeffer, N.; Hollerbach, R.; Cebron, D.; Nore, C.; Luddens, F.; Guermond, J.- L.; Aubert, J.; Takehiro, S.; Sasaki, Y.; Hayashi, Y.- Y.; Simitev, R.; Busse, F.; Vantieghem, S.; Jackson, A.
2014-01-01
of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions
Structure of colloidal sphere-plate mixtures
International Nuclear Information System (INIS)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I
2011-01-01
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
Structure of colloidal sphere-plate mixtures
Energy Technology Data Exchange (ETDEWEB)
Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)
2011-05-18
In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.
TEACHING PHYSICS: Biking around a hollow sphere
Mak, Se-yuen; Yip, Din-yan
1999-11-01
The conditions required for a cyclist riding a motorbike in a horizontal circle on or above the equator of a hollow sphere are derived using concepts of equilibrium and the condition for uniform circular motion. The result is compared with an empirical analysis based on a video show. Some special cases of interest derived from the general solution are elaborated.
The Dirac operator on the Fuzzy sphere
International Nuclear Information System (INIS)
Grosse, H.
1994-01-01
We introduce the Fuzzy analog of spinor bundles over the sphere on which the non-commutative analog of the Dirac operator acts. We construct the complete set of eigenstates including zero modes. In the commutative limit we recover known results. (authors)
Institutional change and spheres of authority
DEFF Research Database (Denmark)
Aagaard, Peter
institutioner. Denne tilgang bidrager til at udvikle global governance begrebet "spheres of authority" Det forklarer hvordan transnational lederskab kan bevares, selv om magten spredes i en globaliseret verden. Gennem en illustrativ case om microcredit, viser artiklen hvordan en tilgang baseret på institutional...
Production of Liquid Metal Spheres by Molding
Directory of Open Access Journals (Sweden)
Mohammed G. Mohammed
2014-10-01
Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.
The Nationalisation of the Domestic Sphere
Storm, H.J.
2016-01-01
Banal forms of nationalism permeate our everyday life. However, it is not very clear when all kinds of banal objects and practices became nationalised. In this article, I focus on the domestic sphere by analysing how around 1900 a small group of activists began to propagate the nationalisation of
Pious Entertainment: Hizbullah's Islamic Cultural Sphere
Alagha, J.E.; Nieuwkerk, K. van
2011-01-01
Alagha’s chapter on Hezbollah’s Islamic cultural sphere is sure to generate some of the most interesting discussion. Lebanon and Hezbollah in particular are among the hottest topics in the studies of contemporary Islam, but few people actually have the appropriate levels of both access to and
Full sphere hydrodynamic and dynamo benchmarks
Marti, P.
2014-01-26
Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.
A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid
International Nuclear Information System (INIS)
Taylor, M A; Edwards, J; Thomas, S; Nair, R
2007-01-01
We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case
Criticality problems for slabs and spheres in energy dependent neutron transport theory
International Nuclear Information System (INIS)
Victory, H.D. Jr.
1980-01-01
The steady-state equation for energy-dependent neutron transport in isotropically scattering slabs and spheres is formulated as an integral equation. The Perron-Frobenius-Jentzsch theory of positive operators is used to analyze criticality problems for transport in slab and spherical media consisting of core and reflector. In addition, with an adroit selection of diffusion-like solutions, this theory is used to obtain an expression relating the critical radius of a homogeneous sphere to a parameter characterizing fission production. 21 refs
VMware vSphere PowerCLI Reference Automating vSphere Administration
Dekens, Luc; Sizemore, Glenn; van Lieshout, Arnim; Medd, Jonathan
2011-01-01
Your One-Stop Reference for VMware vSphere Automation If you manage vSphere in a Windows environment, automating routine tasks can save you time and increase efficiency. VMware vSphere PowerCLI is a set of pre-built commands based on Windows PowerShell that is designed to help you automate vSphere processes involving virtual machines, datacenters, storage, networks, and more. This detailed guide-using a practical, task-based approach and real-world examples-shows you how to get the most out of PowerCLI's handy cmdlets. Learn how to: Automate vCenter Server and ESX/ESX(i) Server deployment and
Simulation of rotary-drum and repose tests for frictional spheres and rigid sphere clusters
Energy Technology Data Exchange (ETDEWEB)
Walton, O.R.; Braun, R.L.
1993-11-01
The effects of rotation rate and interparticle friction on the bulk flow behavior in rotating horizontal cylinders are studied via particle-dynamic simulations. Assemblies of inelastic, frictional spheres and rigid sphere clusters are utilized, and rotation rates from quasistatic to centrifuging are examined. Flow phenomena explored include size segregation, avalanching, slumping and centrifuging. Simulated drum flows with two sizes of frictional spheres showed very rapid segregation of species perpendicular to the drum axis; however, simulations of up to 10 revolutions, utilizing periodic-boundary ends, did not exhibit the experimentally observed axial segregation into stripes. Angles of repose for uniform-sized spheres in slowly rotating cylinders varied from 13 to 31 degrees as the friction coefficient varied from 0.02 to 1.0. For simulated rotation rates higher than the threshold to obtain uniform flow conditions, the apparent angle of repose increases as the rotation rats increases, consistent with experiments. Also, simulations with rigid clusters of 4 spheres in a tetrahedral shape or 8 spheres in a cubical arrangement, demonstrate that particle shape strongly influences the repose angle. Simulations of cubical 8-sphere clusters, with a surface coefficient of friction of 0.1, produced apparent angles of repose exceeding 35 degrees, compared to 23 degrees for assemblies of single spheres interacting with the same force model parameters. Centrifuging flows at very high rotation rates exist as stationary beds moving exactly as the outer rotating wall. At somewhat slower speeds the granular bed remains in contact with the wall but exhibits surface sliding down the rising inner bed surface, moving a short distance on each revolution. At still slower speeds particles rain from the surface of the upper half of the rotating bed.
Cavity formation by the impact of Leidenfrost spheres
Marston, Jeremy
2012-05-01
We report observations of cavity formation and subsequent collapse when a heated sphere impacts onto a liquid pool. When the sphere temperature is much greater than the boiling point of the liquid, we observe an inverted Leidenfrost effect where the sphere is encompassed by a vapour layer that prevents physical contact with the liquid. This creates the ultimate non-wetting scenario during sphere penetration through a free surface, producing very smooth cavity walls. In some cases during initial entry, however, the liquid contacts the sphere at the equator, leading to the formation of a dual cavity structure. For cold sphere impacts, where a contact line is observed, we reveal details of the contact line pinning, which initially forms a sawtooth pattern. We also observe surface waves on the cavity interface for cold spheres. We compare our experimental results to previous studies of cavity dynamics and, in particular, the influence of hydrophobicity on the entry of the sphere. © 2012 Cambridge University Press.
Innovation embedded in entrepreneurs’ networks in private and public spheres
DEFF Research Database (Denmark)
Schøtt, Thomas; Cheraghi, Maryam; Rezaei, Shahamak
2014-01-01
societies, China and Denmark. Global Entrepreneurship Monitor has surveyed entrepreneurs in China, Denmark and elsewhere. Analyses reconfirm the global tendencies and show that, China in contrast to Denmark, public sphere networking is sparser, but private sphere networking is denser. Innovation...
Stochastic interactions of two Brownian hard spheres in the presence of depletants
International Nuclear Information System (INIS)
Karzar-Jeddi, Mehdi; Fan, Tai-Hsi; Tuinier, Remco; Taniguchi, Takashi
2014-01-01
A quantitative analysis is presented for the stochastic interactions of a pair of Brownian hard spheres in non-adsorbing polymer solutions. The hard spheres are hypothetically trapped by optical tweezers and allowed for random motion near the trapped positions. The investigation focuses on the long-time correlated Brownian motion. The mobility tensor altered by the polymer depletion effect is computed by the boundary integral method, and the corresponding random displacement is determined by the fluctuation-dissipation theorem. From our computations it follows that the presence of depletion layers around the hard spheres has a significant effect on the hydrodynamic interactions and particle dynamics as compared to pure solvent and uniform polymer solution cases. The probability distribution functions of random walks of the two interacting hard spheres that are trapped clearly shift due to the polymer depletion effect. The results show that the reduction of the viscosity in the depletion layers around the spheres and the entropic force due to the overlapping of depletion zones have a significant influence on the correlated Brownian interactions
An analytic solution for numerical modeling validation in electromagnetics: the resistive sphere
Swidinsky, Andrei; Liu, Lifei
2017-11-01
We derive the electromagnetic response of a resistive sphere to an electric dipole source buried in a conductive whole space. The solution consists of an infinite series of spherical Bessel functions and associated Legendre polynomials, and follows the well-studied problem of a conductive sphere buried in a resistive whole space in the presence of a magnetic dipole. Our result is particularly useful for controlled-source electromagnetic problems using a grounded electric dipole transmitter and can be used to check numerical methods of calculating the response of resistive targets (such as finite difference, finite volume, finite element and integral equation). While we elect to focus on the resistive sphere in our examples, the expressions in this paper are completely general and allow for arbitrary source frequency, sphere radius, transmitter position, receiver position and sphere/host conductivity contrast so that conductive target responses can also be checked. Commonly used mesh validation techniques consist of comparisons against other numerical codes, but such solutions may not always be reliable or readily available. Alternatively, the response of simple 1-D models can be tested against well-known whole space, half-space and layered earth solutions, but such an approach is inadequate for validating models with curved surfaces. We demonstrate that our theoretical results can be used as a complementary validation tool by comparing analytic electric fields to those calculated through a finite-element analysis; the software implementation of this infinite series solution is made available for direct and immediate application.
Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers.
Yu, Huijuan; Huang, Qiangxian; Zhao, Jian
2014-06-25
A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM) optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR) of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM) to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D) numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D) diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.
Fabrication of an Optical Fiber Micro-Sphere with a Diameter of Several Tens of Micrometers
Directory of Open Access Journals (Sweden)
Huijuan Yu
2014-06-01
Full Text Available A new method to fabricate an integrated optical fiber micro-sphere with a diameter within 100 µm, based on the optical fiber tapering technique and the Taguchi method is proposed. Using a 125 µm diameter single-mode (SM optical fiber, an optical fiber taper with a cone angle is formed with the tapering technique, and the fabrication optimization of a micro-sphere with a diameter of less than 100 µm is achieved using the Taguchi method. The optimum combination of process factors levels is obtained, and the signal-to-noise ratio (SNR of three quality evaluation parameters and the significance of each process factors influencing them are selected as the two standards. Using the minimum zone method (MZM to evaluate the quality of the fabricated optical fiber micro-sphere, a three-dimensional (3D numerical fitting image of its surface profile and the true sphericity are subsequently realized. From the results, an optical fiber micro-sphere with a two-dimensional (2D diameter less than 80 µm, 2D roundness error less than 0.70 µm, 2D offset distance between the micro-sphere center and the fiber stylus central line less than 0.65 µm, and true sphericity of about 0.5 µm, is fabricated.
Crown sealing and buckling instability during water entry of spheres
Marston, J. O.; Truscott, T. T.; Speirs, N. B.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T
2016-01-01
. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates
Results of Absolute Cavity Pyrgeometer and Infrared Integrating Sphere Comparisons
Energy Technology Data Exchange (ETDEWEB)
Reda, Ibrahim M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dooraghi, Michael R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Grobner, Julian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Thomann, Christian [Physikalisch-Meteorologisches Observatorium Davos (PMOD); Long, Chuck [National Oceanic and Atmospheric Administration; McComiskey, Allison [National Oceanic and Atmospheric Administration; Hall, Emiel [National Oceanic and Atmospheric Administration; Wacker, Stefan [Deutscher Wetterdienst
2018-03-05
Accurate and traceable atmospheric longwave irradiance measurements are required for understanding radiative impacts on the Earth's energy budget. The standard to which pyrgeometers are traceable is the interim World Infrared Standard Group (WISG), maintained in the Physikalisch-Meteorologisches Observatorium Davos (PMOD). The WISG consists of four pyrgeometers that were calibrated using Rolf Philipona's Absolute Sky-scanning Radiometer [1]. The Atmospheric Radiation Measurement (ARM) facility has recently adopted the WISG to maintain the traceability of the calibrations of all Eppley precision infrared radiometer (PIR) pyrgeometers. Subsequently, Julian Grobner [2] developed the infrared interferometer spectrometer and radiometer (IRIS) radiometer, and Ibrahim Reda [3] developed the absolute cavity pyrgeometer (ACP). The ACP and IRIS were developed to establish a world reference for calibrating pyrgeometers with traceability to the International System of Units (SI). The two radiometers are unwindowed with negligible spectral dependence, and they are traceable to SI units through the temperature scale (ITS-90). The two instruments were compared directly to the WISG three times at PMOD and twice at the Southern Great Plains (SGP) facility to WISG-traceable pyrgeometers. The ACP and IRIS agreed within +/- 1 W/m2 to +/- 3 W/m2 in all comparisons, whereas the WISG references exhibit a 2-5 Wm2 low bias compared to the ACP/IRIS average, depending on the water vapor column, as noted in Grobner et al. [4]. Consequently, a case for changing the current WISG has been made by Grobner and Reda. However, during the five comparisons the column water vapor exceeded 8 mm. Therefore, it is recommended that more ACP and IRIS comparisons should be held under different environmental conditions and water vapor column content to better establish the traceability of these instruments to SI with established uncertainty.
Packing circles and spheres on surfaces
Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut
2009-01-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.
The semantic sphere of juvenile offenders
Directory of Open Access Journals (Sweden)
Oshevsky D.S.
2017-01-01
Full Text Available The article presents the results of a preliminary empirical study aimed to identify features of the semantic sphere of adolescents who have committed illegal, including aggressive acts. The study included 50 male juveniles aged of 16 - 17 years. The first group consisted of adolescents convicted of aggressive and violent crimes; the second – of property socially dangerous acts (SDA. It is shown that evaluation of such adolescents is generally categorical and polar, the semantic field is subdifferentiable, less hierarchic, and has not enough realistic structure of meanings. Developed structure of motives and meanings is the basis of voluntary regulation of socially significant behavior. Thus, assessing the semantic sphere of juvenile offenders we can highlight its characteristics as risk factors of unlawful behavior, as well as the resource side, that will contribute to addressing issues of prevention and correction of unlawful behavior. Key words: juvenile offenders, semantic field of juvenile offenders, unlawful behavior.
Computer simulations of a rough sphere fluid
International Nuclear Information System (INIS)
Lyklema, J.W.
1978-01-01
A computer simulation is described on rough hard spheres with a continuously variable roughness parameter, including the limits of smooth and completely rough spheres. A system of 500 particles is simulated with a homogeneous mass distribution at 8 different densities and for 5 different values of the roughness parameter. For these 40 physically different situations the intermediate scattering function for 6 values of the wave number, the orientational correlation functions and the velocity autocorrelation functions have been calculated. A comparison has been made with a neutron scattering experiment on neopentane and agreement was good for an intermediate value of the roughness parameter. Some often made approximations in neutron scattering experiments are also checked. The influence of the variable roughness parameter on the correlation functions has been investigated and three simple stochastic models studied to describe the orientational correlation function which shows the most pronounced dependence on the roughness. (Auth.)
International Nuclear Information System (INIS)
Sanchez, Rene G.; Loaiza, David J.; Kimpland, Robert H.; Hayes, David K.; Cappiello, Charlene C.; Myers, William L.; Jaegers, Peter J.; Clement, Steven D.; Butterfield, Kenneth B.
2003-01-01
A critical mass experiment using a 6-kg 237 Np sphere has been performed. The purpose of the experiment is to get a better estimate of the critical mass of 237 Np. To attain criticality, the 237 Np sphere was surrounded with 93 wt% 235 U shells. A 1/M as a function of uranium mass was performed. An MCNP neutron transport code was used to model the experiment. The MCNP code yielded a k eff of 0.99089 ± 0.0003 compared with a k eff 1.0026 for the experiment. Based on these results, it is estimated that the critical mass of 237 Np ranges from kilogram weights in the high fifties to low sixties. (author)
Coated sphere scattering by geometric optics approximation.
Mengran, Zhai; Qieni, Lü; Hongxia, Zhang; Yinxin, Zhang
2014-10-01
A new geometric optics model has been developed for the calculation of light scattering by a coated sphere, and the analytic expression for scattering is presented according to whether rays hit the core or not. The ray of various geometric optics approximation (GOA) terms is parameterized by the number of reflections in the coating/core interface, the coating/medium interface, and the number of chords in the core, with the degeneracy path and repeated path terms considered for the rays striking the core, which simplifies the calculation. For the ray missing the core, the various GOA terms are dealt with by a homogeneous sphere. The scattering intensity of coated particles are calculated and then compared with those of Debye series and Aden-Kerker theory. The consistency of the results proves the validity of the method proposed in this work.
Mesoporous hollow spheres from soap bubbling.
Yu, Xianglin; Liang, Fuxin; Liu, Jiguang; Lu, Yunfeng; Yang, Zhenzhong
2012-02-01
The smaller and more stable bubbles can be generated from the large parent bubbles by rupture. In the presence of a bubble blowing agent, hollow spheres can be prepared by bubbling a silica sol. Herein, the trapped gas inside the bubble acts as a template. When the porogen, i.e., other surfactant, is introduced, a mesostructured shell forms by the co-assembly with the silica sol during sol-gel process. Morphological evolution emphasizes the prerequisite of an intermediate interior gas flow rate and high exterior gas flow rate for hollow spheres. The method is valid for many compositions from inorganic, polymer to their composites. Copyright © 2011 Elsevier Inc. All rights reserved.
Hard Spheres on the Primitive Surface
Dotera, Tomonari; Takahashi, Yusuke
2015-03-01
Recently hierarchical structures associated with the gyroid in several soft-matter systems have been reported. One of fundamental questions is regular arrangement or tiling on minimal surfaces. We have found certain numbers of hard spheres per unit cell on the gyroid surface are entropically self-organized. Here, new results for the primitive surface are presented. 56/64/72 per unit cell on the primitive minimal surface are entropically self-organized. Numerical evidences for the fluid-solid transition as a function of hard sphere radius are obtained in terms of the acceptance ratio of Monte Carlo moves and order parameters. These arrangements, which are the extensions of the hexagonal arrangement on a flat surface, can be viewed as hyperbolic tiling on the Poincaré disk with a negative Gaussian curvature.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-12-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.
Packing circles and spheres on surfaces
Schiftner, Alexander
2009-01-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces\\' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry. © 2009 ACM.
Ceramica sphere production by a gel casting
International Nuclear Information System (INIS)
Santos, A.; Assis, G. de; Ferreira, R.A.N.; Ferraz, W.B.; Lopes, J.A.M.; Prado, M.A.S.; Miranda, O.; Drumond, F.J.
1987-01-01
The technology of (Th,U)O 2 microspheres production by gel casting and subsequente thermal treatment has been transferred from NUKEM GmbH assisted by Kraftwerk Union A.G., both West Germany, to NUCLEBRAS, where it was jointly adapted to produce microspheres suitable for pressing. As a result, there are now available various possibilities to produce ceramic spheres with different characteristics that can be used in different applications. Examples of these characteristics are the range of gel sphere diameters (200 to 5000 μmm) and the value of the specific surface (about 50m 2 /g for calcined (Th, U)O 2 and potentially higher than m 2 /g for other ceramic materials) (Author) [pt
Packing circles and spheres on surfaces
Schiftner, Alexander; Hö binger, Mathias; Wallner, Johannes; Pottmann, Helmut
2009-01-01
Inspired by freeform designs in architecture which involve circles and spheres, we introduce a new kind of triangle mesh whose faces' incircles form a packing. As it turns out, such meshes have a rich geometry and allow us to cover surfaces with circle patterns, sphere packings, approximate circle packings, hexagonal meshes which carry a torsion-free support structure, hybrid tri-hex meshes, and others. We show how triangle meshes can be optimized so as to have the incircle packing property. We explain their relation to conformal geometry and implications on solvability of optimization. The examples we give confirm that this kind of meshes is a rich source of geometric structures relevant to architectural geometry.
International Nuclear Information System (INIS)
Bocquet, L.; Hansen, J.P.; Piasecki, J.
1994-01-01
The friction coefficient γ exerted by a hard-sphere fluid on an infinitely massive Brownian sphere is calculated for several size ratios Σ/σ where Σ and σ are the diameters of the Brownian and fluid spheres, respectively. The exact microscopic expression derived in part I of this work from kinetic theory is transformed and shown to be proportional to the time integral of the autocorrelation function of the momentum transferred from the fluid to the Brownian sphere during instantaneous collisions. Three different methods are described to extract the friction coefficient from molecular dynamics simulations carried out on finite systems. The three independent methods lead to estimates of γ which agree within statistical errors (typically 5%). The results are compared to the predictions of Enskog theory and of the hydrodynamic Stokes law. The former breaks down as the size ratio and/or the packing fraction of the fluid increase. Somewhat surprisingly, Stokes' law is found to hold with stick boundary conditions, in the range 1 ≤ Σ/σ ≤ 4.5 explored in the present simulations, with a hydrodynamic diameter d=Σ. The analysis of the molecular dynamics data on the basis of Stokes' law with slip boundary conditions is less conclusive, although the right trend is found as Σ/σ increases
White Dwarf Stars as Polytropic Gas Spheres
Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.
2014-01-01
Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...
Log Gaussian Cox processes on the sphere
DEFF Research Database (Denmark)
Pacheco, Francisco Andrés Cuevas; Møller, Jesper
We define and study the existence of log Gaussian Cox processes (LGCPs) for the description of inhomogeneous and aggregated/clustered point patterns on the d-dimensional sphere, with d = 2 of primary interest. Useful theoretical properties of LGCPs are studied and applied for the description of sky...... positions of galaxies, in comparison with previous analysis using a Thomas process. We focus on simple estimation procedures and model checking based on functional summary statistics and the global envelope test....
Nineteenth Century Public And Private Spheres
Directory of Open Access Journals (Sweden)
SIMA REMINA
2014-12-01
Full Text Available The aim of this paper is to illustrate the public and private spheres. The former represents the area in which each of us carries out their daily activities, while the latter is mirrored by the home. Kate Chopin and Charlotte Perkins Gilman are two salient nineteenth-century writers who shape the everyday life of the historical period they lived in, within their literary works that shed light on the areas under discussion.
On the revolution of heavenly spheres
Copernicus, Nicolaus
1995-01-01
The Ptolemaic system of the universe, with the earth at the center, had held sway since antiquity as authoritative in philosophy, science, and church teaching. Following his observations of the heavenly bodies, Nicolaus Copernicus (1473-1543) abandoned the geocentric system for a heliocentric model, with the sun at the center. His remarkable work, On the Revolutions of Heavenly Spheres, stands as one of the greatest intellectual revolutions of all time, and profoundly influenced, among others, Galileo and Sir Isaac Newton.
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2003-01-01
We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of weighted distances between the circle and the facilities is minimized, or such that the maximum weighted distance is minimized. The problem properties are analyzed, and we...... give solution procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible....
Sphere and dot product representations of graphs
R.J. Kang (Ross); T. Müller (Tobias)
2012-01-01
textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such
Gravitational wave reception by a sphere
International Nuclear Information System (INIS)
Ashby, N.; Dreitlein, J.
1975-01-01
The reception of gravitational waves by an elastic self-gravitating spherical detector is studied in detail. The equations of motion of a detector driven by a gravitational wave are presented in the intuitively convenient coordinate system of Fermi. An exact analytic solution is given for the homogeneous isotropic sphere. Nonlinear effects of a massive self-gravitating system are computed for a body of mass equal to that of the earth, and are shown to be numerically important
The sea - landfill or sphere of life
International Nuclear Information System (INIS)
Haury, H.J.; Koller, U.; Assmann, G.
1990-01-01
The Environmental Information Agency held its third seminar for journalists, entitled 'The sea - landfill or sphere of life' in Hamburg on July 18, 1989. Some 40 journalists - radio journalists and journalists from the staff of dailies and the technical press - took the opportunity to listen for a day to short lectures on selected subjects and submit their questions concerning sea pollution to scientists of diverse disciplines. (orig.) [de
Nonstatic radiating spheres in general relativity
International Nuclear Information System (INIS)
Krori, K.D.; Borgohain, P.; Sarma, R.
1985-01-01
The method of Herrera, Jimenez, and Ruggeri of obtaining nonstatic solutions of Einstein's field equations to study the evolution of stellar bodies is applied to obtain two models of nonstatic radiating spheres from two well-known static solutions of field equations, viz., Tolman's solutions IV and V. Whereas Tolman's type-IV model is found to be contracting for the period under investigation, Tolman's type-V model shows a bounce after attaining a minimum radius
Modeling of steel spheres impacting polyethylene; TOPICAL
International Nuclear Information System (INIS)
Serduke, F; Gerassimenko, M
1999-01-01
The effect of shrapnel on target chamber components and experiments at large lasers such as the National Ignition Facility at LLNL and the Megajoule Laser at CESTA in France is an important issue in fielding targets and exposure samples. Modeling calculations are likely to be an important component of this effort. Some work in this area has been performed by French workers, who are collaborating with the LLNL on many issues relating to target chamber, experiment-component, and diagnostics survival. Experiments have been performed at the Phebus laser in France to measure shrapnel produced by laser-driven targets; among these shots were experiments that accelerated spheres of a size characteristic of some of the more damaging shrapnel. These spheres were stopped in polyethylene witness plates. The penetration depth is characteristic of the velocity of the shrapnel. Experimental calibration of steel sphere penetration into polyethylene was performed at the CESTA facility. The penetration depth has been reported (ref. 1) and comparisons with modeling calculations have been made (ref. 2). There was interest in a comparison study of the modeling of these experiments to provide independent checks of the calculations. This work has been approved both by DOE headquarters and by the French Atomic Energy Commission (CEA); it is task number 99-3.2 of the 1999 ICF agreement between the DOE and the CEA. Daniel Gogny of the CEA who is on a long-term assignment to LLNL catalyzed this collaboration. This report contains the initial results of our modeling effort
Bidispersed Sphere Packing on Spherical Surfaces
Atherton, Timothy; Mascioli, Andrew; Burke, Christopher
Packing problems on spherical surfaces have a long history, originating in the classic Thompson problem of finding the ground state configuration of charges on a sphere. Such packings contain a minimal number of defects needed to accommodate the curvature; this is predictable using the Gauss-Bonnet theorem from knowledge of the topology of the surface and the local symmetry of the ordering. Famously, the packing of spherical particles on a sphere contains a 'scar' transition, where additional defects over those required by topology appear above a certain critical number of particles and self-organize into chains or scars. In this work, we study the packing of bidispersed packings on a sphere, and hence determine the interaction of bidispersity and curvature. The resultant configurations are nearly crystalline for low values of bidispersity and retain scar-like structures; these rapidly become disordered for intermediate values and approach a so-called Appollonian limit at the point where smaller particles can be entirely accommodated within the voids left by the larger particles. We connect our results with studies of bidispersed packings in the bulk and on flat surfaces from the literature on glassy systems and jamming. Supported by a Cottrell Award from the Research Corporation for Science Advancement.
Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement
Directory of Open Access Journals (Sweden)
Kim Nygård
2016-02-01
Full Text Available Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.
Environment protection and other political spheres of the European Community
International Nuclear Information System (INIS)
Rengeling, H.W.
1993-01-01
It has long been known that environment protection is largely a cross-sectional task. The provision of Article 130 r Section 2 Clause 2 of the EEC Treaty that states that environment protection forms an integral part of all the other polticial spheres of the Community is not only a plank in the platform of the Community but also a juridical innovation. Time will tell what concrete legal claims can be derived from this provision, particularly on the part of the European Court of Justice. The lectures relate amongst others to the following topics: Environment protection and competition politics, environment protection and energy poltics, environment protection and development aid politics. Eight of the lectures were abstracted individually. (orig./HSCH) [de
Yu, Yifei; Luo, Linqing; Li, Bo; Guo, Linfeng; Yan, Jize; Soga, Kenichi
2015-10-01
The measured distance error caused by double peaks in the BOTDRs (Brillouin optical time domain reflectometers) system is a kind of Brillouin scattering spectrum (BSS) deformation, discussed and simulated for the first time in the paper, to the best of the authors' knowledge. Double peak, as a kind of Brillouin spectrum deformation, is important in the enhancement of spatial resolution, measurement accuracy, and crack detection. Due to the variances of the peak powers of the BSS along the fiber, the measured starting point of a step-shape frequency transition region is shifted and results in distance errors. Zero-padded short-time-Fourier-transform (STFT) can restore the transition-induced double peaks in the asymmetric and deformed BSS, thus offering more accurate and quicker measurements than the conventional Lorentz-fitting method. The recovering method based on the double-peak detection and corresponding BSS deformation can be applied to calculate the real starting point, which can improve the distance accuracy of the STFT-based BOTDR system.
Agglomeration techniques for the production of spheres for packed beds
International Nuclear Information System (INIS)
Sullivan, J.D.
1988-03-01
One attractive fusion-breeder-blanket design features a lithium bearing ceramic in the form of spheres packed into a random array. The spheres have diameters of 3 mm and 0.3 mm. This report surveys techniques used to produce ceramic spheres on an industrial scale. The methods examined include tumbling and mixing granulation, extrusion, briquetting and pelletizing. It is concluded that the required quantities of 0.3 mm diameter spheres can be produced by the tumbling agglomeration of a feed powder. The 3 mm diameter spheres will be made using a process of extrusion, chopping and rolling
Surface modes of two spheres embedded into a third medium
International Nuclear Information System (INIS)
Nkoma, J.S.
1990-07-01
Surface modes of two spheres embedded into a third medium are studied. We obtain a result which relates the dependence of frequency on the distance between the two spheres. The derived expression reproduces previous results in the limit where the separation between the spheres is very large. Two surface mode branches are shown to exist for each order n. We apply the theory to three cases of practical interest: first, two similar metallic spheres in vacuum; secondly, two similar metallic spheres embedded into a different metal; thirdly, two spherical voids embedded into a metal. (author). 19 refs, 6 figs
Production of graphite spheres with a high density
International Nuclear Information System (INIS)
Tscherry, V.
1976-01-01
It is possible to obtain small spheres with a diameter of approximately 1,000 μm with the help of an automated press fitted with a profiled plunger. The spheres consist of graphite and a binder. Depending on the size of the plunger, 1 + 6 Σn (n = 0,1,2,...) spheres of equivalent diameter may be pressed with one stroke of the plunger. The spheres are bound to each other by a thin burr. The green end product is obtained by breaking the sheets of spheres and deburring them. (orig.) [de
Ni hollow spheres as catalysts for methanol and ethanol electrooxidation
Energy Technology Data Exchange (ETDEWEB)
Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)
2007-08-15
In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)
Evolution of nickel sulfide hollow spheres through topotactic transformation
Wei, Chengzhen; Lu, Qingyi; Sun, Jing; Gao, Feng
2013-11-01
In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment.In this study, a topotactic transformation route was proposed to synthesize single-crystalline β-NiS hollow spheres with uniform phase and morphology evolving from polycrystalline α-NiS hollow spheres. Uniform polycrystalline α-NiS hollow spheres were firstly prepared with thiourea and glutathione as sulfur sources under hydrothermal conditions through the Kirkendall effect. By increasing the reaction temperature the polycrystalline α-NiS hollow spheres were transformed to uniform β-NiS hollow spheres. The β-NiS crystals obtained through the topotactic transformation route not only have unchanged morphology of hollow spheres but are also single-crystalline in nature. The as-prepared NiS hollow spheres display a good ability to remove the organic pollutant Congo red from water, which makes them have application potential in water treatment. Electronic supplementary information (ESI) available: XRD patterns; SEM images and TEM images. See DOI: 10.1039/c3nr03371f
DEFF Research Database (Denmark)
Olwig, Karen Fog
2011-01-01
, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....
Fermions, Skyrmions and the 3-sphere
International Nuclear Information System (INIS)
Goatham, Stephen W; Krusch, Steffen
2010-01-01
This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.
Test Results of PBMR Fuel Spheres
International Nuclear Information System (INIS)
Koshcheev, Konstantin; Diakov, Alexander; Beltyukov, Igor; Barybin, Andrey; Chernetsov, Mikhail
2014-01-01
Results of pre-irradiation testing of fuel spheres (FS) and coated particles (CP) manufactured by PBMR SOC (Republic of South Africa) are described. The stable high quality level of major characteristics (dimensions, CP coating structure, uranium-235 contamination of the FS matrix graphite and the outer PyC layer of the CP coating) are shown. Results of a methodical irradiation test of two FS in helium and neon medium at temperatures of 800 to 1300 °C with simultaneous determination of release-to-birth ratios for major gaseous fission products (GFP) are described. (author)
Sphere impact and penetration into wet sand
Marston, J. O.
2012-08-07
We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.
The Finite Deformation Dynamic Sphere Test Problem
Energy Technology Data Exchange (ETDEWEB)
Versino, Daniele [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brock, Jerry Steven [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-09-02
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r_{i} = 10mm, r_{o} = 20mm and p = 1000Kg/m^{3} respectively.
DEFF Research Database (Denmark)
Brimberg, Jack; Juel, Henrik; Schöbel, Anita
2007-01-01
We consider the problem of locating a spherical circle with respect to existing facilities on a sphere, such that the sum of distances between the circle and the facilities is minimized or such that the maximum distance is minimized. The problem properties are analyzed, and we give solution...... procedures. When the circle to be located is restricted to be a great circle, some simplifications are possible. The models may be used in preliminary studies on the location of large linear facilities on the earth's surface, such as superhighways, pipelines, and transmission lines, or in totally different...
Further Investigations of NIST Water Sphere Discrepancies
International Nuclear Information System (INIS)
Broadhead, B.L.
2001-01-01
Measurements have been performed on a family of water spheres at the National Institute of Standards and Technology (NIST) facilities. These measurements are important for criticality safety studies in that, frequently, difficulties have arisen in predicting the reactivity of individually subcritical components assembled in a critical array. It has been postulated that errors in the neutron leakage from individual elements in the array could be responsible for these problems. In these NIST measurements, an accurate determination of the leakage from a fission spectrum, modified by water scattering, is available. Previously, results for 3-, 4-, and 5-in. diam. water-filled spheres, both with and without cadmium covers over the fission chambers, were presented for four fissionable materials: 235 U, 238 U, 237 Np, and 239 Pu. Results were also given for ''dry'' systems, in which the water spheres were drained of water, with the results corresponding to essentially measurements of unmoderated 252 Cf spontaneous-fission neutrons. The calculated-to-experimental (C/E) values ranged from 0.94 to 1.01 for the dry systems and 0.93 to 1.05 for the wet systems, with experimental uncertainties ranging from 1.5 to 1.9%. These results indicated discrepancies that were clearly outside of the experimental uncertainties, and further investigation was suggested. This work updates the previous calculations with a comparison of the predicted C/E values with ENDF/B-V and ENDF/B-VI transport cross sections. Variations in the predicted C/E values that arise from the use of ENDF/B-V, ENDF/B-VI, ENDL92, and LLLDOS for the response fission cross sections are also tabulated. The use of both a 45-group NIST fission spectrum and a continuous-energy fission spectrum for 252 Cf are evaluated. The use of the generalized-linear-least-squares (GLLSM) procedures to investigate the reported discrepancies in the water sphere results for 235 U, 238 U, 239 Pu, and 237 Np is reported herein. These studies
Sphere impact and penetration into wet sand
Marston, J. O.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T
2012-01-01
We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.
Diagnosis of a Poorly Performing Liquid Hydrogen Bulk Storage Sphere
Krenn, Angela G.
2011-01-01
There are two 850,000 gallon Liquid Hydrogen (LH2) storage spheres used to support the Space Shuttle Program; one residing at Launch Pad A and the other at Launch Pad B. The LH2 Sphere at Pad B has had a high boiloff rate since being brought into service in the 1960's. The daily commodity loss was estimated to be approximately double that of the Pad A sphere, and well above the minimum required by the sphere's specification. Additionally, after being re-painted in the late 1990's a "cold spot" appeared on the outer sphere which resulted in a poor paint bond, and mold formation. Thermography was used to characterize the area, and the boiloff rate was continually evaluated. All evidence suggested that the high boiloff rate was caused by an excessive heat leak into the inner sphere due to an insulation void in the annulus. Pad B was recently taken out of Space Shuttle program service which provided a unique opportunity to diagnose the sphere's poor performance. The sphere was drained and inerted, and then opened from the annular relief device on the top where a series of boroscoping operations were accomplished. Boroscoping revealed a large Perlite insulation void in the region of the sphere where the cold spot was apparent. Perlite was then trucked in and off-loaded into the annular void region until the annulus was full. The sphere has not yet been brought back into service.
Hesford, Andrew J; Astheimer, Jeffrey P; Greengard, Leslie F; Waag, Robert C
2010-02-01
A multiple-scattering approach is presented to compute the solution of the Helmholtz equation when a number of spherical scatterers are nested in the interior of an acoustically large enclosing sphere. The solution is represented in terms of partial-wave expansions, and a linear system of equations is derived to enforce continuity of pressure and normal particle velocity across all material interfaces. This approach yields high-order accuracy and avoids some of the difficulties encountered when using integral equations that apply to surfaces of arbitrary shape. Calculations are accelerated by using diagonal translation operators to compute the interactions between spheres when the operators are numerically stable. Numerical results are presented to demonstrate the accuracy and efficiency of the method.
Analytical expressions for the correlation function of a hard sphere dimer fluid
Kim, Soonho; Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of a hard sphere dimer fluid. A set of integral equations is obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with Percus-Yevick approximation. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of the individual correlation functions are obtained. By the inverse Laplace transformation, the radial distribution function (RDF) is obtained in closed form out to 3D (D is the segment diameter). The analytical expression for the RDF of the hard dimer should be useful in developing the perturbation theory of dimer fluids.
Analytical expression for the correlation function of a hard sphere chain fluid
Chang, Jaeeon; Kim, Hwayong
A closed form expression is given for the correlation function of flexible hard sphere chain fluid. A set of integral equations obtained from Wertheim's multidensity Ornstein-Zernike integral equation theory with the polymer Percus-Yevick ideal chain approximation is considered. Applying the Laplace transformation method to the integral equations and then solving the resulting equations algebraically, the Laplace transforms of individual correlation functions are obtained. By inverse Laplace transformation the inter- and intramolecular radial distribution functions (RDFs) are obtained in closed forms up to 3D(D is segment diameter). These analytical expressions for the RDFs would be useful in developing the perturbation theory of chain fluids.
Movements of a Sphere Moving Over Smooth and Rough Inclines
Jan, Chyan-Deng
1992-01-01
The steady movements of a sphere over a rough incline in air, and over smooth and rough inclines in a liquid were studied theoretically and experimentally. The principle of energy conservation was used to analyze the translation velocities, rolling resistances, and drag coefficients of a sphere moving over the inclines. The rolling resistance to the movement of a sphere from the rough incline was presumed to be caused by collisions and frictional slidings. A varnished wooden board was placed on the bottom of an experimental tilting flume to form a smooth incline and a layer of spheres identical to the sphere moving over them was placed on the smooth wooden board to form a rough incline. Spheres used in the experiments were glass spheres, steel spheres, and golf balls. Experiments show that a sphere moving over a rough incline with negligible fluid drag in air can reach a constant translation velocity. This constant velocity was found to be proportional to the bed inclination (between 11 ^circ and 21^circ) and the square root of the sphere's diameter, but seemingly independent of the sphere's specific gravity. Two empirical coefficients in the theoretical expression of the sphere's translation velocity were determined by experiments. The collision and friction parts of the shear stress exerted on the interface between the moving sphere and rough incline were determined. The ratio of collision to friction parts appears to increase with increase in the bed inclination. These two parts seem to be of the same order of magnitude. The rolling resistances and the relations between the drag coefficient and Reynolds number for a sphere moving over smooth and rough inclines in a liquid, such as water or salad oil, were determined by a regression analysis based on experimental data. It was found that the drag coefficient for a sphere over the rough incline is larger than that for a sphere over the smooth incline, and both of which are much larger than that for a sphere in free
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, Regis; Lester, Daniel; Meheust, Yves; Le Borgne, Tanguy
2017-11-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insights are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures. The authors acknowledge the support of ERC project ReactiveFronts (648377).
Röntgen spheres around active stars
Locci, Daniele; Cecchi-Pestellini, Cesare; Micela, Giuseppina; Ciaravella, Angela; Aresu, Giambattista
2018-01-01
X-rays are an important ingredient of the radiation environment of a variety of stars of different spectral types and age. We have modelled the X-ray transfer and energy deposition into a gas with solar composition, through an accurate description of the electron cascade following the history of the primary photoelectron energy deposition. We test and validate this description studying the possible formation of regions in which X-rays are the major ionization channel. Such regions, called Röntgen spheres may have considerable importance in the chemical and physical evolution of the gas embedding the emitting star. Around massive stars the concept of Röntgen sphere appears to be of limited use, as the formation of extended volumes with relevant levels of ionization is efficient just in a narrow range of gas volume densities. In clouds embedding low-mass pre-main-sequence stars significant volumes of gas are affected by ionization levels exceeding largely the cosmic-ray background ionization. In clusters arising in regions of vigorous star formation X-rays create an ionization network pervading densely the interstellar medium, and providing a natural feedback mechanism, which may affect planet and star formation processes.
Chaotic Fluid Mixing in Crystalline Sphere Arrays
Turuban, R.; Lester, D. R.; Le Borgne, T.; Méheust, Y.
2017-12-01
We study the Lagrangian dynamics of steady 3D Stokes flow over simple cubic (SC) and body-centered cubic (BCC) lattices of close-packed spheres, and uncover the mechanisms governing chaotic mixing. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different to that of continuous (non-granular) media (e.g. open pore networks), with significant implications for fluid mixing. Weak symmetry breaking of the flow orientation with respect to the lattice symmetries imparts a transition from regular to strong chaotic mixing in the BCC lattice, whereas the SC lattice only exhibits weak mixing. Whilst the SC and BCC lattices share the same symmetry point group, these differences are explained in terms of their space groups, and we find that a glide symmetry of the BCC lattice generates chaotic mixing. These insight are used to develop accurate predictions of the Lyapunov exponent distribution over the parameter space of mean flow orientation, and point to a general theory of mixing and dispersion based upon the inherent symmetries of arbitrary crystalline structures.
Computing variational bounds for flow through random aggregates of Spheres
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
Known formulas for variational bounds on Darcy's constant for slow flow through porous media depend on two-point and three-poiint spatial correlation functions. Certain bounds due to Prager and Doi depending only a two-point correlation functions have been calculated for the first time for random aggregates of spheres with packing fractions (eta) up to eta = 0.64. Three radial distribution functions for hard spheres were tested for eta up to 0.49: (1) the uniform distribution or ''well-stirred approximation,'' (2) the Percus Yevick approximation, and (3) the semi-empirical distribution of Verlet and Weis. The empirical radial distribution functions of Benett andd Finney were used for packing fractions near the random-close-packing limit (eta/sub RCP/dapprox.0.64). An accurate multidimensional Monte Carlo integration method (VEGAS) developed by Lepage was used to compute the required two-point correlation functions. The results show that Doi's bounds are preferred for eta>0.10 while Prager's bounds are preferred for eta>0.10. The ''upper bounds'' computed using the well-stirred approximation actually become negative (which is physically impossible) as eta increases, indicating the very limited value of this approximation. The other two choices of radial distribution function give reasonable results for eta up to 0.49. However, these bounds do not decrease with eta as fast as expected for large eta. It is concluded that variational bounds dependent on three-point correlation functions are required to obtain more accurate bounds on Darcy's constant for large eta
Li, Cheng Chao; Rui, Xianhong; Wei, Weifeng; Chen, Libao; Yu, Yan
2017-11-16
Multicomponent porous colloidal spheres are of interest because they not only show a combination of the properties associated with all different components, but also usually present synergy effects. However, a combination of different components in a single porous sphere is still greatly challenged due to the different precipitation behaviors of each component. In this work, we have developed a general synthetic route to prepare several categories of porous monodisperse rare-earth (RE)-based colloidal spheres with customizable elemental compositions and a uniform element distribution. The two-step synthetic strategy is based on the integration of coordination chemistry precipitation of RE ions and a subsequent ion-exchange process, which steers clear of obstacles, such as differences in solubility product constant, that are to be found in traditional co-precipitation methods. Our approach provides a new mixing mechanism to realize homogeneous distribution of each element within the porous spheres. An array of binary, ternary, and even senary RE colloidal porous spheres with diameters of 500 nm to 700 nm has been successfully synthesized. Taking advantage of their good dispersibility, porosity, and customizable components, these porous RE oxide spheres show excellent catalytic activity for the reduction of 4-nitrophenol, and promising application in single-phase multifunctional bioprobes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel synthesis of micrometer silica hollow sphere
International Nuclear Information System (INIS)
Pan Wen; Ye Junwei; Ning Guiling; Lin Yuan; Wang Jing
2009-01-01
Silica microcapsules (hollow spheres) were synthesized successfully by a novel CTAB-stabilized water/oil emulsion system mediated hydrothermal method. The addition of urea to a solution of aqueous phase was an essential step of the simple synthetic procedure of silica hollow spheres, which leads to the formation of silica hollow spheres with smooth shell during hydrothermal process. The intact hollow spheres were obtained by washing the as-synthesized solid products with distilled water to remove the organic components. A large amount of silanol groups were retained in the hollow spheres by this facile route without calcination. The morphologies and optical properties of the product were characterized by transmission electron microscopy, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy. Furthermore, on the basis of a series of SEM observations, phenomenological elucidation of a mechanism for the growth of the silica hollow spheres has been presented
Hierarchical hollow spheres of Fe2O3 @polyaniline for lithium ion battery anodes.
Jeong, Jae-Min; Choi, Bong Gill; Lee, Soon Chang; Lee, Kyoung G; Chang, Sung-Jin; Han, Young-Kyu; Lee, Young Boo; Lee, Hyun Uk; Kwon, Soonjo; Lee, Gaehang; Lee, Chang-Soo; Huh, Yun Suk
2013-11-20
Hierarchical hollow spheres of Fe2 O3 @polyaniline are fabricated by template-free synthesis of iron oxides followed by a post in- and exterior construction. A combination of large surface area with porous structure, fast ion/electron transport, and mechanical integrity renders this material attractive as a lithium-ion anode, showing superior rate capability and cycling performance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of a new-generation active falling sphere
Croskey, C. L.; Mitchell, J. D.; Schiano, J. L.; Kenkre, N. V.; Cresci, D. J.
1997-01-01
A new generation falling sphere, designed to measure winds and temperatures, is described. This sphere combines nanotechnology accelerometers and GaAs radiofrequency transmitters in a 100 g to 150 g package. This new instrumentation can be added to the standard inflatable sphere launched by a rocket or separately deployed from a larger rocket in which it is carried as part of a much larger scientific instrument package.
Plane wave interaction with a homogeneous warm plasma sphere
International Nuclear Information System (INIS)
Ruppin, R.
1975-01-01
A Mie type theory for the scattering and absorption properties of a homogeneous warm plasma sphere is developed. The theory is applied to the calculation of the extinction cross section of plasma spheres, and the effects of Landau damping and collisional damping on the spectra are discussed. The dependence of the main resonance and of the Tonks-Dattner resonances on the physical parameters characterizing the sphere and its surroundings is investigated. The spectrum is shown to be insenitive to the boundary conditions which specify the behaviour of the electrons at the surface of the sphere (author)
Process development and fabrication for sphere-pac fuel rods
International Nuclear Information System (INIS)
Welty, R.K.; Campbell, M.H.
1981-06-01
Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted
Human postprandial gastric emptying of 1-3-millimeter spheres
International Nuclear Information System (INIS)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-01-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food
Social movements and the Transnational Transformation of Public Spheres
DEFF Research Database (Denmark)
Bourne, Angela
2017-01-01
This article presents a theoretical framework for the empirical study of social movements as agents and arenas in the transnational transformation of public spheres. It draws on the existing literature on transnationalisation of public spheres, which predominantly focuses on the broadcast media...... and overlapping, permits analysis of social movements as agents of public sphere transformation as the form of actors or arenas, either within transnational spaces or through more routine forms of contestation within the nation-state. I then adapt indicators developed to measure the degree of transnationalisation...... of public spheres and illustrate their applicability for the study of social movements using contemporary examples of movement practices and discourses....
Human postprandial gastric emptying of 1-3-millimeter spheres
Energy Technology Data Exchange (ETDEWEB)
Meyer, J.H.; Elashoff, J.; Porter-Fink, V.; Dressman, J.; Amidon, G.L.
1988-06-01
Microspheres of pancreatin should empty from the stomachs of patients with pancreatic insufficiency as fast as food. The present study was undertaken in 26 healthy subjects to identify the size of spheres that would empty from the stomach with food and to determine whether different meals alter this size. Spheres of predefined sizes were labeled with /sup 113m/In or /sup 99m/Tc. Using a gamma-camera, we studied the concurrent gastric emptying of spheres labeled with /sup 113m/In and of chicken liver labeled with /sup 99m/Tc in 100-g, 154-kcal or 420-g, 919-kcal meals, or the concurrent emptying of 1-mm vs. larger spheres. One-millimeter spheres emptied consistently (p less than 0.01, paired t-test) faster than 2.4- or 3.2-mm spheres when ingested together with either the 420- or 100-g meals. Thus, in the 1-3-mm range of diameters, sphere size was a more important determinant of sphere emptying than meal size. Statistical analyses indicated that spheres 1.4 +/- 0.3 mm in diameter with a density of 1 empty at the same rate as /sup 99m/Tc-liver. Our data indicate some commercially marketed microspheres of pancreatin will empty too slowly to be effective in digestion of food.
IBM WebSphere Application Server 80 Administration Guide
Robinson, Steve
2011-01-01
IBM WebSphere Application Server 8.0 Administration Guide is a highly practical, example-driven tutorial. You will be introduced to WebSphere Application Server 8.0, and guided through configuration, deployment, and tuning for optimum performance. If you are an administrator who wants to get up and running with IBM WebSphere Application Server 8.0, then this book is not to be missed. Experience with WebSphere and Java would be an advantage, but is not essential.
Ligand sphere conversions in terminal carbide complexes
DEFF Research Database (Denmark)
Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.
2016-01-01
Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...
Holographic mutual information of two disjoint spheres
Chen, Bin; Fan, Zhong-Ying; Li, Wen-Ming; Zhang, Cheng-Yong
2018-04-01
We study quantum corrections to holographic mutual information for two disjoint spheres at a large separation by using the operator product expansion of the twist field. In the large separation limit, the holographic mutual information is vanishing at the semiclassical order, but receive quantum corrections from the fluctuations. We show that the leading contributions from the quantum fluctuations take universal forms as suggested from the boundary CFT. We find the universal behavior for the scalar, the vector, the tensor and the fermionic fields by treating these fields as free fields propagating in the fixed background and by using the 1 /n prescription. In particular, for the fields with gauge symmetries, including the massless vector boson and massless graviton, we find that the gauge parts in the propagators play an indispensable role in reading the leading order corrections to the bulk mutual information.
Determinantal point process models on the sphere
DEFF Research Database (Denmark)
Møller, Jesper; Nielsen, Morten; Porcu, Emilio
defined on Sd × Sd . We review the appealing properties of such processes, including their specific moment properties, density expressions and simulation procedures. Particularly, we characterize and construct isotropic DPPs models on Sd , where it becomes essential to specify the eigenvalues......We consider determinantal point processes on the d-dimensional unit sphere Sd . These are finite point processes exhibiting repulsiveness and with moment properties determined by a certain determinant whose entries are specified by a so-called kernel which we assume is a complex covariance function...... and eigenfunctions in a spectral representation for the kernel, and we figure out how repulsive isotropic DPPs can be. Moreover, we discuss the shortcomings of adapting existing models for isotropic covariance functions and consider strategies for developing new models, including a useful spectral approach....
iSPHERE - A New Approach to Collaborative Research and Cloud Computing
Al-Ubaidi, T.; Khodachenko, M. L.; Kallio, E. J.; Harry, A.; Alexeev, I. I.; Vázquez-Poletti, J. L.; Enke, H.; Magin, T.; Mair, M.; Scherf, M.; Poedts, S.; De Causmaecker, P.; Heynderickx, D.; Congedo, P.; Manolescu, I.; Esser, B.; Webb, S.; Ruja, C.
2015-10-01
The project iSPHERE (integrated Scientific Platform for HEterogeneous Research and Engineering) that has been proposed for Horizon 2020 (EINFRA-9- 2015, [1]) aims at creating a next generation Virtual Research Environment (VRE) that embraces existing and emerging technologies and standards in order to provide a versatile platform for scientific investigations and collaboration. The presentation will introduce the large project consortium, provide a comprehensive overview of iSPHERE's basic concepts and approaches and outline general user requirements that the VRE will strive to satisfy. An overview of the envisioned architecture will be given, focusing on the adapted Service Bus concept, i.e. the "Scientific Service Bus" as it is called in iSPHERE. The bus will act as a central hub for all communication and user access, and will be implemented in the course of the project. The agile approach [2] that has been chosen for detailed elaboration and documentation of user requirements, as well as for the actual implementation of the system, will be outlined and its motivation and basic structure will be discussed. The presentation will show which user communities will benefit and which concrete problems, scientific investigations are facing today, will be tackled by the system. Another focus of the presentation is iSPHERE's seamless integration of cloud computing resources and how these will benefit scientific modeling teams by providing a reliable and web based environment for cloud based model execution, storage of results, and comparison with measurements, including fully web based tools for data mining, analysis and visualization. Also the envisioned creation of a dedicated data model for experimental plasma physics will be discussed. It will be shown why the Scientific Service Bus provides an ideal basis to integrate a number of data models and communication protocols and to provide mechanisms for data exchange across multiple and even multidisciplinary platforms.
Gravitational potential energy of a disk-sphere pair of galaxies
International Nuclear Information System (INIS)
Ballabh, G.M.
1975-01-01
Algebraic expressions are obtained for the interaction potential energy of a pair of galaxies in which one is disk shaped and the other spherical. The density distribution in the disk galaxy is represented by a polynomial in ascending powers of the distance from the centre of the disk while the density distribution in the spherical galaxy is represented by the superposition of spherical polytropes of integral indices. The basic functions required for obtaining the interaction potential energy of a coplanar disk-sphere pair of galaxies are tabulated. The forces of attraction between a coplanar disk-sphere pair of galaxies are shown graphically for two density models of disk and spherical galaxies. An overlapping coplanar disk-sphere pair of galaxies attract just like two mass-points at a certain separation, rsub(c), of their centres. The force of attraction is less than that of two mass-points having masses equal to the masses of the two galaxies, if the separation of the centres is less than rsub(c), and greater if the separation is greater than rsub(c). For a typical coplanar disk-sphere pair of galaxies (the density of the disk is represented by Model II and of the sphere by a polytropic index n=4) of equal radii, the following is noted. At a separation of 0.79 R, R being the common radius of the two galaxies, the force of attraction between the pair is the same as if the entire mass of each galaxy is concentrated at its centre. The mass-point model for the two galaxies will overestimate the force of attraction by more than a factor of 10 if the separation is less than 0.36 R. For separation greater than the radii of the galaxies the mass-point model will underestimate the force but the departure in this case is less than 33%. (Auth.)
Orbital Motion of Electrically Charged Spheres in Microgravity
Banerjee, Shubho; Andring, Kevin; Campbell, Desmond; Janeski, John; Keedy, Daniel; Quinn, Sean; Hoffmeister, Brent
2008-01-01
The similar mathematical forms of Coulomb's law and Newton's law of gravitation suggest that two uniformly charged spheres should be able to orbit each other just as two uniform spheres of mass are known to do. In this paper we describe an experiment that we performed to demonstrate such an orbit. This is the first published account of a…
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Directory of Open Access Journals (Sweden)
Zhong Kuo
2018-03-01
Full Text Available In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Radioactive spheres without inactive wall for lesion simulation in PET
International Nuclear Information System (INIS)
Bazanez-Borgert, M.; Bundschuh, R.A.; Herz, M.; Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.
2008-01-01
With the growing importance of PET and PET/CT in diagnosis, staging, therapy monitoring and radiotherapy planning, appropriate tools to simulate lesions in phantoms are important. Normally hollow spheres, made of plastic or glass, which can be filled with radioactive solutions, are used. As these spheres have an inactive wall they do not reflect the real situation in the patient and lead to quantification errors in the presence of background activity. We propose spheres made of radioactive wax, which are easy to produce, give a high flexibility to the user and a more accurate quantification. These wax spheres were evaluated for their applicability in PET phantoms and it was found that the activity is not diffusing into the surrounding water in relevant quantities, that they show a sufficient homogeneity, and that their attenuation properties are equivalent to water for photons of PET energies. Recovery coefficients for the wax spheres were measured and compared with those obtained for fillable plastic spheres for diameters of 28, 16, 10, and 6 mm in the presence of background activity. Recovery coefficients of the wax spheres were found to be up to 21% higher than for the fillable spheres. (orig.)
Covariant differential calculus on quantum spheres of odd dimension
International Nuclear Information System (INIS)
Welk, M.
1998-01-01
Covariant differential calculus on the quantum spheres S q 2N-1 is studied. Two classification results for covariant first order differential calculi are proved. As an important step towards a description of the noncommutative geometry of the quantum spheres, a framework of covariant differential calculus is established, including first and higher order calculi and a symmetry concept. (author)
Translating in the public sphere: Birth pangs of a developing ...
African Journals Online (AJOL)
Translating in the public sphere: Birth pangs of a developing democracy in today's Russia. ... the article considers the dramatic consequences of the failure to give full consideration to translation as a major factor in the public sphere, especially in countries with developing democracies, such as present-day Putinite Russia.
Squeeze flow between a sphere and a textured wall
Energy Technology Data Exchange (ETDEWEB)
Chastel, T.; Mongruel, A., E-mail: anne.mongruel@upmc.fr [Physique et Mécanique des Milieux Hétérogènes, UMR 7636 CNRS–ESPCI, Université Pierre et Marie Curie–Université Paris-Diderot, 10 rue Vauquelin, 75231 Paris Cedex 05 (France)
2016-02-15
The motion of a millimetric sphere, translating in a viscous fluid towards a wettable textured wall, is investigated experimentally. The textures consist of square arrays of cylindrical or square micro-pillars, the height, width, and spacing of which are varied, keeping the periodicity small compared to the sphere radius. An interferometric device is used to measure the sphere vertical displacement, for distances between the sphere and the base of the pillars smaller than 0.1 sphere radius, and with a resolution of 200 nm. At a given distance from the top of the pillars, the sphere velocity is found to be significantly larger than the corresponding velocity for a smooth solid wall. A squeeze flow model of two adjacent fluid layers is developed in the lubrication approximation, one fluid layer having an effective viscosity that reflects the viscous dissipation through the array of pillars. The pressure field in the gap between the sphere and the textured surface is then used to obtain the drag force on the sphere and hence its velocity. Adjustment of the model to the velocity measurements yields the effective viscosity for a given texture. Finally, a correlation between the effective viscosity and the geometry of the pillar array is proposed.
Applications of Bonner sphere detectors in neutron field dosimetry
International Nuclear Information System (INIS)
Awschalom, M.; Sanna, R.S.
1983-09-01
The theory of neutron moderation and spectroscopy are briefly reviewed, and moderators that are useful for Bonner sphere spectrometers are discussed. The choice of the neutron detector for a Bonner sphere spectrometer is examined. Spectral deconvolution methods are briefly reviewed, including derivative, parametric, quadrature, and Monte Carlo methods. Calibration is then discussed
Bubble entrapment during sphere impact onto quiescent liquid surfaces
Marston, Jeremy; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T
2011-01-01
We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined
G B, Abhilash
2015-01-01
This is an excellent handbook for system administrators, support professionals, or for anyone intending to give themselves a headstart in learning how to install, configure, and manage a vSphere environment. It is also a good task-oriented reference guide for consultants or infrastructure architects who design and deploy vSphere environments.
Creeping Viscous Flow around a Heat-Generating Solid Sphere
DEFF Research Database (Denmark)
Krenk, Steen
1981-01-01
The velocity field for creeping viscous flow around a solid sphere due to a spherically symmetric thermal field is determined and a simple thermal generalization of Stokes' formula is obtained. The velocity field due to an instantaneous heat source at the center of the sphere is obtained in closed...... form and an application to the storage of heat-generating nuclear waste is discussed....
Axioms of spheres in lightlike geometry of submanifolds
Indian Academy of Sciences (India)
Introduction. The notion of axioms of planes for Riemannian manifolds was originally introduced by. Cartan [2]. In [8], Leung and Nomizu generalized the notion of axioms of planes to the axioms of spheres on Riemannian manifolds. In [7], Kumar et al. studied the axioms of spheres and planes for indefinite Riemannian ...
Incorporation of high-level nuclear waste in gel spheres
International Nuclear Information System (INIS)
Robinson, S.M.; Arnold, W.D.; Bond, W.D.; Angelini, P.; Stinton, D.P.
1981-01-01
Waste sludge is incorporated in gel spheres by the method of internal gelation. Gel spheres containing up to 90 wt % waste have been produced from defense and commercial wastes. A generic cesium-bearing waste form has been developed. Pyrolytic carbon and SiC coatings reduce the leachability of all tested articles to the detection limits
Social Justice and Education in the Public and Private Spheres
Power, Sally; Taylor, Chris
2013-01-01
This paper explores the complex relationship between social justice and education in the public and private spheres. The politics of education is often presented as a battle between left and right, the state and the market. In this representation, the public and the private spheres are neatly aligned on either side of the line of battle, and…
Hollow spheres: crucial building blocks for novel nanostructures and nanophotonics
Zhong, Kuo; Song, Kai; Clays, Koen
2018-03-01
In this review, we summarize the latest developments in research specifically derived from the unique properties of hollow microspheres, in particular, hollow silica spheres with uniform shells. We focus on applications in nanosphere (colloidal) lithography and nanophotonics. The lithography from a layer of hollow spheres can result in nanorings, from a multilayer in unique nano-architecture. In nanophotonics, disordered hollow spheres can result in antireflection coatings, while ordered colloidal crystals (CCs) of hollow spheres exhibit unique refractive index enhancement upon infiltration, ideal for optical sensing. Furthermore, whispering gallery mode (WGM) inside the shell of hollow spheres has also been demonstrated to enhance light absorption to improve the performance of solar cells. These applications differ from the classical applications of hollow spheres, based only on their low density and large surface area, such as catalysis and chemical sensing. We provide a brief overview of the synthesis and self-assembly approaches of the hollow spheres. We elaborate on their unique optical features leading to defect mode lasing, optomicrofluidics, and the existence of WGMs inside shell for light management. Finally, we provide a perspective on the direction towards which future research relevant to hollow spheres might be directed.
Thermodynamics and vibrational modes of hard sphere colloidal systems
Zargar, R.
2014-01-01
The central question that we address in this thesis is the thermodynamics of colloidal glasses. The thermodynamics of colloidal hard sphere glasses are directly related to the entropy of the system, since the phase behavior of hard sphere systems is dictated only by entropic contributions, and also
Fe2O3 hollow sphere nanocomposites for supercapacitor applications
Zhao, Yu; Wen, Yang; Xu, Bing; Lu, Lu; Ren, Reiming
2018-02-01
Nanomaterials have attracted increasing interest in electrochemical energy storage and conversion. Hollow sphere Fe2O3 nanocomposites were successfully prepared through facile low temperature water-bath method with carbon sphere as hard template. The morphology and microstructure of samples were characterized by X-ray diffraction (XRD) and Scanning electron microscope (SEM), respectively. Through hydrolysis mechanism, using ferric chloride direct hydrolysis, iron hydroxide coated on the surface of carbon sphere, after high temperature calcination can form the hollow spherical iron oxide materials. Electrochemical performances of the hollow sphere Fe2O3 nanocomposites electrodes were investigated by cyclic voltammery (CV) and galvanostatic charge/discharge. The Pure hollow sphere Fe2O3 nanocomposites achieves a specific capacitance of 125 F g-1 at the current density of 85 mA g-1. The results indicate that the uniform dispersion of hollow ball structure can effectively reduce the particle reunion in the process of charging and discharging.
Pool boiling from rotating and stationary spheres in liquid nitrogen
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
Algorithm for generating a Brownian motion on a sphere
International Nuclear Information System (INIS)
Carlsson, Tobias; Elvingson, Christer; Ekholm, Tobias
2010-01-01
We present a new algorithm for generation of a random walk on a two-dimensional sphere. The algorithm is obtained by viewing the 2-sphere as the equator in the 3-sphere surrounded by an infinitesimally thin band with boundary which reflects Brownian particles and then applying known effective methods for generating Brownian motion on the 3-sphere. To test the method, the diffusion coefficient was calculated in computer simulations using the new algorithm and, for comparison, also using a commonly used method in which the particle takes a Brownian step in the tangent plane to the 2-sphere and is then projected back to the spherical surface. The two methods are in good agreement for short time steps, while the method presented in this paper continues to give good results also for larger time steps, when the alternative method becomes unstable.
Directory of Open Access Journals (Sweden)
M.F. Holovko
2017-12-01
Full Text Available The scaled particle theory is developed for the description of thermodynamical properties of a mixture of hard spheres and hard spherocylinders. Analytical expressions for free energy, pressure and chemical potentials are derived. From the minimization of free energy, a nonlinear integral equation for the orientational singlet distribution function is formulated. An isotropic-nematic phase transition in this mixture is investigated from the bifurcation analysis of this equation. It is shown that with an increase of concentration of hard spheres, the total packing fraction of a mixture on phase boundaries slightly increases. The obtained results are compared with computer simulations data.
International Nuclear Information System (INIS)
Sanchez, Rene; Loaiza, David; Kimpland, Robert; Hayes, David; Cappiello, Charlene; Chadwick, Mark
2006-01-01
For the past five years, scientists at Los Alamos National Laboratory have mounted an unprecedented effort to get a better estimate of the critical mass of 237 Np. To accomplish this task, a 6-kg neptunium sphere was recently cast at the Chemical and Metallurgy Research (CMR) facility, which is part of the Los Alamos National Laboratory. The neptunium sphere was clad with tungsten and nickel to reduce the dose rates from the 310 keV gamma rays from the first daughter of neptunium, namely, 233 Pa. 237 Np is a byproduct of power production in nuclear reactors. It is primarily produced by successive neutron captures in 235 U or through the (n,2n) reaction in 238 U. These nuclear reactions lead to the production of 237 U, which decays by beta emission into 237 Np, namely, 235 U(n,γ) 236 U, 236 U(n,γ) 237 U→β→ 237 Np, 238 U (n,2n) 237 U→β→ 237 Np. It is estimated that a typical 1000 MW(e) produces on the order of 12 to 13 kg of neptunium in a year. Some of this neptunium in irradiated fuel elements has been separated and is presently stored in containers in a liquid form. This method of storage is quite adequate because the fission cross section for 237 Np at thermal energies is quite low and any moderation of the neutron population by diluting the configurations with water would increase the critical mass to infinity. However, for long term storage, the neptunium liquid solutions must be converted into oxides and metals because these form are less movable and less likely to leak out of containers. Metals and oxides made out of neptunium have finite critical masses but there is a great uncertainty about these values because of the lack of experimental criticality data. Knowing precisely the critical mass of neptunium not only will help to validate mass storage limits or optimize storage configurations for safe disposition of these materials, but will also save thousands of dollars in transportation and disposition costs. The experimental results presented in
International Nuclear Information System (INIS)
Espinoza G, J. G.; Martinez B, M. R.; Leon P, A. A.; Hernandez P, C. F.; Castaneda M, V. H.; Solis S, L. O.; Castaneda M, R.; Ortiz R, J. M.; Vega C, H. R.; Mendez, R.; Gallego, E.; De Sousa L, M. A.
2016-10-01
For neutron spectrometry and neutron dosimetry, the Bonner spheres spectrometric system has been the most widely used system, however, the number, size and weight of the spheres composing the system, as well as the need to use a reconstruction code and the long periods of time used to carry out the measurements are some of the disadvantages of this system. For the reconstruction of the spectra, different techniques such as artificial neural networks of reverse propagation have been used. The objective of this work was to reduce the number of Bonner spheres and to use counting speeds in a reverse propagation neural network, optimized by means of the robust design methodology, to reconstruct the neutron spectra. For the design of the neural network we used the neutron spectra of the IAEA and the response matrix of the Bonner spheres with "6LiI(Eu) detector. The performance of the network was compared; using 7 Bonner spheres against other cases where only 2 and one sphere are used. The network topologies were trained 36 times for each case keeping constant the objective error (1E(-3)), the training algorithm was trains cg and the robust design methodology to determine the best network architectures. With these, the best and worst results were compared. The results obtained using 7 spheres were similar to those with the 5-in sphere, however is still in an information analysis stage. (Author)
SPHERE: Irradiation of sphere-pac fuel of UPuO2−x containing 3% Americium
International Nuclear Information System (INIS)
D’Agata, E.; Hania, P.R.; McGinley, J.; Somers, J.; Sciolla, C.; Baas, P.J.; Kamer, S.; Okel, R.A.F.; Bobeldijk, I.; Delage, F.; Bejaoui, S.
2014-01-01
Highlights: • SPHERE is designed to check the behaviour of MADF sphere-pac concept. • MADF sphere-pac are compared with MADF pellet. • Swelling, helium release and restructuring behaviour will be the main output of the experiment. • An experiment to check sphere-pac MABB fuel behaviour is now under design. - Abstract: Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like 241 Am is therefore an option for the reduction of radiotoxicity of waste packages to be stored in a repository. The SPHERE irradiation experiment is the latest of a series of European experiments on americium transmutation (e.g. EFTTRA-T4, EFTTRA-T4bis, HELIOS, MARIOS) performed in the HFR (High Flux Reactor). The SPHERE experiment is carried out in the framework of the 4-year project FAIRFUELS of the EURATOM 7th Framework Programme (FP7). During the past years of experimental works in the field of transmutation and tests of innovative nuclear fuels, the release or trapping of helium as well as helium induced fuel swelling have been shown to be the key issues for the design of Am-bearing targets. The main objective of the SPHERE experiment is to study the in-pile behaviour of fuel containing 3% of americium and to compare the behaviour of sphere-pac fuel to pellet fuel, in particular the role of microstructure and temperature on fission gas release (mainly He) and on fuel swelling. The SPHERE experiment is being irradiated since September 2013 in the HFR in Petten (The Netherlands) and is expected to be terminated in spring 2015. The experiment has been designed to last up to 18 reactor cycles (corresponding to 18 months) but may reach its target earlier. This paper discusses the rationale and objective of the SPHERE experiment and provides a general description of its design
Digital Culture, Education and Public Sphere
Directory of Open Access Journals (Sweden)
Luiz Roberto Gomes
2016-02-01
Full Text Available In the context of the so-called digital culture, this paper discusses the issue of education and the political implications of the distance learning expansion movement in Brazil. In addition to the advances in the democratization of the access to information through the mediation of information and communication technologies (ICTs, which should be recognized as an effort to spread a certain “political culture”, this does not necessarily mean, as Habermas (2003b recalls, that the effective political participation of citizens is assured, especially in light of recurrent dislocation between the political public sphere and civil society. What are the interests behind the phenomenon of digitization of culture? And what is the purpose of education in this new cultural context? As an expression of contemporary social life, digital culture generates structural changes, not only in the form of transmission and access to culture, but also in the very concept and attitude towards culture, with decisive political implications for education. That leads us to think, for example, about the differences between the concepts of education present in the classical Greek Paideia culture, in the modern culture of Bildung, and in the contemporary educational model increasingly subservient to the ICTs we now have.
Second-order impartiality and public sphere
Directory of Open Access Journals (Sweden)
Sládeček Michal
2016-01-01
Full Text Available In the first part of the text the distinction between first- and second-order impartiality, along with Brian Barry’s thorough elaboration of their characteristics and the differences between them, is examined. While the former impartiality is related to non-favoring fellow-persons in everyday occasions, the latter is manifested in the institutional structure of society and its political and public morality. In the second part of the article, the concept of public impartiality is introduced through analysis of two examples. In the first example, a Caledonian Club with its exclusive membership is considered as a form of association which is partial, but nevertheless morally acceptable. In the second example, the so-called Heinz dilemma has been reconsidered and the author points to some flaws in Barry’s interpretation, arguing that Heinz’s right of giving advantage to his wife’s life over property rights can be recognized through mitigating circum-stances, and this partiality can be appreciated in the public sphere. Thus, public impartiality imposes limits to the restrictiveness and rigidity of political impartiality implied in second-order morality. [Projekat Ministarstva nauke Republike Srbije, br. 179049
Stress relaxation in viscous soft spheres.
Boschan, Julia; Vasudevan, Siddarth A; Boukany, Pouyan E; Somfai, Ellák; Tighe, Brian P
2017-10-04
We report the results of molecular dynamics simulations of stress relaxation tests in athermal viscous soft sphere packings close to their unjamming transition. By systematically and simultaneously varying both the amplitude of the applied strain step and the pressure of the initial condition, we access both linear and nonlinear response regimes and control the distance to jamming. Stress relaxation in viscoelastic solids is characterized by a relaxation time τ* that separates short time scales, where viscous loss is substantial, from long time scales, where elastic storage dominates and the response is essentially quasistatic. We identify two distinct plateaus in the strain dependence of the relaxation time, one each in the linear and nonlinear regimes. The height of both plateaus scales as an inverse power law with the distance to jamming. By probing the time evolution of particle velocities during relaxation, we further identify a correlation between mechanical relaxation in the bulk and the degree of non-affinity in the particle velocities on the micro scale.
Zhang, Shouchuan; Hu, Ruirui; Dai, Peng; Yu, Xinxin; Ding, Zongling; Wu, Mingzai; Li, Guang; Ma, Yongqing; Tu, Chuanjun
2017-02-01
A novel rambutan-like composite of MoS2/mesoporous carbon spheres were synthesized by a simple two-step hydrothermal and post-annealing approach via using glucose as C source and Na2MoO4·2H2O and thiourea as Mo and S sources. It is found that the morphology and electrochemical properties can be effectively controlled by the change of the weight ratio of coated MoS2 sheets to carbon spheres. When used as electrode material for supercapacitor, the hybrid MoS2/carbon spheres show a high specific capacity of 411 F/g at a current density of 1 A/g and 272 F/g at a high discharge current density of 10 A/g. The annealing treatment at 700 °C transformed the core carbon spheres into mesoporous ones, which served as the conduction network and favor the enhancement of the specific capacitance. In addition, the strain released during the charge/discharge process can be accommodated and the structural integrity can be kept, improving the cycling life. After 1000 cycles, the capacitance retention of the hybrid MoS2/carbon spheres is 93.2%.
Radar Imaging of Spheres in 3D using MUSIC
Energy Technology Data Exchange (ETDEWEB)
Chambers, D H; Berryman, J G
2003-01-21
We have shown that multiple spheres can be imaged by linear and planar EM arrays using only one component of polarization. The imaging approach involves calculating the SVD of the scattering response matrix, selecting a subset of singular values that represents noise, and evaluating the MUSIC functional. The noise threshold applied to the spectrum of singular values for optimal performance is typically around 1%. The resulting signal subspace includes more than one singular value per sphere. The presence of reflections from the ground improves height localization, even for a linear array parallel to the ground. However, the interference between direct and reflected energy modulates the field, creating periodic nulls that can obscure targets in typical images. These nulls are largely eliminated by normalizing the MUSIC functional with the broadside beam pattern of the array. The resulting images show excellent localization for 1 and 2 spheres. The performance for the 3 sphere configurations are complicated by shadowing effects and the greater range of the 3rd sphere in case 2. Two of the three spheres are easily located by MUSIC but the third is difficult to distinguish from other local maxima of the complex imaging functional. Improvement is seen when the linear array is replace with a planar array, which increases the effective aperture height. Further analysis of the singular values and their relationship to modes of scattering from the spheres, as well as better ways to exploit polarization, should improve performance. Work along these lines is currently being pursued by the authors.
Bubble entrapment during sphere impact onto quiescent liquid surfaces
Marston, Jeremy
2011-06-20
We report observations of air bubble entrapment when a solid sphere impacts a quiescent liquid surface. Using high-speed imaging, we show that a small amount of air is entrapped at the bottom tip of the impacting sphere. This phenomenon is examined across a broad range of impact Reynolds numbers, 0.2 a Re = (DU0/Il) a 1.2\\' 105. Initially, a thin air pocket is formed due to the lubrication pressure in the air layer between the sphere and the liquid surface. As the liquid surface deforms, the liquid contacts the sphere at a finite radius, producing a thin sheet of air which usually contracts to a nearly hemispherical bubble at the bottom tip of the sphere depending on the impact parameters and liquid properties. When a bubble is formed, the final bubble size increases slightly with the sphere diameter, decreases with impact speed but appears independent of liquid viscosity. In contrast, for the largest viscosities tested herein, the entrapped air remains in the form of a sheet, which subsequently deforms upon close approach to the base of the tank. The initial contact diameter is found to conform to scalings based on the gas Reynolds number whilst the initial thickness of the air pocket or adimplea scales with a Stokes\\' number incorporating the influence of the air viscosity, sphere diameter and impact speed and liquid density. © 2011 Cambridge University Press.
Forming MOFs into spheres by use of molecular gastronomy methods.
Spjelkavik, Aud I; Aarti; Divekar, Swapnil; Didriksen, Terje; Blom, Richard
2014-07-14
A novel method utilizing hydrocolloids to prepare nicely shaped spheres of metal-organic frameworks (MOFs) has been developed. Microcrystalline CPO-27-Ni particles are dispersed in either alginate or chitosan solutions, which are added dropwise to solutions containing, respectively, either divalent group 2 cations or base that act as gelling agents. Well-shaped spheres are immediately formed, which can be dried into spheres containing mainly MOF (>95 wt %). The spheronizing procedures have been optimized with respect to maximum specific surface area, shape, and particle density of the final sphere. At optimal conditions, well-shaped 2.5-3.5 mm diameter CPO-27-Ni spheres with weight-specific surface areas <10 % lower than the nonformulated CPO-27-Ni precursor, and having sphere densities in the range 0.8 to 0.9 g cm(-3) and particle crushing strengths above 20 N, can be obtained. The spheres are well suited for use in fixed-bed catalytic or adsorption processes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Musica Universalis or the Music of the Spheres
Birat, Jean-Pierre
2018-06-01
The Music of the Spheres was a model of the universe proposed by Pythagoras and Aristotle, which explained cosmology in terms of spheres to which the sun, the moon and the planets were pinned, while their motion was driven by something akin to music. Modern thinking, related to ecology and industrial ecology, has metaphorically breathed life back into this old model by speaking about spheres again: biosphere, geosphere, anthroposphere, technosphere, hydrosphere, cryosphere, atmosphere, etc. Sustainable development also speaks about its three pillars (economy, environment, society) represented in a Venn diagram as intersecting circles (or spheres). All these models differ from the models of physicists, as they are more conceptual diagrams than a representation of the world as it is. Thus, they remind us of the old Music of the Spheres model. They also stress connections, exchanges, equilibria between the spheres - or the lack of them -, like Pythagoras' music. The presentation will discuss these various approaches, see how they match to some extent, but also how they do not show a perfect fit. Analyzing what happens at the boundaries of the spheres, where they overlap or penetrate into each other, is a powerful way to analyze the connection between technology, society, life and ecosystems. It can also help discuss pollution, ecotoxicology and explore global solutions. This article was given as a keynote lecture at the EMERC 2017 (First International Conference on Energy and Material Efficiency), organized by ISIJ in Kobe, Japan, 11-13 October, 2017.
Compression cracking of plastic spheres: a high speed photography study
International Nuclear Information System (INIS)
Majzoub, R.; Chaudhri, M.M.
1999-01-01
Failure of brittle spheres under compressive loading, both quasi static and dynamic, is a technologically important problem. However, so far, neither the stress state in a loaded nor the failure process in understood clearly. In fact, because the process of the failure of a loaded sphere is very rapid, it has not been possible to follow it when making static observations. We have, therefore, carried out a high-speed photographic study using framing rates of up to 200,000 frames per second to follow the sequence of events when polished 12.7 mm diameter spheres of acrylic resin are fragmented using a low-velocity impact apparatus. The latter consist of a 5.7 kg hammer, which is allowed to drop on to the test sphere from a height of 1.3 m and the entire event of impact and ensuing fracture is photographed with a rotating mirror camera (C-4). Form numerous impact experiments it has been found that as the impact load increases gradually, plastic flow and flattering of the sphere occurs at the contact region. The size of the flattened region continuous to grow with increasing impact load and when this region becomes sufficiently large, usually one or two cracks initiate at the periphery of the contact rather than in the bulk of the sphere. The surface cracks then grow into the bulk of the sphere at velocities in the range of 600-800 m s/sup -1/. It is interesting to note these crack velocities are the maximum observed velocities in this material, but these are only approx. 0.8 of the Rayleigh wave velocity, which is the theoretically predicted maximum crack velocity in brittle materials. It is argued that in order to cause the catastrophic failure of a solid sphere, it is necessary to cause plasticity in it which then leads to the generation of tensile hoop stresses at the circle of contact between the sphere and platen. (author)
Simple heuristic for the viscosity of polydisperse hard spheres
Farr, Robert S.
2014-12-01
We build on the work of Mooney [Colloids Sci. 6, 162 (1951)] to obtain an heuristic analytic approximation to the viscosity of a suspension any size distribution of hard spheres in a Newtonian solvent. The result agrees reasonably well with rheological data on monodispserse and bidisperse hard spheres, and also provides an approximation to the random close packing fraction of polydisperse spheres. The implied packing fraction is less accurate than that obtained by Farr and Groot [J. Chem. Phys. 131(24), 244104 (2009)], but has the advantage of being quick and simple to evaluate.
High pressure gas spheres for neutron and photon experiments
Rupp, G.; Petrich, D.; Käppeler, F.; Kaltenbaek, J.; Leugers, B.; Reifarth, R.
2009-09-01
High pressure gas spheres have been designed and successfully used in several nuclear physics experiments on noble gases. The pros and cons of this solution are the simple design and the high reliability versus the fact that the density is limited to 40-60% of liquid or solid gas samples. Originally produced for neutron capture studies at keV energies, the comparably small mass of the gas spheres were an important advantage, which turned out to be of relevance for other applications as well. The construction, performance, and operation of the spheres are described and examples for their use are presented.
Lowe, Scott; Guthrie, Forbes; Liebowitz, Matt; Atwell, Josh
2013-01-01
The 2013 edition of the bestselling vSphere book on the market Virtualization remains the hottest trend in the IT world, and VMware vSphere is the industry's most widely deployed virtualization solution. The demand for IT professionals skilled in virtualization and cloud-related technologies is great and expected to keep growing. This comprehensive Sybex guide covers all the features and capabilities of VMware vSphere, showing administrators step by step how to install, configure, operate, manage, and secure it. This perfect blend of hands-on instruction, conceptual explanation, and practic
Twistor Interpretation of Harmonic Spheres and Yang–Mills Fields
Directory of Open Access Journals (Sweden)
Armen Sergeev
2015-03-01
Full Text Available We consider the twistor descriptions of harmonic maps of the Riemann sphere into Kähler manifolds and Yang–Mills fields on four-dimensional Euclidean space. The motivation to study twistor interpretations of these objects comes from the harmonic spheres conjecture stating the existence of the bijective correspondence between based harmonic spheres in the loop space \\(\\Omega G\\ of a compact Lie group \\(G\\ and the moduli space of Yang–Mills \\(G\\-fields on \\(\\mathbb R^4\\.
Construction method of pre assembled unit of bolt sphere grid
Hu, L. W.; Guo, F. L.; Wang, J. L.; Bu, F. M.
2018-03-01
The traditional construction of bolt sphere grid has many disadvantages, such as high cost, large amount of work at high altitude and long construction period, in order to make up for these shortcomings, in this paper, a new and applicable construction method is explored: setting up local scaffolding, installing the bolt sphere grid starting frame on the local scaffolding, then the pre assembled unit of bolt sphere grid is assembled on the ground, using small hoisting equipment to lift pre assembled unit to high altitude and install. Compared with the traditional installation method, the construction method has strong practicability and high economic efficiency, and has achieved good social and economic benefits.
Preparation of nuclear fuel spheres by flotation-internal gelation
Haas, P.A.; Fowler, V.L.; Lloyd, M.H.
1984-12-21
A simplified internal gelation process is claimed for the preparation of gel spheres of nuclear fuels. The process utilizes perchloroethylene as a gelation medium. Gelation is accomplished by directing droplets of a nuclear fuel broth into a moving volume of hot perchloroethylene (about 85/sup 0/C) in a trough. Gelation takes place as the droplets float on the surface of the perchloroethylene and the resultant gel spheres are carried directly into an ager column which is attached to the trough. The aged spheres are disengaged from the perchloroethylene on a moving screen and are deposited in an aqueous wash column. 3 figs.
POSTGRADUATE EDUCATION FUNCTIONING PATTERNS OF TOURISM SPHERE SPECIALISTS IN SWITZERLAND
Directory of Open Access Journals (Sweden)
Наталія Закордонець
2014-04-01
Full Text Available Functioning patterns of postgraduate education of tourism sphere specialists in Switzerland have been established. The competences of tourism sphere specialist, the formation of which programs of postgraduate education are focused on have been considered. The benefits of educational qualification of Masters in Business Administration with a major specialization in tourism have been outlined. The characteristics of the core curriculum of the Doctor of Management of leading universities in the field of tourism education have been determined. The performance criteria of postgraduate education system functioning of tourism sphere specialists in Switzerland have been revealed.
Quantum hall fluid on fuzzy two dimensional sphere
International Nuclear Information System (INIS)
Luo Xudong; Peng Dantao
2004-01-01
After reviewing the Haldane's description about the quantum Hall effect on the fuzzy two-sphere S 2 , authors construct the noncommutative algebra on the fuzzy sphere S 2 and the Moyal structure of the Hilbert space. By constructing noncommutative Chern-Simons theory of the incompressible Hall fluid on the fuzzy sphere and solving the Gaussian constraint with quasiparticle source, authors find the Calogero matrix on S 2 and the complete set of the Laughlin wave function for the lowest Landau level, and this wave function is expressed by the generalized Jack polynomials in terms of spinor coordinates. (author)
Ceramic sphere-pac breeder design for fusion blankets
International Nuclear Information System (INIS)
Gierszewski, P.J.; Sullivan, J.D.
1991-01-01
Randomly packed beds of ceramic spheres are a practical approach to surrounding fusion plasmas with tritium-breeding material. This paper examines the general properties of sphere-pac beds for application in fusion breeder blankets. The design considerations and models are reviewed for packing, tritium breeding and recovery, thermal conductivity, purge-gas pressure drop, mechanical behavior and fabrication. The design correlations are compared against available fusion ceramic data. Specific conclusions are that ternary (three-size) beds are not attractive for fusion blankets, and that the fusion spheres should be as large as possible subject primarily to packing constraints. (orig.)
Ensuring Economic Security in Lending Sphere
Directory of Open Access Journals (Sweden)
Ivan Vadimovich Kochikin
2016-06-01
Full Text Available Relevance of the topic is determined by the need for sustainable development of the country’s banking system, capable of ensuring the process of raising funds to producers and the public for their projects. One of the implementation of this objective is to discourage unfair behavior in financial markets. Trust is a key factor in the development of financial markets, therefore it is necessary to suppress the appearance of unfair practices and participants – black creditors, falsification of financial statements, trading on insider information and market manipulation. It requires a whole range of activities, and above all ensuring the inevitability and proportionality of punishment for unscrupulous players, the introduction of requirements for the business reputation of the management of financial institutions.The article is devoted to structuring legal violations in the lending sphere. The analysis of indicators of credit organizations in Russia was conducted to fulfill this aim. This analysis revealed the causes of sustainable growth of overdue accounts payable – job cuts in enterprises, violations in the financial sector, various errors in the credit granting / raising. The authors carry out the systematization and classification of offenses in the area of lending, provide examples, as well as factual material illustrating the violations in the lending process having the characteristics of a fraud. The article substantiates the obligations of employees of the credit institution, in the result of which risks of granting credit to fraudsters can be reduced. The methods of fraud prevention should include the identified methods of protection against fraud in the area under consideration – exchange of information by banks associated with the criminal intentions of customers; technology development and technical support, training, and personnel responsibilities.
TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE
International Nuclear Information System (INIS)
Cébron, D.; Hollerbach, R.
2014-01-01
Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere
Gender and Diversity in the European Public Spheres
DEFF Research Database (Denmark)
Siim, Birte
The increasing institutionalization of rights in EU has inspired a debate about the gap between the EU polity and citizens' abilities to influence multilevel governance and politics. The objective of the paper is to discuss diversity in the European public spheres from a gender perspective....... It first gives an overview of different feminist approaches to diversity and intersectionality. It explores the arguments for and against creating a democratic European Public Sphere and discusses the tensions between universal principles of equality at the one hand and concerns for inequalities...... state and to link feminist proposals for gender justice with frames for a multilayered trans-national citizenship. The paper aims to contribute to debates about theoretical approaches and models to study gender and diversity in the public sphere in general and in particular The European Public Sphere...
Friction and drag forces on spheres propagating down inclined planes
Tee, Yi Hui; Longmire, Ellen
2017-11-01
When a submerged sphere propagates along an inclined wall at terminal velocity, it experiences gravity, drag, lift, and friction forces. In the related equations of motion, the drag, lift and friction coefficients are unknown. Experiments are conducted to determine the friction and drag coefficients of the sphere over a range of Reynolds numbers. Through high speed imaging, translational and rotational velocities of spheres propagating along a glass plate are determined in liquids with several viscosities. The onset of sliding motion is identified by computing the dimensionless rotation rate of the sphere. Using drag and lift coefficients for Re friction coefficients are calculated for several materials. The friction coefficients are then employed to estimate the drag coefficient for 350 frictional force over this Re range. Supported by NSF (CBET-1510154).
The Perception of Community Radio as Public Sphere and its ...
African Journals Online (AJOL)
Levi Manda
This study takes initial look at the promise of community radio as a public sphere. Given the .... case studies typically contribute only incrementally to our theoretical ..... news and public affairs in mass media communication associated with.
Experimental performance evaluation of sintered Gd spheres packed beds
DEFF Research Database (Denmark)
Tura, A.; Nielsen, Klaus K.; Van Nong, Ngo
2016-01-01
Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison of the pe......Research in magnetic refrigeration heavily relies on the use of packed spheres in regenerators, however little investigation to verify that such non-monolithic arrangements guarantee a sufficiently constrained structure has yet been performed. This work presents a preliminary comparison...... of the performance of AMRs consisting of Gd spheres with diameters ranging from 450-550 microns partially sintered by Spark Plasma Sintering (SPS) to similar spheres, sorted in the same size range and from the same batch, but merely packed. Pressure drop is compared at uniform temperature and at a range of heat...
Packings of a charged line on a sphere.
Alben, Silas
2008-12-01
We find equilibrium configurations of open and closed lines of charge on a sphere, and track them with respect to varying sphere radius. Closed lines transition from a circle to a spiral-like shape through two low-wave-number bifurcations-"baseball seam" and "twist"-which minimize Coulomb energy. The spiral shape is the unique stable equilibrium of the closed line. Other unstable equilibria arise through tip-splitting events. An open line transitions smoothly from an arc of a great circle to a spiral as the sphere radius decreases. Under repulsive potentials with faster-than-Coulomb power-law decay, the spiral is tighter in initial stages of sphere shrinkage, but at later stages of shrinkage the equilibria for all repulsive potentials converge on a spiral with uniform spacing between turns. Multiple stable equilibria of the open line are observed.
Dyadic Green's function of a cluster of spheres.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2007-11-01
The electric dyadic Green's function (dGf) of a cluster of spheres is obtained by application of the superposition principle, dyadic algebra, and the indirect mode-matching method. The analysis results in a set of linear equations for the unknown, vector, wave amplitudes of the dGf; that set is solved by truncation and matrix inversion. The theory is exact in the sense that no simplifying assumptions are made in the analytical steps leading to the dGf, and it is general in the sense that any number, position, size and electrical properties can be considered for the spheres that cluster together. The point source can be anywhere, even within one of the spheres. Energy conservation, reciprocity, and other tests prove that this solution is correct. Numerical results are presented for an electric Hertz dipole radiating in the presence of an array of rexolite spheres, which manifests lensing and beam-forming capabilities.
21 CFR 886.3320 - Eye sphere implant.
2010-04-01
... sphere implant is a device intended to be implanted in the eyeball to occupy space following the removal of the contents of the eyeball with the sclera left intact. (b) Classification. Class II. ...
Method for producing dustless graphite spheres from waste graphite fines
Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN
2012-05-08
A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.
Dynamical study of a polydisperse hard-sphere system
Nogawa, Tomoaki; Ito, Nobuyasu; Watanabe, Hiroshi
2010-01-01
We study the interplay between the fluid-crystal transition and the glass transition of elastic sphere system with polydispersity using nonequilibrium molecular dynamics simulations. It is found that the end point of the crystal-fluid transition
[The power of religion in the public sphere] / Alar Kilp
Kilp, Alar, 1969-
2012-01-01
Arvustus: Buthler, Judith, Habermas, Jürgen, Taylor, Charles, West, Cornel. The power of religion in the public sphere. (Eduardo Mendieta, Jonathan VanAntwerpen (eds.) Afterword by Craig Calhoun.) New York ; Chichester : Columbia University Press, 2011
Cluster analysis in systems of magnetic spheres and cubes
Energy Technology Data Exchange (ETDEWEB)
Pyanzina, E.S., E-mail: elena.pyanzina@urfu.ru [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Gudkova, A.V. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); Donaldson, J.G. [University of Vienna, Sensengasse 8, Vienna (Austria); Kantorovich, S.S. [Ural Federal University, Lenin Av. 51, Ekaterinburg (Russian Federation); University of Vienna, Sensengasse 8, Vienna (Austria)
2017-06-01
In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube. - Highlights: • A comparison of the degree of self-assembly in systems of magnetic spheres and cubes. • Spheres are more likely to form larger clusters than cubes. • Differences in microstructure will manifest in the magnetic response of each system.
Method and apparatus for producing small hollow spheres
International Nuclear Information System (INIS)
Hendricks, C.D.
1979-01-01
A method and apparatus are described for producing small hollow spheres of glass, metal or plastic, wherein the sphere material is mixed with or contains as part of the composition a blowing agent which decomposes at high temperature (T greater than or equal to 600 0 C). As the temperature is quickly raised, the blowing agent decomposes and the resulting gas expands from within, thus forming a hollow sphere of controllable thickness. The thus produced hollow spheres (20 to 10 3 μm) have a variety of application, and are particularly useful in the fabrication of targets for laser implosion such as neutron sources, laser fusion physics studies, and laser initiated fusion power plants
Internet and the Egyptian Public Sphere | Mehanna | Africa ...
African Journals Online (AJOL)
Internet and the Egyptian Public Sphere. ... to gain information and engage in political, social and religious discussions. ... This has led to the emergence of a kind of alternative media run by professionals, semi-professionals and amateurs.
Ultrasonic electrodeposition of silver nanoparticles on dielectric silica spheres
International Nuclear Information System (INIS)
Tang Shaochun; Tang Yuefeng; Gao Feng; Liu Zhiguo; Meng Xiangkang
2007-01-01
In the present study, a facile and one-step ultrasonic electrodeposition method is first applied to controllably coat colloidal silica spheres with silver nanoparticles. This method is additive-free and very direct, because processes necessary in many other approaches, such as pretreatment of the silica sphere surface and pre-preparation of silver nanoparticles, are not involved in it. Furthermore, it makes possible the coating of dielectric substrates with metal through an electrodeposition route. Under appropriate conditions, silver nanoparticles with sizes of 8-10 nm in diameter can be relatively homogeneously deposited onto the surface of preformed colloidal silica spheres. Silver particles with different sizes and dispersive uniformity on silica sphere surfaces can also be obtained by adjusting the current density (I), the concentration of electrolyte (C) and the electrolysis time (t). The possible ultrasonic electrodeposition mechanism is also suggested according to the experimental results
Collapse of radiating fluid spheres and cosmic censorship
International Nuclear Information System (INIS)
Unruh, W.G.
1985-01-01
The radiating-fluid-sphere model studied by Lake and Hellaby is reanalyzed to show that flat spacetime is a valid C 1 extension to their model and thus it does not force a violation of strong cosmic censorship
Evaluation framework for K-best sphere decoders
Shen, Chungan; Eltawil, Ahmed M.; Salama, Khaled N.
2010-01-01
or receive antennas. Tree-searching type decoder structures such as Sphere decoder and K-best decoder present an interesting trade-off between complexity and performance. Many algorithmic developments and VLSI implementations have been reported in literature
Existence of conformal metrics on spheres with prescribed Paneitz curvature
International Nuclear Information System (INIS)
Ben Ayed, Mohamed; El Mehdi, Khalil
2003-07-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n ≥ 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature. (author)
Liouville theory and uniformization of four-punctured sphere
Hadasz, Leszek; Jaskolski, Zbigniew
2006-01-01
Few years ago Zamolodchikov and Zamolodchikov proposed an expression for the 4-point classical Liouville action in terms of the 3-point actions and the classical conformal block. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four ...
Existence of conformal metrics on spheres with prescribed Paneitz curvature
Ben-Ayed, M
2003-01-01
In this paper we study the problem of prescribing a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n >= 5. Using tools from the theory of critical points at infinity, we provide some topological conditions on the level sets of a given function defined on the sphere, under which we prove the existence of conformal metric with prescribed Paneitz curvature.
Application of identifying transmission spheres for spherical surface testing
Han, Christopher B.; Ye, Xin; Li, Xueyuan; Wang, Quanzhao; Tang, Shouhong; Han, Sen
2017-06-01
We developed a new application on Microsoft Foundation Classes (MFC) to identify correct transmission spheres (TS) for Spherical Surface Testing (SST). Spherical surfaces are important optical surfaces, and the wide application and high production rate of spherical surfaces necessitates an accurate and highly reliable measuring device. A Fizeau Interferometer is an appropriate tool for SST due to its subnanometer accuracy. It measures the contour of a spherical surface using a common path, which is insensitive to the surrounding circumstances. The Fizeau Interferometer transmits a wide laser beam, creating interference fringes from re-converging light from the transmission sphere and the test surface. To make a successful measurement, the application calculates and determines the appropriate transmission sphere for the test surface. There are 3 main inputs from the test surfaces that are utilized to determine the optimal sizes and F-numbers of the transmission spheres: (1) the curvatures (concave or convex), (2) the Radii of Curvature (ROC), and (3) the aperture sizes. The application will firstly calculate the F-numbers (i.e. ROC divided by aperture) of the test surface, secondly determine the correct aperture size of a convex surface, thirdly verify that the ROC of the test surface must be shorter than the reference surface's ROC of the transmission sphere, and lastly calculate the percentage of area that the test surface will be measured. However, the amount of interferometers and transmission spheres should be optimized when measuring large spherical surfaces to avoid requiring a large amount of interferometers and transmission spheres for each test surface. Current measuring practices involve tedious and potentially inaccurate calculations. This smart application eliminates human calculation errors, optimizes the selection of transmission spheres (including the least number required) and interferometer sizes, and increases efficiency.
Relaxation of Thick-Walled Cylinders and Spheres
DEFF Research Database (Denmark)
Saabye Ottosen, N.
1982-01-01
Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...
Ultrasonic Resonance of Metallic Spheres at Elevated Temperatures
Johnson , W.
1996-01-01
A unique ultrasonic system has been constructed for measuring resonant frequencies and damping of metallic spheres at elevated temperatures. This system employs electromagnetic-acoustic transduction, with a solenoid coil surrounding the sphere in a uniform magnetic field. Temperature is measured with an optical pyrometer. Since the acoustic and temperature measurements are noncontacting, the uncertainties associated with external damping are relatively small. The resonant frequency and Q of t...
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.
2012-07-19
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Sound Scattering and Its Reduction by a Janus Sphere Type
Directory of Open Access Journals (Sweden)
Deliya Kim
2014-01-01
Full Text Available Sound scattering by a Janus sphere type is considered. The sphere has two surface zones: a soft surface of zero acoustic impedance and a hard surface of infinite acoustic impedance. The zones are arranged such that axisymmetry of the sound field is preserved. The equivalent source method is used to compute the sound field. It is shown that, by varying the sizes of the soft and hard zones on the sphere, a significant reduction can be achieved in the scattered acoustic power and upstream directivity when the sphere is near a free surface and its soft zone faces the incoming wave and vice versa for a hard ground. In both cases the size of the sphere’s hard zone is much larger than that of its soft zone. The boundary location between the two zones coincides with the location of a zero pressure line of the incoming standing sound wave, thus masking the sphere within the sound field reflected by the free surface or the hard ground. The reduction in the scattered acoustic power diminishes when the sphere is placed in free space. Variations of the scattered acoustic power and directivity with the sound frequency are also given and discussed.
Hydrodynamics and burn of optimally imploded deuterium-tritium spheres
International Nuclear Information System (INIS)
Mason, R.J.; Morse, R.L.
1975-01-01
The phenomenology of optimized laser-driven DT sphere implosions leading to efficient thermonuclear burn is reviewed. The optimal laser deposition profile for spheres is heuristically derived. The performance of a 7.5 μg sphere, exposed to its optimal 5.3 kJ pulse, is scrutinized in detail. The timing requirements for efficient central ignition of propagating burn in the sphere are carefully explored. The difficulties stemming from superthermal electron production and thermal flux limitation are discussed. The hydro-burn performance of spheres is characterized as a function of the pulse energy, peak power, time scale, pulse exponent, wavelength, and on the degree of flux limitation. The optimal pulse parameters are determined for spheres with masses ranging from 40 ng to 250 μg, requiring from 50 J to 150 kJ of input energy, and the corresponding optimal performance levels are calculated. Discussion is given to the hydro-burn performance of new structured fusion targets, in which the DT is contained as a gas or frozen as an ice shell inside a high Z pusher-tamper layer
Global Calibration of Multiple Cameras Based on Sphere Targets
Directory of Open Access Journals (Sweden)
Junhua Sun
2016-01-01
Full Text Available Global calibration methods for multi-camera system are critical to the accuracy of vision measurement. Proposed in this paper is such a method based on several groups of sphere targets and a precision auxiliary camera. Each camera to be calibrated observes a group of spheres (at least three, while the auxiliary camera observes all the spheres. The global calibration can be achieved after each camera reconstructs the sphere centers in its field of view. In the process of reconstructing a sphere center, a parameter equation is used to describe the sphere projection model. Theoretical analysis and computer simulation are carried out to analyze the factors that affect the calibration accuracy. Simulation results show that the parameter equation can largely improve the reconstruction accuracy. In the experiments, a two-camera system calibrated by our method is used to measure a distance about 578 mm, and the root mean squared error is within 0.14 mm. Furthermore, the experiments indicate that the method has simple operation and good flexibility, especially for the onsite multiple cameras without common field of view.
Scattering characteristics of relativistically moving concentrically layered spheres
Garner, Timothy J.; Lakhtakia, Akhlesh; Breakall, James K.; Bohren, Craig F.
2018-02-01
The energy extinction cross section of a concentrically layered sphere varies with velocity as the Doppler shift moves the spectral content of the incident signal in the sphere's co-moving inertial reference frame toward or away from resonances of the sphere. Computations for hollow gold nanospheres show that the energy extinction cross section is high when the Doppler shift moves the incident signal's spectral content in the co-moving frame near the wavelength of the sphere's localized surface plasmon resonance. The energy extinction cross section of a three-layer sphere consisting of an olivine-silicate core surrounded by a porous and a magnetite layer, which is used to explain extinction caused by interstellar dust, also depends strongly on velocity. For this sphere, computations show that the energy extinction cross section is high when the Doppler shift moves the spectral content of the incident signal near either of olivine-silicate's two localized surface phonon resonances at 9.7 μm and 18 μm.
Squeeze flow of a Carreau fluid during sphere impact
Uddin, J.; Marston, J. O.; Thoroddsen, Sigurdur T
2012-01-01
We present results from a combined numerical and experimental investigation into the squeeze flow induced when a solid sphere impacts onto a thin, ultra-viscous film of non-Newtonian fluid. We examine both the sphere motion through the liquid as well as the fluid flow field in the region directly beneath the sphere during approach to a solid plate. In the experiments we use silicone oil as the model fluid, which is well-described by the Carreau model. We use high-speed imaging and particle tracking to achieve flow visualisation within the film itself and derive the corresponding velocity fields. We show that the radial velocity either diverges as the gap between the sphere and the wall diminishes (Z tip → 0) or that it reaches a maximum value and then decays rapidly to zero as the sphere comes to rest at a non-zero distance (Z tip = Z min ) away from the wall. The horizontal shear rate is calculated and is responsible for significant viscosity reduction during the approach of the sphere. Our model of this flow, based on lubrication theory, is solved numerically and compared to experimental trials. We show that our model is able to correctly describe the physical features of the flow observed in the experiments.
Critical Masses for Unreflected Metal Spheres
International Nuclear Information System (INIS)
Westfall, Robert Michael; Wright, Richard Q.
2009-01-01
Calculated critical masses of bare metal spheres for 28 actinide isotopes, using the SCALE/XSDRNPM one-dimensional, discrete-ordinates system, are presented. ENDF/B-VI, ENDF/B-VII, and JENDL-3.3 cross sections were used in the calculations. Results are given for isotopes of uranium, neptunium, plutonium, americium, curium, californium, and for one isotope of einsteinium. Calculated k values for these same nuclides are also given. We show that, for non-threshold or low-threshold fission nuclides, a good approximation for the nuclide k is the value of nubar at 1 MeV. A plot of the critical mass versus k values is given for 19 nuclides with A-numbers between 232 and 250. The peaks in the critical mass curve (for seven nuclides) correspond to dips in the k curve. For the seven cases with the largest critical mass, six are even-even nuclides. Neptunium-237, with a critical mass of about 62.7 kg (ENDF/B-VI calculation), has an odd number of protons and an even number of neutrons. However, two cases with quite small critical masses, 232U and 236Pu, are also even-even. These two nuclides do not exhibit threshold fission behavior like most other even-even nuclides. The largest critical mass is 208.8 kg for 243Am and the smallest is 2.44 kg for 251Cf. The calculated k values vary from 1.5022 for 234U to 4.4767 for 251Cf. A correlation between the calculated critical mass (kg) and the fission spectrum averaged value of is given for the elements U, Np, Pu, Am, Cm, and Cf. For each of the five elements, a fit to the data for that element is provided. In each case the fit employs a negative exponential of the form mass = exp(A + B ∼ ln). The values of A and B are element dependent and vary slightly for each of the five elements. The method described here is mainly applicable for non-threshold fission nuclides (15 of the 28 nuclides considered in this paper). There are three exceptions, 238Pu, 244Cm, and 250Cf, which all exhibit threshold fission behavior.
Vescovi, Dalila; Berzi, Diego; Richard, Patrick; Brodu, Nicolas
2014-01-01
International audience; We use existing 3D Discrete Element simulations of simple shear flows of spheres to evaluate the radial distribution function at contact that enables kinetic theory to correctly predict the pressure and the shear stress, for different values of the collisional coefficient of restitution. Then, we perform 3D Discrete Element simulations of plane flows of frictionless, inelastic spheres, sheared between walls made bumpy by gluing particles in a regular array, at fixed av...
Density fluctuations and the structure of a nonuniform hard sphere fluid
Katsov, Kirill; Weeks, John D.
2000-01-01
We derive an exact equation for density changes induced by a general external field that corrects the hydrostatic approximation where the local value of the field is adsorbed into a modified chemical potential. Using linear response theory to relate density changes self-consistently in different regions of space, we arrive at an integral equation for a hard sphere fluid that is exact in the limit of a slowly varying field or at low density and reduces to the accurate Percus-Yevick equation fo...
Collective modes in simple melts: Transition from soft spheres to the hard sphere limit.
Khrapak, Sergey; Klumov, Boris; Couëdel, Lénaïc
2017-08-11
We study collective modes in a classical system of particles with repulsive inverse-power-law (IPL) interactions in the fluid phase, near the fluid-solid coexistence (IPL melts). The IPL exponent is varied from n = 10 to n = 100 to mimic the transition from moderately soft to hard-sphere-like interactions. We compare the longitudinal dispersion relations obtained using molecular dynamic (MD) simulations with those calculated using the quasi-crystalline approximation (QCA) and find that this simple theoretical approach becomes grossly inaccurate for [Formula: see text]. Similarly, conventional expressions for high-frequency (instantaneous) elastic moduli, predicting their divergence as n increases, are meaningless in this regime. Relations of the longitudinal and transverse elastic velocities of the QCA model to the adiabatic sound velocity, measured in MD simulations, are discussed for the regime where QCA is applicable. Two potentially useful freezing indicators for classical particle systems with steep repulsive interactions are discussed.
Outer Sphere Adsorption of Pb(II)EDTA on Goethite
Energy Technology Data Exchange (ETDEWEB)
Bargar, John R
1999-07-16
FTIR and EXAFS spectroscopic measurements were performed on Pb(II)EDTA adsorbed on goethite as functions of pH (4-6), Pb(II)EDTA concentration (0.11 {micro}M - 72 {micro}M), and ionic strength (16 {micro}M - 0.5M). FTIR measurements show no evidence for carboxylate-Fe(III) bonding or protonation of EDTA at Pb:EDTA = 1:1. Both FTIR and EXAFS measurements suggest that EDTA acts as a hexadentate ligand, with all four of its carboxylate and both amine groups bonded to Pb(II). No evidence was observed for inner-sphere Pb(II)-goethite bonding at Pb:EDTA = 1:1. Hence, the adsorbed complexes should have composition Pb(II)EDTA{sup 2{minus}}. Since substantial uptake of PbEDTA(II){sup 2{minus}} occurred in the samples, we infer that Pb(II)EDTA{sup 2{minus}} adsorbed as outer-sphere complexes and/or as complexes that lose part of their solvation shells and hydrogen bond directly to goethite surface sites. We propose the term ''hydration-sphere'' for the latter type of complexes because they should occupy space in the primary hydration spheres of goethite surface functional groups, and to distinguish this mode of sorption from common structural definitions of inner- and outer-sphere complexes. The similarity of Pb(II) uptake isotherms to those of other divalent metal ions complexed by EDTA suggests that they too adsorb by these mechanisms. The lack of evidence for inner-sphere EDTA-Fe(III) bonding suggests that previously proposed metal-ligand - promoted dissolution mechanisms should be modified, specifically to account for the presence of outer-sphere precursor species.
Sun, Bin; Wang, Ming; Lou, Zhichao; Huang, Mingjun; Xu, Chenglong; Li, Xiaohong; Chen, Li-Jun; Yu, Yihua; Davis, Grant L; Xu, Bingqian; Yang, Hai-Bo; Li, Xiaopeng
2015-02-04
Directed by increasing the density of coordination sites (DOCS) to increase the stability of assemblies, discrete 2D ring-in-rings and 3D sphere-in-sphere were designed and self-assembled by one tetratopic pyridyl-based ligand with 180° diplatinum(II) acceptors and naked Pd(II), respectively. The high DOCS resulted by multitopic ligand provided more geometric constraints to form discrete structures with high stability. Compared to reported supramolecular hexagons and polyhedra by ditotpic ligands, the self-assembly of such giant architectures using multitopic ligands with all rigid backbone emphasized the structural integrity with precise preorganization of entire architecture, and required elaborate synthetic operations for ligand preparation. In-depth structural characterization was conducted to support desired structures, including multinuclear NMR ((1)H, (31)P, and (13)C) analysis, 2D NMR spectroscopy (COSY and NOESY), diffusion-ordered NMR spectroscopy (DOSY), multidimensional mass spectrometry, TEM and AFM. Furthermore, a quantitative definition of DOCS was proposed to compare 2D and 3D structures and correlate the DOCS and stability of assemblies in a quantitative manner. Finally, ring-in-rings in DMSO or DMF could undergo hierarchical self-assembly into the ordered nanostructures and generated translucent supramolecular metallogels.
Formation of Innovative Infrastructure of the Industrial Sphere
Directory of Open Access Journals (Sweden)
M. Ya. Veselovsky
2017-01-01
Full Text Available Purpose: in article problems of formation of innovative infrastructure of the industrial sphere in the Russian Federation are investigated, her merits and demerits are considered. In the context of foreign experience the analysis of statistics of development of innovative infrastructure on the basis of which is carried out the main shortcomings constraining efficiency of her work are allocated. Among them lack of cooperation between the organizations of infrastructure, a gap between scientific sector and business community, lack of effective communications between participants of innovative process, information opacity, extremely insufficient financing, and also low demand for innovations from the industrial enterprises, lack of motivation at business to carry out financing of innovative projects. Authors offer mechanisms of formation and management of innovative infrastructure. The purpose of article is increase in efficiency of innovative infrastructure of the industrial sphere. Article tasks: to analyse a condition of innovative infrastructure of the industrial sphere in Russia; to study foreign experience of formation of innovative infrastructure; to reveal shortcomings of functioning of innovative infrastructure; to offer mechanisms of formation and management of innovative infrastructure of the industrial sphere. Methods: hen carrying out a research data of Rosstat, legislative and normative legal acts, state programs of development of innovative activities and the industrial sphere, fundamental and application-oriented works of authoritative scientists in the field of innovative development were the main sources of basic data. The research is based on theoretical methods of scientific knowledge, in particular use of methods of synthesis and deduction, and also methods of empirical knowledge for which allowed to open a range of a set of problems which hinder with innovative development of the industrial sphere. Results: the analysis of the
Keshavarzi, Ezat; Helmi, Abbas
2015-02-26
The modified fundamental measure theory (MFMT) has been employed to investigate the effects of inserting a tiny sphere in the center of a nanospherical pore on the structure, adsorption, and capillary condensation of fluids confined in it. In the first part of this Article, we have solved the weighted density integrals for all pores with spherical symmetries, including spherical and bispherical pores. In the second part, we show that the structure, amount of adsorption, and position of the fluid's capillary condensation change drastically when even a very thin sphere, R(s) = 0.01σ, is inserted into the center of a spherical pore (SP). In fact, the existence of a forbidden region around the inner sphere for the case of bispherical pores, even when R(s) = 0.01σ, causes a remarkable shift in both the amount of adsorption and the bulk density at which the capillary condensation occurs. Moreover, the insertion causes a sudden increase in the value of the contact density of the liquid, or the liquid in equilibrium with its vapor, at the wall of the outer sphere compared to that for an SP. In other words, the insertion of a tiny sphere in an SP causes the liquid droplet, which is formed in the center of the SP, to sprinkle throughout the whole nanopore. Also, we have demonstrated that the critical temperature and densities decrease with decreasing radius of the inner sphere.
Experimental determination of the dynamics of an acoustically levitated sphere
Energy Technology Data Exchange (ETDEWEB)
Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)
2014-11-14
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.
Experimental determination of the dynamics of an acoustically levitated sphere
International Nuclear Information System (INIS)
Pérez, Nicolás; Andrade, Marco A. B.; Canetti, Rafael; Adamowski, Julio C.
2014-01-01
Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Directory of Open Access Journals (Sweden)
Solveig Næss
2017-10-01
Full Text Available The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF, skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM. We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
ORSPHERE: CRITICAL, BARE, HEU(93.2)-METAL SPHERE
Energy Technology Data Exchange (ETDEWEB)
Margaret A. Marshall
2013-09-01
In the early 1970’s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an attempt to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950’s (HEU-MET-FAST-001). The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with the GODIVA I experiments. “The very accurate description of this sphere, as assembled, establishes it as an ideal benchmark for calculational methods and cross-section data files.” (Reference 1) While performing the ORSphere experiments care was taken to accurately document component dimensions (±0. 0001 in. for non-spherical parts), masses (±0.01 g), and material data The experiment was also set up to minimize the amount of structural material in the sphere proximity. A three part sphere was initially assembled with an average radius of 3.4665 in. and was then machined down to an average radius of 3.4420 in. (3.4425 in. nominal). These two spherical configurations were evaluated and judged to be acceptable benchmark experiments; however, the two experiments are highly correlated.
Crown sealing and buckling instability during water entry of spheres
Marston, J. O.
2016-04-05
We present new observations from an experimental investigation of the classical problem of the crown splash and sealing phenomena observed during the impact of spheres onto quiescent liquid pools. In the experiments, a 6 m tall vacuum chamber was used to provide the required ambient conditions from atmospheric pressure down to of an atmosphere, whilst high-speed videography was exploited to focus primarily on the above-surface crown formation and ensuing dynamics, paying particular attention to the moments just prior to the surface seal. In doing so, we have observed a buckling-type azimuthal instability of the crown. This instability is characterised by vertical striations along the crown, between which thin films form that are more susceptible to the air flow and thus are drawn into the closing cavity, where they atomize to form a fine spray within the cavity. To elucidate to the primary mechanisms and forces at play, we varied the sphere diameter, liquid properties and ambient pressure. Furthermore, a comparison between the entry of room-temperature spheres, where the contact line pins around the equator, and Leidenfrost spheres (i.e. an immersed superheated sphere encompassed by a vapour layer), where there is no contact line, indicates that the buckling instability appears in all crown sealing events, but is intensified by the presence of a pinned contact line. © 2016 Cambridge University Press.
Müller, H; Bouassoule, T; Fernández, F; Pochat, J L; Tomas, M; Van Ryckeghem, L
2002-01-01
The experimental results on neutron energy spectra, integral fluences and equivalent dose measurements performed by means of a Bonner sphere system placed inside the containment building of the Vandellos II Nuclear Power Plant (Tarragona, Spain) are presented. The equivalent dose results obtained with this system are compared to those measured with different neutron area detectors (Berthold, Dineutron, Harwell). A realistic geometry model of the Bonner sphere system with a new cylindrical counter type 'F' (0,5NH1/1KI--Eurisys Mesures) and with a set of eight polyethylene moderating spheres is described in detail. The response function in fluence of this new device, to mono-energetic neutrons from thermal energy to 20 MeV, is calculated by the MCNP-4B code for each moderator sphere. The system has been calibrated at IPSN Cadarache facility for ISO Am-Be calibrated source and thermal neutron field, then the response functions were confirmed by measurements at PTB (Germany) for ISO recommended energies of mono-e...
Spontaneous orbiting of two spheres levitated in a vibrated liquid.
Pacheco-Martinez, H A; Liao, L; Hill, R J A; Swift, Michael R; Bowley, R M
2013-04-12
In the absence of gravity, particles can form a suspension in a liquid irrespective of the difference in density between the solid and the liquid. If such a suspension is subjected to vibration, there is relative motion between the particles and the fluid which can lead to self-organization and pattern formation. Here, we describe experiments carried out to investigate the behavior of two identical spheres suspended magnetically in a fluid, mimicking weightless conditions. Under vibration, the spheres mutually attract and, for sufficiently large vibration amplitudes, the spheres are observed to spontaneously orbit each other. The collapse of the experimental data onto a single curve indicates that the instability occurs at a critical value of the streaming Reynolds number. Simulations reproduce the observed behavior qualitatively and quantitatively, and are used to identify the features of the flow that are responsible for this instability.
Stress in piezoelectric hollow sphere with thermal gradient
International Nuclear Information System (INIS)
Saadatfar, M.; Rastgoo, A.
2008-01-01
The piezoelectric phenomenon has been exploited in science and engineering for decades. Recent advances in smart structures technology have led to a resurgence of interest in piezoelectricity, and in particular, in the solution of fundamental boundary value problems. In this paper, we develop an analytic solution to the axisymmetric problem of a radially polarized, spherically isotropic piezoelectric hollow sphere. The sphere is subjected to uniform internal pressure, or uniform external pressure, or both and thermal gradient. There is a constant thermal difference between its inner and outer surfaces. An analytic solution to the governing equilibrium equations (a coupled system of second-order ordinary differential equations) is obtained. On application of the boundary conditions, the problem is reduced to solving a system of linear algebraic equations. Finally, the stress distributions in the sphere are obtained numerically for two piezoceramics
Directory of Open Access Journals (Sweden)
Teruhiko Kawano
2015-09-01
Full Text Available We reconsider the relation of superconformal indices of superconformal field theories of class S with five-dimensional N=2 supersymmetric Yang–Mills theory compactified on the product space of a round three-sphere and a Riemann surface. We formulate the five-dimensional theory in supersymmetric backgrounds preserving N=2 and N=1 supersymmetries and discuss a subtle point in the previous paper concerned with the partial twisting on the Riemann surface. We further compute the partition function by localization of the five-dimensional theory on a squashed three-sphere in N=2 and N=1 supersymmetric backgrounds and on an ellipsoid three-sphere in an N=1 supersymmetric background.
Scalar Casimir effect for a D-dimensional sphere
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.
1994-01-01
The Casimir stress on a D-dimensional sphere (the stress on a sphere is equal to the Casimir force per unit area multiplied by the area of the sphere) due to the confinement of a massless scalar field is computed as a function of D, where D is a continuous variable that ranges from -∞ to ∞. The dependence of the stress on the dimension is obtained using a simple and straightforward Green's function technique. We find that the Casimir stress vanishes as D→+∞ (D is a noneven integer) and also vanishes when D is a negative even integer. The stress has simple poles at positive even integer values of D
Impact of a Hydrophobic Sphere onto a Bath
Harris, Daniel M.; Edmonds, John; Galeano-Rios, Carlos A.; Milewski, Paul A.
2017-11-01
Small hydrophobic particles impacting a water surface can rebound completely from the interface (Lee & Kim, Langmuir, 2008). In the present work, we focus on the bouncing dynamics of millimetric hydrophobic spheres impacting the surface of a quiescent water bath. Particular attention is given to the dependence of the normal coefficient of restitution and contact time on the impact velocity and the radius and density of the sphere. Our experimental observations are compared to the predictions of a fluid model derived from linearized Navier-Stokes under the assumption of a high Reynolds number regime (Galeano-Rios et al., JFM, in press). In the model, the motions of the sphere and the fluid interface are found by imposing the natural geometric and kinematic compatibility conditions. Future directions will be discussed. C.A.G.-R. and P.A.M. gratefully acknowledge support through the EPSRC project EP/N018176/1.
Extraction of neutron spectral information from Bonner-Sphere data
Haney, J H; Zaidins, C S
1999-01-01
We have extended a least-squares method of extracting neutron spectral information from Bonner-Sphere data which was previously developed by Zaidins et al. (Med. Phys. 5 (1978) 42). A pulse-height analysis with background stripping is employed which provided a more accurate count rate for each sphere. Newer response curves by Mares and Schraube (Nucl. Instr. and Meth. A 366 (1994) 461) were included for the moderating spheres and the bare detector which comprise the Bonner spectrometer system. Finally, the neutron energy spectrum of interest was divided using the philosophy of fuzzy logic into three trapezoidal regimes corresponding to slow, moderate, and fast neutrons. Spectral data was taken using a PuBe source in two different environments and the analyzed data is presented for these cases as slow, moderate, and fast neutron fluences. (author)
Thin-film technology development for the PowerSphere
International Nuclear Information System (INIS)
Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen E.; Curtis, Henry B.; Kerslake, Thomas W.; Peterson, Todd T.
2005-01-01
The PowerSphere concept consists of a relatively large spherical solar array, which would be deployed from a microsatellite. The PowerSphere will enable microsatellite missions across NASA enterprises and DoD missions by providing ample electric power at an affordable cost. The PowerSphere design provides attitude-independent electric power and thermal control for an enclosed microsatellite payload. The specific power design is scalable, robust in high radiation environments and provides sufficient electric power to allow the use of electric propulsion. Electric propulsion enables precise positioning of microsatellites, which is required for inspectors that would be deployed to observe the International Space Station, Space Shuttle or large unmanned spacecraft
Electrodepositing of Au on hollow PS micro-spheres
International Nuclear Information System (INIS)
Sun Jingyuan; Zhang Yunwang; Du Kai; Wan Xiaobo; Xiao Jiang; Zhang Wei; Zhang Lin; Chen Jing
2010-01-01
Using the self-regulating new micro-sphere electrodepositing device, the techniques of electrodepositing gold on hollow PS micro-spheres were established. The experiment was carried out under the following conditions: voltage was about 0.7 ∼ 0.8 V, current density was 2.0 mA · cm -2 , the temperature was 45 degree C, cathode rotating rate was 250 r · min -1 , flow rate of the solution was 7 mL · min -1 · cm -2 . Hollow gold-plated micro-spheres were prepared with well spherical symmetry, uniform thickness and surface smoothness under 500 nm. The speed of the gold depositing was 6 μm · h -1 . (authors)
Magnetic properties of Ni nanoparticles on microporous silica spheres
International Nuclear Information System (INIS)
Godsell, Jeffrey F.; Donegan, Keith P.; Tobin, Joseph M.; Copley, Mark P.; Rhen, Fernando M.F.; Otway, David J.; Morris, Michael A.; O'Donnell, Terence; Holmes, Justin D.; Roy, Saibal
2010-01-01
Ni nanoparticles (∼32 nm particle diameter) have been synthesized on the walls of microporous (∼1 nm pore diameter) silica spheres (∼2.6 μm sphere diameter) and characterised magnetically to potentially produce a new class of core (silica micro-spheres)-shell (nanometallic)-type nanocomposite material. These magnetic nanocomposite materials display a characteristic increase in coercivity with reducing temperature. The average particle size has been used to calculate the anisotropy constant for the system, K. The discussion postulates the potential mechanisms contributing to the difference between the calculated K value and the magnetocrystalline anisotropy constant of bulk Ni. Various factors such as surface anisotropy and interparticle interactions are discussed as possible contributing factors to the anisotropy values calculated in the paper.
VMware vSphere 5 Administration Instant Reference
Kusek, Christopher; Daniel, Andy
2011-01-01
Compact and portable reference guide for quick answers to VMware vSphere If you're looking to migrate to the newest version of VMware vSphere, this concise guide will get you up to speed and down to business in no time. If you're new to VMware vSphere, this book is for you too! The compact size of this quick reference makes it easy for you to have by your side—whether you're in the field, server room, or at your desk. Helpful elements for finding information such as thumb tabs, tables of contents with page numbers at the beginning of each chapter, and special headers puts what you need a
Steady flow in a rotating sphere with strong precession
Kida, Shigeo
2018-04-01
The steady flow in a rotating sphere is investigated by asymptotic analysis in the limit of strong precession. The whole spherical body is divided into three regions in terms of the flow characteristics: the critical band, which is the close vicinity surrounding the great circle perpendicular to the precession axis, the boundary layer, which is attached to the whole sphere surface and the inviscid region that occupies the majority of the sphere. The analytic expressions, in the leading order of the asymptotic expansion, of the velocity field are obtained in the former two, whereas partial differential equations for the velocity field are derived in the latter, which are solved numerically. This steady flow structure is confirmed by the corresponding direct numerical simulation.
Universality of isothermal fluid spheres in Lovelock gravity
Dadhich, Naresh; Hansraj, Sudan; Maharaj, Sunil D.
2016-02-01
We show universality of isothermal fluid spheres in pure Lovelock gravity where the equation of motion has only one N th order term coming from the corresponding Lovelock polynomial action of degree N . Isothermality is characterized by the equation of state, p =α ρ and the property, ρ ˜1 /r2 N . Then the solution describing isothermal spheres, which exist only for the pure Lovelock equation, is of the same form for the general Lovelock degree N in all dimensions d ≥2 N +2 . We further prove that the necessary and sufficient condition for the isothermal sphere is that its metric is conformal to the massless global monopole or the solid angle deficit metric, and this feature is also universal.
The sintering behavior of close-packed spheres
DEFF Research Database (Denmark)
Bjørk, Rasmus; Tikare, V.; Frandsen, Henrik Lund
2012-01-01
The sintering behavior of close-packed spheres is investigated using a numerical model. The investigated systems are the body-centered cubic (bcc), face-centered cubic (fcc) and hexagonal close-packed spheres (hcp). The sintering behavior is found to be ideal, with no grain growth until full dens...... density is reached for all systems. During sintering, the grains change shape from spherical to tetrakaidecahedron, similar to the geometry analyzed by Coble [R.L. Coble, J. Appl. Phys. 32 (1961) 787]....
Liouville theory and uniformization of four-punctured sphere
Hadasz, Leszek; Jaskólski, Zbigniew
2006-08-01
A few years ago Zamolodchikov and Zamolodchikov proposed an expression for the four-point classical Liouville action in terms of the three-point actions and the classical conformal block [Nucl. Phys. B 477, 577 (1996)]. In this paper we develop a method of calculating the uniformizing map and the uniformizing group from the classical Liouville action on n-punctured sphere and discuss the consequences of Zamolodchikovs conjecture for an explicit construction of the uniformizing map and the uniformizing group for the sphere with four punctures.
Complex cobordism and stable homotopy groups of spheres
Ravenel, Douglas C
2003-01-01
Since the publication of its first edition, this book has served as one of the few available on the classical Adams spectral sequence, and is the best account on the Adams-Novikov spectral sequence. This new edition has been updated in many places, especially the final chapter, which has been completely rewritten with an eye toward future research in the field. It remains the definitive reference on the stable homotopy groups of spheres. The first three chapters introduce the homotopy groups of spheres and take the reader from the classical results in the field though the computational aspects
Thermal and mechanical stresses in a functionally graded thick sphere
International Nuclear Information System (INIS)
Eslami, M.R.; Babaei, M.H.; Poultangari, R.
2005-01-01
In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction
GB, Abhilash
2013-01-01
A fast-paced, task-oriented Cookbook covering recipes on the installation and configuration of vSphere 5.1 components. The recipes are accompanied with relevant screenshots with an intention to provide a visual guidance as well. The book concentrates more on the actual task rather than the theory around it, making it easier to understand what is really needed to achieve the task.This book is a guide for anyone who wants to learn how to install and configure VMware vSphere components. This is an excellent handbook for support professionals or for anyone intending to give themselves a head start
Rayleigh scattering for a magnetized cold plasma sphere
International Nuclear Information System (INIS)
Li Yingle; Wang Mingjun; Tang Gaofeng; Li Jin
2010-01-01
The transformation of parameter tensors for anisotropic medium in different coordinate systems is derived. The electric field for a magnetized cold plasma sphere and the general expression of scattering field from anisotropic target are obtained. The functional relations of differential scattering cross section and the radar cross section for the magnetized plasma sphere are presented. Simulation results agree with that in the literatures, which shows the method used is correct and therefore the results may provide a theoretical base for anisotropic target identification. (authors)
Quantum black holes: the event horizon as a fuzzy sphere
International Nuclear Information System (INIS)
Dolan, Brian P.
2005-01-01
Modeling the event horizon of a black hole by a fuzzy sphere leads us to modify some suggestions in the literature concerning black hole mass spectra. We derive a formula for the mass spectrum of quantum black holes in terms of four integers which define the area, angular momentum, electric and magnetic charge of the black hole. Although the event horizon becomes a commutative sphere in the classical limit a vestige of the quantum theory still persists in that the event horizon stereographically projects onto the non-commutative plane. We also suggest how the classical bounds on extremal black holes might be modified in the quantum theory. (author)
Smith-Purcell radiation from a chain of spheres
International Nuclear Information System (INIS)
Lekomtsev, K V; Strikhanov, M N; Tishchenko, A A
2010-01-01
Smith-Purcell and diffraction radiation were investigated. These types of radiation appear when a charged particle moves close to a conducting target. Spectral and angular distribution of diffraction radiation from the non-periodic chain of spheres is obtained analytically; local field effects are discussed. Analytical expression for the distribution of Smith-Purcell radiation from the periodic chain of spheres is obtained as well. For the first time it has been shown, that Smith-Purcell radiation for such a system is distributed over the cone. The results are investigated for the particles of different sizes, dielectric and metal, and for both ultrarelativistic and nonrelativistic cases.
The scattering properties of anisotropic dielectric spheres on electromagnetic waves
International Nuclear Information System (INIS)
Chen Hui; Zhang Weiyi; Wang Zhenlin; Ming Naiben
2004-01-01
The scattering coefficients of spheres with dielectric anisotropy are calculated analytically in this paper using the perturbation method. It is found that the different modes of vector spherical harmonics and polarizations are coupled together in the scattering coefficients (c-matrix) in contrast to the isotropic case where all modes are decoupled from each other. The generalized c-matrix is then incorporated into our codes for a vector wave multiple scattering program; the preliminary results on face centred cubic structure show that dielectric anisotropy reduces the symmetry of the scattering c-matrix and removes the degeneracy in photonic band structures composed of isotropic dielectric spheres
Entanglement entropy in scalar field theory on the fuzzy sphere
International Nuclear Information System (INIS)
Okuno, Shizuka; Suzuki, Mariko; Tsuchiya, Asato
2016-01-01
We study entanglement entropy on the fuzzy sphere. We calculate it in a scalar field theory on the fuzzy sphere, which is given by a matrix model. We use a method that is based on the replica method and applicable to interacting fields as well as free fields. For free fields, we obtain results consistent with the previous study, which serves as a test of the validity of the method. For interacting fields, we perform Monte Carlo simulations at strong coupling and see a novel behavior of entanglement entropy
Cluster analysis in systems of magnetic spheres and cubes
Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.
2017-06-01
In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.
Biosphere, Noösphere, Infosphere
DEFF Research Database (Denmark)
Wilson, Alexander
2017-01-01
their criticality not only by breaking the world up into smaller pieces, but by correlating these parts according to principles of symmetry and invariance, sequence and order. It is the organism’s capacity to encapsulate, to envelop an indefinite series or to mark a horizon (Châtelet). This process can be thought...... of as complimentary to discretization: instead of a breaking-things-apart, it is process of enveloping, or of the constitution of a provisional whole (holon). All ‘extended critical’ systems may be said to produce such integrations corresponding to their stabilization upon a perpetual phase transition, a state...... a different framework for thinking the emergence of the infosphere: it results from human technoevolution having been nefariously overtaken by a runaway process of discretization. We problematize this line of thought from a noötechnical and ‘epistemo-aesthetic’ standpoint, by considering the shared aesthetic...
Polarizability properties of bianisotropic spheres with noncomplete magnetoelectric dyadics
Sihvola, A. H.
1994-02-01
The polarizability expressions for bianisotropic scatterers are often complicated expressions of the material parameters. The communication treats the question how the dyadic inversion operations needed in the expressions can be carried out in a well-behaving way. Also, the particular polarizabilities of biaxial chiral spheres are studied in detail.
Violence against Brazilian Women in Public and Mediatic Spheres
Souza-Leal, Bruno; de-Carvalho, Carlos-Alberto; Antunes, Elton
2018-01-01
This paper explores the capacity of the media to incorporate controversies in circulation in the public sphere. For that, it is based on the analysis of a set of 607 news stories about violence against women in context of gender relations and proximity, collected in nine Brazilian media during the years of 2013 and 2014. Recognized as one of the…
Passive control of a sphere by complex-shaped appendages
Bagheri, Shervin; Lacis, Ugis; Olivieri, Stefano; Mazzino, Andrea
2015-11-01
Appendages of various shapes and sizes (e.g. plumes, barbs, tails, feathers, hairs, fins) play an important role in dispersion and locomotion. In our previous work (Lacis, U. et al. Passive appendages generate drift through symmetry breaking. Nat. Commun. 5:5310, doi: 10.1038/ncomms6310, 2014), we showed that a free-falling cylinder with a splitter plate turns and drifts due to a symmetry-breaking instability (called inverted-pendulum instability or IPL). In other words, in a separated flow, the straight position of a short splitter plate is unstable and as a consequence a side force and a torque are induced on the cylinder. In this work, we seek the three-dimensional (3D) appendage shape (on a sphere at Re =200) that induces the largest drift of the sphere. We find that highly non-trivial shapes of appendages on a sphere increase the side force significantly compared to trivial shapes (such as an elliptic sheet). We also find that appendages may be designed to generate drift in either direction, that is, a free-falling sphere can drift either in the direction in which appendage is tilted or in the opposite direction depending on the particular geometry of the appendage. We discuss the physical mechanisms behind these optimal appendage shapes in the context of the IPL instability.
Two-body quantum mechanical problem on spheres
Shchepetilov, Alexey V.
2005-01-01
The quantum mechanical two-body problem with a central interaction on the sphere ${\\bf S}^{n}$ is considered. Using recent results in representation theory an ordinary differential equation for some energy levels is found. For several interactive potentials these energy levels are calculated in explicit form.
On conformal Paneitz curvature equations in higher dimensional spheres
International Nuclear Information System (INIS)
El Mehdi, Khalil
2004-11-01
We study the problem of prescribing the Paneitz curvature on higher dimensional spheres. Particular attention is paid to the blow-up points, i.e. the critical points at infinity of the corresponding variational problem. Using topological tools and a careful analysis of the gradient flow lines in the neighborhood of such critical points at infinity, we prove some existence results. (author)
Radio making waves in the italian diaspora: Public sphere ...
African Journals Online (AJOL)
The deterritorialised publics of diaspora are conceptually quite different from the homogenous nationally bound public originally conceived to participate in Habermas' public sphere. However, with globalisation and parallel advances in media technologies the qualities of diasporic communication increasingly come to ...
Hard sphere colloidal dispersions: Mechanical relaxation pertaining to thermodynamic forces
Mellema, J.; de Kruif, C.G.; Blom, C.; Vrij, A.
1987-01-01
The complex viscosity of sterically stabilized (hard) silica spheres in cyclohexane has been measured between 80 Hz and 170 kHz with torsion pendulums and a nickel tube resonator. The observed relaxation behaviour can be attributed to the interplay of hydrodynamic and thermodynamic forces. The
Dyadic Green's function of an eccentrically stratified sphere.
Moneda, Angela P; Chrissoulidis, Dimitrios P
2014-03-01
The electric dyadic Green's function (dGf) of an eccentrically stratified sphere is built by use of the superposition principle, dyadic algebra, and the addition theorem of vector spherical harmonics. The end result of the analytical formulation is a set of linear equations for the unknown vector wave amplitudes of the dGf. The unknowns are calculated by truncation of the infinite sums and matrix inversion. The theory is exact, as no simplifying assumptions are required in any one of the analytical steps leading to the dGf, and it is general in the sense that any number, position, size, and electrical properties can be considered for the layers of the sphere. The point source can be placed outside of or in any lossless part of the sphere. Energy conservation, reciprocity, and other checks verify that the dGf is correct. A numerical application is made to a stratified sphere made of gold and glass, which operates as a lens.
Simple liquids’ quasiuniversality and the hard-sphere paradigm
DEFF Research Database (Denmark)
Dyre, Jeppe C.
2016-01-01
This topical review discusses the quasiuniversality of simple liquids' structure and dynamics and two possible justifications of it. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic physics. An alternative explanation argues t...
Simple liquids' quasiuniversality and the hard-sphere paradigm
DEFF Research Database (Denmark)
Dyre, Jeppe C.
This presentation reflects on the well-known quasiuniversality of simple liquids’ structure and dynamics [1, 2, 3, 4, 5]. We discuss two possible justifications of it [6, 7]. The traditional one is based on the van der Waals picture of liquids in which the hard-sphere system reflects the basic ph...
Neutron spectrometry using LNL bonner spheres and FLUKA
Energy Technology Data Exchange (ETDEWEB)
Sarchiapone, L.; Zafiropoulos, D. [INFN, Laboratori Nazionali di Legnaro (Italy)
2013-07-18
The characterization of neutron fields has been made with a system based on a scintillation detector and multiple moderating spheres. The system, together with the unfolding procedure, have been tested in quasi-monochromatic neutron energy fields and in complex, mixed, cyclotron based environments. FLUKA simulations have been used to produce response functions and reference energy spectra.
Magnetohydraulic flow through a packed bed of electrically conducting spheres
International Nuclear Information System (INIS)
Sanders, T.L.
1985-01-01
The flow of an electrically conducting fluid through a packed bed of electrically conducting spheres in the presence of a strong magnetic field constitutes a very complex flow situation due to the constant turning of the fluid in and out of magnetic field lines. The interaction of the orthogonal components of the velocity and magnetic field will induce electric fields that are orthogonal to both and the electric fields in turn can cause currents that interact with the magnetic field to generate forces against the direction of flow. The strengths of these generated forces depend primarily upon the closure paths taken by the induced currents which, in turn, depend upon the relative ratio of the electrical resistance of the solid spheres to that of the fluid. Both experimental and analytical analyses of the slow flow of a eutectic mixture of sodium and potassium (NaK) through packed cylinders containing stainless steel spheres in the presence of a strong transverse magnetic field were completed. A theory of magnetohydraulic flow is developed by analogy with the development of hydraulic radius theories of flow through porous media. An exact regional analysis is successfully applied to an infinite bed of electrically conducting spheres with a conducting or non-conducting constraining wall on one side. The equations derived are solved for many different combinations of flowrate, magnetic field strength, porosity, and electrical resistance ratio
Scattering of linearly polarized Bessel beams by dielectric spheres
Shoorian, Hamed
2017-09-01
The scattering of a Linearly Polarized Bessel Beam (LPBB) by an isotropic and homogenous dielectric sphere is investigated. Using analytical relation between the cylindrical and the spherical vector wave functions, all the closed- form analytical expressions, in terms of spherical wave-functions expansions, are derived for the scattered field. It is shown that in the case of conical angle of incident Bessel beam is equal to zero, the Linearly Polarized Bessel Beam becomes a plane wave and its scattering coefficients become the same as the expansion coefficients of plane wave in Mie theory. The transverse Cartesian and spherical components of the electric field, scattered by a sphere are shown in the z-plane for different cases, moreover the intensity of the incident Bessel beam and the effects of its conical angle on the scattered field and the field inside the sphere are investigated. To quantitatively study the scattering phenomenon and the variations of the fields inside and outside of the sphere, the scattering and absorption efficiencies are obtained for the scattering of the linearly-polarized Bessel beam, and are compared with those of the plane wave scattering.
Rigidity theorem for Willmore surfaces in a sphere
Indian Academy of Sciences (India)
(Math. Sci.) Vol. 126, No. 2, May 2016, pp. 253–260. c Indian Academy of Sciences. Rigidity theorem for Willmore surfaces in a sphere. HONGWEI XU1 and DENGYUN YANG2,∗. 1Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027,. People's Republic of China. 2College of Mathematics and ...
Three-sphere swimmer in a nonlinear viscoelastic medium
Curtis, Mark P.
2013-04-10
A simple model for a swimmer consisting of three colinearly linked spheres attached by rods and oscillating out of phase to break reciprocal motion is analyzed. With a prescribed forcing of the rods acting on the three spheres, the swimming dynamics are determined analytically in both a Newtonian Stokes fluid and a zero Reynolds number, nonlinear, Oldroyd-B viscoelastic fluid with Deborah numbers of order one (or less), highlighting the effects of viscoelasticity on the net displacement of swimmer. For instance, the model predicts that the three-sphere swimmer with a sinusoidal, but nonreciprocal, forcing cycle within an Oldroyd-B representation of a polymeric Boger fluid moves a greater distance with enhanced efficiency in comparison with its motility in a Newtonian fluid of the same viscosity. Furthermore, the nonlinear contributions to the viscoelastic constitutive relation, while dynamically nontrivial, are predicted a posteriori to have no effect on swimmer motility at leading order, given a prescribed forcing between spheres. © 2013 American Physical Society.
Determination of corrosion potential of coated hollow spheres
International Nuclear Information System (INIS)
Fedorkova, Andrea; Orinakova, Renata; Orinak, Andrej; Dudrova, Eva; Kupkova, Miriam; Kalavsky, Frantisek
2008-01-01
Copper hollow spheres were created on porous iron particles by electro-less deposition. The consequent Ni plating was applied to improve the mechanical properties of copper hollow micro-particles. Corrosion properties of coated hollow spheres were investigated using potentiodynamic polarisation method in 1 mol dm -3 NaCl solution. Surface morphology and composition were studied by scanning electron microscopy (SEM), light microscopy (LM) and energy-dispersive X-ray spectroscopy (EDX). Original iron particles, uncoated copper spheres and iron particles coated with nickel were studied as the reference materials. The effect of particle composition, particularly Ni content on the corrosion potential value was investigated. The results indicated that an increase in the amount of Ni coating layer deteriorated corrosion resistivity of coated copper spheres. Amount of Ni coating layer depended on conditions of Ni electrolysis, mainly on electrolysis time and current intensity. Corrosion behaviour of sintered particles was also explored by potentiodynamic polarisation experiments for the sake of comparison. Formation of iron rich micro-volumes on the particle surface during sintering caused the corrosion potential shift towards more negative values. A detailed study of the morphological changes between non-sintered and sintered micro-particles provided explanation of differences in corrosion potential (E corr )
Characterization of silane coated hollow sphere alumina-reinforced
Indian Academy of Sciences (India)
Silane coated hollow sphere alumina ceramic particles were moulded with ultra high molecular weight polyethylene (UHMWPE) to form a series of composites with alumina weight percent in the range from 15 to 50. The composites were prepared in a cylindrical mould using powder-processing technique. The composites ...
REGIONAL FEATURES OF ENTREPRENEURSHIP FUNCTIONING IN THE AGRARIAN SPHERE
Tyumerova I. B.
2014-01-01
The article analyzes the activities of the agrarian sphere in the Chuvash Republic; we have also developed a matrix of opportunities for the development of the agrarian sector in conjunction with the entrepreneurship, entrepreneurial development strategy identified the cluster as the main factor of socio-economic development of the region
Superconducting Sphere in an External Magnetic Field Revisited
Sazonov, Sergey N.
2013-01-01
The purpose of this article is to give the intelligible procedure for undergraduate students to grasp proof of the fact that the magnetic field outside the hollow superconducting sphere (superconducting shell) coincides with the field of a point magnetic dipole both when an uniform external magnetic field is applied as when a ferromagnetic sphere…
The Paneitz curvature problem on lower dimensional spheres
Ben-Ayed, M
2003-01-01
In this paper we prescribe a fourth order conformal invariant (the Paneitz curvature) on the n-spheres, with n is an element of left brace 5, 6 right brace. Using dynamical and topological methods involving the study of critical points at infinity of the associated variational problem, we prove some existence results.
The scalar curvature problem on the four dimensional half sphere
Ben-Ayed, M; El-Mehdi, K
2003-01-01
In this paper, we consider the problem of prescribing the scalar curvature under minimal boundary conditions on the standard four dimensional half sphere. We provide an Euler-Hopf type criterion for a given function to be a scalar curvature for some metric conformal to the standard one. Our proof involves the study of critical points at infinity of the associated variational problem.
Holomorphic two-spheres in complex Grassmann manifold
Indian Academy of Sciences (India)
Home; Journals; Proceedings – Mathematical Sciences; Volume 118; Issue 3. Holomorphic Two-Spheres in Complex Grassmann Manifold (2, 4). Xiaowei Xu ... Author Affiliations. Xiaowei Xu1 Xiaoxiang Jiao1. School of Mathematical Sciences, Graduate University of Chinese Academy of Sciences, Beijing 100049, China ...
The Polyakov relation for the sphere and higher genus surfaces
International Nuclear Information System (INIS)
Menotti, Pietro
2016-01-01
The Polyakov relation, which in the sphere topology gives the changes of the Liouville action under the variation of the position of the sources, is also related in the case of higher genus to the dependence of the action on the moduli of the surface. We write and prove such a relation for genus 1 and for all hyperelliptic surfaces. (paper)
User Modeling and Personalization in the Microblogging Sphere
Gao, Q.
2013-01-01
Microblogging has become a popular mechanism for people to publish, share, and propagate information on the Web. The massive amount of digital traces that people have left in the microblogging sphere, creates new possibilities and poses challenges for user modeling and personalization. How can
REFERENCE MATERIALS IN THE SPHERE OF USE OF ATOMIC ENERGY
Directory of Open Access Journals (Sweden)
V. A. Borisov
2015-01-01
Full Text Available The article describes the chronology of development of the system of reference materials in the nuclear industry of the Russian Federation. The basic documents used in the sphere of nuclear energy are described. The nomenclature of reference materials and feature of their application in the "Rosatom" is given. The prospects of development activities in the field of reference materials are formulated.
Hydrodynamic capture of microswimmers into sphere-bound orbits.
Takagi, Daisuke; Palacci, Jérémie; Braunschweig, Adam B; Shelley, Michael J; Zhang, Jun
2014-03-21
Self-propelled particles can exhibit surprising non-equilibrium behaviors, and how they interact with obstacles or boundaries remains an important open problem. Here we show that chemically propelled micro-rods can be captured, with little change in their speed, into close orbits around solid spheres resting on or near a horizontal plane. We show that this interaction between sphere and particle is short-range, occurring even for spheres smaller than the particle length, and for a variety of sphere materials. We consider a simple model, based on lubrication theory, of a force- and torque-free swimmer driven by a surface slip (the phoretic propulsion mechanism) and moving near a solid surface. The model demonstrates capture, or movement towards the surface, and yields speeds independent of distance. This study reveals the crucial aspects of activity–driven interactions of self-propelled particles with passive objects, and brings into question the use of colloidal tracers as probes of active matter.
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, V.
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Crystallizing hard-sphere glasses by doping with active particles
Ni, Ran; Cohen Stuart, Martien A.; Dijkstra, Marjolein; Bolhuis, Peter G.
2014-01-01
Crystallization and vitrification are two different routes to form a solid. Normally these two processes suppress each other, with the glass transition preventing crystallization at high density (or low temperature). This is even true for systems of colloidal hard spheres, which are commonly used as
Amidinate Ligands in Zinc coordination sphere: Synthesis and ...
Indian Academy of Sciences (India)
Amidinate Ligands in Zinc coordination sphere: Synthesis and structural diversity. SRINIVAS ANGA, INDRANI BANERJEE and TARUN K PANDA. ∗. Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285,. Sangareddy, Telangana, India e-mail: tpanda@iith.ac.in. MS received 25 February 2016; ...
Improved Bonner sphere neutron spectrometry measurements for the nuclear industry
Roberts, N. J.; Thomas, D. J.; Visser, T. P. P.
2017-11-01
A novel, two-stage approach has been developed for producing the a priori spectrum for Bonner sphere unfolding in a case where neutrons are produced by spontaneous fission and (α,n) reactions, e.g. in UF6. The code SOURCES 4C is first used to obtain the energy spectrum of the neutrons inside the material, which is then fed into a MCNP model of the entire geometry to derive the neutron spectrum at the location of the Bonner sphere. Using this as the a priori spectrum produces a much more detailed unfolded Bonner sphere spectrum retaining fine structure from the calculation that would not be present if a simple estimated spectrum had been used as the a priori spectrum. This is illustrated using a Bonner sphere measurement of the neutron energy spectrum produced by a 48Y cylinder of UF6. From the unfolded spectrum an estimate has been made of the neutron ambient dose equivalent, i.e. the quantity which a neutron survey instrument should measure. The difference in the ambient dose equivalent of the unfolded spectrum is over 10% when using the novel approach instead of using a simpler estimate consisting of a single high energy peak, 1/E continuum, and thermal peak.
Ideologies, Governance and the Public Sphere in Cameroon | Aseh ...
African Journals Online (AJOL)
... flood the public sphere with ideological mechanisms of public mediation for the ... This article, which seeks to develop a theory that explains the operation of the ... The aim is to show how governance is mediated by the alienating role of an ...
Everyday political talk in the internet-based public sphere
Graham, Todd; Coleman, Stephen; Freelon, Deen
Ever since the advent of the Internet, political communication scholars have debated its potential to facilitate and support public deliberation as a means of revitalizing and extending the public sphere. Much of the debate has focused on the medium’s potential in offering communicative spaces that
Force distribution affects vibrational properties in hard-sphere glasses
DeGiuli, E.; Lerner, E.; Brito, C.; Wyart, M.
2014-01-01
We theoretically and numerically study the elastic properties of hard-sphere glasses and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero temperature, we argue that the presence of certain pairs of particles interacting with a small force f
The Internet as Public Sphere – A Zimbabwean Case Study
African Journals Online (AJOL)
chifaou.amzat
2012-03-06
Mar 6, 2012 ... Council for the Development of Social Science Research in Africa, 2012 ... urban citizens who have access to telecommunication infrastructure and ... Manganga: The Internet as Public Sphere – A Zimbabwean Case Study .... stations and regional and Western media to articulate and disseminate political.
Interrogating Public Sphere and Popular Culture as Theoretical ...
African Journals Online (AJOL)
Because of its theoretical roots in Western liberal thinking, scholars in African studies such as Comaroffs, Mamdani and Ekeh have vigorously debated the extent to which the concept of civil society is useful in explaining and interrogating developments in Africa. However, the concept of the public sphere has been subjected ...
Template method synthesis of mesoporous carbon spheres and its applications as supercapacitors
Wilgosz, Karolina; Chen, Xuecheng; Kierzek, Krzysztof; Machnikowski, Jacek; Kalenczuk, Ryszard J.; Mijowska, Ewa
2012-05-01
Mesoporous carbon spheres (MCS) have been fabricated from structured mesoporous silica sphere using chemical vapor deposition (CVD) with ethylene as a carbon feedstock. The mesoporous carbon spheres have a high specific surface area of 666.8 m2/g and good electrochemical properties. The mechanism of formation mesoporous carbon spheres (carbon spheres) is investigated. The important thing is a surfactant hexadecyl trimethyl ammonium bromide (CTAB), which accelerates the process of carbon deposition. An additional advantage of this surfactant is an increase the yield of product. These mesoporous carbon spheres, which have good electrochemical properties is suitable for supercapacitors.
Chemical flowsheet conditions for preparing urania spheres by internal gelation
International Nuclear Information System (INIS)
Haas, P.A.; Begovich, J.M.; Ryon, A.D.; Vavruska, J.S.
1979-01-01
Small, ceramic urania spheres can be prepared for use as nuclear fuel by internal chemical gelation of uranyl nitrate solution droplets. Decomposition of hexamethylenetetramine (HMTA) dissolved in the uranyl nitrate solution releases ammonia to precipitate hydrated UO 3 . Previously established flowsheet conditions have been improved and modified at ORNL and have been applied to prepare dense UO 2 spheres with average diameters of 1200, 300, and 30 μm. Acid-deficient uranyl nitrate (ADUN) solutions up to 3.4 M in uranium with NO 3 - /U mole ratios of 1.5 to 1.7 are prepared by dissolution of U 3 O 8 or UO 3 . Continuous mixing of metered, cooled ADUN containing urea and HMTA solutions provides a smooth, regulated flow of the temperature-sensitive feed solution. The gelation times for solution drops in organic liquids at 45 to 95 0 C depend on both the chemical reaction rates and the rates of heat transfer. The gel properties vary with temperature and other gelation variables. Gelation conditions were determined which allow easy washing, drying, firing, and sintering to produce dense UO 2 spheres of all three sizes. The 1200- and 300-μm UO 2 spheres were pepared by gelation in trichloroethylene at 50 to 65 0 C; 2-ethyl-l-hexanol was used as the gelation medium to prepare 30-μm UO 2 spheres. Washing and drying requirements were determined. The gel dried to 225 0 C contains about 95% UO 3 ; the remaining components are H 2 O, NH 3 - , which are volatilized during firing to UO 2
Zhang, Wanlin; Gao, Ning; Cui, Jiecheng; Wang, Chen; Wang, Shiqiang; Zhang, Guanxin; Dong, Xiaobiao
2017-01-01
By simultaneously exploiting the unique properties of ionic liquids and aggregation-induced emission (AIE) luminogens, as well as photonic structures, a novel customizable sensing system for multi-analytes was developed based on a single AIE-doped poly(ionic liquid) photonic sphere. It was found that due to the extraordinary multiple intermolecular interactions involved in the ionic liquid units, one single sphere could differentially interact with broader classes of analytes, thus generating response patterns with remarkable diversity. Moreover, the optical properties of both the AIE luminogen and photonic structure integrated in the poly(ionic liquid) sphere provide multidimensional signal channels for transducing the involved recognition process in a complementary manner and the acquisition of abundant and sufficient sensing information could be easily achieved on only one sphere sensor element. More importantly, the sensing performance of our poly(ionic liquid) photonic sphere is designable and customizable through a simple ion-exchange reaction and target-oriented multi-analyte sensing can be conveniently realized using a selective receptor species, such as counterions, showing great flexibility and extendibility. The power of our single sphere-based customizable sensing system was exemplified by the successful on-demand detection and discrimination of four multi-analyte challenge systems: all 20 natural amino acids, nine important phosphate derivatives, ten metal ions and three pairs of enantiomers. To further demonstrate the potential of our spheres for real-life application, 20 amino acids in human urine and their 26 unprecedented complex mixtures were also discriminated between by the single sphere-based array. PMID:28989662
Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex
Veenboer, Richard M. P.
2017-07-20
The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.
Inner-Sphere versus Outer-Sphere Coordination of BF4– in a NHC-Gold(I) Complex
Veenboer, Richard M. P.; Collado, Alba; Dupuy, Sté phanie; Lebl, Tomas; Falivene, Laura; Cavallo, Luigi; Cordes, David B.; Slawin, Alexandra M. Z.; Cazin, Catherine S. J.; Nolan, Steven P.
2017-01-01
The role of counterions in chemistry mediated by gold complexes stretches much further than merely providing charge balance to cationic gold species. Interplay between their basicities and coordination strengths influences interactions with both the gold center and substrates in catalysis. Actual monogold(I) active species are generally believed to be monocoordinated species, formed from the abstraction or the decoordination of a second ligand from precursor complexes, but only a small amount of experimental evidence exists to underpin the existence of these transient species. The formation of a bench-stable neutral IPrCl-gold(I) tetrafluoroborate complex is reported herein. Experimental studies by X-ray diffraction analysis and NMR spectroscopy and theoretical studies by DFT calculations were conducted to determine the composition, structure, and behavior of this complex. The absence of an auxiliary ligand resulted in inner-sphere coordination of the counterion in the solid state. In solution, an equilibrium between two conformations was found with the counterion occupying inner-sphere and outer-sphere positions, respectively. Stoichiometric and catalytic reactivity studies with the tetrafluoroborate complex have been conducted. These confirmed the lability of the inner-sphere coordinating counterion that gives the IPrCl-gold(I) fragment behavior similar to that of related systems.
Dual Smarandache Curves of a Timelike Curve lying on Unit dual Lorentzian Sphere
Kahraman, Tanju; Hüseyin Ugurlu, Hasan
2016-01-01
In this paper, we give Darboux approximation for dual Smarandache curves of time like curve on unit dual Lorentzian sphere. Firstly, we define the four types of dual Smarandache curves of a timelike curve lying on dual Lorentzian sphere.
Thermomechanical analysis of solid breeders in sphere-pac, plate, and pellet configurations
International Nuclear Information System (INIS)
Blanchard, J.P.; Ghoniem, N.M.
1986-02-01
The first configuration studied is called sphere-pac. It features small breeder spheres of three different diameters, thus allowing efficient packing and minimal void fraction. The concept originated as an attempt to minimize thermal stresses in the breeder and improve the predictability of the breeder-structure interface heat conduction. In general the breeder is made as thin as possible, to maximize the breeding ratio, so the cladding's integrity will likely be the life-limiting issue of this concept. The third breeder configuration is in the form of pellets cladded by steel tubes. The major thermomechanical issue of the pin-type designs is cracking, which would impair the thermal performance of the blanket. Fortunately, the pins can be sized to prevent cracking under normal operation. In this report we have treated each blanket generically, dealing with basic issues rather than design specifics. Our basic philosophy is to avoid cracking of the breeder if at all possible. It can be argued that cracking could be allowed, but this would sacrifice predictability of the blanket thermal performance and tritium release characteristics. Proper design can and should minimize breeder cracking
New spectro-photometric characterization of the substellar object HR 2562 B using SPHERE
Mesa, D.; Baudino, J.-L.; Charnay, B.; D'Orazi, V.; Desidera, S.; Boccaletti, A.; Gratton, R.; Bonnefoy, M.; Delorme, P.; Langlois, M.; Vigan, A.; Zurlo, A.; Maire, A.-L.; Janson, M.; Antichi, J.; Baruffolo, A.; Bruno, P.; Cascone, E.; Chauvin, G.; Claudi, R. U.; De Caprio, V.; Fantinel, D.; Farisato, G.; Feldt, M.; Giro, E.; Hagelberg, J.; Incorvaia, S.; Lagadec, E.; Lagrange, A.-M.; Lazzoni, C.; Lessio, L.; Salasnich, B.; Scuderi, S.; Sissa, E.; Turatto, M.
2018-05-01
Aims: HR 2562 is an F5V star located at 33 pc from the Sun hosting a substellar companion that was discovered using the Gemini planet imager (GPI) instrument. The main objective of the present paper is to provide an extensive characterization of the substellar companion, by deriving its fundamental properties. Methods: We observed HR 2562 with the near-infrared branch composed by the integral field spectrograph (IFS) and the infrared dual band spectrograph (IRDIS) of the spectro-polarimetric high-contrast exoplanet research (SPHERE) instrument at the very large telescope (VLT). During our observations IFS was operating in the Y J band, while IRDIS was observing with the H broadband filter. The data were reduced with the dedicated SPHERE GTO pipeline, which is custom designed for this instrument. On the reduced images, we then applied the post-processing procedures that are specifically prepared to subtract the speckle noise. Results: The companion is clearly detected in both IRDIS and IFS datasets. We obtained photometry in three different spectral bands. The comparison with template spectra allowed us to derive a spectral type of T2-T3 for the companion. Using both evolutionary and atmospheric models we inferred the main physical parameters of the companion obtaining a mass of 32 ± 14 MJup, Teff = 1100 ± 200 K, and log g = 4.75 ± 0.41. Based on observations made with European Southern Observatory (ESO) telescopes at Paranal Observatory in Chile, under program ID 198.C-0209(D).
Critical Dimensions of Water-tamped Slabs and Spheres of Active Material
Greuling, E.; Argo, H.: Chew, G.; Frankel, M. E.; Konopinski, E.J.; Marvin, C.; Teller, E.
1946-08-06
The magnitude and distribution of the fission rate per unit area produced by three energy groups of moderated neutrons reflected from a water tamper into one side of an infinite slab of active material is calculated approximately in section II. This rate is directly proportional to the current density of fast neutrons from the active material incident on the water tamper. The critical slab thickness is obtained in section III by solving an inhomogeneous transport integral equation for the fast-neutron current density into the tamper. Extensive use is made of the formulae derived in "The Mathematical Development of the End-Point Method" by Frankel and Goldberg. In section IV slight alterations in the theory outlined in sections II and III were made so that one could approximately compute the critical radius of a water-tamper sphere of active material. The derived formulae were applied to calculate the critical dimensions of water-tamped slabs and spheres of solid UF{sub 6} leaving various (25) isotope enrichment fractions. Decl. Dec. 16, 1955.
A study on the correlations development for film boiling heat transfer on spheres
International Nuclear Information System (INIS)
Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung
1998-01-01
Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced
Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.
Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C
2010-05-01
A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.
A study on the correlations development for film boiling heat transfer on spheres
Energy Technology Data Exchange (ETDEWEB)
Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1999-12-31
Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)
A study on the correlations development for film boiling heat transfer on spheres
Energy Technology Data Exchange (ETDEWEB)
Jeong, Yong Hoon; Baek, Won Pil; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-12-31
Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corlium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling have been performed. However, there is no available correlation adequate for severe accident analysis. In this study, film boiling heat transfer correlations have been developed, and their applicable ranges have been enlarged and their prediction accuracy has been enhanced. 7 refs., 5 figs., 5 tabs. (Author)
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
Energy Technology Data Exchange (ETDEWEB)
Ortega, Mario Ivan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Drumm, Clifton R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
Milestones in the Critique of the Public Sphere: Dewey and Arendt
Codruţa Cuceu
2011-01-01
This paper proposes a turnover to the theories which have fostered the 20th Century discourse upon the public sphere. By depicting the way in which the structural transformations suffered by the public sphere within the framework of modernity have been theorized by the pre-Habermasian discourse upon the public sphere, the present work aims at revealing the similarities as well as the differences between John Dewey's approach of the public sphere and Hannah Arendt's theory of the political rea...
Synthesis of solid and hollow ATO spheres by carbothermal reduction of ATO nanoparticles
International Nuclear Information System (INIS)
Chai Chunfang; Huang Zaiyin; Liao Dankui; Tan Xuecai; Wu Jian; Yuan Aiqun
2007-01-01
Solid and hollow ATO spheres were fabricated by heating ATO nanoparticles and graphite mixture in a tube furnace. The as-synthesized samples were characterized by EDS, XRD, FE-SEM, TEM and HRTEM. The size of the solid spheres could be controlled by adjusting the rate of Ar flow and deposition positions. The hollow spheres were synthesized in an alumina tube system under conditions of a relatively high oxygen concentration. The growth mechanism of solid and hollow spheres was analysed
Directory of Open Access Journals (Sweden)
Oana Ludmila Popescu
2015-04-01
Full Text Available The economic crisis of the European Union has rendered the European public sphere as a forever emerging concept marked by uncertainties regarding its structure. In this context, eyes of both European officials and citizens turn towards the media, the main communication link between the EU and its citizens. The present paper looks at a media product that is designed to permeate multiple national public spheres, the weekly news show European Journal, a half-hour TV program produced by Deutsche Welle and rebroadcast by partner TV channels throughout Europe. Considering the main characteristics of the European public sphere as identified in the literature, with a focus on horizontal Europeanization, and using the method of content analysis, this paper looks at the means employed by the European Journal to support the integration process and to add a European dimension to national public sphere. Findings suggest that the type of public sphere promoted by the European Journal is not centered around the EU as a distinct entity, but around the member states, approach which supports the idea of a horizontal Europeanization.
International Nuclear Information System (INIS)
Hayashida, H; Kira, H; Miyata, N; Akutsu, K; Mizusawa, M; Parker, J D; Matsumoto, Y; Oku, T; Sakai, K; Hiroi, K; Shinohara, T; Takeda, M; Yamazaki, D; Oikawa, K; Harada, M; Ino, T; Imagawa, T; Ohkawara, M; Ohoyama, K; Kakurai, K
2016-01-01
We have been developing a 3 He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3 He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3 He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3 He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3 He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3 He polarization reached 70% and was stable over one week. A demonstration of the 3 He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively. (paper)
Thies-Weesie, Dominique M. E.; Philipse, Albert P.; Lekkerkerker, Henk N. W.
1996-01-01
The sedimentation velocity of uncharged, nonaggregated silica spheres under gravity is strongly reduced after addition of small amounts of nonsedimenting small spheres. This reduction is largely due to surface irregularities on a nanoscale of the large spheres at which a limited number of small
Application of gel microsphere processes to preparation of Sphere-Pac nuclear fuel
International Nuclear Information System (INIS)
Haas, P.A.; Notz, K.J.; Spence, R.D.
1978-01-01
Sphere-Pac fabrication of nuclear fuels using two or more sizes of oxide or carbide spheres is ideally suited to nonproliferation-fuel cycles and remote refabrication. The sizes and compositions of spheres necessary for such fuel cycles have not been commonly prepared; therefore, modifications of sol-gel processes to meet these requirements are being developed and demonstrated
Damping and scattering of electromagnetic waves by small ferrite spheres suspended in an insulator
Englert, Gerald W.
1992-01-01
The intentional degradation of electromagnetic waves by their penetration into a media comprised of somewhat sparsely distributed energy absorbing ferrite spheres suspended in an electrical insulator is investigated. Results are presented in terms of generalized parameters involving wave length and sphere size, sphere resistivity, permeability, and spacing; their influence on dissipation of wave power by eddy currents, magnetic hysteresis, and scattering is shown.
Electric field of not completely symmetric systems earthed sphere-uniformly charged dielectric plan
International Nuclear Information System (INIS)
Vila, F.
1994-07-01
In this paper we study theoretically the electric field in the not completely symmetric system, earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig
Colloidal alloys with preassembled clusters and spheres.
Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J
2017-06-01
Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.
Political Intersectionality and Democratic Politics in the European Public Sphere
DEFF Research Database (Denmark)
Siim, Birte
2015-01-01
Public Sphere (EPS). It is inspired by results and reflections from the European Gender Project (EGP) , where intersectionality was used as an approach for analysing negotiations between gender and ethno-national diversity in selected European countries and in relation to the European Public Sphere....... The aim of the essay is to further deepen the theoretical and empirical understanding of intersectionality by reflecting on the relations between political intersectionality and democratic politics from a particular European perspective. It thus confronts theory and research findings concerning...... intersections of gender and ethnic diversity in political life at the national and transnational levels across Europe. In this context, political intersectionality refers to the framing of gender and ethnic diversity by major political actors as well as by activities of women’s and anti-racist organisations...
A semiempirical approach to a viscously damped oscillating sphere
International Nuclear Information System (INIS)
Alexander, P; Indelicato, E
2005-01-01
A simple model of damped harmonic motion is usually presented in undergraduate physics textbooks and straightforwardly applied for a variety of well-known experiments in student laboratories. Results for the decaying vertical oscillation of a sphere attached to the lower end of a spring in containers with different liquids are analysed here under this standard framework. Some important mismatches between observation and theory are found, which are attributed to oversimplifications in the formulation of the drag force. A more elaborate expression for the latter within a semiempirical approach is then introduced and a more appropriate description of the measurements is shown to be attained. Two coefficients account for experimental corrections, which under certain conditions permit in addition the calculation of specific fluid quantities associated with the oscillating sphere. Rough relations between viscosity and damping factor under appropriate limits are derived. The laboratory experience may also be used to introduce the concept of a semiempirical model and exhibit its utility in physics
Estimates on the mean current in a sphere of plasma
International Nuclear Information System (INIS)
Nunez, Manuel
2003-01-01
Several turbulent dynamo models predict the concentration of the magnetic field in chaotic plasmas in sheets with the field vector pointing alternatively in opposite directions, which should produce strong current sheets. It is proved that if the plasma is contained in a rigid sphere with perfectly conducting boundary the geometry of these sheets must be balanced so that the mean current remains essentially bounded by the Coulomb gauged mean vector potential of the field. This magnitude remains regular even for the sharp field variations expected in a chaotic flow. For resistive plasmas the same arguments imply that the contribution to the total current of the regions near the boundary compensates the current of the central part of the sphere
Random close packing of hard spheres and disks
International Nuclear Information System (INIS)
Berryman, J.G.
1983-01-01
A simple definition of random close packing of hard spheres is presented, and the consequences of this definition are explored. According to this definition, random close packing occurs at the minimum packing fraction eta for which the median nearest-neighbor radius equals the diameter of the spheres. Using the radial distribution function at more dilute concentrations to estimate median nearest-neighbor radii, lower bounds on the critical packing fraction eta/sub RCP/ are obtained and the value of eta/sub RCP/ is estimated by extrapolation. Random close packing is predicted to occur for eta/sub RCP/ = 0.64 +- 0.02 in three dimensions and eta/sub RCP/ = 0.82 +- 0.02 in two dimensions. Both of these predictions are shown to be consistent with the available experimental data
Detachment dynamics of colloidal spheres with adhesive interactions
Bergenholtz, J.
2018-04-01
Escape of colloidal-size particles from various kinds of solids, such as aggregates and surfaces, occurs in a wide variety of settings of both fundamental and applied scientific interest. In this paper an exact solution for the detachment of adhesive spheres from each other by means of diffusion is presented. The solution takes into account repeated detachment and reattachment events in the course of time on the way toward the permanently separated state. For strongly adhesive spheres this state is approached in an exponential manner essentially regardless of how the bound state is specified. The analytical solution is shown to capture semiquantitatively the escape from more realistic potential wells using a mapping procedure whereby equality of second virial coefficients is imposed.
Fundamental measure theory for hard-sphere mixtures: a review
International Nuclear Information System (INIS)
Roth, Roland
2010-01-01
Hard-sphere systems are one of the fundamental model systems of statistical physics and represent an important reference system for molecular or colloidal systems with soft repulsive or attractive interactions in addition to hard-core repulsion at short distances. Density functional theory for classical systems, as one of the core theoretical approaches of statistical physics of fluids and solids, has to be able to treat such an important system successfully and accurately. Fundamental measure theory is up to date the most successful and most accurate density functional theory for hard-sphere mixtures. Since its introduction fundamental measure theory has been applied to many problems, tested against computer simulations, and further developed in many respects. The literature on fundamental measure theory is already large and is growing fast. This review aims to provide a starting point for readers new to fundamental measure theory and an overview of important developments. (topical review)
Will the Internet Form the Public Sphere in China?
Directory of Open Access Journals (Sweden)
Li Zhan
2004-04-01
Full Text Available The Western perspective in examining the political impact of the Internet concentrates on whether this new medium will revitalize the public sphere so as to further representative democracy to ideal form of participatory democracy. This paper examines the political impact of the Internet on China, a large developing country that lacks sophisticated representative democratic politics. It analyzes the revolutionary changes that the Internet has brought to the Chinese Internet users and the government's regulations on the new medium. It asks whether the Internet will form the Habermasian public sphere in China and concludes that the Internet enhances the Chinese netter's political participation, but it needs long-term research to decide to what extent the Internet will improve democracy in China.
Sparse Image Reconstruction on the Sphere: Analysis and Synthesis.
Wallis, Christopher G R; Wiaux, Yves; McEwen, Jason D
2017-11-01
We develop techniques to solve ill-posed inverse problems on the sphere by sparse regularization, exploiting sparsity in both axisymmetric and directional scale-discretized wavelet space. Denoising, inpainting, and deconvolution problems and combinations thereof, are considered as examples. Inverse problems are solved in both the analysis and synthesis settings, with a number of different sampling schemes. The most effective approach is that with the most restricted solution-space, which depends on the interplay between the adopted sampling scheme, the selection of the analysis/synthesis problem, and any weighting of the l 1 norm appearing in the regularization problem. More efficient sampling schemes on the sphere improve reconstruction fidelity by restricting the solution-space and also by improving sparsity in wavelet space. We apply the technique to denoise Planck 353-GHz observations, improving the ability to extract the structure of Galactic dust emission, which is important for studying Galactic magnetism.
Radioembolization for hepatocellular carcinoma using TheraSphere®.
Ali, Safiyya Mohamed
2011-01-01
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver. Radioembolization with yttrium-90 (Y90) microspheres is a new concept in radiation therapy for HCC. This review focuses on the indications, efficacy, side effects, and future direction of Y90 therapy, using TheraSphere® , in HCC patients. Comprehensive literature reviews have described the clinical and scientific evidence of Y90 therapy. The Radioembolization Brachytherapy Oncology Consortium has concluded that there is sufficient evidence to support the safe and effective use of this locoregional therapy in HCC patients, including those with portal vein thrombosis. There are currently no randomized clinical trials done on TheraSphere® and none of the studies so far have shown a survival benefit. Thus, although it represents a very promising therapy with excellent initial results, it cannot be fully recommended yet, till well-designed, large, randomized clinical studies are conducted showing survival benefits.
Note on the polishing of small spheres of ferrimagnetic materials
Energy Technology Data Exchange (ETDEWEB)
Grunberg, J. G.; Antier, G. [Centre d' etudes nucleaires de Grenoble - C.E.N.G. (France); Seiden, P. E. [Institut Fourier, Universite de Grenoble (France)
1961-07-01
This note describes a simple and rapid method that we have used for obtaining a high degree of polish on spheres of ferrimagnetic materials. A high surface polish is of particular importance if one desires to perform ferrimagnetic resonance experiments on very narrow linewidth materials such as Yttrium Iron Garnet. It is not possible to obtain the very narrow linewidths without polishing the sample with a very fine abrasive such as 'Linde A'. Although the methods presently used for the fine polishing of ferrite spheres give satisfactory results, the method described here is of particular interest because of its simplicity and speed. For example with the air-jet tumbling technique it can take as long as three days of polishing to obtain an acceptable surface while our method will give the same results in one to two hours. (author)
National security through the preservation and development of cultural sphere
Directory of Open Access Journals (Sweden)
Malakshinova N.Sh.
2016-10-01
Full Text Available matters of national security in the context of the inextricable interrelationship and interdependence of national security and socio-economic development are presented in the article. The particular attention is paid to the legislative consolidation of security categories, the system of national security elements, and changes in the domestic legislation updates. Therefore, safety, a list of national interests, highlighted by long-term perspective, and questions about the means of implementation of strategic national priorities, including the named culture as a sphere of life are very important. Sphere of culture as a national priority and an important factor in the quality of life growth and harmonization of public relations, collateral dynamic socio-economic development and the preservation of a common cultural space and sovereignty of Russia are studied more detailed.
Optimum radars and filters for the passive sphere system
Luers, J. K.; Soltes, A.
1971-01-01
Studies have been conducted to determine the influence of the tracking radar and data reduction technique on the accuracy of the meteorological measurements made in the 30 to 100 kilometer altitude region by the ROBIN passive falling sphere. A survey of accuracy requirements was made of agencies interested in data from this region of the atmosphere. In light of these requirements, various types of radars were evaluated to determine the tracking system most applicable to the ROBIN, and methods were developed to compute the errors in wind and density that arise from noise errors in the radar supplied data. The effects of launch conditions on the measurements were also examined. Conclusions and recommendations have been made concerning the optimum tracking and data reduction techniques for the ROBIN falling sphere system.
Plasmon excitations in small diamond spheres by fast penetrating electrons
International Nuclear Information System (INIS)
Fehlhaber, R.P.; Bursill, L.A.
1998-01-01
The hydrodynamic model is used to calculate the excitation probability due to the surface and the volume plasmon of small diamond spheres. The theoretical approach incorporates an impact parameter p 0 and includes all multipole modes; it was first derived by Tran Thoai and Zeitler (1988, Phys. Stat. Sol. (a) 107, 791) who applied it to investigate small aluminium spheres. The aim of the present work is to analyze the multipole modes in detail since certain aspects are screened out due to the large damping factor of a wide band gap material like diamond. Various patterns will be revealed, thus simplifying computational attempts and enhancing the predictability of experimental results. It will finally be shown that using this model, it is possible to determine the grain size to an accuracy of about 1 Angstrom. (authors)
Elastodynamic cloaking and field enhancement for soft spheres
Diatta, Andre; Guenneau, Sebastien
2016-11-01
We propose a spherical cloak described by a non-singular asymmetric elasticity tensor {C} depending upon a small parameter η, that defines the softness of a region one would like to conceal from elastodynamic waves. By varying η, we generate a class of soft spheres dressed by elastodynamic cloaks, which are shown to considerably reduce the scattering of the soft spheres. Importantly, such cloaks also provide some wave protection except for a countable set of frequencies, for which some large elastic field enhancement can be observed within the soft spheres. Through an investigation of trapped modes in elasticity, we supply a good approximation of such Mie-type resonances by some transcendental equation. Our results, unlike previous studies that focused merely on the invisibility aspects, shed light on potential pitfalls of elastodynamic cloaks for earthquake protection designed via geometric transforms: a seismic cloak needs to be designed in such a way that its inner resonances differ from eigenfrequencies of the building one wishes to protect. In order to circumvent this downfall of field enhancement inside the cloaked area, we introduce a novel generation of cloaks, named here, mixed cloaks. Such mixed cloaks consist of a shell that detours incoming waves, hence creating an invisibility region, and of a perfectly matched layer (PML, located at the inner boundary of the cloaks) that absorbs residual wave energy in such a way that aforementioned resonances in the soft sphere are strongly attenuated. The designs of mixed cloaks with a non-singular elasticity tensor combined with an inner PML and non-vanishing density bring seismic cloaks one step closer to a practical implementation. Note in passing that the concept of mixed cloaks also applies in the case of singular cloaks and can be translated in other wave areas for a similar purpose (i.e. to smear down inner resonances within the invisibility region).
The exchange algebra for Liouville theory on punctured Riemann sphere
International Nuclear Information System (INIS)
Shen Jianmin; Sheng Zhengmao
1991-11-01
We consider in this paper the classical Liouville field theory on the Riemann sphere with n punctures. In terms of the uniformization theorem of Riemann surface, we show explicitly the classical exchange algebra (CEA) for the chiral components of the Liouville fields. We find that the matrice which dominate the CEA is related to the symmetry of the Lie group SL(n) in a nontrivial manner with n>3. (author). 10 refs
Role of moving planes and moving spheres following Dupin cyclides
Jia, Xiaohong
2014-03-01
We provide explicit representations of three moving planes that form a μ-basis for a standard Dupin cyclide. We also show how to compute μ-bases for Dupin cyclides in general position and orientation from their implicit equations. In addition, we describe the role of moving planes and moving spheres in bridging between the implicit and rational parametric representations of these cyclides. © 2014 Elsevier B.V.
The public sphere, women and the casamance peace process
Directory of Open Access Journals (Sweden)
Irene N. Osemeka
2011-06-01
Full Text Available Las mujeres en la Casamance tradicionalmente se limita a la esfera privada como madres, esposas y los agricultores, mientras que algunos sacerdotes son mujeres. La naturaleza prolongada del conflicto de Casamance ha tenido efectos devastadores sobre la población civil, incluidas las mujeres. Pero también ha ofrecido oportunidades para que las mujeres contribuyan al proceso de paz lo que les empuja a la esfera pública, que de otro modo, es el dominio de los hombres. El documento se centra en los esfuerzos de reconciliación en la región de Casamance que muestra la relación entre la esfera pública, las mujeres y la resolución de conflictos. Asimismo, ofrecer soluciones que pueden conducir a un proceso más integrador, teniendo en cuenta el enfoque de exclusión de los esfuerzos de paz de Casamance, que ha contribuido significativamente a la imposibilidad de lograr una solución duradera al conflicto.Palabras claves: espacio público. Proceso de Paz.___________________________Abstract:Women in the Casamance are traditionally confined to the private sphere as mothers, wives and farmers while a few are female priests. The protracted nature of the Casamance conflict has had devastating effects on the civilian population including women. But it has also provided opportunities for women to contribute to the peace process thereby thrusting them into the public sphere, which otherwise, is the domain of men. The paper focuses on the reconciliatory efforts in the Casamance showing the link between the public sphere, women and the resolution of conflicts. It will also proffer solutions that can lead to a more inclusive process, taking into consideration the exclusionary approach of the Casamance peace efforts which has contributed significantly to the failure to achieve durable solution to the conflict.Keywords: Public Sphere. Peace Process.
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
Regularity of optimal transport maps on multiple products of spheres
Figalli, Alessio; Kim, Young-Heon; McCann, Robert J.
2010-01-01
This article addresses regularity of optimal transport maps for cost="squared distance" on Riemannian manifolds that are products of arbitrarily many round spheres with arbitrary sizes and dimensions. Such manifolds are known to be non-negatively cross-curved [KM2]. Under boundedness and non-vanishing assumptions on the transfered source and target densities we show that optimal maps stay away from the cut-locus (where the cost exhibits singularity), and obtain injectivity and continuity of o...