WorldWideScience

Sample records for integrating space geodetic

  1. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  2. Integration of space geodesy: a US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth

    2003-01-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the U.S., in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO).

  3. Land water storage from space and the geodetic infrastructure

    Science.gov (United States)

    Cazenave, A.; Larson, K.; Wahr, J.

    2009-04-01

    In recent years, remote sensing techniques have been increasingly used to monitor components of the water balance of large river basins. By complementing scarce in situ observations and hydrological modelling, space observations have the potential to significantly improve our understanding of hydrological processes at work in river basins and their relationship with climate variability and socio-economic life. Among the remote sensing tools used in land hydrology, several originate from space geodesy and are integral parts of the Global Geodetic Observing System. For example, satellite altimetry is used for systematic monitoring of water levels of large rivers, lakes and floodplains. InSAR allows the detection of surface water change. GRACE-based space gravity offers for the first time the possibility of directly measuring the spatio-temporal variations of the vertically integrated water storage in large river basins. GRACE is also extremely useful for measuring changes in mass of the snow pack in boreal regions. Vertical motions of the ground induced by changes in water storage in aquifers can be measured by both GPS and InSAR. These techniques can also be used to investigate water loading effects. Recently GPS has been used to measure changes in surface soil moisture, which would be important for agriculture, weather prediction, and for calibrationg satellite missions such as SMOS and SMAP. These few examples show that space and ground geodetic infrastructures are increasingly important for hydrological sciences and applications. Future missions like SWOT (Surface Waters Ocean Topography; a wide swath interferometric altimetry mission) and GRACE 2 (space gravimetry mission based on new technology) will provide a new generation of hydrological products with improved precision and resolution.

  4. Geodetic Space Weather Monitoring by means of Ionosphere Modelling

    Science.gov (United States)

    Schmidt, Michael

    2017-04-01

    The term space weather indicates physical processes and phenomena in space caused by radiation of energy mainly from the Sun. Manifestations of space weather are (1) variations of the Earth's magnetic field, (2) the polar lights in the northern and southern hemisphere, (3) variations within the ionosphere as part of the upper atmosphere characterized by the existence of free electrons and ions, (4) the solar wind, i.e. the permanent emission of electrons and photons, (5) the interplanetary magnetic field, and (6) electric currents, e.g. the van Allen radiation belt. It can be stated that ionosphere disturbances are often caused by so-called solar storms. A solar storm comprises solar events such as solar flares and coronal mass ejections (CMEs) which have different effects on the Earth. Solar flares may cause disturbances in positioning, navigation and communication. CMEs can effect severe disturbances and in extreme cases damages or even destructions of modern infrastructure. Examples are interruptions to satellite services including the global navigation satellite systems (GNSS), communication systems, Earth observation and imaging systems or a potential failure of power networks. Currently the measurements of solar satellite missions such as STEREO and SOHO are used to forecast solar events. Besides these measurements the Earth's ionosphere plays another key role in monitoring the space weather, because it responses to solar storms with an increase of the electron density. Space-geodetic observation techniques, such as terrestrial GNSS, satellite altimetry, space-borne GPS (radio occultation), DORIS and VLBI provide valuable global information about the state of the ionosphere. Additionally geodesy has a long history and large experience in developing and using sophisticated analysis and combination techniques as well as empirical and physical modelling approaches. Consequently, geodesy is predestinated for strongly supporting space weather monitoring via

  5. Thin-plate spline quadrature of geodetic integrals

    Science.gov (United States)

    Vangysen, Herman

    1989-01-01

    Thin-plate spline functions (known for their flexibility and fidelity in representing experimental data) are especially well-suited for the numerical integration of geodetic integrals in the area where the integration is most sensitive to the data, i.e., in the immediate vicinity of the evaluation point. Spline quadrature rules are derived for the contribution of a circular innermost zone to Stoke's formula, to the formulae of Vening Meinesz, and to the recursively evaluated operator L(n) in the analytical continuation solution of Molodensky's problem. These rules are exact for interpolating thin-plate splines. In cases where the integration data are distributed irregularly, a system of linear equations needs to be solved for the quadrature coefficients. Formulae are given for the terms appearing in these equations. In case the data are regularly distributed, the coefficients may be determined once-and-for-all. Examples are given of some fixed-point rules. With such rules successive evaluation, within a circular disk, of the terms in Molodensky's series becomes relatively easy. The spline quadrature technique presented complements other techniques such as ring integration for intermediate integration zones.

  6. Earth rotation excitation mechanisms derived from geodetic space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  7. The Global Geodetic Observing System: Space Geodesy Networks for the Future

    Science.gov (United States)

    Pearlman, Michael; Pavlis, Erricos; Ma, Chopo; Altamini, Zuheir; Noll, Carey; Stowers, David

    2011-01-01

    Ground-based networks of co-located space geodetic techniques (VLBI, SLR, GNSS. and DORIS) are the basis for the development and maintenance of the International Terrestrial Reference frame (ITRF), which is our metric of reference for measurements of global change, The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at 1 mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence, but other applications are not far behind. Recent studies including one by the US National Research Council has strongly stated the need and the urgency for the fundamental space geodesy network. Simulations are underway to examining accuracies for origin, scale and orientation of the resulting ITRF based on various network designs and system performance to determine the optimal global network to achieve this goal. To date these simulations indicate that 24 - 32 co-located stations are adequate to define the reference frame and a more dense GNSS and DORIS network will be required to distribute the reference frame to users anywhere on Earth. Stations in the new global network will require geologically stable sites with good weather, established infrastructure, and local support and personnel. GGOS wil seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to contribute in the network implementation and operation. Some examples of integrated stations currently in operation or under development will be presented. We will examine necessary conditions and challenges in

  8. Space Geodetic Technique Co-location in Space: Simulation Results for the GRASP Mission

    Science.gov (United States)

    Kuzmicz-Cieslak, M.; Pavlis, E. C.

    2011-12-01

    The Global Geodetic Observing System-GGOS, places very stringent requirements in the accuracy and stability of future realizations of the International Terrestrial Reference Frame (ITRF): an origin definition at 1 mm or better at epoch and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale (0.1 ppb) and orientation components. These goals were derived from the requirements of Earth science problems that are currently the international community's highest priority. None of the geodetic positioning techniques can achieve this goal alone. This is due in part to the non-observability of certain attributes from a single technique. Another limitation is imposed from the extent and uniformity of the tracking network and the schedule of observational availability and number of suitable targets. The final limitation derives from the difficulty to "tie" the reference points of each technique at the same site, to an accuracy that will support the GGOS goals. The future GGOS network will address decisively the ground segment and to certain extent the space segment requirements. The JPL-proposed multi-technique mission GRASP (Geodetic Reference Antenna in Space) attempts to resolve the accurate tie between techniques, using their co-location in space, onboard a well-designed spacecraft equipped with GNSS receivers, a SLR retroreflector array, a VLBI beacon and a DORIS system. Using the anticipated system performance for all four techniques at the time the GGOS network is completed (ca 2020), we generated a number of simulated data sets for the development of a TRF. Our simulation studies examine the degree to which GRASP can improve the inter-technique "tie" issue compared to the classical approach, and the likely modus operandi for such a mission. The success of the examined scenarios is judged by the quality of the origin and scale definition of the resulting TRF.

  9. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  10. Co-location of space geodetic techniques carried out at the Geodetic Observatory Wettzell using a closure in time and a multi-technique reference target

    Science.gov (United States)

    Kodet, J.; Schreiber, K. U.; Eckl, J.; Plötz, C.; Mähler, S.; Schüler, T.; Klügel, T.; Riepl, S.

    2018-01-01

    The quality of the links between the different space geodetic techniques (VLBI, SLR, GNSS and DORIS) is still one of the major limiting factors for the realization of a unique global terrestrial reference frame that is accurate enough to allow the monitoring of the Earth system, i.e., of processes like sea level change, postglacial rebound and silent earthquakes. According to the specifications of the global geodetic observing system of the International Association of Geodesy, such a reference frame should be accurate to 1 mm over decades, with rates of change stable at the level of 0.1 mm/year. The deficiencies arise from inaccurate or incomplete local ties at many fundamental sites as well as from systematic instrumental biases in the individual space geodetic techniques. Frequently repeated surveys, the continuous monitoring of antenna heights and the geometrical mount stability (Lösler et al. in J Geod 90:467-486, 2016. https://doi.org/10.1007/s00190-016-0887-8) have not provided evidence for insufficient antenna stability. Therefore, we have investigated variations in the respective system delays caused by electronic circuits, which is not adequately captured by the calibration process, either because of subtle differences in the circuitry between geodetic measurement and calibration, high temporal variability or because of lacking resolving bandwidth. The measured system delay variations in the electric chain of both VLBI- and SLR systems reach the order of 100 ps, which is equivalent to 3 cm of path length. Most of this variability is usually removed by the calibrations but by far not all. This paper focuses on the development of new technologies and procedures for co-located geodetic instrumentation in order to identify and remove systematic measurement biases within and between the individual measurement techniques. A closed-loop optical time and frequency distribution system and a common inter-technique reference target provide the possibility to remove

  11. Simulations of VLBI observations of a geodetic satellite providing co-location in space

    Science.gov (United States)

    Anderson, James M.; Beyerle, Georg; Glaser, Susanne; Liu, Li; Männel, Benjamin; Nilsson, Tobias; Heinkelmann, Robert; Schuh, Harald

    2018-02-01

    We performed Monte Carlo simulations of very-long-baseline interferometry (VLBI) observations of Earth-orbiting satellites incorporating co-located space-geodetic instruments in order to study how well the VLBI frame and the spacecraft frame can be tied using such measurements. We simulated observations of spacecraft by VLBI observations, time-of-flight (TOF) measurements using a time-encoded signal in the spacecraft transmission, similar in concept to precise point positioning, and differential VLBI (D-VLBI) observations using angularly nearby quasar calibrators to compare their relative performance. We used the proposed European Geodetic Reference Antenna in Space (E-GRASP) mission as an initial test case for our software. We found that the standard VLBI technique is limited, in part, by the present lack of knowledge of the absolute offset of VLBI time to Coordinated Universal Time at the level of microseconds. TOF measurements are better able to overcome this problem and provide frame ties with uncertainties in translation and scale nearly a factor of three smaller than those yielded from VLBI measurements. If the absolute time offset issue can be resolved by external means, the VLBI results can be significantly improved and can come close to providing 1 mm accuracy in the frame tie parameters. D-VLBI observations with optimum performance assumptions provide roughly a factor of two higher uncertainties for the E-GRASP orbit. We additionally simulated how station and spacecraft position offsets affect the frame tie performance.

  12. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Ochałek Agnieszka

    2018-01-01

    Full Text Available The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements – an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  13. Modeling and Analysis of Integrated Bathymetric and Geodetic Data for Inventory Surveys of Mining Water Reservoirs

    Science.gov (United States)

    Ochałek, Agnieszka; Lipecki, Tomasz; Jaśkowski, Wojciech; Jabłoński, Mateusz

    2018-03-01

    The significant part of the hydrography is bathymetry, which is the empirical part of it. Bathymetry is the study of underwater depth of waterways and reservoirs, and graphic presentation of measured data in form of bathymetric maps, cross-sections and three-dimensional bottom models. The bathymetric measurements are based on using Global Positioning System and devices for hydrographic measurements - an echo sounder and a side sonar scanner. In this research authors focused on introducing the case of obtaining and processing the bathymetrical data, building numerical bottom models of two post-mining reclaimed water reservoirs: Dwudniaki Lake in Wierzchosławice and flooded quarry in Zabierzów. The report includes also analysing data from still operating mining water reservoirs located in Poland to depict how bathymetry can be used in mining industry. The significant issue is an integration of bathymetrical data and geodetic data from tachymetry, terrestrial laser scanning measurements.

  14. Low degree Earth's gravity coefficients determined from different space geodetic observations and climate models

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta

    2017-04-01

    Large scale mass redistribution and its transport within the Earth system causes changes in the Earth's rotation in space, gravity field and Earth's ellipsoid shape. These changes are observed in the ΔC21, ΔS21, and ΔC20 spherical harmonics gravity coefficients, which are proportional to the mass load-induced Earth rotational excitations. In this study, linear trend, decadal, inter-annual, and seasonal variations of low degree spherical harmonics coefficients of Earth's gravity field, determined from different space geodetic techniques, Gravity Recovery and Climate Experiment (GRACE), satellite laser ranging (SLR), Global Navigation Satellite System (GNSS), Earth rotation, and climate models, are examined. In this way, the contribution of each measurement technique to interpreting the low degree surface mass density of the Earth is shown. Especially, we evaluate an usefulness of several climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) to determine the low degree Earth's gravity coefficients using GRACE satellite observations. To do that, Terrestrial Water Storage (TWS) changes from several CMIP5 climate models are determined and then these simulated data are compared with the GRACE observations. Spherical harmonics ΔC21, ΔS21, and ΔC20 changes are calculated as the sum of atmosphere and ocean mass effect (GAC values) taken from GRACE and a land surface hydrological estimate from the selected CMIP5 climate models. Low degree Stokes coefficients of the surface mass density determined from GRACE, SLR, GNSS, Earth rotation measurements and climate models are compared to each other in order to assess their consistency. The comparison is done by using different types of statistical and signal processing methods.

  15. A new velocity field for Africa from combined GPS and DORIS space geodetic Solutions: Contribution to the definition of the African reference frame (AFREF)

    Science.gov (United States)

    Saria, E.; Calais, E.; Altamimi, Z.; Willis, P.; Farah, H.

    2013-04-01

    We analyzed 16 years of GPS and 17 years of Doppler orbitography and radiopositioning integrated by satellite (DORIS) data at continuously operating geodetic sites in Africa and surroundings to describe the present-day kinematics of the Nubian and Somalian plates and constrain relative motions across the East African Rift. The resulting velocity field describes horizontal and vertical motion at 133 GPS sites and 9 DORIS sites. Horizontal velocities at sites located on stable Nubia fit a single plate model with a weighted root mean square residual of 0.6 mm/yr (maximum residual 1 mm/yr), an upper bound for plate-wide motions and for regional-scale deformation in the seismically active southern Africa and Cameroon volcanic line. We confirm significant southward motion ( ˜ 1.5 mm/yr) in Morocco with respect to Nubia, consistent with earlier findings. We propose an updated angular velocity for the divergence between Nubia and Somalia, which provides the kinematic boundary conditions to rifting in East Africa. We update a plate motion model for the East African Rift and revise the counterclockwise rotation of the Victoria plate and clockwise rotation of the Rovuma plate with respect to Nubia. Vertical velocities range from - 2 to +2 mm/yr, close to their uncertainties, with no clear geographic pattern. This study provides the first continent-wide position/velocity solution for Africa, expressed in International Terrestrial Reference Frame (ITRF2008), a contribution to the upcoming African Reference Frame (AFREF). Except for a few regions, the African continent remains largely under-sampled by continuous space geodetic data. Efforts are needed to augment the geodetic infrastructure and openly share existing data sets so that the objectives of AFREF can be fully reached.

  16. Space-geodetic Constraints on GIA Models with 3D Viscosity

    Science.gov (United States)

    Van Der Wal, W.; Xu, Z.

    2012-12-01

    Models for Glacial Isostatic Adjustment (GIA) are an important correction to observations of mass change in the polar regions. Inputs for GIA models include past ice thickness and deformation parameters of the Earth's mantle, both of which are imperfectly known. Here we focus on the latter by investigating GIA models with 3D viscosity and composite (linear and non-linear) flow laws. It was found recently that GIA models with a composite flow law result in a better fit to historic sea level data, but they predict too low present-day uplift rates and gravity rates. Here GIA models are fit to space-geodetic constraints in Fennoscandia and North America. The preferred models are used to calculate the magnitude of the GIA correction on mass change estimates in Greenland and Antarctica. The observations used are GRACE Release 4 solutions from CSR and GFZ and published GPS solutions for North America and Fennoscandia, as well as historic sea level data. The GIA simulations are performed with a finite element model of a spherical, self-gravitating, incompressible Earth with 2x2 degree elements. Parameters in the flow laws are taken from seismology, heatflow measurements and experimental constraints and the ice loading history is prescribed by ICE-5G. It was found that GRACE and GPS derived uplift rates agree at the level of 1 mm/year in North America and at a level of 0.5 mm/year in Fennoscandia, the difference between the two regions being due to larger GPS errors and under sampling in North America. It can be concluded that both GPS and GRACE see the same process and the effects of filtering, noise and non-GIA processes such as land hydrology are likely to be small. Two GIA models are found that bring present-day uplift rate close to observed values in North America and Fennoscandia. These models result in a GIA correction of -17 Gt/year and -26 Gt/year on Greenland mass balance estimates from GRACE.

  17. Integrating Geological and Geodetic Surveying Techniques for Landslide Deformation Monitoring: Istanbul Case

    Science.gov (United States)

    Menteşe, E. Y.; Kilic, O.; BAS, M.; Tarih, A.; Duran, K.; Gumus, S.; Yapar, E. R.; Karasu, M. E.; Mehmetoğlu, H.; Karaman, A.; Edi˙ger, V.; Kosma, R. C.; Ozalaybey, S.; Zor, E.; Arpat, E.; Polat, F.; Dogan, U.; Cakir, Z.; Erkan, B.

    2017-12-01

    There are several methods that can be utilized for describing the landslide mechanisms. While some of them are commonly used, there are relatively new methods that have been proven to be useful. Obviously, each method has its own limitations and thus integrated use of these methods contributes to obtaining a realistic landslide model. The slopes of Küçükçekmece and Büyükçekmece Lagoons located at the Marmara Sea coast of İstanbul, Turkey, are among most specific examples of complex type landslides. The landslides in the area started developing at low sea level, and appears to ceased or at least slowed down to be at minimum after the sea level rise, as oppose to the still-active landslides that continue to cause damage especially in the valley slopes above the recent sea level between the two lagoons. To clarify the characteristics of these slope movements and classify them in most accurate way, Directorate of Earthquake and Ground Research of Istanbul Metropolitan Municipality launched a project in cooperation with Marmara Research Center of The Scientific and Technological Research Council of Turkey (TÜBİTAK). The project benefits the utility of the techniques of different disciplines such as geology, geophysics, geomorphology, hydrogeology, geotechnics, geodesy, remote sensing and meteorology. Specifically, this study focuses on two main axes of these techniques, namely: geological and geodetic. The reason for selecting these disciplines is because of their efficiency and power to understand the landslide mechanism in the area. Main approaches used in these studies are comprised of geological drills, inclinometer measurements, GPS surveys and SAR (both satellite and ground based) techniques. Integration of the results gathered from these techniques led the project team to comprehend critical aspects of landslide phenomenon in the area and produce precise landslide hazard maps that are basic instruments for a resilient urban development.

  18. Characterization of Ground Displacement Sources from Variational Bayesian Independent Component Analysis of Space Geodetic Time Series

    Science.gov (United States)

    Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano

    2015-04-01

    A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources

  19. Geodetic integration of Sentinel-1A IW data using PSInSAR in Hungary

    Science.gov (United States)

    Farkas, Péter; Hevér, Renáta; Grenerczy, Gyula

    2015-04-01

    ESA's latest Synthetic Aperture Radar (SAR) mission Sentinel-1 is a huge step forward in SAR interferometry. With its default acquisition mode called the Interferometric Wide Swath Mode (IW) areas through all scales can be mapped with an excellent return time of 12 days (while only the Sentinel-1A is in orbit). Its operational data policy is also a novelty, it allows scientific users free and unlimited access to data. It implements a new type of ScanSAR mode called Terrain Observation with Progressive Scan (TOPS) SAR. It has the same resolution as ScanSAR but with better signal-to-noise ratio distribution. The bigger coverage is achieved by rotation of the antenna in the azimuth direction, therefore it requires very precise co-registration because even errors under a pixel accuracy can introduce azimuth phase variations caused by differences in Doppler-centroids. In our work we will summarize the benefits and the drawbacks of the IW mode. We would like to implement the processing chain of GAMMA Remote Sensing of such data for mapping surface motion with special attention to the co-registration step. Not only traditional InSAR but the advanced method of Persistent Scatterer InSAR (PSInSAR) will be performed and presented as well. PS coverage, along with coherence, is expected to be good due to the small perpendicular and temporal baselines. We would also like to integrate these measurements into national geodetic networks using common reference points. We have installed trihedral corner reflectors at some selected sites to aid precise collocation. Thus, we aim to demonstrate that Sentinel-1 can be effectively used for surface movement detection and monitoring and it can also provide valuable information for the improvement of our networks.

  20. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  1. Interseismic and coseismic surface deformation deduced from space geodetic observations : with inferences on seismic hazard, tectonic processes, earthquake complexity, and slip distribution

    NARCIS (Netherlands)

    Bos, A.G. (Annemarie Gerredina)

    2003-01-01

    In this thesis I am concerned with modeling the kinematics of surface deformation using space geodetic observations in order to advance insight in both interseismic and coseismic surface response. To model the surface deformation field I adopt the method of Spakman and Nyst (2002) which resolves the

  2. Geodetic Control Points - National Geodetic Survey Benchmarks

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  3. A preliminary geodetic data model for geographic information systems

    Science.gov (United States)

    Kelly, K. M.

    2009-12-01

    Our ability to gather and assimilate integrated data collections from multiple disciplines is important for earth system studies. Moreover, geosciences data collection has increased dramatically, with pervasive networks of observational stations on the ground, in the oceans, in the atmosphere and in space. Contemporary geodetic observations from several space and terrestrial technologies contribute to our knowledge of earth system processes and thus are a valuable source of high accuracy information for many global change studies. Assimilation of these geodetic observations and numerical models into models of weather, climate, oceans, hydrology, ice, and solid Earth processes is an important contribution geodesists can make to the earth science community. Clearly, the geodetic observations and models are fundamental to these contributions. ESRI wishes to provide leadership in the geodetic community to collaboratively build an open, freely available content specification that can be used by anyone to structure and manage geodetic data. This Geodetic Data Model will provide important context for all geographic information. The production of a task-specific geodetic data model involves several steps. The goal of the data model is to provide useful data structures and best practices for each step, making it easier for geodesists to organize their data and metadata in a way that will be useful in their data analyses and to their customers. Built on concepts from the successful Arc Marine data model, we introduce common geodetic data types and summarize the main thematic layers of the Geodetic Data Model. These provide a general framework for envisioning the core feature classes required to represent geodetic data in a geographic information system. Like Arc Marine, the framework is generic to allow users to build workflow or product specific geodetic data models tailored to the specific task(s) at hand. This approach allows integration of the data with other existing

  4. Space geodetic observations of repeating slow slip events beneath the Bonin Islands

    Science.gov (United States)

    Arisa, Deasy; Heki, Kosuke

    2017-09-01

    The Pacific Plate subducts beneath the Philippine Sea Plate along the Izu-Bonin Trench. We investigated crustal movements at the Bonin Islands, using Global Navigation Satellite System and geodetic Very Long Baseline Interferometry data to reveal how the two plates converge in this subduction zone. These islands are located ∼100 km from the trench, just at the middle between the volcanic arc and the trench, making these islands suitable for detecting signatures of episodic deformation such as slow slip events (SSEs). During 2007-2016, we found five SSEs repeating quasi-periodically with similar displacement patterns. In estimating their fault parameters, we assumed that the fault lies on the prescribed plate boundary, and optimized the size, shape and position of the fault and dislocation vectors. Average fault slip was ∼5 cm, and the average moment magnitude was ∼6.9. We also found one SSE occurred in 2008 updip of the repeating SSE in response to an M6 class interplate earthquake. In spite of the frequent occurrence of SSEs, there is no evidence for long-term strain accumulation in the Bonin Islands that may lead to future megathrust earthquakes. Plate convergence in Mariana-type subduction zones may occur, to a large extent, episodically as repeating SSEs.

  5. Current status of the EPOS WG4 - GNSS and Other Geodetic Data

    Science.gov (United States)

    Fernandes, Rui; Bastos, Luisa; Bruyninx, Carine; D'Agostino, Nicola; Dousa, Jan; Ganas, Athanassios; Lidberg, Martin; Nocquet, Jean-Mathieu

    2014-05-01

    WG4 - "EPOS Geodetic Data and Other Geodetic Data" is the Working Group of the EPOS project in charge of defining and preparing the integration of the existing Pan-European Geodetic Infrastructures that will support European Geosciences, which is the ultimate goal of the EPOS project. The WG4 is formed by representatives of the participating EPOS countries (23) but it is also open to the entire geodetic community. In fact, WG4 also already includes members from countries that formally are not integrating EPOS in this first step. The geodetic component of EPOS (WG4) is dealing essentially with Research Infrastructures focused on continuous operating GNSS (cGNSS) in the current phase. The option of concentrating the efforts on the presently most generalized geodetic tool supporting research on Solid Earth was decided in order to optimize the existing resources. Nevertheless, WG4 will continue to pursue the development of tools and methodologies that permit the access of the EPOS community to other geodetic information (e.g., gravimetry). Furthermore, although the focus is on Solid Earth applications, other research and technical applications (e.g., reference frames, meteorology, space weather) can also benefit from the efforts of WG4 EPOS towards the optimization of the geodetic resources in Europe. We will present and discuss the plans for the implementation of the thematic and core services (TCS) for geodetic data within EPOS and the related business plan. We will focus on strategies towards the implementation of the best solutions that will permit to the end-users, and in particular geo-scientists, to access the geodetic data, derived solutions, and associated metadata using transparent and uniform processes. Five pillars have been defined proposed for the TCS: Dissemination, Preservation, Monitoring, and Analysis of geodetic data plus the Support and Governance Infrastructure. Current proposals and remaining open questions will be discussed.

  6. NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992

    Science.gov (United States)

    Ma, Chopo; Ryan, James W.; Caprette, Douglas S.

    1994-01-01

    The Goddard VLBI group reports the results of analyzing Mark 3 data sets acquired from 110 fixed and mobile observing sites through the end of 1992 and available to the Space Geodesy Program. Two large solutions were used to obtain site positions, site velocities, baseline evolution for 474 baselines, earth rotation parameters, nutation offsets, and radio source positions. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for the 89 baselines that were observed in 1992 and positions at 1988.0 are presented for all fixed stations and mobile sites. Positions are also presented for quasar radio sources used in the solutions.

  7. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  8. Path integral in Snyder space

    International Nuclear Information System (INIS)

    Mignemi, S.; Štrajn, R.

    2016-01-01

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  9. Integrating National Space Visions

    Science.gov (United States)

    Sherwood, Brent

    2006-01-01

    This paper examines value proposition assumptions for various models nations may use to justify, shape, and guide their space programs. Nations organize major societal investments like space programs to actualize national visions represented by leaders as investments in the public good. The paper defines nine 'vision drivers' that circumscribe the motivations evidently underpinning national space programs. It then describes 19 fundamental space activity objectives (eight extant and eleven prospective) that nations already do or could in the future use to actualize the visions they select. Finally the paper presents four contrasting models of engagement among nations, and compares these models to assess realistic pounds on the pace of human progress in space over the coming decades. The conclusion is that orthogonal engagement, albeit unlikely because it is unprecedented, would yield the most robust and rapid global progress.

  10. On the inversion of geodetic integrals defined over the sphere using 1-D FFT

    Science.gov (United States)

    García, R. V.; Alejo, C. A.

    2005-08-01

    An iterative method is presented which performs inversion of integrals defined over the sphere. The method is based on one-dimensional fast Fourier transform (1-D FFT) inversion and is implemented with the projected Landweber technique, which is used to solve constrained least-squares problems reducing the associated 1-D cyclic-convolution error. The results obtained are as precise as the direct matrix inversion approach, but with better computational efficiency. A case study uses the inversion of Hotine’s integral to obtain gravity disturbances from geoid undulations. Numerical convergence is also analyzed and comparisons with respect to the direct matrix inversion method using conjugate gradient (CG) iteration are presented. Like the CG method, the number of iterations needed to get the optimum (i.e., small) error decreases as the measurement noise increases. Nevertheless, for discrete data given over a whole parallel band, the method can be applied directly without implementing the projected Landweber method, since no cyclic convolution error exists.

  11. Path integration in conical space

    International Nuclear Information System (INIS)

    Inomata, Akira; Junker, Georg

    2012-01-01

    Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.

  12. Path integration on hyperbolic spaces

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).

  13. Path integration on hyperbolic spaces

    International Nuclear Information System (INIS)

    Grosche, C.

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)

  14. Rapid Ice-Sheet Changes and Mechanical Coupling to Solid-Earth/Sea-Level and Space Geodetic Observation

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2015-12-01

    Perturbations in gravitational and rotational potentials caused by climate driven mass redistribution on the earth's surface, such as ice sheet melting and terrestrial water storage, affect the spatiotemporal variability in global and regional sea level. Here we present a numerically accurate, computationally efficient, high-resolution model for sea level. Unlike contemporary models that are based on spherical-harmonic formulation, the model can operate efficiently in a flexible embedded finite-element mesh system, thus capturing the physics operating at km-scale yet capable of simulating geophysical quantities that are inherently of global scale with minimal computational cost. One obvious application is to compute evolution of sea level fingerprints and associated geodetic and astronomical observables (e.g., geoid height, gravity anomaly, solid-earth deformation, polar motion, and geocentric motion) as a companion to a numerical 3-D thermo-mechanical ice sheet simulation, thus capturing global signatures of climate driven mass redistribution. We evaluate some important time-varying signatures of GRACE inferred ice sheet mass balance and continental hydrological budget; for example, we identify dominant sources of ongoing sea-level change at the selected tide gauge stations, and explain the relative contribution of different sources to the observed polar drift. We also report our progress on ice-sheet/solid-earth/sea-level model coupling efforts toward realistic simulation of Pine Island Glacier over the past several hundred years.

  15. Legacy and future of Kilauea's geodetic studies

    Science.gov (United States)

    Montgomery-Brown, E. D.; Miklius, A.

    2011-12-01

    Because of its extensive and detailed history of geodetic measurements, Kilauea is one of the best-studied if not also best-understood volcanic systems in the world. Hawaiian volcanoes have a long history of deformation observations. These observations range from native legends of Pele's underground travels, through initial measurements made by the Hawaiian Volcano Observatory, and finally to current ground-based and satellite observations. Many questions still remain, relating to Kilauea's dynamics, where geodetic measurements could offer fundamental insights. For example, new geodetic experiments could lead to a better understanding of the degree of magmatic and tectonic interaction, the geometries of faults at depth, the extent of offshore deformation, and the magmatic plumbing system. While it is possible to design many experiments to address these issues, we focus on three deformation targets where geodetic improvements, including finer sampling in space and time, could yield significant advancements toward understanding Kilauea's dynamics. First, by scrutinizing spatially-dense space-borne geodetic data for signs of upper east rift zone deformation and incorporating gravity and seismic data in a high resolution tomographic model, the hydraulic connection between Kilauea's summit and the rift zone could be imaged, which would provide insight into the pathways that transport magma out to the rift zones. Second, a combination of geodetic and seismic data could be used to determine the nature of possible relationships and interactions between the Hilina fault system and Kilauea's basal decollement. Such a study would have important implications for assessments of future earthquake and sector collapse hazards. Lastly, by adding seafloor geodetic measurements and seismic data to the current geodetic network on Kilauea, we could delimit the offshore extent of transient and episodic decollement deformation. In addition to multidisciplinary approaches, future geodetic

  16. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    Energy Technology Data Exchange (ETDEWEB)

    Scherneck, H G; Johansson, J M; Elgered, G [Chalmers Univ. of Technology, Goeteborg (Sweden). Onsala Space Observatory

    1996-04-01

    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs.

  17. Application of space geodetic techniques for the determination of intraplate deformations and movements in relation with the postglacial rebound of Fennoscandia

    International Nuclear Information System (INIS)

    Scherneck, H.G.; Johansson, J.M.; Elgered, G.

    1996-04-01

    This report introduces into space geodetic measurements of relative positions over distances ranging from tens to thousands of kilometers. Such measurements can routinely be carried out with repeatabilities on the order of a few millimeters. The techniques presented are Very Long Baseline Interferometry (VLBI), employing observations of radio-astronomical objects in the distant universe, and ranging measurements to satellites of the GPS, the Global Positioning System. These techniques have helped to trace plate tectonic motions. More recently, deformations within continents have been detected. We present the SWEPOS system of permanently operating GPS stations as one of the major geoscience investments starting in 1993. BIFROST (Baseline Interference for Fennoscandian Rebound Observations, Sea level, and Tectonics) is a project within SWEPOS with main purpose to detect crustal movements in Fennoscandia. First results are presented, indicating movements which generally support the notion of a dominating displacement pattern due to the postglacial rebound of Fennoscandia. However deviations exist. densification is indicated in those areas which are notable for an increased seismicity. 148 refs

  18. Integration of micro-gravity and geodetic data to constrain shallow system mass changes at Krafla Volcano, N Iceland

    Science.gov (United States)

    de Zeeuw-van Dalfsen, Elske; Rymer, Hazel; Williams-Jones, Glyn; Sturkell, Erik; Sigmundsson, Freysteinn

    2006-04-01

    New and previously published micro-gravity data are combined with InSAR data, precise levelling and GPS measurements to produce a model for the processes operating at Krafla volcano, 20 years after its most recent eruption. The data have been divided into two periods: from 1990 to 1995 and from 1996 to 2003 and show that the rate of deflation at Krafla is decaying exponentially. The net micro-gravity change at the centre of the caldera is shown, using the measured free air gradient, to be -85 μGal for the first and -100 μGal for the second period. After consideration of the effects of water extraction by the geothermal power station within the caldera, the net gravity decreases are -73±17 μGal for the first and -65±17 μGal for the second period. These decreases are interpreted in terms of magma drainage. Following a Mogi point source model, we calculate the mass decrease to be ˜2×1010 kg/year reflecting a drainage rate of ˜0.23 m3/s, similar to the ˜0.13 m3/s drainage rate previously found at Askja volcano, N. Iceland. Based on the evidence for deeper magma reservoirs and the similarity between the two volcanic systems, we suggest a pressure-link between Askja and Krafla at deeper levels (at the lower crust or the crust-mantle boundary). After the Krafla fires, co-rifting pressure decrease of a deep source at Krafla stimulated the subsequent inflow of magma, eventually affecting conditions along the plate boundary in N. Iceland, as far away as Askja. We anticipate that the pressure of the deeper reservoir at Krafla will reach a critical value and eventually magma will rise from there to the shallow magma chamber, possibly initiating a new rifting episode. We have demonstrated that by examining micro-gravity and geodetic data, our knowledge of active volcanic systems can be significantly improved.

  19. Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques - project status and first results

    Science.gov (United States)

    Schmidt, M.; Hugentobler, U.; Jakowski, N.; Dettmering, D.; Liang, W.; Limberger, M.; Wilken, V.; Gerzen, T.; Hoque, M.; Berdermann, J.

    2012-04-01

    Near real-time high resolution and high precision ionosphere models are needed for a large number of applications, e.g. in navigation, positioning, telecommunications or astronautics. Today these ionosphere models are mostly empirical, i.e., based purely on mathematical approaches. In the DFG project 'Multi-scale model of the ionosphere from the combination of modern space-geodetic satellite techniques (MuSIK)' the complex phenomena within the ionosphere are described vertically by combining the Chapman electron density profile with a plasmasphere layer. In order to consider the horizontal and temporal behaviour the fundamental target parameters of this physics-motivated approach are modelled by series expansions in terms of tensor products of localizing B-spline functions depending on longitude, latitude and time. For testing the procedure the model will be applied to an appropriate region in South America, which covers relevant ionospheric processes and phenomena such as the Equatorial Anomaly. The project connects the expertise of the three project partners, namely Deutsches Geodätisches Forschungsinstitut (DGFI) Munich, the Institute of Astronomical and Physical Geodesy (IAPG) of the Technical University Munich (TUM) and the German Aerospace Center (DLR), Neustrelitz. In this presentation we focus on the current status of the project. In the first year of the project we studied the behaviour of the ionosphere in the test region, we setup appropriate test periods covering high and low solar activity as well as winter and summer and started the data collection, analysis, pre-processing and archiving. We developed partly the mathematical-physical modelling approach and performed first computations based on simulated input data. Here we present information on the data coverage for the area and the time periods of our investigations and we outline challenges of the multi-dimensional mathematical-physical modelling approach. We show first results, discuss problems

  20. Evidences of the expanding Earth from space-geodetic data over solid land and sea level rise in recent two decades

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2015-07-01

    Full Text Available According to the space-geodetic data recorded at globally distributed stations over solid land spanning a period of more than 20-years under the International Terrestrial Reference Frame 2008, our previous estimate of the average-weighted vertical variation of the Earth's solid surface suggests that the Earth's solid part is expanding at a rate of 0.24 ± 0.05 mm/a in recent two decades. In another aspect, the satellite altimetry observations spanning recent two decades demonstrate the sea level rise (SLR rate 3.2 ± 0.4 mm/a, of which 1.8 ± 0.5 mm/a is contributed by the ice melting over land. This study shows that the oceanic thermal expansion is 1.0 ± 0.1 mm/a due to the temperature increase in recent half century, which coincides with the estimate provided by previous authors. The SLR observation by altimetry is not balanced by the ice melting and thermal expansion, which is an open problem before this study. However, in this study we infer that the oceanic part of the Earth is expanding at a rate about 0.4 mm/a. Combining the expansion rates of land part and oceanic part, we conclude that the Earth is expanding at a rate of 0.35 ± 0.47 mm/a in recent two decades. If the Earth expands at this rate, then the altimetry-observed SLR can be well explained.

  1. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  2. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  3. Geodetic Survey Water Level Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over one million images of National Coast & Geodetic Survey (now NOAA's National Geodetic Survey/NGS) forms captured from microfiche. Tabular forms and charts...

  4. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections

    Science.gov (United States)

    Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A.

    2016-04-01

    We investigate a portion of the ancient (VI and IV centuries BC) polygonal walls of Amelia, in Central Italy. After the collapse of a portion of the walls which occurred in January 2006, a wide project started in order to monitor their external facade and inspect the characteristics of the internal structure, currently not clearly known. In this specific case, the preservation of such an important cultural heritage was mandatory, therefore invasive methods like drilling or archaeological essays cannot be used. For this purpose, a multidisciplinary approach represents an innovative way to shed light on their inner structure. We combine several non-invasive techniques such as Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT), specifically adapted for this study, Laser Scanning and Digital Terrestrial Photogrammetry, integrated with other geomatic measures provided by a Total Station and Global Navigation Satellite Systems (GNSS). After collecting some historical information, we gather the whole datasets exploring for their integration an interpretation approach borrowed from the reflection seismic (attribute analysis and three dimensional visualization). The results give rise for the first time to the internal imaging of this ancient walls, highlighting features associable to different building styles related to different historical periods. Among the result, we define a max wall thickness of about 3.5 m for the cyclopic sector, we show details of the internal block organization and we detect low resistivity values interpretable with high water content behind the basal part of the walls. Then, quantitative analyses to assess their reliable geotechnical stability are done, integrating new geometrical constrains provided by the geophysics and geo-technical ground parameters available in literature. From this analysis, we highlight how the Amelia walls are interested, in the investigated sector, by a critical pseudo-static equilibrium.

  5. Vertical integration from the large Hilbert space

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian

    2017-12-01

    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  6. RTX Correction Accuracy and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, L. G.; Raczka, J.; Barrientos, S. E.

    2016-12-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations

  7. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  8. Modified geodetic brane cosmology

    International Nuclear Information System (INIS)

    Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín

    2012-01-01

    We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)

  9. Integration in Orlicz-Bochner Spaces

    Directory of Open Access Journals (Sweden)

    Marian Nowak

    2018-01-01

    Full Text Available Let (Ω,Σ,μ be a complete σ-finite measure space, φ be a Young function, and X and Y be Banach spaces. Let Lφ(X denote the Orlicz-Bochner space, and Tφ∧ denote the finest Lebesgue topology on Lφ(X. We study the problem of integral representation of (Tφ∧,·Y-continuous linear operators T:Lφ(X→Y with respect to the representing operator-valued measures. The relationships between (Tφ∧,·Y-continuous linear operators T:Lφ(X→Y and the topological properties of their representing operator measures are established.

  10. SWIFF: Space weather integrated forecasting framework

    Directory of Open Access Journals (Sweden)

    Frederiksen Jacob Trier

    2013-02-01

    Full Text Available SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

  11. Geodesy introduction to geodetic datum and geodetic systems

    CERN Document Server

    Lu, Zhiping; Qiao, Shubo

    2014-01-01

    A full introduction to geodetic data and systems written by well-known experts in their respective fields, this book is an ideal text for courses in geodesy and geomatics covering everything from coordinate and gravimetry data to geodetic systems of all types.

  12. Path integration on space times with symmetry

    International Nuclear Information System (INIS)

    Low, S.G.

    1985-01-01

    Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform

  13. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  14. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  15. Space Power Integration: Perspectives from Space Weapons Officers

    Science.gov (United States)

    2006-12-01

    staff at Air University Press, Dr. Philip Adkins, Mrs. Sherry Terrell , and Mrs. Vivian O’Neal. Their creation of an integrated book from nine...Techniques of Complex Systems Science: An Overview ( Ann Arbor, MI: Center for the Study of Complex Sys- tems, University of Michigan, 9 July 2003), 34...Depart- ment of the Navy Space Policy, 26 August 1993. Shalizi, Cosma Rohilla. Methods and Techniques of Complex Systems Science: An Overview. Ann

  16. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  17. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  18. INTEGRAL EDUCATION, TIME AND SPACE: PROBLEMATIZING CONCEPTS

    Directory of Open Access Journals (Sweden)

    Ana Elisa Spaolonzi Queiroz Assis

    2018-03-01

    Full Text Available Integral Education, despite being the subject of public policy agenda for some decades, still carries disparities related to its concept. In this sense, this article aims to problematize not only the concepts of integral education but also the categories time and space contained in the magazines Em Aberto. They were organized and published by the National Institute of Educational Studies Anísio Teixeira (INEP, numbers 80 (2009 and 88 (2012, respectively entitled "Educação Integral e tempo integral" and " Políticas de educação integral em jornada ampliada". The methodology is based on Bardin’s content analysis, respecting the steps of pre-analysis (research corpus formed by the texts in the journals; material exploration (reading the texts encoding data choosing the registration units for categorization; and processing and interpretation of results, based on Saviani’s Historical-Critical Pedagogy. The work reveals convergent and divergent conceptual multiplicity, provoking a discussion about a critical conception of integral education. Keywords: Integral Education. Historical-Critical Pedagogy. Content Analysis.

  19. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  20. Ethics and public integrity in space exploration

    Science.gov (United States)

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  1. Gauge and integrable theories in loop spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Luchini, G.

    2012-01-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  2. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    MacLeod, Todd; Gagliano, Larry; Percy, Thomas; Mason, Shane

    2015-01-01

    Effective Space Asset Management is one key to addressing the ever-growing issue of space congestion. It is imperative that agencies around the world have access to data regarding the numerous active assets and pieces of space junk currently tracked in orbit around the Earth. At the center of this issues is the effective management of data of many types related to orbiting objects. As the population of tracked objects grows, so too should the data management structure used to catalog technical specifications, orbital information, and metadata related to those populations. Marshall Space Flight Center's Space Asset Management Database (SAM-D) was implemented in order to effectively catalog a broad set of data related to known objects in space by ingesting information from a variety of database and processing that data into useful technical information. Using the universal NORAD number as a unique identifier, the SAM-D processes two-line element data into orbital characteristics and cross-references this technical data with metadata related to functional status, country of ownership, and application category. The SAM-D began as an Excel spreadsheet and was later upgraded to an Access database. While SAM-D performs its task very well, it is limited by its current platform and is not available outside of the local user base. Further, while modeling and simulation can be powerful tools to exploit the information contained in SAM-D, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. This paper provides a summary of SAM-D development efforts to date and outlines a proposed data management infrastructure that extends SAM-D to support the larger data sets to be generated. A service-oriented architecture model using an information sharing platform named SIMON will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for

  3. National Geodetic Survey (NGS) Geodetic Control Stations, (Horizontal and/or Vertical Control), March 2009

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  4. National Geodetic Control Stations, Geographic NAD83, NGS (2004) [geodetic_ctrl_point_la_NGS_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  5. Path integrals over phase space, their definition and simple properties

    International Nuclear Information System (INIS)

    Tarski, J.; Technische Univ. Clausthal, Clausthal-Zellerfeld

    1981-10-01

    Path integrals over phase space are defined in two ways. Some properties of these integrals are established. These properties concern the technique of integration and the quantization rule isup(-I)deltasub(q) p. (author)

  6. The current state of the creation and modernization of national geodetic and cartographic resources in Poland

    Directory of Open Access Journals (Sweden)

    Doskocz Adam

    2016-01-01

    Full Text Available All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI, including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.

  7. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  8. Path Integrals and Anomalies in Curved Space

    International Nuclear Information System (INIS)

    Louko, Jorma

    2007-01-01

    Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a

  9. A new type of phase-space path integral

    International Nuclear Information System (INIS)

    Marinov, M.S.

    1991-01-01

    Evolution of Wigner's quasi-distribution of a quantum system is represented by means of a path integral in phase space. Instead of the Hamiltonian action, a new functional is present in the integral, and its extrema in the functional space are also given by the classical trajectories. The phase-space paths appear in the integral with real weights, so complex integrals are not necessary. The semiclassical approximation and some applications are discussed briefly. (orig.)

  10. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    Gagliano, L.; MacLeod, T.; Mason, S.; Percy, T.; Prescott, J.

    The Space Asset Management Database (SAM-D) was implemented in order to effectively track known objects in space by ingesting information from a variety of databases and performing calculations to determine the expected position of the object at a specified time. While SAM-D performs this task very well, it is limited by technology and is not available outside of the local user base. Modeling and simulation can be powerful tools to exploit the information contained in SAM-D. However, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. A more capable data management infrastructure would extend SAM-D to support the larger data sets to be generated by the COI. A service-oriented architecture model will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for visualizations. Based on a web-centric approach, the entire COI will be able to access the data and related analytics. In addition, tight control of information sharing policy will increase confidence in the system, which would encourage industry partners to provide commercial data. SIMON is a Government off the Shelf information sharing platform in use throughout DoD and DHS information sharing and situation awareness communities. SIMON providing fine grained control to data owners allowing them to determine exactly how and when their data is shared. SIMON supports a micro-service approach to system development, meaning M&S and analytic services can be easily built or adapted. It is uniquely positioned to fill this need as an information-sharing platform with a proven track record of successful situational awareness system deployments. Combined with the integration of new and legacy M&S tools, a SIMON-based architecture will provide a robust SA environment for the NASA SA COI that can be extended and expanded indefinitely. First Results of Coherent Uplink from a

  11. Added-value joint source modelling of seismic and geodetic data

    Science.gov (United States)

    Sudhaus, Henriette; Heimann, Sebastian; Walter, Thomas R.; Krueger, Frank

    2013-04-01

    In tectonically active regions earthquake source studies strongly support the analysis of the current faulting processes as they reveal the location and geometry of active faults, the average slip released or more. For source modelling of shallow, moderate to large earthquakes often a combination of geodetic (GPS, InSAR) and seismic data is used. A truly joint use of these data, however, usually takes place only on a higher modelling level, where some of the first-order characteristics (time, centroid location, fault orientation, moment) have been fixed already. These required basis model parameters have to be given, assumed or inferred in a previous, separate and highly non-linear modelling step using one of the these data sets alone. We present a new earthquake rupture model implementation that realizes a fully combined data integration of surface displacement measurements and seismic data in a non-linear optimization of simple but extended planar ruptures. The model implementation allows for fast forward calculations of full seismograms and surface deformation and therefore enables us to use Monte Carlo global search algorithms. Furthermore, we benefit from the complementary character of seismic and geodetic data, e. g. the high definition of the source location from geodetic data and the sensitivity of the resolution of the seismic data on moment releases at larger depth. These increased constraints from the combined dataset make optimizations efficient, even for larger model parameter spaces and with a very limited amount of a priori assumption on the source. A vital part of our approach is rigorous data weighting based on the empirically estimated data errors. We construct full data error variance-covariance matrices for geodetic data to account for correlated data noise and also weight the seismic data based on their signal-to-noise ratio. The estimation of the data errors and the fast forward modelling opens the door for Bayesian inferences of the source

  12. National Geodetic Survey's Airport Aerial Photography

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Geodetic Survey (NGS), formerly part of the U.S. Coast and Geodetic Survey, has been performing Aeronautical surveys since the 1920's. NGS, in...

  13. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  14. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  15. Continuous imaging space in three-dimensional integral imaging

    International Nuclear Information System (INIS)

    Zhang Lei; Yang Yong; Wang Jin-Gang; Zhao Xing; Fang Zhi-Liang; Yuan Xiao-Cong

    2013-01-01

    We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  16. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  17. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  18. The Space package: Tight Integration Between Space and Semantics

    NARCIS (Netherlands)

    van Hage, W.R.; Wielemaker, J.; Schreiber, A.Th.

    2010-01-01

    Interpretation of spatial features often requires combined reasoning over geometry and semantics. We introduce the Space package, an open source SWI-Prolog extension that provides spatial indexing capabilities. Together with the existing semantic web reasoning capabilities of SWI-Prolog, this allows

  19. Geodetic Control Information on Passive Marks: Horizontal and Vertical Geodetic Control Data for the United States - National Geospatial Data Asset (NGDA) Geodetic Control Information on Passive Marks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data contains a set of geodetic control stations maintained by the National Geodetic Survey. Each geodetic control station in this dataset has either a precise...

  20. Normalizations of Eisenstein integrals for reductive symmetric spaces

    NARCIS (Netherlands)

    van den Ban, E.P.; Kuit, Job

    2017-01-01

    We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with

  1. Continuous local martingales and stochastic integration in UMD Banach spaces

    NARCIS (Netherlands)

    Veraar, M.C.

    2007-01-01

    Recently, van Neerven, Weis and the author, constructed a theory for stochastic integration of UMD Banach space valued processes. Here the authors use a (cylindrical) Brownian motion as an integrator. In this note we show how one can extend these results to the case where the integrator is an

  2. First integrals of geodesics in the Einstein-Schwarzschild space

    International Nuclear Information System (INIS)

    Meshkov, A.G.; Dordzhiev, P.B.

    1984-01-01

    Linear and quadratic velocity integrals of geodesics in the Einstein-Schwarzschild space are calculated. The Schwarzschild geodesics equations have only four independent linear integrals. Quadratic integrals are polynomials from linear ones with constant coefficients. Total separation of variables in the Hamilton-Jacobi equation with Schwarzschild metric is possible only in two coordinate systems: ''spherical'' and ''conic'' systems

  3. The Global Geodetic Observing System: Recent Activities and Accomplishments

    Science.gov (United States)

    Gross, R. S.

    2017-12-01

    The Global Geodetic Observing System (GGOS) of the International Association of Geodesy (IAG) provides the basis on which future advances in geosciences can be built. By considering the Earth system as a whole (including the geosphere, hydrosphere, cryosphere, atmosphere and biosphere), monitoring Earth system components and their interactions by geodetic techniques and studying them from the geodetic point of view, the geodetic community provides the global geosciences community with a powerful tool consisting mainly of high-quality services, standards and references, and theoretical and observational innovations. The mission of GGOS is: (a) to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution; (b) to provide the global frame of reference that is the fundamental backbone for measuring and consistently interpreting key global change processes and for many other scientific and societal applications; and (c) to benefit science and society by providing the foundation upon which advances in Earth and planetary system science and applications are built. The goals of GGOS are: (1) to be the primary source for all global geodetic information and expertise serving society and Earth system science; (2) to actively promote, sustain, improve, and evolve the integrated global geodetic infrastructure needed to meet Earth science and societal requirements; (3) to coordinate with the international geodetic services that are the main source of key parameters and products needed to realize a stable global frame of reference and to observe and study changes in the dynamic Earth system; (4) to communicate and advocate the benefits of GGOS to user communities, policy makers, funding organizations, and society. In order to accomplish its mission and goals, GGOS depends on the IAG Services, Commissions, and Inter-Commission Committees. The Services provide the infrastructure and products on which all contributions

  4. Integration of Space Weather Forecasts into Space Protection

    Science.gov (United States)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  5. Leveraging geodetic data to reduce losses from earthquakes

    Science.gov (United States)

    Murray, Jessica R.; Roeloffs, Evelyn A.; Brooks, Benjamin A.; Langbein, John O.; Leith, William S.; Minson, Sarah E.; Svarc, Jerry L.; Thatcher, Wayne R.

    2018-04-23

    event response products and by expanded use of geodetic imaging data to assess fault rupture and source parameters.Uncertainties in the NSHM, and in regional earthquake models, are reduced by fully incorporating geodetic data into earthquake probability calculations.Geodetic networks and data are integrated into the operations and earthquake information products of the Advanced National Seismic System (ANSS).Earthquake early warnings are improved by more rapidly assessing ground displacement and the dynamic faulting process for the largest earthquakes using real-time geodetic data.Methodology for probabilistic earthquake forecasting is refined by including geodetic data when calculating evolving moment release during aftershock sequences and by better understanding the implications of transient deformation for earthquake likelihood.A geodesy program that encompasses a balanced mix of activities to sustain missioncritical capabilities, grows new competencies through the continuum of fundamental to applied research, and ensures sufficient resources for these endeavors provides a foundation by which the EHP can be a leader in the application of geodesy to earthquake science. With this in mind the following objectives provide a framework to guide EHP efforts:Fully utilize geodetic information to improve key products, such as the NSHM and EEW, and to address new ventures like the USGS Subduction Zone Science Plan.Expand the variety, accuracy, and timeliness of post-earthquake information products, such as PAGER (Prompt Assessment of Global Earthquakes for Response), through incorporation of geodetic observations.Determine if geodetic measurements of transient deformation can significantly improve estimates of earthquake probability.Maintain an observational strategy aligned with the target outcomes of this document that includes continuous monitoring, recording of ephemeral observations, focused data collection for use in research, and application-driven data processing and

  6. Integrated Structural Health Sensors for Inflatable Space Habitats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development of integrated high-definition fiber optic sensors (HD-FOS) and carbon nanotube (CNT)-graphene piezoresistive sensors for...

  7. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  8. The combined geodetic network adjusted on the reference ellipsoid – a comparison of three functional models for GNSS observations

    Directory of Open Access Journals (Sweden)

    Kadaj Roman

    2016-12-01

    Full Text Available The adjustment problem of the so-called combined (hybrid, integrated network created with GNSS vectors and terrestrial observations has been the subject of many theoretical and applied works. The network adjustment in various mathematical spaces was considered: in the Cartesian geocentric system on a reference ellipsoid and on a mapping plane. For practical reasons, it often takes a geodetic coordinate system associated with the reference ellipsoid. In this case, the Cartesian GNSS vectors are converted, for example, into geodesic parameters (azimuth and length on the ellipsoid, but the simple form of converted pseudo-observations are the direct differences of the geodetic coordinates. Unfortunately, such an approach may be essentially distorted by a systematic error resulting from the position error of the GNSS vector, before its projection on the ellipsoid surface. In this paper, an analysis of the impact of this error on the determined measures of geometric ellipsoid elements, including the differences of geodetic coordinates or geodesic parameters is presented. Assuming that the adjustment of a combined network on the ellipsoid shows that the optimal functional approach in relation to the satellite observation, is to create the observational equations directly for the original GNSS Cartesian vector components, writing them directly as a function of the geodetic coordinates (in numerical applications, we use the linearized forms of observational equations with explicitly specified coefficients. While retaining the original character of the Cartesian vector, one avoids any systematic errors that may occur in the conversion of the original GNSS vectors to ellipsoid elements, for example the vector of the geodesic parameters. The problem is theoretically developed and numerically tested. An example of the adjustment of a subnet loaded from the database of reference stations of the ASG-EUPOS system was considered for the preferred functional

  9. Determining Coastal Mean Dynamic Topography by Geodetic Methods

    Science.gov (United States)

    Huang, Jianliang

    2017-11-01

    In geodesy, coastal mean dynamic topography (MDT) was traditionally determined by spirit leveling technique. Advances in navigation satellite positioning (e.g., GPS) and geoid determination enable space-based leveling with an accuracy of about 3 cm at tide gauges. Recent CryoSat-2, a satellite altimetry mission with synthetic aperture radar (SAR) and SAR interferometric measurements, extends the space-based leveling to the coastal ocean with the same accuracy. However, barriers remain in applying the two space-based geodetic methods for MDT determination over the coastal ocean because current geoid modeling focuses primarily on land as a substitute to spirit leveling to realize the vertical datum.

  10. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  11. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  12. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  13. Geodetic Volcano Monitoring Research in Canary Islands: Recent Results

    Science.gov (United States)

    Fernandez, J.; Gonzalez, P. J.; Arjona, A.; Camacho, A. G.; Prieto, J. F.; Seco, A.; Tizzani, P.; Manzo, M. R.; Lanari, R.; Blanco, P.; Mallorqui, J. J.

    2009-05-01

    The Canarian Archipelago is an oceanic island volcanic chain with a long-standing history of volcanic activity (> 40 Ma). It is located off the NW coast of the African continent, lying over a transitional crust of the Atlantic African passive margin. At least 12 eruptions have been occurred on the islands of Lanzarote, Tenerife and La Palma in the last 500 years. Volcanism manifest predominantly as basaltic strombolian monogenetic activity (whole archipelago) and central felsic volcanism (active only in Tenerife Island). We concentrate our studies in the two most active islands, Tenerife and La Palma. In these islands, we tested different methodologies of geodetic monitoring systems. We use a combination of ground- and space-based techniques. At Tenerife Island, a differential interferometric study was performed to detect areas of deformation. DInSAR detected two clear areas of deformation, using this results a survey-based GPS network was designed and optimized to control those deformations and the rest of the island. Finally, using SBAS DInSAR results weak spatial long- wavelength subsidence signals has been detected. At La Palma, the first DInSAR analysis have not shown any clear deformation, so a first time series analysis was performed detecting a clear subsidence signal at Teneguia volcano, as for Tenerife a GPS network was designed and optimized taking into account stable and deforming areas. After several years of activities, geodetic results served to study ground deformations caused by a wide variety of sources, such as changes in groundwater levels, volcanic activity, volcano-tectonics, gravitational loading, etc. These results proof that a combination of ground-based and space-based techniques is suitable tool for geodetic volcano monitoring in Canary Islands. Finally, we would like to strength that those results could have serious implications on the continuous geodetic monitoring system design and implementation for the Canary Islands which is under

  14. Convergence theorems for Banach space valued integrable multifunctions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1987-01-01

    Full Text Available In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω (1≤p≤∞. Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.

  15. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  16. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  17. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  18. GOZCARDS Source Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpO3) contains zonal means and related information...

  19. GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpN2O) contains zonal means and related...

  20. GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid V1.00

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Temperature Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpT) contains zonal means and related...

  1. GOZCARDS Source Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Source Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozSmlpHNO3) contains zonal means and related...

  2. GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitrous Oxide Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpN2O) contains zonal means and related...

  3. GOZCARDS Merged Data for Water Vapor Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Water Vapor Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpH2O) contains zonal means and related...

  4. GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Hydrogen Chloride Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHCl) contains zonal means and related...

  5. GOZCARDS Merged Data for Ozone Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Ozone Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpO3) contains zonal means and related information...

  6. GOZCARDS Merged Data for Nitric Acid Monthly Zonal Means on a Geodetic Latitude and Pressure Grid V1.01

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOZCARDS Merged Data for Nitric Acid Monthly Zonal Averages on a Geodetic Latitude and Pressure Grid product (GozMmlpHNO3) contains zonal means and related...

  7. Agile Big Data Analytics of High-Volume Geodetic Data Products for Improving Science and Hazard Response

    Data.gov (United States)

    National Aeronautics and Space Administration — Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The...

  8. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  9. On the calculation of soft phase space integral

    International Nuclear Information System (INIS)

    Zhu, Hua Xing

    2015-01-01

    The recent discovery of the Higgs boson at the LHC attracts much attention to the precise calculation of its production cross section in quantum chromodynamics. In this work, we discuss the calculation of soft triple-emission phase space integral, which is an essential ingredient in the recently calculated soft-virtual corrections to Higgs boson production at next-to-next-to-next-to-leading order. The main techniques used this calculation are method of differential equation for Feynman integral, and integration of harmonic polylogarithms.

  10. On the path integral in imaginary Lobachevsky space

    International Nuclear Information System (INIS)

    Grosche, C.

    1993-10-01

    The path integral on the single-sheeted hyperboloid, i.e. in D-dimensional imaginary Lobachevsky space, is evaluated. A potential problem which we call 'Kepler-problem', and the case of a constant magnetic field are also discussed. (orig.)

  11. Stability of Global Geodetic Results

    Science.gov (United States)

    Herring, T.

    The precision of global geodetic techniques has reached unprecedented levels. Sys- tems capable of millimeter level horizontal and several millimeter vertical precisions are now deployed. The Global Positioning System (GPS) has the most deployed continuously-operating receivers with several hundred providing data through the in- ternet for analysis. However, the satellite system used with GPS evolves with time as new generations of GPS satellites are launched. During the 1990's, the constellation evolved from Block I to Block II and IIA with the most recent generation being Block IIR. There are considerable differences in the size and antenna configurations in the different generations of satellites. The antenna configuration specifically could cause systematic changes in the terrestrial reference system. Results from the ITRF2000 combinations suggest that there are significant time variations in the scale of GPS system possibly due to phase center variations in GPS transmission antennas. These variations could result in height changes of up to 3 mm/yr. We will investigate the stability of the GPS system through combination of GPS results with results from VLBI and SLR. All components of the transformation between the systems, rotation, translation and scale will be investigated.

  12. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  13. Space Medicine in the Human System Integration Process

    Science.gov (United States)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  14. A resolution of the integration region problem for the supermoduli space integral

    Science.gov (United States)

    Davis, Simon

    2014-12-01

    The integration region of the supermoduli space integral is defined in the super-Schottky group parametrization. The conditions on the super-period matrix elements are translated to relations on the parameters. An estimate of the superstring amplitude at arbitrary genus is sufficient for an evaluation of the cross-section to all orders in the expansion of the scattering matrix.

  15. Three-dimensional stochastic adjustment of volcano geodetic network in Arenal volcano, Costa Rica

    Science.gov (United States)

    Muller, C.; van der Laat, R.; Cattin, P.-H.; Del Potro, R.

    2009-04-01

    Volcano geodetic networks are a key instrument to understanding magmatic processes and, thus, forecasting potentially hazardous activity. These networks are extensively used on volcanoes worldwide and generally comprise a number of different traditional and modern geodetic surveying techniques such as levelling, distances, triangulation and GNSS. However, in most cases, data from the different methodologies are surveyed, adjusted and analysed independently. Experience shows that the problem with this procedure is the mismatch between the excellent correlation of position values within a single technique and the low cross-correlation of such values within different techniques or when the same network is surveyed shortly after using the same technique. Moreover one different independent network for each geodetic surveying technique strongly increase logistics and thus the cost of each measurement campaign. It is therefore important to develop geodetic networks which combine the different geodetic surveying technique, and to adjust geodetic data together in order to better quantify the uncertainties associated to the measured displacements. In order to overcome the lack of inter-methodology data integration, the Geomatic Institute of the University of Applied Sciences of Western Switzerland (HEIG-VD) has developed a methodology which uses a 3D stochastic adjustment software of redundant geodetic networks, TRINET+. The methodology consists of using each geodetic measurement technique for its strengths relative to other methodologies. Also, the combination of the measurements in a single network allows more cost-effective surveying. The geodetic data are thereafter adjusted and analysed in the same referential frame. The adjustment methodology is based on the least mean square method and links the data with the geometry. Trinet+ also allows to run a priori simulations of the network, hence testing the quality and resolution to be expected for a determined network even

  16. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  17. Integrable Flows for Starlike Curves in Centroaffine Space

    Directory of Open Access Journals (Sweden)

    Annalisa Calini

    2013-03-01

    Full Text Available We construct integrable hierarchies of flows for curves in centroaffine R^3 through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP^2 induces the Kaup-Kuperschmidt hierarchy at the curvature level.

  18. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  19. Integrable systems with quadratic nonlinearity in Fourier space

    International Nuclear Information System (INIS)

    Marikhin, V.G.

    2003-01-01

    The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed

  20. GeoSEA: Geodetic Earthquake Observatory on the Seafloor

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Flueh, Ernst R.; Petersen, Florian; Behrmann, Jan-Hinrich; Devey, Colin

    2014-05-01

    Space geodetic observations of crustal deformation have contributed greatly to our understanding of plate tectonic processes in general, and plate subduction in particular. Measurements of interseismic strain have documented the active accumulation of strain, and subsequent strain release during earthquakes. However, techniques such as GPS cannot be applied below the water surface because the electromagnetic energy is strongly attenuated in the water column. Evidence suggests that much of the elastic strain build up and release (and particularly that responsible for both tsunami generation and giant earthquakes) occurs offshore. To quantify strain accumulation and assess the resultant hazard potential we urgently need systems to resolve seafloor crustal deformation. Here we report on first results of sea trials of a newly implemented seafloor geodesy array. The GeoSEA (Geodetic Earthquake Observatory on the Seafloor) array consists of a seafloor transponder network comprising 35 units and a wave glider acting as a surface unit (GeoSURF) to ensure satellite correspondence, data transfer and monitor system health. Seafloor displacement occurs in the horizontal (x,y) and vertical direction (z). The vertical displacement is measured by monitoring pressure variations at the seafloor. Horizontal seafloor displacement can be measured either using an acoustic/GPS combination to provide absolute positioning (requiring a suitably equipped vessel to perform repeated cruises to provide the GPS fixes) or by long-term acoustic telemetry between different beacons fixed on the seafloor to determine relative distances by using the travel time observations to each other, which is the technique tested during our short sea trials. For horizontal direct path measurements, the system utilizes acoustic ranging techniques with a ranging precision better than 15 mm and long term stability over 2 km distances. Vertical motion is obtained from pressure gauges. Integrated inclinometers

  1. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  2. FLRW cosmology in Weyl-integrable space-time

    Energy Technology Data Exchange (ETDEWEB)

    Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  3. Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

    Directory of Open Access Journals (Sweden)

    V. S. Guliyev

    2015-01-01

    Full Text Available We study the continuity properties of the generalized fractional integral operator Iρ on the generalized local Morrey spaces LMp,φ{x0} and generalized Morrey spaces Mp,φ. We find conditions on the triple (φ1,φ2,ρ which ensure the Spanne-type boundedness of Iρ from one generalized local Morrey space LMp,φ1{x0} to another LMq,φ2{x0}, 1space WLMq,φ2{x0}, 1integral inequalities on (φ1,φ2,ρ and (φ,ρ, which do not assume any assumption on monotonicity of φ1(x,r, φ2(x,r, and φ(x,r in r.

  4. Explicitly computing geodetic coordinates from Cartesian coordinates

    Science.gov (United States)

    Zeng, Huaien

    2013-04-01

    This paper presents a new form of quartic equation based on Lagrange's extremum law and a Groebner basis under the constraint that the geodetic height is the shortest distance between a given point and the reference ellipsoid. A very explicit and concise formulae of the quartic equation by Ferrari's line is found, which avoids the need of a good starting guess for iterative methods. A new explicit algorithm is then proposed to compute geodetic coordinates from Cartesian coordinates. The convergence region of the algorithm is investigated and the corresponding correct solution is given. Lastly, the algorithm is validated with numerical experiments.

  5. Integration Processes on Civil Service Reform in the Eurasian Space

    Directory of Open Access Journals (Sweden)

    George A. Borshevskiy

    2016-01-01

    Full Text Available In the article was studied the process of reforming the institute of civil service in the countries of the Eurasian space (e.g. Russia, Belarus and Kazakhstan. The integration of national systems of public administration and, in particular, the civil service, is an important factor contributing to the implementation of the centripetal tendencies in the post-Soviet space. The research methodology is based on a combination of comparative legal analysis, historical retrospective method, normalization and scaling, structural-functional and system analysis. A comparison of the legal models of public service was made in research. The author puts forward the hypothesis that it is presence the relationship between the quantitative changes (for example, number of employees of civil service and the dynamics of macroeconomic indicators (e.g. number of employed in the economy. In this regard were observed common trends. On materials of the statistical surveys were considered quantitative changes in national systems of civil service. The study of the socio-demographic characteristics of the public service (gender, age, profession allowed to formulate conclusions about the general and specific trends in the reform of the civil service of the analyzed countries. A number of values were first calculated by the author. The work is intended to become the basis for a broad international research on the development of civil service, which is the central mechanism for implementation the integration in the post-Soviet space.

  6. On linearity of pan-integral and pan-integrable functions space

    Czech Academy of Sciences Publication Activity Database

    Ouyang, Y.; Li, J.; Mesiar, Radko

    2017-01-01

    Roč. 90, č. 1 (2017), s. 307-318 ISSN 0888-613X Institutional support: RVO:67985556 Keywords : linearity * monotone measure * Pan-integrable space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf

  7. Geodetic refraction effects of electromagnetic wave propagation through the atmosphere

    CERN Document Server

    1984-01-01

    With very few exceptions, geodetic measurements use electro­ magnetic radiation in order to measure directions, distances, time delays, and Doppler frequency shifts, to name the main ter­ restrial and space observables. Depending on the wavelength of the radiation and the purpose of the measurements, the follow­ ing parameters of the electromagnetic wave are measured: ampli­ tude, phase, angle-of-arrival, polarisation and frequency. Ac­ curate corrections have to be applied to the measurements in order to take into account the effects of the intervening medium between transmitter and receiver. The known solutions use at­ mospheric models, special observation programs, remote sensing techniques and instrumental methods. It has been shown that the effects of the earth's atmospheric envelope present a fundamental limitation to the accuracy and precision of geodetic measurements. This applies equally to ter­ restrial and space applications. Instrumental accuracies are al­ ready below the atmospherically i...

  8. Stochastic integration in Banach spaces theory and applications

    CERN Document Server

    Mandrekar, Vidyadhar

    2015-01-01

    Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...

  9. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  10. Integrated human-machine intelligence in space systems

    Science.gov (United States)

    Boy, Guy A.

    1992-01-01

    The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.

  11. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  12. Hybrid state-space time integration of rotating beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2012-01-01

    An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of local displacements and local components of the absolute velocity. With inspiration...... of the system rotation enter via global operations with the angular velocity vector. The algorithm is based on an integrated form of the equations of motion with energy and momentum conserving properties, if a kinematically consistent non-linear formulation is used. A consistent monotonic scheme for algorithmic...... energy dissipation in terms of local displacements and velocities, typical of structural vibrations, is developed and implemented in the form of forward weighting of appropriate mean value terms in the algorithm. The algorithm is implemented for a beam theory with consistent quadratic non...

  13. Geodetic contributions to IWRM-projects in middle Java, Indonesia

    Science.gov (United States)

    Schmitt, Günter

    2010-12-01

    The district of Gunung Kidul in middle Java is one of the poorest regions in Indonesia. The essential reason is the acute water scarcity in this karst region during the months of the dry season. As a consequence of the poor living conditions many people have migrated away and therefore the development of the region is stagnating. During the last few years two projects have been initiated under the theme “Integrated Water Resources Management” in order to improve the water supply situation, both funded by the German Federal Ministry of Education and Research, and realized essentially by institutes of the University of Karlsruhe. Geodetic sub-projects are integrated into both projects. Special surveying activities had been, and have still to be, carried out to realise the geometrical basis for several other sub-projects. The particular contributions are 3D cave measurements for visualisation and planning, staking out of drilling points and construction axes, the definition of a common reference system, the surveying of the water distribution network and its technical facilities, the setting up and the management of a geographical information system (GIS), as well as special measurements such as dam monitoring or controlling of a vertical drilling machine. The paper reviews these projects and describes the geodetic activities.

  14. Representing Space through the Interplay between Attention and Multisensory Integration

    Directory of Open Access Journals (Sweden)

    Emiliano Macaluso

    2011-10-01

    Full Text Available Multisensory integration has been traditionally thought to rely on a restricted set of multisensory brain areas, and to occur automatically and pre-attentively. More recently, it has become evident that multisensory interactions can be found almost everywhere in the brain, including areas involved in attention control and areas modulated by attention. In a series of fMRI experiments, we manipulated concurrently the position of multisensory stimuli and the distribution of spatial attention. This enabled us to highlight the role of high-order fronto-parietal areas, as well as sensory-specific occipital cortex, for multisensory processing and spatial attention control. We found that specific task constraints regarding the nature of attentional deployment (endogenous vs. exogenous, the spatial relationship between stimulus position and attended location, and attentional load shape the interplay between attention and multisensory processing. We suggest that multisensory integration acts as a saliency-defining process that can interact with attentional control beyond any within-modality mechanism. We propose that an anatomically-distributed, but functionally-integrated, representation of space makes use of multisensory interactions to help attention selecting relevant spatial locations. Stimuli at the attended location undergo enhanced processing, including boosting of multisensory signals there. In this perspective, attention and multisensory integration operate in an interactive manner jointly determining the activity of a wide-spread network that includes high-order fronto-parietal regions and sensory-specific areas.

  15. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  16. An Autonomous, Low Cost Platform for Seafloor Geodetic Observations

    Science.gov (United States)

    Ericksen, T.; Foster, J. H.; Bingham, B. S.

    2013-12-01

    The high cost of acquiring geodetic data from the sea floor has limited the observations available to help us understand and model the behavior of seafloor geodetic processes. To address this problem, the Pacific GPS Facility at the University of Hawaii is developing a cost effective approach for accurately measuring short-term vertical motions of the seafloor and maintaining a continuous long-term record of seafloor pressure without the requirement for costly ship time. There is a recognized need to vastly increase our underwater geodetic observing capacity. Most of the largest recorded earthquakes and most devastating tsunamis are generated at subduction zones underwater. Similarly, many volcanoes are partly (e.g. Santorini) or completely (e.g. Loihi) submerged, and are not well observed and understood. Furthermore, landslide features ring many ocean basins, and huge debris deposits surround many volcanic oceanic islands. Our approach will lower the cost of collecting sea-floor geodetic data, reducing the barriers preventing us from acquiring the information we need to observe and understand these types of structures and provide a direct societal benefit in improving hazard assessment. The capability is being developed by equipping one of the University of Hawaii Wave Gliders with an integrated acoustic telemetry package, a dual frequency geodetic-grade Global Positioning System (GPS) receiver, processing unit, and cellular communications. The Wave Glider will interrogate high accuracy pressure sensors on the sea floor to maintain a near-continuous stream of pressure and temperature data, but seafloor pressure data includes contribution from a variety of sources and on its own may not provide the accuracy required for geodetic investigations. Independent measurements of sea surface pressure and sea surface height can be used to remove these contributions from the observed sea floor pressure timeseries. We will integrate our seafloor pressure measurements with air

  17. Geodetic alignment of laser power installations

    International Nuclear Information System (INIS)

    Shtorm, V.V.; Gostev, A.M.; Drobikov, A.V.

    1989-01-01

    Main problems occuring in applied geodesy under initial alignment of laser power installation optical channel are considered. Attention is paid to alignment of lens beamguide telescopic pairs and alignment quality control. Methods and means of geodetic measurements under alignment are indicated. Conclusions are made about the degree of working through certain aspects of the problem

  18. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    , and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry.

  19. Large Scale System Safety Integration for Human Rated Space Vehicles

    Science.gov (United States)

    Massie, Michael J.

    2005-12-01

    Since the 1960s man has searched for ways to establish a human presence in space. Unfortunately, the development and operation of human spaceflight vehicles carry significant safety risks that are not always well understood. As a result, the countries with human space programs have felt the pain of loss of lives in the attempt to develop human space travel systems. Integrated System Safety is a process developed through years of experience (since before Apollo and Soyuz) as a way to assess risks involved in space travel and prevent such losses. The intent of Integrated System Safety is to take a look at an entire program and put together all the pieces in such a way that the risks can be identified, understood and dispositioned by program management. This process has many inherent challenges and they need to be explored, understood and addressed.In order to prepare truly integrated analysis safety professionals must gain a level of technical understanding of all of the project's pieces and how they interact. Next, they must find a way to present the analysis so the customer can understand the risks and make decisions about managing them. However, every organization in a large-scale project can have different ideas about what is or is not a hazard, what is or is not an appropriate hazard control, and what is or is not adequate hazard control verification. NASA provides some direction on these topics, but interpretations of those instructions can vary widely.Even more challenging is the fact that every individual/organization involved in a project has different levels of risk tolerance. When the discrete hazard controls of the contracts and agreements cannot be met, additional risk must be accepted. However, when one has left the arena of compliance with the known rules, there can be no longer be specific ground rules on which to base a decision as to what is acceptable and what is not. The integrator must find common grounds between all parties to achieve

  20. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  1. Geodetic precession or dragging of inertial frames?

    International Nuclear Information System (INIS)

    Ashby, N.; Shahid-Saless, B.

    1990-01-01

    In metric theories of gravity the principle of general covariance allows one to describe phenomena by means of any convenient choice of coordinate system. In this paper it is shown that in an appropriately chosen coordinate system, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning mass can be recast as a Lense-Thirring frame-dragging effect without invoking spatial curvature. The origin of this reference frame moves around the source but the frame axes point in fixed directions. The drag can be interpreted to arise from the orbital angular momentum of the source around the origin of the reference frame. In this reference frame the effects of geodetic precession and Lense-Thirring drag due to intrinsic angular momentum of the source have the same origin, namely, gravitomagnetism

  2. Integration of advanced teleoperation technologies for control of space robots

    Science.gov (United States)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  3. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  4. CubeSat Integration into the Space Situational Awareness Architecture

    Science.gov (United States)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of

  5. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  6. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  7. Plate motions and deformations from geologic and geodetic data

    Science.gov (United States)

    Jordan, T. H.

    1986-06-01

    Research effort on behalf of the Crustal Dynamics Project focused on the development of methodologies suitable for the analysis of space-geodetic data sets for the estimation of crustal motions, in conjunction with results derived from land-based geodetic data, neo-tectonic studies, and other geophysical data. These methodologies were used to provide estimates of both global plate motions and intraplate deformation in the western U.S. Results from the satellite ranging experiment for the rate of change of the baseline length between San Diego and Quincy, California indicated that relative motion between the North American and Pacific plates over the course of the observing period during 1972 to 1982 were consistent with estimates calculated from geologic data averaged over the past few million years. This result, when combined with other kinematic constraints on western U.S. deformation derived from land-based geodesy, neo-tectonic studies, and other geophysical data, places limits on the possible extension of the Basin and Range province, and implies significant deformation is occurring west of the San Andreas fault. A new methodology was developed to analyze vector-position space-geodetic data to provide estimates of relative vector motions of the observing sites. The algorithm is suitable for the reduction of large, inhomogeneous data sets, and takes into account the full position covariances, errors due to poorly resolved Earth orientation parameters and vertical positions, and reduces baises due to inhomogeneous sampling of the data. This methodology was applied to the problem of estimating the rate-scaling parameter of a global plate tectonic model using satellite laser ranging observations over a five-year interval. The results indicate that the mean rate of global plate motions for that interval are consistent with those averaged over several million years, and are not consistent with quiescent or greatly accelerated plate motions. This methodology was also

  8. A Web Based Approach to Integrate Space Culture and Education

    Science.gov (United States)

    Gerla, F.

    2002-01-01

    , who can use it to prepare their lessons, retrieve information and organize the didactic material in order to support their lessons. We think it important to use a user centered "psychology" based on UM: we have to know the needs and expectations of the students. Our intent is to use usability tests not just to prove the site effectiveness and clearness, but also to investigate aesthetical preferences of children and young people. Physics, mathematics, chemistry are just some of the difficult learning fields connected with space technologies. Space culture is a potentially never-ending field, and our scope will be to lead students by hand in this universe of knowledge. This paper will present MARS activities in the framework of the above methodologies aimed at implementing a web based approach to integrate space culture and education. The activities are already in progress and some results will be presented in the final paper.

  9. NASA's Next Generation Space Geodesy Program

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S. D.; Gross, R. S.; Hillard, L. M.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Requirements for the ITRF have increased dramatically since the 1980s. The most stringent requirement comes from critical sea level monitoring programs: a global accuracy of 1.0 mm, and 0.1mm/yr stability, a factor of 10 to 20 beyond current capability. Other requirements for the ITRF coming from ice mass change, ground motion, and mass transport studies are similar. Current and future satellite missions will have ever-increasing measurement capability and will lead to increasingly sophisticated models of these and other changes in the Earth system. Ground space geodesy networks with enhanced measurement capability will be essential to meeting the ITRF requirements and properly interpreting the satellite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation of the observed geophysical signals. NASA has embarked on a Space Geodesy Program with a long-range goal to build, deploy and operate a next generation NASA Space Geodetic Network (SGN). The plan is to build integrated, multi-technique next-generation space geodetic observing systems as the core contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Phase 1 of this project has been funded to (1) Establish and demonstrate a next-generation prototype integrated Space Geodetic Station at Goddard's Geophysical and Astronomical Observatory (GGAO), including next-generation SLR and VLBI systems along with modern GNSS and DORIS; (2) Complete ongoing Network Design Studies that describe the appropriate number and distribution of next-generation Space Geodetic Stations for an improved global network; (3) Upgrade analysis capability to handle the next-generation data; (4) Implement a modern

  10. Misbheaving Faults: The Expanding Role of Geodetic Imaging in Unraveling Unexpected Fault Slip Behavior

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R.

    2015-12-01

    Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons

  11. Encouraging Deep Approach to Learning in Civil and Geodetic Engineering

    Directory of Open Access Journals (Sweden)

    Gašper Mrak

    2016-10-01

    Full Text Available This paper presents activities and changes applied to the teaching process within selected courses offered by Faculty of civil and geodetic engineering, University of Ljubljana, Slovenia. Theoretical background, evaluated from the point of the technical education needs, is presented. It can be seen that special focus has to be made to the students' motivation for deep learning which guarantees optimal balance between acquisition of concepts and skills, information processing and integration of fragmented pieces of knowledge into complex structures. Three case studies used to test theoretical points of departure are presented. Results of the introduced novelties and changes have been evaluated through the assessment of knowledge, students' satisfaction and teaching staff evaluations. For conclusive results, monitoring over a longer period of time should be conducted.

  12. Onboard Space Autonomy Through Integration of Health Management and Control Reconfiguration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project we propose to integrate spacecraft control and vehicle health functions to improve the robustness and productivity of space operations. The main...

  13. Geodynamical behavior of some active area in Egypt, as deduced from geodetic and gravity data

    Science.gov (United States)

    Issawy, E.; Mrlina, J.; Radwan, A.; Mahmoud, S.; Rayan, A.

    2009-04-01

    Temporal gravity variation in parallel with the space geodetic technique (GPS) had been started in Egypt for real campaigns in 1997. The geodetic networks around the High Dam, Aswan area was the first net to be measured. More than five measurement epochs were performed. The results had a considerable limit of coincidence between gravity and GPS observations. The trend of gravity changes indicated a positive stress and had the vertical displacement observed for leveling points. The lowest gravity changes along Kalabsha fault reflect extensional and/or strike component of the stress field. Also, the areas around Cairo (Greater Cairo) and due to the occurrence of an earthquake of 1992, such type of measurements were useful for monitoring the recent activity. The data of the geodetic network around Cairo after 5 campaigns showed that, the estimated horizontal velocities for almost all points are 5.5± mm/year in approximately NW-SE direction. The non-tidal changes can explain the dynamic process within the upper crust related to the development of local stress conditions. The trends of gravity changes are more or less coincident with that deduced from GPS deformation analysis and the occurrence of the main shocks in the area. In additions, in 2005 the geodetic network around the southern part of Sinai and the Gulf of Suez were established. One campaign of measurements had been performed and the gravity values were obtained.

  14. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  15. Next Generation Space Telescope Integrated Science Module Data System

    Science.gov (United States)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  16. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  17. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  18. Logistics: An integral part of cost efficient space operations

    Science.gov (United States)

    Montgomery, Ann D.

    1996-01-01

    The logistics of space programs and its history within NASA are discussed, with emphasis on manned space flight and the Space Shuttle program. The lessons learned and the experience gained during these programs are reported on. Key elements of logistics are highlighted, and the problems and issues that can be expected to arise in relation to the support of long-term space operations and future space programs, are discussed. Such missions include the International Space Station program and the reusable launch vehicle. Possible solutions to the problems identified are outlined.

  19. Ostrogradski Hamiltonian approach for geodetic brane gravity

    International Nuclear Information System (INIS)

    Cordero, Ruben; Molgado, Alberto; Rojas, Efrain

    2010-01-01

    We present an alternative Hamiltonian description of a branelike universe immersed in a flat background spacetime. This model is named geodetic brane gravity. We set up the Regge-Teitelboim model to describe our Universe where such field theory is originally thought as a second order derivative theory. We refer to an Ostrogradski Hamiltonian formalism to prepare the system to its quantization. This approach comprize the manage of both first- and second-class constraints and the counting of degrees of freedom follows accordingly.

  20. Geodetic achievement and avoidance games for graphs | Haynes ...

    African Journals Online (AJOL)

    Let G = (V,E) be a nontrivial connected graph. For a subset S ⊆ V, the geodesic closure (S) of S is the set of all vertices on geodesics (shortest paths) between two vertices of S. We study the geodetic achievement and avoidance games defined by Buckley and Harary (Geodetic games for graphs, Quaestiones Math.

  1. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  2. On Kurzweil-Stieltjes integral in a Banach space

    Czech Academy of Sciences Publication Activity Database

    Monteiro, G.A.; Tvrdý, Milan

    2012-01-01

    Roč. 137, č. 4 (2012), s. 365-381 ISSN 0862-7959 Institutional research plan: CEZ:AV0Z10190503 Institutional support: RVO:67985840 Keywords : Kurzweil-Stielthes integral * substitution formula * integration-by-parts Subject RIV: BA - General Mathematics http://www.dml.cz/handle/10338.dmlcz/142992

  3. Multi-geodetic characterization of the seasonal signal at the CERGA geodetic reference, France

    Science.gov (United States)

    Memin, A.; Viswanathan, V.; Fienga, A.; Santamaría-Gómez, A.; Boy, J. P.

    2016-12-01

    Crustal deformations due to surface-mass loading account for a significant part of the variability in geodetic time series. A perfect understanding of the loading signal observed by geodetic techniques should help in improving terrestrial reference frame (TRF) realizations. Yet, discrepancies between crustal motion estimates from models of surface-mass loading and observations are still too large so that no model is currently recommended by the IERS for reducing the data. We investigate the discrepancy observed in the seasonal variations of the CERGA station, South of France.We characterize the seasonal motions of the reference geodetic station CERGA from GNSS, SLR and LLR. We compare the station motion observed with GNSS and SLR and we estimate changes in the station-to-the-moon distance using an improved processing strategy. We investigate the consistency between these geodetic techniques and compare the observed station motion with that estimated using models of surface-mass change. In that regard, we compute atmospheric loading effects using surface pressure fields from ECMWF, assuming an ocean response according to the classical inverted barometer (IB) assumption, considered to be valid for periods typically exceeding a week. We also used general circulation ocean models (ECCO and GLORYS) forced by wind, heat and fresh water fluxes. The continental water storage is described using GLDAS/Noah and MERRA-land models.Using the surface-mass models, we estimate the amplitude of the seasonal vertical motion of the CERGA station ranging between 5 and 10 mm with a maximum reached in August, mostly due to hydrology. The horizontal seasonal motion of the station may reach up to 3 mm. Such a station motion should induce a change in the distance to the moon reaching up to 10 mm, large enough to be detected in LLR time series and compared to GNSS- and SLR-derived motion.

  4. Introducing a New Software for Geodetic Analysis

    Science.gov (United States)

    Hjelle, Geir Arne; Dähnn, Michael; Fausk, Ingrid; Kirkvik, Ann-Silje; Mysen, Eirik

    2017-04-01

    At the Norwegian Mapping Authority, we are currently developing Where, a new software for geodetic analysis. Where is built on our experiences with the Geosat software, and will be able to analyse and combine data from VLBI, SLR, GNSS and DORIS. The software is mainly written in Python which has proved very fruitful. The code is quick to write and the architecture is easily extendable and maintainable, while at the same time taking advantage of well-tested code like the SOFA and IERS libraries. This presentation will show some of the current capabilities of Where, including benchmarks against other software packages, and outline our plans for further progress. In addition we will report on some investigations we have done experimenting with alternative weighting strategies for VLBI.

  5. Models of Learning Space: Integrating Research on Space, Place and Learning in Higher Education

    Science.gov (United States)

    Ellis, R. A.; Goodyear, P.

    2016-01-01

    Learning space research is a relatively new field of study that seeks to inform the design, evaluation and management of learning spaces. This paper reviews a dispersed and fragmented literature relevant to understanding connections between university learning spaces and student learning activities. From this review, the paper distils a number of…

  6. Integrated Modeling, Analysis, and Verification for Space Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will further MBSE technology in fundamental ways by strengthening the link between SysML tools and framework engineering execution environments. Phoenix...

  7. Analogue and Mixed-Signal Integrated Circuits for Space Applications

    CERN Document Server

    2014-01-01

    The purpose of AMICSA 2014 (organised in collaboration of ESA and CERN) is to provide an international forum for the presentation and discussion of recent advances in analogue and mixed-signal VLSI design techniques and technologies for space applications.

  8. Path integral quantization of the Aharonov-Bohm-Coulomb system in momentum space

    International Nuclear Information System (INIS)

    Lin, De-Hone

    2001-01-01

    The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via path integral in momentum space. Due to the dynamics of the system in momentum space being in curve space, our result not only gives the Green function of this interesting system in momentum space but provides the second example to answer an open problem of quantum dynamics in curved spaces posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the Riemannian scalar curvature R

  9. On the spaces of Dotsenko-Fateev integrals

    International Nuclear Information System (INIS)

    Silvotti, R.

    1994-01-01

    In two seminal papers Dotsenko and Fateev produced explicit integral formulas for some conformal blocks of conformal field theory. The structure of such integrals is illustrated by the following model. Let w 1 ,hor-ellipsis, wk-1 be given distinct points on C,μ,hor-ellipsis, μ1,hor-ellipsis,μk-1 and μ be complex parameters. Here and in what follows we shall use the index k to label the point at infinity and write w k = ∞

  10. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  11. Integrating Space Systems Operations at the Marine Expeditionary Force Level

    Science.gov (United States)

    2015-06-01

    Operation ARSST Army Space Support Team BCT Brigade Combat Team BDA Battle Damage Assessment BLOS Beyond Line of Site C2 Command and Control CMCC-CP...accurate imagery of known target locations. Additionally, ISR systems provide a convenient battle damage assessment ( BDA ) option necessary to determine

  12. The value of integrating policy people and space in research.

    Science.gov (United States)

    Hecker, Louise; Birla, Ravi K

    2009-03-01

    In this article, we address several tangible and intangible factors, which are difficult to quantify and often overlooked yet are crucial for research success. We discuss three dimensions which encompass: (1) policy, (2) people, and (3) space. Policies, such as rules and regulations, define the culture of any research program/initiative. Governing rules and regulations defined within these policies are dictated by cultural values. Individuals who exhibit strong leadership, promote innovation, and exercise strategic planning often determine the governing policies. People are the most valuable asset available to any institution. Ensuring the professional growth (personal and scientific) and creating an environment which supports collaborative and collegial research through teamwork are factors that are important for individuals. Space, the physical work environment, is the third dimension of our model and is often an underutilized resource. In addition to the physical layout and design of the space, creating a positive work atmosphere which supports research initiatives is equally important and can create valuable momentum to research efforts. Collectively, these three dimensions (policy, people, and space) have a significant impact on the success of any research initiative. The primary objective of this article is to create awareness and emphasize the importance of implementing these variables within research initiatives in academic settings.

  13. The Engineering Workforce of Tomorrow - The Integrated Space Engineer

    DEFF Research Database (Denmark)

    Nielsen, Jens Frederik Dalsgaard

    2007-01-01

    The space engineer of tomorrow needs a variety of skills ranging from high specialized knowledge to cooperative capacities and the ability to understand and even to a certain degree to be productive outside their specialized skills. Newly educated engineers often lack many of these skills due...

  14. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  15. Wideband Integrated Lens Antennas for Terahertz Deep Space Investigation

    NARCIS (Netherlands)

    Yurduseven, O.

    2016-01-01

    The Terahertz (THz) band is the portion of the spectrum that covers a frequency range from 300 GHz to 3 THz. The potential of this band has been proven for numerous type of applications including medical imaging, non-destructive testing, space observation, spectroscopy and security screening, thanks

  16. Study on Chinese space mutation breeding by integrating the earth with the space

    International Nuclear Information System (INIS)

    Wen Xianfang; Zhang Long; Dai Weixu; Li Chunhua

    2004-01-01

    This paper described the status of space mutation breeding in China. It emphasized that since 1978 Chinese Space scientists and agricultural biologists have send 50 kg seeds of more than 70 crops including cereals, cotton, oil, vegetable, fruit and pasture to the space using the facilities such as reture satellite 9 times, Shenzhou aircraft twice and high balloon 4 times, and 19 new varieties with high yield, high quality and disease-resistance, including five rice varieties, two wheat varieties, two cotton varieties, one sweat pepper, one tomato variety, one sesame variety, three water melon varieties, one lotus varieties and one ganaderma lucidum variety, have been bred though years of breeding at the Earth at more than 70 Chinese research institutes in 22 provinces. In addition more than 50 new lines and many other germ plasma resources have been obtained. Study on space breeding mechanism, such as biological effect of space induction, genetic variation by cell and molecular techniques and simulated study at the earth, has been conducted and some progresses have been achieved. Many space-breeding bases have been established in some provinces. Space varieties have been extended up to 270000 hectares, and some useful scientific achievements and social economic benefit had been made. The study of Chinese space mutation breading is going ahead in the world. The paper also introduced the contribution and results made by former three reture satellites in space science. Some basic parameters listed involved in study on space mutation breeding and the former three reture satellites. We also prospected the future of space mutation breeding. (authors)

  17. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  18. The recruitment and organizational integration of space personnel

    Science.gov (United States)

    Goeters, K.-M.

    This paper describes the philosophy of selection of astronaut scientists. It deals mainly with psychological selection criteria oriented at the job demands. Generalizable results of the European selection campaign for Spacelab are reported. Additionally, some aspects of the organizational integration of astronauts are listed.

  19. Dynamic integration of classifiers in the space of principal components

    NARCIS (Netherlands)

    Tsymbal, A.; Pechenizkiy, M.; Puuronen, S.; Patterson, D.W.; Kalinichenko, L.A.; Manthey, R.; Thalheim, B.; Wloka, U.

    2003-01-01

    Recent research has shown the integration of multiple classifiers to be one of the most important directions in machine learning and data mining. It was shown that, for an ensemble to be successful, it should consist of accurate and diverse base classifiers. However, it is also important that the

  20. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    Science.gov (United States)

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views, opinions and/or findings contained in this...Technology (MIT) Title: A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks Report Term: 0-Other Email: tlp...students presented progress and received feedback from the research group . o wrote papers on their research and submitted them to leading conferences

  1. Embeddings of Lorentz-type spaces involving weighted integral means

    Czech Academy of Sciences Publication Activity Database

    Gogatishvili, Amiran; Křepela, M.; Pick, L.; Soudský, F.

    2017-01-01

    Roč. 273, č. 9 (2017), s. 2939-2980 ISSN 0022-1236 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : classical Lorentz spaces * embeddings * iterated operators Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.254, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022123617302252

  2. Geodetic Control Points - Multi-State Control Point Database

    Data.gov (United States)

    NSGIC State | GIS Inventory — The Multi-State Control Point Database (MCPD) is a database of geodetic and mapping control covering Idaho and Montana. The control were submitted by registered land...

  3. Integrated Yard Space Allocation and Yard Crane Deployment Problem in Resource-Limited Container Terminals

    Directory of Open Access Journals (Sweden)

    Caimao Tan

    2016-01-01

    Full Text Available Yard storage space and yard crane equipment are the core resources in the container terminal yard area. This paper studies the integrated yard space allocation (outbound container space and yard crane deployment problem in resource-limited container terminals where yard space and yard cranes are extremely scarce. Two corresponding counterstrategies are introduced, respectively, and the integrated problem is solved as mixed integer programming. The model this paper formulated considers the container volume fluctuation of the service line, and the objective is a trade-off between yard sharing space and terminal operation cost. In numerical experiments, this paper tries to reveal the management meaning in practical operation of container terminal and provides decision support for terminal managers; therefore a series of scenarios are presented to analyze the relations among the yard sharing space, the number of yard cranes, the size of yard subblock, and the cost of terminal operation.

  4. Integrating Space Communication Network Capabilities via Web Portal Technologies

    Science.gov (United States)

    Johnston, Mark D.; Lee, Carlyn-Ann; Lau, Chi-Wung; Cheung, Kar-Ming; Levesque, Michael; Carruth, Butch; Coffman, Adam; Wallace, Mike

    2014-01-01

    We have developed a service portal prototype as part of an investigation into the feasibility of using Java portlet technology as a means of providing integrated access to NASA communications network services. Portal servers provide an attractive platform for this role due to the various built-in collaboration applications they can provide, combined with the possibility to develop custom inter-operating portlets to extent their functionality while preserving common presentation and behavior. This paper describes various options for integration of network services related to planning and scheduling, and results based on use of a popular open-source portal framework. Plans are underway to develop an operational SCaN Service Portal, building on the experiences reported here.

  5. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  6. Architectural Building A Public Key Infrastructure Integrated Information Space

    Directory of Open Access Journals (Sweden)

    Vadim Ivanovich Korolev

    2015-10-01

    Full Text Available The article keeps under consideration the mattersto apply the cryptographic system having a public key to provide information security and to implya digital signature. It performs the analysis of trust models at the formation of certificates and their use. The article describes the relationships between the trust model and the architecture public key infrastructure. It contains conclusions in respect of the options for building the public key infrastructure for integrated informationspace.

  7. Geodetic analysis of disputed accurate qibla direction

    Science.gov (United States)

    Saksono, Tono; Fulazzaky, Mohamad Ali; Sari, Zamah

    2018-04-01

    Muslims perform the prayers facing towards the correct qibla direction would be the only one of the practical issues in linking theoretical studies with practice. The concept of facing towards the Kaaba in Mecca during the prayers has long been the source of controversy among the muslim communities to not only in poor and developing countries but also in developed countries. The aims of this study were to analyse the geodetic azimuths of qibla calculated using three different models of the Earth. The use of ellipsoidal model of the Earth could be the best method for determining the accurate direction of Kaaba from anywhere on the Earth's surface. A muslim cannot direct himself towards the qibla correctly if he cannot see the Kaaba due to setting out process and certain motions during the prayer this can significantly shift the qibla direction from the actual position of the Kaaba. The requirement of muslim prayed facing towards the Kaaba is more as spiritual prerequisite rather than physical evidence.

  8. The Unification of Space Qualified Integrated Circuits by Example of International Space Project GAMMA-400

    Science.gov (United States)

    Bobkov, S. G.; Serdin, O. V.; Arkhangelskiy, A. I.; Arkhangelskaja, I. V.; Suchkov, S. I.; Topchiev, N. P.

    The problem of electronic component unification at the different levels (circuits, interfaces, hardware and software) used in space industry is considered. The task of computer systems for space purposes developing is discussed by example of scientific data acquisition system for space project GAMMA-400. The basic characteristics of high reliable and fault tolerant chips developed by SRISA RAS for space applicable computational systems are given. To reduce power consumption and enhance data reliability, embedded system interconnect made hierarchical: upper level is Serial RapidIO 1x or 4x with rate transfer 1.25 Gbaud; next level - SpaceWire with rate transfer up to 400 Mbaud and lower level - MIL-STD-1553B and RS232/RS485. The Ethernet 10/100 is technology interface and provided connection with the previously released modules too. Systems interconnection allows creating different redundancy systems. Designers can develop heterogeneous systems that employ the peer-to-peer networking performance of Serial RapidIO using multiprocessor clusters interconnected by SpaceWire.

  9. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  10. Minimal surfaces in AdS space and integrable systems

    Science.gov (United States)

    Burrington, Benjamin A.; Gao, Peng

    2010-04-01

    We consider the Pohlmeyer reduction for spacelike minimal area worldsheets in AdS5. The Lax pair for the reduced theory is found, and written entirely in terms of the A3 = D3 root system, generalizing the B2 affine Toda system which appears for the AdS4 string. For the B2 affine Toda system, we show that the area of the worlsheet is obtainable from the moduli space Kähler potential of a related Hitchin system. We also explore the Saveliev-Leznov construction for solutions of the B2 affine Toda system, and recover the rotationally symmetric solution associated to Painleve transcendent.

  11. The Integrative Dimension of the Economic Globalization in European Space

    Directory of Open Access Journals (Sweden)

    Daniela Mariana Alexandrache

    2010-06-01

    Full Text Available We believe that globalization and its socio-economic implications of the world and world economic crisis is one of the most debated issues from several years. The publication "The Economist’’ named globalization as the most used word of the century. The most relevant dimension of globalization is the economy with the more dynamic factors: technological development, the hegemony of liberal conceptions (closely linked to the triumph of the ideology of market economy and explosive development of countries or regions. Economic globalization has manifested a series of visible effects such as: the emergence of new markets and foreign trade (interconnected at global level, the appearance of: transnational companies, multilateral agreements on trade, broadening the scope of WTO, transformation of multinational companies in transnational companies and the emergence of global economic markets. Regionally, we noticed that the trendof concentration of economic activity is more pronounced and advanced in the European continent. Expanding globalization in Europe was achieved because of the fall of communism, and the neoliberal reformation which took place in Western European countries. Events like the fall of the Berlin Wall, followed by the fall of communism eradicated many political, economic, religious or cultural barriers. There were born new relations between state and market, public and private. European Union is, in our view, a regional office ofglobalization, representing the best performing integrative system in the world (by creating free trade area, customs union, common market, the Economic and Monetary Union. In terms of the European Commission,European model is a third way towards globalization, a middle path between protectionism and uncontrolled economy. To understand why the EU is an advanced approximation of globalization, perhaps a regional model of globalization, we must first understand the link between globalization and regional

  12. High-Precision Global Geodetic Systems: Revolution And Revelation In Fluid And 'Solid' Earth Tracking (Invited)

    Science.gov (United States)

    Minster, J. H.; Altamimi, Z.; Blewitt, G.; Carter, W. E.; Cazenave, A. A.; Davis, J. L.; Dragert, H.; Feary, D. A.; Herring, T.; Larson, K. M.; Ries, J. C.; Sandwell, D. T.; Wahr, J. M.

    2009-12-01

    Over the past half-century, space geodetic technologies have changed profoundly the way we look at the planet, not only in the matter of details and accuracy, but also in the matter of how the entire planet changes with time, even on “human” time scales. The advent of space geodesy has provided exquisite images of the ever-changing land and ocean topography and global gravity field of the planet. We now enjoy an International Terrestrial Reference System with a time-dependent geocenter position accurate to a few millimeters. We can image small and large tectonic deformations of the surface before, during, and after earthquakes and volcanic eruptions. We measure both the past subtle changes as well as the recent dramatic changes in the ice sheets, and track global and regional sea-level change to a precision of a millimeter per year or better. The remarkable achievements of Earth observing missions over the past two decades, and the success of future international missions described in the Decadal Survey depend both implicitly and explicitly on the continued availability and enhancement of a reliable and resilient global infrastructure for precise geodesy, and on ongoing advances in geodetic science that are linked to it. This allows us to deal with global scientific, technological and social issues such as climate change and natural hazards, but the impact of the global precise geodetic infrastructure also permeates our everyday lives. Nowadays drivers, aviators, and sailors can determine their positions inexpensively to meter precision in real time, anywhere on the planet. In the foreseeable future, not only will we be able to know a vehicle’s position to centimeter accuracy in real time, but also to control that position, and thus introduce autonomous navigation systems for many tasks which are beyond the reach of “manual” navigation capabilities. This vision will only be realized with sustained international support of the precise global geodetic

  13. Space-compatible strain gauges as an integration aid for the James Webb Space Telescope Mid-Infrared Instrument

    DEFF Research Database (Denmark)

    Samara-Ratna, Piyal; Sykes, Jon; Bicknell, Chris

    2015-01-01

    Space instruments are designed to be highly optimised, mass efficient hardware required to operate in extreme environments. Building and testing is extremely costly, and damage that appears to have no impact on performance at normal ambient conditions can have disastrous implications when...... to protect the structure from damage. Compatible with space flight requirements, the gauges have been used in both ambient and cryogenic environments and were successfully used to support various tasks including integration to the spacecraft. The article also discusses limitations to using the strain gauge...

  14. Divergences in the moduli space integral and accumulating handles in the infinite-genus limit

    International Nuclear Information System (INIS)

    Davis, S.

    1992-12-01

    The symmetries associated with the bosonic string partition function integral are examined so that the integration region in Teichmuller space can be determined. The translation of the conditions on the period matrix defining the fundamental region can be translated to relations on the parameters of the uniformising Schottky group. The growth of the lower bound for the regularized partition function is derived through integration over a subset of the fundamental region. (author). 20 refs

  15. Au-Spec: An Integrated Spectrometer for Terahertz Space Spectroscopy

    Science.gov (United States)

    Moseley, Samuel

    Under APRA funding, we have developed a fully integrated R~64 submillimeter spectrometer. Using only single crystal Si and superconductors, our fabrication process is designed with the goal of minimizing loss in the spectrometer. High performance designs have been developed for all the required elements of the spectrometer. For example the slot antenna, power divider microstip delay lines, absorbers, and M icrowave Kinetic Inductance detectors (MKIDs) have been designed and buit, and the performance of a system operating at R~ 64 has been demonstrated. We l propose to develop and test a spectrometer with R~300. This device can be produced to sufficient accuracy with known fabrication tolerances. After the successful demonstration of the R~300 instrument, the devices will be ready for application in balloon or airborne applications.We will measure loss in the transmission lines to establish the limits of resolving power in such a materials system and will develop a phase adjuster to allow a diffraction limited delay network at the full resolution allowed by loss in the materials. We will demonstrate the performance of this system with R~1000 by the end of the proposed program. Arrays of such integrated spectrometers are ideal building blocks for a high redshift survey instrument, and its compact size may allow significant science to be done on Explorer Class Missions.

  16. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  17. Seismology and space-based geodesy

    Science.gov (United States)

    Tralli, David M.; Tajima, Fumiko

    1993-01-01

    The potential of space-based geodetic measurement of crustal deformation in the context of seismology is explored. The achievements of seismological source theory and data analyses, mechanical modeling of fault zone behavior, and advances in space-based geodesy are reviewed, with emphasis on realizable contributions of space-based geodetic measurements specifically to seismology. The fundamental relationships between crustal deformation associated with an earthquake and the geodetically observable data are summarized. The response and spatial and temporal resolution of the geodetic data necessary to understand deformation at various phases of the earthquake cycle is stressed. The use of VLBI, SLR, and GPS measurements for studying global geodynamics properties that can be investigated to some extent with seismic data is discussed. The potential contributions of continuously operating strain monitoring networks and globally distributed geodetic observatories to existing worldwide modern digital seismographic networks are evaluated in reference to mutually addressable problems in seismology, geophysics, and tectonics.

  18. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    Science.gov (United States)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  19. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into

  20. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Time Biases in laser ranging measurements; impacts on geodetic products (Reference Frame and Orbitography)

    Science.gov (United States)

    Belli, A.; Exertier, P.; Lemoine, F. G.; Chinn, D. S.; Zelensky, N. P.

    2017-12-01

    The GGOS objectives are to maintain a geodetic network with an accuracy of 1 mm and a stability of 0.1 mm per year. For years, the laser ranging technique, which provide very accurate absolute distances to geodetic targets enable to determine the scale factor as well as coordinates of the geocenter. In order to achieve this goal, systematic errors appearing in the laser ranging measurements must be considered and solved. In addition to Range Bias (RB), which is the primary source of uncertainty of the technique, Time Bias (TB) has been recently detected by using the Time Transfer by Laser Link (T2L2) space instrument capability on-board the satellite Jason-2. Instead of determining TB through the precise orbit determination that is applied to commonly used geodetic targets like LAGEOS to estimate global geodetic products, we have developed, independently, a dedicated method to transfer time between remote satellite laser ranging stations. As a result, the evolving clock phase shift to UTC of around 30 stations has been determined under the form of time series of time bias per station from 2008 to 2016 with an accuracy of 3-4 ns. It demonstrated the difficulty, in terms of Time & Frequency used technologies, to locally maintain accuracy and long term stability at least in the range of 100 ns that is the current requirement for time measurements (UTC) for the laser ranging technique. Because some laser ranging stations oftently exceed this limit (from 100 ns to a few μs) we have been studying these effects first on the precision orbit determination itself, second on the station positioning. We discuss the impact of TB on LAGEOS and Jason-2 orbits, which appears to affect the along-track component essentially. We also investigate the role of TB in global geodetic parameters as the station coordinates. Finally, we propose to provide the community with time series of time bias of laser ranging stations, under the form of a data- handling-file in order to be included in

  2. Demonstration of the Cascadia G‐FAST geodetic earthquake early warning system for the Nisqually, Washington, earthquake

    Science.gov (United States)

    Crowell, Brendan; Schmidt, David; Bodin, Paul; Vidale, John; Gomberg, Joan S.; Hartog, Renate; Kress, Victor; Melbourne, Tim; Santillian, Marcelo; Minson, Sarah E.; Jamison, Dylan

    2016-01-01

    A prototype earthquake early warning (EEW) system is currently in development in the Pacific Northwest. We have taken a two‐stage approach to EEW: (1) detection and initial characterization using strong‐motion data with the Earthquake Alarm Systems (ElarmS) seismic early warning package and (2) the triggering of geodetic modeling modules using Global Navigation Satellite Systems data that help provide robust estimates of large‐magnitude earthquakes. In this article we demonstrate the performance of the latter, the Geodetic First Approximation of Size and Time (G‐FAST) geodetic early warning system, using simulated displacements for the 2001Mw 6.8 Nisqually earthquake. We test the timing and performance of the two G‐FAST source characterization modules, peak ground displacement scaling, and Centroid Moment Tensor‐driven finite‐fault‐slip modeling under ideal, latent, noisy, and incomplete data conditions. We show good agreement between source parameters computed by G‐FAST with previously published and postprocessed seismic and geodetic results for all test cases and modeling modules, and we discuss the challenges with integration into the U.S. Geological Survey’s ShakeAlert EEW system.

  3. The Australian Geodetic Observing Program. Current Status and Future Plans

    Science.gov (United States)

    Johnston, G.; Dawson, J. H.

    2015-12-01

    Over the last decade, the Australian government has through programs like AuScope, the Asia Pacific Reference Frame (APREF), and the Pacific Sea Level Monitoring (PSLM) Project made a significant contribution to the Global Geodetic Observing Program. In addition to supporting the national research priorities, this contribution is justified by Australia's growing economic dependence on precise positioning to underpin efficient transportation, geospatial data management, and industrial automation (e.g., robotic mining and precision agriculture) and the consequent need for the government to guarantee provision of precise positioning products to the Australian community. It is also well recognised within Australia that there is an opportunity to exploit our near unique position as being one of the few regions in the world to see all new and emerging satellite navigation systems including Galileo (Europe), GPS III (USA), GLONASS (Russia), Beidou (China), QZSS (Japan) and IRNSS (India). It is in this context that the Australian geodetic program will build on earlier efforts and further develop its key geodetic capabilities. This will include the creation of an independent GNSS analysis capability that will enable Australia to contribute to the International GNSS Service (IGS) and an upgrade of key geodetic infrastructure including the national VLBI and GNSS arrays. This presentation will overview the significant geodetic activities undertaken by the Australian government and highlight its future plans.

  4. Path integration and separation of variables in spaces of constant curvature in two and three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    1993-10-01

    In this paper path integration in two- and three-dimensional spaces of constant curvature is discussed: i.e. the flat spaces R 2 and R 3 , the two- and three-dimensional sphere and the two- and three dimensional pseudosphere. The Laplace operator in these spaces admits separation of variables in various coordinate systems. In all these coordinate systems the path integral formulation will be stated, however in most of them an explicit solution in terms of the spectral expansion can be given only on a formal level. What can be stated in all cases, are the propagator and the corresponding Green function, respectively, depending on the invariant distance which is a coordinate independent quantity. This property gives rise to numerous identities connecting the corresponding path integral representations and propagators in various coordinate systems with each other. (orig.)

  5. Monitoring ground deformation of cultural heritage sites using UAVs and geodetic techniques: the case study of Choirokoitia, JPI PROTHEGO project

    Science.gov (United States)

    Themistocleous, Kyriacos; Danezis, Chris; Mendonidis, Evangelos; Lymperopoulou, Efstathia

    2017-10-01

    This paper presents the integrated methods using UAVs and geodetic techniques to monitor ground deformation within the Choirokoitia UNESCO World Heritage Site in Cyprus. The Neolithic settlement of Choirokoitia, occupied from the 7th to the 4th millennium B.C., is one of the most important prehistoric sites in the eastern Mediterranean. The study is conducted under the PROTHEGO (PROTection of European Cultural HEritage from GeO-hazards) project, which is a collaborative research project funded in the framework of the Joint Programming Initiative on Cultural Heritage and Global Change (JPICH) - Heritage Plus in 2015-2018 (www.prothego.eu) and through the Cyprus Research Promotion Foundation. PROTHEGO aims to make an innovative contribution towards the analysis of geo-hazards in areas of cultural heritage, and uses novel space technology based on radar interferometry to retrieve information on ground stability and motion in the 400+ UNESCO's World Heritage List monuments and sites of Europe. The field measurements collected at the Choirokoitia site will be later compared with SAR data to verify micro-movements in the area to monitor potential geo-hazards. The site is located on a steep hill, which makes it vulnerable to rock falls and landslides.

  6. Feynman rules and generalized ward identities in phase space functional integral

    International Nuclear Information System (INIS)

    Li Ziping

    1996-01-01

    Based on the phase-space generating functional of Green function, the generalized canonical Ward identities are derived. It is point out that one can deduce Feynman rules in tree approximation without carrying out explicit integration over canonical momenta in phase-space generating functional. If one adds a four-dimensional divergence term to a Lagrangian of the field, then, the propagator of the field can be changed

  7. Air Traffic Management and Space Transportation - System Wide Information Management and the Integration in European Airspace

    OpenAIRE

    Kaltenhäuser, Sven; Morlang, Frank; Hampe, Jens; Jakobi, Jörn; Schmitt, Dirk-Roger

    2015-01-01

    Space Travel becomes an international business and requires landing opportunities all over the world. The integration of space vehicles in airspace therefore is an increasingly important topic to be considered on an international scale. With the Single European Sky ATM Research Programme (SESAR) preparing the implementation of a new ATM system in Europe, requirements have been defined for Shared and Reference Business Trajectories as well as System Wide Information Management (SWIM). The s...

  8. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  9. Designing Clinical Space for the Delivery of Integrated Behavioral Health and Primary Care.

    Science.gov (United States)

    Gunn, Rose; Davis, Melinda M; Hall, Jennifer; Heintzman, John; Muench, John; Smeds, Brianna; Miller, Benjamin F; Miller, William L; Gilchrist, Emma; Brown Levey, Shandra; Brown, Jacqueline; Wise Romero, Pam; Cohen, Deborah J

    2015-01-01

    This study sought to describe features of the physical space in which practices integrating primary care and behavioral health care work and to identify the arrangements that enable integration of care. We conducted an observational study of 19 diverse practices located across the United States. Practice-level data included field notes from 2-4-day site visits, transcripts from semistructured interviews with clinicians and clinical staff, online implementation diary posts, and facility photographs. A multidisciplinary team used a 4-stage, systematic approach to analyze data and identify how physical layout enabled the work of integrated care teams. Two dominant spatial layouts emerged across practices: type-1 layouts were characterized by having primary care clinicians (PCCs) and behavioral health clinicians (BHCs) located in separate work areas, and type-2 layouts had BHCs and PCCs sharing work space. We describe these layouts and the influence they have on situational awareness, interprofessional "bumpability," and opportunities for on-the-fly communication. We observed BHCs and PCCs engaging in more face-to-face methods for coordinating integrated care for patients in type 2 layouts (41.5% of observed encounters vs 11.7%; P < .05). We show that practices needed to strike a balance between professional proximity and private work areas to accomplish job tasks. Private workspace was needed for focused work, to see patients, and for consults between clinicians and clinical staff. We describe the ways practices modified and built new space and provide 2 recommended layouts for practices integrating care based on study findings. Physical layout and positioning of professionals' workspace is an important consideration in practices implementing integrated care. Clinicians, researchers, and health-care administrators are encouraged to consider the role of professional proximity and private working space when creating new facilities or redesigning existing space to foster

  10. On integral formulation of the Mach principle in a conformally flat space

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1976-01-01

    The integral formulation of the Mach principle represents a rather complicated mathematical formalism in which many aspects of the physical content of theory are not clear. Below an attempt is made to consider the integral representation for the most simple case of conformally flat spaces. The fact that this formalism there is only one scalar function makes it possible to analyse in more detail many physical peculiarities of this representation of the Mach principle: the absence of asymptotically flat spaces, problems of inertia and gravity, constraints on state equations, etc

  11. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  12. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  13. Divergences in the moduli space integral and accumulating handles in the infinite-genus limit

    Science.gov (United States)

    Davis, Simon

    1995-02-01

    The symmetries associated with the closed bosonic string partition function are examined so that the integration region in Teichmuller space can be determined. The conditions on the period matrix defining the fundamental region can be translated to relations on the parameters of the uniformizing Schottky group. The growth of the lower bound for the regularized partition function is derived through integration over a subset of the fundamental region.

  14. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  15. Enhanced three-dimensional stochastic adjustment for combined volcano geodetic networks

    Science.gov (United States)

    Del Potro, R.; Muller, C.

    2009-12-01

    Volcano geodesy is unquestionably a necessary technique in studies of physical volcanology and for eruption early warning systems. However, as every volcano geodesist knows, obtaining measurements of the required resolution using traditional campaigns and techniques is time consuming and requires a large manpower. Moreover, most volcano geodetic networks worldwide use a combination of data from traditional techniques; levelling, electronic distance measurements (EDM), triangulation and Global Navigation Satellite Systems (GNSS) but, in most cases, these data are surveyed, analysed and adjusted independently. This then leaves it to the authors’ criteria to decide which technique renders the most realistic results in each case. Herein we present a way of solving the problem of inter-methodology data integration in a cost-effective manner following a methodology were all the geodetic data of a redundant, combined network (e.g. surveyed by GNSS, levelling, distance, angular data, INSAR, extensometers, etc.) is adjusted stochastically within a single three-dimensional referential frame. The adjustment methodology is based on the least mean square method and links the data with its geometrical component providing combined, precise, three-dimensional, displacement vectors, relative to external reference points as well as stochastically-quantified, benchmark-specific, uncertainty ellipsoids. Three steps in the adjustment allow identifying, and hence dismissing, flagrant measurement errors (antenna height, atmospheric effects, etc.), checking the consistency of external reference points and a final adjustment of the data. Moreover, since the statistical indicators can be obtained from expected uncertainties in the measurements of the different geodetic techniques used (i.e. independent of the measured data), it is possible to run a priori simulations of a geodetic network in order to constrain its resolution, and reduce logistics, before the network is even built. In this

  16. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  17. Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2017-01-01

    Full Text Available Abstract In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators I α $I_{\\alpha}$ in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutators [ b , I α ] $[b,I_{\\alpha}]$ formed by b and I α $I_{\\alpha}$ are established. Also we study related problems about two-weight, weak type inequalities for I α $I_{\\alpha}$ and [ b , I α ] $[b,I_{\\alpha}]$ in the Morrey-type spaces and give partial results.

  18. Activity markers and household space in Swahili urban contexts: An integrated geoarchaeological approach

    DEFF Research Database (Denmark)

    Wynne-Jones, Stephanie; Sulas, Federica

    , this paper draws from recent work at a Swahili urban site to illustrate the potential and challenges of an integrated geoarchaeological approach to the study of household space. The site of Songo Mnara (14th–16thc. AD) thrived as a Swahili stonetown off the coast of Tanzania. Here, our work has concentrated...

  19. The principal series for a reductive symmetric space, II. Eisenstein integrals.

    NARCIS (Netherlands)

    Ban, E.P. van den

    1991-01-01

    In this paper we develop a theory of Eisenstein integrals related to the principal series for a reductive symmetric space G=H: Here G is a real reductive group of Harish-Chandra's class, ? an involution of G and H an open subgroup of the group G ? of xed points for ?: The group G itself is a

  20. A Good $\\lambda$ Estimate for Multilinear Commutator of Singular Integral on Spaces of Homogeneous Type

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2011-04-01

    Full Text Available In this paper, a good $\\lambda$ estimate for the multilinear commutator associated to the singular integral operator on the spaces of homogeneous type is obtained. Under this result, we get the$(L^p(X,L^q(X$-boundedness of the multilinear commutator.

  1. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

    International Nuclear Information System (INIS)

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

    1995-01-01

    The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

  2. Quantum mechanical path integrals in curved spaces and the type-A trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2017-04-10

    Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.

  3. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  4. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  5. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  6. Error Propagation in Geodetic Networks Studied by FEMLAB

    DEFF Research Database (Denmark)

    Borre, Kai

    2009-01-01

    Geodetic networks can be described by discrete models. The observations may be height differences, distances, and directions. Geodesists always make more observations than necessary and estimate the solution by using the principle of least squares. Contemporary networks often contain several thou...

  7. Verification of Positional Accuracy of ZVS3003 Geodetic Control ...

    African Journals Online (AJOL)

    The International GPS Service (IGS) has provided GPS orbit products to the scientific community with increased precision and timeliness. Many users interested in geodetic positioning have adopted the IGS precise orbits to achieve centimeter level accuracy and ensure long-term reference frame stability. Positioning with ...

  8. Integration of the Belarusian Space Research Potential Into International University Nanosatellite Programm

    Science.gov (United States)

    Saetchnikov, Vladimir; Ablameyko, Sergey; Ponariadov, Vladimir

    astrometry and ballistic data processing. Next point is university satellite. We are developing now several modules for education: data acquisition, telemetry, communication systems and also are very interested to cooperate in this field with international partners. Space Research is certainly a “high end” of any science system such as material sciences and engineering, applied mathematics, cybernetics, ICT, radio physics, electronics, etc. Moreover, space research capacities enable cutting edge research works in such areas as Environment (e.g. Earth observation), Biotechnologies, Health, New Materials, etc. Progress in integrating Belarusian Space Research potential into international society will serve as a catalyst and enabler for all critically important scientific and technological fields to advance on the way of development and global integration.

  9. An integrated control scheme for space robot after capturing non-cooperative target

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-06-01

    How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.

  10. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2013-12-01

    Full Text Available In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR observations for the International Laser Ranging Service (ILRS associate analysis center (AAC. Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD and finding solutions of a terrestrial reference frame (TRF and Earth orientation parameters (EOPs. For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS 08 C04 results, shows that standard deviations of polar motion Xp and Yp are 0.754 milliarcseconds (mas and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  11. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  12. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all

  13. Comments on the integrability of the loop-space chiral equations

    International Nuclear Information System (INIS)

    Gu, C.; Wang, L.L.C.

    1980-01-01

    A demonstration is given how the ordinary space chiral equations provide the existence conditions for the infinite number of conserved currents and how these currents are related to the so-called inverse-scattering equations, whose integrability is provided by the original chiral equations. Loop-space chiral equations are introduced. The integrability conditions of the non-local currents in two possible different situations are discussed. In the first case, the generating functions are functionals of the loop alone. The integrability conditions are not satisfied and higher order conserved non-local currents do not exist. In the second case, the generating functions are functionals of the loop as well as a parameter the integrability conditions at a restricted point of the parameter are satisfied, however there is an infinite fold of arbitrariness. It indicates that additional guiding principles are needed in addition to the original loop-space chiral equation in order to uniquely determine the infinite conserved non-local currents as functionals of the loop and the parameter

  14. Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-10-01

    Full Text Available Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded from Lebesgue space L 1 ( μ $L^{1}(\\mu$ into the weak Lebesgue space L 1 , ∞ ( μ $L^{1,\\infty}(\\mu$ , from the Lebesgue space L ∞ ( μ $L^{\\infty}(\\mu$ into the space RBLO ( μ $\\operatorname{RBLO}(\\mu$ , and from the atomic Hardy space H 1 ( μ $H^{1}(\\mu$ into the Lebesgue space L 1 ( μ $L^{1}(\\mu$ . Moreover, the authors also get a corollary, that is, M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded on L p ( μ $L^{p}(\\mu$ with 1 < p < ∞ $1< p<\\infty$ .

  15. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  16. The magnetic touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

    Science.gov (United States)

    Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik

    2016-10-01

    To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  18. Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d

    International Nuclear Information System (INIS)

    Bluemlein, Johannes; Phan, Khiem Hong; Vietnam National Univ., Ho Chi Minh City; Riemann, Tord; Silesia Univ., Chorzow

    2017-11-01

    Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension d in terms of (generalized) hypergeometric functions 2 F 1 and F 1 . Values at asymptotic or exceptional kinematic points as well as expansions around the singular points at d=4+2n, n non-negative integers, may be derived from the representations easily. The Feynman integrals studied here may be used as building blocks for the calculation of one-loop and higher-loop scalar and tensor amplitudes. From the recursion relation presented, higher n-point functions may be obtained in a straightforward manner.

  19. Geodetic infrastructure at the Barcelona harbour for sea level monitoring

    Science.gov (United States)

    Martinez-Benjamin, Juan Jose; Gili, Josep; Lopez, Rogelio; Tapia, Ana; Pros, Francesc; Palau, Vicenc; Perez, Begona

    2015-04-01

    The presentation is directed to the description of the actual geodetic infrastructure of Barcelona harbour with three tide gauges of different technologies for sea level determination and contribution to regional sea level rise and understanding past and present sea level rise in the Barcelona harbour. It is intended that the overall system will constitute a CGPS Station of the ESEAS (European Sea Level) and TIGA (GPS Tide Gauge Benchmark Monitoring) networks. At Barcelona harbour there is a MIROS radar tide gauge belonging to Puertos del Estado (Spanish Harbours).The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. The information includes wave forescast (mean period, significant wave height, sea level, etc.This sensor also measures agitation and sends wave parameters each 20 min. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna AX 1202 GG. The Control Tower of the Port of Barcelona is situated in the North dike of the so-called Energy Pier in the Barcelona harbor (Spain). This tower has different kind of antennas for navigation monitoring and a GNSS permanent station. As the tower is founded in reclaimed land, and because its metallic structure, the 50 m building is subjected to diverse movements, including periodic fluctuations due to temperature changes. In this contribution the 2009, 2011, 2012, 2013 and 2014 the necessary monitoring campaigns are described. In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica S.L. in June 2014 near an acoustic tide gauge from the Barcelona Harbour installed in 2013. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land and

  20. F4 quantum integrable, rational and trigonometric models: space-of-orbits view

    International Nuclear Information System (INIS)

    Turbiner, A V; Vieyra, J C Lopez

    2014-01-01

    Algebraic-rational nature of the four-dimensional, F 4 -invariant integrable quantum Hamiltonians, both rational and trigonometric, is revealed and reviewed. It was shown that being written in F 4 Weyl invariants, polynomial and exponential, respectively, both similarity-transformed Hamiltonians are in algebraic form, they are quite similar the second order differential operators with polynomial coefficients; the flat metric in the Laplace-Beltrami operator has polynomial (in invariants) matrix elements. Their potentials are calculated for the first time: they are meromorphic (rational) functions with singularities at the boundaries of the configuration space. Ground state eigenfunctions are algebraic functions in a form of polynomials in some degrees. Both Hamiltonians preserve the same infinite flag of polynomial spaces with characteristic vector (1, 2, 2, 3), it manifests exact solvability. A particular integral common for both models is derived. The first polynomial eigenfunctions are presented explicitly.

  1. Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation

    International Nuclear Information System (INIS)

    Terze, Zdravko; Lefeber, Dirk; Muftic, Osman

    2001-01-01

    A method for integrating equations of motion of constrained multibody systems with no constraint violation is presented. A mathematical model, shaped as a differential-algebraic system of index 1, is transformed into a system of ordinary differential equations using the null-space projection method. Equations of motion are set in a non-minimal form. During integration, violations of constraints are corrected by solving constraint equations at the position and velocity level, utilizing the metric of the system's configuration space, and projective criterion to the coordinate partitioning method. The method is applied to dynamic simulation of 3D constrained biomechanical system. The simulation results are evaluated by comparing them to the values of characteristic parameters obtained by kinematics analysis of analyzed motion based unmeasured kinematics data

  2. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  3. Integrating SQ4R Technique with Graphic Postorganizers in the Science Learning of Earth and Space

    OpenAIRE

    Djudin, Tomo; Amir, R

    2018-01-01

    This study examined the effect of integrating SQ4R reading technique with graphic post organizers on the students' Earth and Space Science learning achievement and development of metacognitive knowledge. The pretest-posttest non-equivalent control group design was employed in this quasi-experimental method. The sample which consists of 103 seventh grade of secondary school students of SMPN 1 Pontianak was drawn by using intact group random sampling technique. An achievement test and a questio...

  4. Proceedings of the International Conference on Integrated Micro/Nanotechnology for Space Applications

    Science.gov (United States)

    1995-01-01

    The recent evolution of microelectronic technologies coupled with the growth of micro-electro-mechanical systems (MEMS) has had significant impact in the commercial sector. The focus of this conference was to anticipate and extend the incorporation of nano-electronics and MEMS into application specific integrated microinstruments (ASIM's) in space systems. Presentations ranged from mission application of nano-satellites to silicon micromachining for photonic applications.

  5. Large earthquake rates from geologic, geodetic, and seismological perspectives

    Science.gov (United States)

    Jackson, D. D.

    2017-12-01

    Earthquake rate and recurrence information comes primarily from geology, geodesy, and seismology. Geology gives the longest temporal perspective, but it reveals only surface deformation, relatable to earthquakes only with many assumptions. Geodesy is also limited to surface observations, but it detects evidence of the processes leading to earthquakes, again subject to important assumptions. Seismology reveals actual earthquakes, but its history is too short to capture important properties of very large ones. Unfortunately, the ranges of these observation types barely overlap, so that integrating them into a consistent picture adequate to infer future prospects requires a great deal of trust. Perhaps the most important boundary is the temporal one at the beginning of the instrumental seismic era, about a century ago. We have virtually no seismological or geodetic information on large earthquakes before then, and little geological information after. Virtually all-modern forecasts of large earthquakes assume some form of equivalence between tectonic- and seismic moment rates as functions of location, time, and magnitude threshold. That assumption links geology, geodesy, and seismology, but it invokes a host of other assumptions and incurs very significant uncertainties. Questions include temporal behavior of seismic and tectonic moment rates; shape of the earthquake magnitude distribution; upper magnitude limit; scaling between rupture length, width, and displacement; depth dependence of stress coupling; value of crustal rigidity; and relation between faults at depth and their surface fault traces, to name just a few. In this report I'll estimate the quantitative implications for estimating large earthquake rate. Global studies like the GEAR1 project suggest that surface deformation from geology and geodesy best show the geography of very large, rare earthquakes in the long term, while seismological observations of small earthquakes best forecasts moderate earthquakes

  6. Geodetic constraints on continental rifting along the Red Sea

    Science.gov (United States)

    Reilinger, R.; McClusky, S.; Arrajehi, A.; Mahmoud, S.; Rayan, A.; Ghebreab, W.; Ogubazghi, G.; Al-Aydrus, A.

    2006-12-01

    We are using the Global Positioning System (GPS) to monitor and quantify patterns and rates of tectonic and magmatic deformation associated with active rifting of the continental lithosphere and the transition to sea floor spreading in the Red Sea. Broad-scale motions of the Nubian and Arabian plates indicate coherent plate motion with internal deformation below the current resolution of our measurements (~ 1-2 mm/yr). The GPS-determined Euler vector for Arabia-Nubia is indistinguishable from the geologic Euler vector determined from marine magnetic anomalies, and Arabia-Eurasia relative motion from GPS is equal within uncertainties to relative motion determined from plate reconstructions, suggesting that Arabia plate motion has remained constant (±10%) during at least the past ~10 Ma. The approximate agreement between broad-scale GPS rates of extension (i.e., determined from relative plate motions) and those determined from magnetic anomalies along the Red Sea rift implies that spreading in the central Red Sea is primarily confined to the central rift (±10-20%). Extension appears to be more broadly distributed in the N Red Sea and Gulf of Suez where comparisons with geologic data also indicate a relatively recent (between 500 and 125 kyr BP) change in the motion of the Sinai block that is distinct from both Nubia and Arabia. In the southern Red Sea, GPS results are beginning to define the motion of the "Danakil micro-plate". We investigate and report on a model involving CCW rotation of the Danakil micro-plate relative to Nubia and magmatic inflation below the Afar Triple Junction that is consistent with available geodetic constraints. Running the model back in time suggests that the Danakil micro-plate has been an integral part of rifting/triple junction processes throughout the history of separation of the Arabian and Nubian plates. On the scale of Nubia-Arabia-Eurasia plate interactions, we show that new area formed at spreading centers roughly equals that

  7. Monitoring of Volcanic Activity by Sub-mm Geodetic Analyses

    Science.gov (United States)

    Miura, S.; Mare, Y.; Ichiki, M.; Demachi, T.; Tachibana, K.; Nishimura, T.

    2017-12-01

    Volcanic earthquakes have been occurring beneath Zao volcano in northern Honshu, Japan since 2013, following the increase of deep low frequency earthquakes from 2012. On account of a burst of seismicity initiated in April 2015, the JMA announced a warning of eruption, however, the seismicity gradually decreased for the next two months and the warning was canceled in June. In the same time period, minor expansive deformation was observed by GNSS. Small earthquakes are still occurring, and low-freq. earthquakes (LPE) occur sometimes accompanied by static tilt changes. In this study, we try to extract the sub-mm displacements from the LPE waveforms observed by broadband seismometers (BBS) and utilize them for geodetic inversion to monitor volcanic activities. Thun et al. (2015, 2016) devised an efficient method using a running median filter (RMF) to remove LP noises, which contaminate displacement waveforms. They demonstrated the reproducibility of the waveforms corresponding to the experimentally given sub-mm displacements in the laboratory. They also apply the method to the field LPE data obtained from several volcanoes to show static displacements. The procedure is outlined as follows: (1) Unfiltered removal of the instrument response, (2) LP noise estimate by LPF with a corner frequency of 5/M, where M (seconds) is the time window of the RMF and should be at least three times the length of the rise time. (3) Subtract the noise estimated from step (2). (4) Integrate to obtain displacement waveforms. We apply the method to the BBS waveform at a distance of about 1.5 km ESE from the summit crater of Zao Volcano associated with a LPE on April 1, 2017. Assuming the time window M as 300 seconds, we successfully obtained the displacement history: taking the rise time of about 2 minutes, the site was gradually uplifted with the amount of about 50-60 µm and then subsided with HF displacements in the next 2 minutes resulting about 20-30 µm static upheaval. Comparing the

  8. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  9. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Directory of Open Access Journals (Sweden)

    Zhiyong Yang

    2011-03-01

    Full Text Available A solar assisted heat pump (SAHP system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement results during the winter test period show that the system can provide a comfortable living space in winter, when the room temperature averaged 18.9 °C. The average COP of the heat pump system is 2.97 and with a maximum around 4.16.

  10. Geodetic monitoring of suspended particles in rivers

    Science.gov (United States)

    Kamnik, Rok; Maksimova, Daria; Kovačič, Boštjan

    2017-10-01

    There is a trend in modern approach to the management of space of collecting the spatial data, in order to obtain useful information. In this paper a research of suspended particles in the river Drava and Mura will be introduced. The goal is to connect different fields of water management in countries where the rivers Drava and Mura flows in purpose of water management sustainability. The methods such as GNSS for mapping cross sections of the river, the use of ADCP (Acoustic Doppler Current Profiler) measurement system and water sampling to monitor sediment in the water will be presented.

  11. Phase-space path-integral calculation of the Wigner function

    International Nuclear Information System (INIS)

    Samson, J H

    2003-01-01

    The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state

  12. Regional integration and Brazilian Foreign Policy: Strategies in the South American space

    Directory of Open Access Journals (Sweden)

    Cristina Soreanu Pecequilo

    2013-12-01

    Full Text Available The aim of the article is to present, based on theoretical studies of integration, the evolution of this process in Latin America and, most recently, in South America. Based on these studies, the goal is to analyze the role played by Brazil in the process, which defines as priorities of its foreign policy a regional and global framework for its international action that is based on both cooperation and power projection.The research has been conducted based on theories of integration, an historical background on Latin American integration and in Brazilian foreign policy, through its contemporary agenda. The answer was based on a comparative agenda and in a bibliographical critical analysis of the research material.The main findings of the paper point out that Latin American integration has specific features linked to the economic, political and stragetic realities of the continent that show the limitations of some theories applied to the European process, also that it depends on Brazilian foreign policy actions, that still sees the region as instrumental to its interests. So, Brazil sometimes fail to fulfill some requisites of integration that are essential to sustain its projects. Therefore, there is a cycle of enlargement and deepening of regional integration process in this political space that point out to the need of a more sustained compromise of Brazilian foreign policy towards these projects. If Brazil continues not to sustain these projects, they will lose momentum and significance once more, increasing power asymmetries in the region.

  13. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...

  14. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  15. An integrated mission approach to the space exploration initiative will ensure success

    Science.gov (United States)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  16. Influence of bad measurements in properties of GeodeticNnetwork

    Directory of Open Access Journals (Sweden)

    Vincent Jakub

    2008-12-01

    Full Text Available In establishment of LGS (Local geodetic Net some given coordinated points from the relevant area are used, new points areestablished and the required distances and angles among the points are measured. If some measurements are defective, the netadjustment with the obtained values is depreciated, unacceptable. In the paper there is given an identification method of incorrectmeasurement results. The faulty results are eliminated in a new adjustment or the relevant defective measurements are repeated forobtaining correct values.

  17. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  18. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  19. Integration and Testing Challenges of Small, Multiple Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Thomas

    2008-01-01

    The ST5 technology demonstration mission led by GSFC of NASA's New Millennium Program managed by JPL consisted of three micro satellites (approximately 30 kg each) deployed into orbit from the Pegasus XL launch vehicle. In order to meet the launch date schedule of ST5, a different approach was required rather than the standard I&T approach used for single, room-sized satellites. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center. It was determined that there was insufficient time in the schedule to perform three spacecraft I&T activities in series using standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all three spacecraft, learning and gaining knowledge and efficiency as spacecraft #1 integration and testing progressed. They became acutely familiar with the hardware, operation and processes for I&T, thus had the experience and knowledge to safely execute I&T for spacecraft #2 and #3. The integration team was extremely versatile; each member could perform many different activities or work any spacecraft, when needed. ST5 was successfully integrated, tested and shipped to the launch site per the I&T schedule that was planned three years previously. The I&T campaign was completed with ST5's successful launch on March 22, 2006.

  20. An Overview of Geodetic Volcano Research in the Canary Islands

    Science.gov (United States)

    Fernández, José; González, Pablo J.; Camacho, Antonio G.; Prieto, Juan F.; Brú, Guadalupe

    2015-11-01

    The Canary Islands are mostly characterized by diffuse and scattered volcanism affecting a large area, with only one active stratovolcano, the Teide-Pico Viejo complex (Tenerife). More than 2 million people live and work in the 7,447 km2 of the archipelago, resulting in an average population density three times greater than the rest of Spain. This fact, together with the growth of exposure during the past 40 years, increases volcanic risk with respect previous eruptions, as witnessed during the recent 2011-2012 El Hierro submarine eruption. Therefore, in addition to purely scientific reasons there are economic and population-security reasons for developing and maintaining an efficient volcano monitoring system. In this scenario geodetic monitoring represents an important part of the monitoring system. We describe volcano geodetic monitoring research carried out in the Canary Islands and the results obtained. We consider for each epoch the two main existing constraints: the level of volcanic activity in the archipelago, and the limitations of the techniques available at the time. Theoretical and observational aspects are considered, as well as the implications for operational volcano surveillance. Current challenges of and future perspectives in geodetic volcano monitoring in the Canaries are also presented.

  1. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  2. INTEGRATION OF UKRAINIAN INDUSTRY SCIENTIFIC PERIODACLS INTO WORLD SCIENTIFIC INFORMATION SPACE: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    T. O. Kolesnykova

    2013-11-01

    Full Text Available Purpose. Problem of representation lack of scientists’ publications, including transport scientists, in the international scientometric databases is the urgent one for Ukrainian science. To solve the problem one should study the structure and quality of the information flow of scientific periodicals of railway universities in Ukraine and to determine the integration algorithm of scientific publications of Ukrainian scientists into the world scientific information space. Methodology. Applying the methods of scientific analysis, synthesis, analogy, comparison and prediction the author has investigated the problem of scientific knowledge distribution using formal communications. The readiness of Ukrainian railway periodicals to registration procedure in the international scientometric systems was analyzed. The level of representation of articles and authors of Ukrainian railway universities in scientometric database Scopus was studied. Findings. Monitoring of the portals of railway industry universities of Ukraine and the sites of their scientific periodicals and analysis of obtained data prove insufficient readiness of most scientific publications for submission to scientometric database. The ways providing sufficient "visibility" of industry periodicals of Ukrainian universities in the global scientific information space were proposed. Originality. The structure and quality of documentary flow of scientific periodicals in railway transport universities of Ukraine and its reflection in scientometric DB Scopus were first investigated. The basic directions of university activities to integrate the results of transport scientists research into the global scientific digital environment were outlined. It was determined the leading role of university libraries in the integration processes of scientific documentary resources of universities into the global scientific and information communicative space. Practical value. Implementation of the proposed

  3. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  4. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  5. Unconscious integration of multisensory bodily inputs in the peripersonal space shapes bodily self-consciousness.

    Science.gov (United States)

    Salomon, Roy; Noel, Jean-Paul; Łukowska, Marta; Faivre, Nathan; Metzinger, Thomas; Serino, Andrea; Blanke, Olaf

    2017-09-01

    Recent studies have highlighted the role of multisensory integration as a key mechanism of self-consciousness. In particular, integration of bodily signals within the peripersonal space (PPS) underlies the experience of the self in a body we own (self-identification) and that is experienced as occupying a specific location in space (self-location), two main components of bodily self-consciousness (BSC). Experiments investigating the effects of multisensory integration on BSC have typically employed supra-threshold sensory stimuli, neglecting the role of unconscious sensory signals in BSC, as tested in other consciousness research. Here, we used psychophysical techniques to test whether multisensory integration of bodily stimuli underlying BSC also occurs for multisensory inputs presented below the threshold of conscious perception. Our results indicate that visual stimuli rendered invisible through continuous flash suppression boost processing of tactile stimuli on the body (Exp. 1), and enhance the perception of near-threshold tactile stimuli (Exp. 2), only once they entered PPS. We then employed unconscious multisensory stimulation to manipulate BSC. Participants were presented with tactile stimulation on their body and with visual stimuli on a virtual body, seen at a distance, which were either visible or rendered invisible. We found that participants reported higher self-identification with the virtual body in the synchronous visuo-tactile stimulation (as compared to asynchronous stimulation; Exp. 3), and shifted their self-location toward the virtual body (Exp.4), even if stimuli were fully invisible. Our results indicate that multisensory inputs, even outside of awareness, are integrated and affect the phenomenological content of self-consciousness, grounding BSC firmly in the field of psychophysical consciousness studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Geoinformation Systems as a Tool of the Integrated Tourist Spaces Management

    Directory of Open Access Journals (Sweden)

    Kolesnikovich Victor

    2014-09-01

    Full Text Available Introduction. Currently tourist activity management is in need of creating special conditions for the development of integrated management tools based on the general information and analytical base. Material and methods. The creation of architecture and the content of geoinformation and hybrid information systems are oriented at the usage of the Integrated Tourist Spaces Management (ITSM to set up a specific claim related to the features of management model. The authors created the concept of tourist space. The information and the analytical system are used to create the information model of tourist space. Information support development of ITSM system is a sort of a hybrid system: an expert system constructed on the basis of GIS. Results and conclusions. By means of GIS collecting, storage, analysis and graphic visualization of spatial data and the related information on the objects presented in an expert system is provided. The offered approach leads to the formation of an information system and the analytical maintenance of not only human decision-making, but it also promotes the creation of new tourist products based on more and more differentiated inquiries of clients or a ratio of the price and quality (from the point of view of satisfaction of inquiries.

  7. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  8. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    Science.gov (United States)

    1998-09-01

    A unique opportunity for journalists and cameramen to view INTEGRAL will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 22 September. On show will be the full-size structural thermal model which is now beeing examined in ESA's test centre. Following introductions to the project, the INTEGRAL spacecraft can be seen, filmed and photographed in its special clean room environment.. Media representatives wishing to participate in the visit to ESA's test centre and the presentation of INTEGRAL are kindly requested to return by fax the attached registration form to ESA Public relations, Tel. +33 (0) 1.53.69.71.55 - Fax. +33 (0) 1.53.69.76.90. For details please see the attached programme Gamma-ray astronomy - why ? Gamma-rays cannot be detected from the ground since the earth's atmosphere shields us from high energetic radiation. Only space technology has made gamma-astronomy possible. To avoid background radiation effects INTEGRAL will spend most of its time in the orbit outside earth's radiation belts above an altitude of 40'000 km. Gamma-rays are the highest energy form of electromagnetic radiation. Therefore gamma-ray astronomy explores the most energetic phenomena occurring in nature and addresses some of the most fundamental problems in physics. We know for instance that most of the chemical elements in our bodies come from long-dead stars. But how were these elements formed? INTEGRAL will register gamma-ray evidence of element-making. Gamma-rays also appear when matter squirms in the intense gravity of collapsed stars or black holes. One of the most important scientific objectives of INTEGRAL is to study such compact objects as neutron stars or black holes. Besides stellar black holes there may exist much bigger specimens of these extremely dense objects. Most astronomers believe that in the heart of our Milky Way as in the centre of other galaxies there may lurk giant black holes. INTEGRAL will have to find evidence of these exotic objects. Even

  9. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    Energy Technology Data Exchange (ETDEWEB)

    Kavelaars, Alicia T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States). Dept. of Aeronautics and Astronautics

    2006-10-10

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I&T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I&T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I&T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I&T management and oversight overall. E-Logbook has been used for the I&T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I&T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry.

  10. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Science.gov (United States)

    Kerstman, Eric; Minard, Charles; Saile, Lynn; deCarvalho, Mary Freire; Myers, Jerry; Walton, Marlei; Butler, Douglas; Iyengar, Sriram; Johnson-Throop, Kathy; Baumann, David

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning.

  11. Design and Application of an Electronic Logbook for Space System Integration and Test Operations

    International Nuclear Information System (INIS)

    Kavelaars, Alicia T.; SLAC; Stanford U., Dept. Aeronaut. Astronaut

    2006-01-01

    In the highly technological aerospace world paper is still widely used to document space system integration and test (I and T) operations. E-Logbook is a new technology designed to substitute the most commonly used paper logbooks in space system I and T, such as the connector mate/demate logbook, the flight hardware and flight software component installation logbook, the material mix record logbook and the electronic ground support equipment validation logbook. It also includes new logbook concepts, such as the shift logbook, which optimizes management oversight and the shift hand-over process, and the configuration logbook, which instantly reports on the global I and T state of the space system before major test events or project reviews. The design of E-Logbook focuses not only on a reliable and efficient relational database, but also on an ergonomic human-computer interactive (HCI) system that can help reduce human error and improve I and T management and oversight overall. E-Logbook has been used for the I and T operation of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) at the Stanford Linear Accelerator Center (SLAC). More than 41,000 records have been created for the different I and T logbooks, with no data having been corrupted or critically lost. 94% of the operators and 100% of the management exposed to E-Logbook prefer it to paper logbooks and recommend its use in the aerospace industry

  12. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    Science.gov (United States)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  13. Child-friendly integrated public spaces (RPTRA): Uses and sense of attachment

    Science.gov (United States)

    Prakoso, S.; Dewi, J.

    2018-03-01

    The Jakarta City Provincial Government undertook an extensive citywide initiative to build small public urban green spaces, called child-friendly integrated public spaces (RPTRA). Studies on how citizens, including children, use RPTRA was limited, and questions regarding whether children had become attached to the RPTRA as one of their favorite places remain unanswered. This paper presents a preliminary study on ten RPTRA located in Jakarta. We examine how children and citizens use the spaces, based on data from respondents who completed on-site questionnaires during the course of their visit to the RPTRA. We also measure the degree of children’s sense of attachment to RPTRA. The results show that children primarily use RPTRA for playing and learning. Women and girls use RPTRA the most, and elderly citizens use it the least. The results of the study also demonstrate that children had developed a sense of attachment to RPTRA and it had become one of their favorite places. This study may have implications on the existence of small public urban green spaces like RPTRA as valuable assets in the everyday lives of children and citizens. It proposes that RPTRA should be taken into account for future planning of densely populated urban areas.

  14. On an Integral-Type Operator Acting between Bloch-Type Spaces on the Unit Ball

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2010-01-01

    Full Text Available Let 𝔹 denote the open unit ball of ℂn. For a holomorphic self-map φ of 𝔹 and a holomorphic function g in 𝔹 with g(0=0, we define the following integral-type operator: Iφgf(z=∫01ℜf(φ(tzg(tz(dt/t, z∈𝔹. Here ℜf denotes the radial derivative of a holomorphic function f in 𝔹. We study the boundedness and compactness of the operator between Bloch-type spaces ℬω and ℬμ, where ω is a normal weight function and μ is a weight function. Also we consider the operator between the little Bloch-type spaces ℬω,0 and ℬμ,0.

  15. Coordinating space telescope operations in an integrated planning and scheduling architecture

    Science.gov (United States)

    Muscettola, Nicola; Smith, Stephen F.; Cesta, Amedeo; D'Aloisi, Daniela

    1992-01-01

    The Heuristic Scheduling Testbed System (HSTS), a software architecture for integrated planning and scheduling, is discussed. The architecture has been applied to the problem of generating observation schedules for the Hubble Space Telescope. This problem is representative of the class of problems that can be addressed: their complexity lies in the interaction of resource allocation and auxiliary task expansion. The architecture deals with this interaction by viewing planning and scheduling as two complementary aspects of the more general process of constructing behaviors of a dynamical system. The principal components of the software architecture are described, indicating how to model the structure and dynamics of a system, how to represent schedules at multiple levels of abstraction in the temporal database, and how the problem solving machinery operates. A scheduler for the detailed management of Hubble Space Telescope operations that has been developed within HSTS is described. Experimental performance results are given that indicate the utility and practicality of the approach.

  16. Hybrid state‐space time integration in a rotating frame of reference

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2011-01-01

    displacements and the global velocities are represented by the same shape functions. This leads to a simple generalization of the corresponding equations of motion in a stationary frame in which all inertial effects are represented via the classic global mass matrix. The formulation introduces two gyroscopic......A time integration algorithm is developed for the equations of motion of a flexible body in a rotating frame of reference. The equations are formulated in a hybrid state‐space, formed by the local displacement components and the global velocity components. In the spatial discretization the local...... terms, while the centrifugal forces are represented implicitly via the hybrid state‐space format. An angular momentum and energy conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean value. A consistent algorithmic damping scheme is identified...

  17. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  18. Results from the Geodetic Observatory TIGO due to the Mw 8.8 Earthquake

    Science.gov (United States)

    Hase, H.; Böer, A.; Sierk, B.; Ihde, J.; Weber, G.; Wilmes, H.; Falk, R.; Hessels, U.; Neumaier, P.; Söhne, W.; Wziontek, H.; Engelhard, G.; Sobarzo, S.; Cifuentes, O.; Guaitiao, C.; Cona, I.; Avendaño, M.; Herrera, C.; Mora, V.; Fernandez, A.; Oñate, E.; Zaror, P.; Pedreros, F.; Zapata, O.

    2010-12-01

    The Geodetic Observatory TIGO is unique in Latin America. With its sensors and instruments it defines a reference point in the time, space and gravity field domain. Its operation started in 2002, for which reason data series documented the preseismic situation very well. With the Mw 8.8 earthquake on February 27, 2010, the entire observatory was exposed to strong motions due to its closeness to the epicenter. Since then the postseismic behaviour of the subduction zone can be studied and compared with the preseismic situation. TIGO provided continuous GPS/GLONASS data with 1s samples which give an insight to the mechanism of the decoupling of the Nazca and the South-American plate. The displacement of more than 3m had a duration of 30s at the beginning of the 147s duration of the earthquake. The displacement could be confirmed afterwards with VLBI and SLR methods. TIGO used its absolute gravity meter in an unusual way with weekly measurements on the same monument. These data show an irregularity during the last 3 weeks before the earthquake. Finally the postseismic movement to the west triggered by the earthquake and registered by geodetic space techniques indicate that the western expansion of the South-American plate did not stop yet. The pre- and post-seismic displacement vectors differ by less than 180° which might be explained by a fractional strike slip in the mega thrust. The coincidence of the epicenter with one of the keystations for global reference frames showed deficiencies by the linear modelling of tectonical movements in terrestial reference frames. This problem calls for near-real time reference frames.

  19. More Wind Power Integration with Adjusted Energy Carriers for Space Heating in Northern China

    Directory of Open Access Journals (Sweden)

    Jianjun He

    2012-08-01

    Full Text Available In Northern China, due to the high penetration of coal-fired cogeneration facilities, which are generally equipped with extraction-condensing steam turbines, lots of wind power resources may be wasted during the heating season. In contrast, considerable coal is consumed in the power generation sector. In this article, firstly it is revealed that there exists a serious divergence in the ratio of electrical to thermal energy between end users’ demand and the cogenerations’ production during off-peak load at night, which may negate active power-balancing of the electric power grid. Secondly, with respect to this divergence only occurring during off-peak load at night, a temporary proposal is given so as to enable the integration of more wind power. The authors suggest that if the energy carrier for part of the end users’ space heating is switched from heating water to electricity (e.g., electric heat pumps (EHPs can provide space heating in the domestic sector, the ratio of electricity to heating water load should be adjusted to optimize the power dispatch between cogeneration units and wind turbines, resulting in fuel conservation. With this proposal, existing infrastructures are made full use of, and no additional ones are required. Finally a numerical simulation is performed in order to illustrate both the technical and economic feasibility of the aforementioned proposal, under ongoing infrastructures as well as electricity and space heating tariff conditions without changing participants’ benefits. The authors aim to persuade Chinese policy makers to enable EHPs to provide space heating to enable the integration of more wind power.

  20. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    Science.gov (United States)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  1. On the factorization of integral operators on spaces of summable functions

    International Nuclear Information System (INIS)

    Engibaryan, Norayr B

    2009-01-01

    We consider the factorization I-K=(I-U + )(I-U - ), where I is the identity operator, K is an integral operator acting on some Banach space of functions summable with respect to a measure μ on (a,b) subset of (-∞,+∞) continuous relative to the Lebesgue measure, (Kf)(x)=∫ a b k(x,t)f(t)μ(dt), x element of (a,b), and U ± are the desired Volterra operators. A necessary and sufficient condition is found for the existence of this factorization for a rather wide class of operators K with positive kernels and for Hilbert-Schmidt operators.

  2. Multi-particle phase space integration with arbitrary set of singularities in CompHEP

    International Nuclear Information System (INIS)

    Kovalenko, D.N.; Pukhov, A.E.

    1997-01-01

    We describe an algorithm of multi-particle phase space integration for collision and decay processes realized in CompHEP package version 3.2. In the framework of this algorithm it is possible to regularize an arbitrary set of singularities caused by virtual particle propagators. The algorithm is based on the method of the recursive representation of kinematics and on the multichannel Monte Carlo approach. CompHEP package is available by WWW: http://theory.npi.msu.su/pukhov/comphep. html (orig.)

  3. On the existence of solutions for Volterra integral inclusions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Evgenios P. Avgerinos

    1993-01-01

    Full Text Available In this paper we examine a class of nonlinear integral inclusions defined in a separable Banach space. For this class of inclusions of Volterra type we establish two existence results, one for inclusions with a convex-valued orientor field and the other for inclusions with nonconvex-valued orientor field. We present conditions guaranteeing that the multivalued map that represents the right-hand side of the inclusion is α-condensing using for the proof of our results a known fixed point theorem for α-condensing maps.

  4. System Definition of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Lundquist, Ray; Aymergen, Cagatay; VanCampen, Julie; Abell, James; Smith, Miles; Driggers, Phillip

    2008-01-01

    The Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST) provides the critical functions and the environment for the four science instruments on JWST. This complex system development across many international organizations presents unique challenges and unique solutions. Here we describe how the requirement flow has been coordinated through the documentation system, how the tools and processes are used to minimize impact to the development of the affected interfaces, how the system design has matured, how the design review process operates, and how the system implementation is managed through reporting to ensure a truly world class scientific instrument compliment is created as the final product.

  5. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    Science.gov (United States)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  6. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  7. Application of Pettis integration to differential inclusions with three-point boundary conditions in Banach spaces

    Directory of Open Access Journals (Sweden)

    Imen Boutana

    2007-12-01

    Full Text Available This paper provide some applications of Pettis integration to differential inclusions in Banach spaces with three point boundary conditions of the form $$ ddot{u}(t in F(t,u(t,dot u(t+H(t,u(t,dot u(t,quad hbox{a.e. } t in [0,1], $$ where $F$ is a convex valued multifunction upper semicontinuous on $Eimes E$ and $H$ is a lower semicontinuous multifunction. The existence of solutions is obtained under the non convexity condition for the multifunction $H$, and the assumption that $F(t,x,ysubset Gamma_{1}(t$, $H(t,x,ysubset Gamma_{2}(t$, where the multifunctions $Gamma_{1},Gamma_{2}:[0,1] ightrightarrows E$ are uniformly Pettis integrable.

  8. Scalar one-loop vertex integrals as meromorphic functions of space-time dimension d

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Phan, Khiem Hong [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Vietnam National Univ., Ho Chi Minh City (Viet Nam). Univ. of Science; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Silesia Univ., Chorzow (Poland). Inst. of Physics

    2017-11-15

    Representations are derived for the basic scalar one-loop vertex Feynman integrals as meromorphic functions of the space-time dimension d in terms of (generalized) hypergeometric functions {sub 2}F{sub 1} and F{sub 1}. Values at asymptotic or exceptional kinematic points as well as expansions around the singular points at d=4+2n, n non-negative integers, may be derived from the representations easily. The Feynman integrals studied here may be used as building blocks for the calculation of one-loop and higher-loop scalar and tensor amplitudes. From the recursion relation presented, higher n-point functions may be obtained in a straightforward manner.

  9. Advanced Data Mining and Deployment for Integrated Vehicle Health Management and the Space Vehicle Lifecycle, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In a successful Phase 1 project for NASA SBIR topic A1.05, "Data Mining for Integrated Vehicle Health Management," Michigan Aerospace Corporation (MAC) demonstrated...

  10. Air Force Host and Tenant Agreements Between the 50th Space Wing, the Joint National Integration Center, and Tenants

    National Research Council Canada - National Science Library

    2007-01-01

    .... The 50th Space Wing makes available by permit two buildings on the base's real property records, 720 and 730, to the Joint National Integration Center, a Component of the Missile Defense Agency...

  11. Dynamic rupture modeling of the M7.2 2010 El Mayor-Cucapah earthquake: Comparison with a geodetic model

    Science.gov (United States)

    Kyriakopoulos, Christos; Oglesby, David D.; Funning, Gareth J.; Ryan, Kenneth

    2017-01-01

    The 2010 Mw 7.2 El Mayor-Cucapah earthquake is the largest event recorded in the broader Southern California-Baja California region in the last 18 years. Here we try to analyze primary features of this type of event by using dynamic rupture simulations based on a multifault interface and later compare our results with space geodetic models. Our results show that starting from homogeneous prestress conditions, slip heterogeneity can be achieved as a result of variable dip angle along strike and the modulation imposed by step over segments. We also considered effects from a topographic free surface and find that although this does not produce significant first-order effects for this earthquake, even a low topographic dome such as the Cucapah range can affect the rupture front pattern and fault slip rate. Finally, we inverted available interferometric synthetic aperture radar data, using the same geometry as the dynamic rupture model, and retrieved the space geodetic slip distribution that serves to constrain the dynamic rupture models. The one to one comparison of the final fault slip pattern generated with dynamic rupture models and the space geodetic inversion show good agreement. Our results lead us to the following conclusion: in a possible multifault rupture scenario, and if we have first-order geometry constraints, dynamic rupture models can be very efficient in predicting large-scale slip heterogeneities that are important for the correct assessment of seismic hazard and the magnitude of future events. Our work contributes to understanding the complex nature of multifault systems.

  12. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    OpenAIRE

    Vasyl P. Oleksyuk

    2013-01-01

    The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and education...

  13. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  14. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 2. Darboux spaces D{sub III} and D{sub IV}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-08-15

    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces D{sub III} and D{sub IV} five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively. (orig.)

  15. Geodetic antenna calibration test in the Antarctic environment

    Science.gov (United States)

    Grejner-Brzezinska, A.; Vazquez, E.; Hothem, L.

    2006-01-01

    TransAntarctic Mountain DEFormation (TAMDEF) Monitoring Network is the NSF-sponsored OSU and USGS project, aimed at measuring crustal motion in the Transantarctic Mountains of Victoria Land using GPS carrier phase measurements. Station monumentation, antenna mounts, antenna types, and data processing strategies were optimized to achieve mm-level estimates for the rates of motion. These data contributes also to regional Antarctic frame definition. Significant amount of data collected over several years allow the investigation of unique aspects of GPS geodesy in Antarctica, to determine how the error spectrum compares to the mid-latitude regions, and to identify the optimum measurement and data processing schemes for Antarctic conditions, in order to test the predicted rates of motion (mm-level w.r.t. time). The data collection for the TAMDEF project was initiated in 1996. The primary antenna used has been the Ashtech L1/L2 Dorne Margolin (D/M) choke ring. A few occupations involved the use of a Trimble D/M choke ring. The data were processed using the antenna calibration data available from the National Geodetic Survey (NGS). The recent developments in new antenna designs that are lighter in weight and lower in cost are being considered as a possible alternative to the bulkier and more expensive D/M choke ring design. In November 2003, in situ testing of three alternative models of L1/L2 antennas was conducted at a site located in the vicinity of McMurdo Station, Antarctica (S77.87, E166.56). The antenna models used in this test were: Ashtech D/M choke ring, Trimble D/M choke ring, Trimble Zephyr, and the NovAtel GPS-702. Two stations, spaced within 30 meters, were used in the test. Both had the characteristics similar to the stations of the TAMDEF network, i.e., the UNAVCO fixed-height, force-centered level mounts with a constant antenna offset were used, ensuring extreme stability of the antenna/ mount/pin set up. During each of the four 3-day test data collection

  16. Applications of Voronoi and Delaunay Diagrams in the solution of the geodetic boundary value problem

    Directory of Open Access Journals (Sweden)

    C. A. B. Quintero

    Full Text Available Voronoi and Delaunay structures are presented as discretization tools to be used in numerical surface integration aiming the computation of geodetic problems solutions, when under the integral there is a non-analytical function (e. g., gravity anomaly and height. In the Voronoi approach, the target area is partitioned into polygons which contain the observed point and no interpolation is necessary, only the original data is used. In the Delaunay approach, the observed points are vertices of triangular cells and the value for a cell is interpolated for its barycenter. If the amount and distribution of the observed points are adequate, gridding operation is not required and the numerical surface integration is carried out by point-wise. Even when the amount and distribution of the observed points are not enough, the structures of Voronoi and Delaunay can combine grid with observed points in order to preserve the integrity of the original information. Both schemes are applied to the computation of the Stokes' integral, the terrain correction, the indirect effect and the gradient of the gravity anomaly, in the State of Rio de Janeiro, Brazil area.

  17. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  18. Processes of Integration and Fragmentation of Economic Space: The Structure of Settlement Systems

    Directory of Open Access Journals (Sweden)

    Alexander Pavlovich Goryunov

    2017-12-01

    Full Text Available This work presents a study of processes of integration and fragmentation caused by the polarization of economic space. Under integration in economic space the authors understand the formation of new and transformation of existing settlement systems, while fragmentation is the dissolution of settlement systems and their transformation into loosely connected settlement networks. The study focuses on the structure of settlement systems. Authors propose a new method for studying the structure of settlement systems, which combines the use of factor analysis, multidimensional scaling, and cluster analysis. The proposed method utilizes the maximum of available information about the social-economic status of settlements to reveal regularities in their spatial organization. The authors test the proposed method on 35 large cities of the Central and Volga federal districts of Russia, which comprise the spatial surroundings of Moscow. The authors find four groups of cities forming the core of the settlement system centered around Moscow, a group of four cities forming a buffer zone around that system, as well as four cities in the studied sample which do not participate in the settlement system

  19. Research in Application of Geodetic GPS Receivers in Time Synchronization

    Science.gov (United States)

    Zhang, Q.; Zhang, P.; Sun, Z.; Wang, F.; Wang, X.

    2018-04-01

    In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV) which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV) is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability) cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns). In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km) were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2-4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even there will be at least

  20. RESEARCH IN APPLICATION OF GEODETIC GPS RECEIVERS IN TIME SYNCHRONIZATION

    Directory of Open Access Journals (Sweden)

    Q. Zhang

    2018-04-01

    Full Text Available In recent years, with the development of satellite orbit and clock parameters accurately determining technology and the popularity of geodetic GPS receivers, Common-View (CV which proposed in 1980 by Allan has gained widespread application and achieved higher accuracy time synchronization results. GPS Common View (GPS CV is the technology that based on multi-channel geodetic GPS receivers located in different place and under the same common-view schedule to receiving same GPS satellite signal at the same time, and then calculating the time difference between respective local receiver time and GPST by weighted theory, we will obtain the difference between above local time of receivers that installed in different station with external atomic clock. Multi-channel geodetic GPS receivers have significant advantages such as higher stability, higher accuracy and more common-view satellites in long baseline time synchronization application over the single-channel geodetic GPS receivers. At present, receiver hardware delay and surrounding environment influence are main error factors that affect the accuracy of GPS common-view result. But most error factors will be suppressed by observation data smoothing and using of observation data from different satellites in multi-channel geodetic GPS receiver. After the SA (Selective Availability cancellation, using a combination of precise satellite ephemeris, ionospheric-free dual-frequency P-code observations and accurately measuring of receiver hardware delay, we can achieve time synchronization result on the order of nanoseconds (ns. In this paper, 6 days observation data of two IGS core stations with external atomic clock (PTB, USNO distance of two stations about 6000 km were used to verify the GPS common-view theory. Through GPS observation data analysis, there are at least 2–4 common-view satellites and 5 satellites in a few tracking periods between two stations when the elevation angle is 15°, even

  1. The University, the Market, and the Geodetic Engineer or

    DEFF Research Database (Denmark)

    Stubkjær, Erik

    2002-01-01

    In Europe, universities have existed for more than 800 years. The university is the place in society for higher learning and related research. Through the ages, the universities have enjoyed a remarkably freedom relative to religious and secular powers. In recent years, the objectives and practises...... project, which concerned the education of geodetic engineers in Slovenia. The body of the paper presents a selection of ideas that shaped the university through the centuries, with a view to balance the present interest in advancing market-directed behaviour....

  2. Integration Assessment of Visiting Vehicle Induced Electrical Charging of the International Space Station Structure

    Science.gov (United States)

    Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.

    2010-01-01

    The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine

  3. Population persistence of stream fish in response to environmental change: integrating data and models across space

    Science.gov (United States)

    Letcher, B. H.; Schueller, P.; Bassar, R.; Coombs, J.; Rosner, A.; Sakrejda, K.; Kanno, Y.; Whiteley, A.; Nislow, K. H.

    2013-12-01

    For stream fishes, environmental variation is a key driver of individual body growth/movement/survival and, by extension, population dynamics. Identifying how stream fish respond to environmental variation can help clarify mechanisms responsible for population dynamics and can help provide tools to forecast relative resilience of populations across space. Forecasting dynamics across space is challenging, however, because it can be difficult to conduct enough studies with enough intensity to fully characterize broad-scale population response to environmental change. We have adopted a multi-scale approach, using detailed individual-based studies and analyses (integral projection matrix) to determine sensitivities of population growth to environmental variation combined with broad spatial data and analyses (occupancy and abundance models) to estimate patterns of population response across space. Population growth of brook trout was most sensitive to stream flow in the spring and winter, most sensitive to stream temperature in the fall and sensitive to both flow and temperature in the summer. High flow in the spring and winter had negative effects on population growth while high temperature had a negative effect in the fall. Flow had no effect when it was cold, but a positive effect when it was warm in the summer. Combined with occupancy and abundance models, these data give insight into the spatial structure of resilient populations and can help guide prioritization of management actions.

  4. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Vasyl P. Oleksyuk

    2013-06-01

    Full Text Available The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and educational space of the Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University.

  5. Geodetic Imaging: Expanding the Boundaries of Geodesy in the 21st Century

    Science.gov (United States)

    Fernandez Diaz, J. C.; Carter, W. E.; Shrestha, R. L.; Glennie, C. L.

    2013-12-01

    High resolution (sub-meter) geodetic images covering tens to thousands of square kilometers have extended the boundaries of geodesy into related areas of the earth sciences, such as geomorphology and geodynamics, during the past decade, to archaeological exploration and site mapping during the past few years, and are now poised to transform studies of flora and fauna in the more remote regions of the world. Geodetic images produced from airborne laser scanning (ALS), a.k.a. airborne light detection and ranging (LiDAR) have proven transformative to the modern practice of geomorphology where researchers have used decimeter resolution digital elevation models (DEMs) to determine the spatial frequencies of evenly spaced features in terrain, and developed models and mathematical equations to explain how the terrain evolved to its present state and how it is expected to change in the future (Perron et al., 2009). In geodynamics researchers have used ';before' and ';after' geodetic images of the terrain near earthquakes, such as the 2010 El Mayor-Cucapah Earthquake, to quantify surface displacements and suggest models to explain the observed deformations (Oskin et. al., 2012). In archaeology, the ability of ALS to produce ';bare earth' DEMs of terrain covered with dense vegetation, including even tropical rain forests, has revolutionized the study of archaeology in highly forested areas, finding ancient structures and human modifications of landscapes not discovered by archaeologists working at sites for decades (Chase et al., 2011 & Evans et al., 2013), and finding previously unknown ruins in areas that ground exploration has not been able to penetrate since the arrival of the conquistadors in the new world in the 17th century (Carter et al., 2012). The improved spatial resolution and ability of the third generation ALS units to obtain high resolution bare earth DEMs and canopy models in areas covered in dense forests, brush, and even shallow water (steams, lakes, and

  6. Path integral of the angular momentum eigenstates evolving with the parameter linked with rotation angle under the space rotation transformation

    International Nuclear Information System (INIS)

    Zhang Zhongcan; Hu Chenguo; Fang Zhenyun

    1998-01-01

    The authors study the method which directly adopts the azimuthal angles and the rotation angle of the axis to describe the evolving process of the angular momentum eigenstates under the space rotation transformation. The authors obtain the angular momentum rotation and multi-rotation matrix elements' path integral which evolves with the parameter λ(0→θ,θ the rotation angle), and establish the general method of treating the functional (path) integral as a normal multi-integrals

  7. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    Science.gov (United States)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  8. Observing with a space-borne gamma-ray telescope: selected results from INTEGRAL

    International Nuclear Information System (INIS)

    Schanne, Stephane

    2006-01-01

    The International Gamma-Ray Astrophysics Laboratory, i.e. the INTEGRAL satellite of ESA, in orbit since about 3 years, performs gamma-ray observations of the sky in the 15 keV to 8 MeV energy range. Thanks to its imager IBIS, and in particular the ISGRI detection plane based on 16384 CdTe pixels, it achieves an excellent angular resolution (12 arcmin) for point source studies with good continuum spectrum sensitivity. Thanks to its spectrometer SPI, based on 19 germanium detectors maintained at 85 K by a cryogenic system, located inside an active BGO veto shield, it achieves excellent spectral resolution of about 2 keV for 1 MeV photons, which permits astrophysical gamma-ray line studies with good narrow-line sensitivity. In this paper we review some goals of gamma-ray astronomy from space and present the INTEGRAL satellite, in particular its instruments ISGRI and SPI. Ground and in-flight calibration results from SPI are presented, before presenting some selected astrophysical results from INTEGRAL. In particular results on point source searches are presented, followed by results on nuclear astrophysics, exemplified by the study of the 1809 keV gamma-ray line from radioactive 26 Al nuclei produced by the ongoing stellar nucleosynthesis in the Galaxy. Finally a review on the study of the positron-electron annihilation in the Galactic center region, producing 511 keV gamma-rays, is presented

  9. Graphical explanation in an expert system for Space Station Freedom rack integration

    Science.gov (United States)

    Craig, F. G.; Cutts, D. E.; Fennel, T. R.; Purves, B.

    1990-01-01

    The rationale and methodology used to incorporate graphics into explanations provided by an expert system for Space Station Freedom rack integration is examined. The rack integration task is typical of a class of constraint satisfaction problems for large programs where expertise from several areas is required. Graphically oriented approaches are used to explain the conclusions made by the system, the knowledge base content, and even at more abstract levels the control strategies employed by the system. The implemented architecture combines hypermedia and inference engine capabilities. The advantages of this architecture include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. The graphical techniques employed range from simple statis presentation of schematics to dynamic creation of a series of pictures presented motion picture style. User models control the type, amount, and order of information presented.

  10. Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces

    Directory of Open Access Journals (Sweden)

    Akbulut Ali

    2016-01-01

    Full Text Available In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ which is a generalization of the higher-order commutator of the rough fractional integral on the generalized weighted Morrey spaces Mp,ϕ (w. We find the sufficient conditions on the pair (ϕ1, ϕ2 with w ∈ Ap,q which ensures the boundedness of the operators TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ from Mp,φ1wptoMp,φ2wq${M_{p,{\\varphi _1}}}\\left( {{w^p}} \\right\\,{\\rm{to}}\\,{M_{p,{\\varphi _2}}}\\left( {{w^q}} \\right$ for 1 < p < q < ∞. In all cases the conditions for the boundedness of the operator TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ are given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2 and w, which do not assume any assumption on monotonicity of ϕ1 (x,r, ϕ2(x, r in r.

  11. The Integrated Knowledge Space - the Foundation for Enhancing the Effectiveness of the University’s Innovative Activity

    Directory of Open Access Journals (Sweden)

    Yury TELNOV

    2009-01-01

    Full Text Available The paper examines the implementation of Integrated Knowledge Space as an effective method for knowledge management in a global university network which will integrate all interested parties of the educational space: the faculty, scholars and business people within the framework of distributed departments on the basis of Information Centre of Disciplines (ICD. ICD enables higher education institutions to accumulate and make on-line renewal of knowledge for teaching and learning processes and for enhancing innovation potential. ICD facilitates the development of human and relational capital of integrated and interconnected educational, research and business communities.

  12. Integrated Ultra-Wideband Tracking and Carbon Dioxide Sensing System Design for International Space Station Applications

    Science.gov (United States)

    Ni, Jianjun (David); Hafermalz, David; Dusl, John; Barton, Rick; Wagner, Ray; Ngo, Phong

    2015-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time-of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide (CO2) and felt upset. Recent findings indicate that frequent, short-term crew exposure to elevated CO2 levels combined with other physiological impacts of microgravity may lead to a number of detrimental effects, including loss of vision. To evaluate the risks associated with transient elevated CO2 levels and design effective countermeasures, doctors must have access to frequent CO2 measurements in the immediate vicinity of individual crew members along with simultaneous measurements of their location in the space environment. To achieve this goal, a small, low-power, wearable system that integrates an accurate CO2 sensor with an ultra-wideband (UWB) radio capable of real-time location estimation and data communication is proposed. This system would be worn by crew members or mounted on a free-flyer and would automatically gather and transmit sampled sensor data tagged with real-time, high-resolution location information. Under the current proposed effort, a breadboard prototype of such a system has been developed. Although the initial effort is targeted to CO2 monitoring, the concept is applicable to other types of sensors. For the initial effort, a micro-controller is leveraged to integrate a low-power CO2 sensor with a commercially available UWB radio system with ranging capability. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested

  13. Adjustment of positional geodetic networks by unconventional estimations

    Directory of Open Access Journals (Sweden)

    Silvia Gašincová

    2010-06-01

    Full Text Available The content of this paper is the adjustment of positional geodetic networks by robust estimations. The techniques (basedon the unconventional estimations of repeated least-square method which have turned out to be suitable and applicable in the practisehave been demonstrated on the example of the local geodetic network, which was founded to compose this thesis. In the thesisthe following techniques have been chosen to compare the Method of least-squares with those many published in foreign literature:M-estimation of Biweight,M-estimation of Welsch and Danish method. All presented methods are based on the repeated least-squaremethod principle with gradual changing of weight of individual measurements. In the first stage a standard least-square method wascarried out in the following steps – iterations we gradually change individual weights according to the relevant instructions/ regulation(so-called weight function. Iteration process will be stopped when no deviated measurements are found in the file of measured data.MatLab programme version 5.2 T was used to implement mathematical adjustment.

  14. Geodetic and seismological investigation in the Ionian area

    Directory of Open Access Journals (Sweden)

    F. Riguzzi

    1997-06-01

    Full Text Available Geodetic and seismic evidence of crustal deformations in the Ionian area are shown in this paper. The Ionian GPS network, composed of nine sites crossing the Ionian Sea from Calabria, Southern Italy, to Northwestern Greece, was established and surveyed in 1991, 1994, 1995 within the framework of the TYRGEONET project (Anzidei et al., 1996. In 1996 a return campaign was carried out after the occurrence of seismic activity in 1995. The displacement pattern obtained for the Greek side of the network agrees well with those previously displayed, both in magnitude and direction, confirming a mean displacement rate of about 1-2 cm1/yr. The same agreement is not found for the Italian side of the network, where no significant deformations were detected between 1994 and 1996. Seismic deformation was also studied for the same area, starting from the moment tensors of events which occurred in the last 20 years with magnitude greater than 5.0; evident similarity with the displacement field exhibited by the Greek side of the Ionian Sea by geodetic surveys was inferred. On the contrary, the motion detected for the Italian area cannot be simply related to seismic activity.

  15. Space and Terrestrial Power System Integration Optimization Code BRMAPS for Gas Turbine Space Power Plants With Nuclear Reactor Heat Sources

    Science.gov (United States)

    Juhasz, Albert J.

    2007-01-01

    In view of the difficult times the US and global economies are experiencing today, funds for the development of advanced fission reactors nuclear power systems for space propulsion and planetary surface applications are currently not available. However, according to the Energy Policy Act of 2005 the U.S. needs to invest in developing fission reactor technology for ground based terrestrial power plants. Such plants would make a significant contribution toward drastic reduction of worldwide greenhouse gas emissions and associated global warming. To accomplish this goal the Next Generation Nuclear Plant Project (NGNP) has been established by DOE under the Generation IV Nuclear Systems Initiative. Idaho National Laboratory (INL) was designated as the lead in the development of VHTR (Very High Temperature Reactor) and HTGR (High Temperature Gas Reactor) technology to be integrated with MMW (multi-megawatt) helium gas turbine driven electric power AC generators. However, the advantages of transmitting power in high voltage DC form over large distances are also explored in the seminar lecture series. As an attractive alternate heat source the Liquid Fluoride Reactor (LFR), pioneered at ORNL (Oak Ridge National Laboratory) in the mid 1960's, would offer much higher energy yields than current nuclear plants by using an inherently safe energy conversion scheme based on the Thorium --> U233 fuel cycle and a fission process with a negative temperature coefficient of reactivity. The power plants are to be sized to meet electric power demand during peak periods and also for providing thermal energy for hydrogen (H2) production during "off peak" periods. This approach will both supply electric power by using environmentally clean nuclear heat which does not generate green house gases, and also provide a clean fuel H2 for the future, when, due to increased global demand and the decline in discovering new deposits, our supply of liquid fossil fuels will have been used up. This is

  16. Geodetic Control Points, Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level elevations have been determined., Published in 1995, 1:24000 (1in=2000ft) scale, Rhode Island and Providence Plantations.

    Data.gov (United States)

    NSGIC State | GIS Inventory — Geodetic Control Points dataset current as of 1995. Benchmarks; Vertical elevation bench marks for monumented geodetic survey control points for which mean sea level...

  17. Long-term integrated radiophysical studies of the ionosphere, near space, and the propagation of radio waves from space objects

    Science.gov (United States)

    Misyura, V. A.

    1974-01-01

    The radiophysical studies reported consist of direct measurements of certain effects induced in the propagation of radio waves from space objects. From measured effects and from data on the motion and position of space objects, physical parameters of the medium and bodies are determined.

  18. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  19. European integration and cooperation, basic vectors of European space of freedom, security and justice

    Directory of Open Access Journals (Sweden)

    Ion Balaceanu

    2013-03-01

    Full Text Available European integration and cooperation, basic vectors of European space of freedom, security and justiceAbstract: The European countries joining to the Schengen area had the effect elimination of internal border controls between Schengen member countries, that use permenent provisions of the Schengen acquis, being a single external border where operational checks are carried out according to a set of clear rules on immigration, visas, the asylum, as well as some decisions concerning police cooperation, judicial or customs. This means that the border crossing can be made at any time through many places, and citizens of member countries who are traveling in the Schengen area must present a valid ID. Overcoming internal border can be equated with a journey through the country.

  20. New integrable model of quantum field theory in the state space with indefinite metric

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST

  1. Anharmonic Rovibrational Partition Functions for Fluxional Species at High Temperatures via Monte Carlo Phase Space Integrals

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Ahren W. [Chemical Sciences and Engineering; Gruey, Zackery B. [Chemical Sciences and Engineering; Harding, Lawrence B. [Chemical Sciences and Engineering; Georgievskii, Yuri [Chemical Sciences and Engineering; Klippenstein, Stephen J. [Chemical Sciences and Engineering; Wagner, Albert F. [Chemical Sciences and Engineering

    2018-02-03

    Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities at elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.

  2. Integral-spin fields on (3+2)-de Sitter space

    International Nuclear Information System (INIS)

    Gazeau, J.; Hans, M.

    1988-01-01

    Nowadays, (3+2)-de Sitter (or anti-de Sitter space) appears as a very attractive possibility at several levels of theoretical physics. The Wigner definition of an elementary system as associated to a unitary irreducible representation of the Poincare group may be extended to the de Sitter group SO(3,2) [or ∼(SO(3,2))] without great difficulty. The constant curvature, as small as it can be, is a natural candidate to play the role of a regularization parameter with respect to the flat-space limit. Massless particles in (3+2)-de Sitter theory are composite (singletons). On the other hand, supergravity theories necessitate a (large) constant curvature. The content of this paper is group theoretical. It attempts to continue the ''a la Wigner'' program for SO(3,2), already largely broached by Fronsdal. Three recurrence formulas are presented. They permit one to build up the carrier states for representations with arbitrary integral spin. Two of them are valid for the ''massive'' representations whereas the third one is applicable to the indecomposable massless representations. In addition, other presumably indecomposable, though nonphysical, representations are studied, in relation to the existence of ''generalized'' gauge fields and divergences. The recurrence formulas also allow one to build up the invariant two-point functions or homogeneous propagators

  3. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    International Nuclear Information System (INIS)

    Ahmadi, Rouhollah; Khamehchi, Ehsan

    2013-01-01

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data

  4. Reservoir Modeling by Data Integration via Intermediate Spaces and Artificial Intelligence Tools in MPS Simulation Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Rouhollah, E-mail: rouhollahahmadi@yahoo.com [Amirkabir University of Technology, PhD Student at Reservoir Engineering, Department of Petroleum Engineering (Iran, Islamic Republic of); Khamehchi, Ehsan [Amirkabir University of Technology, Faculty of Petroleum Engineering (Iran, Islamic Republic of)

    2013-12-15

    Conditioning stochastic simulations are very important in many geostatistical applications that call for the introduction of nonlinear and multiple-point data in reservoir modeling. Here, a new methodology is proposed for the incorporation of different data types into multiple-point statistics (MPS) simulation frameworks. Unlike the previous techniques that call for an approximate forward model (filter) for integration of secondary data into geologically constructed models, the proposed approach develops an intermediate space where all the primary and secondary data are easily mapped onto. Definition of the intermediate space, as may be achieved via application of artificial intelligence tools like neural networks and fuzzy inference systems, eliminates the need for using filters as in previous techniques. The applicability of the proposed approach in conditioning MPS simulations to static and geologic data is verified by modeling a real example of discrete fracture networks using conventional well-log data. The training patterns are well reproduced in the realizations, while the model is also consistent with the map of secondary data.

  5. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  6. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    Science.gov (United States)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  7. Interaction between Space and Effectiveness in Multisensory Integration: Behavioral and Perceptual Measures

    Directory of Open Access Journals (Sweden)

    Aaron R Nidiffer

    2011-10-01

    Full Text Available Previous research has described several core principles of multisensory integration. These include the spatial principle, which relates the integrative product to the physical location of the stimuli and the principle of inverse effectiveness, in which minimally effective stimuli elicit the greatest multisensory gains when combined. In the vast majority of prior studies, these principles have been studied in isolation, with little attention to their interrelationships and possible interactions. Recent neurophysiological studies in our laboratory have begun to examine these interactions within individual neurons in animal models, work that we extend here into the realm of human performance and perception. To test this, we conducted a psychophysical experiment in which 51 participants were tasked with judging the location of a target stimulus. Target stimuli were visual flashes and auditory noise bursts presented either alone or in combination at four locations and at two intensities. Multisensory combinations were always spatially coincident. A significant effect was found for response times and a marginal effect was found for accuracy, such that the degree of multisensory gain changed as a function of the interaction between space and effectiveness. These results provide further evidence for a strong interrelationship between the multisensory principles in dictating human performance.

  8. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  9. Biospheric Life Support - integrating biological regeneration into protection of humans in space.

    Science.gov (United States)

    Rocha, Mauricio; Iha, Koshun

    2016-07-01

    retirement (2016). The extension will allow partner agencies to deploy new experiments there, resuming basic research focusing more forward-looking goals. For deep-space, since consumables logistics becomes more difficult- and habitability an issue, with diminishing Earth's view, further research has been recommended. Four major areas have been identified for human protection: (1) radiation mitigation; (2) highly recyclable bio-regenerative (BR) LSS; (3) micro-gravity countermeasures- including artificial gravity (AG), and (4) psychological safety. To contribute to the efforts to address these issues, a basic lab/virtual iterative research has been proposed, assuming (in a worst case scenario) that: I) It won't be possible to send people to long deep space missions, safely, with the current (low quality of life) support technology (ISS micro-gravity 'up-gradings'); II) The alternative to implant a Mars surface human supportive biosphere would also not be possible, due to environmental/ evolutionary restraints (life could adapt and survive, but not necessarily to favor humans). From the above considerations arises the question: Would an average approach be possible where, by applying the artificial gravity concept to S/Cs, a fragment of Earth bio-regenerative environment could be integrated inside reusable manned vehicles- thus enhancing its habitability/autonomy in long deep space missions? For this research question a provisory answer/hypothesis has been provided. And to test it, a small AG+BR bench simulator (plus computer methods) has been devised.

  10. GeoNetGIS: a Geodetic Network Geographical Information System to manage GPS networks in seismic and volcanic areas

    Science.gov (United States)

    Cristofoletti, P.; Esposito, A.; Anzidei, M.

    2003-04-01

    This paper presents the methodologies and issues involved in the use of GIS techniques to manage geodetic information derived from networks in seismic and volcanic areas. Organization and manipulation of different geodetical, geological and seismic database, give us a new challenge in interpretation of information that has several dimensions, including spatial and temporal variations, also the flexibility and brand range of tools available in GeoNetGIS, make it an attractive platform for earthquake risk assessment. During the last decade the use of geodetic networks based on the Global Positioning System, devoted to geophysical applications, especially for crustal deformation monitoring in seismic and volcanic areas, increased dramatically. The large amount of data provided by these networks, combined with different and independent observations, such as epicentre distribution of recent and historical earthquakes, geological and structural data, photo interpretation of aerial and satellite images, can aid for the detection and parameterization of seismogenic sources. In particular we applied our geodetic oriented GIS to a new GPS network recently set up and surveyed in the Central Apennine region: the CA-GeoNet. GeoNetGIS is designed to analyze in three and four dimensions GPS sources and to improve crustal deformation analysis and interpretation related with tectonic structures and seismicity. It manages many database (DBMS) consisting of different classes, such as Geodesy, Topography, Seismicity, Geology, Geography and Raster Images, administrated according to Thematic Layers. GeoNetGIS represents a powerful research tool allowing to join the analysis of all data layers to integrate the different data base which aid for the identification of the activity of known faults or structures and suggesting the new evidences of active tectonics. A new approach to data integration given by GeoNetGIS capabilities, allow us to create and deliver a wide range of maps, digital

  11. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 1. Darboux spaces D{sub I} and D{sub II}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-07-15

    In this paper the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of non-constant curvature: these spaces are Darboux spaces D{sub I} and D{sub II}, respectively. On D{sub I} there are three and on D{sub II} foru such potentials, respectively. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D{sub I} in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (Constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. (Orig.)

  12. Integration of Military and Civilians Space Assets: Legal and National Security Implications

    National Research Council Canada - National Science Library

    Waldrop, Elizabeth

    2003-01-01

    .... While international space law is very permissive with regard to military uses of space, there are considerable legal and security implications resulting from military and civilian dependence on the same space services...

  13. A High-Performance Deformable Mirror with Integrated Driver ASIC for Space Based Active Optics

    Science.gov (United States)

    Shelton, Chris

    Direct imaging of exoplanets is key to fully understanding these systems through spectroscopy and astrometry. The primary impediment to direct imaging of exoplanets is the extremely high brightness ratio between the planet and its parent star. Direct imaging requires a technique for contrast suppression, which include coronagraphs, and nulling interferometers. Deformable mirrors (DMs) are essential to both of these techniques. With space missions in mind, Microscale is developing a novel DM with direct integration of DM and its electronic control functions in a single small envelope. The Application Specific Integrated Circuit (ASIC) is key to the shrinking of the electronic control functions to a size compatible with direct integration with the DM. Through a NASA SBIR project, Microscale, with JPL oversight, has successfully demonstrated a unique deformable mirror (DM) driver ASIC prototype based on an ultra-low power switch architecture. Microscale calls this the Switch-Mode ASIC, or SM-ASIC, and has characterized it for a key set of performance parameters, and has tested its operation with a variety of actuator loads, such as piezo stack and unimorph, and over a wide temperature range. These tests show the SM-ASIC's capability of supporting active optics in correcting aberrations of a telescope in space. Microscale has also developed DMs to go with the SM-ASIC driver. The latest DM version produced uses small piezo stack elements in an 8x8 array, bonded to a novel silicon facesheet structure fabricated monolithically into a polished mirror on one side and mechanical linkage posts that connect to the piezoelectric stack actuators on the other. In this Supporting Technology proposal we propose to further develop the ASIC-DM and have assembled a very capable team to do so. It will be led by JPL, which has considerable expertise with DMs used in Adaptive Optics systems, with high-contrast imaging systems for exoplanet missions, and with designing DM driver

  14. DETECTION OF COASTLINE DEFORMATION USING REMOTE SENSING AND GEODETIC SURVEYS

    Directory of Open Access Journals (Sweden)

    A. Sabuncu

    2016-06-01

    Full Text Available The coastal areas are being destroyed due to the usage that effect the natural balance. Unconsciously sand mining from the sea for nearshore nourishment and construction uses are the main ones. Physical interferences for mining of sand cause an ecologic threat to the coastal environment. However, use of marine sand is inevitable because of economic reasons or unobtainable land-based sand resources. The most convenient solution in such a protection–usage dilemma is to reduce negative impacts of sand production from marine. This depends on the accurate determination of criteriaon production place, style, and amount of sand. With this motivation, nearshore geodedic surveying studies performed on Kilyos Campus of Bogazici University located on the Black Sea coast, north of Istanbul, Turkey between 2001-2002. The study area extends 1 km in the longshore. Geodetic survey was carried out in the summer of 2001 to detect the initial condition for the shoreline. Long-term seasonal changes in shoreline positions were determined biannually. The coast was measured with post-processed kinematic GPS. Besides, shoreline change has studied using Landsat imagery between the years 1986-2015. The data set of Landsat 5 imageries were dated 05.08.1986 and 31.08.2007 and Landsat 7 imageries were dated 21.07.2001 and 28.07.2015. Landcover types in the study area were analyzed on the basis of pixel based classification method. Firstly, unsupervised classification based on ISODATA (Iterative Self Organizing Data Analysis Technique has been applied and spectral clusters have been determined that gives prior knowledge about the study area. In the second step, supervised classification was carried out by using the three different approaches which are minimum-distance, parallelepiped and maximum-likelihood. All pixel based classification processes were performed with ENVI 4.8 image processing software. Results of geodetic studies and classification outputs will be

  15. Determination of space-energy distribution of resonance neutrons in reactor lattice cell and calculation of resonance integrals

    International Nuclear Information System (INIS)

    Zmijarevic, I.

    1980-01-01

    Space-energy distribution of resonance neutrons in reactor lattice cell was determined by solving the Boltzmann equation by spherical harmonics method applying P-3 approximation. Computer code SPLET used for these calculations is described. Resonance absorption and calculation of resonance integrals are described as well. Effective resonance integral values for U-238 resonance at 6.7 Ev are calculated for heavy water reactor cell with metal, oxide and carbide fuel elements

  16. Establishing a Modern Ground Network for Space Geodesy Applications

    Science.gov (United States)

    Pearlman, M.; Pavlis, E.; Altamimi, Z.; Noll, C.

    2010-01-01

    Ground-based networks of co-located space-geodesy techniques (VLBI, SLR, GLASS, DORIS) are the basis for the development and maintenance of the :International Terrestrial deference Frame (ITRE), which is the basis for our metric measurements of global change. The Global Geodetic Observing System (GGOS) within the International Association of Geodesy has established a task to develop a strategy to design, integrate and maintain the fundamental geodetic network and supporting infrastructure in a sustainable way to satisfy the long-term requirements for the reference frame. The GGOS goal is an origin definition at I mm or better and a temporal stability on the order of 0.1 mm/y, with similar numbers for the scale and orientation components. These goals are based on scientific requirements to address sea level rise with confidence. As a first step, simulations focused on establishing the optimal global SLR and VLBI network, since these two techniques alone are sufficient to define the reference frame. The GLASS constellations will then distribute the reference frame to users anywhere on the Earth. Using simulated data to be collected by the future networks, we investigated various designs and the resulting accuracy in the origin, scale and orientation of the resulting ITRF. We present here the results of extensive simulation studies aimed at designing optimal global geodetic networks to support GGOS science products. Current estimates are the network will require 24 - 32 globally distributed co-location sites. Stations in the near global network will require geologically stable sites witla good weather, established infrastructure, and local support and personnel. EGOS will seek groups that are interested in participation. GGOS intends to issues a Call for Participation of groups that would like to take part in the network implementation and operation_ Some examples of integrated stations currently in operation or under development will be presented. We will examine

  17. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    Science.gov (United States)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  18. Practical Application of PRA as an Integrated Design Tool for Space Systems

    Science.gov (United States)

    Kalia, Prince; Shi, Ying; Pair, Robin; Quaney, Virginia; Uhlenbrock, John

    2013-01-01

    This paper presents the application of the first comprehensive Probabilistic Risk Assessment (PRA) during the design phase of a joint NASA/NOAA weather satellite program, Geostationary Operational Environmental Satellite Series R (GOES-R). GOES-R is the next generation weather satellite primarily to help understand the weather and help save human lives. PRA has been used at NASA for Human Space Flight for many years. PRA was initially adopted and implemented in the operational phase of manned space flight programs and more recently for the next generation human space systems. Since its first use at NASA, PRA has become recognized throughout the Agency as a method of assessing complex mission risks as part of an overall approach to assuring safety and mission success throughout project lifecycles. PRA is now included as a requirement during the design phase of both NASA next generation manned space vehicles as well as for high priority robotic missions. The influence of PRA on GOES-R design and operation concepts are discussed in detail. The GOES-R PRA is unique at NASA for its early implementation. It also represents a pioneering effort to integrate risks from both Spacecraft (SC) and Ground Segment (GS) to fully assess the probability of achieving mission objectives. PRA analysts were actively involved in system engineering and design engineering to ensure that a comprehensive set of technical risks were correctly identified and properly understood from a design and operations perspective. The analysis included an assessment of SC hardware and software, SC fault management system, GS hardware and software, common cause failures, human error, natural hazards, solar weather and infrastructure (such as network and telecommunications failures, fire). PRA findings directly resulted in design changes to reduce SC risk from micro-meteoroids. PRA results also led to design changes in several SC subsystems, e.g. propulsion, guidance, navigation and control (GNC

  19. A Framework for Robust Multivariable Optimization of Integrated Circuits in Space Applications

    Science.gov (United States)

    DuMonthier, Jeffrey; Suarez, George

    2013-01-01

    Application Specific Integrated Circuit (ASIC) design for space applications involves multiple challenges of maximizing performance, minimizing power and ensuring reliable operation in extreme environments. This is a complex multidimensional optimization problem which must be solved early in the development cycle of a system due to the time required for testing and qualification severely limiting opportunities to modify and iterate. Manual design techniques which generally involve simulation at one or a small number of corners with a very limited set of simultaneously variable parameters in order to make the problem tractable are inefficient and not guaranteed to achieve the best possible results within the performance envelope defined by the process and environmental requirements. What is required is a means to automate design parameter variation, allow the designer to specify operational constraints and performance goals, and to analyze the results in a way which facilitates identifying the tradeoffs defining the performance envelope over the full set of process and environmental corner cases. The system developed by the Mixed Signal ASIC Group (MSAG) at the Goddard Space Flight Center is implemented as framework of software modules, templates and function libraries. It integrates CAD tools and a mathematical computing environment, and can be customized for new circuit designs with only a modest amount of effort as most common tasks are already encapsulated. Customization is required for simulation test benches to determine performance metrics and for cost function computation. Templates provide a starting point for both while toolbox functions minimize the code required. Once a test bench has been coded to optimize a particular circuit, it is also used to verify the final design. The combination of test bench and cost function can then serve as a template for similar circuits or be re-used to migrate the design to different processes by re-running it with the

  20. GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data

    Science.gov (United States)

    Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.; hide

    2016-01-01

    The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system

  1. The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I

    Science.gov (United States)

    Santini, Paolo Maria

    2010-01-01

    We propose an algorithmic procedure (i) to study the 'distance' between an integrable PDE and any discretization of it, in the small lattice spacing epsilon regime, and, at the same time, (ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete information on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general ten-parameter family of discretizations of the nonlinear Schrödinger equation, consists of the following three steps: (i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in epsilon, following Degasperis et al (1997 Physica D 100 187-211) (ii) the application, to such an expansion, of the Degasperis-Procesi (DP) integrability test (Degasperis A and Procesi M 1999 Asymptotic integrability Symmetry and Perturbation Theory, SPT98, ed A Degasperis and G Gaeta (Singapore: World Scientific) pp 23-37 Degasperis A 2001 Multiscale expansion and integrability of dispersive wave equations Lectures given at the Euro Summer School: 'What is integrability?' (Isaac Newton Institute, Cambridge, UK, 13-24 August); Integrability (Lecture Notes in Physics vol 767) ed A Mikhailov (Berlin: Springer)), to test the asymptotic integrability properties of the discrete system and its 'distance' from its continuous limit; (iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.

  2. The multiscale expansions of difference equations in the small lattice spacing regime, and a vicinity and integrability test: I

    International Nuclear Information System (INIS)

    Santini, Paolo Maria

    2010-01-01

    We propose an algorithmic procedure (i) to study the 'distance' between an integrable PDE and any discretization of it, in the small lattice spacing ε regime, and, at the same time, (ii) to test the (asymptotic) integrability properties of such discretization. This method should provide, in particular, useful and concrete information on how good is any numerical scheme used to integrate a given integrable PDE. The procedure, illustrated on a fairly general ten-parameter family of discretizations of the nonlinear Schroedinger equation, consists of the following three steps: (i) the construction of the continuous multiscale expansion of a generic solution of the discrete system at all orders in ε, following Degasperis et al (1997 Physica D 100 187-211); (ii) the application, to such an expansion, of the Degasperis-Procesi (DP) integrability test (Degasperis A and Procesi M 1999 Asymptotic integrability Symmetry and Perturbation Theory, SPT98, ed A Degasperis and G Gaeta (Singapore: World Scientific) pp 23-37; Degasperis A 2001 Multiscale expansion and integrability of dispersive wave equations Lectures given at the Euro Summer School: 'What is integrability?' (Isaac Newton Institute, Cambridge, UK, 13-24 August); Integrability (Lecture Notes in Physics vol 767) ed A Mikhailov (Berlin: Springer)), to test the asymptotic integrability properties of the discrete system and its 'distance' from its continuous limit; (iii) the use of the main output of the DP test to construct infinitely many approximate symmetries and constants of motion of the discrete system, through novel and simple formulas.

  3. Improvements in Space Geodesy Data Discovery at the CDDIS

    Science.gov (United States)

    Noll, C.; Pollack, N.; Michael, P.

    2011-01-01

    The Crustal Dynamics Data Information System (CDDIS) supports data archiving and distribution activities for the space geodesy and geodynamics community. The main objectives of the system are to store space geodesy and geodynamics related data products in a central data bank. to maintain information about the archival of these data, and to disseminate these data and information in a timely manner to a global scientific research community. The archive consists of GNSS, laser ranging, VLBI, and DORIS data sets and products derived from these data. The CDDIS is one of NASA's Earth Observing System Data and Information System (EOSDIS) distributed data centers; EOSDIS data centers serve a diverse user community and arc tasked to provide facilities to search and access science data and products. Several activities are currently under development at the CDDIS to aid users in data discovery, both within the current community and beyond. The CDDIS is cooperating in the development of Geodetic Seamless Archive Centers (GSAC) with colleagues at UNAVCO and SIO. TIle activity will provide web services to facilitate data discovery within and across participating archives. In addition, the CDDIS is currently implementing modifications to the metadata extracted from incoming data and product files pushed to its archive. These enhancements will permit information about COOlS archive holdings to be made available through other data portals such as Earth Observing System (EOS) Clearinghouse (ECHO) and integration into the Global Geodetic Observing System (GGOS) portal.

  4. Integrated design support systems for conceptual design of a space power reactor

    International Nuclear Information System (INIS)

    Shimoda, Hiroshi; Yoshikawa, Hidekazu; Takahashi, Makoto; Takeoka, Satoshi; Nagamatsu, Takashi; Ishizaki, Hiroaki

    1999-01-01

    In the process of conceptual design of large and complex engineering systems such as a nuclear power reactor, there must be various human works by several fields of engineers on each stage of design, analysis and evaluation. In this study, we have rearranged the design information to reduce the human workloads and have studied an efficient method to support the conceptual design works by new information technologies. For this purpose, we have developed two design support environments for conceptual design of a space power reactor as a concrete design target. When constructing an integrated design support environment, VINDS, which employs virtual reality(VR) technology, we focused on visualization of physical structure, functional organization and analysis calculation with full usage of easy perception and direct manipulation of VR. On the other hand, when constructing another asynchronous and distributed design support environment, WINDS, which employs WWW technology, we improved the support functions for cooperative design works among various fields of experts. In this paper, the basic concepts, configurations and functions of the design support environments are first described, then the future improvement is surveyed by their intercomparison. (author)

  5. Polishing, coating and integration of SiC mirrors for space telescopes

    Science.gov (United States)

    Rodolfo, Jacques

    2017-11-01

    In the last years, the technology of SiC mirrors took an increasingly significant part in the field of space telescopes. Sagem is involved in the JWST program to manufacture and test the optical components of the NIRSpec instrument. The instrument is made of 3 TMAs and 4 plane mirrors made of SiC. Sagem is in charge of the CVD cladding, the polishing, the coating of the mirrors and the integration and testing of the TMAs. The qualification of the process has been performed through the manufacturing and testing of the qualification model of the FOR TMA. This TMA has shown very good performances both at ambient and during the cryo test. The polishing process has been improved for the manufacturing of the flight model. This improvement has been driven by the BRDF performance of the mirror. This parameter has been deeply analysed and a model has been built to predict the performance of the mirrors. The existing Dittman model have been analysed and found to be optimistic.

  6. MOONLIGHT: A NEW LUNAR LASER RANGING RETROREFLECTOR AND THE LUNAR GEODETIC PRECESSION

    Directory of Open Access Journals (Sweden)

    M. Martini

    2013-12-01

    Full Text Available Since the 1970s Lunar Laser Ranging (LLR to the Apollo Cube Corner Retroreflector (CCR arrays (developed by the University of Maryland, UMD supplied almost all significant tests of General Relativity (Alley et al., 1970; Chang et al., 1971; Bender et al.,1973: possible changes in the gravitational constant, gravitational self-energy, weak equivalence principle, geodetic precession, inverse-square force-law. The LNF group, in fact, has just completed a new measurement of the lunar geodetic precession with Apollo array, with accuracy of 9 × 10−3, comparable to the best measurement to date. LLR has also provided significant information on the composition and origin of the moon. This is the only Apollo experiment still in operation. In the 1970s Apollo LLR arrays contributed a negligible fraction of the ranging error budget. Since the ranging capabilities of ground stations improved by more than two orders of magnitude, now, because of the lunar librations, Apollo CCR arrays dominate the error budget. With the project MoonLIGHT (Moon Laser Instrumentation for General relativity High-accuracy Tests, in 2006 INFN-LNF joined UMD in the development and test of a new-generation LLR payload made by a single, large CCR (100mm diameter unaffected by the effect of librations. With MoonLIGHT CCRs the accuracy of the measurement of the lunar geodetic precession can be improved up to a factor 100 compared to Apollo arrays. From a technological point of view, INFN-LNF built and is operating a new experimental apparatus (Satellite/lunar laser ranging Characterization Facility, SCF and created a new industry-standard test procedure (SCF-Test to characterize and model the detailed thermal behavior and the optical performance of CCRs in accurately laboratory-simulated space conditions, for industrial and scientific applications. Our key experimental innovation is the concurrent measurement and modeling of the optical Far Field Diffraction Pattern (FFDP and the

  7. Construction and Evaluation of an Integrated Formal/Informal Learning Environment for Foreign Language Learning across Real and Virtual Spaces

    Science.gov (United States)

    Waragai, Ikumi; Ohta, Tatsuya; Kurabayashi, Shuichi; Kiyoki, Yasushi; Sato, Yukiko; Brückner, Stefan

    2017-01-01

    This paper presents the prototype of a foreign language learning space, based on the construction of an integrated formal/informal learning environment. Before the background of the continued innovation of information technology that places conventional learning styles and educational methods into new contexts based on new value-standards,…

  8. Analytical solutions for prediction of the ignition time of wood particles based on a time and space integral method

    NARCIS (Netherlands)

    Haseli, Y.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    The main idea of this paper is to establish a simple approach for prediction of the ignition time of a wood particle assuming that the thermo-physical properties remain constant and ignition takes place at a characteristic ignition temperature. Using a time and space integral method, explicit

  9. An Investigation on the Use of Different Centroiding Algorithms and Star Catalogs in Astro-Geodetic Observations

    Science.gov (United States)

    Basoglu, Burak; Halicioglu, Kerem; Albayrak, Muge; Ulug, Rasit; Tevfik Ozludemir, M.; Deniz, Rasim

    2017-04-01

    In the last decade, the importance of high-precise geoid determination at local or national level has been pointed out by Turkish National Geodesy Commission. The Commission has also put objective of modernization of national height system of Turkey to the agenda. Meanwhile several projects have been realized in recent years. In Istanbul city, a GNSS/Levelling geoid was defined in 2005 for the metropolitan area of the city with an accuracy of ±3.5cm. In order to achieve a better accuracy in this area, "Local Geoid Determination with Integration of GNSS/Levelling and Astro-Geodetic Data" project has been conducted in Istanbul Technical University and Bogazici University KOERI since January 2016. The project is funded by The Scientific and Technological Research Council of Turkey. With the scope of the project, modernization studies of Digital Zenith Camera System are being carried on in terms of hardware components and software development. Accentuated subjects are the star catalogues, and centroiding algorithm used to identify the stars on the zenithal star field. During the test observations of Digital Zenith Camera System performed between 2013-2016, final results were calculated using the PSF method for star centroiding, and the second USNO CCD Astrograph Catalogue (UCAC2) for the reference star positions. This study aims to investigate the position accuracy of the star images by comparing different centroiding algorithms and available star catalogs used in astro-geodetic observations conducted with the digital zenith camera system.

  10. Passive Radiation Shielding: Integrating Multilayer and Multipurpose Materials into Space Habitat Design

    Data.gov (United States)

    National Aeronautics and Space Administration — The prospect of long-term human spaceflight beyond low Earth orbit poses a unique set of challenges for space habitat designers. One of those challenges is...

  11. Stress coupling in the seismic cycle indicated from geodetic measurements

    Science.gov (United States)

    Wang, L.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2012-12-01

    The seismic cycle includes several phases, the interseismic, coseismic and postseismic phase. In the interseismic phase, strain gradually builds up around the overall locked fault in tens to thousands of years, while it is coseismically released in seconds. In the postseismic interval, stress relaxation lasts months to years, indicated by evident aseismic deformations which have been indicated to release comparable or even higher strain energy than the main shocks themselves. Benefiting from the development of geodetic observatory, e.g., Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) in the last two decades, the measurements of surface deformation have been significantly improved and become valuable information for understanding the stress evolution on the large fault plane. In this study, we utilize the GPS/InSAR data to investigate the slip deficit during the interseismic phase, the coseismic slip and the early postseismic creep on the fault plane. However, it is already well-known that slip inversions based only on the surface measurements are typically non-unique and subject to large uncertainties. To reduce the ambiguity, we utilize the assumption of stress coupling between interseismic and coseismic phases, and between coseismic and postseismic phases. We use a stress constrained joint inversion in Bayesian approach (Wang et al., 2012) to invert simultaneously for (1) interseismic slip deficit and coseismic slip, and (2) coseismic slip and postseismic creep. As case studies, we analyze earthquakes occurred in well-instrumented regions such as the 2004 M6.0 Parkfield earthquake, the 2010 M8.7 earthquake and the 2011 M9.1 Tohoku-Oki earthquake. We show that the inversion with the stress-coupling constraint leads to better constrained slip distributions. Meanwhile, the results also indicate that the assumed stress coupling is reasonable and can be well reflected from the available geodetic measurements. Reference: Lifeng

  12. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs - Three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)

  13. Geodetic and geophysical observations in Antarctica an overview in the IPY perspective

    CERN Document Server

    Capra, Alessandro

    2008-01-01

    This book is a collection of papers on various aspects of the geodetic and geophysical investigation and observation techniques. It includes material from the Arctic and Antarctica, as well as covering work from both temporary and permanent observatories.

  14. On the effect of ionospheric delay on geodetic relative GPS positioning

    NARCIS (Netherlands)

    Georgiadou, P.Y.; Kleusberg, A.

    1988-01-01

    Uncorrected ionospheric delay is one of the factors limiting the accuracy in geodetic relative positioning with single frequency Global Positioning System (GPS) carrier phase observations. Dual frequency measurements can be combined to eliminate the ionospheric delay in the observations. A

  15. A comparative study for the estimation of geodetic point velocity by ...

    Indian Academy of Sciences (India)

    Geodetic point velocity; artificial neural networks; back propagation; radial basis function; Kriging. J. Earth Syst. Sci. ...... The employment of BPANN is an alternative tool to KRIG for .... Computational Intelligence and Multimedia Applications.

  16. The Importance of Geodetically Controlled Data Sets: THEMIS Controlled Mosaics of Mars, a Case Study

    Science.gov (United States)

    Fergason, R. L.; Weller, L.

    2018-04-01

    Accurate image registration is necessary to answer questions that are key to addressing fundamental questions about our universe. To provide such a foundational product for Mars, we have geodetically controlled and mosaicked THEMIS IR images.

  17. On public space design for Chinese urban residential area based on integrated architectural physics environment evaluation

    Science.gov (United States)

    Dong, J. Y.; Cheng, W.; Ma, C. P.; Tan, Y. T.; Xin, L. S.

    2017-04-01

    The residential public space is an important part in designing the ecological residence, and a proper physics environment of public space is of greater significance to urban residence in China. Actually, the measure to apply computer aided design software into residential design can effectively avoid an inconformity of design intent with actual using condition, and a negative impact on users due to bad architectural physics environment of buildings, etc. The paper largely adopts a design method of analyzing architectural physics environment of residential public space. By analyzing and evaluating various physics environments, a suitability assessment is obtained for residential public space, thereby guiding the space design.

  18. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  19. Integration of Russia in Asian Pacific Educational Space (the Case of Russian-Chinese Cooperation

    Directory of Open Access Journals (Sweden)

    Tatiana Leonidovna Guruleva

    2015-12-01

    Full Text Available The article considers the formational processes of APR educational space and role of Russia in educational integration of the region. Participation of Russia in cooperation of Asia-Pacific countries in the higher education is studied. The author proves the formation of the new international polycultural educational region of Siberia and the Far East of Russia and the Northeast provinces of China, and investigates prerequisites of its formation. The author identifies the following prerequisites specificity of the modern education system in China, the similarity of the higher education systems of Russia and China, China's interest in the study and use the experience of Russia in the organization of higher education, the desire and the willingness of the Russian and Chinese counterparts to identify and solve the problems arising in the process of international educational cooperation, the strategic interest of Russia and China in the economic recovery and development of Siberia and the Russian Far East and north-eastern provinces of China. Particular attention is paid to the role of the Forum of rectors of higher educational institutions of the Far East and Siberia of Russia and north-eastern provinces of China. The author concludes that currently there are processes of convergence of the EHEA and educational area of APR. This can be illustrated by the initiative of establishing a bridge between the countries of the EHEA and the participating countries of the Tokyo Convention on the recognition, which was approved by the political and economic forum of European and Asian countries (Asia-Europe Meeting (ASEM.

  20. Duality in Phase Space and Complex Dynamics of an Integrated Pest Management Network Model

    Science.gov (United States)

    Yuan, Baoyin; Tang, Sanyi; Cheke, Robert A.

    Fragmented habitat patches between which plants and animals can disperse can be modeled as networks with varying degrees of connectivity. A predator-prey model with network structures is proposed for integrated pest management (IPM) with impulsive control actions. The model was analyzed using numerical methods to investigate how factors such as the impulsive period, the releasing constant of natural enemies and the mode of connections between the patches affect pest outbreak patterns and the success or failure of pest control. The concept of the cluster as defined by Holland and Hastings is used to describe variations in results ranging from global synchrony when all patches have identical fluctuations to n-cluster solutions with all patches having different dynamics. Heterogeneity in the initial densities of either pest or natural enemy generally resulted in a variety of cluster oscillations. Surprisingly, if n > 1, the clusters fall into two groups one with low amplitude fluctuations and the other with high amplitude fluctuations (i.e. duality in phase space), implying that control actions radically alter the system's characteristics by inducing duality and more complex dynamics. When the impulsive period is small enough, i.e. the control strategy is undertaken frequently, the pest can be eradicated. As the period increases, the pest's dynamics shift from a steady state to become chaotic with periodic windows and more multicluster oscillations arise for heterogenous initial density distributions. Period-doubling bifurcation and periodic halving cascades occur as the releasing constant of the natural enemy increases. For the same ecological system with five differently connected networks, as the randomness of the connectedness increases, the transient duration becomes smaller and the probability of multicluster oscillations appearing becomes higher.

  1. Effect of available space and previous contact in the social integration of Saint Croix and Suffolk ewes.

    Science.gov (United States)

    Orihuela, A; Averós, X; Solano, J; Clemente, N; Estevez, I

    2016-03-01

    Reproduction in tropical sheep is not affected by season, whereas the reproductive cycle of temperate-climate breeds such as Suffolk depends on the photoperiod. Close contact with tropical ewes during the anestrous period might induce Suffolk ewes to cycle, making the use of artificial light or hormonal treatments unnecessary. However, the integration of both breeds within the social group would be necessary to trigger this effect, and so the aim of the experiment was to determine the speed of integration of 2 groups of Saint Croix and Suffolk ewes into a single flock, according to space allowance and previous experience. For this, 6 groups of 10 ewes (half from each breed) from both breeds, housed at 2 or 4 m/ewe (3 groups/treatment) and with or without previous contact with the other breed, were monitored for 3 d. Each observation day, the behavior, movement, and use of space of ewes were collected during 10 min at 1-h intervals between 0900 and 1400 h. Generalized linear mixed models were used to test the effects of breed, space allowance, and previous experience on behavior, movement, and use of space. Net distances, interbreed farthest neighbor distance, mean interbreed distance, and walking frequencies were greater at 4 m/ewe ( ewe were greatest for Saint Croix ewes, whereas the opposite was found for lying down ( ewes showed larger intrabreed nearest neighbor distances, minimum convex polygons, and home range overlapping ( ewes at 4 m/ewe showed longest total distances and step lengths and greatest movement activity ( ewes walked longer total distances during Day 1 and 2 ( ewes kept longer interindividual distances during Day 1 ( ewes did not fully integrate into a cohesive flock, with each breed displaying specific behavioral patterns. Decreasing space allowance and previous experience resulted in limited benefits for the successful group cohesion. Longer cohabitation periods might result in complete integration, although practical implementation might be

  2. Geodetic determinations for the NuMI project at Fermilab

    International Nuclear Information System (INIS)

    Bocean, V.

    1999-01-01

    As a part of the Neutrinos at the Main Injector (NuMI) project, the MINOS (Main Injector Neutrino Oscillation Search) experiment will search for neutrino mass by looking for neutrino oscillations. The project plans to direct a beam of muon neutrinos from the Main Injector towards both nearby and far-off detectors capable of counting all three types of neutrinos. The beam will travel 735 km through the Earth towards a remote iron mine in northern Minnesota where, 710 m below surface, a massive 5400 metric tons detector will be built. For the neutrino energy spectrum physics test to work properly, the primary proton beam must be within ± 12 m from its ideal position at Soudan, MN, corresponding to ± 1.63 x 10-5 radians, i.e. 3.4 arc-seconds. Achieving this tolerance requires a rather exact knowledge of the geometry of the beam, expressed in terms of the azimuth and the slope of the vector joining the two sites. This paper summarizes the concepts, the methodology, the implementation, and the results of the geodetic surveying efforts made up to date for determining the absolute positions of the Fermilab and the Soudan underground mine sites, from which the beam orientation parameters are computed. (author)

  3. Azimuth selection for sea level measurements using geodetic GPS receivers

    Science.gov (United States)

    Wang, Xiaolei; Zhang, Qin; Zhang, Shuangcheng

    2018-03-01

    Based on analysis of Global Positioning System (GPS) multipath signals recorded by a geodetic GPS receiver, GPS Reflectometry (GPS-R) has demonstrated unique advantages in relation to sea level monitoring. Founded on multipath reflectometry theory, sea level changes can be measured by GPS-R through spectral analysis of recorded signal-to-noise ratio data. However, prior to estimating multipath parameters, it is necessary to define azimuth and elevation angle mask to ensure the reflecting zones are on water. Here, a method is presented to address azimuth selection, a topic currently under active development in the field of GPS-R. Data from three test sites: the Kachemak Bay GPS site PBAY in Alaska (USA), Friday Harbor GPS site SC02 in the San Juan Islands (USA), and Brest Harbor GPS site BRST in Brest (France) are analyzed. These sites are located in different multipath environments, from a rural coastal area to a busy harbor, and they experience different tidal ranges. Estimates by the GPS tide gauges at azimuths selected by the presented method are compared with measurements from physical tide gauges and acceptable correspondence found for all three sites.

  4. STRUCTURAL MONITORING WITH GEODETIC SURVEY OF QUADRIFOGLIO CONDOMINIUM (LECCE

    Directory of Open Access Journals (Sweden)

    D. Costantino

    2014-01-01

    Full Text Available Monitoring buildings for moving elements has been always a problem of great importance for their conservation and preservation, as well as for risk mitigation. In particular, topographic surveying allows, through the use of the principles and instruments of the geodetic survey, to control moving points which have been identified and measured. In this study case, twelve survey campaigns were done for monitoring a building located in the city of Lecce. The condominium was built five years ago on an old quarry filled with debris to allow construction. Later in time, obviously, cracks started to appear on walls within the property, and for this legal actions were taken. The survey schema adopted has been that of triangulation/trilateration, from two vertices with known coordinates. With this methodologies four cornerstones have been identified, established with forced centering on pillars with anchor plates, connected to same number of framework points, considered stable. From these, 23 control points located on the structure with rotating prisms anchored at the same manner have been surveyed. The elaboration has been carried out by generating redundancy of the measures and compensating the values with least mean squares. The results obtained by the activity of survey and elaboration have confirmed the existence of ongoing phenomena. The causes that have generated the phenomenon have been, subsequently, investigated and have been considered attributable to the existence of a sewer pipeline and a water pipeline not properly put in place and consequently broke down due to the geological characteristics of the site.

  5. Integrating Remote Sensing Data, Hybrid-Cloud Computing, and Event Notifications for Advanced Rapid Imaging & Analysis (Invited)

    Science.gov (United States)

    Hua, H.; Owen, S. E.; Yun, S.; Lundgren, P.; Fielding, E. J.; Agram, P.; Manipon, G.; Stough, T. M.; Simons, M.; Rosen, P. A.; Wilson, B. D.; Poland, M. P.; Cervelli, P. F.; Cruz, J.

    2013-12-01

    Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR) and Continuous Global Positioning System (CGPS) are now important elements in our toolset for monitoring earthquake-generating faults, volcanic eruptions, hurricane damage, landslides, reservoir subsidence, and other natural and man-made hazards. Geodetic imaging's unique ability to capture surface deformation with high spatial and temporal resolution has revolutionized both earthquake science and volcanology. Continuous monitoring of surface deformation and surface change before, during, and after natural hazards improves decision-making from better forecasts, increased situational awareness, and more informed recovery. However, analyses of InSAR and GPS data sets are currently handcrafted following events and are not generated rapidly and reliably enough for use in operational response to natural disasters. Additionally, the sheer data volumes needed to handle a continuous stream of InSAR data sets also presents a bottleneck. It has been estimated that continuous processing of InSAR coverage of California alone over 3-years would reach PB-scale data volumes. Our Advanced Rapid Imaging and Analysis for Monitoring Hazards (ARIA-MH) science data system enables both science and decision-making communities to monitor areas of interest with derived geodetic data products via seamless data preparation, processing, discovery, and access. We will present our findings on the use of hybrid-cloud computing to improve the timely processing and delivery of geodetic data products, integrating event notifications from USGS to improve the timely processing for response, as well as providing browse results for quick looks with other tools for integrative analysis.

  6. Geometrical-integrability constraints and equations of motion in four plus extended super spaces

    International Nuclear Information System (INIS)

    Chau, L.L.

    1987-01-01

    It is pointed out that many equations of motion in physics, including gravitational and Yang-Mills equations, have a common origin: i.e. they are the results of certain geometrical integrability conditions. These integrability conditions lead to linear systems and conservation laws that are important in integrating these equations of motion

  7. On the equivalence of the Choquet, pan- and concave integrals on finite spaces

    Czech Academy of Sciences Publication Activity Database

    Ouyang, Y.; Li, J.; Mesiar, Radko

    2017-01-01

    Roč. 456, č. 1 (2017), s. 151-162 ISSN 0022-247X Institutional support: RVO:67985556 Keywords : (M)-property * Choquet integral * Concave integral * Minimal atom * Monotone measure * Pan-integral Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.064, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477091.pdf

  8. A Riesz Representation Theorem for the Space of Henstock Integrable Vector-Valued Functions

    Directory of Open Access Journals (Sweden)

    Tomás Pérez Becerra

    2018-01-01

    Full Text Available Using a bounded bilinear operator, we define the Henstock-Stieltjes integral for vector-valued functions; we prove some integration by parts theorems for Henstock integral and a Riesz-type theorem which provides an alternative proof of the representation theorem for real functions proved by Alexiewicz.

  9. Nonlinear Dynamics, Fixed Points and Coupled Fixed Points in Generalized Gauge Spaces with Applications to a System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Adrian Petruşel

    2015-01-01

    Full Text Available We will discuss discrete dynamics generated by single-valued and multivalued operators in spaces endowed with a generalized metric structure. More precisely, the behavior of the sequence (fn(xn∈N of successive approximations in complete generalized gauge spaces is discussed. In the same setting, the case of multivalued operators is also considered. The coupled fixed points for mappings t1:X1×X2→X1 and t2:X1×X2→X2 are discussed and an application to a system of nonlinear integral equations is given.

  10. Impact evaluation of green-grey infrastructure interaction on built-space integrity: an emerging perspective to urban ecosystem service.

    Science.gov (United States)

    Tiwary, Abhishek; Kumar, Prashant

    2014-07-15

    This paper evaluates the role of urban green infrastructure (GI) in maintaining integrity of built-space. The latter is considered as a lateral ecosystem function, worth including in future assessments of integrated ecosystem services. The basic tenet is that integrated green-grey infrastructures (GGIs) would have three influences on built-spaces: (i) reduced wind withering from flow deviation; (ii) reduced material corrosion/degeneration from pollution removal; and (iii) act as a biophysical buffer in altering the micro-climate. A case study is presented, combining the features of computational fluid dynamics (CFD) in micro-environmental modelling with the emerging science on interactions of GGIs. The coupled seasonal dynamics of the above three effects are assessed for two building materials (limestone and steel) using the following three scenarios: (i) business as usual (BAU), (ii) summer (REGEN-S), and (iii) winter (REGEN-W). Apparently, integrated ecosystem service from green-grey interaction, as scoped in this paper, has strong seasonal dependence. Compared to BAU our results suggest that REGEN-S leads to slight increment in limestone recession (<10%), mainly from exacerbation in ozone damage, while large reduction in steel recession (up to 37%) is observed. The selection of vegetation species, especially their bVOC emission potential and seasonal foliage profile, appears to play a vital role in determining the impact GI has on the integrity of the neighbouring built-up environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Photonic Integrated Circuit (PIC) Device Structures: Background, Fabrication Ecosystem, Relevance to Space Systems Applications, and Discussion of Related Radiation Effects

    Science.gov (United States)

    Alt, Shannon

    2016-01-01

    Electronic integrated circuits are considered one of the most significant technological advances of the 20th century, with demonstrated impact in their ability to incorporate successively higher numbers transistors and construct electronic devices onto a single CMOS chip. Photonic integrated circuits (PICs) exist as the optical analog to integrated circuits; however, in place of transistors, PICs consist of numerous scaled optical components, including such "building-block" structures as waveguides, MMIs, lasers, and optical ring resonators. The ability to construct electronic and photonic components on a single microsystems platform offers transformative potential for the development of technologies in fields including communications, biomedical device development, autonomous navigation, and chemical and atmospheric sensing. Developing on-chip systems that provide new avenues for integration and replacement of bulk optical and electro-optic components also reduces size, weight, power and cost (SWaP-C) limitations, which are important in the selection of instrumentation for specific flight projects. The number of applications currently emerging for complex photonics systems-particularly in data communications-warrants additional investigations when considering reliability for space systems development. This Body of Knowledge document seeks to provide an overview of existing integrated photonics architectures; the current state of design, development, and fabrication ecosystems in the United States and Europe; and potential space applications, with emphasis given to associated radiation effects and reliability.

  12. Integrability of geodesics and action-angle variables in Sasaki-Einstein space T{sup 1,1}

    Energy Technology Data Exchange (ETDEWEB)

    Visinescu, Mihai [National Institute of Physics and Nuclear Engineering, Department Theoretical Physics, Magurele, Bucharest (Romania)

    2016-09-15

    We briefly describe the construction of Staekel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T{sup 1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed. (orig.)

  13. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Autonomous, avionic and robotic systems are used in a variety of applications including launch vehicles, robotic precursor platforms, etc. Most avionic innovations...

  14. Using Discrete Event Simulation to Model Integrated Commodities Consumption for a Launch Campaign of the Space Launch System

    Science.gov (United States)

    Leonard, Daniel; Parsons, Jeremy W.; Cates, Grant

    2014-01-01

    In May 2013, NASA's GSDO Program requested a study to develop a discrete event simulation (DES) model that analyzes the launch campaign process of the Space Launch System (SLS) from an integrated commodities perspective. The scope of the study includes launch countdown and scrub turnaround and focuses on four core launch commodities: hydrogen, oxygen, nitrogen, and helium. Previously, the commodities were only analyzed individually and deterministically for their launch support capability, but this study was the first to integrate them to examine the impact of their interactions on a launch campaign as well as the effects of process variability on commodity availability. The study produced a validated DES model with Rockwell Arena that showed that Kennedy Space Center's ground systems were capable of supporting a 48-hour scrub turnaround for the SLS. The model will be maintained and updated to provide commodity consumption analysis of future ground system and SLS configurations.

  15. NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities

    Science.gov (United States)

    Figueroa, Fernando; Holland, Randy; Coote, David

    2006-01-01

    Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer

  16. Segregation in the urban space of Soacha. Transmilenio as an integrating tool?

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Moreno-Luna

    2016-04-01

    Full Text Available Segregación en el espacio urbano de Soacha ¿Transmilenio como herramienta integradora?ResumenLa movilidad cotidiana es un factor que puede dificultar aún más el acceso de la población menos favorecida a las actividades diarias, principalmente trabajo y estudio. La investigación se realiza a partir del estudio de caso de fronteras sociourbanas en áreas residenciales populares metropolitanas para entender los factores de segregación y exclusión que se dan en estos territorios. Se realizó un análisis de la situación y la relación que tiene la movilidad cotidiana con la segregación socioespacial, tomando el municipio de Soacha en Cundinamarca, conformado por población de bajos ingresos y que se encuentra conurbado con la capital del país. El estudio se efectuó a partir de encuestas a los residentes del Macroproyecto Ciudad Verde (Soacha y entrevistas a los actores clave del proyecto (administradores de los conjuntos residenciales. En una primera etapa se realizaron encuestas para conocer la forma en que los residentes de Ciudad Verde se desplazaban diariamente antes de la implementación de la extensión hasta Soacha de Transmilenio; en una segunda etapa se preguntó si los desplazamientos diarios habían mejorado con la entrada en funcionamiento del Transmilenio hasta Soacha, con el fin de indagar hasta qué punto este sistema ha servido como una herramienta integradora.Palabras clave: calidad de vida, Ciudad Verde, hábitat popular, movilidad urbana, transporte público, zonas suburbanas. Segregation in the urban space of SoachaTransmilenio as an integrating tool?AbstractDaily mobility is a factor that can further hinder the access of disadvantaged populations to daily activities, mainly work and study. Research is conducted from case study in socio-urban borders metropolitan popular residential areas to understand the factors of segregation and exclusion that occur in these territories. An analysis of the situation and the

  17. Aspects of a representation of quantum theory in terms of classical probability theory by means of integration in Hilbert space

    International Nuclear Information System (INIS)

    Bach, A.

    1981-01-01

    A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)

  18. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

    Science.gov (United States)

    Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre

    The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.

  19. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    Science.gov (United States)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  20. Geodetic Measurements and Numerical Modeling of the Deformation Cycle for Okmok Volcano, Alaska: 1993-2008

    Science.gov (United States)

    Ohlendorf, S. J.; Feigl, K.; Thurber, C. H.; Lu, Z.; Masterlark, T.

    2011-12-01

    Okmok Volcano is an active caldera located on Umnak Island in the Aleutian Island arc. Okmok, having recently erupted in 1997 and 2008, is well suited for multidisciplinary studies of magma migration and storage because it hosts a good seismic network and has been the subject of synthetic aperture radar (SAR) images that span the recent eruption cycle. Interferometric SAR can characterize surface deformation in space and time, while data from the seismic network provides important information about the interior processes and structure of the volcano. We conduct a complete time series analysis of deformation of Okmok with images collected by the ERS and Envisat satellites on more than 100 distinct epochs between 1993 and 2008. We look for changes in inter-eruption inflation rates, which may indicate inelastic rheologic effects. For the time series analysis, we analyze the gradient of phase directly, without unwrapping, using the General Inversion of Phase Technique (GIPhT) [Feigl and Thurber, 2009]. This approach accounts for orbital and atmospheric effects and provides realistic estimates of the uncertainties of the model parameters. We consider several models for the source, including the prolate spheroid model and the Mogi model, to explain the observed deformation. Using a medium that is a homogeneous half space, we estimate the source depth to be centered at about 4 km below sea level, consistent with the findings of Masterlark et al. [2010]. As in several other geodetic studies, we find the source to be approximately centered beneath the caldera. To account for rheologic complexity, we next apply the Finite Element Method to simulate a pressurized cavity embedded in a medium with material properties derived from body wave seismic tomography. This approach allows us to address the problem of unreasonably large pressure values implied by a Mogi source with a radius of about 1 km by experimenting with larger sources. We also compare the time dependence of the

  1. Bayesian Integrated Data Analysis of Fast-Ion Measurements by Velocity-Space Tomography

    DEFF Research Database (Denmark)

    Salewski, M.; Nocente, M.; Jacobsen, A.S.

    2018-01-01

    Bayesian integrated data analysis combines measurements from different diagnostics to jointly measure plasma parameters of interest such as temperatures, densities, and drift velocities. Integrated data analysis of fast-ion measurements has long been hampered by the complexity of the strongly non...... framework. The implementation for different types of diagnostics as well as the uncertainties are discussed, and we highlight the importance of integrated data analysis of all available detectors....

  2. Integrative Review of the Intersection of Green Space and Neighborhood Violence.

    Science.gov (United States)

    Mancus, Gibran C; Campbell, Jacquelyn

    2018-03-01

    To systematically analyze evidence about the impact of green space on the perception and actual safety of residents of urban neighborhoods. Systematic review of green space and violence based on Broome review criteria. One landmark study prompted the initial hand search and identification of search terms. Twenty-three quantitative, five qualitative, and two mixed-methods studies were found in the urban planning, public health, medical, and psychological literature that met the following criteria: analyzed green space and violence as factors in the perception of safety as an outcome measure, including action taken by being outside for recreation, exercise, or self-report in the survey. Findings were inconsistent regarding the direct relationship between perception of safety and green space when using recreation and exercise as a proxy for perception of safety. Findings regarding perception of safety in surveys were limited but indicated a positive correlation with green space. There is sufficient evidence to conclude that the perception of safety is supported by quality, accessibility, and aesthetic dimensions of neighborhood green space, and the perception of safety is often unrelated to actual crime rates. The science for understanding mechanisms between green space and violence as part of environmental health has been insufficiently developed and requires further study. Environmental health, including green space, is central to health promotion, and understanding is key to preventing the epidemic of violence. This article provides a summary of research related to green space, violence in communities, perception of safety, and violent crime in those communities. It identifies gaps in our knowledge where future research is needed. Nurses have the opportunity to lead the development, implementation, and evaluation of evidence-based interventions and policies addressing the inequality of quality and quantity of green space in the built and natural environment and

  3. Comparison of direct and geodetic mass balances on a multi-annual time scale

    Directory of Open Access Journals (Sweden)

    A. Fischer

    2011-02-01

    Full Text Available The geodetic mass balances of six Austrian glaciers over 19 periods between 1953 and 2006 are compared to the direct mass balances over the same periods. For two glaciers, Hintereisferner and Kesselwandferner, case studies showing possible reasons for discrepancies between the geodetic and the direct mass balance are presented. The mean annual geodetic mass balance for all periods is −0.5 m w.e. a−1, the mean annual direct mass balance −0.4 m w.e. a−1. The mean cumulative difference is −0.6 m w.e., the minimum −7.3 m w.e., and the maximum 5.6 m w.e. The accuracy of geodetic mass balance may depend on the accuracy of the DEMs, which ranges from 2 m w.e. for photogrammetric data to 0.02 m w.e. for airborne laser scanning (LiDAR data. Basal melt, seasonal snow cover, and density changes of the surface layer also contribute up to 0.7 m w.e. to the difference between the two methods over the investigated period of 10 yr. On Hintereisferner, the fraction of area covered by snow or firn has been changing within 1953–2006. The accumulation area is not identical with the firn area, and both are not coincident with areas of volume gain. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Trends in the difference between the direct and the geodetic data vary from glacier to glacier and can differ systematically for specific glaciers under specific types of climate forcing. Ultimately, geodetic and direct mass balance data are complementary, and great care must be taken when attempting to combine them.

  4. James Webb Space Telescope (JWST) Integrated Science Instruments Module (ISIM) Cryo-Vacuum (CV) Test Campaign Summary

    Science.gov (United States)

    Yew, Calinda; Whitehouse, Paul; Lui, Yan; Banks, Kimberly

    2016-01-01

    JWST Integrated Science Instruments Module (ISIM) has completed its system-level testing program at the NASA Goddard Space Flight Center (GSFC). In March 2016, ISIM was successfully delivered for integration with the Optical Telescope Element (OTE) after the successful verification of the system through a series of three cryo-vacuum (CV) tests. The first test served as a risk reduction test; the second test provided the initial verification of the fully-integrated flight instruments; and the third test verified the system in its final flight configuration. The complexity of the mission has generated challenging requirements that demand highly reliable system performance and capabilities from the Space Environment Simulator (SES) vacuum chamber. As JWST progressed through its CV testing campaign, deficiencies in the test configuration and support equipment were uncovered from one test to the next. Subsequent upgrades and modifications were implemented to improve the facility support capabilities required to achieve test requirements. This paper: (1) provides an overview of the integrated mechanical and thermal facility systems required to achieve the objectives of JWST ISIM testing, (2) compares the overall facility performance and instrumentation results from the three ISIM CV tests, and (3) summarizes lessons learned from the ISIM testing campaign.

  5. On McShane integrability of Banach space-valued functions

    Czech Academy of Sciences Publication Activity Database

    Kurzweil, Jaroslav; Schwabik, Štefan

    2004-01-01

    Roč. 29, č. 2 (2004), s. 763-780 ISSN 0147-1937 R&D Projects: GA ČR GA201/01/1199 Institutional research plan: CEZ:AV0Z1019905 Keywords : McShane integral * vector integration Subject RIV: BA - General Mathematics

  6. GEOdetic Data assimilation and EStimation of references for climate change InvEstigation. An overall presentation of the French GEODESIE project

    Science.gov (United States)

    Nahmani, S.; Coulot, D.; Biancale, R.; Bizouard, C.; Bonnefond, P.; Bouquillon, S.; Collilieux, X.; Deleflie, F.; Garayt, B.; Lambert, S. B.; Laurent-Varin, S.; Marty, J. C.; Mercier, F.; Metivier, L.; Meyssignac, B.; Pollet, A.; Rebischung, P.; Reinquin, F.; Richard, J. Y.; Tertre, F.; Woppelmann, G.

    2017-12-01

    Many major indicators of climate change are monitored with space observations. This monitoring is highly dependent on references that only geodesy can provide. The current accuracy of these references does not permit to fully support the challenges that the constantly evolving Earth system gives rise to, and can consequently limit the accuracy of these indicators. Thus, in the framework of the GGOS, stringent requirements are fixed to the International Terrestrial Reference Frame (ITRF) for the next decade: an accuracy at the level of 1 mm and a stability at the level of 0.1 mm/yr. This means an improvement of the current quality of ITRF by a factor of 5-10. Improving the quality of the geodetic references is an issue which requires a thorough reassessment of the methodologies involved. The most relevant and promising method to improve this quality is the direct combination of the space-geodetic measurements used to compute the official references of the IERS. The GEODESIE project aims at (i) determining highly-accurate global and consistent references and (ii) providing the geophysical and climate research communities with these references, for a better estimation of geocentric sea level rise, ice mass balance and on-going climate changes. Time series of sea levels computed from altimetric data and tide gauge records with these references will also be provided. The geodetic references will be essential bases for Earth's observation and monitoring to support the challenges of the century. The geocentric time series of sea levels will permit to better apprehend (i) the drivers of the global mean sea level rise and of regional variations of sea level and (ii) the contribution of the global climate change induced by anthropogenic greenhouse gases emissions to these drivers. All the results and computation and quality assessment reports will be available at geodesie_anr.ign.fr.This project, supported by the French Agence Nationale de la Recherche (ANR) for the period

  7. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-01-01

    to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly

  8. Integration of row spacing, mulching and herbicides on weed management in tomato

    International Nuclear Information System (INIS)

    Bakht, T.; Khan, I.A.

    2014-01-01

    A field experiment was conducted at the Research Farm of The University of Agriculture, Peshawar during the year 2012 to determine the impact of row spacing and weed management strategies on tomato (Lycopersicon esculentum Mill.). The local variety 'Roma' was sown in a randomized complete block (RCB) design with split plot arrangements, having four replications. The main plots were row spacings while subplots of the experiment comprised of ten treatments including five mulches viz., white and black polyethylene, wheat straw, newspaper and saw dust, three herbicide treatments (fenoxaprop-p-ethyl, pendimethalin and s-metolachlor), hand weeding and a weedy check. The data were recorded on weed density m/sup -2/, fresh and dry weed biomass, number of branches plant-1, and fruit yield (kg ha/sup -1/). All these parameters were significantly affected by row spacing and weed management treatments. Increase in weed population was observed with increasing in row spacing. The competitiveness of tomato with weeds can be enhanced by using black plastic as mulch. In light of the results, the row spacing of 60 cm is the optimum one for tomato plants, as the fruit yields decreased at 40 cm and 80 cm row spacing. (author)

  9. Integration Dilemma within the Eurasian Space in the Context of the Ukrainian Crisis

    Directory of Open Access Journals (Sweden)

    Antonina A. Durdyeva

    2015-01-01

    Full Text Available The article analyses the reaction of top officials, politicians and representatives of the expert community of the Eurasian Economic Union member countries on the aggravation of "Ukrainian crisis" in the context of plans and directions for further Eurasian integration. Today, in the scientific community is becoming a popular" dilemma of integration " as a systematic pattern that determines the development of relations between the integration associations. The dilemma of integration is a political phenomenon, a regular and predictable. Ukrainian crisis, which has become a litmus test of conflict of representations of the CIS countries on the extent and depth of their involvement in the processes of regional integration , most clearly outlined the presence of such dilemma within the CIS. In the current situation for Belarus and Kazakhstan as two , along with Russia , the main designers of the Eurasian field, the dilemma of integration takes a fundamentally different meaning and becomes a so-called "Dilemma of integrations", or contradiction between the desire of these countries to secure the most favorable conditions in its relations with Moscow and reluctance to fully bear the burden of the costs and constraints arising in relations with the EU due to the commitments of the EAEC. Based on the material of the official position of the representatives of Republic of Kazakhstan and the Republic of Belarus the author of the article explores the implications of the Ukrainian crisis in relations of Three: Moscow, Astana and Minsk.

  10. The impacts of source structure on geodetic parameters demonstrated by the radio source 3C371

    Science.gov (United States)

    Xu, Ming H.; Heinkelmann, Robert; Anderson, James M.; Mora-Diaz, Julian; Karbon, Maria; Schuh, Harald; Wang, Guang L.

    2017-07-01

    Closure quantities measured by very-long-baseline interferometry (VLBI) observations are independent of instrumental and propagation instabilities and antenna gain factors, but are sensitive to source structure. A new method is proposed to calculate a structure index based on the median values of closure quantities rather than the brightness distribution of a source. The results are comparable to structure indices based on imaging observations at other epochs and demonstrate the flexibility of deriving structure indices from exactly the same observations as used for geodetic analysis and without imaging analysis. A three-component model for the structure of source 3C371 is developed by model-fitting closure phases. It provides a real case of tracing how the structure effect identified by closure phases in the same observations as the delay observables affects the geodetic analysis, and investigating which geodetic parameters are corrupted to what extent by the structure effect. Using the resulting structure correction based on the three-component model of source 3C371, two solutions, with and without correcting the structure effect, are made. With corrections, the overall rms of this source is reduced by 1 ps, and the impacts of the structure effect introduced by this single source are up to 1.4 mm on station positions and up to 4.4 microarcseconds on Earth orientation parameters. This study is considered as a starting point for handling the source structure effect on geodetic VLBI from geodetic sessions themselves.

  11. Operational production of Geodetic Excitation Functions from EOP estimated values at ASI-CGS

    Science.gov (United States)

    Sciarretta, C.; Luceri, V.; Bianco, G.

    2009-04-01

    ASI-CGS is routinely providing geodetic excitation functions from its own estimated EOP values (at present SLR and VLBI; the current use of GPS EOP's is also planned as soon as this product will be fully operational) on the ASI geodetic web site (http://geodaf.mt.asi.it). This product has been generated and monitored (for ASI internal use only) in a long pre-operational phase (more than two years), including validation and testing. The daily geodetic excitation functions are now weekly updated along with the operational ASI SLR and VLBI EOP solutions and compared, whenever possible, with the atmospheric excitation functions available at the IERS SBAAM, under the IB and not-IB assumption, including the "wind" term. The work will present the available estimated geodetic function time series and its comparison with the relevant atmospheric excitation functions, deriving quantitative indicators on the quality of the estimates. The similarities as well as the discrepancies among the atmospheric and geodetic series will be analysed and commented, evaluating in particular the degree of correlation among the two estimated time series and the likelihood of a linear dependence hypothesis.

  12. Becoming Earth Independent: Human-Automation-Robotics Integration Challenges for Future Space Exploration

    Science.gov (United States)

    Marquez, Jessica J.

    2016-01-01

    Future exploration missions will require NASA to integrate more automation and robotics in order to accomplish mission objectives. This presentation will describe on the future challenges facing the human operator (astronaut, ground controllers) as we increase the amount of automation and robotics in spaceflight operations. It will describe how future exploration missions will have to adapt and evolve in order to deal with more complex missions and communication latencies. This presentation will outline future human-automation-robotic integration challenges.

  13. Undergraduate teaching modules featuring geodesy data applied to critical social topics (GETSI: GEodetic Tools for Societal Issues)

    Science.gov (United States)

    Pratt-Sitaula, B. A.; Walker, B.; Douglas, B. J.; Charlevoix, D. J.; Miller, M. M.

    2015-12-01

    The GETSI project, funded by NSF TUES, is developing and disseminating teaching and learning materials that feature geodesy data applied to critical societal issues such as climate change, water resource management, and natural hazards (serc.carleton.edu/getsi). It is collaborative between UNAVCO (NSF's geodetic facility), Mt San Antonio College, and Indiana University. GETSI was initiated after requests by geoscience faculty for geodetic teaching resources for introductory and majors-level students. Full modules take two weeks but module subsets can also be used. Modules are developed and tested by two co-authors and also tested in a third classroom. GETSI is working in partnership with the Science Education Resource Center's (SERC) InTeGrate project on the development, assessment, and dissemination to ensure compatibility with the growing number of resources for geoscience education. Two GETSI modules are being published in October 2015. "Ice mass and sea level changes" includes geodetic data from GRACE, satellite altimetry, and GPS time series. "Imaging Active Tectonics" has students analyzing InSAR and LiDAR data to assess infrastructure earthquake vulnerability. Another three modules are in testing during fall 2015 and will be published in 2016. "Surface process hazards" investigates mass wasting hazard and risk using LiDAR data. "Water resources and geodesy" uses GRACE, vertical GPS, and reflection GPS data to have students investigating droughts in California and the High Great Plains. "GPS, strain, and earthquakes" helps students learn about infinitesimal and coseismic strain through analysis of horizontal GPS data and includes an extension module on the Napa 2014 earthquake. In addition to teaching resources, the GETSI project is compiling recommendations on successful development of geodesy curricula. The chief recommendations so far are the critical importance of including scientific experts in the authorship team and investing significant resources in

  14. Regional Crustal Deformation and Lithosphere Thickness Observed with Geodetic Techniques

    Science.gov (United States)

    Vermeer, M.; Poutanen, M.; Kollo, K.; Koivula, H.; Ahola, J.

    2009-04-01

    The solid Earth, including the lithosphere, interacts in many ways with other components of the Earth system, oceans, atmosphere and climate. Geodesy is a key provider of data needed for global and environmental research. Geodesy provides methods and accurate measurements of contemporary deformation, sea level and gravity change. The importance of the decades-long stability and availability of reference frames must be stressed for such studies. In the future, the need to accurately monitor 3-D crustal motions will grow, both together with increasingly precise GNSS (Global Navigation Satellite System) positioning, demands for better follow-up of global change, and local needs for crustal motions, especially in coastal areas. These demands cannot yet be satisfied. The project described here is a part of a larger entity: Upper Mantle Dynamics and Quaternary Climate in Cratonic Areas, DynaQlim, an International Lithosphere Project (ILP) -sponsored initiative. The aims of DynaQlim are to understand the relations between upper mantle dynamics, mantle composition, physical properties, temperature and rheology, to study the postglacial uplift and ice thickness models, sea level change and isostatic response, Quaternary climate variations and Weichselian (Laurentian and other) glaciations during the late Quaternary. We aim at studying various aspects of lithospheric motion within the Finnish and Fennoscandian area, but within a global perspective, by the newest geodetic techniques in a multidisciplinary setting. The studies involve observations of three-dimensional motions and gravity change in a multidisciplinary context on a range of spatial scales: the whole of Fennoscandia, Finland, a regional test area of Satakunta, and the local test site Olkiluoto. Objectives of the research include improving our insight into the 3-D motion of a thick lithosphere, and into the gravity effect of the uplift, using novel approaches; improving the kinematic 3-D models in the

  15. Geodetic data support trapping of ethane in Titan's polar crust

    Science.gov (United States)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  16. Application of Different Statistical Techniques in Integrated Logistics Support of the International Space Station Alpha

    Science.gov (United States)

    Sepehry-Fard, F.; Coulthard, Maurice H.

    1995-01-01

    The process to predict the values of the maintenance time dependent variable parameters such as mean time between failures (MTBF) over time must be one that will not in turn introduce uncontrolled deviation in the results of the ILS analysis such as life cycle cost spares calculation, etc. A minor deviation in the values of the maintenance time dependent variable parameters such as MTBF over time will have a significant impact on the logistics resources demands, International Space Station availability, and maintenance support costs. It is the objective of this report to identify the magnitude of the expected enhancement in the accuracy of the results for the International Space Station reliability and maintainability data packages by providing examples. These examples partially portray the necessary information hy evaluating the impact of the said enhancements on the life cycle cost and the availability of the International Space Station.

  17. ISU Team Project: An Integral View on Space Debris Mitigation and Removal

    Science.gov (United States)

    Maier, Philipp; Ricote Navarro, Carmon; Jehn, Rudiger; Gini, Andrea; Faure, Pauline; Adriaensen, Maarten; Datta, Iman; Hilbich, Daniel; Jacimovic, Aleksandar; Jacques, Lionel; Penent, Guilhem; Sinn, Thomas; Shioi, Hiroaki

    2013-08-01

    The issue of space debris poses challenges not only in technical, but also legal, political and economic dimensions. A sustainable solution needs to take into account all of them. This paper investigates such a potential solution in a multidisciplinary approach. To this end, it addresses the effectiveness of the existing debris mitigation guidelines, and identifies technical improvements for mitigation. It continues examining technical concepts for debris removal and performing proper cost-benefit trade-offs. The results of new simulations to assess the damage cost caused by space debris are presented. Based on these findings, an organizational framework and political recommendations are developed which will enable a sustainable use of space starting in 2020. The findings are compiled into a roadmap, which outlines 1) a path to the full adherence to debris mitigation guidelines and 2) the removal of ten large pieces of debris per year by a dedicated international organization, including expected expenditures necessary for its implementation.

  18. NASA's Contribution to Global Space Geodesy Networks

    Science.gov (United States)

    Bosworth, John M.

    1999-01-01

    The NASA Space Geodesy program continues to be a major provider of space geodetic data for the international earth science community. NASA operates high performance Satellite Laser Ranging (SLR), Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) ground receivers at well over 30 locations around the world and works in close cooperation with space geodetic observatories around the world. NASA has also always been at the forefront in the quest for technical improvement and innovation in the space geodesy technologies to make them even more productive, accurate and economical. This presentation will highlight the current status of NASA's networks; the plans for partnerships with international groups in the southern hemisphere to improve the geographic distribution of space geodesy sites and the status of the technological improvements in SLR and VLBI that will support the new scientific thrusts proposed by interdisciplinary earth scientists. In addition, the expanding role of the NASA Space geodesy data archive, the CDDIS will be described.

  19. Crew systems: integrating human and technical subsystems for the exploration of space

    Science.gov (United States)

    Connors, M. M.; Harrison, A. A.; Summit, J.

    1994-01-01

    Space exploration missions will require combining human and technical subsystems into overall "crew systems" capable of performing under the rigorous conditions of outer space. This report describes substantive and conceptual relationships among humans, intelligent machines, and communication systems, and explores how these components may be combined to complement and strengthen one another. We identify key research issues in the combination of humans and technology and examine the role of individual differences, group processes, and environmental conditions. We conclude that a crew system is, in effect, a social cyborg, a living system consisting of multiple individuals whose capabilities are extended by advanced technology.

  20. Geodetic Mass Balance of the Northern Patagonian Icefield from 2000 to 2012 Using Two Independent Methods

    Directory of Open Access Journals (Sweden)

    Inés Dussaillant

    2018-02-01

    Full Text Available We compare two independent estimates of the rate of elevation change and geodetic mass balance of the Northern Patagonian Icefield (NPI between 2000 (3,856 km2 and 2012 (3,740 km2 from space-borne data. The first is obtained by differencing the Shuttle Radar Topography Mission (SRTM digital elevation model (DEM from February 2000 and a Satellite pour l'Observation de la Terre 5 (SPOT5 DEM from March 2012. The second is deduced by fitting pixel-based linear elevation trends over 118 DEMs calculated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo images acquired between 2000 and 2012. Both methods lead to similar and strongly negative icefield-wide mass balance rates of −1.02 ± 0.21 and −1.06 ± 0.14 m w.e. yr−1 respectively, which is in agreement with earlier studies. Contrasting glacier responses are observed, with individual glacier mass balance rates ranging from −0.15 to −2.30 m w.e. yr−1 (standard deviation = 0.49 m w.e. yr−1; N = 38. For individual glaciers, the two methods agree within error bars, except for small glaciers poorly sampled in the SPOT5 DEM due to clouds. Importantly, our study confirms the lack of penetration of the C-band SRTM radar signal into the NPI snow and firn except for a region above 2,900 m a.s.l. covering <1% of the total area. Ignoring penetration would bias the mass balance by only 0.005 m w.e. yr−1. A strong advantage of the ASTER method is that it relies only on freely available data and can thus be extended to other glacierized areas.

  1. Communal spaces: aggregation and integration in the Mogollon Region of the United States Southwest

    Energy Technology Data Exchange (ETDEWEB)

    Nisengard, Jennifer E.

    2006-12-01

    Aggregation and integration are processes that occur in human societies throughout the globe. An informative example of population aggregation and social integration can be observed in the North American desert borderlands from A.D. 250 to 1450 in the area known as the Mogollon region. In fact, Mogollon communities oscillated from smaller social groups into larger ones and dispersed into smaller groups only to form larger ones again. For this reason, examining the groups of people living in the Mogollon region provides a magnified view of social change over a substantial period. Understanding patterns of aggregation and integration provides researchers with the promise for research into the nature of these phenomena. In general, the Mogollon region is characterized by limited water supplies and low average annual precipitation. However, pockets of the Mogollon area, including the Mimbres valley and the Gila River valley, represent oases, where permanent rivers and their associated tributaries allowed for the pursuit of agricultural endeavors and access to a wide variety of wild plant and animal resources. The areas with these kinds of potential became population centers for previously dispersed groups of people living in the region. These people exploited natural resources and practiced agriculture in areas surrounding their communities. Over time, more organized aggregated and socially integrated communities were established throughout the region. Using ancient Mogollon communal architecture, commonly called kivas, this study examines issues of, and evidence for, population aggregation and social integration.

  2. Human Exploration System Test-Bed for Integration and Advancement (HESTIA) Support of Future NASA Deep-Space Missions

    Science.gov (United States)

    Marmolejo, Jose; Ewert, Michael

    2016-01-01

    The Engineering Directorate at the NASA - Johnson Space Center is outfitting a 20-Foot diameter hypobaric chamber in Building 7 to support future deep-space Environmental Control & Life Support System (ECLSS) research as part of the Human Exploration System Test-bed for Integration and Advancement (HESTIA) Project. This human-rated chamber is the only NASA facility that has the unique experience, chamber geometry, infrastructure, and support systems capable of conducting this research. The chamber was used to support Gemini, Apollo, and SkyLab Missions. More recently, it was used to conduct 30-, 60-, and 90-day human ECLSS closed-loop testing in the 1990s to support the International Space Station and life support technology development. NASA studies show that both planetary surface and deep-space transit crew habitats will be 3-4 story cylindrical structures driven by human occupancy volumetric needs and launch vehicle constraints. The HESTIA facility offers a 3-story, 20-foot diameter habitat consistent with the studies' recommendations. HESTIA operations follow stringent processes by a certified test team that including human testing. Project management, analysis, design, acquisition, fabrication, assembly and certification of facility build-ups are available to support this research. HESTIA offers close proximity to key stakeholders including astronauts, Human Research Program (who direct space human research for the agency), Mission Operations, Safety & Mission Assurance, and Engineering Directorate. The HESTIA chamber can operate at reduced pressure and elevated oxygen environments including those proposed for deep-space exploration. Data acquisition, power, fluids and other facility resources are available to support a wide range of research. Recently completed HESTIA research consisted of unmanned testing of ECLSS technologies. Eventually, the HESTIA research will include humans for extended durations at reduced pressure and elevated oxygen to demonstrate

  3. Next Generation NASA Initiative for Space Geodesy

    Science.gov (United States)

    Merkowitz, S. M.; Desai, S.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry J. F.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    Space geodesy measurement requirements have become more and more stringent as our understanding of the physical processes and our modeling techniques have improved. In addition, current and future spacecraft will have ever-increasing measurement capability and will lead to increasingly sophisticated models of changes in the Earth system. Ground-based space geodesy networks with enhanced measurement capability will be essential to meeting these oncoming requirements and properly interpreting the sate1!ite data. These networks must be globally distributed and built for longevity, to provide the robust data necessary to generate improved models for proper interpretation ofthe observed geophysical signals. These requirements have been articulated by the Global Geodetic Observing System (GGOS). The NASA Space Geodesy Project (SGP) is developing a prototype core site as the basis for a next generation Space Geodetic Network (SGN) that would be NASA's contribution to a global network designed to produce the higher quality data required to maintain the Terrestrial Reference Frame and provide information essential for fully realizing the measurement potential of the current and coming generation of Earth Observing spacecraft. Each of the sites in the SGN would include co-located, state of-the-art systems from all four space geodetic observing techniques (GNSS, SLR, VLBI, and DORIS). The prototype core site is being developed at NASA's Geophysical and Astronomical Observatory at Goddard Space Flight Center. The project commenced in 2011 and is scheduled for completion in late 2013. In January 2012, two multiconstellation GNSS receivers, GODS and GODN, were established at the prototype site as part of the local geodetic network. Development and testing are also underway on the next generation SLR and VLBI systems along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vector ties, and network design studies are being

  4. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    Science.gov (United States)

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  5. Integration of Distinct Educating Spaces and Their Potential for a More Comprehensive Environmental Education Work

    Science.gov (United States)

    Iared, Valéria Ghisloti; de Oliveira, Haydée Torres

    2012-01-01

    To investigate if the units of the São Carlos Ecological Pole (São Carlos, São Paulo, Brazil) are educating spaces that may contribute to the understanding of the complexity of environmental issues and stimulate a sense of belonging and social responsibility, we interviewed primary school teachers who had accompanied visits to these places and…

  6. How Body Orientation Affects Concepts of Space, Time and Valence: Functional Relevance of Integrating Sensorimotor Experiences during Word Processing.

    Directory of Open Access Journals (Sweden)

    Martin Lachmair

    Full Text Available The aim of the present study was to test the functional relevance of the spatial concepts UP or DOWN for words that use these concepts either literally (space or metaphorically (time, valence. A functional relevance would imply a symmetrical relationship between the spatial concepts and words related to these concepts, showing that processing words activate the related spatial concepts on one hand, but also that an activation of the concepts will ease the retrieval of a related word on the other. For the latter, the rotation angle of participant's body position was manipulated either to an upright or a head-down tilted body position to activate the related spatial concept. Afterwards participants produced in a within-subject design previously memorized words of the concepts space, time and valence according to the pace of a metronome. All words were related either to the spatial concept UP or DOWN. The results including Bayesian analyses show (1 a significant interaction between body position and words using the concepts UP and DOWN literally, (2 a marginal significant interaction between body position and temporal words and (3 no effect between body position and valence words. However, post-hoc analyses suggest no difference between experiments. Thus, the authors concluded that integrating sensorimotor experiences is indeed of functional relevance for all three concepts of space, time and valence. However, the strength of this functional relevance depends on how close words are linked to mental concepts representing vertical space.

  7. A variable timestep generalized Runge-Kutta method for the numerical integration of the space-time diffusion equations

    International Nuclear Information System (INIS)

    Aviles, B.N.; Sutton, T.M.; Kelly, D.J. III.

    1991-09-01

    A generalized Runge-Kutta method has been employed in the numerical integration of the stiff space-time diffusion equations. The method is fourth-order accurate, using an embedded third-order solution to arrive at an estimate of the truncation error for automatic timestep control. The efficiency of the Runge-Kutta method is enhanced by a block-factorization technique that exploits the sparse structure of the matrix system resulting from the space and energy discretized form of the time-dependent neutron diffusion equations. Preliminary numerical evaluation using a one-dimensional finite difference code shows the sparse matrix implementation of the generalized Runge-Kutta method to be highly accurate and efficient when compared to an optimized iterative theta method. 12 refs., 5 figs., 4 tabs

  8. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    Science.gov (United States)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  9. Singular and Marcinkiewicz integrals with H1 kernels on product spaces

    International Nuclear Information System (INIS)

    Chen, Jiecheng; Wang, Meng; Fan, Dashan

    2008-08-01

    In this paper we shall prove that for Ω is part of H 1 (S n-1 x S m-1 ), which satisfies the cancellation condition ∫ S n-1 Ω(x ' , y ' )dx ' = ∫ S m-1 Ω(x ' , y ' )dy ' = 0 (A(x ' , y ' ) is part of S n-1 x S m-1 , the Calderon-Zygmund singular integral operator T Ω , its maximal operator T Ω * and the Marcinkiewicz integral operator μ Ω are bounded on L p (R n x R m for 1 < p < ∞. (author)

  10. Application of ray-traced tropospheric slant delays to geodetic VLBI analysis

    Science.gov (United States)

    Hofmeister, Armin; Böhm, Johannes

    2017-08-01

    The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the

  11. Population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space.

    Science.gov (United States)

    Feng, Lei; Jeon, Tina; Yu, Qiaowen; Ouyang, Minhui; Peng, Qinmu; Mishra, Virendra; Pletikos, Mihovil; Sestan, Nenad; Miller, Michael I; Mori, Susumu; Hsiao, Steven; Liu, Shuwei; Huang, Hao

    2017-12-01

    Animal models of the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate, have been irreplaceable in neurobiological studies. However, a population-averaged macaque brain diffusion tensor imaging (DTI) atlas, including comprehensive gray and white matter labeling as well as bony and facial landmarks guiding invasive experimental procedures, is not available. The macaque white matter tract pathways and microstructures have been rarely recorded. Here, we established a population-averaged macaque brain atlas with high-resolution ex vivo DTI integrated into in vivo space incorporating bony and facial landmarks, and delineated microstructures and three-dimensional pathways of major white matter tracts in vivo MRI/DTI and ex vivo (postmortem) DTI of ten rhesus macaque brains were acquired. Single-subject macaque brain DTI template was obtained by transforming the postmortem high-resolution DTI data into in vivo space. Ex vivo DTI of ten macaque brains was then averaged in the in vivo single-subject template space to generate population-averaged macaque brain DTI atlas. The white matter tracts were traced with DTI-based tractography. One hundred and eighteen neural structures including all cortical gyri, white matter tracts and subcortical nuclei, were labeled manually on population-averaged DTI-derived maps. The in vivo microstructural metrics of fractional anisotropy, axial, radial and mean diffusivity of the traced white matter tracts were measured. Population-averaged digital atlas integrated into in vivo space can be used to label the experimental macaque brain automatically. Bony and facial landmarks will be available for guiding invasive procedures. The DTI metric measurements offer unique insights into heterogeneous microstructural profiles of different white matter tracts.

  12. Space Flight Human System Standards (SFHSS). Volume 2; Human Factors, Habitability and Environmental Factors" and Human Integration Design Handbook (HIDH)

    Science.gov (United States)

    Davis, Jeffrey R.; Fitts, David J.

    2009-01-01

    This viewgraph presentation reviews the standards for space flight hardware based on human capabilities and limitations. The contents include: 1) Scope; 2) Applicable documents; 3) General; 4) Human Physical Characteristics and Capabilities; 5) Human Performance and Cognition; 6) Natural and Induced Environments; 7) Habitability Functions; 8) Architecture; 9) Hardware and Equipment; 10) Crew Interfaces; 11) Spacesuits; 12) Operatons: Reserved; 13) Ground Maintenance and Assembly: Reserved; 14) Appendix A-Reference Documents; 15) Appendix N-Acronyms and 16) Appendix C-Definition. Volume 2 is supported by the Human Integration Design Handbook (HIDH)s.

  13. Necessary and Sufficient Conditions for Boundedness of Commutators of the General Fractional Integral Operators on Weighted Morrey Spaces

    Directory of Open Access Journals (Sweden)

    Zengyan Si

    2012-01-01

    Full Text Available We prove that b is in Lipβ(ω if and only if the commutator [b,L-α/2] of the multiplication operator by b and the general fractional integral operator L-α/2 is bounded from the weighted Morrey space Lp,k(ω to Lq,kq/p(ω1-(1-α/nq,ω, where 0(1-k/(p/(q-k, and here rω denotes the critical index of ω for the reverse Hölder condition.

  14. Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils

    Science.gov (United States)

    Ng, Chee Hoe; Adnan, M.

    2018-01-01

    This research aims to investigate the effect of integrating STEM education through Project-based Inquiry Learning (PIL) and the users of the STEM modules which consists of five projects on topic Space in Year One Mathematics Syllabus in Kurikulum Standard Sekolah Rendah (KSSR) of Malaysia. STEM education in primary school focuses on the introduces and awareness of students about the importance of STEM education. The projects in STEM modules are covering the different ethnic cultures in Malaysia. The modules are designed using the four phases in PIL. Concepts and the explanation of STEM education on each project are emphasized and provided in the modules so the teachers able to carry out the projects by using the modules. By using the modules in primary Mathematics, the students and teachers will be more understanding on how to integrate the Mathematics’ concepts in STEM education.

  15. Relative navigation and attitude determination using a GPS/INS integrated system near the International Space Station

    Science.gov (United States)

    Um, Jaeyong

    2001-08-01

    The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as

  16. First-order design of geodetic networks using the simulated annealing method

    Science.gov (United States)

    Berné, J. L.; Baselga, S.

    2004-09-01

    The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.

  17. NASA's Next Generation Space Geodesy Network

    Science.gov (United States)

    Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.; hide

    2012-01-01

    NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.

  18. Non-uniqueness of quantum transition state theory and general dividing surfaces in the path integral space.

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A

    2017-05-07

    Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.

  19. The invisible hand illusion: multisensory integration leads to the embodiment of a discrete volume of empty space.

    Science.gov (United States)

    Guterstam, Arvid; Gentile, Giovanni; Ehrsson, H Henrik

    2013-07-01

    The dynamic integration of signals from different sensory modalities plays a key role in bodily self-perception. When visual information is used in the multisensory process of localizing and identifying one's own limbs, the sight of a body part often plays a dominant role. For example, it has repeatedly been shown that a viewed object must resemble a humanoid body part to permit illusory self-attribution of that object. Here, we report a perceptual illusion that challenges these assumptions by demonstrating that healthy (nonamputated) individuals can refer somatic sensations to a discrete volume of empty space and experience having an invisible hand. In 10 behavioral and one fMRI experiment, we characterized the perceptual rules and multisensory brain mechanisms that produced this "invisible hand illusion." Our behavioral results showed that the illusion depends on visuotactile-proprioceptive integration that obeys key spatial and temporal multisensory rules confined to near-personal space. The fMRI results associate the illusion experience with increased activity in regions related to the integration of multisensory body-related signals, most notably the bilateral ventral premotor, intraparietal, and cerebellar cortices. We further showed that a stronger feeling of having an invisible hand is associated with a higher degree of effective connectivity between the intraparietal and ventral premotor cortices. These findings demonstrate that the integration of temporally and spatially congruent multisensory signals in a premotor-intraparietal circuit is sufficient to redefine the spatial boundaries of the bodily self, even when visual information directly contradicts the presence of a physical limb at the location of the perceived illusory hand.

  20. Real-space path integration is impaired in Alzheimer’s disease and mild cognitive impairment

    Czech Academy of Sciences Publication Activity Database

    Mokrišová, I.; Laczó, J.; Andel, R.; Gažová, I.; Vyhnálek, M.; Nedělská, Z.; Levčík, David; Cerman, J.; Vlček, Kamil; Hort, J.

    2016-01-01

    Roč. 307, Jul 1 (2016), s. 150-158 ISSN 0166-4328 Institutional support: RVO:67985823 Keywords : Alzheimer disease * mild cognitive impairment * spatial navigation * hippocampus * path integration Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016

  1. Latent Integrated Stochastic Volatility, Realized Volatility, and Implied Volatility: A State Space Approach

    DEFF Research Database (Denmark)

    Bach, Christian; Christensen, Bent Jesper

    process is downward biased. Implied volatility performs better than any of the alternative realized measures when forecasting future integrated volatility. The results are largely similar across the stock market (S&P 500), bond market (30-year U.S. T-bond), and foreign currency exchange market ($/£ )....

  2. Integral Boundary Value Problems for Fractional Impulsive Integro Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    A. Anguraj

    2014-02-01

    Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.

  3. Canonical path integral measures for Holst and Plebanski gravity: I. Reduced phase space derivation

    International Nuclear Information System (INIS)

    Engle, Jonathan; Han Muxin; Thiemann, Thomas

    2010-01-01

    An important aspect in defining a path integral quantum theory is the determination of the correct measure. For interacting theories and theories with constraints, this is non-trivial, and is normally not the heuristic 'Lebesgue measure' usually used. There have been many determinations of a measure for gravity in the literature, but none for the Palatini or Holst formulations of gravity. Furthermore, the relations between different resulting measures for different formulations of gravity are usually not discussed. In this paper we use the reduced phase technique in order to derive the path-integral measure for the Palatini and Holst formulation of gravity, which is different from the Lebesgue measure up to local measure factors which depend on the spacetime volume element and spatial volume element. From this path integral for the Holst formulation of general relativity we can also give a new derivation of the Plebanski path integral and discover a discrepancy with the result due to Buffenoir, Henneaux, Noui and Roche whose origin we resolve. This paper is the first in a series that aims at better understanding the relation between canonical loop quantum gravity and the spin-foam approach.

  4. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  5. Loaded dice in Monte Carlo : importance sampling in phase space integration and probability distributions for discrepancies

    NARCIS (Netherlands)

    Hameren, Andreas Ferdinand Willem van

    2001-01-01

    Discrepancies play an important role in the study of uniformity properties of point sets. Their probability distributions are a help in the analysis of the efficiency of the Quasi Monte Carlo method of numerical integration, which uses point sets that are distributed more uniformly than sets of

  6. Standard high-reliability integrated circuit logic packaging. [for deep space tracking stations

    Science.gov (United States)

    Slaughter, D. W.

    1977-01-01

    A family of standard, high-reliability hardware used for packaging digital integrated circuits is described. The design transition from early prototypes to production hardware is covered and future plans are discussed. Interconnections techniques are described as well as connectors and related hardware available at both the microcircuit packaging and main-frame level. General applications information is also provided.

  7. Integration of space heating and hot water supply in low temperature district heating

    DEFF Research Database (Denmark)

    Elmegaard, Brian; Ommen, Torben Schmidt; Markussen, Michael

    2016-01-01

    District heating may supply many consumers efficiently, but the heat loss from the pipes to the ground is a challenge. The heat loss may be lowered by decreasing the network temperatures for which reason low temperature networks are proposed for future district heating. The heating demand...... of the consumers involves both domestic hot water and space heating. Space heating may be provided at low temperature in low energy buildings. Domestic hot water, however, needs sufficient temperatures to avoid growth of legionella. If the network temperature is below the demand temperature, supplementary heating...... is required by the consumer. We study conventional district heating at different temperatures and compare the energy and exergetic efficiency and annual heating cost to solutions that utilize electricity for supplementary heating of domestic hot water in low temperature district heating. This includes direct...

  8. Some s-numbers of an integral operator of Hardy type in Banach function spaces

    Czech Academy of Sciences Publication Activity Database

    Edmunds, D.; Gogatishvili, Amiran; Kopaliani, T.; Samashvili, N.

    2016-01-01

    Roč. 207, July (2016), s. 76-97 ISSN 0021-9045 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : Hardy type operators * Banach function spaces * s- numbers * compact linear operators Subject RIV: BA - General Mathematics Impact factor: 0.931, year: 2016 http://www.sciencedirect.com/science/article/pii/S0021904516000265

  9. Critical Science Instrument Alignment of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM)

    Science.gov (United States)

    Rohrbach, Scott O.; Kubalak, David A.; Gracey, Renee M.; Sabatke, Derek S.; Howard, Joseph M.; Telfer, Randal C.; Zielinski, Thomas P.

    2016-01-01

    This paper describes the critical instrument alignment terms associated with the six-degree of freedom alignment of each the Science Instrument (SI) in the James Webb Space Telescope (JWST), including focus, pupil shear, pupil clocking, and boresight. We present the test methods used during cryogenic-vacuum tests to directly measure the performance of each parameter, the requirements levied on each, and the impact of any violations of these requirements at the instrument and Observatory level.

  10. Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    Science.gov (United States)

    Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2013-01-01

    Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.

  11. Integrated source and channel encoded digital communication system design study. [for space shuttles

    Science.gov (United States)

    Huth, G. K.

    1976-01-01

    The results of several studies Space Shuttle communication system are summarized. These tasks can be divided into the following categories: (1) phase multiplexing for two- and three-channel data transmission, (2) effects of phase noise on the performance of coherent communication links, (3) analysis of command system performance, (4) error correcting code tradeoffs, (5) signal detection and angular search procedure for the shuttle Ku-band communication system, and (6) false lock performance of Costas loop receivers.

  12. GBIS (Geodetic Bayesian Inversion Software): Rapid Inversion of InSAR and GNSS Data to Estimate Surface Deformation Source Parameters and Uncertainties

    Science.gov (United States)

    Bagnardi, M.; Hooper, A. J.

    2017-12-01

    Inversions of geodetic observational data, such as Interferometric Synthetic Aperture Radar (InSAR) and Global Navigation Satellite System (GNSS) measurements, are often performed to obtain information about the source of surface displacements. Inverse problem theory has been applied to study magmatic processes, the earthquake cycle, and other phenomena that cause deformation of the Earth's interior and of its surface. Together with increasing improvements in data resolution, both spatial and temporal, new satellite missions (e.g., European Commission's Sentinel-1 satellites) are providing the unprecedented opportunity to access space-geodetic data within hours from their acquisition. To truly take advantage of these opportunities we must become able to interpret geodetic data in a rapid and robust manner. Here we present the open-source Geodetic Bayesian Inversion Software (GBIS; available for download at http://comet.nerc.ac.uk/gbis). GBIS is written in Matlab and offers a series of user-friendly and interactive pre- and post-processing tools. For example, an interactive function has been developed to estimate the characteristics of noise in InSAR data by calculating the experimental semi-variogram. The inversion software uses a Markov-chain Monte Carlo algorithm, incorporating the Metropolis-Hastings algorithm with adaptive step size, to efficiently sample the posterior probability distribution of the different source parameters. The probabilistic Bayesian approach allows the user to retrieve estimates of the optimal (best-fitting) deformation source parameters together with the associated uncertainties produced by errors in the data (and by scaling, errors in the model). The current version of GBIS (V1.0) includes fast analytical forward models for magmatic sources of different geometry (e.g., point source, finite spherical source, prolate spheroid source, penny-shaped sill-like source, and dipping-dike with uniform opening) and for dipping faults with uniform

  13. Considering Sound in Planning and Designing Public Spaces : A Review of Theory and Applications and a Proposed Framework for Integrating Research and Practice

    NARCIS (Netherlands)

    Bild, E.; Coler, M.; Pfeffer, K.; Bertolini, L.

    2016-01-01

    We critically review the literature on the relationship between users of public spaces and their auditory environments, and how this knowledge is integrated in the planning, design, and management of public spaces as well as in technologies for acoustic and spatial data collection, analysis, and

  14. AN/FSY-3 Space Fence System – Sensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  15. Integrated propulsion for near-Earth space missions. Volume 2: Technical

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    The calculation approach is described for parametric analysis of candidate electric propulsion systems employed in LEO to GEO missions. Occultation relations, atmospheric density effects, and natural radiation effects are presented. A solar cell cover glass tradeoff is performed to determine optimum glass thickness. Solar array and spacecraft pointing strategies are described for low altitude flight and for optimum array illumination during ascent. Mass ratio tradeoffs versus transfer time provide direction for thruster technology improvements. Integrated electric propulsion analysis is performed for orbit boosting, inclination change, attitude control, stationkeeping, repositioning, and disposal functions as well as power sharing with payload on orbit. Comparison with chemical auxiliary propulsion is made to quantify the advantages of integrated propulsion in terms of weight savings and concomittant launch cost savings.

  16. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    Science.gov (United States)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  17. Classical and quantum integrability of 2D dilaton gravities in Euclidean space

    International Nuclear Information System (INIS)

    Bergamin, L; Grumiller, D; Kummer, W; Vassilevich, D V

    2005-01-01

    Euclidean dilaton gravity in two dimensions is studied exploiting its representation as a complexified first order gravity model. All local classical solutions are obtained. A global discussion reveals that for a given model only a restricted class of topologies is consistent with the metric and the dilaton. A particular case of string motivated Liouville gravity is studied in detail. Path integral quantization in generic Euclidean dilaton gravity is performed non-perturbatively by analogy to the Minkowskian case

  18. The Burkill-Cesari Integral on Spaces of Absolutely Continuous Games

    Directory of Open Access Journals (Sweden)

    F. Centrone

    2014-01-01

    Full Text Available We prove that the Burkill-Cesari integral is a value on a subspace of AC and then discuss its continuity with respect to both the BV and the Lipschitz norm. We provide an example of value on a subspace of AC strictly containing pNA as well as an existence result of a Lipschitz continuous value, different from Aumann and Shapley’s one, on a subspace of AC∞.

  19. Spiritual care of cancer patients by integrated medicine in urban green space: a pilot study.

    Science.gov (United States)

    Nakau, Maiko; Imanishi, Jiro; Imanishi, Junichi; Watanabe, Satoko; Imanishi, Ayumi; Baba, Takeshi; Hirai, Kei; Ito, Toshinori; Chiba, Wataru; Morimoto, Yukihiro

    2013-01-01

    Psycho-oncological care, including spiritual care, is essential for cancer patients. Integrated medicine, a therapy combining modern western medicine with various kinds of complementary and alternative medicine, can be appropriate for the spiritual care of cancer because of the multidimensional characteristics of the spirituality. In particular, therapies that enable patients to establish a deeper contact with nature, inspire feelings of life and growth of plants, and involve meditation may be useful for spiritual care as well as related aspects such as emotion. The purpose of the present study was to examine the effect of spiritual care of cancer patients by integrated medicine in a green environment. The present study involved 22 cancer patients. Integrated medicine consisted of forest therapy, horticultural therapy, yoga meditation, and support group therapy, and sessions were conducted once a week for 12 weeks. The spirituality (the Functional Assessment of Chronic Illness Therapy-Spiritual well-being), quality of life (Short Form-36 Health Survey Questionnaire), fatigue (Cancer Fatigue Scale), psychological state (Profile of Mood States, short form, and State-Trait Anxiety Inventory) and natural killer cell activity were assessed before and after intervention. In Functional Assessment of Chronic Illness Therapy-Spiritual well-being, there were significant differences in functional well-being and spiritual well-being pre- and postintervention. This program improved quality of life and reduced cancer-associated fatigue. Furthermore, some aspects of psychological state were improved and natural killer cell activity was increased. It is indicated that integrated medicine performed in a green environment is potentially useful for the emotional and spiritual well-being of cancer patients. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hardware Interface Description for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio Ssystem (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  1. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    Science.gov (United States)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  2. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  3. Space Transportation System Cargo projects: inertial stage/spacecraft integration plan. Volume 1: Management plan

    Science.gov (United States)

    1981-01-01

    The Kennedy Space Center (KSC) Management System for the Inertial Upper Stage (IUS) - spacecraft processing from KSC arrival through launch is described. The roles and responsibilities of the agencies and test team organizations involved in IUS-S/C processing at KSC for non-Department of Defense missions are described. Working relationships are defined with respect to documentation preparation, coordination and approval, schedule development and maintenance, test conduct and control, configuration management, quality control and safety. The policy regarding the use of spacecraft contractor test procedures, IUS contractor detailed operating procedures and KSC operations and maintenance instructions is defined. Review and approval requirements for each documentation system are described.

  4. The COSPAR roadmap on Space-based observation and Integrated Earth System Science for 2016-2025

    Science.gov (United States)

    Fellous, Jean-Louis

    2016-07-01

    The Committee on Space Research of the International Council for Science recently commissioned a study group to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. The paper will provide an overview of the content of the roadmap. All types of observation are considered in the roadmap, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced in the roadmap. Instances are given of present types of observation, what is already on the roadmap for 2016-2025 and some of the issues to be faced. The current status and prospects for Earth-system modelling are summarized. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Finally the roadmap offers a set of concluding discussions covering general developmental needs, requirements for continuity of

  5. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  6. Shared visions: Partnership of Rockwell International and NASA Cost Effectiveness Enhancements (CEE) for the space shuttle system integration program

    Science.gov (United States)

    Bejmuk, Bohdan I.; Williams, Larry

    1992-01-01

    As a result of limited resources and tight fiscal constraints over the past several years, the defense and aerospace industries have experienced a downturn in business activity. The impact of fewer contracts being awarded has placed a greater emphasis for effectiveness and efficiency on industry contractors. It is clear that a reallocation of resources is required for America to continue to lead the world in space and technology. The key to technological and economic survival is the transforming of existing programs, such as the Space Shuttle Program, into more cost efficient programs so as to divert the savings to other NASA programs. The partnership between Rockwell International and NASA and their joint improvement efforts that resulted in significant streamlining and cost reduction measures to Rockwell International Space System Division's work on the Space Shuttle System Integration Contract is described. This work was a result of an established Cost Effectiveness Enhancement (CEE) Team formed initially in Fiscal Year 1991, and more recently expanded to a larger scale CEE Initiative in 1992. By working closely with the customer in agreeing to contract content, obtaining management endorsement and commitment, and involving the employees in total quality management (TQM) and continuous improvement 'teams,' the initial annual cost reduction target was exceeded significantly. The CEE Initiative helped reduce the cost of the Shuttle Systems Integration contract while establishing a stronger program based upon customer needs, teamwork, quality enhancements, and cost effectiveness. This was accomplished by systematically analyzing, challenging, and changing the established processes, practices, and systems. This examination, in nature, was work intensive due to the depth and breadth of the activity. The CEE Initiative has provided opportunities to make a difference in the way Rockwell and NASA work together - to update the methods and processes of the organizations

  7. Globalization and regionalisation: Determinants of the transformation and the process of the integration of the geo-space

    Directory of Open Access Journals (Sweden)

    Todorović Marina J.

    2005-01-01

    Full Text Available The two processes that, basically since the emergence of the classic civilizations, determine major changes in the basic spatial structures in the world are, de facto, of antipode basic characteristics (globalization and regionalisation, but it is often the case that there are elements with traits of complementarily. They have crucial effect on development and integration of geo-spaces and many research results indicate that, depending of the stage of the development, both processes were present in the geo-space in various forms in almost all the phases of its development and that they have contributed to establishment of all the new spatial-structural relations. The subject of this analyses is, among other issues, a brief genesis of these two processes, including identification of their main starters and effects. Besides from that, there is a special attention paid to the role of the traffic as their basic element and one of the important initiators and its role in those parts of the European continent that are not yet included by these processes of crucial changes of the geo-space as the whole.

  8. A Gauss-Newton method for the integration of spatial normal fields in shape Space

    KAUST Repository

    Balzer, Jonathan

    2011-08-09

    We address the task of adjusting a surface to a vector field of desired surface normals in space. The described method is entirely geometric in the sense, that it does not depend on a particular parametrization of the surface in question. It amounts to solving a nonlinear least-squares problem in shape space. Previously, the corresponding minimization has been performed by gradient descent, which suffers from slow convergence and susceptibility to local minima. Newton-type methods, although significantly more robust and efficient, have not been attempted as they require second-order Hadamard differentials. These are difficult to compute for the problem of interest and in general fail to be positive-definite symmetric. We propose a novel approximation of the shape Hessian, which is not only rigorously justified but also leads to excellent numerical performance of the actual optimization. Moreover, a remarkable connection to Sobolev flows is exposed. Three other established algorithms from image and geometry processing turn out to be special cases of ours. Our numerical implementation founds on a fast finite-elements formulation on the minimizing sequence of triangulated shapes. A series of examples from a wide range of different applications is discussed to underline flexibility and efficiency of the approach. © 2011 Springer Science+Business Media, LLC.

  9. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  10. The impact of using jason-1 and cryosat-2 geodetic mission altimetry for gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Jain, Maulik; Knudsen, Per

    2016-01-01

    Since the release of the Danish Technical University DTU10 global marine gravity field in 2010, the amount of geodetic mission altimetry data has nearly tripled. The Cryosat-2 satellite have provided data along its 369 day near repeat since 2010 and as of May 2012 the Jason-1 satellite has been o...

  11. Resolution testing and limitations of geodetic and tsunami datasets for finite fault inversions along subduction zones

    Science.gov (United States)

    Williamson, A.; Newman, A. V.

    2017-12-01

    Finite fault inversions utilizing multiple datasets have become commonplace for large earthquakes pending data availability. The mixture of geodetic datasets such as Global Navigational Satellite Systems (GNSS) and InSAR, seismic waveforms, and when applicable, tsunami waveforms from Deep-Ocean Assessment and Reporting of Tsunami (DART) gauges, provide slightly different observations that when incorporated together lead to a more robust model of fault slip distribution. The merging of different datasets is of particular importance along subduction zones where direct observations of seafloor deformation over the rupture area are extremely limited. Instead, instrumentation measures related ground motion from tens to hundreds of kilometers away. The distance from the event and dataset type can lead to a variable degree of resolution, affecting the ability to accurately model the spatial distribution of slip. This study analyzes the spatial resolution attained individually from geodetic and tsunami datasets as well as in a combined dataset. We constrain the importance of distance between estimated parameters and observed data and how that varies between land-based and open ocean datasets. Analysis focuses on accurately scaled subduction zone synthetic models as well as analysis of the relationship between slip and data in recent large subduction zone earthquakes. This study shows that seafloor deformation sensitive datasets, like open-ocean tsunami waveforms or seafloor geodetic instrumentation, can provide unique offshore resolution for understanding most large and particularly tsunamigenic megathrust earthquake activity. In most environments, we simply lack the capability to resolve static displacements using land-based geodetic observations.

  12. A case for inherent geometric and geodetic accuracy in remotely sensed VNIR and SWIR imaging products

    Science.gov (United States)

    Driver, J. M.

    1982-01-01

    Significant aberrations can occur in acquired images which, unless compensated on board the spacecraft, can seriously impair throughput and timeliness for typical Earth observation missions. Conceptual compensations options are advanced to enable acquisition of images with inherent geometric and geodetic accuracy. Research needs are identified which, when implemented, can provide inherently accurate images. Agressive pursuit of these research needs is recommended.

  13. Expressions for tidal conversion at seafloor topography using physical space integrals

    International Nuclear Information System (INIS)

    Schorghofer, Norbert

    2010-01-01

    The barotropic tide interacts with seafloor topography to generate internal gravity waves. Equations for streamfunction and power conversion are derived in terms of integrals over the topography in spatial coordinates. The slope of the topography does not need to be small. Explicit equations are derived up to second order in slope for general topography, and conversion by a bell-shaped topography is calculated analytically to this order. A concise formalism using Hilbert transforms is developed, the minimally converting topographic shape is discussed, and a numerical scheme for the evaluation of power conversion is designed that robustly deals with the singular integrand.

  14. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1991-01-01

    This paper reports on the development an extra fast current feedback amplifier and a level discriminator employing a dielectrically-isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity-gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  15. Visual-vestibular integration as a function of adaptation to space flight and return to Earth

    Science.gov (United States)

    Reschke, Millard R.; Bloomberg, Jacob J.; Harm, Deborah L.; Huebner, William P.; Krnavek, Jody M.; Paloski, William H.; Berthoz, Alan

    1999-01-01

    Research on perception and control of self-orientation and self-motion addresses interactions between action and perception . Self-orientation and self-motion, and the perception of that orientation and motion are required for and modified by goal-directed action. Detailed Supplementary Objective (DSO) 604 Operational Investigation-3 (OI-3) was designed to investigate the integrated coordination of head and eye movements within a structured environment where perception could modify responses and where response could be compensatory for perception. A full understanding of this coordination required definition of spatial orientation models for the microgravity environment encountered during spaceflight.

  16. Semi-custom integrated circuit amplifier and level discriminator for nuclear and space instruments

    International Nuclear Information System (INIS)

    Hahn, S.F.; Cafferty, M.M.

    1990-01-01

    This paper reports an extra fast current feedback amplifier and a level discriminator developed employing a dielectrically isolated bipolar, semi-custom Application Specific Integrated Circuit (ASIC) process. These devices are specifically designed for instruments aboard spacecrafts or in portable packages requiring low power and weight. The amplifier adopts current feedback for a unity- gain bandwidth of 90 MHz while consuming 50 mW. The level discriminator uses a complementary output driver for balanced positive and negative response times. The power consumption of these devices can be programmed by external resistors for optimal speed and power trade-off

  17. A high-order integral solver for scalar problems of diffraction by screens and apertures in three-dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Oscar P., E-mail: obruno@caltech.edu; Lintner, Stéphane K.

    2013-11-01

    We present a novel methodology for the numerical solution of problems of diffraction by infinitely thin screens in three-dimensional space. Our approach relies on new integral formulations as well as associated high-order quadrature rules. The new integral formulations involve weighted versions of the classical integral operators related to the thin-screen Dirichlet and Neumann problems as well as a generalization to the open-surface problem of the classical Calderón formulae. The high-order quadrature rules we introduce for these operators, in turn, resolve the multiple Green function and edge singularities (which occur at arbitrarily close distances from each other, and which include weakly singular as well as hypersingular kernels) and thus give rise to super-algebraically fast convergence as the discretization sizes are increased. When used in conjunction with Krylov-subspace linear algebra solvers such as GMRES, the resulting solvers produce results of high accuracy in small numbers of iterations for low and high frequencies alike. We demonstrate our methodology with a variety of numerical results for screen and aperture problems at high frequencies—including simulation of classical experiments such as the diffraction by a circular disc (featuring in particular the famous Poisson spot), evaluation of interference fringes resulting from diffraction across two nearby circular apertures, as well as solution of problems of scattering by more complex geometries consisting of multiple scatterers and cavities.

  18. NASA Space Geodesy Program: GSFC data analysis, 1992. Crustal Dynamics Project VLBI geodetic results, 1979 - 1991

    Science.gov (United States)

    Ryan, J. W.; Ma, C.; Caprette, D. S.

    1993-01-01

    The Goddard VLBI group reports the results of analyzing 1648 Mark 3 data sets acquired from fixed and mobile observing sites through the end of 1991, and available to the Crustal Dynamics Project. Two large solutions were used to obtain Earth rotation parameters, nutation offsets, radio source positions, site positions, site velocities, and baseline evolution. Site positions are tabulated on a yearly basis for 1979 to 1995, inclusive. Site velocities are presented in both geocentric Cartesian and topocentric coordinates. Baseline evolution is plotted for 200 baselines, and individual length determinations are presented for an additional 356 baselines. This report includes 155 quasar radio sources, 96 fixed stations and mobile sites, and 556 baselines.

  19. Sensory augmentation: integration of an auditory compass signal into human perception of space

    Science.gov (United States)

    Schumann, Frank; O’Regan, J. Kevin

    2017-01-01

    Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences. PMID:28195187

  20. Integrated propulsion for near-Earth space missions. Volume 1: Executive summary

    Science.gov (United States)

    Dailey, C. L.; Meissinger, H. F.; Lovberg, R. H.; Zafran, S.

    1981-01-01

    Tradeoffs between electric propulsion system mass ratio and transfer time from LEO to GEO were conducted parametrically for various thruster efficiency, specific impulse, and other propulsion parameters. A computer model was developed for performing orbit transfer calculations which included the effects of aerodynamic drag, radiation degradation, and occultation. The tradeoff results showed that thruster technology areas for integrated propulsion should be directed towards improving primary thruster efficiency in the range from 1500 to 2500 seconds, and be continued towards reducing specific mass. Comparison of auxiliary propulsion systems showed large total propellant mass savings with integrated electric auxiliary propulsion. Stationkeeping is the most demanding on orbit propulsion requirement. At area densities above 0.5 sq m/kg, East-West stationkeeping requirements from solar pressure exceed North-South stationkeeping requirements from gravitational forces. A solar array pointing strategy was developed to minimize the effects of atmospheric drag at low altitude, enabling electric propulsion to initiate orbit transfer at Shuttle's maximum cargo carrying altitude. Gravity gradient torques are used during ascent to sustain the spacecraft roll motion required for optimum solar array illumination. A near optimum cover glass thickness of 6 mils was established for LEO to GEO transfer.

  1. An Integrated Approach to Parameter Learning in Infinite-Dimensional Space

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wendelberger, Joanne Roth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The availability of sophisticated modern physics codes has greatly extended the ability of domain scientists to understand the processes underlying their observations of complicated processes, but it has also introduced the curse of dimensionality via the many user-set parameters available to tune. Many of these parameters are naturally expressed as functional data, such as initial temperature distributions, equations of state, and controls. Thus, when attempting to find parameters that match observed data, being able to navigate parameter-space becomes highly non-trivial, especially considering that accurate simulations can be expensive both in terms of time and money. Existing solutions include batch-parallel simulations, high-dimensional, derivative-free optimization, and expert guessing, all of which make some contribution to solving the problem but do not completely resolve the issue. In this work, we explore the possibility of coupling together all three of the techniques just described by designing user-guided, batch-parallel optimization schemes. Our motivating example is a neutron diffusion partial differential equation where the time-varying multiplication factor serves as the unknown control parameter to be learned. We find that a simple, batch-parallelizable, random-walk scheme is able to make some progress on the problem but does not by itself produce satisfactory results. After reducing the dimensionality of the problem using functional principal component analysis (fPCA), we are able to track the progress of the solver in a visually simple way as well as viewing the associated principle components. This allows a human to make reasonable guesses about which points in the state space the random walker should try next. Thus, by combining the random walker's ability to find descent directions with the human's understanding of the underlying physics, it is possible to use expensive simulations more efficiently and more quickly arrive at the

  2. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Directory of Open Access Journals (Sweden)

    Wyszkowska Patrycja

    2017-12-01

    Full Text Available The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  3. Propagation of uncertainty by Monte Carlo simulations in case of basic geodetic computations

    Science.gov (United States)

    Wyszkowska, Patrycja

    2017-12-01

    The determination of the accuracy of functions of measured or adjusted values may be a problem in geodetic computations. The general law of covariance propagation or in case of the uncorrelated observations the propagation of variance (or the Gaussian formula) are commonly used for that purpose. That approach is theoretically justified for the linear functions. In case of the non-linear functions, the first-order Taylor series expansion is usually used but that solution is affected by the expansion error. The aim of the study is to determine the applicability of the general variance propagation law in case of the non-linear functions used in basic geodetic computations. The paper presents errors which are a result of negligence of the higher-order expressions and it determines the range of such simplification. The basis of that analysis is the comparison of the results obtained by the law of propagation of variance and the probabilistic approach, namely Monte Carlo simulations. Both methods are used to determine the accuracy of the following geodetic computations: the Cartesian coordinates of unknown point in the three-point resection problem, azimuths and distances of the Cartesian coordinates, height differences in the trigonometric and the geometric levelling. These simulations and the analysis of the results confirm the possibility of applying the general law of variance propagation in basic geodetic computations even if the functions are non-linear. The only condition is the accuracy of observations, which cannot be too low. Generally, this is not a problem with using present geodetic instruments.

  4. Integrated electrochromic iris device for low power and space-limited applications

    International Nuclear Information System (INIS)

    Deutschmann, T; Oesterschulze, E

    2014-01-01

    We present a micro-electrooptical iris based on the electrochromic polymer poly(3,4-ethylenedioxythiophene). Two ring-shaped concentric polymer-segments embedded in a transparent electrochemical cell form the micro iris. The polymer layers change their absorption when an external voltage is applied. This iris device benefits from the absence of any mechanically moving part. This renders a very slim design possible, which is suited for small integrated camera systems. During operation the polymer maintains its absorbing state without power consumption. Its low driving voltage of maximum 1.5 V is beneficial for battery powered applications. The impact of the iris on the depth of focus and transmission control as well as its dynamical behavior will be addressed. (paper)

  5. Establishment of 2000 National Geodetic Control Network of China and It’s Technological Progress

    Directory of Open Access Journals (Sweden)

    CHEN Junyong

    2007-02-01

    Full Text Available Objectives: 2000’ National Geodetic Control Network of China is an important fundamental scientific engineering project in China. It consists of three parts which are establishment of 2000 National GPS Geodetic Network, its combination adjustment with national astro-geodetic network and 2000 National Gravity Fundamental network. It provides the high precise coordinate reference and gravity reference for three dimensional geo-center national coordinates system and gravity system, respectively. Additionally, it provides precise unified geometric and physical geodesy information for the economic construction, the national defense and the scientific research. Methods: 1. The larger number of data are processed in triple networks adjustment of 2000 National GPS Geodetic Network, which are chosen from the GPS monitoring stations, such as grade A, B of national GPS network , grade 1st and 2nd of national GPS network, crustal movement observation network of China, and others crustal deformation monitoring stations. Finally, the data of 2666 GPS stations are used in the data processing of 2000 National GPS Geodetic Network, including 124 external stations and 2542 internal stations. In order to the results of triple networks adjustment are corresponding to that of three dimensional geo-center coordinates system, ITRF 97 and epoch 2000.0 are chosen as the coordinate reference frame and epoch reference, respectively. The methods of “strong reference” and “weak reference” are combined used in the control data selection of triple networks adjustment. The scale and rotation scales are adopted for each sub network. The least square adjustment is firstly adopted in each sub network adjustment. The data of obvious abnormal baselines are found and rejected firstly. And the method of double factor robust estimation is adopted in the data processing. 2. The combined adjustment of 2000 National GPS Geodetic Network and national astro-geodetic network is

  6. National Aeronautics and Space Administration (NASA) Environmental Control and Life Support (ECLS) Integrated Roadmap Development

    Science.gov (United States)

    Metcalf, Jordan; Peterson, Laurie; Carrasquillo, Robyn; Bagdigian, Robert

    2012-01-01

    Although NASA is currently considering a number of future human space exploration mission concepts, detailed mission requirements and vehicle architectures remain mostly undefined, making technology investment strategies difficult to develop and sustain without a top-level roadmap to serve as a guide. This paper documents the process and results of an effort to define a roadmap for Environmental Control and Life Support Systems (ECLSS) capabilities required to enhance the long-term operation of the International Space Station (ISS) as well as enable beyond-Low Earth Orbit (LEO) human exploration missions. Three generic mission types were defined to serve as a basis for developing a prioritized list of needed capabilities and technologies. Those are 1) a short duration micro-gravity mission; 2) a long duration microgravity mission; and 3) a long duration partial gravity (surface) exploration mission. To organize the effort, a functional decomposition of ECLSS was completed starting with the three primary functions: atmosphere, water, and solid waste management. Each was further decomposed into sub-functions to the point that current state-of-the-art (SOA) technologies could be tied to the sub-function. Each technology was then assessed by NASA subject matter experts as to its ability to meet the functional needs of each of the three mission types. When SOA capabilities were deemed to fall short of meeting the needs of one or more mission types, those gaps were prioritized in terms of whether or not the corresponding capabilities enable or enhance each of the mission types. The result was a list of enabling and enhancing capability needs that can be used to guide future ECLSS development, as well as a list of existing hardware that is ready to go for exploration-class missions. A strategy to fulfill those needs over time was then developed in the form of a roadmap. Through execution of this roadmap, the hardware and technologies intended to meet exploration needs

  7. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  8. Impact of rapid condensations of large vapor spaces on natural circulation in integral systems

    International Nuclear Information System (INIS)

    Wang, Z.; Almenas, K.; DiMarzo, M.; Hsu, Y.Y.; Unal, C.

    1992-01-01

    In this study we demonstrated that the Interruption-Resumption flow mode (IRM) observed in the University of Maryland 2x4 loop is a unique and effective natural circulation cooling mode. The IRM flow mode consists of a series of large flow cycles which are initiated from a quiescent steady-state flow condition by periodic rapid condensation of large vapor spaces. The significance of this mass/energy transport mechanism is that it cannot be evaluated using the techniques developed for the commonly known density-driven natural circulation cooling mode. We also demonstrated that the rapid condensation mechanism essentially acts as a strong amplifier which will augment small perturbations and will activate several flow phenomena. The interplay of the phenomena involves a degree of randomness. This poses two important implications. First, the study of an isolated flow phenomenon is not sufficient for the understanding of the system-wide IRM fluid movement. Second, the duplication of reactor transients which involves randomness can be achieved only within certain bounds. The modeling of such transients by deterministic computer codes requires recognition of this physical reality. (orig.)

  9. Comparison between geodetic and oceanographic approaches to estimate mean dynamic topography for vertical datum unification: evaluation at Australian tide gauges

    Science.gov (United States)

    Filmer, M. S.; Hughes, C. W.; Woodworth, P. L.; Featherstone, W. E.; Bingham, R. J.

    2018-04-01

    The direct method of vertical datum unification requires estimates of the ocean's mean dynamic topography (MDT) at tide gauges, which can be sourced from either geodetic or oceanographic approaches. To assess the suitability of different types of MDT for this purpose, we evaluate 13 physics-based numerical ocean models and six MDTs computed from observed geodetic and/or ocean data at 32 tide gauges around the Australian coast. We focus on the viability of numerical ocean models for vertical datum unification, classifying the 13 ocean models used as either independent (do not contain assimilated geodetic data) or non-independent (do contain assimilated geodetic data). We find that the independent and non-independent ocean models deliver similar results. Maximum differences among ocean models and geodetic MDTs reach >150 mm at several Australian tide gauges and are considered anomalous at the 99% confidence level. These differences appear to be of geodetic origin, but without additional independent information, or formal error estimates for each model, some of these errors remain inseparable. Our results imply that some ocean models have standard deviations of differences with other MDTs (using geodetic and/or ocean observations) at Australian tide gauges, and with levelling between some Australian tide gauges, of ˜ ± 50 mm . This indicates that they should be considered as an alternative to geodetic MDTs for the direct unification of vertical datums. They can also be used as diagnostics for errors in geodetic MDT in coastal zones, but the inseparability problem remains, where the error cannot be discriminated between the geoid model or altimeter-derived mean sea surface.

  10. Identifying and Allocating Geodetic Systems to historical oil gas wells by using high-resolution satellite imagery

    Science.gov (United States)

    Alvarez, Gabriel O.

    2018-05-01

    Hydrocarbon exploration in Argentina started long before the IGM created a single, high-precision geodetic reference network for the whole country. Several geodetic surveys were conducted in every producing basin, which have ever since then supported well placement. Currently, every basin has a huge amount of information referenced to the so-called "local" geodetic systems, such as Chos Malal - Quiñi Huao in the Neuquén Basin, and Pampa del Castillo in the San Jorge Basin, which differ to a greater or lesser extent from the national Campo Inchauspe datum established by the IGM in 1969 as the official geodetic network. However, technology development over the last few years and the expansion of satellite positioning systems such as GPS resulted in a new world geodetic order. Argentina rapidly joined this new geodetic order through the implementation of a new national geodetic system by the IGM: POSGAR network, which replaced the old national Campo Inchauspe system. However, this only helped to worsen the data georeferencing issue for oil companies, as a third reference system was added to each basin. Now every basin has a local system, the national system until 1997 (Campo Inchauspe), and finally the newly created POSGAR network national satellite system, which is geocentric unlike the former two planimetric datums. The purpose of this paper is to identify and allocate geodetic systems of coordinates to historical wells, whose geodetic system is missing or has been erroneously allocated, by using currently available technological resources such as geographic information systems and high-resolution satellite imagery.

  11. The cost risk implementation on design-build project of integrated public spaces child friendly in capital of Jakarta

    Science.gov (United States)

    Mardiaman, Mubarok, Abdul

    2017-11-01

    Jakarta area of 662.33 km2 with a population of 10,075,030 inhabitants and green open spaces 9.98%. The Jakarta government built a child-friendly integrated open space as facilities for playing. Providing of facilities was hoped suitable with time, cost, quality, accountability and proper financial governance. Based on the PU ministerial regulation number 19/PRT/M/2015 on the standards and guidelines for procurement the design and construction work on the integrated build and the PU ministerial regulation No. 07/PRT/M/2011 on standards and guidelines for procurement of construction works and consulting services of public works and the ministry of housing. RPTRA development at 123 locations in Jakarta was implemented base on the contract of design and build. The design study was influenced by the cost elements; the main strength (expert), skilled personnel, support personnel, major equipment and support. The construction fee relies on; expert implementation, hardware implementation, preparation work, land, buildings, courtyards, fences, complementary and governance capabilities for human resources in completing the construction activities to minimize the cost risk. Montecarlo simulations was conducted to determine the average unit price, model and analyze systems. In the cost contract, the percentage of design work stipulated 2.5%, build 97.5%. Base on regulation the minister of public work for design work cost 2.72%, build 97.28%. Then, actual cost for design 2.67% and build 97.33%. From the three reference was shown that there are differentiation one another. The acceleration of planning able to make the cost and time more efficient that impact on the implementation margin.

  12. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger [Department of Astronomy, Oskar Klein Centre, Stockholm University, AlbaNova University Centre, SE-106 91 Stockholm (Sweden); Adamo, Angela [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Schaerer, Daniel [Université de Toulouse, UPS-OMP, IRAP, F-31000 Toulouse (France); Verhamme, Anne; Orlitová, Ivana [Geneva Observatory, University of Geneva, 51 Chemin des Maillettes, CH-1290 Versoix (Switzerland); Mas-Hesse, J. Miguel; Otí-Floranes, Héctor [Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, P.O. Box 78, E-28691 Villanueva de la Cañada (Spain); Cannon, John M.; Pardy, Stephen [Department of Physics and Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105 (United States); Atek, Hakim [Laboratoire dAstrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, CH-1290 Sauverny (Switzerland); Kunth, Daniel [Institut d' Astrophysique de Paris, UMR 7095, CNRS and UPMC, 98 bis Bd Arago, F-75014 Paris (France); Laursen, Peter [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Herenz, E. Christian, E-mail: matthew@astro.su.se [Leibniz-Institut für Astrophysik (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany)

    2014-02-10

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f{sub esc}{sup Lyα} of 80%; such objects have not previously been reported at low-z.

  13. The Lyman alpha reference sample. II. Hubble space telescope imaging results, integrated properties, and trends

    International Nuclear Information System (INIS)

    Hayes, Matthew; Östlin, Göran; Duval, Florent; Sandberg, Andreas; Guaita, Lucia; Melinder, Jens; Rivera-Thorsen, Thøger; Adamo, Angela; Schaerer, Daniel; Verhamme, Anne; Orlitová, Ivana; Mas-Hesse, J. Miguel; Otí-Floranes, Héctor; Cannon, John M.; Pardy, Stephen; Atek, Hakim; Kunth, Daniel; Laursen, Peter; Herenz, E. Christian

    2014-01-01

    We report new results regarding the Lyα output of galaxies, derived from the Lyman Alpha Reference Sample, and focused on Hubble Space Telescope imaging. For 14 galaxies we present intensity images in Lyα, Hα, and UV, and maps of Hα/Hβ, Lyα equivalent width (EW), and Lyα/Hα. We present Lyα and UV radial light profiles and show they are well-fitted by Sérsic profiles, but Lyα profiles show indices systematically lower than those of the UV (n ≈ 1-2 instead of ≳ 4). This reveals a general lack of the central concentration in Lyα that is ubiquitous in the UV. Photometric growth curves increase more slowly for Lyα than the far ultraviolet, showing that small apertures may underestimate the EW. For most galaxies, however, flux and EW curves flatten by radii ≈10 kpc, suggesting that if placed at high-z only a few of our galaxies would suffer from large flux losses. We compute global properties of the sample in large apertures, and show total Lyα luminosities to be independent of all other quantities. Normalized Lyα throughput, however, shows significant correlations: escape is found to be higher in galaxies of lower star formation rate, dust content, mass, and nebular quantities that suggest harder ionizing continuum and lower metallicity. Six galaxies would be selected as high-z Lyα emitters, based upon their luminosity and EW. We discuss the results in the context of high-z Lyα and UV samples. A few galaxies have EWs above 50 Å, and one shows f esc Lyα of 80%; such objects have not previously been reported at low-z.

  14. Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt

    Science.gov (United States)

    Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.

    2017-12-01

    Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed

  15. Geodetic Infrastructure in the Ibiza and Barcelona Harbours for Sea Level Monitoring

    Science.gov (United States)

    Martinez-Benjamin, J. J.; Gili, J.; Lopez, R.; Tapia, A.; Perez, B.; Pros, F.

    2013-12-01

    The presentation is directed to the description of the actual situation and relevant information of the geodetic infrastructure of Ibiza and Barcelona sites for sea level determination and contribution to regional sea level rise. Time series are being analysed for mean sea level variations www.puertos.es. .In the framework of a Spanish Space Project, the instrumentation of sea level measurements has been improved by providing the Barcelona site with a radar tide gauge Datamar 2000C from Geonica s.l. near an acoustic tide gauge. Puertos del Estado installed in 2007 a MIROS radar tide gauge and the Barcelona Harbour Authority a GPS referente station in the roof of the new Control Tower situated in the Energy Pier. The radar sensor is over the water surface, on a L-shaped structure which elevates it a few meters above the quay shelf. 1-min data are transmitted to the ENAGAS Control Center by cable and then sent each 1 min to Puertos del Estado by e-mail. There is a GPS station Leica Geosystems GRX1200 GG Pro and antenna 1202. Precision levelling has been made several times in the last two years because the tower is founded in reclaimed land. The measured settlement rate is about 1cm/year that may be could mask the values registered by the tide gauge. A description of the actual infrastructure at Ibiza harbour at Marina de Botafoch, is presented and its applications to sea level monitoring and altimeter calibration in support of the main CGPS at Ibiza harbour. It is described the geometrical precision levelling made in June 2013 between the radar tide gauge and the GPS station. In particular, the CGPS located at Ibiza harbour is essential for its application to the marine campaign Baleares 2013, near Ibiza island. The main objective is to determine the altimeter bias for Jason-2, about 9:09 UTC September 15, 2013, and Saral/AltiKa, about 05:30 UTC September 16, UTC. These activities has been received funding of the Ministerio de Ciencia e Innovacion under Spanish

  16. Integrated cladding-pumped multicore few-mode erbium-doped fibre amplifier for space-division-multiplexed communications

    Science.gov (United States)

    Chen, H.; Jin, C.; Huang, B.; Fontaine, N. K.; Ryf, R.; Shang, K.; Grégoire, N.; Morency, S.; Essiambre, R.-J.; Li, G.; Messaddeq, Y.; Larochelle, S.

    2016-08-01

    Space-division multiplexing (SDM), whereby multiple spatial channels in multimode and multicore optical fibres are used to increase the total transmission capacity per fibre, is being investigated to avert a data capacity crunch and reduce the cost per transmitted bit. With the number of channels employed in SDM transmission experiments continuing to rise, there is a requirement for integrated SDM components that are scalable. Here, we demonstrate a cladding-pumped SDM erbium-doped fibre amplifier (EDFA) that consists of six uncoupled multimode erbium-doped cores. Each core supports three spatial modes, which enables the EDFA to amplify a total of 18 spatial channels (six cores × three modes) simultaneously with a single pump diode and a complexity similar to a single-mode EDFA. The amplifier delivers >20 dBm total output power per core and <7 dB noise figure over the C-band. This cladding-pumped EDFA enables combined space-division and wavelength-division multiplexed transmission over multiple multimode fibre spans.

  17. Wavefront-Error Performance Characterization for the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) Science Instruments

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott; Zielinski, Thomas P.; Telfer, Randal; Tournois, Severine C.; Moore, Dustin B.; Fienup, James R.

    2016-01-01

    The science instruments (SIs) comprising the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) were tested in three cryogenic-vacuum test campaigns in the NASA Goddard Space Flight Center (GSFC)'s Space Environment Simulator (SES). In this paper, we describe the results of optical wavefront-error performance characterization of the SIs. The wavefront error is determined using image-based wavefront sensing (also known as phase retrieval), and the primary data used by this process are focus sweeps, a series of images recorded by the instrument under test in its as-used configuration, in which the focal plane is systematically changed from one image to the next. High-precision determination of the wavefront error also requires several sources of secondary data, including 1) spectrum, apodization, and wavefront-error characterization of the optical ground-support equipment (OGSE) illumination module, called the OTE Simulator (OSIM), 2) plate scale measurements made using a Pseudo-Nonredundant Mask (PNRM), and 3) pupil geometry predictions as a function of SI and field point, which are complicated because of a tricontagon-shaped outer perimeter and small holes that appear in the exit pupil due to the way that different light sources are injected into the optical path by the OGSE. One set of wavefront-error tests, for the coronagraphic channel of the Near-Infrared Camera (NIRCam) Longwave instruments, was performed using data from transverse translation diversity sweeps instead of focus sweeps, in which a sub-aperture is translated andor rotated across the exit pupil of the system.Several optical-performance requirements that were verified during this ISIM-level testing are levied on the uncertainties of various wavefront-error-related quantities rather than on the wavefront errors themselves. This paper also describes the methodology, based on Monte Carlo simulations of the wavefront-sensing analysis of focus-sweep data, used to establish the

  18. 4-D Visualization of Seismic and Geodetic Data of the Big Island of Hawai'i

    Science.gov (United States)

    Burstein, J. A.; Smith-Konter, B. R.; Aryal, A.

    2017-12-01

    For decades Hawai'i has served as a natural laboratory for studying complex interactions between magmatic and seismic processes. Investigating characteristics of these processes, as well as the crustal response to major Hawaiian earthquakes, requires a synthesis of seismic and geodetic data and models. Here, we present a 4-D visualization of the Big Island of Hawai'i that investigates geospatial and temporal relationships of seismicity, seismic velocity structure, and GPS crustal motions to known volcanic and seismically active features. Using the QPS Fledermaus visualization package, we compile 90 m resolution topographic data from NASA's Shuttle Radar Topography Mission (SRTM) and 50 m resolution bathymetric data from the Hawaiian Mapping Research Group (HMRG) with a high-precision earthquake catalog of more than 130,000 events from 1992-2009 [Matoza et al., 2013] and a 3-D seismic velocity model of Hawai'i [Lin et al., 2014] based on seismic data from the Hawaiian Volcano Observatory (HVO). Long-term crustal motion vectors are integrated into the visualization from HVO GPS time-series data. These interactive data sets reveal well-defined seismic structure near the summit areas of Mauna Loa and Kilauea volcanoes, where high Vp and high Vp/Vs anomalies at 5-12 km depth, as well as clusters of low magnitude (M data are also used to help identify seismic clusters associated with the steady crustal detachment of the south flank of Kilauea's East Rift Zone. We also investigate the fault geometry of the 2006 M6.7 Kiholo Bay earthquake event by analyzing elastic dislocation deformation modeling results [Okada, 1985] and HVO GPS and seismic data of this event. We demonstrate the 3-D fault mechanisms of the Kiholo Bay main shock as a combination of strike-slip and dip-slip components (net slip 0.55 m) delineating a 30 km east-west striking, southward-dipping fault plane, occurring at 39 km depth. This visualization serves as a resource for advancing scientific analyses of

  19. The Geodetic Seamless Archive Centers Service Layer: A System Architecture for Federating Geodesy Data Repositories

    Science.gov (United States)

    McWhirter, J.; Boler, F. M.; Bock, Y.; Jamason, P.; Squibb, M. B.; Noll, C. E.; Blewitt, G.; Kreemer, C. W.

    2010-12-01

    Three geodesy Archive Centers, Scripps Orbit and Permanent Array Center (SOPAC), NASA's Crustal Dynamics Data Information System (CDDIS) and UNAVCO are engaged in a joint effort to define and develop a common Web Service Application Programming Interface (API) for accessing geodetic data holdings. This effort is funded by the NASA ROSES ACCESS Program to modernize the original GPS Seamless Archive Centers (GSAC) technology which was developed in the 1990s. A new web service interface, the GSAC-WS, is being developed to provide uniform and expanded mechanisms through which users can access our data repositories. In total, our respective archives hold tens of millions of files and contain a rich collection of site/station metadata. Though we serve similar user communities, we currently provide a range of different access methods, query services and metadata formats. This leads to a lack of consistency in the userís experience and a duplication of engineering efforts. The GSAC-WS API and its reference implementation in an underlying Java-based GSAC Service Layer (GSL) supports metadata and data queries into site/station oriented data archives. The general nature of this API makes it applicable to a broad range of data systems. The overall goals of this project include providing consistent and rich query interfaces for end users and client programs, the development of enabling technology to facilitate third party repositories in developing these web service capabilities and to enable the ability to perform data queries across a collection of federated GSAC-WS enabled repositories. A fundamental challenge faced in this project is to provide a common suite of query services across a heterogeneous collection of data yet enabling each repository to expose their specific metadata holdings. To address this challenge we are developing a "capabilities" based service where a repository can describe its specific query and metadata capabilities. Furthermore, the architecture of

  20. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling

    Science.gov (United States)

    Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.

    2018-01-01

    Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.

  1. The Integrated Medical Model - Optimizing In-flight Space Medical Systems to Reduce Crew Health Risk and Mission Impacts

    Science.gov (United States)

    Kerstman, Eric; Walton, Marlei; Minard, Charles; Saile, Lynn; Myers, Jerry; Butler, Doug; Lyengar, Sriram; Fitts, Mary; Johnson-Throop, Kathy

    2009-01-01

    The Integrated Medical Model (IMM) is a decision support tool used by medical system planners and designers as they prepare for exploration planning activities of the Constellation program (CxP). IMM provides an evidence-based approach to help optimize the allocation of in-flight medical resources for a specified level of risk within spacecraft operational constraints. Eighty medical conditions and associated resources are represented in IMM. Nine conditions are due to Space Adaptation Syndrome. The IMM helps answer fundamental medical mission planning questions such as What medical conditions can be expected? What type and quantity of medical resources are most likely to be used?", and "What is the probability of crew death or evacuation due to medical events?" For a specified mission and crew profile, the IMM effectively characterizes the sequence of events that could potentially occur should a medical condition happen. The mathematical relationships among mission and crew attributes, medical conditions and incidence data, in-flight medical resources, potential clinical and crew health end states are established to generate end state probabilities. A Monte Carlo computational method is used to determine the probable outcomes and requires up to 25,000 mission trials to reach convergence. For each mission trial, the pharmaceuticals and supplies required to diagnose and treat prevalent medical conditions are tracked and decremented. The uncertainty of patient response to treatment is bounded via a best-case, worst-case, untreated case algorithm. A Crew Health Index (CHI) metric, developed to account for functional impairment due to a medical condition, provides a quantified measure of risk and enables risk comparisons across mission scenarios. The use of historical in-flight medical data, terrestrial surrogate data as appropriate, and space medicine subject matter expertise has enabled the development of a probabilistic, stochastic decision support tool capable of

  2. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    Science.gov (United States)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  3. NASA space geodesy program: Catalogue of site information

    Science.gov (United States)

    Bryant, M. A.; Noll, C. E.

    1993-01-01

    This is the first edition of the NASA Space Geodesy Program: Catalogue of Site Information. This catalogue supersedes all previous versions of the Crustal Dynamics Project: Catalogue of Site Information, last published in May 1989. This document is prepared under the direction of the Space Geodesy and Altimetry Projects Office (SGAPO), Code 920.1, Goddard Space Flight Center. SGAPO has assumed the responsibilities of the Crustal Dynamics Project, which officially ended December 31, 1991. The catalog contains information on all NASA supported sites as well as sites from cooperating international partners. This catalog is designed to provde descriptions and occupation histories of high-accuracy geodetic measuring sites employing space-related techniques. The emphasis of the catalog has been in the past, and continues to be with this edition, station information for facilities and remote locations utilizing the Satellite Laser Ranging (SLR), Lunar Laser Ranging (LLR), and Very Long Baseline Interferometry (VLBI) techniques. With the proliferation of high-quality Global Positioning System (GPS) receivers and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) transponders, many co-located at established SLR and VLBI observatories, the requirement for accurate station and localized survey information for an ever broadening base of scientists and engineers has been recognized. It is our objective to provide accurate station information to scientific groups interested in these facilities.

  4. Global geodetic observing system meeting the requirements of a global society on a changing planet in 2020

    CERN Document Server

    Plag, Hans-Peter

    2009-01-01

    Geodesy plays a key role in geodynamics, geohazards, the global water cycle, global change, atmosphere and ocean dynamics. This book covers geodesy's contribution to science and society and identifies user needs regarding geodetic observations and products.

  5. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica.

    Science.gov (United States)

    Scheinert, M; Ferraccioli, F; Schwabe, J; Bell, R; Studinger, M; Damaske, D; Jokat, W; Aleshkova, N; Jordan, T; Leitchenkov, G; Blankenship, D D; Damiani, T M; Young, D; Cochran, J R; Richter, T D

    2016-01-28

    Gravity surveying is challenging in Antarctica because of its hostile environment and inaccessibility. Nevertheless, many ground-based, airborne and shipborne gravity campaigns have been completed by the geophysical and geodetic communities since the 1980s. We present the first modern Antarctic-wide gravity data compilation derived from 13 million data points covering an area of 10 million km 2 , which corresponds to 73% coverage of the continent. The remove-compute-restore technique was applied for gridding, which facilitated levelling of the different gravity datasets with respect to an Earth Gravity Model derived from satellite data alone. The resulting free-air and Bouguer gravity anomaly grids of 10 km resolution are publicly available. These grids will enable new high-resolution combined Earth Gravity Models to be derived and represent a major step forward towards solving the geodetic polar data gap problem. They provide a new tool to investigate continental-scale lithospheric structure and geological evolution of Antarctica.

  6. Monitoring Coral Growth - the Dichotomy Between Underwater Photogrammetry and Geodetic Control Network

    Science.gov (United States)

    Neyer, F.; Nocerino, E.; Gruen, A.

    2018-05-01

    Creating 3-dimensional (3D) models of underwater scenes has become a common approach for monitoring coral reef changes and its structural complexity. Also in underwater archeology, 3D models are often created using underwater optical imagery. In this paper, we focus on the aspect of detecting small changes in the coral reef using a multi-temporal photogrammetric modelling approach, which requires a high quality control network. We show that the quality of a good geodetic network limits the direct change detection, i.e., without any further registration process. As the photogrammetric accuracy is expected to exceed the geodetic network accuracy by at least one order of magnitude, we suggest to do a fine registration based on a number of signalized points. This work is part of the Moorea Island Digital Ecosystem Avatar (IDEA) project that has been initiated in 2013 by a group of international researchers (https://mooreaidea.ethz.ch/).

  7. On the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state

    Science.gov (United States)

    Androsov, Alexey; Nerger, Lars; Schnur, Reiner; Schröter, Jens; Albertella, Alberta; Rummel, Reiner; Savcenko, Roman; Bosch, Wolfgang; Skachko, Sergey; Danilov, Sergey

    2018-05-01

    General ocean circulation models are not perfect. Forced with observed atmospheric fluxes they gradually drift away from measured distributions of temperature and salinity. We suggest data assimilation of absolute dynamical ocean topography (DOT) observed from space geodetic missions as an option to reduce these differences. Sea surface information of DOT is transferred into the deep ocean by defining the analysed ocean state as a weighted average of an ensemble of fully consistent model solutions using an error-subspace ensemble Kalman filter technique. Success of the technique is demonstrated by assimilation into a global configuration of the ocean circulation model FESOM over 1 year. The dynamic ocean topography data are obtained from a combination of multi-satellite altimetry and geoid measurements. The assimilation result is assessed using independent temperature and salinity analysis derived from profiling buoys of the AGRO float data set. The largest impact of the assimilation occurs at the first few analysis steps where both the model ocean topography and the steric height (i.e. temperature and salinity) are improved. The continued data assimilation over 1 year further improves the model state gradually. Deep ocean fields quickly adjust in a sustained manner: A model forecast initialized from the model state estimated by the data assimilation after only 1 month shows that improvements induced by the data assimilation remain in the model state for a long time. Even after 11 months, the modelled ocean topography and temperature fields show smaller errors than the model forecast without any data assimilation.

  8. Geodetic slip solutions for the Mw=7.4 Champerico (Guatemala) subduction earthquake of November 7 2012

    Science.gov (United States)

    Ellis, Andria; DeMets, Charles; Briole, Pierre; Molina, Enrique; Flores, Omar; Rivera, Jeffrey; Lasserre, Cécile; Lyon-Caen, Hélène; Lord, Neal

    2014-05-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past 50 years, the 7 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. Processing of continuous GPS measurements at 19 stations in Guatemala, El Salvador, and southern Mexico, and at 7 campaign points in Guatemala defines a highly consistent pattern of coseismic offsets during the earthquake, ranging from 47±5 mm of SW movement just inland from the earthquake epicenter to a few mm at sites located in northern Guatemala. Inversions of these offsets to find their best-fitting fault-slip solution in an elastic half space give a geodetic earthquake moment ranging between 0.75 and 1.1 x 1020 Nm, slightly smaller than the seismic estimates that range between 1.2 and 1.45 x 1020 Nm. Slip inversion using a constant slip model, assuming 293° and 29° for the fault azimuth and dip angle, indicates a nearly reverse slip of 2.8 m (rake 78°) on a fault plane 42 km-long and 20 km-wide, centered at 26 km depth. A variable slip inversion indicates that slip concentrated above depths of 40 km may have extended updip to the trench and reached a maximum of only 0.8 m, less than one-sixth the maximum slip indicated by a recent slip solution (5.3 m) obtained from waveform inversion of seismological data. Detailed model comparisons will be discussed. Transient postseismic displacements have been recorded at the nearby continuous GPS sites with amplitudes reaching 20-25 mm at some stations. The duration of the phenomenon is short: using an exponential-decay model, the estimated decay time is 90 ± 10 days. This postseismic signal is consistent with afterslip along a significantly broader area (+50%) of the subduction interface than ruptured coseismically

  9. On the unification of geodetic leveling datums using satellite altimetry

    Science.gov (United States)

    Mather, R. S.; Rizos, C.; Morrison, T.

    1978-01-01

    Techniques are described for determining the height of Mean Sea Level (MSL) at coastal sites from satellite altimetry. Such information is of value in the adjustment of continental leveling networks. Numerical results are obtained from the 1977 GEOS-3 altimetry data bank at Goddard Space Flight Center using the Bermuda calibration of the altimeter. Estimates are made of the heights of MSL at the leveling datums for Australia and a hypothetical Galveston datum for central North America. The results obtained are in reasonable agreement with oceanographic estimates obtained by extrapolation. It is concluded that all gravity data in the Australian bank AUSGAD 76 and in the Rapp data file for central North America refer to the GEOS-3 altimeter geoid for 1976.0 with uncertainties which do not exceed + or - 0.1 mGal.

  10. LAGRANGE: LAser GRavitational-wave ANtenna in GEodetic Orbit

    Science.gov (United States)

    Buchman, S.; Conklin, J. W.; Balakrishnan, K.; Aguero, V.; Alfauwaz, A.; Aljadaan, A.; Almajed, M.; Altwaijry, H.; Saud, T. A.; Byer, R. L.; Bower, K.; Costello, B.; Cutler, G. D.; DeBra, D. B.; Faied, D. M.; Foster, C.; Genova, A. L.; Hanson, J.; Hooper, K.; Hultgren, E.; Klavins, A.; Lantz, B.; Lipa, J. A.; Palmer, A.; Plante, B.; Sanchez, H. S.; Saraf, S.; Schaechter, D.; Shu, K.; Smith, E.; Tenerelli, D.; Vanbezooijen, R.; Vasudevan, G.; Williams, S. D.; Worden, S. P.; Zhou, J.; Zoellner, A.

    2013-01-01

    We describe a new space gravitational wave observatory design called LAG-RANGE that maintains all important LISA science at about half the cost and with reduced technical risk. It consists of three drag-free spacecraft in a geocentric formation. Fixed antennas allow continuous contact with the Earth, solving the problem of communications bandwidth and latency. A 70 mm diameter sphere with a 35 mm gap to its enclosure serves as the single inertial reference per spacecraft, operating in “true” drag-free mode (no test mass forcing). Other advantages are: a simple caging design based on the DISCOS 1972 drag-free mission, an all optical read-out with pm fine and nm coarse sensors, and the extensive technology heritage from the Honeywell gyroscopes, and the DISCOS and Gravity Probe B drag-free sensors. An Interferometric Measurement System, designed with reflective optics and a highly stabilized frequency standard, performs the ranging between test masses and requires a single optical bench with one laser per spacecraft. Two 20 cm diameter telescopes per spacecraft, each with infield pointing, incorporate novel technology developed for advanced optical systems by Lockheed Martin, who also designed the spacecraft based on a multi-flight proven bus structure. Additional technological advancements include updated drag-free propulsion, thermal control, charge management systems, and materials. LAGRANGE subsystems are designed to be scalable and modular, making them interchangeable with those of LISA or other gravitational science missions. We plan to space qualify critical technologies on small and nano satellite flights, with the first launch (UV-LED Sat) in 2013.

  11. The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia

    Science.gov (United States)

    Din, A. H. M.; Abazu, I. C.; Pa'suya, M. F.; Omar, K. M.; Hamid, A. I. A.

    2016-09-01

    Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015) for tidal data and 23 years (from 1993 to 2015) for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD) is evaluated in this study. the difference between MSL computed from 10 years (1984 - 1993) and 32 years (1984 - 2015) tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  12. Seismic and Geodetic Monitoring of the Nicoya, Costa Rica, Seismic Gap

    Science.gov (United States)

    Protti, M.; Gonzalez, V.; Schwartz, S.; Dixon, T.; Kato, T.; Kaneda, Y.; Simila, G.; Sampson, D.

    2007-05-01

    The Nicoya segment of the Middle America Trench has been recognized as a mature seismic gap with potential to generate a large earthquake in the near future (it ruptured with large earthquakes in 1853, 1900 and 1950). Low level of background seismicity and fast crustal deformation of the forearc are indicatives of strong coupling along the plate interface. Given its high seismic potential, the available data and especially the fact that the Nicoya peninsula extends over large part of the rupture area, this gap was selected as one of the two sites for a MARGINS-SEIZE experiment. With the goal of documenting the evolution of loading and stress release along this seismic gap, an international effort involving several institutions from Costa Rica, the United States and Japan is being carried out for over a decade in the region. This effort involves the installation of temporary and permanent seismic and geodetic networks. The seismic network includes short period, broad band and strong motion instruments. The seismic monitoring has provided valuable information on the geometry and characteristics of the plate interface. The geodetic network includes temporary and permanent GPS stations as well as surface and borehole tiltmeters. The geodetic networks have helped quantify the extend and degree of coupling. A continuously recording, three- station GPS network on the Nicoya Peninsula, Costa Rica, recorded what we believe is the first slow slip event observed along the plate interface of the Costa Rica subduction zone. We will present results from these monitoring networks. Collaborative international efforts are focused on expanding these seismic and geodetic networks to provide improved resolution of future creep events, to enhanced understanding of the mechanical behavior of the Nicoya subduction segment of the Middle American Trench and possibly capture the next large earthquake and its potential precursor deformation.

  13. THE IMPACT OF SEA LEVEL RISE ON GEODETIC VERTICAL DATUM OF PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. H. M. Din

    2016-09-01

    Full Text Available Sea level rise is rapidly turning into major issues among our community and all levels of the government are working to develop responses to ensure these matters are given the uttermost attention in all facets of planning. It is more interesting to understand and investigate the present day sea level variation due its potential impact, particularly on our national geodetic vertical datum. To determine present day sea level variation, it is vital to consider both in-situ tide gauge and remote sensing measurements. This study presents an effort to quantify the sea level rise rate and magnitude over Peninsular Malaysia using tide gauge and multi-mission satellite altimeter. The time periods taken for both techniques are 32 years (from 1984 to 2015 for tidal data and 23 years (from 1993 to 2015 for altimetry data. Subsequently, the impact of sea level rise on Peninsular Malaysia Geodetic Vertical Datum (PMGVD is evaluated in this study. the difference between MSL computed from 10 years (1984 – 1993 and 32 years (1984 – 2015 tidal data at Port Kelang showed that the increment of sea level is about 27mm. The computed magnitude showed an estimate of the long-term effect a change in MSL has on the geodetic vertical datum of Port Kelang tide gauge station. This will help give a new insight on the establishment of national geodetic vertical datum based on mean sea level data. Besides, this information can be used for a wide variety of climatic applications to study environmental issues related to flood and global warming in Malaysia.

  14. Geodetic Slip Solution for the Mw=7.4 Champerico (Guatemala) Earthquake of 07 November 2012

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Molina, E.; Flores, O.; Rivera, J.; Lasserre, C.; Lyon-Caen, H.; Lord, N. E.

    2014-12-01

    As the first large subduction thrust earthquake off the coast of western Guatemala in the past several decades, the 07 November 2012 Mw=7.4 earthquake offers the first opportunity for a geodetic study of coseismic and postseismic behavior for a segment of the Middle America trench where frictional coupling makes a transition from weak coupling off the coast of El Salvador to strong coupling in southern Mexico. We use measurements at 19 continuous GPS sites in Guatemala, El Salvador, and Mexico to estimate the coseismic slip and post-seismic deformation of the November 2012 Champerico (Guatemala) earthquake. Coseismic offsets range from ~47 mm near the epicenter to El Salvador. An inversion of the geodetic data indicate that that up to ~2 m of coseismic slip occurred on a ~30 km by 30 km rupture area between ~10 and 30 km depth, encouragingly close to the global CMT epicenter. The geodetic moment of 13 x 1019 N·m and corresponding magnitude of 7.4 both agree well with independent seismological estimates. An inversion for the postseismic fault afterslip shows that the transient postseismic motions recorded at 11 GPS sites are well fit with a logarithmically decaying function. More than 70 per cent of the postseismic slip occurred at the same depth or directly downdip from the main shock epicenter. At the upper limit, afterslip that occurred within 6 months of the earthquake released energy equivalent to only ~20 per cent of the coseismic moment. The seismologically derived slip solution from Ye et al. (2012), which features more highly concentrated slip than our own, fits our GPS offsets reasonably well provided that we translate their slip centroid ~51 km to the west to a position close to our own slip centroid. The geodetic and seismologic slip solutions thus suggest bounds of 2-5 m for the peak slip along a region of the interface no larger than 30 x 30 km and possibly much smaller.

  15. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  16. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    International Nuclear Information System (INIS)

    Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

    2016-01-01

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures

  17. Geostatistical Investigations of Displacements on the Basis of Data from the Geodetic Monitoring of a Hydrotechnical Object

    Science.gov (United States)

    Namysłowska-Wilczyńska, Barbara; Wynalek, Janusz

    2017-12-01

    Geostatistical methods make the analysis of measurement data possible. This article presents the problems directed towards the use of geostatistics in spatial analysis of displacements based on geodetic monitoring. Using methods of applied (spatial) statistics, the research deals with interesting and current issues connected to space-time analysis, modeling displacements and deformations, as applied to any large-area objects on which geodetic monitoring is conducted (e.g., water dams, urban areas in the vicinity of deep excavations, areas at a macro-regional scale subject to anthropogenic influences caused by mining, etc.). These problems are very crucial, especially for safety assessment of important hydrotechnical constructions, as well as for modeling and estimating mining damage. Based on the geodetic monitoring data, a substantial basic empirical material was created, comprising many years of research results concerning displacements of controlled points situated on the crown and foreland of an exemplary earth dam, and used to assess the behaviour and safety of the object during its whole operating period. A research method at a macro-regional scale was applied to investigate some phenomena connected with the operation of the analysed big hydrotechnical construction. Applying a semivariogram function enabled the spatial variability analysis of displacements. Isotropic empirical semivariograms were calculated and then, theoretical parameters of analytical functions were determined, which approximated the courses of the mentioned empirical variability measure. Using ordinary (block) kriging at the grid nodes of an elementary spatial grid covering the analysed object, the values of the Z* estimated means of displacements were calculated together with the accompanying assessment of uncertainty estimation - a standard deviation of estimation σk. Raster maps of the distribution of estimated averages Z* and raster maps of deviations of estimation σk (in perspective

  18. Space space space

    CERN Document Server

    Trembach, Vera

    2014-01-01

    Space is an introduction to the mysteries of the Universe. Included are Task Cards for independent learning, Journal Word Cards for creative writing, and Hands-On Activities for reinforcing skills in Math and Language Arts. Space is a perfect introduction to further research of the Solar System.

  19. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  20. Aftershock distribution as a constraint on the geodetic model of coseismic slip for the 2004 Parkfield earthquake

    Science.gov (United States)

    Bennington, Ninfa; Thurber, Clifford; Feigl, Kurt; ,

    2011-01-01

    Several studies of the 2004 Parkfield earthquake have linked the spatial distribution of the event’s aftershocks to the mainshock slip distribution on the fault. Using geodetic data, we find a model of coseismic slip for the 2004 Parkfield earthquake with the constraint that the edges of coseismic slip patches align with aftershocks. The constraint is applied by encouraging the curvature of coseismic slip in each model cell to be equal to the negative of the curvature of seismicity density. The large patch of peak slip about 15 km northwest of the 2004 hypocenter found in the curvature-constrained model is in good agreement in location and amplitude with previous geodetic studies and the majority of strong motion studies. The curvature-constrained solution shows slip primarily between aftershock “streaks” with the continuation of moderate levels of slip to the southeast. These observations are in good agreement with strong motion studies, but inconsistent with the majority of published geodetic slip models. Southeast of the 2004 hypocenter, a patch of peak slip observed in strong motion studies is absent from our curvature-constrained model, but the available GPS data do not resolve slip in this region. We conclude that the geodetic slip model constrained by the aftershock distribution fits the geodetic data quite well and that inconsistencies between models derived from seismic and geodetic data can be attributed largely to resolution issues.