WorldWideScience

Sample records for integrating phenotype ontologies

  1. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  2. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel; Gkoutos, Georgios V.; Schofield, Paul N.; Hoehndorf, Robert

    2017-01-01

    in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization

  3. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-11-14

    Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  4. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants.

    Science.gov (United States)

    Hoehndorf, Robert; Alshahrani, Mona; Gkoutos, Georgios V; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A; Weiland, Claus

    2016-11-14

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established vocabularies or ontologies, but rather

  5. Worm Phenotype Ontology: Integrating phenotype data within and beyond the C. elegans community

    Directory of Open Access Journals (Sweden)

    Yook Karen

    2011-01-01

    Full Text Available Abstract Background Caenorhabditis elegans gene-based phenotype information dates back to the 1970's, beginning with Sydney Brenner and the characterization of behavioral and morphological mutant alleles via classical genetics in order to understand nervous system function. Since then C. elegans has become an important genetic model system for the study of basic biological and biomedical principles, largely through the use of phenotype analysis. Because of the growth of C. elegans as a genetically tractable model organism and the development of large-scale analyses, there has been a significant increase of phenotype data that needs to be managed and made accessible to the research community. To do so, a standardized vocabulary is necessary to integrate phenotype data from diverse sources, permit integration with other data types and render the data in a computable form. Results We describe a hierarchically structured, controlled vocabulary of terms that can be used to standardize phenotype descriptions in C. elegans, namely the Worm Phenotype Ontology (WPO. The WPO is currently comprised of 1,880 phenotype terms, 74% of which have been used in the annotation of phenotypes associated with greater than 18,000 C. elegans genes. The scope of the WPO is not exclusively limited to C. elegans biology, rather it is devised to also incorporate phenotypes observed in related nematode species. We have enriched the value of the WPO by integrating it with other ontologies, thereby increasing the accessibility of worm phenotypes to non-nematode biologists. We are actively developing the WPO to continue to fulfill the evolving needs of the scientific community and hope to engage researchers in this crucial endeavor. Conclusions We provide a phenotype ontology (WPO that will help to facilitate data retrieval, and cross-species comparisons within the nematode community. In the larger scientific community, the WPO will permit data integration, and

  6. Supplementary Material for: The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert

    2016-01-01

    Abstract Background The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation, and the functioning of ecosystems. Floras, i.e., books collecting the information on all known plant species found within a region, are a potentially rich source of such plant trait data. Floras describe plant traits with a focus on morphology and other traits relevant for species identification in addition to other characteristics of plant species, such as ecological affinities, distribution, economic value, health applications, traditional uses, and so on. However, a key limitation in systematically analyzing information in Floras is the lack of a standardized vocabulary for the described traits as well as the difficulties in extracting structured information from free text. Results We have developed the Flora Phenotype Ontology (FLOPO), an ontology for describing traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based on phenotype description patterns and automated reasoning to generate the FLOPO. The resulting ontology consists of 25,407 classes and is based on the PO and PATO. The classified ontology closely follows the structure of Plant Ontology in that the primary axis of classification is the observed plant anatomical structure, and more specific traits are then classified based on parthood and subclass relations between anatomical structures as well as subclass relations between phenotypic qualities. Conclusions The FLOPO is primarily intended as a framework based on which plant traits can be integrated computationally across all species and higher taxa of flowering plants. Importantly, it is not intended to replace established

  7. Supplementary Material for: The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert; AlShahrani, Mona; Gkoutos, Georgios; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; Oliveira, Sylvia de; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger; Weiland, Claus

    2016-01-01

    traits of plant species found in Floras. We used the Plant Ontology (PO) and the Phenotype And Trait Ontology (PATO) to extract entity-quality relationships from digitized taxon descriptions in Floras, and used a formal ontological approach based

  8. The Bone Dysplasia Ontology: integrating genotype and phenotype information in the skeletal dysplasia domain

    Directory of Open Access Journals (Sweden)

    Groza Tudor

    2012-03-01

    Full Text Available Abstract Background Skeletal dysplasias are a rare and heterogeneous group of genetic disorders affecting skeletal development. Patients with skeletal dysplasias suffer from many complex medical issues including degenerative joint disease and neurological complications. Because the data and expertise associated with this field is both sparse and disparate, significant benefits will potentially accrue from the availability of an ontology that provides a shared conceptualisation of the domain knowledge and enables data integration, cross-referencing and advanced reasoning across the relevant but distributed data sources. Results We introduce the design considerations and implementation details of the Bone Dysplasia Ontology. We also describe the different components of the ontology, including a comprehensive and formal representation of the skeletal dysplasia domain as well as the related genotypes and phenotypes. We then briefly describe SKELETOME, a community-driven knowledge curation platform that is underpinned by the Bone Dysplasia Ontology. SKELETOME enables domain experts to use, refine and extend and apply the ontology without any prior ontology engineering experience--to advance the body of knowledge in the skeletal dysplasia field. Conclusions The Bone Dysplasia Ontology represents the most comprehensive structured knowledge source for the skeletal dysplasias domain. It provides the means for integrating and annotating clinical and research data, not only at the generic domain knowledge level, but also at the level of individual patient case studies. It enables links between individual cases and publicly available genotype and phenotype resources based on a community-driven curation process that ensures a shared conceptualisation of the domain knowledge and its continuous incremental evolution.

  9. Interoperability between phenotype and anatomy ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Oellrich, Anika; Rebholz-Schuhmann, Dietrich

    2010-12-15

    Phenotypic information is important for the analysis of the molecular mechanisms underlying disease. A formal ontological representation of phenotypic information can help to identify, interpret and infer phenotypic traits based on experimental findings. The methods that are currently used to represent data and information about phenotypes fail to make the semantics of the phenotypic trait explicit and do not interoperate with ontologies of anatomy and other domains. Therefore, valuable resources for the analysis of phenotype studies remain unconnected and inaccessible to automated analysis and reasoning. We provide a framework to formalize phenotypic descriptions and make their semantics explicit. Based on this formalization, we provide the means to integrate phenotypic descriptions with ontologies of other domains, in particular anatomy and physiology. We demonstrate how our framework leads to the capability to represent disease phenotypes, perform powerful queries that were not possible before and infer additional knowledge. http://bioonto.de/pmwiki.php/Main/PheneOntology.

  10. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  11. Phenex: ontological annotation of phenotypic diversity.

    Directory of Open Access Journals (Sweden)

    James P Balhoff

    2010-05-01

    Full Text Available Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge.Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices.Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  12. Phenex: ontological annotation of phenotypic diversity.

    Science.gov (United States)

    Balhoff, James P; Dahdul, Wasila M; Kothari, Cartik R; Lapp, Hilmar; Lundberg, John G; Mabee, Paula; Midford, Peter E; Westerfield, Monte; Vision, Todd J

    2010-05-05

    Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

  13. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    Directory of Open Access Journals (Sweden)

    Rosemary eShrestha

    2012-08-01

    Full Text Available The Crop Ontology (CO of the Generation Challenge Program (GCP (http://cropontology.org/ is developed for the Integrated Breeding Platform (https://www.integratedbreeding.net/ by several centers of The Consultative Group on International Agricultural Research (CGIAR: Bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The Crop Ontology provides validated trait names used by the crop communities of practice for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB fieldbooks are synchronized with the Crop Ontology terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum and wheat. Online curation and annotation tools facilitate (http://cropontology.org direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology and Trait Ontology. Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS. Cross-referencing and annotation will be further applied in the Integrated Breeding Platform.

  14. Matching disease and phenotype ontologies in the ontology alignment evaluation initiative.

    Science.gov (United States)

    Harrow, Ian; Jiménez-Ruiz, Ernesto; Splendiani, Andrea; Romacker, Martin; Woollard, Peter; Markel, Scott; Alam-Faruque, Yasmin; Koch, Martin; Malone, James; Waaler, Arild

    2017-12-02

    The disease and phenotype track was designed to evaluate the relative performance of ontology matching systems that generate mappings between source ontologies. Disease and phenotype ontologies are important for applications such as data mining, data integration and knowledge management to support translational science in drug discovery and understanding the genetics of disease. Eleven systems (out of 21 OAEI participating systems) were able to cope with at least one of the tasks in the Disease and Phenotype track. AML, FCA-Map, LogMap(Bio) and PhenoMF systems produced the top results for ontology matching in comparison to consensus alignments. The results against manually curated mappings proved to be more difficult most likely because these mapping sets comprised mostly subsumption relationships rather than equivalence. Manual assessment of unique equivalence mappings showed that AML, LogMap(Bio) and PhenoMF systems have the highest precision results. Four systems gave the highest performance for matching disease and phenotype ontologies. These systems coped well with the detection of equivalence matches, but struggled to detect semantic similarity. This deserves more attention in the future development of ontology matching systems. The findings of this evaluation show that such systems could help to automate equivalence matching in the workflow of curators, who maintain ontology mapping services in numerous domains such as disease and phenotype.

  15. Bridging the phenotypic and genetic data useful for integrated breeding through a data annotation using the Crop Ontology developed by the crop communities of practice

    Science.gov (United States)

    Shrestha, Rosemary; Matteis, Luca; Skofic, Milko; Portugal, Arllet; McLaren, Graham; Hyman, Glenn; Arnaud, Elizabeth

    2012-01-01

    The Crop Ontology (CO) of the Generation Challenge Program (GCP) (http://cropontology.org/) is developed for the Integrated Breeding Platform (IBP) (http://www.integratedbreeding.net/) by several centers of The Consultative Group on International Agricultural Research (CGIAR): bioversity, CIMMYT, CIP, ICRISAT, IITA, and IRRI. Integrated breeding necessitates that breeders access genotypic and phenotypic data related to a given trait. The CO provides validated trait names used by the crop communities of practice (CoP) for harmonizing the annotation of phenotypic and genotypic data and thus supporting data accessibility and discovery through web queries. The trait information is completed by the description of the measurement methods and scales, and images. The trait dictionaries used to produce the Integrated Breeding (IB) fieldbooks are synchronized with the CO terms for an automatic annotation of the phenotypic data measured in the field. The IB fieldbook provides breeders with direct access to the CO to get additional descriptive information on the traits. Ontologies and trait dictionaries are online for cassava, chickpea, common bean, groundnut, maize, Musa, potato, rice, sorghum, and wheat. Online curation and annotation tools facilitate (http://cropontology.org) direct maintenance of the trait information and production of trait dictionaries by the crop communities. An important feature is the cross referencing of CO terms with the Crop database trait ID and with their synonyms in Plant Ontology (PO) and Trait Ontology (TO). Web links between cross referenced terms in CO provide online access to data annotated with similar ontological terms, particularly the genetic data in Gramene (University of Cornell) or the evaluation and climatic data in the Global Repository of evaluation trials of the Climate Change, Agriculture and Food Security programme (CCAFS). Cross-referencing and annotation will be further applied in the IBP. PMID:22934074

  16. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    Science.gov (United States)

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  17. The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

    NARCIS (Netherlands)

    Kohler, S.; Doelken, S.C.; Mungall, C.J.; Bauer, S.; Firth, H.V.; Bailleul-Forestier, I.; Black, G.C.M.; Brown, D.L.; Brudno, M.; Campbell, J.; FitzPatrick, D.R.; Eppig, J.T.; Jackson, A.P.; Freson, K.; Girdea, M.; Helbig, I.; Hurst, J.A.; Jahn, J.; Jackson, L.G.; Kelly, A.M.; Ledbetter, D.H.; Mansour, S.; Martin, C.L.; Moss, C.; Mumford, A.; Ouwehand, W.H.; Park, S.M.; Riggs, E.R.; Scott, R.H.; Sisodiya, S.; Vooren, S. van der; Wapner, R.J.; Wilkie, A.O.; Wright, C.F.; Silfhout, A.T. van; Leeuw, N. de; Vries, B. de; Washingthon, N.L.; Smith, C.L.; Westerfield, M.; Schofield, P.; Ruef, B.J.; Gkoutos, G.V.; Haendel, M.; Smedley, D.; Lewis, S.E.; Robinson, P.N.

    2014-01-01

    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have

  18. Uberon, an integrative multi-species anatomy ontology

    Science.gov (United States)

    2012-01-01

    We present Uberon, an integrated cross-species ontology consisting of over 6,500 classes representing a variety of anatomical entities, organized according to traditional anatomical classification criteria. The ontology represents structures in a species-neutral way and includes extensive associations to existing species-centric anatomical ontologies, allowing integration of model organism and human data. Uberon provides a necessary bridge between anatomical structures in different taxa for cross-species inference. It uses novel methods for representing taxonomic variation, and has proved to be essential for translational phenotype analyses. Uberon is available at http://uberon.org PMID:22293552

  19. Aspects of ontology visualization and integration

    NARCIS (Netherlands)

    Dmitrieva, Joelia Borisovna

    2011-01-01

    In this thesis we will describe and discuss methodologies for ontology visualization and integration. Two visualization methods will be elaborated. In one method the ontology is visualized with the node-link technique, and with the other method the ontology is visualized with the containment

  20. Fuzzy knowledge bases integration based on ontology

    OpenAIRE

    Ternovoy, Maksym; Shtogrina, Olena

    2012-01-01

    the paper describes the approach for fuzzy knowledge bases integration with the usage of ontology. This approach is based on metadata-base usage for integration of different knowledge bases with common ontology. The design process of metadata-base is described.

  1. Ontology modeling in physical asset integrity management

    CERN Document Server

    Yacout, Soumaya

    2015-01-01

    This book presents cutting-edge applications of, and up-to-date research on, ontology engineering techniques in the physical asset integrity domain. Though a survey of state-of-the-art theory and methods on ontology engineering, the authors emphasize essential topics including data integration modeling, knowledge representation, and semantic interpretation. The book also reflects novel topics dealing with the advanced problems of physical asset integrity applications such as heterogeneity, data inconsistency, and interoperability existing in design and utilization. With a distinctive focus on applications relevant in heavy industry, Ontology Modeling in Physical Asset Integrity Management is ideal for practicing industrial and mechanical engineers working in the field, as well as researchers and graduate concerned with ontology engineering in physical systems life cycles. This book also: Introduces practicing engineers, research scientists, and graduate students to ontology engineering as a modeling techniqu...

  2. The Planteome database: an integrated resource for reference ontologies, plant genomics and phenomics

    Science.gov (United States)

    Cooper, Laurel; Meier, Austin; Laporte, Marie-Angélique; Elser, Justin L; Mungall, Chris; Sinn, Brandon T; Cavaliere, Dario; Carbon, Seth; Dunn, Nathan A; Smith, Barry; Qu, Botong; Preece, Justin; Zhang, Eugene; Todorovic, Sinisa; Gkoutos, Georgios; Doonan, John H; Stevenson, Dennis W; Arnaud, Elizabeth

    2018-01-01

    Abstract The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository. PMID:29186578

  3. The MMI Device Ontology: Enabling Sensor Integration

    Science.gov (United States)

    Rueda, C.; Galbraith, N.; Morris, R. A.; Bermudez, L. E.; Graybeal, J.; Arko, R. A.; Mmi Device Ontology Working Group

    2010-12-01

    The Marine Metadata Interoperability (MMI) project has developed an ontology for devices to describe sensors and sensor networks. This ontology is implemented in the W3C Web Ontology Language (OWL) and provides an extensible conceptual model and controlled vocabularies for describing heterogeneous instrument types, with different data characteristics, and their attributes. It can help users populate metadata records for sensors; associate devices with their platforms, deployments, measurement capabilities and restrictions; aid in discovery of sensor data, both historic and real-time; and improve the interoperability of observational oceanographic data sets. We developed the MMI Device Ontology following a community-based approach. By building on and integrating other models and ontologies from related disciplines, we sought to facilitate semantic interoperability while avoiding duplication. Key concepts and insights from various communities, including the Open Geospatial Consortium (eg., SensorML and Observations and Measurements specifications), Semantic Web for Earth and Environmental Terminology (SWEET), and W3C Semantic Sensor Network Incubator Group, have significantly enriched the development of the ontology. Individuals ranging from instrument designers, science data producers and consumers to ontology specialists and other technologists contributed to the work. Applications of the MMI Device Ontology are underway for several community use cases. These include vessel-mounted multibeam mapping sonars for the Rolling Deck to Repository (R2R) program and description of diverse instruments on deepwater Ocean Reference Stations for the OceanSITES program. These trials involve creation of records completely describing instruments, either by individual instances or by manufacturer and model. Individual terms in the MMI Device Ontology can be referenced with their corresponding Uniform Resource Identifiers (URIs) in sensor-related metadata specifications (e

  4. Ontology-based validation and identification of regulatory phenotypes

    KAUST Repository

    Kulmanov, Maxat

    2018-01-31

    Motivation: Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations Results: We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. Our method can also be applied to the rule-based prediction of phenotypes from functions. We show that the predicted phenotypes can be utilized for identification of protein-protein interactions and gene-disease associations. Based on experimental functional annotations, we predict phenotypes for 1,986 genes in mouse and 7,301 genes in human for which no experimental phenotypes have yet been determined.

  5. Ontology-based validation and identification of regulatory phenotypes

    KAUST Repository

    Kulmanov, Maxat; Schofield, Paul N; Gkoutos, Georgios V; Hoehndorf, Robert

    2018-01-01

    Motivation: Function annotations of gene products, and phenotype annotations of genotypes, provide valuable information about molecular mechanisms that can be utilized by computational methods to identify functional and phenotypic relatedness, improve our understanding of disease and pathobiology, and lead to discovery of drug targets. Identifying functions and phenotypes commonly requires experiments which are time-consuming and expensive to carry out; creating the annotations additionally requires a curator to make an assertion based on reported evidence. Support to validate the mutual consistency of functional and phenotype annotations as well as a computational method to predict phenotypes from function annotations, would greatly improve the utility of function annotations Results: We developed a novel ontology-based method to validate the mutual consistency of function and phenotype annotations. We apply our method to mouse and human annotations, and identify several inconsistencies that can be resolved to improve overall annotation quality. Our method can also be applied to the rule-based prediction of phenotypes from functions. We show that the predicted phenotypes can be utilized for identification of protein-protein interactions and gene-disease associations. Based on experimental functional annotations, we predict phenotypes for 1,986 genes in mouse and 7,301 genes in human for which no experimental phenotypes have yet been determined.

  6. Drug target ontology to classify and integrate drug discovery data.

    Science.gov (United States)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande; Turner, John Paul; Vidovic, Dusica; Forlin, Michele; Koleti, Amar; Nguyen, Dac-Trung; Jensen, Lars Juhl; Guha, Rajarshi; Mathias, Stephen L; Ursu, Oleg; Stathias, Vasileios; Duan, Jianbin; Nabizadeh, Nooshin; Chung, Caty; Mader, Christopher; Visser, Ubbo; Yang, Jeremy J; Bologa, Cristian G; Oprea, Tudor I; Schürer, Stephan C

    2017-11-09

    model for druggable targets including various related information such as protein, gene, protein domain, protein structure, binding site, small molecule drug, mechanism of action, protein tissue localization, disease association, and many other types of information. DTO will further facilitate the otherwise challenging integration and formal linking to biological assays, phenotypes, disease models, drug poly-pharmacology, binding kinetics and many other processes, functions and qualities that are at the core of drug discovery. The first version of DTO is publically available via the website http://drugtargetontology.org/ , Github ( http://github.com/DrugTargetOntology/DTO ), and the NCBO Bioportal ( http://bioportal.bioontology.org/ontologies/DTO ). The long-term goal of DTO is to provide such an integrative framework and to populate the ontology with this information as a community resource.

  7. Integrating systems biology models and biomedical ontologies.

    Science.gov (United States)

    Hoehndorf, Robert; Dumontier, Michel; Gennari, John H; Wimalaratne, Sarala; de Bono, Bernard; Cook, Daniel L; Gkoutos, Georgios V

    2011-08-11

    Systems biology is an approach to biology that emphasizes the structure and dynamic behavior of biological systems and the interactions that occur within them. To succeed, systems biology crucially depends on the accessibility and integration of data across domains and levels of granularity. Biomedical ontologies were developed to facilitate such an integration of data and are often used to annotate biosimulation models in systems biology. We provide a framework to integrate representations of in silico systems biology with those of in vivo biology as described by biomedical ontologies and demonstrate this framework using the Systems Biology Markup Language. We developed the SBML Harvester software that automatically converts annotated SBML models into OWL and we apply our software to those biosimulation models that are contained in the BioModels Database. We utilize the resulting knowledge base for complex biological queries that can bridge levels of granularity, verify models based on the biological phenomenon they represent and provide a means to establish a basic qualitative layer on which to express the semantics of biosimulation models. We establish an information flow between biomedical ontologies and biosimulation models and we demonstrate that the integration of annotated biosimulation models and biomedical ontologies enables the verification of models as well as expressive queries. Establishing a bi-directional information flow between systems biology and biomedical ontologies has the potential to enable large-scale analyses of biological systems that span levels of granularity from molecules to organisms.

  8. Phenotype ontologies and cross-species analysis for translational research.

    Directory of Open Access Journals (Sweden)

    Peter N Robinson

    2014-04-01

    Full Text Available The use of model organisms as tools for the investigation of human genetic variation has significantly and rapidly advanced our understanding of the aetiologies underlying hereditary traits. However, while equivalences in the DNA sequence of two species may be readily inferred through evolutionary models, the identification of equivalence in the phenotypic consequences resulting from comparable genetic variation is far from straightforward, limiting the value of the modelling paradigm. In this review, we provide an overview of the emerging statistical and computational approaches to objectively identify phenotypic equivalence between human and model organisms with examples from the vertebrate models, mouse and zebrafish. Firstly, we discuss enrichment approaches, which deem the most frequent phenotype among the orthologues of a set of genes associated with a common human phenotype as the orthologous phenotype, or phenolog, in the model species. Secondly, we introduce and discuss computational reasoning approaches to identify phenotypic equivalences made possible through the development of intra- and interspecies ontologies. Finally, we consider the particular challenges involved in modelling neuropsychiatric disorders, which illustrate many of the remaining difficulties in developing comprehensive and unequivocal interspecies phenotype mappings.

  9. The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience. Description Recently, the GO-CCO was enriched in content and links to the Biological Process and Molecular Function branches of GO as well as to other ontologies. This was achieved in several ways. We carried out an amalgamation of SAO terms with GO-CCO ones; as a result, nearly 100 new neuroscience-related terms were added to the GO. The GO-CCO also contains relationships to GO Biological Process and Molecular Function terms, as well as connecting to external ontologies such as the Cell Ontology (CL). Terms representing protein complexes in the Protein Ontology (PRO) reference GO-CCO terms for their species-generic counterparts. GO-CCO terms can also be used to search a variety of databases. Conclusions In this publication we provide an overview of the GO-CCO, its overall design, and some recent extensions that make use of additional spatial information. One of the most recent developments of the GO-CCO was the merging in of the SAO, resulting in a single unified ontology designed to serve the needs of GO annotators as well as the specific needs of the neuroscience community. PMID:24093723

  10. Linking human diseases to animal models using ontology-based phenotype annotation.

    Directory of Open Access Journals (Sweden)

    Nicole L Washington

    2009-11-01

    Full Text Available Scientists and clinicians who study genetic alterations and disease have traditionally described phenotypes in natural language. The considerable variation in these free-text descriptions has posed a hindrance to the important task of identifying candidate genes and models for human diseases and indicates the need for a computationally tractable method to mine data resources for mutant phenotypes. In this study, we tested the hypothesis that ontological annotation of disease phenotypes will facilitate the discovery of new genotype-phenotype relationships within and across species. To describe phenotypes using ontologies, we used an Entity-Quality (EQ methodology, wherein the affected entity (E and how it is affected (Q are recorded using terms from a variety of ontologies. Using this EQ method, we annotated the phenotypes of 11 gene-linked human diseases described in Online Mendelian Inheritance in Man (OMIM. These human annotations were loaded into our Ontology-Based Database (OBD along with other ontology-based phenotype descriptions of mutants from various model organism databases. Phenotypes recorded with this EQ method can be computationally compared based on the hierarchy of terms in the ontologies and the frequency of annotation. We utilized four similarity metrics to compare phenotypes and developed an ontology of homologous and analogous anatomical structures to compare phenotypes between species. Using these tools, we demonstrate that we can identify, through the similarity of the recorded phenotypes, other alleles of the same gene, other members of a signaling pathway, and orthologous genes and pathway members across species. We conclude that EQ-based annotation of phenotypes, in conjunction with a cross-species ontology, and a variety of similarity metrics can identify biologically meaningful similarities between genes by comparing phenotypes alone. This annotation and search method provides a novel and efficient means to identify

  11. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.

    Science.gov (United States)

    Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L

    2016-01-01

    MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we

  12. An ontology for Autism Spectrum Disorder (ASD) to infer ASD phenotypes from Autism Diagnostic Interview-Revised data.

    Science.gov (United States)

    Mugzach, Omri; Peleg, Mor; Bagley, Steven C; Guter, Stephen J; Cook, Edwin H; Altman, Russ B

    2015-08-01

    Our goal is to create an ontology that will allow data integration and reasoning with subject data to classify subjects, and based on this classification, to infer new knowledge on Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first step toward this goal by extending an existing autism ontology to allow automatic inference of ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based on subjects' Autism Diagnostic Interview-Revised (ADI-R) assessment data. Knowledge regarding diagnostic instruments, ASD phenotypes and risk factors was added to augment an existing autism ontology via Ontology Web Language class definitions and semantic web rules. We developed a custom Protégé plugin for enumerating combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) and DSM-5 diagnostic criteria based on their ADI-R data. We extended the ontology by adding 443 classes and 632 rules that represent phenotypes, along with their synonyms, environmental risk factors, and frequency of comorbidities. Applying the rules on the data set showed that the method produced accurate results: the true positive and true negative rates for inferring autistic disorder diagnosis according to DSM-IV criteria were 1 and 0.065, respectively; the true positive rate for inferring ASD based on DSM-5 criteria was 0.94. The ontology allows automatic inference of subjects' disease phenotypes and diagnosis with high accuracy. The ontology may benefit future studies by serving as a knowledge base for ASD. In addition, by adding knowledge of related NDDs, commonalities and differences in manifestations and risk factors could be automatically inferred, contributing to the understanding of ASD pathophysiology. Copyright

  13. Towards a reference plant trait ontology for modeling knowledge of plant traits and phenotypes

    Science.gov (United States)

    Ontology engineering and knowledge modeling for the plant sciences is expected to contribute to the understanding of the basis of plant traits that determine phenotypic expression in a given environment. Several crop- or clade-specific plant trait ontologies have been developed to describe plant tr...

  14. OntoCAT--simple ontology search and integration in Java, R and REST/JavaScript.

    Science.gov (United States)

    Adamusiak, Tomasz; Burdett, Tony; Kurbatova, Natalja; Joeri van der Velde, K; Abeygunawardena, Niran; Antonakaki, Despoina; Kapushesky, Misha; Parkinson, Helen; Swertz, Morris A

    2011-05-29

    Ontologies have become an essential asset in the bioinformatics toolbox and a number of ontology access resources are now available, for example, the EBI Ontology Lookup Service (OLS) and the NCBO BioPortal. However, these resources differ substantially in mode, ease of access, and ontology content. This makes it relatively difficult to access each ontology source separately, map their contents to research data, and much of this effort is being replicated across different research groups. OntoCAT provides a seamless programming interface to query heterogeneous ontology resources including OLS and BioPortal, as well as user-specified local OWL and OBO files. Each resource is wrapped behind easy to learn Java, Bioconductor/R and REST web service commands enabling reuse and integration of ontology software efforts despite variation in technologies. It is also available as a stand-alone MOLGENIS database and a Google App Engine application. OntoCAT provides a robust, configurable solution for accessing ontology terms specified locally and from remote services, is available as a stand-alone tool and has been tested thoroughly in the ArrayExpress, MOLGENIS, EFO and Gen2Phen phenotype use cases. http://www.ontocat.org.

  15. OAHG: an integrated resource for annotating human genes with multi-level ontologies.

    Science.gov (United States)

    Cheng, Liang; Sun, Jie; Xu, Wanying; Dong, Lixiang; Hu, Yang; Zhou, Meng

    2016-10-05

    OAHG, an integrated resource, aims to establish a comprehensive functional annotation resource for human protein-coding genes (PCGs), miRNAs, and lncRNAs by multi-level ontologies involving Gene Ontology (GO), Disease Ontology (DO), and Human Phenotype Ontology (HPO). Many previous studies have focused on inferring putative properties and biological functions of PCGs and non-coding RNA genes from different perspectives. During the past several decades, a few of databases have been designed to annotate the functions of PCGs, miRNAs, and lncRNAs, respectively. A part of functional descriptions in these databases were mapped to standardize terminologies, such as GO, which could be helpful to do further analysis. Despite these developments, there is no comprehensive resource recording the function of these three important types of genes. The current version of OAHG, release 1.0 (Jun 2016), integrates three ontologies involving GO, DO, and HPO, six gene functional databases and two interaction databases. Currently, OAHG contains 1,434,694 entries involving 16,929 PCGs, 637 miRNAs, 193 lncRNAs, and 24,894 terms of ontologies. During the performance evaluation, OAHG shows the consistencies with existing gene interactions and the structure of ontology. For example, terms with more similar structure could be associated with more associated genes (Pearson correlation γ 2  = 0.2428, p < 2.2e-16).

  16. Integrity and change in modular ontologies

    NARCIS (Netherlands)

    Stuckenschmidt, Heiner; Klein, Michel

    2003-01-01

    The benefits of modular representations arc well known from many areas of computer science. In this paper, we concentrate on the benefits of modular ontologies with respect to local containment of terminological reasoning. We define an architecture for modular ontologies that supports local

  17. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    Science.gov (United States)

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2015-01-01

    There remain significant difficulties selecting probable candidate drugs from existing databases. We describe an ontology-oriented approach to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. We also report a case study in which we attempted to explore candidate drugs effective for bipolar disorder and epilepsy. We constructed an ontology incorporating knowledge between the two diseases and performed semantic reasoning tasks with the ontology. The results suggested 48 candidate drugs that hold promise for further breakthrough. The evaluation demonstrated the validity our approach. Our approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  18. Ontology alignment architecture for semantic sensor Web integration.

    Science.gov (United States)

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  19. Ontology Alignment Architecture for Semantic Sensor Web Integration

    Directory of Open Access Journals (Sweden)

    Bernardo Alarcos

    2013-09-01

    Full Text Available Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity. Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity’s names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  20. Drug target ontology to classify and integrate drug discovery data

    DEFF Research Database (Denmark)

    Lin, Yu; Mehta, Saurabh; Küçük-McGinty, Hande

    2017-01-01

    using a new software tool to auto-generate most axioms from a database while supporting manual knowledge acquisition. A modular, hierarchical implementation facilitate ontology development and maintenance and makes use of various external ontologies, thus integrating the DTO into the ecosystem...... of biomedical ontologies. As a formal OWL-DL ontology, DTO contains asserted and inferred axioms. Modeling data from the Library of Integrated Network-based Cellular Signatures (LINCS) program illustrates the potential of DTO for contextual data integration and nuanced definition of important drug target...... characteristics. DTO has been implemented in the IDG user interface Portal, Pharos and the TIN-X explorer of protein target disease relationships. CONCLUSIONS: DTO was built based on the need for a formal semantic model for druggable targets including various related information such as protein, gene, protein...

  1. Ontology based heterogeneous materials database integration and semantic query

    Science.gov (United States)

    Zhao, Shuai; Qian, Quan

    2017-10-01

    Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.

  2. Annotation of phenotypic diversity: decoupling data curation and ontology curation using Phenex.

    Science.gov (United States)

    Balhoff, James P; Dahdul, Wasila M; Dececchi, T Alexander; Lapp, Hilmar; Mabee, Paula M; Vision, Todd J

    2014-01-01

    Phenex (http://phenex.phenoscape.org/) is a desktop application for semantically annotating the phenotypic character matrix datasets common in evolutionary biology. Since its initial publication, we have added new features that address several major bottlenecks in the efficiency of the phenotype curation process: allowing curators during the data curation phase to provisionally request terms that are not yet available from a relevant ontology; supporting quality control against annotation guidelines to reduce later manual review and revision; and enabling the sharing of files for collaboration among curators. We decoupled data annotation from ontology development by creating an Ontology Request Broker (ORB) within Phenex. Curators can use the ORB to request a provisional term for use in data annotation; the provisional term can be automatically replaced with a permanent identifier once the term is added to an ontology. We added a set of annotation consistency checks to prevent common curation errors, reducing the need for later correction. We facilitated collaborative editing by improving the reliability of Phenex when used with online folder sharing services, via file change monitoring and continual autosave. With the addition of these new features, and in particular the Ontology Request Broker, Phenex users have been able to focus more effectively on data annotation. Phenoscape curators using Phenex have reported a smoother annotation workflow, with much reduced interruptions from ontology maintenance and file management issues.

  3. Spatial Data Integration Using Ontology-Based Approach

    Science.gov (United States)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  4. SPATIAL DATA INTEGRATION USING ONTOLOGY-BASED APPROACH

    Directory of Open Access Journals (Sweden)

    S. Hasani

    2015-12-01

    Full Text Available In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  5. Ontology Based Resolution of Semantic Conflicts in Information Integration

    Institute of Scientific and Technical Information of China (English)

    LU Han; LI Qing-zhong

    2004-01-01

    Semantic conflict is the conflict caused by using different ways in heterogeneous systems to express the same entity in reality.This prevents information integration from accomplishing semantic coherence.Since ontology helps to solve semantic problems, this area has become a hot topic in information integration.In this paper, we introduce semantic conflict into information integration of heterogeneous applications.We discuss the origins and categories of the conflict, and present an ontology-based schema mapping approach to eliminate semantic conflicts.

  6. Evolving BioAssay Ontology (BAO): modularization, integration and applications.

    Science.gov (United States)

    Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  7. Ontology-centric integration and navigation of the dengue literature.

    Science.gov (United States)

    Rajapakse, Menaka; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Schreiber, Mark J; Baker, Christopher J O

    2008-10-01

    Uninhibited access to the unstructured information distributed across the web and in scientific literature databases continues to be beyond the reach of scientists and health professionals. To address this challenge we have developed a literature driven, ontology-centric navigation infrastructure consisting of a content acquisition engine, a domain-specific ontology (in OWL-DL) and an ontology instantiation pipeline delivering sentences derived by domain-specific text mining. A visual query tool for reasoning over A-box instances in the populated ontology is presented and used to build conceptual queries that can be issued to the knowledgebase. We have deployed this generic infrastructure to facilitate data integration and knowledge sharing in the domain of dengue, which is one of the most prevalent viral diseases that continue to infect millions of people in the tropical and subtropical regions annually. Using our unique methodology we illustrate simplified search and discovery on dengue information derived from distributed resources and aggregated according to dengue ontology. Furthermore we apply data mining to the instantiated ontology to elucidate trends in the mentions of dengue serotypes in scientific abstracts since 1974.

  8. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources.

    Science.gov (United States)

    Kahanda, Indika; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa

    2015-01-01

    The human phenotype ontology (HPO) was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.

  9. Improving Interpretation of Cardiac Phenotypes and Enhancing Discovery With Expanded Knowledge in the Gene Ontology.

    Science.gov (United States)

    Lovering, Ruth C; Roncaglia, Paola; Howe, Douglas G; Laulederkind, Stanley J F; Khodiyar, Varsha K; Berardini, Tanya Z; Tweedie, Susan; Foulger, Rebecca E; Osumi-Sutherland, David; Campbell, Nancy H; Huntley, Rachael P; Talmud, Philippa J; Blake, Judith A; Breckenridge, Ross; Riley, Paul R; Lambiase, Pier D; Elliott, Perry M; Clapp, Lucie; Tinker, Andrew; Hill, David P

    2018-02-01

    A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects. © 2018 The Authors.

  10. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  11. Use of Ontologies for Data Integration and Curation

    Directory of Open Access Journals (Sweden)

    Judith Gelernter

    2011-03-01

    Full Text Available Data curation includes the goal of facilitating the re-use and combination of datasets, which is often impeded by incompatible data schema. Can we use ontologies to help with data integration? We suggest a semi-automatic process that involves the use of automatic text searching to help identify overlaps in metadata that accompany data schemas, plus human validation of suggested data matches.Problems include different text used to describe the same concept, different forms of data recording and different organizations of data. Ontologies can help by focussing attention on important words, providing synonyms to assist matching, and indicating in what context words are used. Beyond ontologies, data on the statistical behavior of data can be used to decide which data elements appear to be compatible with which other data elements. When curating data which may have hundreds or even thousands of data labels, semi-automatic assistance with data fusion should be of great help.

  12. Developmental Anatomy Ontology of Zebrafish: an Integrative semantic framework

    Directory of Open Access Journals (Sweden)

    Belmamoune Mounia

    2007-12-01

    Full Text Available Integration of information is quintessential to make use of the wealth of bioinformatics resources. One aspect of integration is to make databases interoperable through well annotated information. With new databases one strives to store complementary information and such results in collections of heterogeneous information systems. Concepts in these databases need to be connected and ontologies typically provide a common terminology to share information among different resources.

  13. Clinical phenotype-based gene prioritization: an initial study using semantic similarity and the human phenotype ontology.

    Science.gov (United States)

    Masino, Aaron J; Dechene, Elizabeth T; Dulik, Matthew C; Wilkens, Alisha; Spinner, Nancy B; Krantz, Ian D; Pennington, Jeffrey W; Robinson, Peter N; White, Peter S

    2014-07-21

    Exome sequencing is a promising method for diagnosing patients with a complex phenotype. However, variant interpretation relative to patient phenotype can be challenging in some scenarios, particularly clinical assessment of rare complex phenotypes. Each patient's sequence reveals many possibly damaging variants that must be individually assessed to establish clear association with patient phenotype. To assist interpretation, we implemented an algorithm that ranks a given set of genes relative to patient phenotype. The algorithm orders genes by the semantic similarity computed between phenotypic descriptors associated with each gene and those describing the patient. Phenotypic descriptor terms are taken from the Human Phenotype Ontology (HPO) and semantic similarity is derived from each term's information content. Model validation was performed via simulation and with clinical data. We simulated 33 Mendelian diseases with 100 patients per disease. We modeled clinical conditions by adding noise and imprecision, i.e. phenotypic terms unrelated to the disease and terms less specific than the actual disease terms. We ranked the causative gene against all 2488 HPO annotated genes. The median causative gene rank was 1 for the optimal and noise cases, 12 for the imprecision case, and 60 for the imprecision with noise case. Additionally, we examined a clinical cohort of subjects with hearing impairment. The disease gene median rank was 22. However, when also considering the patient's exome data and filtering non-exomic and common variants, the median rank improved to 3. Semantic similarity can rank a causative gene highly within a gene list relative to patient phenotype characteristics, provided that imprecision is mitigated. The clinical case results suggest that phenotype rank combined with variant analysis provides significant improvement over the individual approaches. We expect that this combined prioritization approach may increase accuracy and decrease effort for

  14. Ontology-based geographic data set integration

    NARCIS (Netherlands)

    Uitermark, H.T.J.A.; Uitermark, Harry T.; Oosterom, Peter J.M.; Mars, Nicolaas; Molenaar, Martien; Molenaar, M.

    1999-01-01

    In order to develop a system to propagate updates we investigate the semantic and spatial relationships between independently produced geographic data sets of the same region (data set integration). The goal of this system is to reduce operator intervention in update operations between corresponding

  15. Clinical data integration model. Core interoperability ontology for research using primary care data.

    Science.gov (United States)

    Ethier, J-F; Curcin, V; Barton, A; McGilchrist, M M; Bastiaens, H; Andreasson, A; Rossiter, J; Zhao, L; Arvanitis, T N; Taweel, A; Delaney, B C; Burgun, A

    2015-01-01

    This article is part of the Focus Theme of METHODS of Information in Medicine on "Managing Interoperability and Complexity in Health Systems". Primary care data is the single richest source of routine health care data. However its use, both in research and clinical work, often requires data from multiple clinical sites, clinical trials databases and registries. Data integration and interoperability are therefore of utmost importance. TRANSFoRm's general approach relies on a unified interoperability framework, described in a previous paper. We developed a core ontology for an interoperability framework based on data mediation. This article presents how such an ontology, the Clinical Data Integration Model (CDIM), can be designed to support, in conjunction with appropriate terminologies, biomedical data federation within TRANSFoRm, an EU FP7 project that aims to develop the digital infrastructure for a learning healthcare system in European Primary Care. TRANSFoRm utilizes a unified structural / terminological interoperability framework, based on the local-as-view mediation paradigm. Such an approach mandates the global information model to describe the domain of interest independently of the data sources to be explored. Following a requirement analysis process, no ontology focusing on primary care research was identified and, thus we designed a realist ontology based on Basic Formal Ontology to support our framework in collaboration with various terminologies used in primary care. The resulting ontology has 549 classes and 82 object properties and is used to support data integration for TRANSFoRm's use cases. Concepts identified by researchers were successfully expressed in queries using CDIM and pertinent terminologies. As an example, we illustrate how, in TRANSFoRm, the Query Formulation Workbench can capture eligibility criteria in a computable representation, which is based on CDIM. A unified mediation approach to semantic interoperability provides a

  16. Toward a mechanistic explanation of phenotypic evolution: The need for a theory of theory integration.

    Science.gov (United States)

    Laubichler, Manfred D; Prohaska, Sonja J; Stadler, Peter F

    2018-01-01

    Reconciling different underlying ontologies and explanatory contexts has been one of the main challenges and impediments for theory integration in biology. Here, we analyze the challenge of developing an inclusive and integrative theory of phenotypic evolution as an example for the broader challenge of developing a theory of theory integration within the life sciences and suggest a number of necessary formal steps toward the resolution of often incompatible (hidden) assumptions. Theory integration in biology requires a better formal understanding of the structure of biological theories The strategy for integrating theories crucially depends on the relationships of the underlying ontologies. © 2018 Wiley Periodicals, Inc.

  17. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration

    Science.gov (United States)

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-01

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. PMID:27733503

  18. Ontobee: A linked ontology data server to support ontology term dereferencing, linkage, query and integration.

    Science.gov (United States)

    Ong, Edison; Xiang, Zuoshuang; Zhao, Bin; Liu, Yue; Lin, Yu; Zheng, Jie; Mungall, Chris; Courtot, Mélanie; Ruttenberg, Alan; He, Yongqun

    2017-01-04

    Linked Data (LD) aims to achieve interconnected data by representing entities using Unified Resource Identifiers (URIs), and sharing information using Resource Description Frameworks (RDFs) and HTTP. Ontologies, which logically represent entities and relations in specific domains, are the basis of LD. Ontobee (http://www.ontobee.org/) is a linked ontology data server that stores ontology information using RDF triple store technology and supports query, visualization and linkage of ontology terms. Ontobee is also the default linked data server for publishing and browsing biomedical ontologies in the Open Biological Ontology (OBO) Foundry (http://obofoundry.org) library. Ontobee currently hosts more than 180 ontologies (including 131 OBO Foundry Library ontologies) with over four million terms. Ontobee provides a user-friendly web interface for querying and visualizing the details and hierarchy of a specific ontology term. Using the eXtensible Stylesheet Language Transformation (XSLT) technology, Ontobee is able to dereference a single ontology term URI, and then output RDF/eXtensible Markup Language (XML) for computer processing or display the HTML information on a web browser for human users. Statistics and detailed information are generated and displayed for each ontology listed in Ontobee. In addition, a SPARQL web interface is provided for custom advanced SPARQL queries of one or multiple ontologies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Linking MedDRA®-coded Clinical Phenotypes to Biological Mechanisms by The Ontology of Adverse Events: A pilot study on Tyrosine Kinase Inhibitors (TKIs)

    Science.gov (United States)

    Sarntivijai, Sirarat; Zhang, Shelley; Jagannathan, Desikan G.; Zaman, Shadia; Burkhart, Keith K.; Omenn, Gilbert S.; He, Yongqun; Athey, Brian D.; Abernethy, Darrell R.

    2016-01-01

    Introduction A translational bioinformatics challenge lies in connecting population and individual’s clinical phenotypes in various formats to biological mechanisms. The Medical Dictionary for Regulatory Activities (MedDRA®) is the default dictionary for Adverse Event (AE) reporting in the FDA Adverse Event Reporting System (FAERS). The Ontology of Adverse Events (OAE) represents AEs as pathological processes occurring after drug exposures. Objectives The aim is to establish a semantic framework to link biological mechanisms to phenotypes of AEs by combining OAE with MedDRA® in FAERS data analysis. We investigated the AEs associated with Tyrosine Kinase Inhibitors (TKIs) and monoclonal antibodies (mAbs) targeting tyrosine kinases. The selected 5 TKIs/mAbs (i.e., dasatinib, imatinib, lapatinib, cetuximab, and trastuzumab) are known to induce impaired ventricular function (non-QT) cardiotoxicity. Results Statistical analysis of FAERS data identified 1,053 distinct MedDRA® terms significantly associated with TKIs/mAbs, where 884 did not have corresponding OAE terms. We manually annotated these terms, added them to OAE by the standard OAE development strategy, and mapped them to MedDRA®. The data integration to provide insights into molecular mechanisms for drug-associated AEs is performed by including linkages in OAE for all related AE terms to MedDRA® and existing ontologies including Human Phenotype Ontology (HP), Uber Anatomy Ontology (UBERON), and Gene Ontology (GO). Sixteen AEs are shared by all 5 TKIs/mAbs, and each of 17 cardiotoxicity AEs was associated with at least one TKI/mAb. As an example, we analyzed ‘cardiac failure’ using the relations established in OAE with other ontologies, and demonstrated that one of the biological processes associated with cardiac failure maps to the genes associated with heart contraction. Conclusion By expanding existing OAE ontological design, our TKI use case demonstrates that the combination of OAE and Med

  20. Linking MedDRA(®)-Coded Clinical Phenotypes to Biological Mechanisms by the Ontology of Adverse Events: A Pilot Study on Tyrosine Kinase Inhibitors.

    Science.gov (United States)

    Sarntivijai, Sirarat; Zhang, Shelley; Jagannathan, Desikan G; Zaman, Shadia; Burkhart, Keith K; Omenn, Gilbert S; He, Yongqun; Athey, Brian D; Abernethy, Darrell R

    2016-07-01

    A translational bioinformatics challenge exists in connecting population and individual clinical phenotypes in various formats to biological mechanisms. The Medical Dictionary for Regulatory Activities (MedDRA(®)) is the default dictionary for adverse event (AE) reporting in the US Food and Drug Administration Adverse Event Reporting System (FAERS). The ontology of adverse events (OAE) represents AEs as pathological processes occurring after drug exposures. The aim of this work was to establish a semantic framework to link biological mechanisms to phenotypes of AEs by combining OAE with MedDRA(®) in FAERS data analysis. We investigated the AEs associated with tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) targeting tyrosine kinases. The five selected TKIs/mAbs (i.e., dasatinib, imatinib, lapatinib, cetuximab, and trastuzumab) are known to induce impaired ventricular function (non-QT) cardiotoxicity. Statistical analysis of FAERS data identified 1053 distinct MedDRA(®) terms significantly associated with TKIs/mAbs, where 884 did not have corresponding OAE terms. We manually annotated these terms, added them to OAE by the standard OAE development strategy, and mapped them to MedDRA(®). The data integration to provide insights into molecular mechanisms of drug-associated AEs was performed by including linkages in OAE for all related AE terms to MedDRA(®) and the existing ontologies, including the human phenotype ontology (HP), Uber anatomy ontology (UBERON), and gene ontology (GO). Sixteen AEs were shared by all five TKIs/mAbs, and each of 17 cardiotoxicity AEs was associated with at least one TKI/mAb. As an example, we analyzed "cardiac failure" using the relations established in OAE with other ontologies and demonstrated that one of the biological processes associated with cardiac failure maps to the genes associated with heart contraction. By expanding the existing OAE ontological design, our TKI use case demonstrated that the combination

  1. The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease

    Science.gov (United States)

    Groza, Tudor; Köhler, Sebastian; Moldenhauer, Dawid; Vasilevsky, Nicole; Baynam, Gareth; Zemojtel, Tomasz; Schriml, Lynn Marie; Kibbe, Warren Alden; Schofield, Paul N.; Beck, Tim; Vasant, Drashtti; Brookes, Anthony J.; Zankl, Andreas; Washington, Nicole L.; Mungall, Christopher J.; Lewis, Suzanna E.; Haendel, Melissa A.; Parkinson, Helen; Robinson, Peter N.

    2015-01-01

    The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the phenotypic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by genomic location. The annotations, as well as the HPO itself, are freely available. PMID:26119816

  2. Ontological Analysis of Integrated Process Models: testing hypotheses

    Directory of Open Access Journals (Sweden)

    Michael Rosemann

    2001-11-01

    Full Text Available Integrated process modeling is achieving prominence in helping to document and manage business administration and IT processes in organizations. The ARIS framework is a popular example for a framework of integrated process modeling not least because it underlies the 800 or more reference models embedded in the world's most popular ERP package, SAP R/3. This paper demonstrates the usefulness of the Bunge-Wand-Weber (BWW representation model for evaluating modeling grammars such as those constituting ARIS. It reports some initial insights gained from pilot testing Green and Rosemann's (2000 evaluative propositions. Even when considering all five views of ARIS, modelers have problems representing business rules, the scope and boundary of systems, and decomposing models. However, even though it is completely ontologically redundant, users still find the function view useful in modeling.

  3. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.

    Science.gov (United States)

    Notaro, Marco; Schubach, Max; Robinson, Peter N; Valentini, Giorgio

    2017-10-12

    The prediction of human gene-abnormal phenotype associations is a fundamental step toward the discovery of novel genes associated with human disorders, especially when no genes are known to be associated with a specific disease. In this context the Human Phenotype Ontology (HPO) provides a standard categorization of the abnormalities associated with human diseases. While the problem of the prediction of gene-disease associations has been widely investigated, the related problem of gene-phenotypic feature (i.e., HPO term) associations has been largely overlooked, even if for most human genes no HPO term associations are known and despite the increasing application of the HPO to relevant medical problems. Moreover most of the methods proposed in literature are not able to capture the hierarchical relationships between HPO terms, thus resulting in inconsistent and relatively inaccurate predictions. We present two hierarchical ensemble methods that we formally prove to provide biologically consistent predictions according to the hierarchical structure of the HPO. The modular structure of the proposed methods, that consists in a "flat" learning first step and a hierarchical combination of the predictions in the second step, allows the predictions of virtually any flat learning method to be enhanced. The experimental results show that hierarchical ensemble methods are able to predict novel associations between genes and abnormal phenotypes with results that are competitive with state-of-the-art algorithms and with a significant reduction of the computational complexity. Hierarchical ensembles are efficient computational methods that guarantee biologically meaningful predictions that obey the true path rule, and can be used as a tool to improve and make consistent the HPO terms predictions starting from virtually any flat learning method. The implementation of the proposed methods is available as an R package from the CRAN repository.

  4. Integrating Ontological Knowledge and Textual Evidence in Estimating Gene and Gene Product Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Posse, Christian; Gopalan, Banu; Tratz, Stephen C.; Gregory, Michelle L.

    2006-06-08

    With the rising influence of the Gene On-tology, new approaches have emerged where the similarity between genes or gene products is obtained by comparing Gene Ontology code annotations associ-ated with them. So far, these approaches have solely relied on the knowledge en-coded in the Gene Ontology and the gene annotations associated with the Gene On-tology database. The goal of this paper is to demonstrate that improvements to these approaches can be obtained by integrating textual evidence extracted from relevant biomedical literature.

  5. The federated ontology of the pal project interfacing ontologies and integrating time-dependent data

    NARCIS (Netherlands)

    Krieger, H.U.; Peters, R.; Kiefer, B.; Van Bekkum, M.A.; Kaptein, F.; Neerincx, M.A.

    2016-01-01

    This paper describes ongoing work carried out in the European project PAL which will support childre in their diabetes self-management as well as assist health professionals and parents involved in the diabete regimen of the child. Here, we will focus on the construction of the PAL ontology which

  6. Ontology-supported research on vaccine efficacy, safety and integrative biological networks.

    Science.gov (United States)

    He, Yongqun

    2014-07-01

    While vaccine efficacy and safety research has dramatically progressed with the methods of in silico prediction and data mining, many challenges still exist. A formal ontology is a human- and computer-interpretable set of terms and relations that represent entities in a specific domain and how these terms relate to each other. Several community-based ontologies (including Vaccine Ontology, Ontology of Adverse Events and Ontology of Vaccine Adverse Events) have been developed to support vaccine and adverse event representation, classification, data integration, literature mining of host-vaccine interaction networks, and analysis of vaccine adverse events. The author further proposes minimal vaccine information standards and their ontology representations, ontology-based linked open vaccine data and meta-analysis, an integrative One Network ('OneNet') Theory of Life, and ontology-based approaches to study and apply the OneNet theory. In the Big Data era, these proposed strategies provide a novel framework for advanced data integration and analysis of fundamental biological networks including vaccine immune mechanisms.

  7. A modeling ontology for integrating vulnerabilities into security requirements conceptual foundations

    NARCIS (Netherlands)

    Elahi, G.; Yu, E.; Zannone, N.; Laender, A.H.F.; Castano, S.; Dayal, U.; Casati, F.; Palazzo Moreira de Oliveira, J.

    2009-01-01

    Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a vulnerability-centric modeling ontology, which aims to integrate empirical knowledge of vulnerabilities into the system development process. In

  8. Using ontology databases for scalable query answering, inconsistency detection, and data integration

    Science.gov (United States)

    Dou, Dejing

    2011-01-01

    An ontology database is a basic relational database management system that models an ontology plus its instances. To reason over the transitive closure of instances in the subsumption hierarchy, for example, an ontology database can either unfold views at query time or propagate assertions using triggers at load time. In this paper, we use existing benchmarks to evaluate our method—using triggers—and we demonstrate that by forward computing inferences, we not only improve query time, but the improvement appears to cost only more space (not time). However, we go on to show that the true penalties were simply opaque to the benchmark, i.e., the benchmark inadequately captures load-time costs. We have applied our methods to two case studies in biomedicine, using ontologies and data from genetics and neuroscience to illustrate two important applications: first, ontology databases answer ontology-based queries effectively; second, using triggers, ontology databases detect instance-based inconsistencies—something not possible using views. Finally, we demonstrate how to extend our methods to perform data integration across multiple, distributed ontology databases. PMID:22163378

  9. Ontology-based data integration between clinical and research systems.

    Directory of Open Access Journals (Sweden)

    Sebastian Mate

    Full Text Available Data from the electronic medical record comprise numerous structured but uncoded elements, which are not linked to standard terminologies. Reuse of such data for secondary research purposes has gained in importance recently. However, the identification of relevant data elements and the creation of database jobs for extraction, transformation and loading (ETL are challenging: With current methods such as data warehousing, it is not feasible to efficiently maintain and reuse semantically complex data extraction and trans-formation routines. We present an ontology-supported approach to overcome this challenge by making use of abstraction: Instead of defining ETL procedures at the database level, we use ontologies to organize and describe the medical concepts of both the source system and the target system. Instead of using unique, specifically developed SQL statements or ETL jobs, we define declarative transformation rules within ontologies and illustrate how these constructs can then be used to automatically generate SQL code to perform the desired ETL procedures. This demonstrates how a suitable level of abstraction may not only aid the interpretation of clinical data, but can also foster the reutilization of methods for un-locking it.

  10. Domain XML semantic integration based on extraction rules and ontology mapping

    Directory of Open Access Journals (Sweden)

    Huayu LI

    2016-08-01

    Full Text Available A plenty of XML documents exist in petroleum engineering field, but traditional XML integration solution can’t provide semantic query, which leads to low data use efficiency. In light of WeXML(oil&gas well XML data semantic integration and query requirement, this paper proposes a semantic integration method based on extraction rules and ontology mapping. The method firstly defines a series of extraction rules with which elements and properties of WeXML Schema are mapped to classes and properties in WeOWL ontology, respectively; secondly, an algorithm is used to transform WeXML documents into WeOWL instances. Because WeOWL provides limited semantics, ontology mappings between two ontologies are then built to explain class and property of global ontology with terms of WeOWL, and semantic query based on global domain concepts model is provided. By constructing a WeXML data semantic integration prototype system, the proposed transformational rule, the transfer algorithm and the mapping rule are tested.

  11. An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework

    Science.gov (United States)

    Gao, Wenlong

    2012-01-01

    The ontology approach has been accepted as a very promising approach to semantic integration today. However, because of the diversity of focuses and its various connections to other research domains, the core concepts, theoretical and technical approaches, and research areas of this domain still remain unclear. Such ambiguity makes it difficult to…

  12. Phenotypic integration of neurocranium and brain.

    Science.gov (United States)

    Richtsmeier, Joan T; Aldridge, Kristina; DeLeon, Valerie B; Panchal, Jayesh; Kane, Alex A; Marsh, Jeffrey L; Yan, Peng; Cole, Theodore M

    2006-07-15

    Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers. In this study, we use 3D computed tomography and magnetic resonance images of pediatric individuals diagnosed with premature closure of cranial sutures (craniosynostosis) to investigate phenotypic relationships between the brain and skull. It has been demonstrated previously that the skull and brain acquire characteristic dysmorphologies in isolated craniosynostosis, but relatively little is known of the developmental interactions that produce these anomalies. Our comparative analysis of phenotypic integration of brain and skull in premature closure of the sagittal and the right coronal sutures demonstrates that brain and skull are strongly integrated and that the significant differences in patterns of association do not occur local to the prematurely closed suture. We posit that the current focus on the suture as the basis for this condition may identify a proximate, but not the ultimate cause for these conditions. Given that premature suture closure reduces the number of cranial bones, and that a persistent loss of skull bones is demonstrated over the approximately 150 million years of synapsid evolution, craniosynostosis may serve as an informative model for evolution of the mammalian skull. Copyright 2006 Wiley-Liss, Inc.

  13. The First Organ-Based Ontology for Arthropods (Ontology of Arthropod Circulatory Systems - OArCS) and its Integration into a Novel Formalization Scheme for Morphological Descriptions.

    Science.gov (United States)

    Wirkner, Christian S; Göpel, Torben; Runge, Jens; Keiler, Jonas; Klussmann-Fricke, Bastian-Jesper; Huckstorf, Katarina; Scholz, Stephan; Mikó, István; J Yoder, Matthew; Richter, Stefan

    2017-09-01

    Morphology, the oldest discipline in the biosciences, is currently experiencing a renaissance in the field of comparative phenomics. However, morphological/phenotypic research still suffers on various levels from a lack of standards. This shortcoming, first highlighted as the "linguistic problem of morphology", concerns the usage of terminology and also the need for formalization of morphological descriptions themselves, something of paramount importance not only to the field of morphology but also when it comes to the use of phenotypic data in systematics and evolutionary biology. We therefore argue, that for morphological descriptions, the basis of all systematic and evolutionary interpretations, ontologies need to be utilized which are based exclusively on structural qualities/properties and which in no case include statements about homology and/or function. Statements about homology and function constitute interpretations on a different or higher level. Based on these "anatomy ontologies", further ontological dimensions (e.g., referring to functional properties or homology) may be exerted for a broad use in evolutionary phenomics. To this end we present the first organ-based ontology for the most species-rich animal group, the Arthropoda. Our Ontology of Arthropod Circulatory Systems (OArCS) contains a comprehensive collection of 383 terms (i.e., labels) tied to 296 concepts (i.e., definitions) collected from the literature on phenotypic aspects of circulatory organ features in arthropods. All of the concepts used in OArCS are based exclusively on structural features, and in the context of the ontology are independent of homology and functional assumptions. We cannot rule out that in some cases, terms are used which in traditional usage and previous accounts might have implied homology and/or function (e.g. heart, sternal artery). Concepts are composed of descriptive elements that are used to classify observed instances into the organizational framework of the

  14. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.

    Science.gov (United States)

    Le, Duc-Hau; Dao, Lan T M

    2018-05-23

    Recently, many long non-coding RNAs (lncRNAs) have been identified and their biological function has been characterized; however, our understanding of their underlying molecular mechanisms related to disease is still limited. To overcome the limitation in experimentally identifying disease-lncRNA associations, computational methods have been proposed as a powerful tool to predict such associations. These methods are usually based on the similarities between diseases or lncRNAs since it was reported that similar diseases are associated with functionally similar lncRNAs. Therefore, prediction performance is highly dependent on how well the similarities can be captured. Previous studies have calculated the similarity between two diseases by mapping exactly each disease to a single Disease Ontology (DO) term, and then use a semantic similarity measure to calculate the similarity between them. However, the problem of this approach is that a disease can be described by more than one DO terms. Until now, there is no annotation database of DO terms for diseases except for genes. In contrast, Human Phenotype Ontology (HPO) is designed to fully annotate human disease phenotypes. Therefore, in this study, we constructed disease similarity networks/matrices using HPO instead of DO. Then, we used these networks/matrices as inputs of two representative machine learning-based and network-based ranking algorithms, that is, regularized least square and heterogeneous graph-based inference, respectively. The results showed that the prediction performance of the two algorithms on HPO-based is better than that on DO-based networks/matrices. In addition, our method can predict 11 novel cancer-associated lncRNAs, which are supported by literature evidence. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Ontology-based integration of topographic data sets

    NARCIS (Netherlands)

    Uitermark, HT; van Oosterom, PJM; Mars, NJI; Molenaar, M

    The integration of topographic data sets is defined as the process of establishing relationships between corresponding object instances in different, autonomously produced, topographic data sets of the same geographic space. The problem of integrating topographic data sets is in finding these

  16. Integrating Ontology Debugging and Matching into the eXtreme Design Methodology

    OpenAIRE

    Dragisic, Zlatan; Lambrix, Patrick; Blomqvist, Eva

    2015-01-01

    Ontology design patterns (ODPs) and related ontology development methodologies were designed as ways of sharing and reusing best practices in ontology engineering. However, while the use of these reduces the number of issues in the resulting ontologies defects can still be introduced into the ontology due to improper use or misinterpretation of the patterns. Thus, the quality of the developed ontologies is still a major concern. In this paper we address this issue by describing how ontology d...

  17. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.

    Science.gov (United States)

    Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos

    2011-04-01

    Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. BOWiki: an ontology-based wiki for annotation of data and integration of knowledge in biology

    Directory of Open Access Journals (Sweden)

    Gregorio Sergio E

    2009-05-01

    Full Text Available Abstract Motivation Ontology development and the annotation of biological data using ontologies are time-consuming exercises that currently require input from expert curators. Open, collaborative platforms for biological data annotation enable the wider scientific community to become involved in developing and maintaining such resources. However, this openness raises concerns regarding the quality and correctness of the information added to these knowledge bases. The combination of a collaborative web-based platform with logic-based approaches and Semantic Web technology can be used to address some of these challenges and concerns. Results We have developed the BOWiki, a web-based system that includes a biological core ontology. The core ontology provides background knowledge about biological types and relations. Against this background, an automated reasoner assesses the consistency of new information added to the knowledge base. The system provides a platform for research communities to integrate information and annotate data collaboratively. Availability The BOWiki and supplementary material is available at http://www.bowiki.net/. The source code is available under the GNU GPL from http://onto.eva.mpg.de/trac/BoWiki.

  19. PHENOstruct: Prediction of human phenotype ontology terms using heterogeneous data sources [v1; ref status: indexed, http://f1000r.es/5j2

    Directory of Open Access Journals (Sweden)

    Indika Kahanda

    2015-07-01

    Full Text Available The human phenotype ontology (HPO was recently developed as a standardized vocabulary for describing the phenotype abnormalities associated with human diseases. At present, only a small fraction of human protein coding genes have HPO annotations. But, researchers believe that a large portion of currently unannotated genes are related to disease phenotypes. Therefore, it is important to predict gene-HPO term associations using accurate computational methods. In this work we demonstrate the performance advantage of the structured SVM approach which was shown to be highly effective for Gene Ontology term prediction in comparison to several baseline methods. Furthermore, we highlight a collection of informative data sources suitable for the problem of predicting gene-HPO associations, including large scale literature mining data.

  20. Multi-source and ontology-based retrieval engine for maize mutant phenotypes

    Science.gov (United States)

    In the midst of this genomics era, major plant genome databases are collecting massive amounts of heterogeneous information, including sequence data, gene product information, images of mutant phenotypes, etc., as well as textual descriptions of many of these entities. While basic browsing and sear...

  1. Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information

    Science.gov (United States)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo

    2018-06-01

    Initiatives of open data promote the online publication and sharing of large amounts of geologic data. How to retrieve information and discover knowledge from the big data is an ongoing challenge. In this paper, we developed an ontology-driven data integration and visualization pilot system for exploring information of regional geologic time, paleontology, and fundamental geology. The pilot system (http://www2.cs.uidaho.edu/%7Emax/gts/)

  2. Building ontologies with basic formal ontology

    CERN Document Server

    Arp, Robert; Spear, Andrew D.

    2015-01-01

    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now u...

  3. KaBOB: ontology-based semantic integration of biomedical databases.

    Science.gov (United States)

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  4. The flora phenotype ontology (FLOPO): tool for integrating morphological traits and phenotypes of vascular plants

    KAUST Repository

    Hoehndorf, Robert; AlShahrani, Mona; Gkoutos, Georgios V.; Gosline, George; Groom, Quentin; Hamann, Thomas; Kattge, Jens; de Oliveira, Sylvia Mota; Schmidt, Marco; Sierra, Soraya; Smets, Erik; Vos, Rutger A.; Weiland, Claus

    2016-01-01

    The systematic analysis of a large number of comparable plant trait data can support investigations into phylogenetics and ecological adaptation, with broad applications in evolutionary biology, agriculture, conservation

  5. Automated Ontology Alignment with Fuselets for Community of Interest (COI) Integration

    National Research Council Canada - National Science Library

    Starz, James; Roberts, Joe

    2008-01-01

    Discusses the ontology alignment problem by presenting a tool called Ontrapro-the Ontology Translation Protocol, which allows users to apply a myriad of ontology alignment algorithms in an iterative fashion...

  6. SORTA : a system for ontology-based re-coding and technical annotation of biomedical phenotype data

    NARCIS (Netherlands)

    Pang, Chao; Sollie, Annet; Sijtsma, Anna; Hendriksen, Dennis; Charbon, Bart; Haan, Mark de; de Boer, Tommy; Kelpin, Fleur; Jetten, Jonathan; van der Velde, Joeri K.; Smidt, Nynke; Sijmons, Rolf; Hillege, Hans; Swertz, Morris A.

    2015-01-01

    There is an urgent need to standardize the semantics of biomedical data values, such as phenotypes, to enable comparative and integrative analyses. However, it is unlikely that all studies will use the same data collection protocols. As a result, retrospective standardization is often required,

  7. Integration of Neuroimaging and Microarray Datasets  through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    Directory of Open Access Journals (Sweden)

    Spiro P. Pantazatos

    2009-06-01

    Full Text Available An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP and a knowledge-based phenotype organizer system (PhenOS to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®. The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50, and precision of the semantic mapping between these terms across datasets was 98% (n = 100. To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets.

  8. Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature.

    Science.gov (United States)

    Liaw, S T; Rahimi, A; Ray, P; Taggart, J; Dennis, S; de Lusignan, S; Jalaludin, B; Yeo, A E T; Talaei-Khoei, A

    2013-01-01

    Effective use of routine data to support integrated chronic disease management (CDM) and population health is dependent on underlying data quality (DQ) and, for cross system use of data, semantic interoperability. An ontological approach to DQ is a potential solution but research in this area is limited and fragmented. Identify mechanisms, including ontologies, to manage DQ in integrated CDM and whether improved DQ will better measure health outcomes. A realist review of English language studies (January 2001-March 2011) which addressed data quality, used ontology-based approaches and is relevant to CDM. We screened 245 papers, excluded 26 duplicates, 135 on abstract review and 31 on full-text review; leaving 61 papers for critical appraisal. Of the 33 papers that examined ontologies in chronic disease management, 13 defined data quality and 15 used ontologies for DQ. Most saw DQ as a multidimensional construct, the most used dimensions being completeness, accuracy, correctness, consistency and timeliness. The majority of studies reported tool design and development (80%), implementation (23%), and descriptive evaluations (15%). Ontological approaches were used to address semantic interoperability, decision support, flexibility of information management and integration/linkage, and complexity of information models. DQ lacks a consensus conceptual framework and definition. DQ and ontological research is relatively immature with little rigorous evaluation studies published. Ontology-based applications could support automated processes to address DQ and semantic interoperability in repositories of routinely collected data to deliver integrated CDM. We advocate moving to ontology-based design of information systems to enable more reliable use of routine data to measure health mechanisms and impacts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. a New Ontological Perspective for Integration of Social and Physical Environments: Disability and Rehabilitation Context

    Science.gov (United States)

    Gharebaghi, Amin; Abolfazl Mostafavi, Mir

    2016-06-01

    Social dimension of environment is an important aspect that should be reflected in research works related to studying the interactions between human and the environment. However, this dimension is usually neglected when representing the environment in geographic information systems for different applications. For instance, disability as a result of the interaction between human and environment is influenced by social and physical dimensions of environment. Although, this aspect is highlighted in most conceptual disability models by defining various taxonomies of the environment, from ontological perspective justifying and connecting social dimension to the physical dimension of the environment is not clearly determined. Integrating social dimension of the environment with its physical dimension for disability studies is a challenging task, which is the main objective of the present study. Here, we review some of the disability models and their perspective about classifying the environment. Then, from ontological perspective, their limitations are discussed and a new approach for the classification of concepts form the environment is presented. This approach facilitates and simplifies integration of social dimension in ontologies for more effective assessment of disability issue in Geographic Information System.

  10. Using XML technology for the ontology-based semantic integration of life science databases.

    Science.gov (United States)

    Philippi, Stephan; Köhler, Jacob

    2004-06-01

    Several hundred internet accessible life science databases with constantly growing contents and varying areas of specialization are publicly available via the internet. Database integration, consequently, is a fundamental prerequisite to be able to answer complex biological questions. Due to the presence of syntactic, schematic, and semantic heterogeneities, large scale database integration at present takes considerable efforts. As there is a growing apprehension of extensible markup language (XML) as a means for data exchange in the life sciences, this article focuses on the impact of XML technology on database integration in this area. In detail, a general architecture for ontology-driven data integration based on XML technology is introduced, which overcomes some of the traditional problems in this area. As a proof of concept, a prototypical implementation of this architecture based on a native XML database and an expert system shell is described for the realization of a real world integration scenario.

  11. Web Approach for Ontology-Based Classification, Integration, and Interdisciplinary Usage of Geoscience Metadata

    Directory of Open Access Journals (Sweden)

    B Ritschel

    2012-10-01

    Full Text Available The Semantic Web is a W3C approach that integrates the different sources of semantics within documents and services using ontology-based techniques. The main objective of this approach in the geoscience domain is the improvement of understanding, integration, and usage of Earth and space science related web content in terms of data, information, and knowledge for machines and people. The modeling and representation of semantic attributes and relations within and among documents can be realized by human readable concept maps and machine readable OWL documents. The objectives for the usage of the Semantic Web approach in the GFZ data center ISDC project are the design of an extended classification of metadata documents for product types related to instruments, platforms, and projects as well as the integration of different types of metadata related to data product providers, users, and data centers. Sources of content and semantics for the description of Earth and space science product types and related classes are standardized metadata documents (e.g., DIF documents, publications, grey literature, and Web pages. Other sources are information provided by users, such as tagging data and social navigation information. The integration of controlled vocabularies as well as folksonomies plays an important role in the design of well formed ontologies.

  12. IDOCS: intelligent distributed ontology consensus system--the use of machine learning in retinal drusen phenotyping.

    Science.gov (United States)

    Thomas, George; Grassi, Michael A; Lee, John R; Edwards, Albert O; Gorin, Michael B; Klein, Ronald; Casavant, Thomas L; Scheetz, Todd E; Stone, Edwin M; Williams, Andrew B

    2007-05-01

    To use the power of knowledge acquisition and machine learning in the development of a collaborative computer classification system based on the features of age-related macular degeneration (AMD). A vocabulary was acquired from four AMD experts who examined 100 ophthalmoscopic images. The vocabulary was analyzed, hierarchically structured, and incorporated into a collaborative computer classification system called IDOCS. Using this system, three of the experts examined images from a second set of digital images compiled from more than 1000 patients with AMD. Images were annotated, and features were identified and defined. Decision trees, a machine learning method, were trained on the data collected and used to extract patterns. Interrelationships between the data from the different clinicians were investigated. Six drusen classes in the structured vocabulary were largely sufficient to describe all the identified features. The decision trees classified the data with 76.86% to 88.5% accuracy and distilled patterns in the form of hierarchical trees composed of 5 to 15 nodes. Experts were largely consistent in their characterization of soft, and to a lesser extent, hard drusen, but diverge in definition of other drusen. Size and crystalline morphology were the main determinants of drusen type across all experts. Machine learning is a powerful tool for the characterization of disease phenotypes. The creation of a defined feature set for AMD will facilitate the development of an IDOCS-based classification system.

  13. Integration of the Gene Ontology into an object-oriented architecture

    Directory of Open Access Journals (Sweden)

    Zheng W Jim

    2005-05-01

    Full Text Available Abstract Background To standardize gene product descriptions, a formal vocabulary defined as the Gene Ontology (GO has been developed. GO terms have been categorized into biological processes, molecular functions, and cellular components. However, there is no single representation that integrates all the terms into one cohesive model. Furthermore, GO definitions have little information explaining the underlying architecture that forms these terms, such as the dynamic and static events occurring in a process. In contrast, object-oriented models have been developed to show dynamic and static events. A portion of the TGF-beta signaling pathway, which is involved in numerous cellular events including cancer, differentiation and development, was used to demonstrate the feasibility of integrating the Gene Ontology into an object-oriented model. Results Using object-oriented models we have captured the static and dynamic events that occur during a representative GO process, "transforming growth factor-beta (TGF-beta receptor complex assembly" (GO:0007181. Conclusion We demonstrate that the utility of GO terms can be enhanced by object-oriented technology, and that the GO terms can be integrated into an object-oriented model by serving as a basis for the generation of object functions and attributes.

  14. Integration of the social environment in a mobility ontology for people with motor disabilities.

    Science.gov (United States)

    Gharebaghi, Amin; Mostafavi, Mir-Abolfazl; Edwards, Geoffrey; Fougeyrollas, Patrick; Gamache, Stéphanie; Grenier, Yan

    2017-07-07

    Our contemporary understanding of disability is rooted in the idea that disability is the product of human-environment interaction processes. People may be functionally limited, but this becomes a disability only when they engage with their immediate social and physical environments. Any attempt to address issues of mobility in relation to people with disabilities should be grounded in an ontology that encompasses this understanding. The objective of this study is to provide a methodology to integrate the social and physical environments in the development of a mobility ontology for people with motor disabilities (PWMD). We propose to create subclasses of concepts based on a Nature-Development distinction rather than creating separate social and physical subclasses. This allows the relationships between social and physical elements to be modelled in a more compact and efficient way by specifying them locally within each entity, and better accommodates the complexities of the human-environment interaction as well. Based on this approach, an ontology for mobility of PWMD considering four main elements - the social and physical environmental factors, human factors, life habits related to mobility and possible goals of mobility - is presented. We demonstrate that employing the Nature-Development perspective facilitates the process of developing useful ontologies, especially for defining the relationships between the social and physical parts of the environment. This is a fundamental issue for modelling the interaction between humans and their social and physical environments for a broad range of applications, including the development of geospatial assistive technologies for navigation of PWMD. Implications for rehabilitation The proposed perspective may actually have much broader interests beyond the issue of disability - much of the interesting dynamics in city development arises from the interaction between human-developed components - the built environment and its

  15. Exploration and implementation of ontology-based cultural relic knowledge map integration platform

    Science.gov (United States)

    Yang, Weiqiang; Dong, Yiqiang

    2018-05-01

    To help designers to better carry out creative design and improve the ability of searching traditional cultural relic information, the ontology-based knowledge map construction method was explored and an integrated platform for cultural relic knowledge map was developed. First of all, the construction method of the ontology of cultural relics was put forward, and the construction of the knowledge map of cultural relics was completed based on the constructed cultural relic otology. Then, a personalized semantic retrieval framework for creative design was proposed. Finally, the integrated platform of the knowledge map of cultural relics was designed and realized. The platform was divided into two parts. One was the foreground display system, which was used for designers to search and browse cultural relics. The other was the background management system, which was for cultural experts to manage cultural relics' knowledge. The research results showed that the platform designed could improve the retrieval ability of cultural relic information. To sum up, the platform can provide a good support for the designer's creative design.

  16. Emerging semantics to link phenotype and environment

    Directory of Open Access Journals (Sweden)

    Anne E. Thessen

    2015-12-01

    Full Text Available Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1 use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2 two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3 two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE and the Biological Collections Ontology (BCO; these provide a starting point for the development of a data model linking phenotypes and environments.

  17. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and Linked Data technologies

    Directory of Open Access Journals (Sweden)

    Sai Lakshmi Subramanian

    2015-08-01

    Full Text Available The large diversity and volume of extracellular RNA (exRNA data that will form the basis of the exRNA Atlas generated by the Extracellular RNA Communication Consortium pose a substantial data integration challenge. We here present the strategy that is being implemented by the exRNA Data Management and Resource Repository, which employs metadata, biomedical ontologies and Linked Data technologies, such as Resource Description Framework to integrate a diverse set of exRNA profiles into an exRNA Atlas and enable integrative exRNA analysis. We focus on the following three specific data integration tasks: (a selection of samples from a virtual biorepository for exRNA profiling and for inclusion in the exRNA Atlas; (b retrieval of a data slice from the exRNA Atlas for integrative analysis and (c interpretation of exRNA analysis results in the context of pathways and networks. As exRNA profiling gains wide adoption in the research community, we anticipate that the strategies discussed here will increasingly be required to enable data reuse and to facilitate integrative analysis of exRNA data.

  18. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and Linked Data technologies.

    Science.gov (United States)

    Subramanian, Sai Lakshmi; Kitchen, Robert R; Alexander, Roger; Carter, Bob S; Cheung, Kei-Hoi; Laurent, Louise C; Pico, Alexander; Roberts, Lewis R; Roth, Matthew E; Rozowsky, Joel S; Su, Andrew I; Gerstein, Mark B; Milosavljevic, Aleksandar

    2015-01-01

    The large diversity and volume of extracellular RNA (exRNA) data that will form the basis of the exRNA Atlas generated by the Extracellular RNA Communication Consortium pose a substantial data integration challenge. We here present the strategy that is being implemented by the exRNA Data Management and Resource Repository, which employs metadata, biomedical ontologies and Linked Data technologies, such as Resource Description Framework to integrate a diverse set of exRNA profiles into an exRNA Atlas and enable integrative exRNA analysis. We focus on the following three specific data integration tasks: (a) selection of samples from a virtual biorepository for exRNA profiling and for inclusion in the exRNA Atlas; (b) retrieval of a data slice from the exRNA Atlas for integrative analysis and (c) interpretation of exRNA analysis results in the context of pathways and networks. As exRNA profiling gains wide adoption in the research community, we anticipate that the strategies discussed here will increasingly be required to enable data reuse and to facilitate integrative analysis of exRNA data.

  19. Integration of curated databases to identify genotype-phenotype associations

    Directory of Open Access Journals (Sweden)

    Li Jianrong

    2006-10-01

    Full Text Available Abstract Background The ability to rapidly characterize an unknown microorganism is critical in both responding to infectious disease and biodefense. To do this, we need some way of anticipating an organism's phenotype based on the molecules encoded by its genome. However, the link between molecular composition (i.e. genotype and phenotype for microbes is not obvious. While there have been several studies that address this challenge, none have yet proposed a large-scale method integrating curated biological information. Here we utilize a systematic approach to discover genotype-phenotype associations that combines phenotypic information from a biomedical informatics database, GIDEON, with the molecular information contained in National Center for Biotechnology Information's Clusters of Orthologous Groups database (NCBI COGs. Results Integrating the information in the two databases, we are able to correlate the presence or absence of a given protein in a microbe with its phenotype as measured by certain morphological characteristics or survival in a particular growth media. With a 0.8 correlation score threshold, 66% of the associations found were confirmed by the literature and at a 0.9 correlation threshold, 86% were positively verified. Conclusion Our results suggest possible phenotypic manifestations for proteins biochemically associated with sugar metabolism and electron transport. Moreover, we believe our approach can be extended to linking pathogenic phenotypes with functionally related proteins.

  20. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-27

    Phenotypes are the observable characteristics of an organism, and they are widely recorded in biology and medicine. To facilitate data integration, ontologies that formally describe phenotypes are being developed in several domains. I will describe a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology of phenotypes is now applied in biomedical research.

  1. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  2. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  3. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  4. A web-based system architecture for ontology-based data integration in the domain of IT benchmarking

    Science.gov (United States)

    Pfaff, Matthias; Krcmar, Helmut

    2018-03-01

    In the domain of IT benchmarking (ITBM), a variety of data and information are collected. Although these data serve as the basis for business analyses, no unified semantic representation of such data yet exists. Consequently, data analysis across different distributed data sets and different benchmarks is almost impossible. This paper presents a system architecture and prototypical implementation for an integrated data management of distributed databases based on a domain-specific ontology. To preserve the semantic meaning of the data, the ITBM ontology is linked to data sources and functions as the central concept for database access. Thus, additional databases can be integrated by linking them to this domain-specific ontology and are directly available for further business analyses. Moreover, the web-based system supports the process of mapping ontology concepts to external databases by introducing a semi-automatic mapping recommender and by visualizing possible mapping candidates. The system also provides a natural language interface to easily query linked databases. The expected result of this ontology-based approach of knowledge representation and data access is an increase in knowledge and data sharing in this domain, which will enhance existing business analysis methods.

  5. Aligning ontologies and integrating textual evidence for pathway analysis of microarray data

    Energy Technology Data Exchange (ETDEWEB)

    Gopalan, Banu; Posse, Christian; Sanfilippo, Antonio P.; Stenzel-Poore, Mary; Stevens, S.L.; Castano, Jose; Beagley, Nathaniel; Riensche, Roderick M.; Baddeley, Bob; Simon, R.P.; Pustejovsky, James

    2006-10-08

    Expression arrays are introducing a paradigmatic change in biology by shifting experimental approaches from single gene studies to genome-level analysis, monitoring the ex-pression levels of several thousands of genes in parallel. The massive amounts of data obtained from the microarray data needs to be integrated and interpreted to infer biological meaning within the context of information-rich pathways. In this paper, we present a methodology that integrates textual information with annotations from cross-referenced ontolo-gies to map genes to pathways in a semi-automated way. We illustrate this approach and compare it favorably to other tools by analyzing the gene expression changes underlying the biological phenomena related to stroke. Stroke is the third leading cause of death and a major disabler in the United States. Through years of study, researchers have amassed a significant knowledge base about stroke, and this knowledge, coupled with new technologies, is providing a wealth of new scientific opportunities. The potential for neu-roprotective stroke therapy is enormous. However, the roles of neurogenesis, angiogenesis, and other proliferative re-sponses in the recovery process following ischemia and the molecular mechanisms that lead to these processes still need to be uncovered. Improved annotation of genomic and pro-teomic data, including annotation of pathways in which genes and proteins are involved, is required to facilitate their interpretation and clinical application. While our approach is not aimed at replacing existing curated pathway databases, it reveals multiple hidden relationships that are not evident with the way these databases analyze functional groupings of genes from the Gene Ontology.

  6. UPCaD: A Methodology of Integration Between Ontology-Based Context-Awareness Modeling and Relational Domain Data

    Directory of Open Access Journals (Sweden)

    Vinícius Maran

    2018-01-01

    Full Text Available Context-awareness is a key feature for ubiquitous computing scenarios applications. Currently, technologies and methodologies have been proposed for the integration of context-awareness concepts in intelligent information systems to adapt them to the execution of services, user interfaces and data retrieval. Recent research proposed conceptual modeling alternatives to the integration of the domain modeling in RDBMS and context-awareness modeling. The research described using highly expressiveness ontologies. The present work describes the UPCaD (Unified Process for Integration between Context-Awareness and Domain methodology, which is composed of formalisms and processes to guide the data integration considering RDBMS and context modeling. The methodology was evaluated in a virtual learning environment application. The evaluation shows the possibility to use a highly expressive context ontology to filter the relational data query and discusses the main contributions of the methodology compared with recent approaches.

  7. Ontology Design Patterns: Bridging the Gap Between Local Semantic Use Cases and Large-Scale, Long-Term Data Integration

    Science.gov (United States)

    Shepherd, Adam; Arko, Robert; Krisnadhi, Adila; Hitzler, Pascal; Janowicz, Krzysztof; Chandler, Cyndy; Narock, Tom; Cheatham, Michelle; Schildhauer, Mark; Jones, Matt; Raymond, Lisa; Mickle, Audrey; Finin, Tim; Fils, Doug; Carbotte, Suzanne; Lehnert, Kerstin

    2015-04-01

    Integrating datasets for new use cases is one of the common drivers for adopting semantic web technologies. Even though linked data principles enables this type of activity over time, the task of reconciling new ontological commitments for newer use cases can be daunting. This situation was faced by the Biological and Chemical Oceanography Data Management Office (BCO-DMO) as it sought to integrate its existing linked data with other data repositories to address newer scientific use cases as a partner in the GeoLink Project. To achieve a successful integration with other GeoLink partners, BCO-DMO's metadata would need to be described using the new ontologies developed by the GeoLink partners - a situation that could impact semantic inferencing, pre-existing software and external users of BCO-DMO's linked data. This presentation describes the process of how GeoLink is bridging the gap between local, pre-existing ontologies to achieve scientific metadata integration for all its partners through the use of ontology design patterns. GeoLink, an NSF EarthCube Building Block, brings together experts from the geosciences, computer science, and library science in an effort to improve discovery and reuse of data and knowledge. Its participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecology and biogeochemistry to paleoclimatology. GeoLink's outcomes include a set of reusable ontology design patterns (ODPs) that describe core geoscience concepts, a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories.

  8. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    Science.gov (United States)

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  9. Ontology based integration of heterogeneous structures in the energy industry; Ontologiebasierte Integration heterogener Standards in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Uslar, Mathias

    2010-07-01

    substations but now also is extended to the scope of distributed energy generation systems. Both large standards families have been developed by the same task committee at IEC by different working groups having different challenges and different viewpoints which led to both structural and semantic incompatibilities to be resolved. A basic harmonization on the level of data models and identifiers is no longer possible as many vendors have adopted the standards for their products. Therefore, the semantic gap has to be closed using other techniques. The approach to use ontologies in order to explicitly specify conceptualisations has spread wide in both science and industry. The goal of this work is to create a semantic description of individual standards in order to have a model and a formal specification of the standards. The next step in the aligning process is to create a mediator ontology which closes the semantic gap between two ontological representations of two or more standards by explicitly and formally stating the equivalent or similar concepts between two standards. This ontology can be used as an artifact in systems like enterprise application integration frameworks in order to provide rules and descriptions how to convert instances and, therefore, leads to an indirect practical harmonization of the standards mentioned before. (orig.)

  10. Definition of an Ontology Matching Algorithm for Context Integration in Smart Cities.

    Science.gov (United States)

    Otero-Cerdeira, Lorena; Rodríguez-Martínez, Francisco J; Gómez-Rodríguez, Alma

    2014-12-08

    In this paper we describe a novel proposal in the field of smart cities: using an ontology matching algorithm to guarantee the automatic information exchange between the agents and the smart city. A smart city is composed by different types of agents that behave as producers and/or consumers of the information in the smart city. In our proposal, the data from the context is obtained by sensor and device agents while users interact with the smart city by means of user or system agents. The knowledge of each agent, as well as the smart city's knowledge, is semantically represented using different ontologies. To have an open city, that is fully accessible to any agent and therefore to provide enhanced services to the users, there is the need to ensure a seamless communication between agents and the city, regardless of their inner knowledge representations, i.e., ontologies. To meet this goal we use ontology matching techniques, specifically we have defined a new ontology matching algorithm called OntoPhil to be deployed within a smart city, which has never been done before. OntoPhil was tested on the benchmarks provided by the well known evaluation initiative, Ontology Alignment Evaluation Initiative, and also compared to other matching algorithms, although these algorithms were not specifically designed for smart cities. Additionally, specific tests involving a smart city's ontology and different types of agents were conducted to validate the usefulness of OntoPhil in the smart city environment.

  11. Huilliche energy. Experiments in integration and ontological disagreements in a wind farm

    Directory of Open Access Journals (Sweden)

    Manuel Tironi

    2017-12-01

    Full Text Available The island of Chiloé, in southern Chile, was the mise-en-scene of an unprecedented project: the development of a wind farm in which the Hulliche community, the ancestral people of the area, would own and run the operation. With the support of the Inter-American Development Bank, the aim of the project was the production of sustainable and renewable energies, but more importantly the integration of indigenous communities into the Chilean society via their participation in a high-value economic enterprise. Drawing on the idea of citizen participation as a form of experimentation, in this article we follow ethnographically the process of incubation, development and failure of this project. The case, we argue, allows a reflection about the risk of cultural aggression embedded in participatory experiments, but also about their capacities to crack open productive spaces for identity, political and ethical speculation. We coin the term “ontological disagreements” to indicate the ambivalences of participatory experiments and to debate about the future of indigenous engagement in energy projects.

  12. Phenotypic integration of the cervical vertebrae in the Hominoidea (Primates).

    Science.gov (United States)

    Villamil, Catalina I

    2018-03-01

    Phenotypic integration and modularity represent important factors influencing evolutionary change. The mammalian cervical vertebral column is particularly interesting in regards to integration and modularity because it is highly constrained to seven elements, despite widely variable morphology. Previous research has found a common pattern of integration among quadrupedal mammals, but integration patterns also evolve in response to locomotor selective pressures like those associated with hominin bipedalism. Here, I test patterns of covariation in the cervical vertebrae of three hominoid primates (Hylobates, Pan, Homo) who engage in upright postures and locomotion. Patterns of integration in the hominoid cervical vertebrae correspond generally to those previously found in other mammals, suggesting that integration in this region is highly conserved, even among taxa that engage in novel positional behaviors. These integration patterns reflect underlying developmental as well as functional modules. The strong integration between vertebrae suggests that the functional morphology of the cervical vertebral column should be considered as a whole, rather than in individual vertebrae. Taxa that display highly derived morphologies in the cervical vertebrae are likely exploiting these integration patterns, rather than reorganizing them. Future work on vertebrates without cervical vertebral number constraints will further clarify the evolution of integration in this region. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  13. Process and Tool Support for Ontology-Aware Life Support System Development and Integration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in ontology development support a rich description of entities that are modeled within a domain and how these entities relate to each other. However,...

  14. A Concept Lattice for Semantic Integration of Geo-Ontologies Based on Weight of Inclusion Degree Importance and Information Entropy

    Directory of Open Access Journals (Sweden)

    Jia Xiao

    2016-11-01

    Full Text Available Constructing a merged concept lattice with formal concept analysis (FCA is an important research direction in the field of integrating multi-source geo-ontologies. Extracting essential geographical properties and reducing the concept lattice are two key points of previous research. A formal integration method is proposed to address the challenges in these two areas. We first extract essential properties from multi-source geo-ontologies and use FCA to build a merged formal context. Second, the combined importance weight of each single attribute of the formal context is calculated by introducing the inclusion degree importance from rough set theory and information entropy; then a weighted formal context is built from the merged formal context. Third, a combined weighted concept lattice is established from the weighted formal context with FCA and the importance weight value of every concept is defined as the sum of weight of attributes belonging to the concept’s intent. Finally, semantic granularity of concept is defined by its importance weight; we, then gradually reduce the weighted concept lattice by setting up diminishing threshold of semantic granularity. Additionally, all of those reduced lattices are organized into a regular hierarchy structure based on the threshold of semantic granularity. A workflow is designed to demonstrate this procedure. A case study is conducted to show feasibility and validity of this method and the procedure to integrate multi-source geo-ontologies.

  15. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    Science.gov (United States)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  16. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.

    Science.gov (United States)

    Shi, Hongbo; Zhang, Guangde; Zhou, Meng; Cheng, Liang; Yang, Haixiu; Wang, Jing; Sun, Jie; Wang, Zhenzhen

    2016-01-01

    MicroRNAs (miRNAs) play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.

  18. Integration of Multiple Genomic and Phenotype Data to Infer Novel miRNA-Disease Associations.

    Directory of Open Access Journals (Sweden)

    Hongbo Shi

    Full Text Available MicroRNAs (miRNAs play an important role in the development and progression of human diseases. The identification of disease-associated miRNAs will be helpful for understanding the molecular mechanisms of diseases at the post-transcriptional level. Based on different types of genomic data sources, computational methods for miRNA-disease association prediction have been proposed. However, individual source of genomic data tends to be incomplete and noisy; therefore, the integration of various types of genomic data for inferring reliable miRNA-disease associations is urgently needed. In this study, we present a computational framework, CHNmiRD, for identifying miRNA-disease associations by integrating multiple genomic and phenotype data, including protein-protein interaction data, gene ontology data, experimentally verified miRNA-target relationships, disease phenotype information and known miRNA-disease connections. The performance of CHNmiRD was evaluated by experimentally verified miRNA-disease associations, which achieved an area under the ROC curve (AUC of 0.834 for 5-fold cross-validation. In particular, CHNmiRD displayed excellent performance for diseases without any known related miRNAs. The results of case studies for three human diseases (glioblastoma, myocardial infarction and type 1 diabetes showed that all of the top 10 ranked miRNAs having no known associations with these three diseases in existing miRNA-disease databases were directly or indirectly confirmed by our latest literature mining. All these results demonstrated the reliability and efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinformatics method for mining novel disease-related miRNAs and providing a new perspective into molecular mechanisms underlying human diseases at the post-transcriptional level. CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.

  19. Ontology for Semantic Data Integration in the Domain of IT Benchmarking.

    Science.gov (United States)

    Pfaff, Matthias; Neubig, Stefan; Krcmar, Helmut

    2018-01-01

    A domain-specific ontology for IT benchmarking has been developed to bridge the gap between a systematic characterization of IT services and their data-based valuation. Since information is generally collected during a benchmark exercise using questionnaires on a broad range of topics, such as employee costs, software licensing costs, and quantities of hardware, it is commonly stored as natural language text; thus, this information is stored in an intrinsically unstructured form. Although these data form the basis for identifying potentials for IT cost reductions, neither a uniform description of any measured parameters nor the relationship between such parameters exists. Hence, this work proposes an ontology for the domain of IT benchmarking, available at https://w3id.org/bmontology. The design of this ontology is based on requirements mainly elicited from a domain analysis, which considers analyzing documents and interviews with representatives from Small- and Medium-Sized Enterprises and Information and Communications Technology companies over the last eight years. The development of the ontology and its main concepts is described in detail (i.e., the conceptualization of benchmarking events, questionnaires, IT services, indicators and their values) together with its alignment with the DOLCE-UltraLite foundational ontology.

  20. Integration of low level and ontology derived features for automatic weapon recognition and identification

    Science.gov (United States)

    Sirakov, Nikolay M.; Suh, Sang; Attardo, Salvatore

    2011-06-01

    This paper presents a further step of a research toward the development of a quick and accurate weapons identification methodology and system. A basic stage of this methodology is the automatic acquisition and updating of weapons ontology as a source of deriving high level weapons information. The present paper outlines the main ideas used to approach the goal. In the next stage, a clustering approach is suggested on the base of hierarchy of concepts. An inherent slot of every node of the proposed ontology is a low level features vector (LLFV), which facilitates the search through the ontology. Part of the LLFV is the information about the object's parts. To partition an object a new approach is presented capable of defining the objects concavities used to mark the end points of weapon parts, considered as convexities. Further an existing matching approach is optimized to determine whether an ontological object matches the objects from an input image. Objects from derived ontological clusters will be considered for the matching process. Image resizing is studied and applied to decrease the runtime of the matching approach and investigate its rotational and scaling invariance. Set of experiments are preformed to validate the theoretical concepts.

  1. EHR-based disease registries to support integrated care in a health neighbourhood: an ontology-based methodology.

    Science.gov (United States)

    Liaw, Siaw-Teng; Taggart, Jane; Yu, Hairong

    2014-01-01

    Disease registries derived from Electronic Health Records (EHRs) are widely used for chronic disease management. We approached registries from the perspective of integrated care in a health neighbourhood, considering data quality issues such as semantic interoperability (consistency), accuracy, completeness and duplication. Our proposition is that a realist ontological approach is required to accurately identify patients in an EHR or data repository, assess data quality and fitness for use by the multidisciplinary integrated care team. We report on this approach with routinely collected data in a practice based research network in Australia.

  2. Matching biomedical ontologies based on formal concept analysis.

    Science.gov (United States)

    Zhao, Mengyi; Zhang, Songmao; Li, Weizhuo; Chen, Guowei

    2018-03-19

    The goal of ontology matching is to identify correspondences between entities from different yet overlapping ontologies so as to facilitate semantic integration, reuse and interoperability. As a well developed mathematical model for analyzing individuals and structuring concepts, Formal Concept Analysis (FCA) has been applied to ontology matching (OM) tasks since the beginning of OM research, whereas ontological knowledge exploited in FCA-based methods is limited. This motivates the study in this paper, i.e., to empower FCA with as much as ontological knowledge as possible for identifying mappings across ontologies. We propose a method based on Formal Concept Analysis to identify and validate mappings across ontologies, including one-to-one mappings, complex mappings and correspondences between object properties. Our method, called FCA-Map, incrementally generates a total of five types of formal contexts and extracts mappings from the lattices derived. First, the token-based formal context describes how class names, labels and synonyms share lexical tokens, leading to lexical mappings (anchors) across ontologies. Second, the relation-based formal context describes how classes are in taxonomic, partonomic and disjoint relationships with the anchors, leading to positive and negative structural evidence for validating the lexical matching. Third, the positive relation-based context can be used to discover structural mappings. Afterwards, the property-based formal context describes how object properties are used in axioms to connect anchor classes across ontologies, leading to property mappings. Last, the restriction-based formal context describes co-occurrence of classes across ontologies in anonymous ancestors of anchors, from which extended structural mappings and complex mappings can be identified. Evaluation on the Anatomy, the Large Biomedical Ontologies, and the Disease and Phenotype track of the 2016 Ontology Alignment Evaluation Initiative campaign

  3. Integrating phenotypic data from electronic patient records with molecular level systems biology

    DEFF Research Database (Denmark)

    Brunak, Søren

    2011-01-01

    Electronic patient records remain a rather unexplored, but potentially rich data source for discovering correlations between diseases. We describe a general approach for gathering phenotypic descriptions of patients from medical records in a systematic and non-cohort dependent manner. By extracti...... Classification of Disease ontology and is therefore in principle language independent. As a use case we show how records from a Danish psychiatric hospital lead to the identification of disease correlations, which subsequently are mapped to systems biology frameworks....

  4. Muscle Research and Gene Ontology: New standards for improved data integration.

    Science.gov (United States)

    Feltrin, Erika; Campanaro, Stefano; Diehl, Alexander D; Ehler, Elisabeth; Faulkner, Georgine; Fordham, Jennifer; Gardin, Chiara; Harris, Midori; Hill, David; Knoell, Ralph; Laveder, Paolo; Mittempergher, Lorenza; Nori, Alessandra; Reggiani, Carlo; Sorrentino, Vincenzo; Volpe, Pompeo; Zara, Ivano; Valle, Giorgio; Deegan, Jennifer

    2009-01-29

    The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO) Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic) experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  5. Integrating the Ontological, Epistemological, and Sociocultural Aspects: A Holistic View of Teacher Education

    Science.gov (United States)

    Huang, Teng

    2016-01-01

    The three aspects of teacher change--ontological, epistemological, and sociocultural--are traditionally regarded as independent. Usually only the epistemological aspect is highlighted in formal teacher education. In this paper, I argue that a holistic and interdependent view of these aspects is needed. Thus, this paper aims to explore the process…

  6. Muscle Research and Gene Ontology: New standards for improved data integration

    Directory of Open Access Journals (Sweden)

    Nori Alessandra

    2009-01-01

    Full Text Available Abstract Background The Gene Ontology Project provides structured controlled vocabularies for molecular biology that can be used for the functional annotation of genes and gene products. In a collaboration between the Gene Ontology (GO Consortium and the muscle biology community, we have made large-scale additions to the GO biological process and cellular component ontologies. The main focus of this ontology development work concerns skeletal muscle, with specific consideration given to the processes of muscle contraction, plasticity, development, and regeneration, and to the sarcomere and membrane-delimited compartments. Our aims were to update the existing structure to reflect current knowledge, and to resolve, in an accommodating manner, the ambiguity in the language used by the community. Results The updated muscle terminologies have been incorporated into the GO. There are now 159 new terms covering critical research areas, and 57 existing terms have been improved and reorganized to follow their usage in muscle literature. Conclusion The revised GO structure should improve the interpretation of data from high-throughput (e.g. microarray and proteomic experiments in the area of muscle science and muscle disease. We actively encourage community feedback on, and gene product annotation with these new terms. Please visit the Muscle Community Annotation Wiki http://wiki.geneontology.org/index.php/Muscle_Biology.

  7. Quantum ontologies

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1988-12-01

    Quantum ontologies are conceptions of the constitution of the universe that are compatible with quantum theory. The ontological orientation is contrasted to the pragmatic orientation of science, and reasons are given for considering quantum ontologies both within science, and in broader contexts. The principal quantum ontologies are described and evaluated. Invited paper at conference: Bell's Theorem, Quantum Theory, and Conceptions of the Universe, George Mason University, October 20-21, 1988. 16 refs

  8. Towards Agile Ontology Maintenance

    Science.gov (United States)

    Luczak-Rösch, Markus

    Ontologies are an appropriate means to represent knowledge on the Web. Research on ontology engineering reached practices for an integrative lifecycle support. However, a broader success of ontologies in Web-based information systems remains unreached while the more lightweight semantic approaches are rather successful. We assume, paired with the emerging trend of services and microservices on the Web, new dynamic scenarios gain momentum in which a shared knowledge base is made available to several dynamically changing services with disparate requirements. Our work envisions a step towards such a dynamic scenario in which an ontology adapts to the requirements of the accessing services and applications as well as the user's needs in an agile way and reduces the experts' involvement in ontology maintenance processes.

  9. Phenotypic plasticity and morphological integration in a marine modular invertebrate

    Directory of Open Access Journals (Sweden)

    Manrique Nelson

    2007-07-01

    Full Text Available Abstract Background Colonial invertebrates such as corals exhibit nested levels of modularity, imposing a challenge to the depiction of their morphological evolution. Comparisons among diverse Caribbean gorgonian corals suggest decoupling of evolution at the polyp vs. branch/internode levels. Thus, evolutionary change in polyp form or size (the colonial module sensu stricto does not imply a change in colony form (constructed of modular branches and other emergent features. This study examined the patterns of morphological integration at the intraspecific level. Pseudopterogorgia bipinnata (Verrill (Octocorallia: Gorgoniidae is a Caribbean shallow water gorgonian that can colonize most reef habitats (shallow/exposed vs. deep/protected; 1–45 m and shows great morphological variation. Results To characterize the genotype/environment relationship and phenotypic plasticity in P. bipinnata, two microsatellite loci, mitochondrial (MSH1 and nuclear (ITS DNA sequences, and (ITS2 DGGE banding patterns were initially compared among the populations present in the coral reefs of Belize (Carrie Bow Cay, Panama (Bocas del Toro, Colombia (Cartagena and the Bahamas (San Salvador. Despite the large and discrete differentiation of morphotypes, there was no concordant genetic variation (DGGE banding patterns in the ITS2 genotypes from Belize, Panama and Colombia. ITS1–5.8S-ITS2 phylogenetic analysis afforded evidence for considering the species P. kallos (Bielschowsky as the shallow-most morphotype of P. bipinnata from exposed environments. The population from Carrie Bow Cay, Belize (1–45 m was examined to determine the phenotypic integration of modular features such as branch thickness, polyp aperture, inter-polyp distance, internode length and branch length. Third-order partial correlation coefficients suggested significant integration between polypar and colonial traits. Some features did not change at all despite 10-fold differences in other integrated

  10. Integrating ontologies and argumentation for decision-making in breast cancer

    OpenAIRE

    Williams, M. H.

    2009-01-01

    This thesis describes some of the problems in providing care for patients with breast cancer. These are then used to motivate the development of an extension to an existing theory of argumentation, which I call the Ontology-based Argumentation Formalism (OAF). The work is assessed in both theoretical and empirical ways. From a clinical perspective, there is a problem with the provision of care. Numerous reports have noted the failure to provide uniformly high quality care, as w...

  11. Electronic health records and disease registries to support integrated care in a health neighbourhood: an ontology-based methodology.

    Science.gov (United States)

    Liaw, Siaw-Teng; Taggart, Jane; Yu, Hairong; Rahimi, Alireza

    2014-01-01

    Disease registries derived from Electronic Health Records (EHRs) are widely used for chronic disease management (CDM). However, unlike national registries which are specialised data collections, they are usually specific to an EHR or organization such as a medical home. We approached registries from the perspective of integrated care in a health neighbourhood, considering data quality issues such as semantic interoperability (consistency), accuracy, completeness and duplication. Our proposition is that a realist ontological approach is required to systematically and accurately identify patients in an EHR or data repository of EHRs, assess intrinsic data quality and fitness for use by members of the multidisciplinary integrated care team. We report on this approach as applied to routinely collected data in an electronic practice based research network in Australia.

  12. Integrating Vygotsky's theory of relational ontology into early childhood science education

    Science.gov (United States)

    Kirch, Susan A.

    2014-03-01

    In Science Education during Early Childhood: A Cultural- Historical Perspective, Wolff-Michael Roth, Maria Inês Mafra Goulart and Katerina Plakitsi explore the practical application of Vygotsky's relational ontological theory of human development to early childhood science teaching and teacher development. In this review, I interrogate how Roth et al. conceptualize "emergent curriculum" within the Eurocentric cultural-historical traditions of early childhood education that evolved primarily from the works of Vygotsky and Piaget and compare it to the conceptualizations from other prominent early childhood researchers and curriculum developers. I examine the implications of the authors' interpretation of emergence for early childhood science education and teacher preparation.

  13. The Electronic Notebook Ontology

    OpenAIRE

    Chalk, Stuart

    2016-01-01

    Science is rapidly being brought into the electronic realm and electronic laboratory notebooks (ELN) are a big part of this activity. The representation of the scientific process in the context of an ELN is an important component to making the data recorded in ELNs semantically integrated. This presentation will outline initial developments of an Electronic Notebook Ontology (ENO) that will help tie together the ExptML ontology, HCLS Community Profile data descriptions, and the VIVO-ISF ontol...

  14. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  15. Phenotype abnormality - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available ion of ontology terms and properties. Phenotypes for morphology are standardized using Plant Ontology... (PO) or Trait Ontology (TO), with Phenotype Ontology (PATO). PATO is the vocabulary cov... tolerance can be expressed using Gene Ontology (GO), ChEBI etc. Some phenotypes are observed under some spe...h URL http://togodb.biosciencedbc.jp/togodb/view/cpp_abnormality#en Data acquisition method Plant Ontology, Phenotype Ontology

  16. Addressing issues in foundational ontology mediation

    CSIR Research Space (South Africa)

    Khan, ZC

    2013-09-01

    Full Text Available An approach in achieving semantic interoperability among heterogeneous systems is to offer infrastructure to assist with linking and integration using a foundational ontology. Due to the creation of multiple foundational ontologies, this also means...

  17. The macroevolutionary consequences of phenotypic integration: from development to deep time.

    Science.gov (United States)

    Goswami, A; Smaers, J B; Soligo, C; Polly, P D

    2014-08-19

    Phenotypic integration is a pervasive characteristic of organisms. Numerous analyses have demonstrated that patterns of phenotypic integration are conserved across large clades, but that significant variation also exists. For example, heterochronic shifts related to different mammalian reproductive strategies are reflected in postcranial skeletal integration and in coordination of bone ossification. Phenotypic integration and modularity have been hypothesized to shape morphological evolution, and we extended simulations to confirm that trait integration can influence both the trajectory and magnitude of response to selection. We further demonstrate that phenotypic integration can produce both more and less disparate organisms than would be expected under random walk models by repartitioning variance in preferred directions. This effect can also be expected to favour homoplasy and convergent evolution. New empirical analyses of the carnivoran cranium show that rates of evolution, in contrast, are not strongly influenced by phenotypic integration and show little relationship to morphological disparity, suggesting that phenotypic integration may shape the direction of evolutionary change, but not necessarily the speed of it. Nonetheless, phenotypic integration is problematic for morphological clocks and should be incorporated more widely into models that seek to accurately reconstruct both trait and organismal evolution.

  18. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG.

    Science.gov (United States)

    Liyanage, H; Liaw, S-T; Kuziemsky, C; Terry, A L; Jones, S; Soler, J K; de Lusignan, S

    2013-01-01

    Most chronic diseases are managed in primary and ambulatory care. The chronic care model (CCM) suggests a wide range of community, technological, team and patient factors contribute to effective chronic disease management. Ontologies have the capability to enable formalised linkage of heterogeneous data sources as might be found across the elements of the CCM. To describe the evidence base for using ontologies and other semantic integration methods to support chronic disease management. We reviewed the evidence-base for the use of ontologies and other semantic integration methods within and across the elements of the CCM. We report them using a realist review describing the context in which the mechanism was applied, and any outcome measures. Most evidence was descriptive with an almost complete absence of empirical research and important gaps in the evidence-base. We found some use of ontologies and semantic integration methods for community support of the medical home and for care in the community. Ubiquitous information technology (IT) and other IT tools were deployed to support self-management support, use of shared registries, health behavioural models and knowledge discovery tools to improve delivery system design. Data quality issues restricted the use of clinical data; however there was an increased use of interoperable data and health system integration. Ontologies and semantic integration methods are emergent with limited evidence-base for their implementation. However, they have the potential to integrate the disparate community wide data sources to provide the information necessary for effective chronic disease management.

  19. An ontology approach to comparative phenomics in plants

    Science.gov (United States)

    Plant phenotypes (observable characteristics) are described using many different formats and specialized vocabularies or "ontologies". Similar phenotypes in different species may be given different names. These differences in terms complicate phenotype comparisons across species. This research descr...

  20. Ontological Planning

    Directory of Open Access Journals (Sweden)

    Ahmet Alkan

    2017-12-01

    • Is it possible to redefine ontology within the hierarchical structure of planning? We are going to seek answers to some of these questions within the limited scope of this paper and we are going to offer the rest for discussion by just asking them. In light of these assessments, drawing attention, based on ontological knowledge relying on the wholeness of universe, to the question, on macro level planning, of whether or not the ontological realities of man, energy and movements of thinking can provide macro data for planning on a universal level as important factors affecting mankind will be one of the limited objectives of the paper.

  1. Geobiology of the Critical Zone: the Hierarchies of Process, Form and Life provide an Integrated Ontology

    Science.gov (United States)

    Cotterill, Fenton P. D.

    2016-04-01

    geomorphology characterize Africa's older surfaces, many of which qualify as palimpsests: overwritten and reshaped repeatedly over timescales of 10 000-100 000 000 yr. Inheritance, equifinality, and exhumation are commonly invoked to explain such landscape patterns, but are difficult to measure and thus test; here Africa's vast, deep regoliths epitomize the starkness of these challenges facing researchers across much of the continent. These deficiencies and problems are magnified when we consider the knowledge we seek of African landscape evolution toward resolving the complex history of the African plate since its individuation. The credentials of this knowledge are prescribed by the evidence needed to test competing hypotheses, especially invoking first order determinants of landscape dynamics e.g. membrane tectonics (Oxburgh ER & Turcotte DL 1974. Earth Planet. Sci. Lett. 22:133-140) versus plumes (Foulger G 2013. Plates vs Plumes: A Geological Controversy. Wiley Blackwell). The evidence needed to test such competing hypotheses demands robust reconstructions of the individuated histories of landforms; in the African context, robustness pertains to the representativeness of events reconstructed in form and space (up to continental scales) and back through time from the Neogene into the Late Mesozoic. The ideal map of quantitative evidence must aim to integrate salient details in the trajectories of individuated landforms representing the principal landscapes of all Africa's margins, basins and watersheds. This in turn demands measurements - in mesoscale detail - of relief, drainage and regolith back though time, wherever keystone packages of evidence have survived Gondwana break up and its aftermath. Such a strategy is indeed ambitious, and it may well be dismissed as impractical. Nevertheless, the alternatives fall short. If it is to be representative of the history it purports to explain, we need the mesoscale facts to inform any narrative of a larger landscape (regional

  2. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  3. Ontology-based Vaccine and Drug Adverse Event Representation and Theory-guided Systematic Causal Network Analysis toward Integrative Pharmacovigilance Research.

    Science.gov (United States)

    He, Yongqun

    2016-06-01

    Compared with controlled terminologies ( e.g. , MedDRA, CTCAE, and WHO-ART), the community-based Ontology of AEs (OAE) has many advantages in adverse event (AE) classifications. The OAE-derived Ontology of Vaccine AEs (OVAE) and Ontology of Drug Neuropathy AEs (ODNAE) serve as AE knowledge bases and support data integration and analysis. The Immune Response Gene Network Theory explains molecular mechanisms of vaccine-related AEs. The OneNet Theory of Life treats the whole process of a life of an organism as a single complex and dynamic network ( i.e. , OneNet). A new "OneNet effectiveness" tenet is proposed here to expand the OneNet theory. Derived from the OneNet theory, the author hypothesizes that one human uses one single genotype-rooted mechanism to respond to different vaccinations and drug treatments, and experimentally identified mechanisms are manifestations of the OneNet blueprint mechanism under specific conditions. The theories and ontologies interact together as semantic frameworks to support integrative pharmacovigilance research.

  4. Consistent data models and security standards for power system control through their standard compliant integration via ontologies; Einheitliche Datenmodelle und Sicherheitsstandards in der Netzleittechnik durch ihre standardkonforme Integration mittels Ontologien

    Energy Technology Data Exchange (ETDEWEB)

    Uslar, Mathias; Beenken, Petra; Beer, Sebastian [OFFIS, Oldenburg (Germany)

    2009-07-01

    The ongoing integration of distributed energy recourses into the existing power grid has lead to both grown communication costs and an increased need for interoperability between the involved actors. In this context, standardized and ontology- based data models help to reduce integration costs in heterogeneous system landscapes. Using ontology-based security profiles, such models can be extended with meta-data containing information about security measures for energyrelated data in need of protection. By this approach, we achieve both a unified data model and a unified security level. (orig.)

  5. Ontology-based data integration from heterogeneous urban systems : A knowledge representation framework for smart cities

    NARCIS (Netherlands)

    Psyllidis, A.

    2015-01-01

    This paper presents a novel knowledge representation framework for smart city planning and management that enables the semantic integration of heterogeneous urban data from diverse sources. Currently, the combination of information across city agencies is cumbersome, as the increasingly available

  6. The Plant Phenology Ontology: A New Informatics Resource for Large-Scale Integration of Plant Phenology Data.

    Science.gov (United States)

    Stucky, Brian J; Guralnick, Rob; Deck, John; Denny, Ellen G; Bolmgren, Kjell; Walls, Ramona

    2018-01-01

    Plant phenology - the timing of plant life-cycle events, such as flowering or leafing out - plays a fundamental role in the functioning of terrestrial ecosystems, including human agricultural systems. Because plant phenology is often linked with climatic variables, there is widespread interest in developing a deeper understanding of global plant phenology patterns and trends. Although phenology data from around the world are currently available, truly global analyses of plant phenology have so far been difficult because the organizations producing large-scale phenology data are using non-standardized terminologies and metrics during data collection and data processing. To address this problem, we have developed the Plant Phenology Ontology (PPO). The PPO provides the standardized vocabulary and semantic framework that is needed for large-scale integration of heterogeneous plant phenology data. Here, we describe the PPO, and we also report preliminary results of using the PPO and a new data processing pipeline to build a large dataset of phenology information from North America and Europe.

  7. SUGOI: automated ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2015-04-01

    Full Text Available A foundational ontology can solve interoperability issues among the domain ontologies aligned to it. However, several foundational ontologies have been developed, hence such interoperability issues exist among domain ontologies. The novel SUGOI tool...

  8. Local Integration Ontological Model of Creative Class Migrants for Creative Cities

    Science.gov (United States)

    Sangkakorn, Korawan; Chakpitak, Nopasit; Yodmongkol, Pitipong

    2015-01-01

    An innovative creative class drives creative cities, urban areas in which diverse cultures are integrated into social and economic functions. The creative city of Chiang Mai, Thailand is renowned for its vibrant Lan Na culture and traditions, and draws new migrants from other areas in Thailand seeking to become part of the creative class. This…

  9. The use of semantic similarity measures for optimally integrating heterogeneous Gene Ontology data from large scale annotation pipelines

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    2014-08-01

    Full Text Available With the advancement of new high throughput sequencing technologies, there has been an increase in the number of genome sequencing projects worldwide, which has yielded complete genome sequences of human, animals and plants. Subsequently, several labs have focused on genome annotation, consisting of assigning functions to gene products, mostly using Gene Ontology (GO terms. As a consequence, there is an increased heterogeneity in annotations across genomes due to different approaches used by different pipelines to infer these annotations and also due to the nature of the GO structure itself. This makes a curator's task difficult, even if they adhere to the established guidelines for assessing these protein annotations. Here we develop a genome-scale approach for integrating GO annotations from different pipelines using semantic similarity measures. We used this approach to identify inconsistencies and similarities in functional annotations between orthologs of human and Drosophila melanogaster, to assess the quality of GO annotations derived from InterPro2GO mappings compared to manually annotated GO annotations for the Drosophila melanogaster proteome from a FlyBase dataset and human, and to filter GO annotation data for these proteomes. Results obtained indicate that an efficient integration of GO annotations eliminates redundancy up to 27.08 and 22.32% in the Drosophila melanogaster and human GO annotation datasets, respectively. Furthermore, we identified lack of and missing annotations for some orthologs, and annotation mismatches between InterPro2GO and manual pipelines in these two proteomes, thus requiring further curation. This simplifies and facilitates tasks of curators in assessing protein annotations, reduces redundancy and eliminates inconsistencies in large annotation datasets for ease of comparative functional genomics.

  10. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk

    OpenAIRE

    Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang

    2018-01-01

    Background Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each o...

  11. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    Science.gov (United States)

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The Monarch Initiative: an integrative data and analytic platform connecting phenotypes to genotypes across species

    International Nuclear Information System (INIS)

    Mungall, Christopher J.; McMurry, Julie A.; Köhler, Sebastian; Balhoff, James P.; Borromeo, Charles

    2016-01-01

    The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Nonhuman organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.

  13. Phenotypic integration and the evolution of signal repertoires: A case study of treefrog acoustic communication.

    Science.gov (United States)

    Reichert, Michael S; Höbel, Gerlinde

    2018-03-01

    Animal signals are inherently complex phenotypes with many interacting parts combining to elicit responses from receivers. The pattern of interrelationships between signal components reflects the extent to which each component is expressed, and responds to selection, either in concert with or independently of others. Furthermore, many species have complex repertoires consisting of multiple signal types used in different contexts, and common morphological and physiological constraints may result in interrelationships extending across the multiple signals in species' repertoires. The evolutionary significance of interrelationships between signal traits can be explored within the framework of phenotypic integration, which offers a suite of quantitative techniques to characterize complex phenotypes. In particular, these techniques allow for the assessment of modularity and integration, which describe, respectively, the extent to which sets of traits covary either independently or jointly. Although signal and repertoire complexity are thought to be major drivers of diversification and social evolution, few studies have explicitly measured the phenotypic integration of signals to investigate the evolution of diverse communication systems. We applied methods from phenotypic integration studies to quantify integration in the two primary vocalization types (advertisement and aggressive calls) in the treefrogs Hyla versicolor , Hyla cinerea, and Dendropsophus ebraccatus . We recorded male calls and calculated standardized phenotypic variance-covariance ( P ) matrices for characteristics within and across call types. We found significant integration across call types, but the strength of integration varied by species and corresponded with the acoustic similarity of the call types within each species. H. versicolor had the most modular advertisement and aggressive calls and the least acoustically similar call types. Additionally, P was robust to changing social competition

  14. LOGISTICS OPTIMIZATION USING ONTOLOGIES

    OpenAIRE

    Hendi , Hayder; Ahmad , Adeel; Bouneffa , Mourad; Fonlupt , Cyril

    2014-01-01

    International audience; Logistics processes involve complex physical flows and integration of different elements. It is widely observed that the uncontrolled processes can decline the state of logistics. The optimization of logistic processes can support the desired growth and consistent continuity of logistics. In this paper, we present a software framework for logistic processes optimization. It primarily defines logistic ontologies and then optimize them. It intends to assist the design of...

  15. Ontology authoring with Forza

    CSIR Research Space (South Africa)

    Keet, CM

    2014-11-01

    Full Text Available Generic, reusable ontology elements, such as a foundational ontology's categories and part-whole relations, are essential for good and interoperable knowledge representation. Ontology developers, which include domain experts and novices, face...

  16. Ontological Surprises

    DEFF Research Database (Denmark)

    Leahu, Lucian

    2016-01-01

    a hybrid approach where machine learning algorithms are used to identify objects as well as connections between them; finally, it argues for remaining open to ontological surprises in machine learning as they may enable the crafting of different relations with and through technologies.......This paper investigates how we might rethink design as the technological crafting of human-machine relations in the context of a machine learning technique called neural networks. It analyzes Google’s Inceptionism project, which uses neural networks for image recognition. The surprising output...

  17. Multi-Level Integration of Environmentally Perturbed Internal Phenotypes Reveals Key Points of Connectivity between Them

    Directory of Open Access Journals (Sweden)

    Nirupama Benis

    2017-06-01

    Full Text Available The genotype and external phenotype of organisms are linked by so-called internal phenotypes which are influenced by environmental conditions. In this study, we used five existing -omics datasets representing five different layers of internal phenotypes, which were simultaneously measured in dietarily perturbed mice. We performed 10 pair-wise correlation analyses verified with a null model built from randomized data. Subsequently, the inferred networks were merged and literature mined for co-occurrences of identified linked nodes. Densely connected internal phenotypes emerged. Forty-five nodes have links with all other data-types and we denote them “connectivity hubs.” In literature, we found proof of 6% of the 577 connections, suggesting a biological meaning for the observed correlations. The observed connectivities between metabolite and cytokines hubs showed higher numbers of literature hits as compared to the number of literature hits on the connectivities between the microbiota and gene expression internal phenotypes. We conclude that multi-level integrated networks may help to generate hypotheses and to design experiments aiming to further close the gap between genotype and phenotype. We describe and/or hypothesize on the biological relevance of four identified multi-level connectivity hubs.

  18. Convergent evolution of phenotypic integration and its alignment with morphological diversification in Caribbean Anolis ecomorphs.

    Science.gov (United States)

    Kolbe, Jason J; Revell, Liam J; Szekely, Brian; Brodie, Edmund D; Losos, Jonathan B

    2011-12-01

    The adaptive landscape and the G-matrix are keys concepts for understanding how quantitative characters evolve during adaptive radiation. In particular, whether the adaptive landscape can drive convergence of phenotypic integration (i.e., the pattern of phenotypic variation and covariation summarized in the P-matrix) is not well studied. We estimated and compared P for 19 morphological traits in eight species of Caribbean Anolis lizards, finding that similarity in P among species was not correlated with phylogenetic distance. However, greater similarity in P among ecologically similar Anolis species (i.e., the trunk-ground ecomorph) suggests the role of convergent natural selection. Despite this convergence and relatively deep phylogenetic divergence, a large portion of eigenstructure of P is retained among our eight focal species. We also analyzed P as an approximation of G to test for correspondence with the pattern of phenotypic divergence in 21 Caribbean Anolis species. These patterns of covariation were coincident, suggesting that either genetic constraint has influenced the pattern of among-species divergence or, alternatively, that the adaptive landscape has influenced both G and the pattern of phenotypic divergence among species. We provide evidence for convergent evolution of phenotypic integration for one class of Anolis ecomorph, revealing yet another important dimension of evolutionary convergence in this group. No Claim to original U.S. government works.

  19. Merged ontology for engineering design: Contrasting empirical and theoretical approaches to develop engineering ontologies

    DEFF Research Database (Denmark)

    Ahmed, Saeema; Storga, M

    2009-01-01

    to developing the ontology engineering design integrated taxonomies (EDIT) with a theoretical approach in which concepts and relations are elicited from engineering design theories ontology (DO) The limitations and advantages of each approach are discussed. The research methodology adopted is to map......This paper presents a comparison of two previous and separate efforts to develop an ontology in the engineering design domain, together with an ontology proposal from which ontologies for a specific application may be derived. The research contrasts an empirical, user-centered approach...

  20. Building a biomedical ontology recommender web service

    Directory of Open Access Journals (Sweden)

    Jonquet Clement

    2010-06-01

    Full Text Available Abstract Background Researchers in biomedical informatics use ontologies and terminologies to annotate their data in order to facilitate data integration and translational discoveries. As the use of ontologies for annotation of biomedical datasets has risen, a common challenge is to identify ontologies that are best suited to annotating specific datasets. The number and variety of biomedical ontologies is large, and it is cumbersome for a researcher to figure out which ontology to use. Methods We present the Biomedical Ontology Recommender web service. The system uses textual metadata or a set of keywords describing a domain of interest and suggests appropriate ontologies for annotating or representing the data. The service makes a decision based on three criteria. The first one is coverage, or the ontologies that provide most terms covering the input text. The second is connectivity, or the ontologies that are most often mapped to by other ontologies. The final criterion is size, or the number of concepts in the ontologies. The service scores the ontologies as a function of scores of the annotations created using the National Center for Biomedical Ontology (NCBO Annotator web service. We used all the ontologies from the UMLS Metathesaurus and the NCBO BioPortal. Results We compare and contrast our Recommender by an exhaustive functional comparison to previously published efforts. We evaluate and discuss the results of several recommendation heuristics in the context of three real world use cases. The best recommendations heuristics, rated ‘very relevant’ by expert evaluators, are the ones based on coverage and connectivity criteria. The Recommender service (alpha version is available to the community and is embedded into BioPortal.

  1. Gene Ontology

    Directory of Open Access Journals (Sweden)

    Gaston K. Mazandu

    2012-01-01

    Full Text Available The wide coverage and biological relevance of the Gene Ontology (GO, confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.

  2. Phenotypic plasticity in the developmental integration of morphological trade-offs and secondary sexual trait compensation.

    Science.gov (United States)

    Tomkins, Joseph L; Kotiaho, Janne S; Lebas, Natasha R

    2005-03-07

    Trait exaggeration through sexual selection will tale place alongside other changes in phenotype. Exaggerated morphology might be compensated by parallel changes in traits that support, enhance or facilitate exaggeration: 'secondary sexual trait compensation' (SSTC). Alternatively, exaggeration might be realized at the expense of other traits through morphological trade-offs. For the most part, SSTC has only been examined interspecifically. For these phenomena to be important intraspecifically, the sexual trait must be developmentally integrated with the compensatory or competing trait. We studied developmental integration in two species with different development: the holometabolous beetle Onthophagus taurus and the hemimetabolous earwig Forficula auricularia. Male-dimorphic variation in trait exaggeration was exploited to expose both trade-offs and SSTC. We found evidence for morphological trade-offs in O. taurus, but no F. auricularia, supporting the notion that trade-offs are more likely in closed developmetal systems. However, we found these trade-offs were not limited solely to traits growing close together. Developmental integration of structures involved in SSTC were detected in both species. The developmental integration of SSTC was phenotypically plastic, such that the compensation for relatively larger sexual traits was greater in the exasperated male morphs. Evidence of intraspecific SSTC demands studies of the selective, genetic and developmental architecture of phenotypic integration.

  3. The eXtensible ontology development (XOD) principles and tool implementation to support ontology interoperability.

    Science.gov (United States)

    He, Yongqun; Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; Overton, James A; Ong, Edison

    2018-01-12

    Ontologies are critical to data/metadata and knowledge standardization, sharing, and analysis. With hundreds of biological and biomedical ontologies developed, it has become critical to ensure ontology interoperability and the usage of interoperable ontologies for standardized data representation and integration. The suite of web-based Ontoanimal tools (e.g., Ontofox, Ontorat, and Ontobee) support different aspects of extensible ontology development. By summarizing the common features of Ontoanimal and other similar tools, we identified and proposed an "eXtensible Ontology Development" (XOD) strategy and its associated four principles. These XOD principles reuse existing terms and semantic relations from reliable ontologies, develop and apply well-established ontology design patterns (ODPs), and involve community efforts to support new ontology development, promoting standardized and interoperable data and knowledge representation and integration. The adoption of the XOD strategy, together with robust XOD tool development, will greatly support ontology interoperability and robust ontology applications to support data to be Findable, Accessible, Interoperable and Reusable (i.e., FAIR).

  4. Use of the CIM Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, Scott; Britton, Jay; Devos, Arnold N.; Widergren, Steven E.

    2006-02-08

    There are many uses for the Common Information Model (CIM), an ontology that is being standardized through Technical Committee 57 of the International Electrotechnical Commission (IEC TC57). The most common uses to date have included application modeling, information exchanges, information management and systems integration. As one should expect, there are many issues that become apparent when the CIM ontology is applied to any one use. Some of these issues are shortcomings within the current draft of the CIM, and others are a consequence of the different ways in which the CIM can be applied using different technologies. As the CIM ontology will and should evolve, there are several dangers that need to be recognized. One is overall consistency and impact upon applications when extending the CIM for a specific need. Another is that a tight coupling of the CIM to specific technologies could limit the value of the CIM in the longer term as an ontology, which becomes a larger issue over time as new technologies emerge. The integration of systems is one specific area of interest for application of the CIM ontology. This is an area dominated by the use of XML for the definition of messages. While this is certainly true when using Enterprise Application Integration (EAI) products, it is even more true with the movement towards the use of Web Services (WS), Service-Oriented Architectures (SOA) and Enterprise Service Buses (ESB) for integration. This general IT industry trend is consistent with trends seen within the IEC TC57 scope of power system management and associated information exchange. The challenge for TC57 is how to best leverage the CIM ontology using the various XML technologies and standards for integration. This paper will provide examples of how the CIM ontology is used and describe some specific issues that should be addressed within the CIM in order to increase its usefulness as an ontology. It will also describe some of the issues and challenges that will

  5. Didactical Ontologies

    Directory of Open Access Journals (Sweden)

    Steffen Mencke, Reiner Dumke

    2008-03-01

    Full Text Available Ontologies are a fundamental concept of theSemantic Web envisioned by Tim Berners-Lee [1]. Togetherwith explicit representation of the semantics of data formachine-accessibility such domain theories are the basis forintelligent next generation applications for the web andother areas of interest [2]. Their application for specialaspects within the domain of e-learning is often proposed tosupport the increasing complexity ([3], [4], [5], [6]. So theycan provide a better support for course generation orlearning scenario description [7]. By the modeling ofdidactics-related expertise and their provision for thecreators of courses many improvements like reuse, rapiddevelopment and of course increased learning performancebecome possible due to the separation from other aspects ofe-learning platforms as already proposed in [8].

  6. NCBO Ontology Recommender 2.0: an enhanced approach for biomedical ontology recommendation.

    Science.gov (United States)

    Martínez-Romero, Marcos; Jonquet, Clement; O'Connor, Martin J; Graybeal, John; Pazos, Alejandro; Musen, Mark A

    2017-06-07

    Ontologies and controlled terminologies have become increasingly important in biomedical research. Researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability across disparate datasets. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a novel recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four different criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies to use together. It also can be customized to fit the needs of different ontology recommendation scenarios. Ontology Recommender 2.0 suggests relevant ontologies for annotating biomedical text data. It combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability

  7. Knowledge engineering as a support for building an actor profile ontology for integrating Home-Care systems.

    Science.gov (United States)

    Gibert, Karina; Valls, Aida; Riaño, David

    2008-01-01

    One of the tasks towards the definition of a knowledge model for home care is the definition of the different roles of the users involved in the system. The roles determine the actions and services that can or must be performed by each type of user. In this paper the experience of building an ontology to represent the home-care users and their associated information is presented, in a proposal for a standard model of a Home-Care support system to the European Community.

  8. Ontologies and Information Systems: A Literature Survey

    Science.gov (United States)

    2011-06-01

    Falcon-AO (LMO + GMO ) [146], and RiMOM [317]. Meta-matching systems include APFEL [76] and eTuner [286]. There also exist frameworks that provide a set...Jian, N., Qu, Y. and Wang, Q. 2005. GMO : A graph matching for ontologies. In Proceedings of the K-CAPWorkshop on Integrating Ontologies, Banff

  9. Collaborative ontology development for the geosciences

    NARCIS (Netherlands)

    Kalbasi Khoramdashti, R.; Janowicz, K.; Reitsma, F.; Boerboom, L.G.J.; Alasheikh, A.

    2014-01-01

    Ontology-based information publishing, retrieval, reuse, and integration have become popular research topics to address the challenges involved in exchanging data between heterogeneous sources. However, in most cases ontologies are still developed in a centralized top-down manner by a few knowledge

  10. Integrating evo-devo with ecology for a better understanding of phenotypic evolution.

    Science.gov (United States)

    Santos, M Emília; Berger, Chloé S; Refki, Peter N; Khila, Abderrahman

    2015-11-01

    Evolutionary developmental biology (evo-devo) has provided invaluable contributions to our understanding of the mechanistic relationship between genotypic and phenotypic change. Similarly, evolutionary ecology has greatly advanced our understanding of the relationship between the phenotype and the environment. To fully understand the evolution of organismal diversity, a thorough integration of these two fields is required. This integration remains highly challenging because model systems offering a rich ecological and evolutionary background, together with the availability of developmental genetic tools and genomic resources, are scarce. In this review, we introduce the semi-aquatic bugs (Gerromorpha, Heteroptera) as original models well suited to study why and how organisms diversify. The Gerromorpha invaded water surfaces over 200 mya and diversified into a range of remarkable new forms within this new ecological habitat. We summarize the biology and evolutionary history of this group of insects and highlight a set of characters associated with the habitat change and the diversification that followed. We further discuss the morphological, behavioral, molecular and genomic tools available that together make semi-aquatic bugs a prime model for integration across disciplines. We present case studies showing how the implementation and combination of these approaches can advance our understanding of how the interaction between genotypes, phenotypes and the environment drives the evolution of distinct morphologies. Finally, we explain how the same set of experimental designs can be applied in other systems to address similar biological questions. © The Author 2015. Published by Oxford University Press.

  11. Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob; Hohimer, Ryan E.; White, Amanda M.

    2006-06-06

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  12. Automating Ontological Annotation with WordNet

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Tratz, Stephen C.; Gregory, Michelle L.; Chappell, Alan R.; Whitney, Paul D.; Posse, Christian; Paulson, Patrick R.; Baddeley, Bob L.; Hohimer, Ryan E.; White, Amanda M.

    2006-01-22

    Semantic Web applications require robust and accurate annotation tools that are capable of automating the assignment of ontological classes to words in naturally occurring text (ontological annotation). Most current ontologies do not include rich lexical databases and are therefore not easily integrated with word sense disambiguation algorithms that are needed to automate ontological annotation. WordNet provides a potentially ideal solution to this problem as it offers a highly structured lexical conceptual representation that has been extensively used to develop word sense disambiguation algorithms. However, WordNet has not been designed as an ontology, and while it can be easily turned into one, the result of doing this would present users with serious practical limitations due to the great number of concepts (synonym sets) it contains. Moreover, mapping WordNet to an existing ontology may be difficult and requires substantial labor. We propose to overcome these limitations by developing an analytical platform that (1) provides a WordNet-based ontology offering a manageable and yet comprehensive set of concept classes, (2) leverages the lexical richness of WordNet to give an extensive characterization of concept class in terms of lexical instances, and (3) integrates a class recognition algorithm that automates the assignment of concept classes to words in naturally occurring text. The ensuing framework makes available an ontological annotation platform that can be effectively integrated with intelligence analysis systems to facilitate evidence marshaling and sustain the creation and validation of inference models.

  13. A Systems Approach to Refine Disease Taxonomy by Integrating Phenotypic and Molecular Networks

    Directory of Open Access Journals (Sweden)

    Xuezhong Zhou

    2018-05-01

    Full Text Available The International Classification of Diseases (ICD relies on clinical features and lags behind the current understanding of the molecular specificity of disease pathobiology, necessitating approaches that incorporate growing biomedical data for classifying diseases to meet the needs of precision medicine. Our analysis revealed that the heterogeneous molecular diversity of disease chapters and the blurred boundary between disease categories in ICD should be further investigated. Here, we propose a new classification of diseases (NCD by developing an algorithm that predicts the additional categories of a disease by integrating multiple networks consisting of disease phenotypes and their molecular profiles. With statistical validations from phenotype-genotype associations and interactome networks, we demonstrate that NCD improves disease specificity owing to its overlapping categories and polyhierarchical structure. Furthermore, NCD captures the molecular diversity of diseases and defines clearer boundaries in terms of both phenotypic similarity and molecular associations, establishing a rational strategy to reform disease taxonomy. Keywords: Disease taxonomy, Network medicine, Disease phenotypes, Molecular profiles, Precision medicine

  14. Plant phenotype - Arabidopsis Phenome Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available of organs, tissues, development stages. The vocabulary is defined in Plant Ontology(PO). Qualities: Characte...ristics, attributes of entities. The vocabulary is defined in Phenotype Ontology(PATO). Data file File name:...w/riken_piam_phenome#en Data acquisition method Plant Ontology, Phenotype Ontology Data analysis method - Nu

  15. Applications of the ACGT Master Ontology on Cancer

    OpenAIRE

    Brochhausen, Mathias; Weiler, Gabriele; Martín Martín, Luis; Cocos, Cristian; Stenzhorn, Holger; Graf, Norbert; Dörr, Martin; Tsiknakis, Manolis; Smith, Barry

    2008-01-01

    In this paper we present applications of the ACGT Master Ontology (MO) which is a new terminology resource for a transnational network providing data exchange in oncology, emphasizing the integration of both clinical and molecular data. The development of a new ontology was necessary due to problems with existing biomedical ontologies in oncology. The ACGT MO is a test case for the application of best practices in ontology development. This paper provides an overview of the application of the...

  16. Network Based Integrated Analysis of Phenotype-Genotype Data for Prioritization of Candidate Symptom Genes

    Directory of Open Access Journals (Sweden)

    Xing Li

    2014-01-01

    Full Text Available Background. Symptoms and signs (symptoms in brief are the essential clinical manifestations for individualized diagnosis and treatment in traditional Chinese medicine (TCM. To gain insights into the molecular mechanism of symptoms, we develop a computational approach to identify the candidate genes of symptoms. Methods. This paper presents a network-based approach for the integrated analysis of multiple phenotype-genotype data sources and the prediction of the prioritizing genes for the associated symptoms. The method first calculates the similarities between symptoms and diseases based on the symptom-disease relationships retrieved from the PubMed bibliographic database. Then the disease-gene associations and protein-protein interactions are utilized to construct a phenotype-genotype network. The PRINCE algorithm is finally used to rank the potential genes for the associated symptoms. Results. The proposed method gets reliable gene rank list with AUC (area under curve 0.616 in classification. Some novel genes like CALCA, ESR1, and MTHFR were predicted to be associated with headache symptoms, which are not recorded in the benchmark data set, but have been reported in recent published literatures. Conclusions. Our study demonstrated that by integrating phenotype-genotype relationships into a complex network framework it provides an effective approach to identify candidate genes of symptoms.

  17. Complex Topographic Feature Ontology Patterns

    Science.gov (United States)

    Varanka, Dalia E.; Jerris, Thomas J.

    2015-01-01

    Semantic ontologies are examined as effective data models for the representation of complex topographic feature types. Complex feature types are viewed as integrated relations between basic features for a basic purpose. In the context of topographic science, such component assemblages are supported by resource systems and found on the local landscape. Ontologies are organized within six thematic modules of a domain ontology called Topography that includes within its sphere basic feature types, resource systems, and landscape types. Context is constructed not only as a spatial and temporal setting, but a setting also based on environmental processes. Types of spatial relations that exist between components include location, generative processes, and description. An example is offered in a complex feature type ‘mine.’ The identification and extraction of complex feature types are an area for future research.

  18. Two obvious intuitions : Ontology-mapping needs background knowledge and approximation

    NARCIS (Netherlands)

    Van Harmelen, Frank

    2007-01-01

    Ontology mapping (or: ontology alignment, or integration) is one of the most active areas the Semantic Web area. An increasing amount of ontologies are becoming available in recent years, and if the Semantic Web is to be taken seriously, the problem of ontology mapping must be solved. Numerous

  19. From Genome to Phenotype: An Integrative Approach to Evaluate the Biodiversity of Lactococcus lactis

    Science.gov (United States)

    Laroute, Valérie; Tormo, Hélène; Couderc, Christel; Mercier-Bonin, Muriel; Le Bourgeois, Pascal; Cocaign-Bousquet, Muriel; Daveran-Mingot, Marie-Line

    2017-01-01

    Lactococcus lactis is one of the most extensively used lactic acid bacteria for the manufacture of dairy products. Exploring the biodiversity of L. lactis is extremely promising both to acquire new knowledge and for food and health-driven applications. L. lactis is divided into four subspecies: lactis, cremoris, hordniae and tructae, but only subsp. lactis and subsp. cremoris are of industrial interest. Due to its various biotopes, Lactococcus subsp. lactis is considered the most diverse. The diversity of L. lactis subsp. lactis has been assessed at genetic, genomic and phenotypic levels. Multi-Locus Sequence Type (MLST) analysis of strains from different origins revealed that the subsp. lactis can be classified in two groups: “domesticated” strains with low genetic diversity, and “environmental” strains that are the main contributors of the genetic diversity of the subsp. lactis. As expected, the phenotype investigation of L. lactis strains reported here revealed highly diverse carbohydrate metabolism, especially in plant- and gut-derived carbohydrates, diacetyl production and stress survival. The integration of genotypic and phenotypic studies could improve the relevance of screening culture collections for the selection of strains dedicated to specific functions and applications. PMID:28534821

  20. XML, Ontologies, and Their Clinical Applications.

    Science.gov (United States)

    Yu, Chunjiang; Shen, Bairong

    2016-01-01

    The development of information technology has resulted in its penetration into every area of clinical research. Various clinical systems have been developed, which produce increasing volumes of clinical data. However, saving, exchanging, querying, and exploiting these data are challenging issues. The development of Extensible Markup Language (XML) has allowed the generation of flexible information formats to facilitate the electronic sharing of structured data via networks, and it has been used widely for clinical data processing. In particular, XML is very useful in the fields of data standardization, data exchange, and data integration. Moreover, ontologies have been attracting increased attention in various clinical fields in recent years. An ontology is the basic level of a knowledge representation scheme, and various ontology repositories have been developed, such as Gene Ontology and BioPortal. The creation of these standardized repositories greatly facilitates clinical research in related fields. In this chapter, we discuss the basic concepts of XML and ontologies, as well as their clinical applications.

  1. Assessment Applications of Ontologies.

    Science.gov (United States)

    Chung, Gregory K. W. K.; Niemi, David; Bewley, William L.

    This paper discusses the use of ontologies and their applications to assessment. An ontology provides a shared and common understanding of a domain that can be communicated among people and computational systems. The ontology captures one or more experts' conceptual representation of a domain expressed in terms of concepts and the relationships…

  2. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    Science.gov (United States)

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  3. Ontology-based multi-agent systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadzic, Maja; Wongthongtham, Pornpit; Dillon, Tharam; Chang, Elizabeth [Digital Ecosystems and Business Intelligence Institute, Perth, WA (Australia)

    2009-07-01

    The Semantic web has given a great deal of impetus to the development of ontologies and multi-agent systems. Several books have appeared which discuss the development of ontologies or of multi-agent systems separately on their own. The growing interaction between agents and ontologies has highlighted the need for integrated development of these. This book is unique in being the first to provide an integrated treatment of the modeling, design and implementation of such combined ontology/multi-agent systems. It provides clear exposition of this integrated modeling and design methodology. It further illustrates this with two detailed case studies in (a) the biomedical area and (b) the software engineering area. The book is, therefore, of interest to researchers, graduate students and practitioners in the semantic web and web science area. (orig.)

  4. Ontologies vs. Classification Systems

    DEFF Research Database (Denmark)

    Madsen, Bodil Nistrup; Erdman Thomsen, Hanne

    2009-01-01

    What is an ontology compared to a classification system? Is a taxonomy a kind of classification system or a kind of ontology? These are questions that we meet when working with people from industry and public authorities, who need methods and tools for concept clarification, for developing meta...... data sets or for obtaining advanced search facilities. In this paper we will present an attempt at answering these questions. We will give a presentation of various types of ontologies and briefly introduce terminological ontologies. Furthermore we will argue that classification systems, e.g. product...... classification systems and meta data taxonomies, should be based on ontologies....

  5. Toxicology ontology perspectives.

    Science.gov (United States)

    Hardy, Barry; Apic, Gordana; Carthew, Philip; Clark, Dominic; Cook, David; Dix, Ian; Escher, Sylvia; Hastings, Janna; Heard, David J; Jeliazkova, Nina; Judson, Philip; Matis-Mitchell, Sherri; Mitic, Dragana; Myatt, Glenn; Shah, Imran; Spjuth, Ola; Tcheremenskaia, Olga; Toldo, Luca; Watson, David; White, Andrew; Yang, Chihae

    2012-01-01

    The field of predictive toxicology requires the development of open, public, computable, standardized toxicology vocabularies and ontologies to support the applications required by in silico, in vitro, and in vivo toxicology methods and related analysis and reporting activities. In this article we review ontology developments based on a set of perspectives showing how ontologies are being used in predictive toxicology initiatives and applications. Perspectives on resources and initiatives reviewed include OpenTox, eTOX, Pistoia Alliance, ToxWiz, Virtual Liver, EU-ADR, BEL, ToxML, and Bioclipse. We also review existing ontology developments in neighboring fields that can contribute to establishing an ontological framework for predictive toxicology. A significant set of resources is already available to provide a foundation for an ontological framework for 21st century mechanistic-based toxicology research. Ontologies such as ToxWiz provide a basis for application to toxicology investigations, whereas other ontologies under development in the biological, chemical, and biomedical communities could be incorporated in an extended future framework. OpenTox has provided a semantic web framework for the implementation of such ontologies into software applications and linked data resources. Bioclipse developers have shown the benefit of interoperability obtained through ontology by being able to link their workbench application with remote OpenTox web services. Although these developments are promising, an increased international coordination of efforts is greatly needed to develop a more unified, standardized, and open toxicology ontology framework.

  6. Methodology for Automatic Ontology Generation Using Database Schema Information

    Directory of Open Access Journals (Sweden)

    JungHyen An

    2018-01-01

    Full Text Available An ontology is a model language that supports the functions to integrate conceptually distributed domain knowledge and infer relationships among the concepts. Ontologies are developed based on the target domain knowledge. As a result, methodologies to automatically generate an ontology from metadata that characterize the domain knowledge are becoming important. However, existing methodologies to automatically generate an ontology using metadata are required to generate the domain metadata in a predetermined template, and it is difficult to manage data that are increased on the ontology itself when the domain OWL (Ontology Web Language individuals are continuously increased. The database schema has a feature of domain knowledge and provides structural functions to efficiently process the knowledge-based data. In this paper, we propose a methodology to automatically generate ontologies and manage the OWL individual through an interaction of the database and the ontology. We describe the automatic ontology generation process with example schema and demonstrate the effectiveness of the automatically generated ontology by comparing it with existing ontologies using the ontology quality score.

  7. COHeRE: Cross-Ontology Hierarchical Relation Examination for Ontology Quality Assurance.

    Science.gov (United States)

    Cui, Licong

    Biomedical ontologies play a vital role in healthcare information management, data integration, and decision support. Ontology quality assurance (OQA) is an indispensable part of the ontology engineering cycle. Most existing OQA methods are based on the knowledge provided within the targeted ontology. This paper proposes a novel cross-ontology analysis method, Cross-Ontology Hierarchical Relation Examination (COHeRE), to detect inconsistencies and possible errors in hierarchical relations across multiple ontologies. COHeRE leverages the Unified Medical Language System (UMLS) knowledge source and the MapReduce cloud computing technique for systematic, large-scale ontology quality assurance work. COHeRE consists of three main steps with the UMLS concepts and relations as the input. First, the relations claimed in source vocabularies are filtered and aggregated for each pair of concepts. Second, inconsistent relations are detected if a concept pair is related by different types of relations in different source vocabularies. Finally, the uncovered inconsistent relations are voted according to their number of occurrences across different source vocabularies. The voting result together with the inconsistent relations serve as the output of COHeRE for possible ontological change. The highest votes provide initial suggestion on how such inconsistencies might be fixed. In UMLS, 138,987 concept pairs were found to have inconsistent relationships across multiple source vocabularies. 40 inconsistent concept pairs involving hierarchical relationships were randomly selected and manually reviewed by a human expert. 95.8% of the inconsistent relations involved in these concept pairs indeed exist in their source vocabularies rather than being introduced by mistake in the UMLS integration process. 73.7% of the concept pairs with suggested relationship were agreed by the human expert. The effectiveness of COHeRE indicates that UMLS provides a promising environment to enhance

  8. The Proteasix Ontology.

    Science.gov (United States)

    Arguello Casteleiro, Mercedes; Klein, Julie; Stevens, Robert

    2016-06-04

    The Proteasix Ontology (PxO) is an ontology that supports the Proteasix tool; an open-source peptide-centric tool that can be used to predict automatically and in a large-scale fashion in silico the proteases involved in the generation of proteolytic cleavage fragments (peptides) The PxO re-uses parts of the Protein Ontology, the three Gene Ontology sub-ontologies, the Chemical Entities of Biological Interest Ontology, the Sequence Ontology and bespoke extensions to the PxO in support of a series of roles: 1. To describe the known proteases and their target cleaveage sites. 2. To enable the description of proteolytic cleaveage fragments as the outputs of observed and predicted proteolysis. 3. To use knowledge about the function, species and cellular location of a protease and protein substrate to support the prioritisation of proteases in observed and predicted proteolysis. The PxO is designed to describe the biological underpinnings of the generation of peptides. The peptide-centric PxO seeks to support the Proteasix tool by separating domain knowledge from the operational knowledge used in protease prediction by Proteasix and to support the confirmation of its analyses and results. The Proteasix Ontology may be found at: http://bioportal.bioontology.org/ontologies/PXO . This ontology is free and open for use by everyone.

  9. Modularising ontology and designing inference patterns to personalise health condition assessment: the case of obesity.

    Science.gov (United States)

    Sojic, Aleksandra; Terkaj, Walter; Contini, Giorgia; Sacco, Marco

    2016-05-04

    The public health initiatives for obesity prevention are increasingly exploiting the advantages of smart technologies that can register various kinds of data related to physical, physiological, and behavioural conditions. Since individual features and habits vary among people, the design of appropriate intervention strategies for motivating changes in behavioural patterns towards a healthy lifestyle requires the interpretation and integration of collected information, while considering individual profiles in a personalised manner. The ontology-based modelling is recognised as a promising approach in facing the interoperability and integration of heterogeneous information related to characterisation of personal profiles. The presented ontology captures individual profiles across several obesity-related knowledge-domains structured into dedicated modules in order to support inference about health condition, physical features, behavioural habits associated with a person, and relevant changes over time. The modularisation strategy is designed to facilitate ontology development, maintenance, and reuse. The domain-specific modules formalised in the Web Ontology Language (OWL) integrate the domain-specific sets of rules formalised in the Semantic Web Rule Language (SWRL). The inference rules follow a modelling pattern designed to support personalised assessment of health condition as age- and gender-specific. The test cases exemplify a personalised assessment of the obesity-related health conditions for the population of teenagers. The paper addresses several issues concerning the modelling of normative concepts related to obesity and depicts how the public health concern impacts classification of teenagers according to their phenotypes. The modelling choices regarding the ontology-structure are explained in the context of the modelling goal to integrate multiple knowledge-domains and support reasoning about the individual changes over time. The presented modularisation

  10. DermO; an ontology for the description of dermatologic disease

    KAUST Repository

    Fisher, Hannah M.

    2016-06-13

    Background There have been repeated initiatives to produce standard nosologies and terminologies for cutaneous disease, some dedicated to the domain and some part of bigger terminologies such as ICD-10. Recently, formally structured terminologies, ontologies, have been widely developed in many areas of biomedical research. Primarily, these address the aim of providing comprehensive working terminologies for domains of knowledge, but because of the knowledge contained in the relationships between terms they can also be used computationally for many purposes. Results We have developed an ontology of cutaneous disease, constructed manually by domain experts. With more than 3000 terms, DermO represents the most comprehensive formal dermatological disease terminology available. The disease entities are categorized in 20 upper level terms, which use a variety of features such as anatomical location, heritability, affected cell or tissue type, or etiology, as the features for classification, in line with professional practice and nosology in dermatology. Available in OBO flatfile and OWL 2 formats, it is integrated semantically with other ontologies and terminologies describing diseases and phenotypes. We demonstrate the application of DermO to text mining the biomedical literature and in the creation of a network describing the phenotypic relationships between cutaneous diseases. Conclusions DermO is an ontology with broad coverage of the domain of dermatologic disease and we demonstrate here its utility for text mining and investigation of phenotypic relationships between dermatologic disorders. We envision that in the future it may be applied to the creation and mining of electronic health records, clinical training and basic research, as it supports automated inference and reasoning, and for the broader integration of skin disease information with that from other domains.

  11. Onco-proteogenomics: Multi-omics level data integration for accurate phenotype prediction.

    Science.gov (United States)

    Dimitrakopoulos, Lampros; Prassas, Ioannis; Diamandis, Eleftherios P; Charames, George S

    2017-09-01

    The overall goal of translational oncology is to identify molecular alterations indicative of cancer or of responsiveness to specific therapeutic regimens. While next-generation sequencing has played a pioneering role in this quest, the latest advances in proteomic technologies promise to provide a holistic approach to the further elucidation of tumor biology. Genetic information may be written in DNA and flow from DNA to RNA to protein, according to the central dogma of molecular biology, but the observed phenotype is dictated predominantly by the DNA protein coding region-derived proteotype. Proteomics holds the potential to bridge the gap between genotype and phenotype, because the powerful analytical tool of mass spectrometry has reached a point of maturity to serve this purpose effectively. This integration of "omics" data has given birth to the novel field of onco-proteogenomics, which has much to offer to precision medicine and personalized patient management. Here, we review briefly how each "omics" technology has individually contributed to cancer research, discuss technological and computational advances that have contributed to the realization of onco-proteogenomics, and summarize current and future translational applications.

  12. Contemporary parallel diversification, antipredator adaptations and phenotypic integration in an aquatic isopod.

    Directory of Open Access Journals (Sweden)

    Fabrice Eroukhmanoff

    2009-07-01

    Full Text Available It is increasingly being recognized that predation can be a strong diversifying agent promoting ecological divergence. Adaptations against different predatory regimes can emerge over short periods of time and include many different traits. We studied antipredator adaptations in two ecotypes of an isopod (Asellus aquaticus that have, diverged in parallel in two Swedish lakes over the last two decades. We quantified differences in escape speed, morphology and behavior for isopods from different ecotypes present in these lakes. Isopods from the source habitat (reed coexist with mainly invertebrate predators. They are more stream-profiled and have higher escape speeds than isopods in the newly colonized stonewort habitat, which has higher density of fish predators. Stonewort isopods also show more cautious behaviors and had higher levels of phenotypic integration between coloration and morphological traits than the reed isopods. Colonization of a novel habitat with a different predation regime has thus strengthened the correlations between pigmentation and morphology and weakened escape performance. The strong signature of parallelism for these phenotypic traits indicates that divergence is likely to be adaptive and is likely to have been driven by differences in predatory regimes. Furthermore, our results indicate that physical performance, behavior and morphology can change rapidly and in concert as new habitats are colonized.

  13. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics.

    Science.gov (United States)

    Goswami, Anjali; Binder, Wendy J; Meachen, Julie; O'Keefe, F Robin

    2015-04-21

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change.

  14. Mapping between the OBO and OWL ontology languages.

    Science.gov (United States)

    Tirmizi, Syed Hamid; Aitken, Stuart; Moreira, Dilvan A; Mungall, Chris; Sequeda, Juan; Shah, Nigam H; Miranker, Daniel P

    2011-03-07

    Ontologies are commonly used in biomedicine to organize concepts to describe domains such as anatomies, environments, experiment, taxonomies etc. NCBO BioPortal currently hosts about 180 different biomedical ontologies. These ontologies have been mainly expressed in either the Open Biomedical Ontology (OBO) format or the Web Ontology Language (OWL). OBO emerged from the Gene Ontology, and supports most of the biomedical ontology content. In comparison, OWL is a Semantic Web language, and is supported by the World Wide Web consortium together with integral query languages, rule languages and distributed infrastructure for information interchange. These features are highly desirable for the OBO content as well. A convenient method for leveraging these features for OBO ontologies is by transforming OBO ontologies to OWL. We have developed a methodology for translating OBO ontologies to OWL using the organization of the Semantic Web itself to guide the work. The approach reveals that the constructs of OBO can be grouped together to form a similar layer cake. Thus we were able to decompose the problem into two parts. Most OBO constructs have easy and obvious equivalence to a construct in OWL. A small subset of OBO constructs requires deeper consideration. We have defined transformations for all constructs in an effort to foster a standard common mapping between OBO and OWL. Our mapping produces OWL-DL, a Description Logics based subset of OWL with desirable computational properties for efficiency and correctness. Our Java implementation of the mapping is part of the official Gene Ontology project source. Our transformation system provides a lossless roundtrip mapping for OBO ontologies, i.e. an OBO ontology may be translated to OWL and back without loss of knowledge. In addition, it provides a roadmap for bridging the gap between the two ontology languages in order to enable the use of ontology content in a language independent manner.

  15. Effects of an ontology display with history representation on organizational memory information systems.

    Science.gov (United States)

    Hwang, Wonil; Salvendy, Gavriel

    2005-06-10

    Ontologies, as a possible element of organizational memory information systems, appear to support organizational learning. Ontology tools can be used to share knowledge among the members of an organization. However, current ontology-viewing user interfaces of ontology tools do not fully support organizational learning, because most of them lack proper history representation in their display. In this study, a conceptual model was developed that emphasized the role of ontology in the organizational learning cycle and explored the integration of history representation in the ontology display. Based on the experimental results from a split-plot design with 30 participants, two conclusions were derived: first, appropriately selected history representations in the ontology display help users to identify changes in the ontologies; and second, compatibility between types of ontology display and history representation is more important than ontology display and history representation in themselves.

  16. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  17. Ion Channel ElectroPhysiology Ontology (ICEPO) - a case study of text mining assisted ontology development.

    Science.gov (United States)

    Elayavilli, Ravikumar Komandur; Liu, Hongfang

    2016-01-01

    Computational modeling of biological cascades is of great interest to quantitative biologists. Biomedical text has been a rich source for quantitative information. Gathering quantitative parameters and values from biomedical text is one significant challenge in the early steps of computational modeling as it involves huge manual effort. While automatically extracting such quantitative information from bio-medical text may offer some relief, lack of ontological representation for a subdomain serves as impedance in normalizing textual extractions to a standard representation. This may render textual extractions less meaningful to the domain experts. In this work, we propose a rule-based approach to automatically extract relations involving quantitative data from biomedical text describing ion channel electrophysiology. We further translated the quantitative assertions extracted through text mining to a formal representation that may help in constructing ontology for ion channel events using a rule based approach. We have developed Ion Channel ElectroPhysiology Ontology (ICEPO) by integrating the information represented in closely related ontologies such as, Cell Physiology Ontology (CPO), and Cardiac Electro Physiology Ontology (CPEO) and the knowledge provided by domain experts. The rule-based system achieved an overall F-measure of 68.93% in extracting the quantitative data assertions system on an independently annotated blind data set. We further made an initial attempt in formalizing the quantitative data assertions extracted from the biomedical text into a formal representation that offers potential to facilitate the integration of text mining into ontological workflow, a novel aspect of this study. This work is a case study where we created a platform that provides formal interaction between ontology development and text mining. We have achieved partial success in extracting quantitative assertions from the biomedical text and formalizing them in ontological

  18. Nuclear Nonproliferation Ontology Assessment Team Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Strasburg, Jana D.; Hohimer, Ryan E.

    2012-01-01

    Final Report for the NA22 Simulations, Algorithm and Modeling (SAM) Ontology Assessment Team's efforts from FY09-FY11. The Ontology Assessment Team began in May 2009 and concluded in September 2011. During this two-year time frame, the Ontology Assessment team had two objectives: (1) Assessing the utility of knowledge representation and semantic technologies for addressing nuclear nonproliferation challenges; and (2) Developing ontological support tools that would provide a framework for integrating across the Simulation, Algorithm and Modeling (SAM) program. The SAM Program was going through a large assessment and strategic planning effort during this time and as a result, the relative importance of these two objectives changed, altering the focus of the Ontology Assessment Team. In the end, the team conducted an assessment of the state of art, created an annotated bibliography, and developed a series of ontological support tools, demonstrations and presentations. A total of more than 35 individuals from 12 different research institutions participated in the Ontology Assessment Team. These included subject matter experts in several nuclear nonproliferation-related domains as well as experts in semantic technologies. Despite the diverse backgrounds and perspectives, the Ontology Assessment team functioned very well together and aspects could serve as a model for future inter-laboratory collaborations and working groups. While the team encountered several challenges and learned many lessons along the way, the Ontology Assessment effort was ultimately a success that led to several multi-lab research projects and opened up a new area of scientific exploration within the Office of Nuclear Nonproliferation and Verification.

  19. Raissa L. Berg's contributions to the study of phenotypic integration, with a professional biographical sketch.

    Science.gov (United States)

    Conner, Jeffrey K; Lande, Russell

    2014-08-19

    Raissa L. Berg had a remarkable career in many respects and an impact on the study of phenotypic integration that continues to increase over 50 years after the publication of her seminal paper in that area. She was born and lived most of her life in Russia, with most of her research focused on measuring spontaneous mutation rates in Drosophila. She was forced to abandon this work during the height of Lysenko's power in Russia, so she turned temporarily to the study of correlation patterns in plants; ironically, this work has had a more enduring impact than her main body of research. She showed that floral and vegetative traits become decoupled into separate correlation 'pleiades' in plants with specialized pollinators, but floral and vegetative traits remain correlated in plants that have less specialized pollination. Unfortunately, her plant work is often mis-cited as providing evidence for increased correlations among floral traits due to selection by pollinators for functional integration, a point she never made and one that is not supported by her data. Still, many studies of correlation pleiades have been conducted in plants, with the results mostly supporting Berg's hypothesis, although more studies on species with generalized pollination are needed. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. A new ontology (structured hierarchy) of human developmental anatomy for the first 7 weeks (Carnegie stages 1-20).

    Science.gov (United States)

    Bard, Jonathan

    2012-11-01

    This paper describes a new ontology of human developmental anatomy covering the first 49 days [Carnegie stages (CS)1-20], primarily structured around the parts of organ systems and their development. The ontology includes more than 2000 anatomical entities (AEs) that range from the whole embryo, through organ systems and organ parts down to simple or leaf tissues (groups of cells with the same morphological phenotype), as well as features such as cavities. Each AE has assigned to it a set of facts of the form , with the relationships including starts_at and ends_at (CSs), part_of (there can be several parents) and is_a (this gives the type of tissue, from an organ system down to one of ~ 80 simple tissues predominantly composed of a single cell kind, which is also specified). Leaf tissues also have a develops_from link to its parent tissue. The ontology includes ~14 000 such facts, which are mainly from the literature and an earlier ontology of human developmental anatomy (EHDAA, now withdrawn). The relationships enable these facts to be integrated into a single, complex hierarchy (or mathematical graph) that was made and can be viewed in the OBO-Edit browser (oboedit.org). Each AE has an EHDAA2 ID that may be useful in an informatics context, while the ontology as a whole can be used for organizing databases of human development. It is also a knowledge resource: a user can trace the lineage of any tissue back to the egg, study the changes in cell phenotype that occur as a tissue develops, and use the structure to add further (e.g. molecular) information. The ontology may be downloaded from www.obofoundry.org. Queries and corrections should be sent to j.bard@ed.ac.uk. © 2012 The Author Journal of Anatomy © 2012 Anatomical Society.

  1. Decomposing phenotype descriptions for the human skeletal phenome.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2013-01-01

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. The intrinsic value and knowledge captured within such descriptions can only be expressed by taking advantage of their inner structure that implicitly combines qualities and anatomical entities. We present a meta-model (the Phenotype Fragment Ontology) and a processing pipeline that enable together the automatic decomposition and conceptualization of phenotype descriptions for the human skeletal phenome. We use this approach to showcase the usefulness of the generic concept of phenotype decomposition by performing an experimental study on all skeletal phenotype concepts defined in the Human Phenotype Ontology.

  2. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    Science.gov (United States)

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  3. Constructive Ontology Engineering

    Science.gov (United States)

    Sousan, William L.

    2010-01-01

    The proliferation of the Semantic Web depends on ontologies for knowledge sharing, semantic annotation, data fusion, and descriptions of data for machine interpretation. However, ontologies are difficult to create and maintain. In addition, their structure and content may vary depending on the application and domain. Several methods described in…

  4. Integrative Genomics: Quantifying significance of phenotype-genotype relationships from multiple sources of high-throughput data

    Directory of Open Access Journals (Sweden)

    Eric eGamazon

    2013-05-01

    Full Text Available Given recent advances in the generation of high-throughput data such as whole genome genetic variation and transcriptome expression, it is critical to come up with novel methods to integrate these heterogeneous datasets and to assess the significance of identified phenotype-genotype relationships. Recent studies show that genome-wide association findings are likely to fall in loci with gene regulatory effects such as expression quantitative trait loci (eQTLs, demonstrating the utility of such integrative approaches. When genotype and gene expression data are available on the same individuals, we developed methods wherein top phenotype-associated genetic variants are prioritized if they are associated, as eQTLs, with gene expression traits that are themselves associated with the phenotype. Yet there has been no method to determine an overall p-value for the findings that arise specifically from the integrative nature of the approach. We propose a computationally feasible permutation method that accounts for the assimilative nature of the method and the correlation structure among gene expression traits and among genotypes. We apply the method to data from a study of cellular sensitivity to etoposide, one of the most widely used chemotherapeutic drugs. To our knowledge, this study is the first statistically sound quantification of the significance of the genotype-phenotype relationships resulting from applying an integrative approach. This method can be easily extended to cases in which gene expression data are replaced by other molecular phenotypes of interest, e.g., microRNA or proteomic data. This study has important implications for studies seeking to expand on genetic association studies by the use of omics data. Finally, we provide an R code to compute the empirical FDR when p-values for the observed and simulated phenotypes are available.

  5. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    Science.gov (United States)

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  6. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  7. Conceptual querying through ontologies

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2009-01-01

    is motivated by an obvious need for users to survey huge volumes of objects in query answers. An ontology formalism and a special notion of-instantiated ontology" are introduced. The latter is a structure reflecting the content in the document collection in that; it is a restriction of a general world......We present here ail approach to conceptual querying where the aim is, given a collection of textual database objects or documents, to target an abstraction of the entire database content in terms of the concepts appearing in documents, rather than the documents in the collection. The approach...... knowledge ontology to the concepts instantiated in the collection. The notion of ontology-based similarity is briefly described, language constructs for direct navigation and retrieval of concepts in the ontology are discussed and approaches to conceptual summarization are presented....

  8. Survey on Ontology Mapping

    Science.gov (United States)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  9. GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data.

    Science.gov (United States)

    Rue-Albrecht, Kévin; McGettigan, Paul A; Hernández, Belinda; Nalpas, Nicolas C; Magee, David A; Parnell, Andrew C; Gordon, Stephen V; MacHugh, David E

    2016-03-11

    Identification of gene expression profiles that differentiate experimental groups is critical for discovery and analysis of key molecular pathways and also for selection of robust diagnostic or prognostic biomarkers. While integration of differential expression statistics has been used to refine gene set enrichment analyses, such approaches are typically limited to single gene lists resulting from simple two-group comparisons or time-series analyses. In contrast, functional class scoring and machine learning approaches provide powerful alternative methods to leverage molecular measurements for pathway analyses, and to compare continuous and multi-level categorical factors. We introduce GOexpress, a software package for scoring and summarising the capacity of gene ontology features to simultaneously classify samples from multiple experimental groups. GOexpress integrates normalised gene expression data (e.g., from microarray and RNA-seq experiments) and phenotypic information of individual samples with gene ontology annotations to derive a ranking of genes and gene ontology terms using a supervised learning approach. The default random forest algorithm allows interactions between all experimental factors, and competitive scoring of expressed genes to evaluate their relative importance in classifying predefined groups of samples. GOexpress enables rapid identification and visualisation of ontology-related gene panels that robustly classify groups of samples and supports both categorical (e.g., infection status, treatment) and continuous (e.g., time-series, drug concentrations) experimental factors. The use of standard Bioconductor extension packages and publicly available gene ontology annotations facilitates straightforward integration of GOexpress within existing computational biology pipelines.

  10. A UML profile for the OBO relation ontology

    Science.gov (United States)

    2012-01-01

    Background Ontologies have increasingly been used in the biomedical domain, which has prompted the emergence of different initiatives to facilitate their development and integration. The Open Biological and Biomedical Ontologies (OBO) Foundry consortium provides a repository of life-science ontologies, which are developed according to a set of shared principles. This consortium has developed an ontology called OBO Relation Ontology aiming at standardizing the different types of biological entity classes and associated relationships. Since ontologies are primarily intended to be used by humans, the use of graphical notations for ontology development facilitates the capture, comprehension and communication of knowledge between its users. However, OBO Foundry ontologies are captured and represented basically using text-based notations. The Unified Modeling Language (UML) provides a standard and widely-used graphical notation for modeling computer systems. UML provides a well-defined set of modeling elements, which can be extended using a built-in extension mechanism named Profile. Thus, this work aims at developing a UML profile for the OBO Relation Ontology to provide a domain-specific set of modeling elements that can be used to create standard UML-based ontologies in the biomedical domain. Results We have studied the OBO Relation Ontology, the UML metamodel and the UML profiling mechanism. Based on these studies, we have proposed an extension to the UML metamodel in conformance with the OBO Relation Ontology and we have defined a profile that implements the extended metamodel. Finally, we have applied the proposed UML profile in the development of a number of fragments from different ontologies. Particularly, we have considered the Gene Ontology (GO), the PRotein Ontology (PRO) and the Xenopus Anatomy and Development Ontology (XAO). Conclusions The use of an established and well-known graphical language in the development of biomedical ontologies provides a more

  11. Practical ontologies for information professionals

    CERN Document Server

    AUTHOR|(CDS)2071712

    2016-01-01

    Practical Ontologies for Information Professionals provides an introduction to ontologies and their development, an essential tool for fighting back against information overload. The development of robust and widely used ontologies is an increasingly important tool in the fight against information overload. The publishing and sharing of explicit explanations for a wide variety of conceptualizations, in a machine readable format, has the power to both improve information retrieval and identify new knowledge. This new book provides an accessible introduction to the following: * What is an ontology? Defining the concept and why it is increasingly important to the information professional * Ontologies and the semantic web * Existing ontologies, such as SKOS, OWL, FOAF, schema.org, and the DBpedia Ontology * Adopting and building ontologies, showing how to avoid repetition of work and how to build a simple ontology with Protege * Interrogating semantic web ontologies * The future of ontologies and the role of the ...

  12. The search for Pleiades in trait constellations: functional integration and phenotypic selection in the complex flowers of Morrenia brachystephana (Apocynaceae).

    Science.gov (United States)

    Baranzelli, M C; Sérsic, A N; Cocucci, A A

    2014-04-01

    Pollinator-mediated natural selection on single traits, such as corolla tube or spur length, has been well documented. However, flower phenotypes are usually complex, and selection is expected to act on several traits that functionally interact rather than on a single isolated trait. Despite the fact that selection on complex phenotypes is expectedly widespread, multivariate selection modelling on such phenotypes still remains under-explored in plants. Species of the subfamily Asclepiadoideae (Apocynaceae) provide an opportunity to study such complex flower contrivances integrated by fine-scaled organs from disparate developmental origin. We studied the correlation structure among linear floral traits (i) by testing a priori morphological, functional or developmental hypotheses among traits and (ii) by exploring the organization of flower covariation, considering alternative expectations of modular organization or whole flower integration through conditional dependence analysis (CDA) and integration matrices. The phenotypic selection approach was applied to determine whether floral traits involved in the functioning of the pollination mechanism were affected by natural selection. Floral integration was low, suggesting that flowers are organized in more than just one correlation pleiad; our hypothetical functional correlation matrix was significantly correlated with the empirical matrix, and the CDA revealed three putative modules. Analyses of phenotypic selection showed significant linear and correlational gradients, lending support to expectations of functional interactions between floral traits. Significant correlational selection gradients found involved traits of different floral whorls, providing evidence for the existence of functional integration across developmental domains. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  13. Ontological foundations for evolutionary economics: A Darwinian social ontology

    NARCIS (Netherlands)

    Stoelhorst, J.W.

    2008-01-01

    The purpose of this paper is to further the project of generalized Darwinism by developing a social ontology on the basis of a combined commitment to ontological continuity and ontological commonality. Three issues that are central to the development of a social ontology are addressed: (1) the

  14. The evolution of phenotypic integration: How directional selection reshapes covariation in mice.

    Science.gov (United States)

    Penna, Anna; Melo, Diogo; Bernardi, Sandra; Oyarzabal, Maria Inés; Marroig, Gabriel

    2017-10-01

    Variation is the basis for evolution, and understanding how variation can evolve is a central question in biology. In complex phenotypes, covariation plays an even more important role, as genetic associations between traits can bias and alter evolutionary change. Covariation can be shaped by complex interactions between loci, and this genetic architecture can also change during evolution. In this article, we analyzed mouse lines experimentally selected for changes in size to address the question of how multivariate covariation changes under directional selection, as well as to identify the consequences of these changes to evolution. Selected lines showed a clear restructuring of covariation in their cranium and, instead of depleting their size variation, these lines increased their magnitude of integration and the proportion of variation associated with the direction of selection. This result is compatible with recent theoretical works on the evolution of covariation that take the complexities of genetic architecture into account. This result also contradicts the traditional view of the effects of selection on available covariation and suggests a much more complex view of how populations respond to selection. © 2017 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  15. Proceedings of a Sickle Cell Disease Ontology workshop — Towards the first comprehensive ontology for Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Nicola Mulder

    2016-06-01

    The SCD community and H3ABioNet members joined forces at a recent SCD Ontology workshop to develop an ontology covering aspects of SCD under the classes: phenotype, diagnostics, therapeutics, quality of life, disease modifiers and disease stage. The aim of the workshop was for participants to contribute their expertise to development of the structure and contents of the SCD ontology. Here we describe the proceedings of the Sickle Cell Disease Ontology Workshop held in Cape Town South Africa in February 2016 and its outcomes. The objective of the workshop was to bring together experts in SCD from around the world to contribute their expertise to the development of various aspects of the SCD ontology.

  16. An ontology for major histocompatibility restriction.

    Science.gov (United States)

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  17. Best behaviour? Ontologies and the formal description of animal behaviour.

    Science.gov (United States)

    Gkoutos, Georgios V; Hoehndorf, Robert; Tsaprouni, Loukia; Schofield, Paul N

    2015-10-01

    The development of ontologies for describing animal behaviour has proved to be one of the most difficult of all scientific knowledge domains. Ranging from neurological processes to human emotions, the range and scope needed for such ontologies is highly challenging, but if data integration and computational tools such as automated reasoning are to be fully applied in this important area the underlying principles of these ontologies need to be better established and development needs detailed coordination. Whilst the state of scientific knowledge is always paramount in ontology and formal description framework design, this is a particular problem with neurobehavioural ontologies where our understanding of the relationship between behaviour and its underlying biophysical basis is currently in its infancy. In this commentary, we discuss some of the fundamental problems in designing and using behaviour ontologies, and present some of the best developed tools in this domain.

  18. NanoParticle Ontology for Cancer Nanotechnology Research

    Science.gov (United States)

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  19. Best behaviour? Ontologies and the formal description of animal behaviour

    KAUST Repository

    Gkoutos, Georgios V.

    2015-07-28

    The development of ontologies for describing animal behaviour has proved to be one of the most difficult of all scientific knowledge domains. Ranging from neurological processes to human emotions, the range and scope needed for such ontologies is highly challenging, but if data integration and computational tools such as automated reasoning are to be fully applied in this important area the underlying principles of these ontologies need to be better established and development needs detailed coordination. Whilst the state of scientific knowledge is always paramount in ontology and formal description framework design, this is a particular problem with neurobehavioural ontologies where our understanding of the relationship between behaviour and its underlying biophysical basis is currently in its infancy. In this commentary, we discuss some of the fundamental problems in designing and using behaviour ontologies, and present some of the best developed tools in this domain. © 2015 Springer Science+Business Media New York

  20. Identity of the xerophilic species Aspergillus penicillioides: Integrated analysis of the genotypic and phenotypic characters.

    Science.gov (United States)

    Tamura, Miki; Kawasaki, Hiroko; Sugiyama, Junta

    1999-02-01

    We examined the identity of Aspergillus penicillioides, the typical xerophilic and strictly anamorphic species, using an integrated analysis of the genotypic and phenotypic characters. Our experimental methods on two genotypic characters, i.e., DNA base composition using the HPLC method and DNA relatedness using the nitrocellulose filter hybridization technique between A. flavus, A. oryzae, and their close relations revealed a good agreement with the values by buoyant density (for DNA base composition) and spectrophotometric determination (for DNA relatedness) reported by Kurtzman et al. in 1986. On the basis of these comparisons, we examined DNA base composition and DNA relatedness of six selected strains of A. penicillioides, including IFO 8155 (originally described as A. vitricola), one strain of A. restrictus, and the respective strains from Eurotium amstelodami, E. repens, and E. rubrum. As a result, five strains within A. penicillioides, including the neotype strain NRRL 4548, had G+C contents of 46 to 49 mol%, whereas IFO 8155 had 50 mol%. A. restrictus had 52 mol%, and three Eurotium species ranged from 46 to 49 mol%. The DNA relatedness between A. penicillioides (five strains), except for IFO 8155, exhibited values greater than 70%, but the DNA complementarity between four strains and IFO 8155 in A. penicillioides revealed values of less than 40%. DNA relatedness values between three species of Eurotium were 65 to 72%. We determined 18S, 5.8S, and ITS rDNA sequences as other genotypic characters from A. penicillioides (six strains), A. restrictus, and related teleomorphic species of Eurotium. In three phylogenetic trees inferred from these sequences, five strains of A. penicillioides, including the neotype strain, were closely related to each other, whereas IFO 8155 was distantly related and grouped with other xerophilic species. Our results have suggested that A. penicillioides typified by NRRL 4548 and A. penicillioides IFO 8155 (ex holotype of A

  1. Perspectives on ontology learning

    CERN Document Server

    Lehmann, J

    2014-01-01

    Perspectives on Ontology Learning brings together researchers and practitioners from different communities − natural language processing, machine learning, and the semantic web − in order to give an interdisciplinary overview of recent advances in ontology learning.Starting with a comprehensive introduction to the theoretical foundations of ontology learning methods, the edited volume presents the state-of-the-start in automated knowledge acquisition and maintenance. It outlines future challenges in this area with a special focus on technologies suitable for pushing the boundaries beyond the c

  2. An ontology approach to comparative phenomics in plants

    KAUST Repository

    Oellrich, Anika

    2015-02-25

    Background: Plant phenotype datasets include many different types of data, formats, and terms from specialized vocabularies. Because these datasets were designed for different audiences, they frequently contain language and details tailored to investigators with different research objectives and backgrounds. Although phenotype comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited by the absence of a common semantic framework. Results: We developed a workflow to curate and standardize existing phenotype datasets for six plant species, encompassing both model species and crop plants with established genetic resources. Our effort focused on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein functions, and shared metabolic pathways that underlie informative plant phenotypes. Conclusions: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon phenotype data analyses represents a novel approach to plant phenomics

  3. An ontology approach to comparative phenomics in plants

    KAUST Repository

    Oellrich, Anika; Walls, Ramona L; Cannon, Ethalinda KS; Cannon, Steven B; Cooper, Laurel; Gardiner, Jack; Gkoutos, Georgios V; Harper, Lisa; He, Mingze; Hoehndorf, Robert; Jaiswal, Pankaj; Kalberer, Scott R; Lloyd, John P; Meinke, David; Menda, Naama; Moore, Laura; Nelson, Rex T; Pujar, Anuradha; Lawrence, Carolyn J; Huala, Eva

    2015-01-01

    Background: Plant phenotype datasets include many different types of data, formats, and terms from specialized vocabularies. Because these datasets were designed for different audiences, they frequently contain language and details tailored to investigators with different research objectives and backgrounds. Although phenotype comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited by the absence of a common semantic framework. Results: We developed a workflow to curate and standardize existing phenotype datasets for six plant species, encompassing both model species and crop plants with established genetic resources. Our effort focused on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein functions, and shared metabolic pathways that underlie informative plant phenotypes. Conclusions: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon phenotype data analyses represents a novel approach to plant phenomics

  4. FML-based ontological agent for healthcare application with diabetes

    NARCIS (Netherlands)

    Acampora, G.; Lee, C.-S.; Wang, M.-H.

    2009-01-01

    It is well-known that classical ontologies are not sufficient to deal with imprecise and vague knowledge. On the other hand, fuzzy ontologies can effectively solve data and knowledge with uncertainty, most importantly, if they are integrated with innovative methods for developing agents’

  5. The Porifera Ontology (PORO): enhancing sponge systematics with an anatomy ontology.

    Science.gov (United States)

    Thacker, Robert W; Díaz, Maria Cristina; Kerner, Adeline; Vignes-Lebbe, Régine; Segerdell, Erik; Haendel, Melissa A; Mungall, Christopher J

    2014-01-01

    Porifera (sponges) are ancient basal metazoans that lack organs. They provide insight into key evolutionary transitions, such as the emergence of multicellularity and the nervous system. In addition, their ability to synthesize unusual compounds offers potential biotechnical applications. However, much of the knowledge of these organisms has not previously been codified in a machine-readable way using modern web standards. The Porifera Ontology is intended as a standardized coding system for sponge anatomical features currently used in systematics. The ontology is available from http://purl.obolibrary.org/obo/poro.owl, or from the project homepage http://porifera-ontology.googlecode.com/. The version referred to in this manuscript is permanently available from http://purl.obolibrary.org/obo/poro/releases/2014-03-06/. By standardizing character representations, we hope to facilitate more rapid description and identification of sponge taxa, to allow integration with other evolutionary database systems, and to perform character mapping across the major clades of sponges to better understand the evolution of morphological features. Future applications of the ontology will focus on creating (1) ontology-based species descriptions; (2) taxonomic keys that use the nested terms of the ontology to more quickly facilitate species identifications; and (3) methods to map anatomical characters onto molecular phylogenies of sponges. In addition to modern taxa, the ontology is being extended to include features of fossil taxa.

  6. Data mining for ontology development.

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, George S.; Strasburg, Jana (Pacific Northwest National Laboratory, Richland, WA); Stampf, David (Brookhaven National Laboratory, Upton, NY); Neymotin,Lev (Brookhaven National Laboratory, Upton, NY); Czajkowski, Carl (Brookhaven National Laboratory, Upton, NY); Shine, Eugene (Savannah River National Laboratory, Aiken, SC); Bollinger, James (Savannah River National Laboratory, Aiken, SC); Ghosh, Vinita (Brookhaven National Laboratory, Upton, NY); Sorokine, Alexandre (Oak Ridge National Laboratory, Oak Ridge, TN); Ferrell, Regina (Oak Ridge National Laboratory, Oak Ridge, TN); Ward, Richard (Oak Ridge National Laboratory, Oak Ridge, TN); Schoenwald, David Alan

    2010-06-01

    A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

  7. Seamless Integration of Desktop and Mobile Learning Experience through an Ontology-Based Adaptation Engine: Report of a Pilot-Project

    Science.gov (United States)

    Mercurio, Marco; Torre, Ilaria; Torsani, Simone

    2014-01-01

    The paper describes a module within the distance language learning environment of the Language Centre at the Genoa University which adapts, through an ontology, learning activities to the device in use. Adaptation means not simply resizing a page but also the ability to transform the nature of a task so that it fits the device with the smallest…

  8. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim

    2015-05-05

    Falling costs in genomic laboratory experiments have led to a steady increase of genomic feature and variation data. Multiple genomic data formats exist for sharing these data, and whilst they are similar, they are addressing slightly different data viewpoints and are consequently not fully compatible with each other. The fragmentation of data format specifications makes it hard to integrate and interpret data for further analysis with information from multiple data providers. As a solution, a new ontology is presented here for annotating and representing genomic feature and variation dataset contents. The Genomic Feature and Variation Ontology (GFVO) specifically addresses genomic data as it is regularly shared using the GFF3 (incl. FASTA), GTF, GVF and VCF file formats. GFVO simplifies data integration and enables linking of genomic annotations across datasets through common semantics of genomic types and relations. Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  9. Ontology of fractures

    Science.gov (United States)

    Zhong, Jian; Aydina, Atilla; McGuinness, Deborah L.

    2009-03-01

    Fractures are fundamental structures in the Earth's crust and they can impact many societal and industrial activities including oil and gas exploration and production, aquifer management, CO 2 sequestration, waste isolation, the stabilization of engineering structures, and assessing natural hazards (earthquakes, volcanoes, and landslides). Therefore, an ontology which organizes the concepts of fractures could help facilitate a sound education within, and communication among, the highly diverse professional and academic community interested in the problems cited above. We developed a process-based ontology that makes explicit specifications about fractures, their properties, and the deformation mechanisms which lead to their formation and evolution. Our ontology emphasizes the relationships among concepts such as the factors that influence the mechanism(s) responsible for the formation and evolution of specific fracture types. Our ontology is a valuable resource with a potential to applications in a number of fields utilizing recent advances in Information Technology, specifically for digital data and information in computers, grids, and Web services.

  10. A Method for Evaluating and Standardizing Ontologies

    Science.gov (United States)

    Seyed, Ali Patrice

    2012-01-01

    The Open Biomedical Ontology (OBO) Foundry initiative is a collaborative effort for developing interoperable, science-based ontologies. The Basic Formal Ontology (BFO) serves as the upper ontology for the domain-level ontologies of OBO. BFO is an upper ontology of types as conceived by defenders of realism. Among the ontologies developed for OBO…

  11. Region-specific role for Pten in maintenance of epithelial phenotype and integrity

    Science.gov (United States)

    Flodby, Per; Sunohara, Mitsuhiro; Castillo, Dan R.; McConnell, Alicia M.; Krishnaveni, Manda S.; Banfalvi, Agnes; Li, Min; Stripp, Barry; Zhou, Beiyun; Crandall, Edward D.; Minoo, Parviz

    2017-01-01

    Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific. PMID:27864284

  12. Manufacturing ontology through templates

    Directory of Open Access Journals (Sweden)

    Diciuc Vlad

    2017-01-01

    Full Text Available The manufacturing industry contains a high volume of knowhow and of high value, much of it being held by key persons in the company. The passing of this know-how is the basis of manufacturing ontology. Among other methods like advanced filtering and algorithm based decision making, one way of handling the manufacturing ontology is via templates. The current paper tackles this approach and highlights the advantages concluding with some recommendations.

  13. A Proposition Of Knowledge Management Methodology For The Purpose Of Reasoning With The Use Of An Upper-Ontology

    Directory of Open Access Journals (Sweden)

    Kamil Szymański

    2007-01-01

    Full Text Available This article describes a proposition of knowledge organization for the purpose of reasoningusing an upper-ontology. It presents a model of integrated ontologies architecture whichconsists of a domain ontologies layer with instances, a shared upper-ontology layer withadditional rules and a layer of ontologies mapping concrete domain ontologies with the upperontology.Thanks to the upper-ontology, new facts were concluded from domain ontologiesduring the reasoning process. A practical realization proposition is given as well. It is basedon some popular SemanticWeb technologies and tools, such as OWL, SWRL, nRQL, Prot´eg´eand Racer.

  14. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai

    2016-01-01

    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  15. Improving the interoperability of biomedical ontologies with compound alignments.

    Science.gov (United States)

    Oliveira, Daniela; Pesquita, Catia

    2018-01-09

    Ontologies are commonly used to annotate and help process life sciences data. Although their original goal is to facilitate integration and interoperability among heterogeneous data sources, when these sources are annotated with distinct ontologies, bridging this gap can be challenging. In the last decade, ontology matching systems have been evolving and are now capable of producing high-quality mappings for life sciences ontologies, usually limited to the equivalence between two ontologies. However, life sciences research is becoming increasingly transdisciplinary and integrative, fostering the need to develop matching strategies that are able to handle multiple ontologies and more complex relations between their concepts. We have developed ontology matching algorithms that are able to find compound mappings between multiple biomedical ontologies, in the form of ternary mappings, finding for instance that "aortic valve stenosis"(HP:0001650) is equivalent to the intersection between "aortic valve"(FMA:7236) and "constricted" (PATO:0001847). The algorithms take advantage of search space filtering based on partial mappings between ontology pairs, to be able to handle the increased computational demands. The evaluation of the algorithms has shown that they are able to produce meaningful results, with precision in the range of 60-92% for new mappings. The algorithms were also applied to the potential extension of logical definitions of the OBO and the matching of several plant-related ontologies. This work is a first step towards finding more complex relations between multiple ontologies. The evaluation shows that the results produced are significant and that the algorithms could satisfy specific integration needs.

  16. Un enfoque basado en ontología para la gestión integrada del medio ambiente y de la seguridad y la salud en obra An ontology-based approach for on-site integrated environmental and health and safety management

    Directory of Open Access Journals (Sweden)

    Marta Gangolells

    2012-12-01

    Full Text Available Este artículo tiene como objetivo favorecer la implementación de sistemas integrados de gestión ambiental, de seguridad y salud en empresas constructoras, centrándose en el subsistema de control de los impactos ambientales y los riesgos de seguridad y salud en obra. La gran compatibilidad que presentan los requerimientos vinculados al control operacional establecidos en la normas ISO 14001:2004 y OHSAS 18001:2007 así como las interacciones existentes entre impactos ambientales y riesgos de seguridad y salud (Gangolells et al., 2009, Gangolells et al., 2010 han motivado el desarrollo de una ontología que permite construir un modelo integrado para el control operacional en obras de construcción. El enfoque desarrollado está fuertemente influenciado por la metodología de Noy y McGuiness (2001 y modela los conceptos clave y las relaciones del campo de forma estructurada, extensibe, flexible, reutilizable y compartible. Este enfoque basado en ontologías ha sido implementado mediante Protégé 3.4 beta y correctamente evaluado utilizando preguntas de competencia, verificaciones internas y entrevistas de validación con expertos. Este artículo desarrolla el primer enfoque que permite representar, compartir, reutilizar y gestionar el conocimiento relacionado con el control operacional integrado en obra de las incidencias medioambientales, de seguridad y salud y sienta las bases para poder superar la mayoría de las barreras que las empresas constructoras deben afrontar durante el proceso de implementación de un sistema de gestión integrada.This paper presents an innovative approach to implementing integrated environmental and health and safety management systems in construction companies. It focuses on the sub-system for operational control of on-site environmental impacts and health and safety risks. The high compatibility between the operational control requirements that are stated in ISO 14001:2004 and OHSAS 18001:2007 and the

  17. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems

    OpenAIRE

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason F.; Ng, Cherie T.; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-01-01

    Summary Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology?s hierarchical structure, we organize genotype ...

  18. Application of Ontology Technology in Health Statistic Data Analysis.

    Science.gov (United States)

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  19. Community-based Ontology Development, Annotation and Discussion with MediaWiki extension Ontokiwi and Ontokiwi-based Ontobedia

    Science.gov (United States)

    Ong, Edison; He, Yongqun

    2016-01-01

    Hundreds of biological and biomedical ontologies have been developed to support data standardization, integration and analysis. Although ontologies are typically developed for community usage, community efforts in ontology development are limited. To support ontology visualization, distribution, and community-based annotation and development, we have developed Ontokiwi, an ontology extension to the MediaWiki software. Ontokiwi displays hierarchical classes and ontological axioms. Ontology classes and axioms can be edited and added using Ontokiwi form or MediaWiki source editor. Ontokiwi also inherits MediaWiki features such as Wikitext editing and version control. Based on the Ontokiwi/MediaWiki software package, we have developed Ontobedia, which targets to support community-based development and annotations of biological and biomedical ontologies. As demonstrations, we have loaded the Ontology of Adverse Events (OAE) and the Cell Line Ontology (CLO) into Ontobedia. Our studies showed that Ontobedia was able to achieve expected Ontokiwi features. PMID:27570653

  20. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    Science.gov (United States)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  1. Mining rare associations between biological ontologies.

    Science.gov (United States)

    Benites, Fernando; Simon, Svenja; Sapozhnikova, Elena

    2014-01-01

    The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  2. Mining rare associations between biological ontologies.

    Directory of Open Access Journals (Sweden)

    Fernando Benites

    Full Text Available The constantly increasing volume and complexity of available biological data requires new methods for their management and analysis. An important challenge is the integration of information from different sources in order to discover possible hidden relations between already known data. In this paper we introduce a data mining approach which relates biological ontologies by mining cross and intra-ontology pairwise generalized association rules. Its advantage is sensitivity to rare associations, for these are important for biologists. We propose a new class of interestingness measures designed for hierarchically organized rules. These measures allow one to select the most important rules and to take into account rare cases. They favor rules with an actual interestingness value that exceeds the expected value. The latter is calculated taking into account the parent rule. We demonstrate this approach by applying it to the analysis of data from Gene Ontology and GPCR databases. Our objective is to discover interesting relations between two different ontologies or parts of a single ontology. The association rules that are thus discovered can provide the user with new knowledge about underlying biological processes or help improve annotation consistency. The obtained results show that produced rules represent meaningful and quite reliable associations.

  3. Ontology: ambiguity and accuracy

    Directory of Open Access Journals (Sweden)

    Marcelo Schiessl

    2012-08-01

    Full Text Available Ambiguity is a major obstacle to information retrieval. It is source of several researches in Information Science. Ontologies have been studied in order to solve problems related to ambiguities. Paradoxically, “ontology” term is also ambiguous and it is understood according to the use by the community. Philosophy and Computer Science seems to have the most accentuated difference related to the term sense. The former holds undisputed tradition and authority. The latter, in despite of being quite recent, holds an informal sense, but pragmatic. Information Science acts ranging from philosophical to computational approaches so as to get organized collections based on balance between users’ necessities and available information. The semantic web requires informational cycle automation and demands studies related to ontologies. Consequently, revisiting relevant approaches for the study of ontologies plays a relevant role as a way to provide useful ideas to researchers maintaining philosophical rigor, and convenience provided by computers.

  4. Ontological engineering versus metaphysics

    Science.gov (United States)

    Tataj, Emanuel; Tomanek, Roman; Mulawka, Jan

    2011-10-01

    It has been recognized that ontologies are a semantic version of world wide web and can be found in knowledge-based systems. A recent time survey of this field also suggest that practical artificial intelligence systems may be motivated by this research. Especially strong artificial intelligence as well as concept of homo computer can also benefit from their use. The main objective of this contribution is to present and review already created ontologies and identify the main advantages which derive such approach for knowledge management systems. We would like to present what ontological engineering borrows from metaphysics and what a feedback it can provide to natural language processing, simulations and modelling. The potential topics of further development from philosophical point of view is also underlined.

  5. DeMO: An Ontology for Discrete-event Modeling and Simulation

    Science.gov (United States)

    Silver, Gregory A; Miller, John A; Hybinette, Maria; Baramidze, Gregory; York, William S

    2011-01-01

    Several fields have created ontologies for their subdomains. For example, the biological sciences have developed extensive ontologies such as the Gene Ontology, which is considered a great success. Ontologies could provide similar advantages to the Modeling and Simulation community. They provide a way to establish common vocabularies and capture knowledge about a particular domain with community-wide agreement. Ontologies can support significantly improved (semantic) search and browsing, integration of heterogeneous information sources, and improved knowledge discovery capabilities. This paper discusses the design and development of an ontology for Modeling and Simulation called the Discrete-event Modeling Ontology (DeMO), and it presents prototype applications that demonstrate various uses and benefits that such an ontology may provide to the Modeling and Simulation community. PMID:22919114

  6. A Method for Building Personalized Ontology Summaries

    OpenAIRE

    Queiroz-Sousa, Paulo Orlando; Salgado, Ana Carolina; Pires, Carlos Eduardo

    2013-01-01

    In the context of ontology engineering, the ontology understanding is the basis for its further developmentand reuse. One intuitive eective approach to support ontology understanding is the process of ontology summarizationwhich highlights the most important concepts of an ontology. Ontology summarization identies an excerpt from anontology that contains the most relevant concepts and produces an abridged ontology. In this article, we present amethod for summarizing ontologies that represent ...

  7. Ontology and medical diagnosis.

    Science.gov (United States)

    Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita

    2012-03-01

    Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.

  8. MeDALL (Mechanisms of the Development of ALLergy): an integrated approach from phenotypes to systems medicine

    DEFF Research Database (Denmark)

    Bousquet, J; Anto, J; Auffray, C

    2011-01-01

    ) Building discovery of the relevant mechanisms in IgE-associated allergic diseases in existing longitudinal birth cohorts and Karelian children; (iii) Validation and redefinition of classical and novel phenotypes of IgE-associated allergic diseases; and (iv) Translational integration of systems biology......The origin of the epidemic of IgE-associated (allergic) diseases is unclear. MeDALL (Mechanisms of the Development of ALLergy), an FP7 European Union project (No. 264357), aims to generate novel knowledge on the mechanisms of initiation of allergy and to propose early diagnosis, prevention...... of complementary experts in allergy, epidemiology, allergen biochemistry, immunology, molecular biology, epigenetics, functional genomics, bioinformatics, computational and systems biology. The following steps are proposed: (i) Identification of 'classical' and 'novel' phenotypes in existing birth cohorts; (ii...

  9. Core Semantics for Public Ontologies

    National Research Council Canada - National Science Library

    Suni, Niranjan

    2005-01-01

    ... (schemas or ontologies) with respect to objects. The DARPA Agent Markup Language (DAML) through the use of ontologies provides a very powerful way to describe objects and their relationships to other objects...

  10. Learning expressive ontologies

    CERN Document Server

    Völker, J

    2009-01-01

    This publication advances the state-of-the-art in ontology learning by presenting a set of novel approaches to the semi-automatic acquisition, refinement and evaluation of logically complex axiomatizations. It has been motivated by the fact that the realization of the semantic web envisioned by Tim Berners-Lee is still hampered by the lack of ontological resources, while at the same time more and more applications of semantic technologies emerge from fast-growing areas such as e-business or life sciences. Such knowledge-intensive applications, requiring large scale reasoning over complex domai

  11. ONTOLOGY IN PHARMACY

    Directory of Open Access Journals (Sweden)

    L. Yu. Babintseva

    2015-05-01

    Full Text Available It’s considered ontological models for formalization of knowledge in pharmacy. There is emphasized the view that the possibility of rapid exchange of information in the pharmaceutical industry, it is necessary to create a single information space. This means not only the establishment of uniform standards for the presentation of information on pharmaceutical groups pharmacotherapeutic classifications, but also the creation of a unified and standardized system for the transfer and renewal of knowledge. It is the organization of information in the ontology helps quickly in the future to build expert systems and applications to work with data.

  12. Summarization by domain ontology navigation

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2013-01-01

    of the subject. In between these two extremes, conceptual summaries encompass selected concepts derived using background knowledge. We address in this paper an approach where conceptual summaries are provided through a conceptualization as given by an ontology. The ontology guiding the summarization can...... be a simple taxonomy or a generative domain ontology. A domain ontology can be provided by a preanalysis of a domain corpus and can be used to condense improved summaries that better reflects the conceptualization of a given domain....

  13. An Ontology for Description of Drug Discovery Investigations

    Directory of Open Access Journals (Sweden)

    Qi Da

    2010-12-01

    Full Text Available The paper presents an ontology for the description of Drug Discovery Investigation (DDI. This has been developed through the use of a Robot Scientist “Eve”, and in consultation with industry. DDI aims to define the principle entities and the relations in the research and development phase of the drug discovery pipeline. DDI is highly transferable and extendable due to its adherence to accepted standards, and compliance with existing ontology resources. This enables DDI to be integrated with such related ontologies as the Vaccine Ontology, the Advancing Clinico-Genomic Trials on Cancer Master Ontology, etc. DDI is available at http://purl.org/ddi/wikipedia or http://purl.org/ddi/home

  14. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  15. Using a Foundational Ontology for Reengineering a Software Enterprise Ontology

    Science.gov (United States)

    Perini Barcellos, Monalessa; de Almeida Falbo, Ricardo

    The knowledge about software organizations is considerably relevant to software engineers. The use of a common vocabulary for representing the useful knowledge about software organizations involved in software projects is important for several reasons, such as to support knowledge reuse and to allow communication and interoperability between tools. Domain ontologies can be used to define a common vocabulary for sharing and reuse of knowledge about some domain. Foundational ontologies can be used for evaluating and re-designing domain ontologies, giving to these real-world semantics. This paper presents an evaluating of a Software Enterprise Ontology that was reengineered using the Unified Foundation Ontology (UFO) as basis.

  16. The design ontology

    DEFF Research Database (Denmark)

    Storga, Mario; Andreasen, Mogens Myrup; Marjanovic, Dorian

    2010-01-01

    The article presents the research of the nature, building and practical role of a Design Ontology as a potential framework for the more efficient product development (PD) data-, information- and knowledge- description, -explanation, -understanding and -reusing. In the methodology for development ...

  17. Dahlbeck and Pure Ontology

    Science.gov (United States)

    Mackenzie, Jim

    2016-01-01

    This article responds to Johan Dahlbeck's "Towards a pure ontology: Children's bodies and morality" ["Educational Philosophy and Theory," vol. 46 (1), 2014, pp. 8-23 (EJ1026561)]. His arguments from Nietzsche and Spinoza do not carry the weight he supposes, and the conclusions he draws from them about pedagogy would be…

  18. Audit Validation Using Ontologies

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2015-01-01

    Full Text Available Requirements to increase quality audit processes in enterprises are defined. It substantiates the need for assessment and management audit processes using ontologies. Sets of rules, ways to assess the consistency of rules and behavior within the organization are defined. Using ontologies are obtained qualifications that assess the organization's audit. Elaboration of the audit reports is a perfect algorithm-based activity characterized by generality, determinism, reproducibility, accuracy and a well-established. The auditors obtain effective levels. Through ontologies obtain the audit calculated level. Because the audit report is qualitative structure of information and knowledge it is very hard to analyze and interpret by different groups of users (shareholders, managers or stakeholders. Developing ontology for audit reports validation will be a useful instrument for both auditors and report users. In this paper we propose an instrument for validation of audit reports contain a lot of keywords that calculates indicators, a lot of indicators for each key word there is an indicator, qualitative levels; interpreter who builds a table of indicators, levels of actual and calculated levels.

  19. Biomedicine: an ontological dissection.

    Science.gov (United States)

    Baronov, David

    2008-01-01

    Though ubiquitous across the medical social sciences literature, the term "biomedicine" as an analytical concept remains remarkably slippery. It is argued here that this imprecision is due in part to the fact that biomedicine is comprised of three interrelated ontological spheres, each of which frames biomedicine as a distinct subject of investigation. This suggests that, depending upon one's ontological commitment, the meaning of biomedicine will shift. From an empirical perspective, biomedicine takes on the appearance of a scientific enterprise and is defined as a derivative category of Western science more generally. From an interpretive perspective, biomedicine represents a symbolic-cultural expression whose adherence to the principles of scientific objectivity conceals an ideological agenda. From a conceptual perspective, biomedicine represents an expression of social power that reflects structures of power and privilege within capitalist society. No one perspective exists in isolation and so the image of biomedicine from any one presents an incomplete understanding. It is the mutually-conditioning interrelations between these ontological spheres that account for biomedicine's ongoing development. Thus, the ontological dissection of biomedicine that follows, with particular emphasis on the period of its formal crystallization in the latter nineteenth and early twentieth century, is intended to deepen our understanding of biomedicine as an analytical concept across the medical social sciences literature.

  20. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  1. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Science.gov (United States)

    Cook, Daniel L; Bookstein, Fred L; Gennari, John H

    2011-01-01

    As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB), a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration. © 2011 Cook et al.

  2. Experiences with Aber-OWL, an Ontology Repository with OWL EL Reasoning

    KAUST Repository

    Slater, Luke

    2016-04-19

    Ontologies are widely used in biology and biomedicine for the annotation and integration of data, and hundreds of ontologies have been developed for this purpose. These ontologies also constitute large volumes of formalized domain knowledge, usually expressed in the Web Ontology Language (OWL). Computational access to the knowledge contained within them relies on the use of automated reasoning. We have developed Aber-OWL, an ontology repository that provides OWL EL reasoning to answer queries and verify the consistency of ontologies. Aber-OWL also provides a set of web services which provide ontology-based access to scientific literature in Pubmed and Pubmed Central, SPARQL query expansion to retrieve linked data, and integration with Bio2RDF. Here, we report on our experiences with Aber-OWL and outline a roadmap for future development. Aber-OWL is freely available at http://aber-owl.net.

  3. OAE: The Ontology of Adverse Events.

    Science.gov (United States)

    He, Yongqun; Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Guo, Abra; Zhang, Shelley; Jagannathan, Desikan; Toldo, Luca; Tao, Cui; Smith, Barry

    2014-01-01

    A medical intervention is a medical procedure or application intended to relieve or prevent illness or injury. Examples of medical interventions include vaccination and drug administration. After a medical intervention, adverse events (AEs) may occur which lie outside the intended consequences of the intervention. The representation and analysis of AEs are critical to the improvement of public health. The Ontology of Adverse Events (OAE), previously named Adverse Event Ontology (AEO), is a community-driven ontology developed to standardize and integrate data relating to AEs arising subsequent to medical interventions, as well as to support computer-assisted reasoning. OAE has over 3,000 terms with unique identifiers, including terms imported from existing ontologies and more than 1,800 OAE-specific terms. In OAE, the term 'adverse event' denotes a pathological bodily process in a patient that occurs after a medical intervention. Causal adverse events are defined by OAE as those events that are causal consequences of a medical intervention. OAE represents various adverse events based on patient anatomic regions and clinical outcomes, including symptoms, signs, and abnormal processes. OAE has been used in the analysis of several different sorts of vaccine and drug adverse event data. For example, using the data extracted from the Vaccine Adverse Event Reporting System (VAERS), OAE was used to analyse vaccine adverse events associated with the administrations of different types of influenza vaccines. OAE has also been used to represent and classify the vaccine adverse events cited in package inserts of FDA-licensed human vaccines in the USA. OAE is a biomedical ontology that logically defines and classifies various adverse events occurring after medical interventions. OAE has successfully been applied in several adverse event studies. The OAE ontological framework provides a platform for systematic representation and analysis of adverse events and of the factors (e

  4. Epistemology and ontology in core ontologies: FOLaw and LRI-Core, two core ontologies for law

    NARCIS (Netherlands)

    Breukers, J.A.P.J.; Hoekstra, R.J.

    2004-01-01

    For more than a decade constructing ontologies for legal domains, we, at the Leibniz Center for Law, felt really the need to develop a core ontology for law that would enable us to re-use the common denominator of the various legal domains. In this paper we present two core ontologies for law. The

  5. Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.

    Science.gov (United States)

    Walls, Ramona L; Deck, John; Guralnick, Robert; Baskauf, Steve; Beaman, Reed; Blum, Stanley; Bowers, Shawn; Buttigieg, Pier Luigi; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Morrison, Norman; Ó Tuama, Éamonn; Schildhauer, Mark; Smith, Barry; Stucky, Brian J; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers.

  6. Semantics in Support of Biodiversity Knowledge Discovery: An Introduction to the Biological Collections Ontology and Related Ontologies

    Science.gov (United States)

    Baskauf, Steve; Blum, Stanley; Bowers, Shawn; Davies, Neil; Endresen, Dag; Gandolfo, Maria Alejandra; Hanner, Robert; Janning, Alyssa; Krishtalka, Leonard; Matsunaga, Andréa; Midford, Peter; Tuama, Éamonn Ó.; Schildhauer, Mark; Smith, Barry; Stucky, Brian J.; Thomer, Andrea; Wieczorek, John; Whitacre, Jamie; Wooley, John

    2014-01-01

    The study of biodiversity spans many disciplines and includes data pertaining to species distributions and abundances, genetic sequences, trait measurements, and ecological niches, complemented by information on collection and measurement protocols. A review of the current landscape of metadata standards and ontologies in biodiversity science suggests that existing standards such as the Darwin Core terminology are inadequate for describing biodiversity data in a semantically meaningful and computationally useful way. Existing ontologies, such as the Gene Ontology and others in the Open Biological and Biomedical Ontologies (OBO) Foundry library, provide a semantic structure but lack many of the necessary terms to describe biodiversity data in all its dimensions. In this paper, we describe the motivation for and ongoing development of a new Biological Collections Ontology, the Environment Ontology, and the Population and Community Ontology. These ontologies share the aim of improving data aggregation and integration across the biodiversity domain and can be used to describe physical samples and sampling processes (for example, collection, extraction, and preservation techniques), as well as biodiversity observations that involve no physical sampling. Together they encompass studies of: 1) individual organisms, including voucher specimens from ecological studies and museum specimens, 2) bulk or environmental samples (e.g., gut contents, soil, water) that include DNA, other molecules, and potentially many organisms, especially microbes, and 3) survey-based ecological observations. We discuss how these ontologies can be applied to biodiversity use cases that span genetic, organismal, and ecosystem levels of organization. We argue that if adopted as a standard and rigorously applied and enriched by the biodiversity community, these ontologies would significantly reduce barriers to data discovery, integration, and exchange among biodiversity resources and researchers

  7. Electricity Markets Ontology to Support MASCEM's Simulations

    DEFF Research Database (Denmark)

    Santos, Gabriel; Pinto, Tiago; Vale, Zita

    2016-01-01

    the several issues related to these systems, including the involved players that act in this domain. To take better advantage of these systems, their integration is mandatory. The main contribution of this paper is the development of the Electricity Markets Ontology, which integrates the essential concepts...... necessary to interpret all the available information related to electricity markets, while enabling an easier cooperation and adequate communication between related systems. Additionally, the concepts and rules defined by this ontology can be extended and complemented according to the needs of other......Power systems worldwide are complex and challenging environments. The increasing necessity for an adequate integration of renewable energy sources is resulting in a rising complexity in power systems operation. Multi-agent based simulation platforms have proven to be a good option to study...

  8. Integrative pathway dissection of molecular mechanisms of moxLDL-induced vascular smooth muscle phenotype transformation

    Directory of Open Access Journals (Sweden)

    Karagiannis George S

    2013-01-01

    Full Text Available Abstract Background Atherosclerosis (AT is a chronic inflammatory disease characterized by the accumulation of inflammatory cells, lipoproteins and fibrous tissue in the walls of arteries. AT is the primary cause of heart attacks and stroke and is the leading cause of death in Western countries. To date, the pathogenesis of AT is not well-defined. Studies have shown that the dedifferentiation of contractile and quiescent vascular smooth muscle cells (SMC to the proliferative, migratory and synthetic phenotype in the intima is pivotal for the onset and progression of AT. To further delineate the mechanisms underlying the pathogenesis of AT, we analyzed the early molecular pathways and networks involved in the SMC phenotype transformation. Methods Quiescent human coronary artery SMCs were treated with minimally-oxidized LDL (moxLDL, for 3 hours and 21 hours, respectively. Transcriptomic data was generated for both time-points using microarrays and was subjected to pathway analysis using Gene Set Enrichment Analysis, GeneMANIA and Ingenuity software tools. Gene expression heat maps and pathways enriched in differentially expressed genes were compared to identify functional biological themes to elucidate early and late molecular mechanisms of moxLDL-induced SMC dedifferentiation. Results Differentially expressed genes were found to be enriched in cholesterol biosynthesis, inflammatory cytokines, chemokines, growth factors, cell cycle control and myogenic contraction themes. These pathways are consistent with inflammatory responses, cell proliferation, migration and ECM production, which are characteristic of SMC dedifferentiation. Furthermore, up-regulation of cholesterol synthesis and dysregulation of cholesterol metabolism was observed in moxLDL-induced SMC. These observations are consistent with the accumulation of cholesterol and oxidized cholesterol esters, which induce proinflammatory reactions during atherogenesis. Our data implicate for the

  9. Benchmarking ontologies: bigger or better?

    Directory of Open Access Journals (Sweden)

    Lixia Yao

    2011-01-01

    Full Text Available A scientific ontology is a formal representation of knowledge within a domain, typically including central concepts, their properties, and relations. With the rise of computers and high-throughput data collection, ontologies have become essential to data mining and sharing across communities in the biomedical sciences. Powerful approaches exist for testing the internal consistency of an ontology, but not for assessing the fidelity of its domain representation. We introduce a family of metrics that describe the breadth and depth with which an ontology represents its knowledge domain. We then test these metrics using (1 four of the most common medical ontologies with respect to a corpus of medical documents and (2 seven of the most popular English thesauri with respect to three corpora that sample language from medicine, news, and novels. Here we show that our approach captures the quality of ontological representation and guides efforts to narrow the breach between ontology and collective discourse within a domain. Our results also demonstrate key features of medical ontologies, English thesauri, and discourse from different domains. Medical ontologies have a small intersection, as do English thesauri. Moreover, dialects characteristic of distinct domains vary strikingly as many of the same words are used quite differently in medicine, news, and novels. As ontologies are intended to mirror the state of knowledge, our methods to tighten the fit between ontology and domain will increase their relevance for new areas of biomedical science and improve the accuracy and power of inferences computed across them.

  10. PhenoTips: Patient Phenotyping Software for Clinical and Research Use.

    OpenAIRE

    Girdea, Marta; Dumitriu, Sergiu; Fiume, Marc; Buske, Orion; Bowdin, Sarah; Boycott, Kym M.; Chénier, Sébastien; Chitayat, David; Faghfoury, Hanna; Meyn, Stephen; Ray, Peter N.; So, Joyce; Stavropoulos, Dimitri J.; Brudno, Michael

    2014-01-01

    We have developed PhenoTips, a deep phenotyping tool and database, specifically designed for phenotyping patients with genetic disorders. Our tool closely mirrors clinician workflows so as to facilitate the recording of observations made during the patient encounter. Phenotypic information is represented using the Human Phenotype Ontology; however, the complexity of the ontology is hidden behind a user interface, which combines simple selection of common phenotypes with error-tolerant, predic...

  11. Ontology-based Information Retrieval

    DEFF Research Database (Denmark)

    Styltsvig, Henrik Bulskov

    In this thesis, we will present methods for introducing ontologies in information retrieval. The main hypothesis is that the inclusion of conceptual knowledge such as ontologies in the information retrieval process can contribute to the solution of major problems currently found in information...... retrieval. This utilization of ontologies has a number of challenges. Our focus is on the use of similarity measures derived from the knowledge about relations between concepts in ontologies, the recognition of semantic information in texts and the mapping of this knowledge into the ontologies in use......, as well as how to fuse together the ideas of ontological similarity and ontological indexing into a realistic information retrieval scenario. To achieve the recognition of semantic knowledge in a text, shallow natural language processing is used during indexing that reveals knowledge to the level of noun...

  12. An Iterative and Incremental Approach for E-Learning Ontology Engineering

    Directory of Open Access Journals (Sweden)

    Sudath Rohitha Heiyanthuduwage

    2009-03-01

    Full Text Available Abstract - There is a boost in the interest on ontology with the developments in Semantic Web technologies. Ontologies play a vital role in semantic web. Even though there is lot of work done on ontology, still a standard framework for ontology engineering has not been defined. Even though current ontology engineering methodologies are available they need improvements. The effort of our work is to integrate various methods, techniques, tools and etc to different stages of proposed ontology engineering life cycle to create a comprehensive framework for ontology engineering. Current methodologies discuss ontology engineering stages and collaborative environments with user collaboration. However, discussion on increasing effectiveness and correct inference has been given less attention. More over, these methodologies provide little discussion on usability of domain ontologies. We consider these aspects as more important in our work. Also, ontology engineering has been done for various domains and for various purposes. Our effort is to propose an iterative and incremental approach for ontology engineering especially for e-learning domain with the intention of achieving a higher usability and effectiveness of e-learning systems. This paper introduces different aspects of the proposed ontology engineering framework and evaluation of it.

  13. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    Directory of Open Access Journals (Sweden)

    Druka Arnis

    2008-11-01

    Full Text Available Abstract Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits. Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By

  14. Semi-automated ontology generation and evolution

    Science.gov (United States)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural

  15. Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics

    Directory of Open Access Journals (Sweden)

    Kalle Kilk

    2018-02-01

    Full Text Available Apart from the refined management-oriented clinical stratification of chronic obstructive pulmonary disease (COPD, the molecular pathologies behind this highly prevalent disease have remained obscure. The aim of this study was the characterization of patients with COPD, based on the metabolomic profiling of peripheral blood and exhaled breath condensate (EBC within the context of defined clinical and demographic variables. Mass-spectrometry-based targeted analysis of serum metabolites (mainly amino acids and lipid species, untargeted profiles of serum and EBC of patients with COPD of different clinical characteristics (n = 25 and control individuals (n = 21 were performed. From the combined clinical/demographic and metabolomics data, associations between clinical/demographic and metabolic parameters were searched and a de novo phenotyping for COPD was attempted. Adjoining the clinical parameters, sphingomyelins were the best to differentiate COPD patients from controls. Unsaturated fatty acid-containing lipids, ornithine metabolism and plasma protein composition-associated signals from the untargeted analysis differentiated the Global Initiative for COPD (GOLD categories. Hierarchical clustering did not reveal a clinical-metabolomic stratification superior to the strata set by the GOLD consensus. We conclude that while metabolomics approaches are good for finding biomarkers and clarifying the mechanism of the disease, there are no distinct co-variate independent clinical-metabolic phenotypes.

  16. Integration of Phenotypic Metadata and Protein Similarity in Archaea Using a Spectral Bipartitioning Approach

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Sean D.; Anderson, Iain J; Pati, Amrita; Dalevi, Daniel; Mavromatis, Konstantinos; Kyrpides, Nikos C

    2009-01-01

    In order to simplify and meaningfully categorize large sets of protein sequence data, it is commonplace to cluster proteins based on the similarity of those sequences. However, it quickly becomes clear that the sequence flexibility allowed a given protein varies significantly among different protein families. The degree to which sequences are conserved not only differs for each protein family, but also is affected by the phylogenetic divergence of the source organisms. Clustering techniques that use similarity thresholds for protein families do not always allow for these variations and thus cannot be confidently used for applications such as automated annotation and phylogenetic profiling. In this work, we applied a spectral bipartitioning technique to all proteins from 53 archaeal genomes. Comparisons between different taxonomic levels allowed us to study the effects of phylogenetic distances on cluster structure. Likewise, by associating functional annotations and phenotypic metadata with each protein, we could compare our protein similarity clusters with both protein function and associated phenotype. Our clusters can be analyzed graphically and interactively online.

  17. Constructing a Geology Ontology Using a Relational Database

    Science.gov (United States)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances

  18. Ontological Issues and the Possible Development of Cultural Psychology.

    Science.gov (United States)

    Pérez-Campos, Gilberto

    2017-12-01

    Ontological issues have a bad reputation within mainstream psychology. This paper, however, is an attempt to argue that ontological reflection may play an important role in the development of cultural psychology. A cross-reading of two recent papers on the subject (Mammen & Mironenko, Integrative Psychological and Behavioral Science, 49(4), 681-713, 2015; Simão Integrative Psychological and Behavioral Science, 50, 568-585, 2016), aimed at characterizing their respective approaches to ontological issues, sets the stage for a presentation of Cornelius Castoriadis' ontological reflections. On this basis, a dialogue is initiated with E.E. Boesch's Symbolic Activity Theory that could contribute to a more refined understanding of human psychological functioning in its full complexity.

  19. Completeness, supervenience and ontology

    International Nuclear Information System (INIS)

    Maudlin, Tim W E

    2007-01-01

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction

  20. Completeness, supervenience and ontology

    Energy Technology Data Exchange (ETDEWEB)

    Maudlin, Tim W E [Department of Philosophy, Rutgers University, 26 Nichol Avenue, New Brunswick, NJ 08901-1411 (United States)

    2007-03-23

    In 1935, Einstein, Podolsky and Rosen raised the issue of the completeness of the quantum description of a physical system. What they had in mind is whether or not the quantum description is informationally complete, in that all physical features of a system can be recovered from it. In a collapse theory such as the theory of Ghirardi, Rimini and Weber, the quantum wavefunction is informationally complete, and this has often been taken to suggest that according to that theory the wavefunction is all there is. If we distinguish the ontological completeness of a description from its informational completeness, we can see that the best interpretations of the GRW theory must postulate more physical ontology than just the wavefunction.

  1. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully

  2. Ontology evolution in physics

    OpenAIRE

    Chan, Michael

    2013-01-01

    With the advent of reasoning problems in dynamic environments, there is an increasing need for automated reasoning systems to automatically adapt to unexpected changes in representations. In particular, the automation of the evolution of their ontologies needs to be enhanced without substantially sacrificing expressivity in the underlying representation. Revision of beliefs is not enough, as adding to or removing from beliefs does not change the underlying formal language. Gene...

  3. Knowledge-based analysis of phenotypes

    KAUST Repository

    Hoendorf, Robert

    2016-01-01

    a formal framework to describe phenotypes. A formalized theory of phenotypes is not only useful for domain analysis, but can also be applied to assist in the diagnosis of rare genetic diseases, and I will show how our results on the ontology

  4. Feasibility of automated foundational ontology interchangeability

    CSIR Research Space (South Africa)

    Khan, ZC

    2014-11-01

    Full Text Available the Source Domain Ontology (sOd), with the domain knowledge com- ponent of the source ontology, the Source Foundational Ontology (sOf ) that is the foundational ontology component of the source ontology that is to be interchanged, and any equivalence... or subsumption mappings between enti- ties in sOd and sOf . – The Target Ontology (tO) which has been interchanged, which comprises the Target Domain Ontology (tOd), with the domain knowledge component of the target ontology, and the Target Foundational Ontology...

  5. Development of an Ontology for Periodontitis.

    Science.gov (United States)

    Suzuki, Asami; Takai-Igarashi, Takako; Nakaya, Jun; Tanaka, Hiroshi

    2015-01-01

    In the clinical dentists and periodontal researchers' community, there is an obvious demand for a systems model capable of linking the clinical presentation of periodontitis to underlying molecular knowledge. A computer-readable representation of processes on disease development will give periodontal researchers opportunities to elucidate pathways and mechanisms of periodontitis. An ontology for periodontitis can be a model for integration of large variety of factors relating to a complex disease such as chronic inflammation in different organs accompanied by bone remodeling and immune system disorders, which has recently been referred to as osteoimmunology. Terms characteristic of descriptions related to the onset and progression of periodontitis were manually extracted from 194 review articles and PubMed abstracts by experts in periodontology. We specified all the relations between the extracted terms and constructed them into an ontology for periodontitis. We also investigated matching between classes of our ontology and that of Gene Ontology Biological Process. We developed an ontology for periodontitis called Periodontitis-Ontology (PeriO). The pathological progression of periodontitis is caused by complex, multi-factor interrelationships. PeriO consists of all the required concepts to represent the pathological progression and clinical treatment of periodontitis. The pathological processes were formalized with reference to Basic Formal Ontology and Relation Ontology, which accounts for participants in the processes realized by biological objects such as molecules and cells. We investigated the peculiarity of biological processes observed in pathological progression and medical treatments for the disease in comparison with Gene Ontology Biological Process (GO-BP) annotations. The results indicated that peculiarities of Perio existed in 1) granularity and context dependency of both the conceptualizations, and 2) causality intrinsic to the pathological processes

  6. An Ontology for Software Engineering Education

    Science.gov (United States)

    Ling, Thong Chee; Jusoh, Yusmadi Yah; Adbullah, Rusli; Alwi, Nor Hayati

    2013-01-01

    Software agents communicate using ontology. It is important to build an ontology for specific domain such as Software Engineering Education. Building an ontology from scratch is not only hard, but also incur much time and cost. This study aims to propose an ontology through adaptation of the existing ontology which is originally built based on a…

  7. CONCEPTION OF ONTOLOGY-BASED SECTOR EDUCATIONAL SPACE

    Directory of Open Access Journals (Sweden)

    V. I. Khabarov

    2014-09-01

    Full Text Available PurposeThe aim of the research is to demonstrate the need for the Conception of Ontology-based Sector Educational Space. This Conception could become the basis for the integration of transport sector university information resources into the open virtual network information resource and global educational space. Its content will be presented by standardized ontology-based knowledge packages for educational programs in Russian and English languages.MethodologyComplex-based, ontological, content-based approaches and scientific principles of interdisciplinarity and standardization of knowledge are suggested as the methodological basis of the research. ResultsThe Conception of Ontology-based Sector Educational Space (railway transport, the method of the development of knowledge packages as ontologies in Russian and English languages, the Russian-English Transport Glossary as a separate ontology are among the expected results of the project implementation.Practical implicationsThe Conception could become the basis for the open project to establish the common resource center for transport universities (railway transport. The Conception of ontology-based sector educational space (railway transport could be adapted to the activity of universities of other economic sectors.

  8. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.

    Science.gov (United States)

    Cheng, Liang; Jiang, Yue; Ju, Hong; Sun, Jie; Peng, Jiajie; Zhou, Meng; Hu, Yang

    2018-01-19

    Since the establishment of the first biomedical ontology Gene Ontology (GO), the number of biomedical ontology has increased dramatically. Nowadays over 300 ontologies have been built including extensively used Disease Ontology (DO) and Human Phenotype Ontology (HPO). Because of the advantage of identifying novel relationships between terms, calculating similarity between ontology terms is one of the major tasks in this research area. Though similarities between terms within each ontology have been studied with in silico methods, term similarities across different ontologies were not investigated as deeply. The latest method took advantage of gene functional interaction network (GFIN) to explore such inter-ontology similarities of terms. However, it only used gene interactions and failed to make full use of the connectivity among gene nodes of the network. In addition, all existent methods are particularly designed for GO and their performances on the extended ontology community remain unknown. We proposed a method InfAcrOnt to infer similarities between terms across ontologies utilizing the entire GFIN. InfAcrOnt builds a term-gene-gene network which comprised ontology annotations and GFIN, and acquires similarities between terms across ontologies through modeling the information flow within the network by random walk. In our benchmark experiments on sub-ontologies of GO, InfAcrOnt achieves a high average area under the receiver operating characteristic curve (AUC) (0.9322 and 0.9309) and low standard deviations (1.8746e-6 and 3.0977e-6) in both human and yeast benchmark datasets exhibiting superior performance. Meanwhile, comparisons of InfAcrOnt results and prior knowledge on pair-wise DO-HPO terms and pair-wise DO-GO terms show high correlations. The experiment results show that InfAcrOnt significantly improves the performance of inferring similarities between terms across ontologies in benchmark set.

  9. An Ontology to Support the Classification of Learning Material in an Organizational Learning Environment: An Evaluation

    Science.gov (United States)

    Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia

    2017-01-01

    Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…

  10. Expert2OWL: A Methodology for Pattern-Based Ontology Development.

    Science.gov (United States)

    Tahar, Kais; Xu, Jie; Herre, Heinrich

    2017-01-01

    The formalization of expert knowledge enables a broad spectrum of applications employing ontologies as underlying technology. These include eLearning, Semantic Web and expert systems. However, the manual construction of such ontologies is time-consuming and thus expensive. Moreover, experts are often unfamiliar with the syntax and semantics of formal ontology languages such as OWL and usually have no experience in developing formal ontologies. To overcome these barriers, we developed a new method and tool, called Expert2OWL that provides efficient features to support the construction of OWL ontologies using GFO (General Formal Ontology) as a top-level ontology. This method allows a close and effective collaboration between ontologists and domain experts. Essentially, this tool integrates Excel spreadsheets as part of a pattern-based ontology development and refinement process. Expert2OWL enables us to expedite the development process and modularize the resulting ontologies. We applied this method in the field of Chinese Herbal Medicine (CHM) and used Expert2OWL to automatically generate an accurate Chinese Herbology ontology (CHO). The expressivity of CHO was tested and evaluated using ontology query languages SPARQL and DL. CHO shows promising results and can generate answers to important scientific questions such as which Chinese herbal formulas contain which substances, which substances treat which diseases, and which ones are the most frequently used in CHM.

  11. Similarity-based search of model organism, disease and drug effect phenotypes

    KAUST Repository

    Hoehndorf, Robert; Gruenberger, Michael; Gkoutos, Georgios V; Schofield, Paul N

    2015-01-01

    Background: Semantic similarity measures over phenotype ontologies have been demonstrated to provide a powerful approach for the analysis of model organism phenotypes, the discovery of animal models of human disease, novel pathways, gene functions

  12. TrhOnt: building an ontology to assist rehabilitation processes.

    Science.gov (United States)

    Berges, Idoia; Antón, David; Bermúdez, Jesús; Goñi, Alfredo; Illarramendi, Arantza

    2016-10-04

    One of the current research efforts in the area of biomedicine is the representation of knowledge in a structured way so that reasoning can be performed on it. More precisely, in the field of physiotherapy, information such as the physiotherapy record of a patient or treatment protocols for specific disorders must be adequately modeled, because they play a relevant role in the management of the evolutionary recovery process of a patient. In this scenario, we introduce TRHONT, an application ontology that can assist physiotherapists in the management of the patients' evolution via reasoning supported by semantic technology. The ontology was developed following the NeOn Methodology. It integrates knowledge from ontological (e.g. FMA ontology) and non-ontological resources (e.g. a database of movements, exercises and treatment protocols) as well as additional physiotherapy-related knowledge. We demonstrate how the ontology fulfills the purpose of providing a reference model for the representation of the physiotherapy-related information that is needed for the whole physiotherapy treatment of patients, since they step for the first time into the physiotherapist's office, until they are discharged. More specifically, we present the results for each of the intended uses of the ontology listed in the document that specifies its requirements, and show how TRHONT can answer the competency questions defined within that document. Moreover, we detail the main steps of the process followed to build the TRHONT ontology in order to facilitate its reproducibility in a similar context. Finally, we show an evaluation of the ontology from different perspectives. TRHONT has achieved the purpose of allowing for a reasoning process that changes over time according to the patient's state and performance.

  13. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  14. ONSET: Automated foundational ontology selection and explanation

    CSIR Research Space (South Africa)

    Khan, Z

    2012-10-01

    Full Text Available It has been shown that using a foundational ontology for domain ontology development is beneficial in theory and practice. However, developers have difficulty with choosing the appropriate foundational ontology, and why. In order to solve...

  15. Automating data acquisition into ontologies from pharmacogenetics relational data sources using declarative object definitions and XML.

    Science.gov (United States)

    Rubin, Daniel L; Hewett, Micheal; Oliver, Diane E; Klein, Teri E; Altman, Russ B

    2002-01-01

    Ontologies are useful for organizing large numbers of concepts having complex relationships, such as the breadth of genetic and clinical knowledge in pharmacogenomics. But because ontologies change and knowledge evolves, it is time consuming to maintain stable mappings to external data sources that are in relational format. We propose a method for interfacing ontology models with data acquisition from external relational data sources. This method uses a declarative interface between the ontology and the data source, and this interface is modeled in the ontology and implemented using XML schema. Data is imported from the relational source into the ontology using XML, and data integrity is checked by validating the XML submission with an XML schema. We have implemented this approach in PharmGKB (http://www.pharmgkb.org/), a pharmacogenetics knowledge base. Our goals were to (1) import genetic sequence data, collected in relational format, into the pharmacogenetics ontology, and (2) automate the process of updating the links between the ontology and data acquisition when the ontology changes. We tested our approach by linking PharmGKB with data acquisition from a relational model of genetic sequence information. The ontology subsequently evolved, and we were able to rapidly update our interface with the external data and continue acquiring the data. Similar approaches may be helpful for integrating other heterogeneous information sources in order make the diversity of pharmacogenetics data amenable to computational analysis.

  16. USE OF ONTOLOGIES FOR KNOWLEDGE BASES CREATION TUTORING COMPUTER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheremisina Lyubov

    2014-11-01

    Full Text Available This paper deals with the use of ontology for the use and development of intelligent tutoring systems. We consider the shortcomings of educational software and distance learning systems and the advantages of using ontology’s in their design. Actuality creates educational computer systems based on systematic knowledge. We consider classification of properties, use and benefits of ontology’s. Characterized approaches to the problem of ontology mapping, the first of which – manual mapping, the second – a comparison of the names of concepts based on their lexical similarity and using special dictionaries. The analysis of languages available for the formal description of ontology. Considered a formal mathematical model of ontology’s and ontology consistency problem, which is that different developers for the same domain ontology can be created, syntactically or semantically heterogeneous, and their use requires a compatible broadcast or display. An algorithm combining ontology’s. The characteristic of the practical value of developing an ontology for electronic educational resources and recommendations for further research and development, such as implementation of other components of the system integration, formalization of the processes of integration and development of a universal expansion algorithms ontology’s software

  17. Identification of protein features encoded by alternative exons using Exon Ontology.

    Science.gov (United States)

    Tranchevent, Léon-Charles; Aubé, Fabien; Dulaurier, Louis; Benoit-Pilven, Clara; Rey, Amandine; Poret, Arnaud; Chautard, Emilie; Mortada, Hussein; Desmet, François-Olivier; Chakrama, Fatima Zahra; Moreno-Garcia, Maira Alejandra; Goillot, Evelyne; Janczarski, Stéphane; Mortreux, Franck; Bourgeois, Cyril F; Auboeuf, Didier

    2017-06-01

    Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing variation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named "Exon Ontology," based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encoded protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splicing. We also show that Exon Ontology helps to unravel biological processes that depend on suites of coregulated alternative exons, as we uncovered a role of epithelial cell-enriched splicing factors in the AKT signaling pathway and of mesenchymal cell-enriched splicing factors in driving splicing events impacting on autophagy. Freely available on the web, Exon Ontology is the first computational resource that allows getting a quick insight into the protein features encoded by alternative exons and investigating whether coregulated exons contain the same biological information. © 2017 Tranchevent et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS

    Science.gov (United States)

    Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing

    2017-07-01

    Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.

  19. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes.

    Directory of Open Access Journals (Sweden)

    Jibril Hirbo

    Full Text Available Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB, a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23-34% are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.

  20. A New role of ontologies and advanced scientific visualization in big data analytics

    OpenAIRE

    Chuprina, Svetlana

    2016-01-01

    Accessing and contextual semantic searching structured, semi-structured and unstructured information resources and their ontology based analysis in a uniform way across text-free Big Data query implementation is a main feature of approach under discussion. To increase the semantic power of query results’ analysis the ontology based implementation of multiplatform adaptive tools of scientific visualization are demonstrated. The ontologies are used not for integration of heterogeneous resources...

  1. Ontology Based Model Transformation Infrastructure

    NARCIS (Netherlands)

    Göknil, Arda; Topaloglu, N.Y.

    2005-01-01

    Using MDA in ontology development has been investigated in several works recently. The mappings and transformations between the UML constructs and the OWL elements to develop ontologies are the main concern of these research projects. We propose another approach in order to achieve the collaboration

  2. Ontology through a Mindfulness Process

    Science.gov (United States)

    Bearance, Deborah; Holmes, Kimberley

    2015-01-01

    Traditionally, when ontology is taught in a graduate studies course on social research, there is a tendency for this concept to be examined through the process of lectures and readings. Such an approach often leaves graduate students to grapple with a personal embodiment of this concept and to comprehend how ontology can ground their research.…

  3. The foundational ontology library ROMULUS

    CSIR Research Space (South Africa)

    Khan, ZC

    2013-09-01

    Full Text Available . We present here a basic step in that direction with the Repository of Ontologies for MULtiple USes, ROMULUS, which is the first online library of machine-processable, modularised, aligned, and logic-based merged foundational ontologies. In addition...

  4. Tracking Changes during Ontology Evolution

    NARCIS (Netherlands)

    Noy, Natalya F.; Kunnatur, Sandhya; Klein, Michel; Musen, Mark A.

    2004-01-01

    As ontology development becomes a collaborative process, developers face the problem of maintaining versions of ontologies akin to maintaining versions of software code or versions of documents in large projects. Traditional versioning systems enable users to compare versions, examine changes, and

  5. LORD: a phenotype-genotype semantically integrated biomedical data tool to support rare disease diagnosis coding in health information systems.

    Science.gov (United States)

    Choquet, Remy; Maaroufi, Meriem; Fonjallaz, Yannick; de Carrara, Albane; Vandenbussche, Pierre-Yves; Dhombres, Ferdinand; Landais, Paul

    Characterizing a rare disease diagnosis for a given patient is often made through expert's networks. It is a complex task that could evolve over time depending on the natural history of the disease and the evolution of the scientific knowledge. Most rare diseases have genetic causes and recent improvements of sequencing techniques contribute to the discovery of many new diseases every year. Diagnosis coding in the rare disease field requires data from multiple knowledge bases to be aggregated in order to offer the clinician a global information space from possible diagnosis to clinical signs (phenotypes) and known genetic mutations (genotype). Nowadays, the major barrier to the coding activity is the lack of consolidation of such information scattered in different thesaurus such as Orphanet, OMIM or HPO. The Linking Open data for Rare Diseases (LORD) web portal we developed stands as the first attempt to fill this gap by offering an integrated view of 8,400 rare diseases linked to more than 14,500 signs and 3,270 genes. The application provides a browsing feature to navigate through the relationships between diseases, signs and genes, and some Application Programming Interfaces to help its integration in health information systems in routine.

  6. Methodology for the inference of gene function from phenotype data.

    Science.gov (United States)

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and

  7. The Cell Ontology 2016: enhanced content, modularization, and ontology interoperability.

    Science.gov (United States)

    Diehl, Alexander D; Meehan, Terrence F; Bradford, Yvonne M; Brush, Matthew H; Dahdul, Wasila M; Dougall, David S; He, Yongqun; Osumi-Sutherland, David; Ruttenberg, Alan; Sarntivijai, Sirarat; Van Slyke, Ceri E; Vasilevsky, Nicole A; Haendel, Melissa A; Blake, Judith A; Mungall, Christopher J

    2016-07-04

    The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical, natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates but provides general classes that can be used for other metazoans, which can be subtyped in species-specific ontologies. Recent work on the CL has focused on extending the representation of various cell types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell types. In addition, subtypes of the class 'cell in vitro' have received improved definitions and labels to provide for modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the ontology, and an increasing reliance on logical definitions for improved reasoning. The CL is now mandated as a metadata standard for large functional genomics and transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell Image Library. The CL is also a vital component used in the modular construction of other biomedical ontologies-for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support the consistent representation of cell types across different levels of anatomical granularity, such as tissues and organs. The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry community and the wider scientific community, and we continue to experience increased interest in the

  8. Phenotypic integration in a series of trophic traits: tracing the evolution of myrmecophagy in spiders (Araneae).

    Science.gov (United States)

    Pekár, Stano; Michalko, Radek; Korenko, Stanislav; Sedo, Ondřej; Líznarová, Eva; Sentenská, Lenka; Zdráhal, Zbyněk

    2013-02-01

    Several hypotheses have been put forward to explain the evolution of prey specificity (stenophagy). Yet little light has so far been shed on the process of evolution of stenophagy in carnivorous predators. We performed a detailed analysis of a variety of trophic adaptations in one species. Our aim was to determine whether a specific form of stenophagy, myrmecophagy, has evolved from euryphagy via parallel changes in several traits from pre-existing characters. For that purpose, we studied the trophic niche and morphological, behavioural, venomic and physiological adaptations in a euryphagous spider, Selamia reticulata. It is a species that is branching off earlier in phylogeny than stenophagous ant-eating spiders of the genus Zodarion (both Zodariidae). The natural diet was wide and included ants. Laboratory feeding trials revealed versatile prey capture strategies that are effective on ants and other prey types. The performance of spiders on two different diets - ants only and mixed insects - failed to reveal differences in most fitness components (survival and developmental rate). However, the weight increase was significantly higher in spiders on the mixed diet. As a result, females on a mixed diet had higher fecundity and oviposited earlier. No differences were found in incubation period, hatching success or spiderling size. S. reticulata possesses a more diverse venom composition than Zodarion. Its venom is more effective for the immobilisation of beetle larvae than of ants. Comparative analysis of morphological traits related to myrmecophagy in the family Zodariidae revealed that their apomorphic states appeared gradually along the phylogeny to derived prey-specialised genera. Our results suggest that myrmecophagy has evolved gradually from the ancestral euryphagous strategy by integrating a series of trophic traits. Copyright © 2012 Elsevier GmbH. All rights reserved.

  9. Adding a little reality to building ontologies for biology.

    Directory of Open Access Journals (Sweden)

    Phillip Lord

    Full Text Available BACKGROUND: Many areas of biology are open to mathematical and computational modelling. The application of discrete, logical formalisms defines the field of biomedical ontologies. Ontologies have been put to many uses in bioinformatics. The most widespread is for description of entities about which data have been collected, allowing integration and analysis across multiple resources. There are now over 60 ontologies in active use, increasingly developed as large, international collaborations. There are, however, many opinions on how ontologies should be authored; that is, what is appropriate for representation. Recently, a common opinion has been the "realist" approach that places restrictions upon the style of modelling considered to be appropriate. METHODOLOGY/PRINCIPAL FINDINGS: Here, we use a number of case studies for describing the results of biological experiments. We investigate the ways in which these could be represented using both realist and non-realist approaches; we consider the limitations and advantages of each of these models. CONCLUSIONS/SIGNIFICANCE: From our analysis, we conclude that while realist principles may enable straight-forward modelling for some topics, there are crucial aspects of science and the phenomena it studies that do not fit into this approach; realism appears to be over-simplistic which, perversely, results in overly complex ontological models. We suggest that it is impossible to avoid compromise in modelling ontology; a clearer understanding of these compromises will better enable appropriate modelling, fulfilling the many needs for discrete mathematical models within computational biology.

  10. Logic and Ontology

    Directory of Open Access Journals (Sweden)

    Newton C. A. da Costa

    2002-12-01

    Full Text Available In view of the present state of development of non classical logic, especially of paraconsistent logic, a new stand regarding the relations between logic and ontology is defended In a parody of a dictum of Quine, my stand May be summarized as follows. To be is to be the value of a variable a specific language with a given underlying logic Yet my stand differs from Quine’s, because, among other reasons, I accept some first order heterodox logics as genuine alternatives to classical logic I also discuss some questions of non classical logic to substantiate my argument, and suggest that may position complements and extends some ideas advanced by L Apostel.

  11. Gene Ontology Consortium: going forward.

    Science.gov (United States)

    2015-01-01

    The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Building a developmental toxicity ontology.

    Science.gov (United States)

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  13. Cyber Forensics Ontology for Cyber Criminal Investigation

    Science.gov (United States)

    Park, Heum; Cho, Sunho; Kwon, Hyuk-Chul

    We developed Cyber Forensics Ontology for the criminal investigation in cyber space. Cyber crime is classified into cyber terror and general cyber crime, and those two classes are connected with each other. The investigation of cyber terror requires high technology, system environment and experts, and general cyber crime is connected with general crime by evidence from digital data and cyber space. Accordingly, it is difficult to determine relational crime types and collect evidence. Therefore, we considered the classifications of cyber crime, the collection of evidence in cyber space and the application of laws to cyber crime. In order to efficiently investigate cyber crime, it is necessary to integrate those concepts for each cyber crime-case. Thus, we constructed a cyber forensics domain ontology for criminal investigation in cyber space, according to the categories of cyber crime, laws, evidence and information of criminals. This ontology can be used in the process of investigating of cyber crime-cases, and for data mining of cyber crime; classification, clustering, association and detection of crime types, crime cases, evidences and criminals.

  14. The Ontology Lookup Service, a lightweight cross-platform tool for controlled vocabulary queries

    Directory of Open Access Journals (Sweden)

    Apweiler Rolf

    2006-02-01

    Full Text Available Abstract Background With the vast amounts of biomedical data being generated by high-throughput analysis methods, controlled vocabularies and ontologies are becoming increasingly important to annotate units of information for ease of search and retrieval. Each scientific community tends to create its own locally available ontology. The interfaces to query these ontologies tend to vary from group to group. We saw the need for a centralized location to perform controlled vocabulary queries that would offer both a lightweight web-accessible user interface as well as a consistent, unified SOAP interface for automated queries. Results The Ontology Lookup Service (OLS was created to integrate publicly available biomedical ontologies into a single database. All modified ontologies are updated daily. A list of currently loaded ontologies is available online. The database can be queried to obtain information on a single term or to browse a complete ontology using AJAX. Auto-completion provides a user-friendly search mechanism. An AJAX-based ontology viewer is available to browse a complete ontology or subsets of it. A programmatic interface is available to query the webservice using SOAP. The service is described by a WSDL descriptor file available online. A sample Java client to connect to the webservice using SOAP is available for download from SourceForge. All OLS source code is publicly available under the open source Apache Licence. Conclusion The OLS provides a user-friendly single entry point for publicly available ontologies in the Open Biomedical Ontology (OBO format. It can be accessed interactively or programmatically at http://www.ebi.ac.uk/ontology-lookup/.

  15. PDON: Parkinson's disease ontology for representation and modeling of the Parkinson's disease knowledge domain.

    Science.gov (United States)

    Younesi, Erfan; Malhotra, Ashutosh; Gündel, Michaela; Scordis, Phil; Kodamullil, Alpha Tom; Page, Matt; Müller, Bernd; Springstubbe, Stephan; Wüllner, Ullrich; Scheller, Dieter; Hofmann-Apitius, Martin

    2015-09-22

    Despite the unprecedented and increasing amount of data, relatively little progress has been made in molecular characterization of mechanisms underlying Parkinson's disease. In the area of Parkinson's research, there is a pressing need to integrate various pieces of information into a meaningful context of presumed disease mechanism(s). Disease ontologies provide a novel means for organizing, integrating, and standardizing the knowledge domains specific to disease in a compact, formalized and computer-readable form and serve as a reference for knowledge exchange or systems modeling of disease mechanism. The Parkinson's disease ontology was built according to the life cycle of ontology building. Structural, functional, and expert evaluation of the ontology was performed to ensure the quality and usability of the ontology. A novelty metric has been introduced to measure the gain of new knowledge using the ontology. Finally, a cause-and-effect model was built around PINK1 and two gene expression studies from the Gene Expression Omnibus database were re-annotated to demonstrate the usability of the ontology. The Parkinson's disease ontology with a subclass-based taxonomic hierarchy covers the broad spectrum of major biomedical concepts from molecular to clinical features of the disease, and also reflects different views on disease features held by molecular biologists, clinicians and drug developers. The current version of the ontology contains 632 concepts, which are organized under nine views. The structural evaluation showed the balanced dispersion of concept classes throughout the ontology. The functional evaluation demonstrated that the ontology-driven literature search could gain novel knowledge not present in the reference Parkinson's knowledge map. The ontology was able to answer specific questions related to Parkinson's when evaluated by experts. Finally, the added value of the Parkinson's disease ontology is demonstrated by ontology-driven modeling of PINK1

  16. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  17. There is no quantum ontology without classical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)

    2011-07-01

    The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.

  18. A Lexical-Ontological Resource for Consumer Healthcare

    Science.gov (United States)

    Cardillo, Elena; Serafini, Luciano; Tamilin, Andrei

    In Consumer Healthcare Informatics it is still difficult for laypeople to find, understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and semantic web technologies. The system is based on the development of a consumer-oriented medical terminology that will be integrated with other medical domain ontologies and terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems, such as Personal Health Records, by providing many knowledge services to help users in accessing and managing their healthcare data.

  19. A Lexical-Ontological Resource for Consumer Heathcare

    Science.gov (United States)

    Cardillo, Elena

    In Consumer Healthcare Informatics it is still difficult for laypersons to understand and act on health information, due to the persistent communication gap between specialized medical terminology and that used by healthcare consumers. Furthermore, existing clinically-oriented terminologies cannot provide sufficient support when integrated into consumer-oriented applications, so there is a need to create consumer-friendly terminologies reflecting the different ways healthcare consumers express and think about health topics. Following this direction, this work suggests a way to support the design of an ontology-based system that mitigates this gap, using knowledge engineering and Semantic Web technologies. The system is based on the development of a consumer-oriented medical terminology which will be integrated with other existing domain ontologies/terminologies into a medical ontology repository. This will support consumer-oriented healthcare systems by providing many knowledge services to help users in accessing and managing their healthcare data.

  20. development of ontological knowledge representation

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. This paper presents the development of an ontological knowledge organization and .... intelligence in order to facilitate knowledge sharing and reuse of acquired knowledge (15). Soon, ..... Water Chemistry, AJCE, 1(2), 50-58. 25.

  1. A Mobile Army of Ontologies

    DEFF Research Database (Denmark)

    Juul, Jesper

    2015-01-01

    Presentation at the Ludo-ontologies panel. Do we need ludo-ontologies, and what are they? In this event several scholars of games and videogames discuss these questions from a variety of perspectives. What different game and videogame ontologies exist and could exist, and why they are important...... for game and videogame research? The round table is designed to promote ludo-ontological dialogue in order to make these questions visible and debated. A series of short presentations (approximately 10 minutes each) will be followed by an intense debate through freeform dialogue. After the industrial...... commercialization of games and videogames their study has shifted between approaches focused on players (ludic processes) and artifacts (ludic objects). Some attempts to analyze the relationship between the process and the object have occasionally been done in terms of ‘ontology’ (Zagal 2005; Leino 2010; Gualeni...

  2. Building a Chemical Ontology using Methontology and the Ontology Design Environment

    OpenAIRE

    Fernández López, Mariano; Gómez-Pérez, A.; Pazos Sierra, Alejandro; Pazos Sierra, Juan

    1999-01-01

    METHONTOLOGY PROVIDES GUIDELINES FOR SPECIFYING ONTOLOGIES AT THE KNOWLEDGE LEVEL, AS A SPECIFICATION OF A CONCEPTUALIZATION. ODE ENABLES ONTOLOGY CONSTRUCTION, COVERING THE ENTIRE LIFE CYCLE AND AUTOMATICALLY IMPLEMENTING ONTOLOGIES

  3. Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data.

    Science.gov (United States)

    Peñagaricano, Francisco; Valente, Bruno D; Steibel, Juan P; Bates, Ronald O; Ernst, Catherine W; Khatib, Hasan; Rosa, Guilherme J M

    2015-09-16

    Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies. Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity in pigs using multi-omics data obtained from an F2 Duroc x Pietrain resource pig population. We initially explored marginal associations between genotypes and phenotypic and expression traits through whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the phenotypes, fat deposition traits negatively affected loin muscle weight. Our findings shed light on the antagonist relationship between carcass fat deposition and lean meat content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks underlying complex phenotypes.

  4. ``Force,'' ontology, and language

    Science.gov (United States)

    Brookes, David T.; Etkina, Eugenia

    2009-06-01

    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  5. EMPReSS: European mouse phenotyping resource for standardized screens.

    Science.gov (United States)

    Green, Eain C J; Gkoutos, Georgios V; Lad, Heena V; Blake, Andrew; Weekes, Joseph; Hancock, John M

    2005-06-15

    Standardized phenotyping protocols are essential for the characterization of phenotypes so that results are comparable between different laboratories and phenotypic data can be related to ontological descriptions in an automated manner. We describe a web-based resource for the visualization, searching and downloading of standard operating procedures and other documents, the European Mouse Phenotyping Resource for Standardized Screens-EMPReSS. Direct access: http://www.empress.har.mrc.ac.uk e.green@har.mrc.ac.uk.

  6. Simultaneous inference of phenotype-associated genes and relevant tissues from GWAS data via Bayesian integration of multiple tissue-specific gene networks.

    Science.gov (United States)

    Wu, Mengmeng; Lin, Zhixiang; Ma, Shining; Chen, Ting; Jiang, Rui; Wong, Wing Hung

    2017-12-01

    Although genome-wide association studies (GWAS) have successfully identified thousands of genomic loci associated with hundreds of complex traits in the past decade, the debate about such problems as missing heritability and weak interpretability has been appealing for effective computational methods to facilitate the advanced analysis of the vast volume of existing and anticipated genetic data. Towards this goal, gene-level integrative GWAS analysis with the assumption that genes associated with a phenotype tend to be enriched in biological gene sets or gene networks has recently attracted much attention, due to such advantages as straightforward interpretation, less multiple testing burdens, and robustness across studies. However, existing methods in this category usually exploit non-tissue-specific gene networks and thus lack the ability to utilize informative tissue-specific characteristics. To overcome this limitation, we proposed a Bayesian approach called SIGNET (Simultaneously Inference of GeNEs and Tissues) to integrate GWAS data and multiple tissue-specific gene networks for the simultaneous inference of phenotype-associated genes and relevant tissues. Through extensive simulation studies, we showed the effectiveness of our method in finding both associated genes and relevant tissues for a phenotype. In applications to real GWAS data of 14 complex phenotypes, we demonstrated the power of our method in both deciphering genetic basis and discovering biological insights of a phenotype. With this understanding, we expect to see SIGNET as a valuable tool for integrative GWAS analysis, thereby boosting the prevention, diagnosis, and treatment of human inherited diseases and eventually facilitating precision medicine.

  7. Knowledge retrieval from PubMed abstracts and electronic medical records with the Multiple Sclerosis Ontology.

    Science.gov (United States)

    Malhotra, Ashutosh; Gündel, Michaela; Rajput, Abdul Mateen; Mevissen, Heinz-Theodor; Saiz, Albert; Pastor, Xavier; Lozano-Rubi, Raimundo; Martinez-Lapiscina, Elena H; Martinez-Lapsicina, Elena H; Zubizarreta, Irati; Mueller, Bernd; Kotelnikova, Ekaterina; Toldo, Luca; Hofmann-Apitius, Martin; Villoslada, Pablo

    2015-01-01

    In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS). The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology. Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports. The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.

  8. A Chado case study: an ontology-based modular schema for representing genome-associated biological information.

    Science.gov (United States)

    Mungall, Christopher J; Emmert, David B

    2007-07-01

    A few years ago, FlyBase undertook to design a new database schema to store Drosophila data. It would fully integrate genomic sequence and annotation data with bibliographic, genetic, phenotypic and molecular data from the literature representing a distillation of the first 100 years of research on this major animal model system. In developing this new integrated schema, FlyBase also made a commitment to ensure that its design was generic, extensible and available as open source, so that it could be employed as the core schema of any model organism data repository, thereby avoiding redundant software development and potentially increasing interoperability. Our question was whether we could create a relational database schema that would be successfully reused. Chado is a relational database schema now being used to manage biological knowledge for a wide variety of organisms, from human to pathogens, especially the classes of information that directly or indirectly can be associated with genome sequences or the primary RNA and protein products encoded by a genome. Biological databases that conform to this schema can interoperate with one another, and with application software from the Generic Model Organism Database (GMOD) toolkit. Chado is distinctive because its design is driven by ontologies. The use of ontologies (or controlled vocabularies) is ubiquitous across the schema, as they are used as a means of typing entities. The Chado schema is partitioned into integrated subschemas (modules), each encapsulating a different biological domain, and each described using representations in appropriate ontologies. To illustrate this methodology, we describe here the Chado modules used for describing genomic sequences. GMOD is a collaboration of several model organism database groups, including FlyBase, to develop a set of open-source software for managing model organism data. The Chado schema is freely distributed under the terms of the Artistic License (http

  9. GeoSciGraph: An Ontological Framework for EarthCube Semantic Infrastructure

    Science.gov (United States)

    Gupta, A.; Schachne, A.; Condit, C.; Valentine, D.; Richard, S.; Zaslavsky, I.

    2015-12-01

    The CINERGI (Community Inventory of EarthCube Resources for Geosciences Interoperability) project compiles an inventory of a wide variety of earth science resources including documents, catalogs, vocabularies, data models, data services, process models, information repositories, domain-specific ontologies etc. developed by research groups and data practitioners. We have developed a multidisciplinary semantic framework called GeoSciGraph semantic ingration of earth science resources. An integrated ontology is constructed with Basic Formal Ontology (BFO) as its upper ontology and currently ingests multiple component ontologies including the SWEET ontology, GeoSciML's lithology ontology, Tematres controlled vocabulary server, GeoNames, GCMD vocabularies on equipment, platforms and institutions, software ontology, CUAHSI hydrology vocabulary, the environmental ontology (ENVO) and several more. These ontologies are connected through bridging axioms; GeoSciGraph identifies lexically close terms and creates equivalence class or subclass relationships between them after human verification. GeoSciGraph allows a community to create community-specific customizations of the integrated ontology. GeoSciGraph uses the Neo4J,a graph database that can hold several billion concepts and relationships. GeoSciGraph provides a number of REST services that can be called by other software modules like the CINERGI information augmentation pipeline. 1) Vocabulary services are used to find exact and approximate terms, term categories (community-provided clusters of terms e.g., measurement-related terms or environmental material related terms), synonyms, term definitions and annotations. 2) Lexical services are used for text parsing to find entities, which can then be included into the ontology by a domain expert. 3) Graph services provide the ability to perform traversal centric operations e.g., finding paths and neighborhoods which can be used to perform ontological operations like

  10. Knowledge Representation and Management, It's Time to Integrate!

    Science.gov (United States)

    Dhombres, F; Charlet, J

    2017-08-01

    Objectives: To select, present, and summarize the best papers published in 2016 in the field of Knowledge Representation and Management (KRM). Methods: A comprehensive and standardized review of the medical informatics literature was performed based on a PubMed query. Results: Among the 1,421 retrieved papers, the review process resulted in the selection of four best papers focused on the integration of heterogeneous data via the development and the alignment of terminological resources. In the first article, the authors provide a curated and standardized version of the publicly available US FDA Adverse Event Reporting System. Such a resource will improve the quality of the underlying data, and enable standardized analyses using common vocabularies. The second article describes a project developed in order to facilitate heterogeneous data integration in the i2b2 framework. The originality is to allow users integrate the data described in different terminologies and to build a new repository, with a unique model able to support the representation of the various data. The third paper is dedicated to model the association between multiple phenotypic traits described within the Human Phenotype Ontology (HPO) and the corresponding genotype in the specific context of rare diseases (rare variants). Finally, the fourth paper presents solutions to annotation-ontology mapping in genome-scale data. Of particular interest in this work is the Experimental Factor Ontology (EFO) and its generic association model, the Ontology of Biomedical AssociatioN (OBAN). Conclusion: Ontologies have started to show their efficiency to integrate medical data for various tasks in medical informatics: electronic health records data management, clinical research, and knowledge-based systems development. Georg Thieme Verlag KG Stuttgart.

  11. Integrative Transcriptomic and Metabonomic Molecular Profiling of Colonic Mucosal Biopsies Indicates a Unique Molecular Phenotype for Ulcerative Colitis

    DEFF Research Database (Denmark)

    Rantalainen, Mattias; Bjerrum, Jacob Tveiten; Olsen, Jørgen

    2015-01-01

    characterized the molecular phenotype of ulcerative colitis through transcriptomic and metabonomic profiling of colonic mucosal biopsies from patients and controls. We have characterized the extent to which metabonomic and transcriptomic molecular phenotypes are associated with ulcerative colitis versus...... transcriptomic and metabonomic data have previously been shown to predict the clinical course of ulcerative colitis and related clinical phenotypes, indicating that molecular phenotypes reveal molecular changes associated with the disease. Our analyses indicate that variables of both transcriptomics...... and metabonomics are associated with disease case and control status, that a large proportion of transcripts are associated with at least one metabolite in mucosal colonic biopsies, and that multiple pathways are connected to disease-related metabolites and transcripts....

  12. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants

    Czech Academy of Sciences Publication Activity Database

    Großkinsky, D.K.; Syaifullah, S. J.; Roitsch, Thomas

    2017-01-01

    Roč. 99, č. 99 (2017), s. 1-20 ISSN 0022-0957 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : integrated approaches * multi-omics * phenomics * plant development * plant–environment interactions * plant phenotyping * plant physiology * plant senescence * senescence programme * systems biology Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 5.830, year: 2016

  13. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  14. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  15. An ontology of and roadmap for mHealth research.

    Science.gov (United States)

    Cameron, Joshua D; Ramaprasad, Arkalgud; Syn, Thant

    2017-04-01

    Mobile health or mHealth research has been growing exponentially in recent years. However, the research on mHealth has been ad-hoc and selective without a clear definition of the mHealth domain. Without a roadmap for research we may not realize the full potential of mHealth. In this paper, we present an ontological framework to define the mHealth domain and illuminate a roadmap. We present an ontology of mHealth. The ontology is developed by systematically deconstructing the domain into its primary dimensions and elements. We map the extent research on mHealth in 2014 onto the ontology and highlight the bright, light, and blind/blank spots which represent the emphasis of mHealth research. The emphases of mHealth research in 2014 are very uneven. There are a few bright spots and many light spots. The research predominantly focuses on individuals' use of mobile devices and applications to capture or obtain health-related data mostly to improve quality of care through mobile intervention. We argue that the emphases can be balanced in the roadmap for mHealth research. The ontological mapping plays an integral role in developing and maintaining the roadmap which can be updated periodically to continuously assess and guide mHealth research. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Spatial cyberinfrastructures, ontologies, and the humanities.

    Science.gov (United States)

    Sieber, Renee E; Wellen, Christopher C; Jin, Yuan

    2011-04-05

    We report on research into building a cyberinfrastructure for Chinese biographical and geographic data. Our cyberinfrastructure contains (i) the McGill-Harvard-Yenching Library Ming Qing Women's Writings database (MQWW), the only online database on historical Chinese women's writings, (ii) the China Biographical Database, the authority for Chinese historical people, and (iii) the China Historical Geographical Information System, one of the first historical geographic information systems. Key to this integration is that linked databases retain separate identities as bases of knowledge, while they possess sufficient semantic interoperability to allow for multidatabase concepts and to support cross-database queries on an ad hoc basis. Computational ontologies create underlying semantics for database access. This paper focuses on the spatial component in a humanities cyberinfrastructure, which includes issues of conflicting data, heterogeneous data models, disambiguation, and geographic scale. First, we describe the methodology for integrating the databases. Then we detail the system architecture, which includes a tier of ontologies and schema. We describe the user interface and applications that allow for cross-database queries. For instance, users should be able to analyze the data, examine hypotheses on spatial and temporal relationships, and generate historical maps with datasets from MQWW for research, teaching, and publication on Chinese women writers, their familial relations, publishing venues, and the literary and social communities. Last, we discuss the social side of cyberinfrastructure development, as people are considered to be as critical as the technical components for its success.

  17. Spatial cyberinfrastructures, ontologies, and the humanities

    Science.gov (United States)

    Sieber, Renee E.; Wellen, Christopher C.; Jin, Yuan

    2011-01-01

    We report on research into building a cyberinfrastructure for Chinese biographical and geographic data. Our cyberinfrastructure contains (i) the McGill-Harvard-Yenching Library Ming Qing Women's Writings database (MQWW), the only online database on historical Chinese women's writings, (ii) the China Biographical Database, the authority for Chinese historical people, and (iii) the China Historical Geographical Information System, one of the first historical geographic information systems. Key to this integration is that linked databases retain separate identities as bases of knowledge, while they possess sufficient semantic interoperability to allow for multidatabase concepts and to support cross-database queries on an ad hoc basis. Computational ontologies create underlying semantics for database access. This paper focuses on the spatial component in a humanities cyberinfrastructure, which includes issues of conflicting data, heterogeneous data models, disambiguation, and geographic scale. First, we describe the methodology for integrating the databases. Then we detail the system architecture, which includes a tier of ontologies and schema. We describe the user interface and applications that allow for cross-database queries. For instance, users should be able to analyze the data, examine hypotheses on spatial and temporal relationships, and generate historical maps with datasets from MQWW for research, teaching, and publication on Chinese women writers, their familial relations, publishing venues, and the literary and social communities. Last, we discuss the social side of cyberinfrastructure development, as people are considered to be as critical as the technical components for its success. PMID:21444819

  18. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  19. Inferring ontology graph structures using OWL reasoning.

    Science.gov (United States)

    Rodríguez-García, Miguel Ángel; Hoehndorf, Robert

    2018-01-05

    Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.

  20. Toward semantic interoperability with linked foundational ontologies in ROMULUS

    CSIR Research Space (South Africa)

    Khan, ZC

    2013-06-01

    Full Text Available A purpose of a foundational ontology is to solve interoperability issues among ontologies. Many foundational ontologies have been developed, reintroducing the ontology interoperability problem. We address this with the new online foundational...

  1. OntoVIP: an ontology for the annotation of object models used for medical image simulation.

    Science.gov (United States)

    Gibaud, Bernard; Forestier, Germain; Benoit-Cattin, Hugues; Cervenansky, Frédéric; Clarysse, Patrick; Friboulet, Denis; Gaignard, Alban; Hugonnard, Patrick; Lartizien, Carole; Liebgott, Hervé; Montagnat, Johan; Tabary, Joachim; Glatard, Tristan

    2014-12-01

    This paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Geographic Ontologies, Gazetteers and Multilingualism

    Directory of Open Access Journals (Sweden)

    Robert Laurini

    2015-01-01

    Full Text Available Different languages imply different visions of space, so that terminologies are different in geographic ontologies. In addition to their geometric shapes, geographic features have names, sometimes different in diverse languages. In addition, the role of gazetteers, as dictionaries of place names (toponyms, is to maintain relations between place names and location. The scope of geographic information retrieval is to search for geographic information not against a database, but against the whole Internet: but the Internet stores information in different languages, and it is of paramount importance not to remain stuck to a unique language. In this paper, our first step is to clarify the links between geographic objects as computer representations of geographic features, ontologies and gazetteers designed in various languages. Then, we propose some inference rules for matching not only types, but also relations in geographic ontologies with the assistance of gazetteers.

  3. Ontology Matching with Semantic Verification.

    Science.gov (United States)

    Jean-Mary, Yves R; Shironoshita, E Patrick; Kabuka, Mansur R

    2009-09-01

    ASMOV (Automated Semantic Matching of Ontologies with Verification) is a novel algorithm that uses lexical and structural characteristics of two ontologies to iteratively calculate a similarity measure between them, derives an alignment, and then verifies it to ensure that it does not contain semantic inconsistencies. In this paper, we describe the ASMOV algorithm, and then present experimental results that measure its accuracy using the OAEI 2008 tests, and that evaluate its use with two different thesauri: WordNet, and the Unified Medical Language System (UMLS). These results show the increased accuracy obtained by combining lexical, structural and extensional matchers with semantic verification, and demonstrate the advantage of using a domain-specific thesaurus for the alignment of specialized ontologies.

  4. Markov Chain Ontology Analysis (MCOA).

    Science.gov (United States)

    Frost, H Robert; McCray, Alexa T

    2012-02-03

    Biomedical ontologies have become an increasingly critical lens through which researchers analyze the genomic, clinical and bibliographic data that fuels scientific research. Of particular relevance are methods, such as enrichment analysis, that quantify the importance of ontology classes relative to a collection of domain data. Current analytical techniques, however, remain limited in their ability to handle many important types of structural complexity encountered in real biological systems including class overlaps, continuously valued data, inter-instance relationships, non-hierarchical relationships between classes, semantic distance and sparse data. In this paper, we describe a methodology called Markov Chain Ontology Analysis (MCOA) and illustrate its use through a MCOA-based enrichment analysis application based on a generative model of gene activation. MCOA models the classes in an ontology, the instances from an associated dataset and all directional inter-class, class-to-instance and inter-instance relationships as a single finite ergodic Markov chain. The adjusted transition probability matrix for this Markov chain enables the calculation of eigenvector values that quantify the importance of each ontology class relative to other classes and the associated data set members. On both controlled Gene Ontology (GO) data sets created with Escherichia coli, Drosophila melanogaster and Homo sapiens annotations and real gene expression data extracted from the Gene Expression Omnibus (GEO), the MCOA enrichment analysis approach provides the best performance of comparable state-of-the-art methods. A methodology based on Markov chain models and network analytic metrics can help detect the relevant signal within large, highly interdependent and noisy data sets and, for applications such as enrichment analysis, has been shown to generate superior performance on both real and simulated data relative to existing state-of-the-art approaches.

  5. Inferring ontology graph structures using OWL reasoning

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel; Hoehndorf, Robert

    2018-01-01

    ' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies

  6. Ontologies, Knowledge Bases and Knowledge Management

    National Research Council Canada - National Science Library

    Chalupsky, Hans

    2002-01-01

    ...) an application called Strategy Development Assistant (SDA) that uses that ontology. The JFACC ontology served as a basis for knowledge sharing among several applications in the domain of air campaign planning...

  7. Technique for designing a domain ontology

    OpenAIRE

    Palagin, A. V.; Petrenko, N. G.; Malakhov, K. S.

    2018-01-01

    The article describes the technique for designing a domain ontology, shows the flowchart of algorithm design and example of constructing a fragment of the ontology of the subject area of Computer Science is considered.

  8. Platonic wholes and quantum ontology

    CERN Document Server

    Woszczek, Marek

    2015-01-01

    The subject of the book is a reconsideration of the internalistic model of composition of the Platonic type, more radical than traditional, post-Aristotelian externalistic compositionism, and its application in the field of the ontology of quantum theory. At the centre of quantum ontology is nonseparability. Quantum wholes are atemporal wholes governed by internalistic logic and they are primitive, global physical entities, requiring an extreme relativization of the fundamental notions of mechanics. That ensures quantum theory to be fully consistent with the relativistic causal structure, with

  9. Multimedia ontology representation and applications

    CERN Document Server

    Chaudhury, Santanu; Ghosh, Hiranmay

    2015-01-01

    The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled.The book contains information that helps with building semantic, content-based

  10. Root justifications for ontology repair

    CSIR Research Space (South Africa)

    Moodley, K

    2011-08-01

    Full Text Available stream_source_info Moodley_2011.pdf.txt stream_content_type text/plain stream_size 32328 Content-Encoding ISO-8859-1 stream_name Moodley_2011.pdf.txt Content-Type text/plain; charset=ISO-8859-1 Root Justi cations... the ontology, based on the no- tion of root justi cations [8, 9]. In Section 5, we discuss the implementation of a Prot eg e3 plugin which demonstrates our approach to ontology repair. In this section we also discuss some experimental results comparing...

  11. Towards ontology based search and knowledgesharing using domain ontologies

    DEFF Research Database (Denmark)

    Zambach, Sine

    verbs for relations in the ontology modeling. For this work we use frequency lists from a biomedical text corpus of different genres as well as a study of the relations used in other biomedical text mining tools. In addition, we discuss how these relations can be used in broarder perspective....

  12. An Ontology for Knowledge Representation and Applications

    OpenAIRE

    Nhon Do

    2008-01-01

    Ontology is a terminology which is used in artificial intelligence with different meanings. Ontology researching has an important role in computer science and practical applications, especially distributed knowledge systems. In this paper we present an ontology which is called Computational Object Knowledge Base Ontology. It has been used in designing some knowledge base systems for solving problems such as the system that supports studying knowledge and solving analytic ...

  13. On Algebraic Spectrum of Ontology Evaluation

    OpenAIRE

    Adekoya Adebayo Felix; kinwale Adio Taofiki; Sofoluwe Adetokunbo

    2011-01-01

    Ontology evaluation remains an important open problem in the area of its application. The ontology structure evaluation framework for benchmarking the internal graph structures was proposed. The framework was used in transport and biochemical ontology. The corresponding adjacency, incidence matrices and other structural properties due to the class hierarchical structure of the transport and biochemical ontology were computed using MATLAB. The results showed that the choice of suitable choice ...

  14. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    Science.gov (United States)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  15. An ontological approach to domain engineering

    NARCIS (Netherlands)

    Falbo, R.A.; Guizzardi, G.; Duarte, K.

    2002-01-01

    Domain engineering aims to support systematic reuse, focusing on modeling common knowledge in a problem domain. Ontologies have also been pointed as holding great promise for software reuse. In this paper, we present ODE (Ontology-based Domain Engineering), an ontological approach for domain

  16. Phenotypic integration in an extended phenotype: among-individual variation in nest-building traits of the alfalfa leafcutting bee (Megachile rotundata).

    Science.gov (United States)

    Royauté, Raphaël; Wilson, Elisabeth S; Helm, Bryan R; Mallinger, Rachel E; Prasifka, Jarrad; Greenlee, Kendra J; Bowsher, Julia H

    2018-03-02

    Structures such as nests and burrows are an essential component of many organisms' life-cycle and require a complex sequence of behaviours. Because behaviours can vary consistently among individuals and be correlated with one another, we hypothesized that these structures would (1) show evidence of among-individual variation, (2) be organized into distinct functional modules and (3) show evidence of trade-offs among functional modules due to limits on energy budgets. We tested these hypotheses using the alfalfa leafcutting bee, Megachile rotundata, a solitary bee and important crop pollinator. Megachile rotundata constructs complex nests by gathering leaf materials to form a linear series of cells in pre-existing cavities. In this study, we examined variation in the following nest construction traits: reproduction (number of cells per nest and nest length), nest protection (cap length and number of leaves per cap), cell construction (cell size and number of leaves per cell) and cell provisioning (cell mass) from 60 nests. We found a general decline in investment in cell construction and provisioning with each new cell built. In addition, we found evidence for both repeatability and plasticity in cell provisioning with little evidence for trade-offs among traits. Instead, most traits were positively, albeit weakly, correlated (r ~ 0.15), and traits were loosely organized into covarying modules. Our results show that individual differences in nest construction are detectable at a level similar to that of other behavioural traits and that these traits are only weakly integrated. This suggests that nest components are capable of independent evolutionary trajectories. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  17. Alignment of ICNP? 2.0 Ontology and a proposed INCP? Brazilian Ontology1

    OpenAIRE

    Carvalho, Carina Maris Gaspar; Cubas, Marcia Regina; Malucelli, Andreia; da N?brega, Maria Miriam Lima

    2014-01-01

    OBJECTIVE: to align the International Classification for Nursing Practice (ICNP®) Version 2.0 ontology and a proposed INCP® Brazilian Ontology.METHOD: document-based, exploratory and descriptive study, the empirical basis of which was provided by the ICNP® 2.0 Ontology and the INCP® Brazilian Ontology. The ontology alignment was performed using a computer tool with algorithms to identify correspondences between concepts, which were organized and analyzed according to their presence or absence...

  18. ADO: a disease ontology representing the domain knowledge specific to Alzheimer's disease.

    Science.gov (United States)

    Malhotra, Ashutosh; Younesi, Erfan; Gündel, Michaela; Müller, Bernd; Heneka, Michael T; Hofmann-Apitius, Martin

    2014-03-01

    Biomedical ontologies offer the capability to structure and represent domain-specific knowledge semantically. Disease-specific ontologies can facilitate knowledge exchange across multiple disciplines, and ontology-driven mining approaches can generate great value for modeling disease mechanisms. However, in the case of neurodegenerative diseases such as Alzheimer's disease, there is a lack of formal representation of the relevant knowledge domain. Alzheimer's disease ontology (ADO) is constructed in accordance to the ontology building life cycle. The Protégé OWL editor was used as a tool for building ADO in Ontology Web Language format. ADO was developed with the purpose of containing information relevant to four main biological views-preclinical, clinical, etiological, and molecular/cellular mechanisms-and was enriched by adding synonyms and references. Validation of the lexicalized ontology by means of named entity recognition-based methods showed a satisfactory performance (F score = 72%). In addition to structural and functional evaluation, a clinical expert in the field performed a manual evaluation and curation of ADO. Through integration of ADO into an information retrieval environment, we show that the ontology supports semantic search in scientific text. The usefulness of ADO is authenticated by dedicated use case scenarios. Development of ADO as an open ADO is a first attempt to organize information related to Alzheimer's disease in a formalized, structured manner. We demonstrate that ADO is able to capture both established and scattered knowledge existing in scientific text. Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  19. CLO : The cell line ontology

    NARCIS (Netherlands)

    Sarntivijai, Sirarat; Lin, Yu; Xiang, Zuoshuang; Meehan, Terrence F.; Diehl, Alexander D.; Vempati, Uma D.; Schuerer, Stephan C.; Pang, Chao; Malone, James; Parkinson, Helen; Liu, Yue; Takatsuki, Terue; Saijo, Kaoru; Masuya, Hiroshi; Nakamura, Yukio; Brush, Matthew H.; Haendel, Melissa A.; Zheng, Jie; Stoeckert, Christian J.; Peters, Bjoern; Mungall, Christopher J.; Carey, Thomas E.; States, David J.; Athey, Brian D.; He, Yongqun

    2014-01-01

    Background: Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO

  20. Emotion Education without Ontological Commitment?

    Science.gov (United States)

    Kristjansson, Kristjan

    2010-01-01

    Emotion education is enjoying new-found popularity. This paper explores the "cosy consensus" that seems to have developed in education circles, according to which approaches to emotion education are immune from metaethical considerations such as contrasting rationalist and sentimentalist views about the moral ontology of emotions. I spell out five…

  1. Quantum physics and relational ontology

    Energy Technology Data Exchange (ETDEWEB)

    Cordovil, Joao [Center of Philosophy of Sciences of University of Lisbon (Portugal)

    2013-07-01

    The discovery of the quantum domain of reality put a serious ontological challenge, a challenge that is still well present in the recent developments of Quantum Physics. Physics was conceived from an atomistic conception of the world, reducing it, in all its diversity, to two types of entities: simple, individual and immutable entities (atoms, in metaphysical sense) and composite entities, resulting solely from combinations. Linear combinations, additive, indifferent to the structure or to the context. However, the discovery of wave-particle dualism and the developments in Quantum Field Theories and in Quantum Nonlinear Physical, showed that quantum entities are not, in metaphysical sense, neither simple, nor merely the result of linear (or additive) combinations. In other words, the ontological foundations of Physics revealed as inadequate to account for the nature of quantum entities. Then a fundamental challenge arises: How to think the ontic nature of these entities? In my view, this challenge appeals to a relational and dynamist ontology of physical entities. This is the central hypothesis of this communication. In this sense, this communication has two main intentions: 1) positively characterize this relational and dynamist ontology; 2) show some elements of its metaphysical suitability to contemporary Quantum Physics.

  2. Ontological problems of contemporary linguistics

    Directory of Open Access Journals (Sweden)

    А В Бондаренко

    2009-03-01

    Full Text Available The article studies linguistic ontology problems such as evolution of essential-existential views of language, interrelation within Being-Language-Man triad, linguistics gnosiological principles, language essence localization, and «expression» as language metalinguistic unit as well as architectonics of language personality et alia.

  3. An ontological approach to logistics

    NARCIS (Netherlands)

    Daniele, L.M.; Ferreira Pires, Luis; Zelm, M.; van Sinderen, Marten J.; Doumeingts, G.

    2013-01-01

    In today’s global market, the competitiveness of enterprises is strongly dictated by their ability to collaborate with other enterprises. Ontologies enable common understanding of concepts and have been acknowledged as a powerful means to foster collaboration, both within the boundaries of an

  4. Fish Ontology framework for taxonomy-based fish recognition

    Science.gov (United States)

    Ali, Najib M.; Khan, Haris A.; Then, Amy Y-Hui; Ving Ching, Chong; Gaur, Manas

    2017-01-01

    Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO), an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users. PMID:28929028

  5. Fish Ontology framework for taxonomy-based fish recognition

    Directory of Open Access Journals (Sweden)

    Najib M. Ali

    2017-09-01

    Full Text Available Life science ontologies play an important role in Semantic Web. Given the diversity in fish species and the associated wealth of information, it is imperative to develop an ontology capable of linking and integrating this information in an automated fashion. As such, we introduce the Fish Ontology (FO, an automated classification architecture of existing fish taxa which provides taxonomic information on unknown fish based on metadata restrictions. It is designed to support knowledge discovery, provide semantic annotation of fish and fisheries resources, data integration, and information retrieval. Automated classification for unknown specimens is a unique feature that currently does not appear to exist in other known ontologies. Examples of automated classification for major groups of fish are demonstrated, showing the inferred information by introducing several restrictions at the species or specimen level. The current version of FO has 1,830 classes, includes widely used fisheries terminology, and models major aspects of fish taxonomy, grouping, and character. With more than 30,000 known fish species globally, the FO will be an indispensable tool for fish scientists and other interested users.

  6. Ontology patterns for complex topographic feature yypes

    Science.gov (United States)

    Varanka, Dalia E.

    2011-01-01

    Complex feature types are defined as integrated relations between basic features for a shared meaning or concept. The shared semantic concept is difficult to define in commonly used geographic information systems (GIS) and remote sensing technologies. The role of spatial relations between complex feature parts was recognized in early GIS literature, but had limited representation in the feature or coverage data models of GIS. Spatial relations are more explicitly specified in semantic technology. In this paper, semantics for topographic feature ontology design patterns (ODP) are developed as data models for the representation of complex features. In the context of topographic processes, component assemblages are supported by resource systems and are found on local landscapes. The topographic ontology is organized across six thematic modules that can account for basic feature types, resource systems, and landscape types. Types of complex feature attributes include location, generative processes and physical description. Node/edge networks model standard spatial relations and relations specific to topographic science to represent complex features. To demonstrate these concepts, data from The National Map of the U. S. Geological Survey was converted and assembled into ODP.

  7. Ontological Hermeneusis of the University Student

    Directory of Open Access Journals (Sweden)

    Mariela Eduvigis Jiménez Campos

    2017-08-01

    Full Text Available University education must promote teaching aimed to mediate the full development of each student human potentialities during the academic training, so the students can know, value, recognize themselves as persons, citizens and future professionals and thus, they can achieve their complete self-realization. The purpose of this essay is to perform an ontological hermeneusis of the university student. The methodology was based on the review of theoretical aspects constituting the philosophical constructs exposed by Husserl, Heidegger and Gadamer, among others, with the purpose of knowing and interpreting the student Dasein from the elements that make up their bio-psycho-social-cultural capacity which allows them to develop as professionals from a conception of integral citizens capable of assuming reality as actors who are there in time and place to become their own history main characters. Finally, the hermeneusis of the university student ontology can be understood as a comprehensive academic training that leads to develop the autonomy to carry out the professional performance with spontaneity, independence, suitability and determination, toward the fulfillment of their personal goals that contribute to the contemporary society solutions.

  8. Gradient Learning Algorithms for Ontology Computing

    Science.gov (United States)

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  9. Gradient Learning Algorithms for Ontology Computing

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.

  10. History Matters: Incremental Ontology Reasoning Using Modules

    Science.gov (United States)

    Cuenca Grau, Bernardo; Halaschek-Wiener, Christian; Kazakov, Yevgeny

    The development of ontologies involves continuous but relatively small modifications. Existing ontology reasoners, however, do not take advantage of the similarities between different versions of an ontology. In this paper, we propose a technique for incremental reasoning—that is, reasoning that reuses information obtained from previous versions of an ontology—based on the notion of a module. Our technique does not depend on a particular reasoning calculus and thus can be used in combination with any reasoner. We have applied our results to incremental classification of OWL DL ontologies and found significant improvement over regular classification time on a set of real-world ontologies.

  11. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    Science.gov (United States)

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. How good is your phenotyping? Methods for quality assessment

    OpenAIRE

    Nicole L Washington; Melissa A Haendel; Sebastian Köhler; Suzanna E Lewis; Peter Robinson; Damian Smedley

    2014-01-01

    Semantic phenotyping has been shown to be an effective means to aid variant prioritization and characterization by comparison to both known Mendelian diseases and across species with animal models (Robinson et al 2013). This process, whereby symptoms and characteristic phenotypic findings are curated with species-specific ontology terms, has generated a baseline set of disease phenotype descriptions for more than 7,000 Mendelian diseases (Kohler et al 2014a) as well as many thousands of descr...

  13. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype.

    Science.gov (United States)

    Moarii, Matahi; Reyal, Fabien; Vert, Jean-Philippe

    2015-10-13

    The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive. We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP. Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

  14. Alignment of ICNP® 2.0 ontology and a proposed INCP® Brazilian ontology.

    Science.gov (United States)

    Carvalho, Carina Maris Gaspar; Cubas, Marcia Regina; Malucelli, Andreia; Nóbrega, Maria Miriam Lima da

    2014-01-01

    to align the International Classification for Nursing Practice (ICNP®) Version 2.0 ontology and a proposed INCP® Brazilian Ontology. document-based, exploratory and descriptive study, the empirical basis of which was provided by the ICNP® 2.0 Ontology and the INCP® Brazilian Ontology. The ontology alignment was performed using a computer tool with algorithms to identify correspondences between concepts, which were organized and analyzed according to their presence or absence, their names, and their sibling, parent, and child classes. there were 2,682 concepts present in the ICNP® 2.0 Ontology that were missing in the Brazilian Ontology; 717 concepts present in the Brazilian Ontology were missing in the ICNP® 2.0 Ontology; and there were 215 pairs of matching concepts. it is believed that the correspondences identified in this study might contribute to the interoperability between the representations of nursing practice elements in ICNP®, thus allowing the standardization of nursing records based on this classification system.

  15. Ontological realism: A methodology for coordinated evolution of scientific ontologies.

    Science.gov (United States)

    Smith, Barry; Ceusters, Werner

    2010-11-15

    Since 2002 we have been testing and refining a methodology for ontology development that is now being used by multiple groups of researchers in different life science domains. Gary Merrill, in a recent paper in this journal, describes some of the reasons why this methodology has been found attractive by researchers in the biological and biomedical sciences. At the same time he assails the methodology on philosophical grounds, focusing specifically on our recommendation that ontologies developed for scientific purposes should be constructed in such a way that their terms are seen as referring to what we call universals or types in reality. As we show, Merrill's critique is of little relevance to the success of our realist project, since it not only reveals no actual errors in our work but also criticizes views on universals that we do not in fact hold. However, it nonetheless provides us with a valuable opportunity to clarify the realist methodology, and to show how some of its principles are being applied, especially within the framework of the OBO (Open Biomedical Ontologies) Foundry initiative.

  16. THE PRINCIPLES AND METHODS OF INFORMATION AND EDUCATIONAL SPACE SEMANTIC STRUCTURING BASED ON ONTOLOGIC APPROACH REALIZATION

    Directory of Open Access Journals (Sweden)

    Yurij F. Telnov

    2014-01-01

    Full Text Available This article reveals principles of semantic structuring of information and educational space of objects of knowledge and scientific and educational services with use of methods of ontologic engineering. Novelty of offered approach is interface of ontology of a content and ontology of scientific and educational services that allows to carry out effective composition of services and objects of knowledge according to models of professional competences and requirements being trained. As a result of application of methods of information and educational space semantic structuring integration of use of the diverse distributed scientific and educational content by educational institutions for carrying out scientific researches, methodical development and training is provided.

  17. Ontology-based, Tissue MicroArray oriented, image centered tissue bank

    Directory of Open Access Journals (Sweden)

    Viti Federica

    2008-04-01

    Full Text Available Abstract Background Tissue MicroArray technique is becoming increasingly important in pathology for the validation of experimental data from transcriptomic analysis. This approach produces many images which need to be properly managed, if possible with an infrastructure able to support tissue sharing between institutes. Moreover, the available frameworks oriented to Tissue MicroArray provide good storage for clinical patient, sample treatment and block construction information, but their utility is limited by the lack of data integration with biomolecular information. Results In this work we propose a Tissue MicroArray web oriented system to support researchers in managing bio-samples and, through the use of ontologies, enables tissue sharing aimed at the design of Tissue MicroArray experiments and results evaluation. Indeed, our system provides ontological description both for pre-analysis tissue images and for post-process analysis image results, which is crucial for information exchange. Moreover, working on well-defined terms it is then possible to query web resources for literature articles to integrate both pathology and bioinformatics data. Conclusions Using this system, users associate an ontology-based description to each image uploaded into the database and also integrate results with the ontological description of biosequences identified in every tissue. Moreover, it is possible to integrate the ontological description provided by the user with a full compliant gene ontology definition, enabling statistical studies about correlation between the analyzed pathology and the most commonly related biological processes.

  18. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  19. Self-organizing ontology of biochemically relevant small molecules.

    Science.gov (United States)

    Chepelev, Leonid L; Hastings, Janna; Ennis, Marcus; Steinbeck, Christoph; Dumontier, Michel

    2012-01-06

    The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. We conclude that the proposed methodology can ease the burden of chemical data annotators and

  20. Self-organizing ontology of biochemically relevant small molecules

    Science.gov (United States)

    2012-01-01

    Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology can ease the burden of

  1. Self-organizing ontology of biochemically relevant small molecules

    Directory of Open Access Journals (Sweden)

    Chepelev Leonid L

    2012-01-01

    Full Text Available Abstract Background The advent of high-throughput experimentation in biochemistry has led to the generation of vast amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-activity relationship research, while providing new challenges, the biggest being the curation, annotation, and classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources currently employed by the organizations supporting these efforts (e.g. ChEBI are expanding linearly, while new useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently existing chemical classification and annotation systems are not amenable to automated classification, formal and transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the automation of this process, especially for novel chemical entities of biological interest. Results To address this, we present a formal framework based on Semantic Web technologies for the automatic design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes. This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based classes with molecular feature information and demonstrate the utility of our framework for classification of functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical ontology development. Conclusions We conclude that the proposed methodology

  2. Formal Ontologies and Uncertainty. In Geographical Knowledge

    Directory of Open Access Journals (Sweden)

    Matteo Caglioni

    2014-05-01

    Full Text Available Formal ontologies have proved to be a very useful tool to manage interoperability among data, systems and knowledge. In this paper we will show how formal ontologies can evolve from a crisp, deterministic framework (ontologies of hard knowledge to new probabilistic, fuzzy or possibilistic frameworks (ontologies of soft knowledge. This can considerably enlarge the application potential of formal ontologies in geographic analysis and planning, where soft knowledge is intrinsically linked to the complexity of the phenomena under study.  The paper briefly presents these new uncertainty-based formal ontologies. It then highlights how ontologies are formal tools to define both concepts and relations among concepts. An example from the domain of urban geography finally shows how the cause-to-effect relation between household preferences and urban sprawl can be encoded within a crisp, a probabilistic and a possibilistic ontology, respectively. The ontology formalism will also determine the kind of reasoning that can be developed from available knowledge. Uncertain ontologies can be seen as the preliminary phase of more complex uncertainty-based models. The advantages of moving to uncertainty-based models is evident: whether it is in the analysis of geographic space or in decision support for planning, reasoning on geographic space is almost always reasoning with uncertain knowledge of geographic phenomena.

  3. Ontology-Based Method for Fault Diagnosis of Loaders.

    Science.gov (United States)

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  4. Knowledge Portals: Ontologies at Work

    OpenAIRE

    Staab, Steffen; Maedche, Alexander

    2001-01-01

    Knowledge portals provide views onto domain-specific information on the World Wide Web, thus helping their users find relevant, domain-specific information. The construction of intelligent access and the contribution of information to knowledge portals, however, remained an ad hoc task, requiring extensive manual editing and maintenance by the knowledge portal providers. To diminish these efforts, we use ontologies as a conceptual backbone for providing, accessing, and structuring information...

  5. The Christological Ontology of Reason

    DEFF Research Database (Denmark)

    Nissen, Ulrik Becker

    2006-01-01

    Taking the startingpoint in an assertion of an ambiguity in the Lutheran tradition’s assessment of reason, the essay argues that the Kantian unreserved confidence in reason is criticised in Bonhoeffer. Based upon a Christological understanding of reason, Bonhoeffer endorses a view of reason which...... is treated in the essay. Here it is argued that Bonhoeffer may be appropriated in attempting to outline a Christological ontology of reason holding essential implications for the sources and conditions of public discourse....

  6. Emotion Ontology for Context Awareness

    OpenAIRE

    Berthelon , Franck; Sander , Peter

    2013-01-01

    International audience; We present an emotion ontology for describing and reasoning on emotion context in order to improve emotion detection based on bodily expression. We incorporate context into the two-factor theory of emotion (bodily reaction plus cognitive input) and demonstrate the importance of context in the emotion experience. In attempting to determine emotion felt by another person, the bodily expresson of their emotion is the only evidence directly available, eg, ''John looks angr...

  7. Towards an Ontology of Software

    OpenAIRE

    Wang, Xiaowei

    2016-01-01

    Software is permeating every aspect of our personal and social life. And yet, the cluster of concepts around the notion of software, such as the notions of a software product, software requirements, software specifications, are still poorly understood with no consensus on the horizon. For many, software is just code, something intangible best defined in contrast with hardware, but it is not particularly illuminating. This erroneous notion, software is just code, presents both in the ontology ...

  8. Ontology Maintenance using Textual Analysis

    Directory of Open Access Journals (Sweden)

    Yassine Gargouri

    2003-10-01

    Full Text Available Ontologies are continuously confronted to evolution problem. Due to the complexity of the changes to be made, a maintenance process, at least a semi-automatic one, is more and more necessary to facilitate this task and to ensure its reliability. In this paper, we propose a maintenance ontology model for a domain, whose originality is to be language independent and based on a sequence of text processing in order to extract highly related terms from corpus. Initially, we deploy the document classification technique using GRAMEXCO to generate classes of texts segments having a similar information type and identify their shared lexicon, agreed as highly related to a unique topic. This technique allows a first general and robust exploration of the corpus. Further, we apply the Latent Semantic Indexing method to extract from this shared lexicon, the most associated terms that has to be seriously considered by an expert to eventually confirm their relevance and thus updating the current ontology. Finally, we show how the complementarity between these two techniques, based on cognitive foundation, constitutes a powerful refinement process.

  9. BioPortal: An Open-Source Community-Based Ontology Repository

    Science.gov (United States)

    Noy, N.; NCBO Team

    2011-12-01

    Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its

  10. The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation.

    Science.gov (United States)

    Malone, James; Brown, Andy; Lister, Allyson L; Ison, Jon; Hull, Duncan; Parkinson, Helen; Stevens, Robert

    2014-01-01

    Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of the laboratory investigations by which these entities were produced. However, much biological insight is gained from the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit trails, provenance and reproducibility. The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications. The SWO is another element of the biomedical ontology landscape that is necessary for the description of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by investigations in the life sciences can be made in such a way that it covers the important features requested and prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using techniques designed to keep it in line with user's needs. The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the Software Ontology blog can be read at http://softwareontology.wordpress.com.

  11. An ontology-based approach for modelling architectural styles

    OpenAIRE

    Pahl, Claus; Giesecke, Simon; Hasselbring, Wilhelm

    2007-01-01

    peer-reviewed The conceptual modelling of software architectures is of central importance for the quality of a software system. A rich modelling language is required to integrate the different aspects of architecture modelling, such as architectural styles, structural and behavioural modelling, into a coherent framework.We propose an ontological approach for architectural style modelling based on description logic as an abstract, meta-level modelling instrument. Architect...

  12. Ontology-based composition and matching for dynamic service coordination

    OpenAIRE

    Pahl, Claus; Gacitua-Decar, Veronica; Wang, MingXue; Yapa Bandara, Kosala

    2011-01-01

    Service engineering needs to address integration problems allowing services to collaborate and coordinate. The need to address dynamic automated changes - caused by on-demand environments and changing requirements - can be addressed through service coordination based on ontology-based composition and matching techniques. Our solution to composition and matching utilises a service coordination space that acts as a passive infrastructure for collaboration. We discuss the information models an...

  13. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert

    2015-04-10

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  14. ONS: an ontology for a standardized description of interventions and observational studies in nutrition.

    Science.gov (United States)

    Vitali, Francesco; Lombardo, Rosario; Rivero, Damariz; Mattivi, Fulvio; Franceschi, Pietro; Bordoni, Alessandra; Trimigno, Alessia; Capozzi, Francesco; Felici, Giovanni; Taglino, Francesco; Miglietta, Franco; De Cock, Nathalie; Lachat, Carl; De Baets, Bernard; De Tré, Guy; Pinart, Mariona; Nimptsch, Katharina; Pischon, Tobias; Bouwman, Jildau; Cavalieri, Duccio

    2018-01-01

    The multidisciplinary nature of nutrition research is one of its main strengths. At the same time, however, it presents a major obstacle to integrate data analysis, especially for the terminological and semantic interpretations that specific research fields or communities are used to. To date, a proper ontology to structure and formalize the concepts used for the description of nutritional studies is still lacking. We have developed the Ontology for Nutritional Studies (ONS) by harmonizing selected pre-existing de facto ontologies with novel health and nutritional terminology classifications. The ONS is the result of a scholarly consensus of 51 research centers in nine European countries. The ontology classes and relations are commonly encountered while conducting, storing, harmonizing, integrating, describing, and searching nutritional studies. The ONS facilitates the description and specification of complex nutritional studies as demonstrated with two application scenarios. The ONS is the first systematic effort to provide a solid and extensible formal ontology framework for nutritional studies. Integration of new information can be easily achieved by the addition of extra modules (i.e., nutrigenomics, metabolomics, nutrikinetics, and quality appraisal). The ONS provides a unified and standardized terminology for nutritional studies as a resource for nutrition researchers who might not necessarily be familiar with ontologies and standardization concepts.

  15. The role of ontologies in biological and biomedical research: a functional perspective

    KAUST Repository

    Hoehndorf, Robert; Schofield, P. N.; Gkoutos, G. V.

    2015-01-01

    Ontologies are widely used in biological and biomedical research. Their success lies in their combination of four main features present in almost all ontologies: provision of standard identifiers for classes and relations that represent the phenomena within a domain; provision of a vocabulary for a domain; provision of metadata that describes the intended meaning of the classes and relations in ontologies; and the provision of machine-readable axioms and definitions that enable computational access to some aspects of the meaning of classes and relations. While each of these features enables applications that facilitate data integration, data access and analysis, a great potential lies in the possibility of combining these four features to support integrative analysis and interpretation of multimodal data. Here, we provide a functional perspective on ontologies in biology and biomedicine, focusing on what ontologies can do and describing how they can be used in support of integrative research. We also outline perspectives for using ontologies in data-driven science, in particular their application in structured data mining and machine learning applications.

  16. Database Concepts in a Domain Ontology

    Directory of Open Access Journals (Sweden)

    Gorskis Henrihs

    2017-12-01

    Full Text Available There are multiple approaches for mapping from a domain ontology to a database in the task of ontology-based data access. For that purpose, external mapping documents are most commonly used. These documents describe how the data necessary for the description of ontology individuals and other values, are to be obtained from the database. The present paper investigates the use of special database concepts. These concepts are not separated from the domain ontology; they are mixed with domain concepts to form a combined application ontology. By creating natural relationships between database concepts and domain concepts, mapping can be implemented more easily and with a specific purpose. The paper also investigates how the use of such database concepts in addition to domain concepts impacts ontology building and data retrieval.

  17. Ontology-aided Data Fusion (Invited)

    Science.gov (United States)

    Raskin, R.

    2009-12-01

    An ontology provides semantic descriptions that are analogous to those in a dictionary, but are readable by both computers and humans. A data or service is semantically annotated when it is formally associated with elements of an ontology. The ESIP Federation Semantic Web Cluster has developed a set of ontologies to describe datatypes and data services that can be used to support automated data fusion. The service ontology includes descriptors of the service function, its inputs/outputs, and its invocation method. The datatype descriptors resemble typical metadata fields (data format, data model, data structure, originator, etc.) augmented with descriptions of the meaning of the data. These ontologies, in combination with the SWEET science ontology, enable a registered data fusion service to be chained together and implemented that is scientifically meaningful based on machine understanding of the associated data and services. This presentation describes initial results and experiences in automated data fusion.

  18. Anatomy Ontology Matching Using Markov Logic Networks

    Directory of Open Access Journals (Sweden)

    Chunhua Li

    2016-01-01

    Full Text Available The anatomy of model species is described in ontologies, which are used to standardize the annotations of experimental data, such as gene expression patterns. To compare such data between species, we need to establish relationships between ontologies describing different species. Ontology matching is a kind of solutions to find semantic correspondences between entities of different ontologies. Markov logic networks which unify probabilistic graphical model and first-order logic provide an excellent framework for ontology matching. We combine several different matching strategies through first-order logic formulas according to the structure of anatomy ontologies. Experiments on the adult mouse anatomy and the human anatomy have demonstrated the effectiveness of proposed approach in terms of the quality of result alignment.

  19. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    Science.gov (United States)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  20. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    Science.gov (United States)

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  1. Representing virus-host interactions and other multi-organism processes in the Gene Ontology.

    Science.gov (United States)

    Foulger, R E; Osumi-Sutherland, D; McIntosh, B K; Hulo, C; Masson, P; Poux, S; Le Mercier, P; Lomax, J

    2015-07-28

    The Gene Ontology project is a collaborative effort to provide descriptions of gene products in a consistent and computable language, and in a species-independent manner. The Gene Ontology is designed to be applicable to all organisms but up to now has been largely under-utilized for prokaryotes and viruses, in part because of a lack of appropriate ontology terms. To address this issue, we have developed a set of Gene Ontology classes that are applicable to microbes and their hosts, improving both coverage and quality in this area of the Gene Ontology. Describing microbial and viral gene products brings with it the additional challenge of capturing both the host and the microbe. Recognising this, we have worked closely with annotation groups to test and optimize the GO classes, and we describe here a set of annotation guidelines that allow the controlled description of two interacting organisms. Building on the microbial resources already in existence such as ViralZone, UniProtKB keywords and MeGO, this project provides an integrated ontology to describe interactions between microbial species and their hosts, with mappings to the external resources above. Housing this information within the freely-accessible Gene Ontology project allows the classes and annotation structure to be utilized by a large community of biologists and users.

  2. An Ontological Architecture for Orbital Debris Data

    OpenAIRE

    Rovetto, Robert J.

    2017-01-01

    The orbital debris problem presents an opportunity for inter-agency and international cooperation toward the mutually beneficial goals of debris prevention, mitigation, remediation, and improved space situational awareness (SSA). Achieving these goals requires sharing orbital debris and other SSA data. Toward this, I present an ontological architecture for the orbital debris domain, taking steps in the creation of an orbital debris ontology (ODO). The purpose of this ontological system is to ...

  3. Versioning System for Distributed Ontology Development

    Science.gov (United States)

    2016-03-15

    Framework for Grid Computing and Semantic Web Services,” Trust Management, Springer Berlin Heidelberg (2004), pp. 16−26. [TIME] W3C, “Time Ontology in...Distributed Ontology Development S.K. Damodaran 15 March 2016 This material is based on work supported by the Assistant Secretary of Defense for...Distributed Ontology Development S.K. Damodaran Formerly Group 59 15 March 2016 Massachusetts Institute of Technology Lincoln Laboratory

  4. Ontorat: automatic generation of new ontology terms, annotations, and axioms based on ontology design patterns.

    Science.gov (United States)

    Xiang, Zuoshuang; Zheng, Jie; Lin, Yu; He, Yongqun

    2015-01-01

    It is time-consuming to build an ontology with many terms and axioms. Thus it is desired to automate the process of ontology development. Ontology Design Patterns (ODPs) provide a reusable solution to solve a recurrent modeling problem in the context of ontology engineering. Because ontology terms often follow specific ODPs, the Ontology for Biomedical Investigations (OBI) developers proposed a Quick Term Templates (QTTs) process targeted at generating new ontology classes following the same pattern, using term templates in a spreadsheet format. Inspired by the ODPs and QTTs, the Ontorat web application is developed to automatically generate new ontology terms, annotations of terms, and logical axioms based on a specific ODP(s). The inputs of an Ontorat execution include axiom expression settings, an input data file, ID generation settings, and a target ontology (optional). The axiom expression settings can be saved as a predesigned Ontorat setting format text file for reuse. The input data file is generated based on a template file created by a specific ODP (text or Excel format). Ontorat is an efficient tool for ontology expansion. Different use cases are described. For example, Ontorat was applied to automatically generate over 1,000 Japan RIKEN cell line cell terms with both logical axioms and rich annotation axioms in the Cell Line Ontology (CLO). Approximately 800 licensed animal vaccines were represented and annotated in the Vaccine Ontology (VO) by Ontorat. The OBI team used Ontorat to add assay and device terms required by ENCODE project. Ontorat was also used to add missing annotations to all existing Biobank specific terms in the Biobank Ontology. A collection of ODPs and templates with examples are provided on the Ontorat website and can be reused to facilitate ontology development. With ever increasing ontology development and applications, Ontorat provides a timely platform for generating and annotating a large number of ontology terms by following

  5. Towards Process-Ontology: A Critical Study of Substance-Ontological Premises

    DEFF Research Database (Denmark)

    Seibt, Johanna

    The thesis proposes therapeutic revision of fundamental assumptions in contemporary ontological thought. I show that non of the prevalent theories of objects, by virtue of certain implicit substance-ontological assumptions provides a viable account of the numerical, qualitative, and trans-tempora......-ontological presuppositions, I finally explore the result of rejecting all of them and sketch a scheme basic on dynamic masses which promises to yield coherent explanation of the ontological features of those complex processes that we commonly call objects....

  6. OntologyWidget – a reusable, embeddable widget for easily locating ontology terms

    OpenAIRE

    Beauheim, Catherine C; Wymore, Farrell; Nitzberg, Michael; Zachariah, Zachariah K; Jin, Heng; Skene, JH Pate; Ball, Catherine A; Sherlock, Gavin

    2007-01-01

    Abstract Background Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. Results We have produced a tool, OntologyWidget, which allows users to r...

  7. Ontology modeling for generation of clinical pathways

    Directory of Open Access Journals (Sweden)

    Jasmine Tehrani

    2012-12-01

    Full Text Available Purpose: Increasing costs of health care, fuelled by demand for high quality, cost-effective healthcare has drove hospitals to streamline their patient care delivery systems. One such systematic approach is the adaptation of Clinical Pathways (CP as a tool to increase the quality of healthcare delivery. However, most organizations still rely on are paper-based pathway guidelines or specifications, which have limitations in process management and as a result can influence patient safety outcomes. In this paper, we present a method for generating clinical pathways based on organizational semiotics by capturing knowledge from syntactic, semantic and pragmatic to social level. Design/methodology/approach: The proposed modeling approach to generation of CPs adopts organizational semiotics and enables the generation of semantically rich representation of CP knowledge. Semantic Analysis Method (SAM is applied to explicitly represent the semantics of the concepts, their relationships and patterns of behavior in terms of an ontology chart. Norm Analysis Method (NAM is adopted to identify and formally specify patterns of behavior and rules that govern the actions identified on the ontology chart. Information collected during semantic and norm analysis is integrated to guide the generation of CPs using best practice represented in BPMN thus enabling the automation of CP. Findings: This research confirms the necessity of taking into consideration social aspects in designing information systems and automating CP. The complexity of healthcare processes can be best tackled by analyzing stakeholders, which we treat as social agents, their goals and patterns of action within the agent network. Originality/value: The current modeling methods describe CPs from a structural aspect comprising activities, properties and interrelationships. However, these methods lack a mechanism to describe possible patterns of human behavior and the conditions under which the

  8. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    Science.gov (United States)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL

  9. The Volcanism Ontology (VO): a model of the volcanic system

    Science.gov (United States)

    Myer, J.; Babaie, H. A.

    2017-12-01

    We have modeled a part of the complex material and process entities and properties of the volcanic system in the Volcanism Ontology (VO) applying several top-level ontologies such as Basic Formal Ontology (BFO), SWEET, and Ontology of Physics for Biology (OPB) within a single framework. The continuant concepts in BFO describe features with instances that persist as wholes through time and have qualities (attributes) that may change (e.g., state, composition, and location). In VO, the continuants include lava, volcanic rock, and volcano. The occurrent concepts in BFO include processes, their temporal boundaries, and the spatio-temporal regions within which they occur. In VO, these include eruption (process), the onset of pyroclastic flow (temporal boundary), and the space and time span of the crystallization of lava in a lava tube (spatio-temporal region). These processes can be of physical (e.g., debris flow, crystallization, injection), atmospheric (e.g., vapor emission, ash particles blocking solar radiation), hydrological (e.g., diffusion of water vapor, hot spring), thermal (e.g., cooling of lava) and other types. The properties (predicates) relate continuants to other continuants, occurrents to continuants, and occurrents to occurrents. The ontology also models other concepts such as laboratory and field procedures by volcanologists, sampling by sensors, and the type of instruments applied in monitoring volcanic activity. When deployed on the web, VO will be used to explicitly and formally annotate data and information collected by volcanologists based on domain knowledge. This will enable the integration of global volcanic data and improve the interoperability of software that deal with such data.

  10. The NASA Air Traffic Management Ontology (atmonto)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA ATM (Air Traffic Management) Ontology describes classes, properties, and relationships relevant to the domain of air traffic management, and represents...

  11. Ontology Enabled Generation of Embedded Web Services

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Zhang, Weishan; Soares, Goncalo Teofilo Afonso Pinheiro

    2008-01-01

    and software platforms, and of devices state and context changes. To address these challenges, we developed a Web service compiler, Limbo, in which Web Ontology Language (OWL) ontologies are used to make the Limbo compiler aware of its compilation context, such as targeted hardware and software. At the same...... time, knowledge on device details, platform dependencies, and resource/power consumption is built into the supporting ontologies, which are used to configure Limbo for generating resource efficient web service code. A state machine ontology is used to generate stub code to facilitate handling of state...

  12. Scientific Digital Libraries, Interoperability, and Ontologies

    Science.gov (United States)

    Hughes, J. Steven; Crichton, Daniel J.; Mattmann, Chris A.

    2009-01-01

    Scientific digital libraries serve complex and evolving research communities. Justifications for the development of scientific digital libraries include the desire to preserve science data and the promises of information interconnectedness, correlative science, and system interoperability. Shared ontologies are fundamental to fulfilling these promises. We present a tool framework, some informal principles, and several case studies where shared ontologies are used to guide the implementation of scientific digital libraries. The tool framework, based on an ontology modeling tool, was configured to develop, manage, and keep shared ontologies relevant within changing domains and to promote the interoperability, interconnectedness, and correlation desired by scientists.

  13. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina; Madsen, Nadia; Clausen, Jens

    2006-01-01

    An ontology is a classification model for a given domain.In information retrieval ontologies are used to perform broad searches.An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology....... One method uses a discrete location model to create an initial solution and we propose heuristic methods to further improve the visual result. We evaluate the visual results according to our success criteria and the feedback from users. Running times of the heuristic indicate that an improved version...

  14. Finding the best visualization of an ontology

    DEFF Research Database (Denmark)

    Fabritius, Christina Valentin; Madsen, Nadia Lyngaa; Clausen, Jens

    2004-01-01

    An ontology is a classification model for a given domain. In information retrieval ontologies are used to perform broad searches. An ontology can be visualized as nodes and edges. Each node represents an element and each edge a relation between a parent and a child element. Working with an ontology....... One method uses a discrete location model to create an initial solution and we propose heuristic methods to further improve the visual result. We evaluate the visual results according to our success criteria and the feedback from users. Running times of the heuristic indicate that an improved version...

  15. The current landscape of pitfalls in Ontologies

    CSIR Research Space (South Africa)

    Keet, CM

    2013-09-01

    Full Text Available 2Ontology Engineering Group, Departamento de Inteligencia Artificial, Universidad Polite´cnica de Madrid, Madrid, Spain keet@ukzn.ac.za, {mcsuarez,mpoveda}@fi.upm.es Keywords: Ontology Development : Ontology Quality : Pitfall Abstract: A growing... in Ontologies C. Maria Keet1, Mari Carmen Sua´rez-Figueroa2 and Marı´a Poveda-Villalo´n2 1School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, and UKZN/CSIR-Meraka Centre for Artificial Intelligence Research, Durban, South Africa...

  16. DEPONTO: A Reusable Dependability Domain Ontology

    Directory of Open Access Journals (Sweden)

    Teodora Sanislav

    2015-08-01

    Full Text Available This paper proposes a dependability reusable ontology for knowledge representation. The fundamental knowledge related to dependability follows its taxonomy. Thus, this paper gives an analysis of what is the dependability domain ontology andof its components.The dependability domain ontology plays an important role in ensuring the dependability of information systems by providing support for their diagnosis in case of faults, errors and failures.The proposed ontology is used as a dependability framework in two case study Cyber-Physical Systemswhich demonstrate its reusability within this category of systems.

  17. Learning Resources Organization Using Ontological Framework

    Science.gov (United States)

    Gavrilova, Tatiana; Gorovoy, Vladimir; Petrashen, Elena

    The paper describes the ontological approach to the knowledge structuring for the e-learning portal design as it turns out to be efficient and relevant to current domain conditions. It is primarily based on the visual ontology-based description of the content of the learning materials and this helps to provide productive and personalized access to these materials. The experience of ontology developing for Knowledge Engineering coursetersburg State University is discussed and “OntolingeWiki” tool for creating ontology-based e-learning portals is described.

  18. Ontological Engineering for the Cadastral Domain

    DEFF Research Database (Denmark)

    Stubkjær, Erik; Stuckenschmidt, Heiner

    2000-01-01

    conceptualization of the world is that much information remains implicit. Ontologies have set out to overcome the problem of implicit and hidden knowledge by making the conceptualization of a domain (e.g. mathematics) explicit. Ontological engineering is thus an approach to achieve a conceptual rigor...... that characterizes established academic disciplines, like geodesy. Many university courses address more application oriented fields, like cadastral law, and spatial planning, and they may benefit from the ontological engineering approach. The paper provides an introduction to the field of ontological engineering...

  19. Vaccine and Drug Ontology Studies (VDOS 2014).

    Science.gov (United States)

    Tao, Cui; He, Yongqun; Arabandi, Sivaram

    2016-01-01

    The "Vaccine and Drug Ontology Studies" (VDOS) international workshop series focuses on vaccine- and drug-related ontology modeling and applications. Drugs and vaccines have been critical to prevent and treat human and animal diseases. Work in both (drugs and vaccines) areas is closely related - from preclinical research and development to manufacturing, clinical trials, government approval and regulation, and post-licensure usage surveillance and monitoring. Over the last decade, tremendous efforts have been made in the biomedical ontology community to ontologically represent various areas associated with vaccines and drugs - extending existing clinical terminology systems such as SNOMED, RxNorm, NDF-RT, and MedDRA, developing new models such as the Vaccine Ontology (VO) and Ontology of Adverse Events (OAE), vernacular medical terminologies such as the Consumer Health Vocabulary (CHV). The VDOS workshop series provides a platform for discussing innovative solutions as well as the challenges in the development and applications of biomedical ontologies for representing and analyzing drugs and vaccines, their administration, host immune responses, adverse events, and other related topics. The five full-length papers included in this 2014 thematic issue focus on two main themes: (i) General vaccine/drug-related ontology development and exploration, and (ii) Interaction and network-related ontology studies.

  20. OntologyWidget – a reusable, embeddable widget for easily locating ontology terms

    Directory of Open Access Journals (Sweden)

    Skene JH Pate

    2007-09-01

    Full Text Available Abstract Background Biomedical ontologies are being widely used to annotate biological data in a computer-accessible, consistent and well-defined manner. However, due to their size and complexity, annotating data with appropriate terms from an ontology is often challenging for experts and non-experts alike, because there exist few tools that allow one to quickly find relevant ontology terms to easily populate a web form. Results We have produced a tool, OntologyWidget, which allows users to rapidly search for and browse ontology terms. OntologyWidget can easily be embedded in other web-based applications. OntologyWidget is written using AJAX (Asynchronous JavaScript and XML and has two related elements. The first is a dynamic auto-complete ontology search feature. As a user enters characters into the search box, the appropriate ontology is queried remotely for terms that match the typed-in text, and the query results populate a drop-down list with all potential matches. Upon selection of a term from the list, the user can locate this term within a generic and dynamic ontology browser, which comprises the second element of the tool. The ontology browser shows the paths from a selected term to the root as well as parent/child tree hierarchies. We have implemented web services at the Stanford Microarray Database (SMD, which provide the OntologyWidget with access to over 40 ontologies from the Open Biological Ontology (OBO website 1. Each ontology is updated weekly. Adopters of the OntologyWidget can either use SMD's web services, or elect to rely on their own. Deploying the OntologyWidget can be accomplished in three simple steps: (1 install Apache Tomcat 2 on one's web server, (2 download and install the OntologyWidget servlet stub that provides access to the SMD ontology web services, and (3 create an html (HyperText Markup Language file that refers to the OntologyWidget using a simple, well-defined format. Conclusion We have developed Ontology

  1. Computational approaches to standard-compliant biofilm data for reliable analysis and integration.

    Science.gov (United States)

    Sousa, Ana Margarida; Ferreira, Andreia; Azevedo, Nuno F; Pereira, Maria Olivia; Lourenço, Anália

    2012-12-01

    The study of microorganism consortia, also known as biofilms, is associated to a number of applications in biotechnology, ecotechnology and clinical domains. Nowadays, biofilm studies are heterogeneous and data-intensive, encompassing different levels of analysis. Computational modelling of biofilm studies has become thus a requirement to make sense of these vast and ever-expanding biofilm data volumes. The rationale of the present work is a machine-readable format for representing biofilm studies and supporting biofilm data interchange and data integration. This format is supported by the Biofilm Science Ontology (BSO), the first ontology on biofilms information. The ontology is decomposed into a number of areas of interest, namely: the Experimental Procedure Ontology (EPO) which describes biofilm experimental procedures; the Colony Morphology Ontology (CMO) which characterises morphologically microorganism colonies; and other modules concerning biofilm phenotype, antimicrobial susceptibility and virulence traits. The overall objective behind BSO is to develop semantic resources to capture, represent and share data on biofilms and related experiments in a regularized fashion manner. Furthermore, the present work also introduces a framework in assistance of biofilm data interchange and analysis - BiofOmics (http://biofomics.org) - and a public repository on colony morphology signatures - MorphoCol (http://stardust.deb.uminho.pt/morphocol).

  2. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects.

    Science.gov (United States)

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A; Noy, Natalya F

    2013-05-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product . In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.

  3. Sample ontology, GOstat and ontology term enrichment - FANTOM5 | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available switchLanguage; BLAST Search Image Search Home About Archive Update History Data List Contact us FANTOM....biosciencedbc.jp/archive/fantom5/datafiles/LATEST/extra/Ontology/ File size: 1.8 MB Simple search URL - Dat...t Us Sample ontology, GOstat and ontology term enrichment - FANTOM5 | LSDB Archive ...

  4. How Ontologies are Made: Studying the Hidden Social Dynamics Behind Collaborative Ontology Engineering Projects

    Science.gov (United States)

    Strohmaier, Markus; Walk, Simon; Pöschko, Jan; Lamprecht, Daniel; Tudorache, Tania; Nyulas, Csongor; Musen, Mark A.; Noy, Natalya F.

    2013-01-01

    Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches. PMID:24311994

  5. Where to Publish and Find Ontologies? A Survey of Ontology Libraries

    Science.gov (United States)

    d'Aquin, Mathieu; Noy, Natalya F.

    2011-01-01

    One of the key promises of the Semantic Web is its potential to enable and facilitate data interoperability. The ability of data providers and application developers to share and reuse ontologies is a critical component of this data interoperability: if different applications and data sources use the same set of well defined terms for describing their domain and data, it will be much easier for them to “talk” to one another. Ontology libraries are the systems that collect ontologies from different sources and facilitate the tasks of finding, exploring, and using these ontologies. Thus ontology libraries can serve as a link in enabling diverse users and applications to discover, evaluate, use, and publish ontologies. In this paper, we provide a survey of the growing—and surprisingly diverse—landscape of ontology libraries. We highlight how the varying scope and intended use of the libraries a ects their features, content, and potential exploitation in applications. From reviewing eleven ontology libraries, we identify a core set of questions that ontology practitioners and users should consider in choosing an ontology library for finding ontologies or publishing their own. We also discuss the research challenges that emerge from this survey, for the developers of ontology libraries to address. PMID:22408576

  6. Surreptitious, Evolving and Participative Ontology Development: An End-User Oriented Ontology Development Methodology

    Science.gov (United States)

    Bachore, Zelalem

    2012-01-01

    Ontology not only is considered to be the backbone of the semantic web but also plays a significant role in distributed and heterogeneous information systems. However, ontology still faces limited application and adoption to date. One of the major problems is that prevailing engineering-oriented methodologies for building ontologies do not…

  7. Towards Ontology-Driven Information Systems: Guidelines to the Creation of New Methodologies to Build Ontologies

    Science.gov (United States)

    Soares, Andrey

    2009-01-01

    This research targeted the area of Ontology-Driven Information Systems, where ontology plays a central role both at development time and at run time of Information Systems (IS). In particular, the research focused on the process of building domain ontologies for IS modeling. The motivation behind the research was the fact that researchers have…

  8. An improved ontological representation of dendritic cells as a paradigm for all cell types

    Directory of Open Access Journals (Sweden)

    Mungall Chris

    2009-02-01

    Full Text Available Abstract Background Recent increases in the volume and diversity of life science data and information and an increasing emphasis on data sharing and interoperability have resulted in the creation of a large number of biological ontologies, including the Cell Ontology (CL, designed to provide a standardized representation of cell types for data annotation. Ontologies have been shown to have significant benefits for computational analyses of large data sets and for automated reasoning applications, leading to organized attempts to improve the structure and formal rigor of ontologies to better support computation. Currently, the CL employs multiple is_a relations, defining cell types in terms of histological, functional, and lineage properties, and the majority of definitions are written with sufficient generality to hold across multiple species. This approach limits the CL's utility for computation and for cross-species data integration. Results To enhance the CL's utility for computational analyses, we developed a method for the ontological representation of cells and applied this method to develop a dendritic cell ontology (DC-CL. DC-CL subtypes are delineated on the basis of surface protein expression, systematically including both species-general and species-specific types and optimizing DC-CL for the analysis of flow cytometry data. We avoid multiple uses of is_a by linking DC-CL terms to terms in other ontologies via additional, formally defined relations such as has_function. Conclusion This approach brings benefits in the form of increased accuracy, support for reasoning, and interoperability with other ontology resources. Accordingly, we propose our method as a general strategy for the ontological representation of cells. DC-CL is available from http://www.obofoundry.org.

  9. Text Mining to inform construction of Earth and Environmental Science Ontologies

    Science.gov (United States)

    Schildhauer, M.; Adams, B.; Rebich Hespanha, S.

    2013-12-01

    There is a clear need for better semantic representation of Earth and environmental concepts, to facilitate more effective discovery and re-use of information resources relevant to scientists doing integrative research. In order to develop general-purpose Earth and environmental science ontologies, however, it is necessary to represent concepts and relationships that span usage across multiple disciplines and scientific specialties. Traditional knowledge modeling through ontologies utilizes expert knowledge but inevitably favors the particular perspectives of the ontology engineers, as well as the domain experts who interacted with them. This often leads to ontologies that lack robust coverage of synonymy, while also missing important relationships among concepts that can be extremely useful for working scientists to be aware of. In this presentation we will discuss methods we have developed that utilize statistical topic modeling on a large corpus of Earth and environmental science articles, to expand coverage and disclose relationships among concepts in the Earth sciences. For our work we collected a corpus of over 121,000 abstracts from many of the top Earth and environmental science journals. We performed latent Dirichlet allocation topic modeling on this corpus to discover a set of latent topics, which consist of terms that commonly co-occur in abstracts. We match terms in the topics to concept labels in existing ontologies to reveal gaps, and we examine which terms are commonly associated in natural language discourse, to identify relationships that are important to formally model in ontologies. Our text mining methodology uncovers significant gaps in the content of some popular existing ontologies, and we show how, through a workflow involving human interpretation of topic models, we can bootstrap ontologies to have much better coverage and richer semantics. Because we base our methods directly on what working scientists are communicating about their

  10. Semantic similarity between ontologies at different scales

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingpeng; Haglin, David J.

    2016-04-01

    In the past decade, existing and new knowledge and datasets has been encoded in different ontologies for semantic web and biomedical research. The size of ontologies is often very large in terms of number of concepts and relationships, which makes the analysis of ontologies and the represented knowledge graph computational and time consuming. As the ontologies of various semantic web and biomedical applications usually show explicit hierarchical structures, it is interesting to explore the trade-offs between ontological scales and preservation/precision of results when we analyze ontologies. This paper presents the first effort of examining the capability of this idea via studying the relationship between scaling biomedical ontologies at different levels and the semantic similarity values. We evaluate the semantic similarity between three Gene Ontology slims (Plant, Yeast, and Candida, among which the latter two belong to the same kingdom—Fungi) using four popular measures commonly applied to biomedical ontologies (Resnik, Lin, Jiang-Conrath, and SimRel). The results of this study demonstrate that with proper selection of scaling levels and similarity measures, we can significantly reduce the size of ontologies without losing substantial detail. In particular, the performance of Jiang-Conrath and Lin are more reliable and stable than that of the other two in this experiment, as proven by (a) consistently showing that Yeast and Candida are more similar (as compared to Plant) at different scales, and (b) small deviations of the similarity values after excluding a majority of nodes from several lower scales. This study provides a deeper understanding of the application of semantic similarity to biomedical ontologies, and shed light on how to choose appropriate semantic similarity measures for biomedical engineering.

  11. Concepts, ontologies, and knowledge representation

    CERN Document Server

    Jakus, Grega; Omerovic, Sanida; Tomažic, Sašo

    2013-01-01

    Recording knowledge in a common framework that would make it possible to seamlessly share global knowledge remains an important challenge for researchers. This brief examines several ideas about the representation of knowledge addressing this challenge. A widespread general agreement is followed that states uniform knowledge representation should be achievable by using ontologies populated with concepts. A separate chapter is dedicated to each of the three introduced topics, following a uniform outline: definition, organization, and use. This brief is intended for those who want to get to know

  12. Nosology, ontology and promiscuous realism.

    Science.gov (United States)

    Binney, Nicholas

    2015-06-01

    Medics may consider worrying about their metaphysics and ontology to be a waste of time. I will argue here that this is not the case. Promiscuous realism is a metaphysical position which holds that multiple, equally valid, classification schemes should be applied to objects (such as patients) to capture different aspects of their complex and heterogeneous nature. As medics at the bedside may need to capture different aspects of their patients' problems, they may need to use multiple classification schemes (multiple nosologies), and thus consider adopting a different metaphysics to the one commonly in use. © 2014 John Wiley & Sons, Ltd.

  13. Method of Automatic Ontology Mapping through Machine Learning and Logic Mining

    Institute of Scientific and Technical Information of China (English)

    王英林

    2004-01-01

    Ontology mapping is the bottleneck of handling conflicts among heterogeneous ontologies and of implementing reconfiguration or interoperability of legacy systems. We proposed an ontology mapping method by using machine learning, type constraints and logic mining techniques. This method is able to find concept correspondences through instances and the result is optimized by using an error function; it is able to find attribute correspondence between two equivalent concepts and the mapping accuracy is enhanced by combining together instances learning, type constraints and the logic relations that are imbedded in instances; moreover, it solves the most common kind of categorization conflicts. We then proposed a merging algorithm to generate the shared ontology and proposed a reconfigurable architecture for interoperation based on multi agents. The legacy systems are encapsulated as information agents to participate in the integration system. Finally we give a simplified case study.

  14. A Process for the Representation of openEHR ADL Archetypes in OWL Ontologies.

    Science.gov (United States)

    Porn, Alex Mateus; Peres, Leticia Mara; Didonet Del Fabro, Marcos

    2015-01-01

    ADL is a formal language to express archetypes, independent of standards or domain. However, its specification is not precise enough in relation to the specialization and semantic of archetypes, presenting difficulties in implementation and a few available tools. Archetypes may be implemented using other languages such as XML or OWL, increasing integration with Semantic Web tools. Exchanging and transforming data can be better implemented with semantics oriented models, for example using OWL which is a language to define and instantiate Web ontologies defined by W3C. OWL permits defining significant, detailed, precise and consistent distinctions among classes, properties and relations by the user, ensuring the consistency of knowledge than using ADL techniques. This paper presents a process of an openEHR ADL archetypes representation in OWL ontologies. This process consists of ADL archetypes conversion in OWL ontologies and validation of OWL resultant ontologies using the mutation test.

  15. Behavior change interventions: the potential of ontologies for advancing science and practice.

    Science.gov (United States)

    Larsen, Kai R; Michie, Susan; Hekler, Eric B; Gibson, Bryan; Spruijt-Metz, Donna; Ahern, David; Cole-Lewis, Heather; Ellis, Rebecca J Bartlett; Hesse, Bradford; Moser, Richard P; Yi, Jean

    2017-02-01

    A central goal of behavioral medicine is the creation of evidence-based interventions for promoting behavior change. Scientific knowledge about behavior change could be more effectively accumulated using "ontologies." In information science, an ontology is a systematic method for articulating a "controlled vocabulary" of agreed-upon terms and their inter-relationships. It involves three core elements: (1) a controlled vocabulary specifying and defining existing classes; (2) specification of the inter-relationships between classes; and (3) codification in a computer-readable format to enable knowledge generation, organization, reuse, integration, and analysis. This paper introduces ontologies, provides a review of current efforts to create ontologies related to behavior change interventions and suggests future work. This paper was written by behavioral medicine and information science experts and was developed in partnership between the Society of Behavioral Medicine's Technology Special Interest Group (SIG) and the Theories and Techniques of Behavior Change Interventions SIG. In recent years significant progress has been made in the foundational work needed to develop ontologies of behavior change. Ontologies of behavior change could facilitate a transformation of behavioral science from a field in which data from different experiments are siloed into one in which data across experiments could be compared and/or integrated. This could facilitate new approaches to hypothesis generation and knowledge discovery in behavioral science.

  16. Ontology-based semantic information technology for safeguards: opportunities and challenges

    International Nuclear Information System (INIS)

    McDaniel, Michael

    2014-01-01

    The challenge of efficiently handling large volumes of heterogeneous information is a barrier to more effective safeguards implementation. With the emergence of new technologies for generating and collecting information this is an issue common to many industries and problem domains. Several diverse information‑intensive fields are developing and adopting ontology‑based semantic information technology solutions to address issues of information integration, federation and interoperability. Ontology, in this context, refers to the formal specification of the content, structure, and logic of knowledge within a domain of interest. Ontology‑based semantic information technologies have the potential to impact nearly every level of safeguards implementation, from information collection and integration, to personnel training and knowledge retention, to planning and analysis. However, substantial challenges remain before the full benefits of semantic technology can be realized. Perhaps the most significant challenge is the development of a nuclear fuel cycle ontology. For safeguards, existing knowledge resources such as the IAEA’s Physical Model and established upper level ontologies can be used as starting points for ontology development, but a concerted effort must be taken by the safeguards community for such an activity to be successful. This paper provides a brief background of ontologies and semantic information technology, demonstrates how these technologies are used in other areas, offers examples of how ontologies can be applied to safeguards, and discusses the challenges of developing and implementing this technology as well as a possible path forward.

  17. Semantics and metaphysics in informatics: toward an ontology of tasks.

    Science.gov (United States)

    Figdor, Carrie

    2011-04-01

    This article clarifies three principles that should guide the development of any cognitive ontology. First, that an adequate cognitive ontology depends essentially on an adequate task ontology; second, that the goal of developing a cognitive ontology is independent of the goal of finding neural implementations of the processes referred to in the ontology; and third, that cognitive ontologies are neutral regarding the metaphysical relationship between cognitive and neural processes. Copyright © 2011 Cognitive Science Society, Inc.

  18. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  19. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    Science.gov (United States)

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  20. Initial implementation of a comparative data analysis ontology.

    Science.gov (United States)

    Prosdocimi, Francisco; Chisham, Brandon; Pontelli, Enrico; Thompson, Julie D; Stoltzfus, Arlin

    2009-07-03

    Comparative analysis is used throughout biology. When entities under comparison (e.g. proteins, genomes, species) are related by descent, evolutionary theory provides a framework that, in principle, allows N-ary comparisons of entities, while controlling for non-independence due to relatedness. Powerful software tools exist for specialized applications of this approach, yet it remains under-utilized in the absence of a unifying informatics infrastructure. A key step in developing such an infrastructure is the definition of a formal ontology. The analysis of use cases and existing formalisms suggests that a significant component of evolutionary analysis involves a core problem of inferring a character history, relying on key concepts: "Operational Taxonomic Units" (OTUs), representing the entities to be compared; "character-state data" representing the observations compared among OTUs; "phylogenetic tree", representing the historical path of evolution among the entities; and "transitions", the inferred evolutionary changes in states of characters that account for observations. Using the Web Ontology Language (OWL), we have defined these and other fundamental concepts in a Comparative Data Analysis Ontology (CDAO). CDAO has been evaluated for its ability to represent token data sets and to support simple forms of reasoning. With further development, CDAO will provide a basis for tools (for semantic transformation, data retrieval, validation, integration, etc.) that make it easier for software developers and biomedical researchers to apply evolutionary methods of inference to diverse types of data, so as to integrate this powerful framework for reasoning into their research.

  1. An ontological case base engineering methodology for diabetes management.

    Science.gov (United States)

    El-Sappagh, Shaker H; El-Masri, Samir; Elmogy, Mohammed; Riad, A M; Saddik, Basema

    2014-08-01

    Ontology engineering covers issues related to ontology development and use. In Case Based Reasoning (CBR) system, ontology plays two main roles; the first as case base and the second as domain ontology. However, the ontology engineering literature does not provide adequate guidance on how to build, evaluate, and maintain ontologies. This paper proposes an ontology engineering methodology to generate case bases in the medical domain. It mainly focuses on the research of case representation in the form of ontology to support the case semantic retrieval and enhance all knowledge intensive CBR processes. A case study on diabetes diagnosis case base will be provided to evaluate the proposed methodology.

  2. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.

    Science.gov (United States)

    El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M

    2015-11-01

    Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Introduction to Semantic Web Ontology Languages

    NARCIS (Netherlands)

    Antoniou, Grigoris; Franconi, Enrico; Van Harmelen, Frank

    2005-01-01

    The aim of this chapter is to give a general introduction to some of the ontology languages that play a prominent role on the Semantic Web, and to discuss the formal foundations of these languages. Web ontology languages will be the main carriers of the information that we will want to share and

  4. C2 Domain Ontology within Our Lifetime

    Science.gov (United States)

    2009-06-01

    25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR, May 2003. [26...www.ifomis.org/bfo/BFO  [25] Masolo, C., et al: The WonderWeb Library of Foundational Ontologies Prelimary Report, WonderWeb Deliverable D17, ISTC -CNR

  5. Recent changes in the Building Topology Ontology

    DEFF Research Database (Denmark)

    Rasmussen, Mads Holten; Pauwels, Pieter; Lefrancois, Maxime

    The Building Topology Ontology (BOT) was in early 2017 suggested to the W3C community group for Linked Building Data as a simple ontology covering the core concepts of a building. Since it was first announced it has been extended to cover a building site, elements hosted by other elements, zones...

  6. Critical Ontology for an Enactive Music Pedagogy

    Science.gov (United States)

    van der Schyff, Dylan; Schiavio, Andrea; Elliott, David J.

    2016-01-01

    An enactive approach to music education is explored through the lens of critical ontology. Assumptions central to Western academic music culture are critically discussed; and the concept of "ontological education" is introduced as an alternative framework. We argue that this orientation embraces more primordial ways of knowing and being,…

  7. An ontology roadmap for crowdsourcing innovation intermediaries

    OpenAIRE

    Silva, Cândida; Ramos, Isabel

    2014-01-01

    Ontologies have proliferated in the last years, essentially justified by the need of achieving a consensus in the multiple representations of reality inside computers, and therefore the accomplishment of interoperability between machines and systems. Ontologies provide an explicit conceptualization that describes the semantics of the data. Crowdsourcing innovation intermediaries are organizations that mediate the communication and relationship between companies that aspire to solv...

  8. Ontology Assisted Formal Specification Extraction from Text

    Directory of Open Access Journals (Sweden)

    Andreea Mihis

    2010-12-01

    Full Text Available In the field of knowledge processing, the ontologies are the most important mean. They make possible for the computer to understand better the natural language and to make judgments. In this paper, a method which use ontologies in the semi-automatic extraction of formal specifications from a natural language text is proposed.

  9. [Towards a structuring fibrillar ontology].

    Science.gov (United States)

    Guimberteau, J-C

    2012-10-01

    Over previous decades and centuries, the difficulty encountered in the manner in which the tissue of our bodies is organised, and structured, is clearly explained by the impossibility of exploring it in detail. Since the creation of the microscope, the perception of the basic unity, which is the cell, has been essential in understanding the functioning of reproduction and of transmission, but has not been able to explain the notion of form; since the cells are not everywhere and are not distributed in an apparently balanced manner. The problems that remain are those of form and volume and also of connection. The concept of multifibrillar architecture, shaping the interfibrillar microvolumes in space, represents a solution to all these questions. The architectural structures revealed, made up of fibres, fibrils and microfibrils, from the mesoscopic to the microscopic level, provide the concept of a living form with structural rationalism that permits the association of psychochemical molecular biodynamics and quantum physics: the form can thus be described and interpreted, and a true structural ontology is elaborated from a basic functional unity, which is the microvacuole, the intra and interfibrillar volume of the fractal organisation, and the chaotic distribution. Naturally, new, less linear, less conclusive, and less specific concepts will be implied by this ontology, leading one to believe that the emergence of life takes place under submission to forces that the original form will have imposed and oriented the adaptive finality. Copyright © 2012. Published by Elsevier SAS.

  10. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    Science.gov (United States)

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  11. GFVO: the Genomic Feature and Variation Ontology

    KAUST Repository

    Baran, Joachim; Durgahee, Bibi Sehnaaz Begum; Eilbeck, Karen; Antezana, Erick; Hoehndorf, Robert; Dumontier, Michel

    2015-01-01

    Availability and implementation. The latest stable release of the ontology is available via its base URI; previous and development versions are available at the ontology’s GitHub repository: https://github.com/BioInterchange/Ontologies; versions of the ontology are indexed through BioPortal (without external class-/property-equivalences due to BioPortal release 4.10 limitations); examples and reference documentation is provided on a separate web-page: http://www.biointerchange.org/ontologies.html. GFVO version 1.0.2 is licensed under the CC0 1.0 Universal license (https://creativecommons.org/publicdomain/zero/1.0) and therefore de facto within the public domain; the ontology can be appropriated without attribution for commercial and non-commercial use.

  12. Model Driven Engineering with Ontology Technologies

    Science.gov (United States)

    Staab, Steffen; Walter, Tobias; Gröner, Gerd; Parreiras, Fernando Silva

    Ontologies constitute formal models of some aspect of the world that may be used for drawing interesting logical conclusions even for large models. Software models capture relevant characteristics of a software artifact to be developed, yet, most often these software models have limited formal semantics, or the underlying (often graphical) software language varies from case to case in a way that makes it hard if not impossible to fix its semantics. In this contribution, we survey the use of ontology technologies for software modeling in order to carry over advantages from ontology technologies to the software modeling domain. It will turn out that ontology-based metamodels constitute a core means for exploiting expressive ontology reasoning in the software modeling domain while remaining flexible enough to accommodate varying needs of software modelers.

  13. A priorean approach to time ontologies

    DEFF Research Database (Denmark)

    Øhrstrøm, Peter; Schärfe, Henrik

    2004-01-01

    Any non-trivial top-level ontology should take temporal notions into account. The details of how this should be done, however, are frequently debated. In this paper it is argued that "the four grades of tense-logical involvement" suggested by A.N. Prior form a useful framework for discussing how...... various temporal notions are related in a top-level ontology. Furthermore, a number of modern ontologies are analysed with respect to their incorporation of temporal notions. It is argued that all of them correspond to Prior's first and second grade, and that none of them reflect the views which Prior......'s third and fourth grade represent. Finally, the paper deals with Prior's ideas on a tensed ontology and it is argued that a logic based on the third grade and will be useful in the further development of tensed ontology....

  14. Geo-Ontologies Are Scale Dependent

    Science.gov (United States)

    Frank, A. U.

    2009-04-01

    Philosophers aim at a single ontology that describes "how the world is"; for information systems we aim only at ontologies that describe a conceptualization of reality (Guarino 1995; Gruber 2005). A conceptualization of the world implies a spatial and temporal scale: what are the phenomena, the objects and the speed of their change? Few articles (Reitsma et al. 2003) seem to address that an ontology is scale specific (but many articles indicate that ontologies are scale-free in another sense namely that they are scale free in the link densities between concepts). The scale in the conceptualization can be linked to the observation process. The extent of the support of the physical observation instrument and the sampling theorem indicate what level of detail we find in a dataset. These rules apply for remote sensing or sensor networks alike. An ontology of observations must include scale or level of detail, and concepts derived from observations should carry this relation forward. A simple example: in high resolution remote sensing image agricultural plots and roads between them are shown, at lower resolution, only the plots and not the roads are visible. This gives two ontologies, one with plots and roads, the other with plots only. Note that a neighborhood relation in the two different ontologies also yield different results. References Gruber, T. (2005). "TagOntology - a way to agree on the semantics of tagging data." Retrieved October 29, 2005., from http://tomgruber.org/writing/tagontology-tagcapm-talk.pdf. Guarino, N. (1995). "Formal Ontology, Conceptual Analysis and Knowledge Representation." International Journal of Human and Computer Studies. Special Issue on Formal Ontology, Conceptual Analysis and Knowledge Representation, edited by N. Guarino and R. Poli 43(5/6). Reitsma, F. and T. Bittner (2003). Process, Hierarchy, and Scale. Spatial Information Theory. Cognitive and Computational Foundations of Geographic Information ScienceInternational Conference

  15. The use of concept maps during knowledge elicitation in ontology development processes – the nutrigenomics use case

    Directory of Open Access Journals (Sweden)

    Taylor Chris

    2006-05-01

    Full Text Available Abstract Background Incorporation of ontologies into annotations has enabled 'semantic integration' of complex data, making explicit the knowledge within a certain field. One of the major bottlenecks in developing bio-ontologies is the lack of a unified methodology. Different methodologies have been proposed for different scenarios, but there is no agreed-upon standard methodology for building ontologies. The involvement of geographically distributed domain experts, the need for domain experts to lead the design process, the application of the ontologies and the life cycles of bio-ontologies are amongst the features not considered by previously proposed methodologies. Results Here, we present a methodology for developing ontologies within the biological domain. We describe our scenario, competency questions, results and milestones for each methodological stage. We introduce the use of concept maps during knowledge acquisition phases as a feasible transition between domain expert and knowledge engineer. Conclusion The contributions of this paper are the thorough description of the steps we suggest when building an ontology, example use of concept maps, consideration of applicability to the development of lower-level ontologies and application to decentralised environments. We have found that within our scenario conceptual maps played an important role in the development process.

  16. Ontologies and tag-statistics

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  17. Ontologies and tag-statistics

    International Nuclear Information System (INIS)

    Tibély, Gergely; Vicsek, Tamás; Pollner, Péter; Palla, Gergely

    2012-01-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  18. Anthropological Component of Descartes’ Ontology

    Directory of Open Access Journals (Sweden)

    Anatolii M. Malivskyi

    2014-06-01

    Full Text Available The purpose of the article is to outline and comprehend the Descartes’ theory about anthropological component of ontology as the most important part of his philosophy. The accomplishment of this purpose covers the successive solution of the following tasks: 1 review of the research literature concerning the problem of human’s presence and the individual nature of truth; 2 emphasize the ambivalence of the basic intention of his legacy; 3 justify the thesis about constitutivity of human’s presence and comprehend passions as the form of disclosure of ontology’s anthropological component. Methodology. The use of the euristic potential of phenomenology, postpositivism and postmodernism makes it possible to emphasize the multiple-layer and multiple-meaning classical philosophy works, to comprehend the limitation and scarcity of the naïve-enlightening vision of human nature and to look for a new reception of European classics that provides the overcoming of established nihilism and pessimism concerning the interpretation of human nature. Scientific novelty. It is the first time that anthropological component of Descartes’ ontology became an object of particular attention. It previously lacked attention because of following main reasons: 1 traditional underestimating of the fact of Descartes’ legacy incompleteness as an unrealized anthropological project and 2 lack of proper attention to the individual nature of truth. The premise for its constructive overcoming is the attention to ambivalence of the basic intention and the significance of ethics in the philosopher’s legacy. His texts and research literature allow confirming the constitutive nature of human’s presence and passions as the key form of disclosure of the ontology anthropological component. Conclusions. The established tradition of interpretation the Descartes’ philosophizing nature as the filiation process of impersonal knowledge loses its cogency these days. The

  19. ANTHROPOLOGICAL COMPONENT OF DESCARTES’ ONTOLOGY

    Directory of Open Access Journals (Sweden)

    Anatolii M. Malivskyi

    2014-06-01

    Full Text Available The purpose of the article is to outline and comprehend the Descartes’ theory about anthropological component of ontology as the most important part of his philosophy. The accomplishment of this purpose covers the successive solution of the following tasks: 1 review of the research literature concerning the problem of human’s presence and the individual nature of truth; 2 emphasize the ambivalence of the basic intention of his legacy; 3 justify the thesis about constitutivity of human’s presence and comprehend passions as the form of disclosure of ontology’s anthropological component. Methodology. The use of the euristic potential of phenomenology, postpositivism and postmodernism makes it possible to emphasize the multiple-layer and multiple-meaning classical philosophy works, to comprehend the limitation and scarcity of the naïve-enlightening vision of human nature and to look for a new reception of European classics that provides the overcoming of established nihilism and pessimism concerning the interpretation of human nature. Scientific novelty. It is the first time that anthropological component of Descartes’ ontology became an object of particular attention. It previously lacked attention because of following main reasons: 1 traditional underestimating of the fact of Descartes’ legacy incompleteness as an unrealized anthropological project and 2 lack of proper attention to the individual nature of truth. The premise for its constructive overcoming is the attention to ambivalence of the basic intention and the significance of ethics in the philosopher’s legacy. His texts and research literature allow confirming the constitutive nature of human’s presence and passions as the key form of disclosure of the ontology anthropological component. Conclusions. The established tradition of interpretation the Descartes’ philosophizing nature as the filiation process of impersonal knowledge loses its cogency these days. The

  20. Multi-dimensional discovery of biomarker and phenotype complexes

    Directory of Open Access Journals (Sweden)

    Huang Kun

    2010-10-01

    Full Text Available Abstract Background Given the rapid growth of translational research and personalized healthcare paradigms, the ability to relate and reason upon networks of bio-molecular and phenotypic variables at various levels of granularity in order to diagnose, stage and plan treatments for disease states is highly desirable. Numerous techniques exist that can be used to develop networks of co-expressed or otherwise related genes and clinical features. Such techniques can also be used to create formalized knowledge collections based upon the information incumbent to ontologies and domain literature. However, reports of integrative approaches that bridge such networks to create systems-level models of disease or wellness are notably lacking in the contemporary literature. Results In response to the preceding gap in knowledge and practice, we report upon a prototypical series of experiments that utilize multi-modal approaches to network induction. These experiments are intended to elicit meaningful and significant biomarker-phenotype complexes spanning multiple levels of granularity. This work has been performed in the experimental context of a large-scale clinical and basic science data repository maintained by the National Cancer Institute (NCI funded Chronic Lymphocytic Leukemia Research Consortium. Conclusions Our results indicate that it is computationally tractable to link orthogonal networks of genes, clinical features, and conceptual knowledge to create multi-dimensional models of interrelated biomarkers and phenotypes. Further, our results indicate that such systems-level models contain interrelated bio-molecular and clinical markers capable of supporting hypothesis discovery and testing. Based on such findings, we propose a conceptual model intended to inform the cross-linkage of the results of such methods. This model has as its aim the identification of novel and knowledge-anchored biomarker-phenotype complexes.

  1. SPONGY (SPam ONtoloGY: Email Classification Using Two-Level Dynamic Ontology

    Directory of Open Access Journals (Sweden)

    Seongwook Youn

    2014-01-01

    Full Text Available Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user’s background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1 to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2 to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  2. SPONGY (SPam ONtoloGY): email classification using two-level dynamic ontology.

    Science.gov (United States)

    Youn, Seongwook

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance.

  3. SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology

    Science.gov (United States)

    2014-01-01

    Email is one of common communication methods between people on the Internet. However, the increase of email misuse/abuse has resulted in an increasing volume of spam emails over recent years. An experimental system has been designed and implemented with the hypothesis that this method would outperform existing techniques, and the experimental results showed that indeed the proposed ontology-based approach improves spam filtering accuracy significantly. In this paper, two levels of ontology spam filters were implemented: a first level global ontology filter and a second level user-customized ontology filter. The use of the global ontology filter showed about 91% of spam filtered, which is comparable with other methods. The user-customized ontology filter was created based on the specific user's background as well as the filtering mechanism used in the global ontology filter creation. The main contributions of the paper are (1) to introduce an ontology-based multilevel filtering technique that uses both a global ontology and an individual filter for each user to increase spam filtering accuracy and (2) to create a spam filter in the form of ontology, which is user-customized, scalable, and modularized, so that it can be embedded to many other systems for better performance. PMID:25254240

  4. An open annotation ontology for science on web 3.0.

    Science.gov (United States)

    Ciccarese, Paolo; Ocana, Marco; Garcia Castro, Leyla Jael; Das, Sudeshna; Clark, Tim

    2011-05-17

    There is currently a gap between the rich and expressive collection of published biomedical ontologies, and the natural language expression of biomedical papers consumed on a daily basis by scientific researchers. The purpose of this paper is to provide an open, shareable structure for dynamic integration of biomedical domain ontologies with the scientific document, in the form of an Annotation Ontology (AO), thus closing this gap and enabling application of formal biomedical ontologies directly to the literature as it emerges. Initial requirements for AO were elicited by analysis of integration needs between biomedical web communities, and of needs for representing and integrating results of biomedical text mining. Analysis of strengths and weaknesses of previous efforts in this area was also performed. A series of increasingly refined annotation tools were then developed along with a metadata model in OWL, and deployed for feedback and additional requirements the ontology to users at a major pharmaceutical company and a major academic center. Further requirements and critiques of the model were also elicited through discussions with many colleagues and incorporated into the work. This paper presents Annotation Ontology (AO), an open ontology in OWL-DL for annotating scientific documents on the web. AO supports both human and algorithmic content annotation. It enables "stand-off" or independent metadata anchored to specific positions in a web document by any one of several methods. In AO, the document may be annotated but is not required to be under update control of the annotator. AO contains a provenance model to support versioning, and a set model for specifying groups and containers of annotation. AO is freely available under open source license at http://purl.org/ao/, and extensive documentation including screencasts is available on AO's Google Code page: http://code.google.com/p/annotation-ontology/ . The Annotation Ontology meets critical requirements for

  5. Individual behavioral phenotypes: an integrative meta-theoretical framework. Why "behavioral syndromes" are not analogs of "personality".

    Science.gov (United States)

    Uher, Jana

    2011-09-01

    Animal researchers are increasingly interested in individual differences in behavior. Their interpretation as meaningful differences in behavioral strategies stable over time and across contexts, adaptive, heritable, and acted upon by natural selection has triggered new theoretical developments. However, the analytical approaches used to explore behavioral data still address population-level phenomena, and statistical methods suitable to analyze individual behavior are rarely applied. I discuss fundamental investigative principles and analytical approaches to explore whether, in what ways, and under which conditions individual behavioral differences are actually meaningful. I elaborate the meta-theoretical ideas underlying common theoretical concepts and integrate them into an overarching meta-theoretical and methodological framework. This unravels commonalities and differences, and shows that assumptions of analogy to concepts of human personality are not always warranted and that some theoretical developments may be based on methodological artifacts. Yet, my results also highlight possible directions for new theoretical developments in animal behavior research. Copyright © 2011 Wiley Periodicals, Inc.

  6. Building spatio-temporal database model based on ontological approach using relational database environment

    International Nuclear Information System (INIS)

    Mahmood, N.; Burney, S.M.A.

    2017-01-01

    Everything in this world is encapsulated by space and time fence. Our daily life activities are utterly linked and related with other objects in vicinity. Therefore, a strong relationship exist with our current location, time (including past, present and future) and event through with we are moving as an object also affect our activities in life. Ontology development and its integration with database are vital for the true understanding of the complex systems involving both spatial and temporal dimensions. In this paper we propose a conceptual framework for building spatio-temporal database model based on ontological approach. We have used relational data model for modelling spatio-temporal data content and present our methodology with spatio-temporal ontological accepts and its transformation into spatio-temporal database model. We illustrate the implementation of our conceptual model through a case study related to cultivated land parcel used for agriculture to exhibit the spatio-temporal behaviour of agricultural land and related entities. Moreover, it provides a generic approach for designing spatiotemporal databases based on ontology. The proposed model is capable to understand the ontological and somehow epistemological commitments and to build spatio-temporal ontology and transform it into a spatio-temporal data model. Finally, we highlight the existing and future research challenges. (author)

  7. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri.

    Directory of Open Access Journals (Sweden)

    Lucia Manni

    Full Text Available Ontologies provide an important resource to integrate information. For developmental biology and comparative anatomy studies, ontologies of a species are used to formalize and annotate data that are related to anatomical structures, their lineage and timing of development. Here, we have constructed the first ontology for anatomy and asexual development (blastogenesis of a bilaterian, the colonial tunicate Botryllus schlosseri. Tunicates, like Botryllus schlosseri, are non-vertebrates and the only chordate taxon species that reproduce both sexually and asexually. Their tadpole larval stage possesses structures characteristic of all chordates, i.e. a notochord, a dorsal neural tube, and gill slits. Larvae settle and metamorphose into individuals that are either solitary or colonial. The latter reproduce both sexually and asexually and these two reproductive modes lead to essentially the same adult body plan. The Botryllus schlosseri Ontology of Development and Anatomy (BODA will facilitate the comparison between both types of development. BODA uses the rules defined by the Open Biomedical Ontologies Foundry. It is based on studies that investigate the anatomy, blastogenesis and regeneration of this organism. BODA features allow the users to easily search and identify anatomical structures in the colony, to define the developmental stage, and to follow the morphogenetic events of a tissue and/or organ of interest throughout asexual development. We invite the scientific community to use this resource as a reference for the anatomy and developmental ontology of B. schlosseri and encourage recommendations for updates and improvements.

  8. Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents

    Science.gov (United States)

    Thiam, Mouhamadou; Bennacer, Nacéra; Pernelle, Nathalie; Lô, Moussa

    SHIRIis an ontology-based system for integration of semi-structured documents related to a specific domain. The system’s purpose is to allow users to access to relevant parts of documents as answers to their queries. SHIRI uses RDF/OWL for representation of resources and SPARQL for their querying. It relies on an automatic, unsupervised and ontology-driven approach for extraction, alignment and semantic annotation of tagged elements of documents. In this paper, we focus on the Extract-Align algorithm which exploits a set of named entity and term patterns to extract term candidates to be aligned with the ontology. It proceeds in an incremental manner in order to populate the ontology with terms describing instances of the domain and to reduce the access to extern resources such as Web. We experiment it on a HTML corpus related to call for papers in computer science and the results that we obtain are very promising. These results show how the incremental behaviour of Extract-Align algorithm enriches the ontology and the number of terms (or named entities) aligned directly with the ontology increases.

  9. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Science.gov (United States)

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA).

  10. The chemical information ontology: provenance and disambiguation for chemical data on the biological semantic web.

    Directory of Open Access Journals (Sweden)

    Janna Hastings

    Full Text Available Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA.

  11. The Chemical Information Ontology: Provenance and Disambiguation for Chemical Data on the Biological Semantic Web

    Science.gov (United States)

    Hastings, Janna; Chepelev, Leonid; Willighagen, Egon; Adams, Nico; Steinbeck, Christoph; Dumontier, Michel

    2011-01-01

    Cheminformatics is the application of informatics techniques to solve chemical problems in silico. There are many areas in biology where cheminformatics plays an important role in computational research, including metabolism, proteomics, and systems biology. One critical aspect in the application of cheminformatics in these fields is the accurate exchange of data, which is increasingly accomplished through the use of ontologies. Ontologies are formal representations of objects and their properties using a logic-based ontology language. Many such ontologies are currently being developed to represent objects across all the domains of science. Ontologies enable the definition, classification, and support for querying objects in a particular domain, enabling intelligent computer applications to be built which support the work of scientists both within the domain of interest and across interrelated neighbouring domains. Modern chemical research relies on computational techniques to filter and organise data to maximise research productivity. The objects which are manipulated in these algorithms and procedures, as well as the algorithms and procedures themselves, enjoy a kind of virtual life within computers. We will call these information entities. Here, we describe our work in developing an ontology of chemical information entities, with a primary focus on data-driven research and the integration of calculated properties (descriptors) of chemical entities within a semantic web context. Our ontology distinguishes algorithmic, or procedural information from declarative, or factual information, and renders of particular importance the annotation of provenance to calculated data. The Chemical Information Ontology is being developed as an open collaborative project. More details, together with a downloadable OWL file, are available at http://code.google.com/p/semanticchemistry/ (license: CC-BY-SA). PMID:21991315

  12. Usage of the Jess Engine, Rules and Ontology to Query a Relational Database

    Science.gov (United States)

    Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej

    We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.

  13. Design and Evaluation of a Bacterial Clinical Infectious Diseases Ontology

    Science.gov (United States)

    Gordon, Claire L.; Pouch, Stephanie; Cowell, Lindsay G.; Boland, Mary Regina; Platt, Heather L.; Goldfain, Albert; Weng, Chunhua

    2013-01-01

    With antimicrobial resistance increasing worldwide, there is a great need to use automated antimicrobial decision support systems (ADSSs) to lower antimicrobial resistance rates by promoting appropriate antimicrobial use. However, they are infrequently used mostly because of their poor interoperability with different health information technologies. Ontologies can augment portable ADSSs by providing an explicit knowledge representation for biomedical entities and their relationships, helping to standardize and integrate heterogeneous data resources. We developed a bacterial clinical infectious diseases ontology (BCIDO) using Protégé-OWL. BCIDO defines a controlled terminology for clinical infectious diseases along with domain knowledge commonly used in hospital settings for clinical infectious disease treatment decision-making. BCIDO has 599 classes and 2355 object properties. Terms were imported from or mapped to Systematized Nomenclature of Medicine, Unified Medical Language System, RxNorm and National Center for Bitechnology Information Organismal Classification where possible. Domain expert evaluation using the “laddering” technique, ontology visualization, and clinical notes and scenarios, confirmed the correctness and potential usefulness of BCIDO. PMID:24551353

  14. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    Science.gov (United States)

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. © 2014 J. M. Batzli et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Integration of multi-omics techniques and physiological phenotyping within a holistic phenomics approach to study senescence in model and crop plants.

    Science.gov (United States)

    Großkinsky, Dominik K; Syaifullah, Syahnada Jaya; Roitsch, Thomas

    2018-02-12

    The study of senescence in plants is complicated by diverse levels of temporal and spatial dynamics as well as the impact of external biotic and abiotic factors and crop plant management. Whereas the molecular mechanisms involved in developmentally regulated leaf senescence are very well understood, in particular in the annual model plant species Arabidopsis, senescence of other organs such as the flower, fruit, and root is much less studied as well as senescence in perennials such as trees. This review addresses the need for the integration of multi-omics techniques and physiological phenotyping into holistic phenomics approaches to dissect the complex phenomenon of senescence. That became feasible through major advances in the establishment of various, complementary 'omics' technologies. Such an interdisciplinary approach will also need to consider knowledge from the animal field, in particular in relation to novel regulators such as small, non-coding RNAs, epigenetic control and telomere length. Such a characterization of phenotypes via the acquisition of high-dimensional datasets within a systems biology approach will allow us to systematically characterize the various programmes governing senescence beyond leaf senescence in Arabidopsis and to elucidate the underlying molecular processes. Such a multi-omics approach is expected to also spur the application of results from model plants to agriculture and their verification for sustainable and environmentally friendly improvement of crop plant stress resilience and productivity and contribute to improvements based on postharvest physiology for the food industry and the benefit of its customers. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Ontology Versioning and Change Detection on the Web

    NARCIS (Netherlands)

    Klein, Michel; Fensel, Dieter; Kiryakov, Atanas; Ognyanov, Damyan

    2002-01-01

    To effectively use ontologies on the Web, it is essential that changes in ontologies are managed well. This paper analyzes the topic of ontology versioning in the context of the Web by looking at the characteristics of the version relation between ontologies and at the identification of online

  17. A Knowledge Engineering Approach to Develop Domain Ontology

    Science.gov (United States)

    Yun, Hongyan; Xu, Jianliang; Xiong, Jing; Wei, Moji

    2011-01-01

    Ontologies are one of the most popular and widespread means of knowledge representation and reuse. A few research groups have proposed a series of methodologies for developing their own standard ontologies. However, because this ontological construction concerns special fields, there is no standard method to build domain ontology. In this paper,…

  18. St. Thomas and the hilemorfic ontology

    Directory of Open Access Journals (Sweden)

    Lawrence Dewan, O.P.

    2009-06-01

    Full Text Available This article presents the relevancy of Aristotle’s hylemorphic ontology.Aristotle himself highlighted the importance and astonishing complexityof the problem of prime matter’s ontological status and he presenting thesolution in his doctrine of hylemorphism. As Saint Thomas Aquinasnoted, it is a crucial issue for philosophy because all four, hilemorfism,logic, physics and metaphysics, stand or fall depending on a correctunderstanding of the ontology of prime matter and of the kind of causalrelationship which exist between prime matter and substantial form ingenerable and corruptible substance.

  19. Hierarchical Analysis of the Omega Ontology

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Paulson, Patrick R.

    2009-12-01

    Initial delivery for mathematical analysis of the Omega Ontology. We provide an analysis of the hierarchical structure of a version of the Omega Ontology currently in use within the US Government. After providing an initial statistical analysis of the distribution of all link types in the ontology, we then provide a detailed order theoretical analysis of each of the four main hierarchical links present. This order theoretical analysis includes the distribution of components and their properties, their parent/child and multiple inheritance structure, and the distribution of their vertical ranks.

  20. Mobilization and integration of bacterial phenotypic data-Enabling next generation biodiversity analysis through the BacDive metadatabase.

    Science.gov (United States)

    Reimer, Lorenz C; Söhngen, Carola; Vetcininova, Anna; Overmann, Jörg

    2017-11-10

    Microbial data and metadata are scattered throughout the scientific literature, databases and unpublished lab notes and thereby often are difficult to access. Hot spots of (meta)data are internal descriptions of culture collections and initial descriptions of novel taxa in primary literature. Here we describe three exemplary mobilization projects which yielded metadata published through the prokaryotic metadatabase BacDive. The Reichenbach collection of myxobacteria includes information on 12,535 typewritten index cards which were digitized. A total of 37,156 data points were extracted by text mining. In the second mobilization project, Analytical Profile Index (API) tests on paper forms were targeted. Overall 6820 API tests were digitized, which provide physiological data of 4524 microbial strains. Thirdly, the extraction of metadata from 523 new species descriptions of the International Journal of Systematic and Evolutionary Microbiology, yielding 35,651 data points, is described. All data sets were integrated and published in BacDive. Thereby these metadata not only became accessible and searchable but were also linked to strain taxonomy, isolation source, cultivation condition, and molecular biology data. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Accelerating Genetic Gains in Legumes for the Development of Prosperous Smallholder Agriculture: Integrating Genomics, Phenotyping, Systems Modelling and Agronomy.

    Science.gov (United States)

    Varshney, Rajeev K; Thudi, Mahendar; Pandey, Manish K; Tardieu, Francois; Ojiewo, Chris; Vadez, Vincent; Whitbread, Anthony M; Siddique, Kadambot H M; Nguyen, Henry T; Carberry, Peter S; Bergvinson, David

    2018-03-05

    Grain legumes form an important component of the human diet, feed for livestock and replenish soil fertility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced the frequency and intensity of drought stress that is posing serious production constraints, especially in rainfed regions where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree and performance-based selection over the last half century. For achieving faster genetic gains in legumes in rainfed conditions, this review article proposes the integration of modern genomics approaches, high throughput phenomics and simulation modelling as support for crop improvement that leads to improved varieties that perform with appropriate agronomy. Selection intensity, generation interval and improved operational efficiencies in breeding are expected to further enhance the genetic gain in experiment plots. Improved seed access to farmers, combined with appropriate agronomic packages in farmers' fields, will deliver higher genetic gains. Enhanced genetic gains including not only productivity but also nutritional and market traits will increase the profitability of farmers and the availability of affordable nutritious food especially in developing countries.

  2. A Hydrological Sensor Web Ontology Based on the SSN Ontology: A Case Study for a Flood

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2017-12-01

    Full Text Available Accompanying the continuous development of sensor network technology, sensors worldwide are constantly producing observation data. However, the sensors and their data from different observation platforms are sometimes difficult to use collaboratively in response to natural disasters such as floods for the lack of semantics. In this paper, a hydrological sensor web ontology based on SSN ontology is proposed to describe the heterogeneous hydrological sensor web resources by importing the time and space ontology, instantiating the hydrological classes, and establishing reasoning rules. This work has been validated by semantic querying and knowledge acquiring experiments. The results demonstrate the feasibility and effectiveness of the proposed ontology and its potential to grow into a more comprehensive ontology for hydrological monitoring collaboratively. In addition, this method of ontology modeling is generally applicable to other applications and domains.

  3. Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.

    Science.gov (United States)

    Yu, Michael Ku; Kramer, Michael; Dutkowski, Janusz; Srivas, Rohith; Licon, Katherine; Kreisberg, Jason; Ng, Cherie T; Krogan, Nevan; Sharan, Roded; Ideker, Trey

    2016-02-24

    Accurately translating genotype to phenotype requires accounting for the functional impact of genetic variation at many biological scales. Here we present a strategy for genotype-phenotype reasoning based on existing knowledge of cellular subsystems. These subsystems and their hierarchical organization are defined by the Gene Ontology or a complementary ontology inferred directly from previously published datasets. Guided by the ontology's hierarchical structure, we organize genotype data into an "ontotype," that is, a hierarchy of perturbations representing the effects of genetic variation at multiple cellular scales. The ontotype is then interpreted using logical rules generated by machine learning to predict phenotype. This approach substantially outperforms previous, non-hierarchical methods for translating yeast genotype to cell growth phenotype, and it accurately predicts the growth outcomes of two new screens of 2,503 double gene knockouts impacting DNA repair or nuclear lumen. Ontotypes also generalize to larger knockout combinations, setting the stage for interpreting the complex genetics of disease.

  4. An empirical analysis of ontology reuse in BioPortal.

    Science.gov (United States)

    Ochs, Christopher; Perl, Yehoshua; Geller, James; Arabandi, Sivaram; Tudorache, Tania; Musen, Mark A

    2017-07-01

    Biomedical ontologies often reuse content (i.e., classes and properties) from other ontologies. Content reuse enables a consistent representation of a domain and reusing content can save an ontology author significant time and effort. Prior studies have investigated the existence of reused terms among the ontologies in the NCBO BioPortal, but as of yet there has not been a study investigating how the ontologies in BioPortal utilize reused content in the modeling of their own content. In this study we investigate how 355 ontologies hosted in the NCBO BioPortal reuse content from other ontologies for the purposes of creating new ontology content. We identified 197 ontologies that reuse content. Among these ontologies, 108 utilize reused classes in the modeling of their own classes and 116 utilize reused properties in class restrictions. Current utilization of reuse and quality issues related to reuse are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The ontology-based answers (OBA) service: a connector for embedded usage of ontologies in applications.

    Science.gov (United States)

    Dönitz, Jürgen; Wingender, Edgar

    2012-01-01

    The semantic web depends on the use of ontologies to let electronic systems interpret contextual information. Optimally, the handling and access of ontologies should be completely transparent to the user. As a means to this end, we have developed a service that attempts to bridge the gap between experts in a certain knowledge domain, ontologists, and application developers. The ontology-based answers (OBA) service introduced here can be embedded into custom applications to grant access to the classes of ontologies and their relations as most important structural features as well as to information encoded in the relations between ontology classes. Thus computational biologists can benefit from ontologies without detailed knowledge about the respective ontology. The content of ontologies is mapped to a graph of connected objects which is compatible to the object-oriented programming style in Java. Semantic functions implement knowledge about the complex semantics of an ontology beyond the class hierarchy and "partOf" relations. By using these OBA functions an application can, for example, provide a semantic search function, or (in the examples outlined) map an anatomical structure to the organs it belongs to. The semantic functions relieve the application developer from the necessity of acquiring in-depth knowledge about the semantics and curation guidelines of the used ontologies by implementing the required knowledge. The architecture of the OBA service encapsulates the logic to process ontologies in order to achieve a separation from the application logic. A public server with the current plugins is available and can be used with the provided connector in a custom application in scenarios analogous to the presented use cases. The server and the client are freely available if a project requires the use of custom plugins or non-public ontologies. The OBA service and further documentation is available at http://www.bioinf.med.uni-goettingen.de/projects/oba.

  6. OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    OpenAIRE

    Paschke, Adrian

    2013-01-01

    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and ada...

  7. Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology.

    Science.gov (United States)

    Bibault, Jean-Emmanuel; Zapletal, Eric; Rance, Bastien; Giraud, Philippe; Burgun, Anita

    2018-01-01

    Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical details, multicenter studies are necessary. A challenge in creating high quality Big Data studies involving several treatment centers is the lack of semantic interoperability between data sources. We present the ontology we developed to address this issue. Radiation Oncology anatomical and target volumes were categorized in anatomical and treatment planning classes. International delineation guidelines specific to radiation oncology were used for lymph nodes areas and target volumes. Hierarchical classes were created to generate The Radiation Oncology Structures (ROS) Ontology. The ROS was then applied to the data from our institution. Four hundred and seventeen classes were created with a maximum of 14 children classes (average = 5). The ontology was then converted into a Web Ontology Language (.owl) format and made available online on Bioportal and GitHub under an Apache 2.0 License. We extracted all structures delineated in our department since the opening in 2001. 20,758 structures were exported from our "record-and-verify" system, demonstrating a significant heterogeneity within a single center. All structures were matched to the ROS ontology before integration into our clinical data warehouse (CDW). In this study we describe a new ontology, specific to radiation oncology, that reports all anatomical and treatment planning structures that can be delineated. This ontology will be used to integrate dosimetric data in the Assistance Publique-Hôpitaux de Paris CDW that stores data from 6.5 million patients (as of February 2017).

  8. Combining Archetypes, Ontologies and Formalization Enables Automated Computation of Quality Indicators.

    Science.gov (United States)

    Legaz-García, María Del Carmen; Dentler, Kathrin; Fernández-Breis, Jesualdo Tomás; Cornet, Ronald

    2017-01-01

    ArchMS is a framework that represents clinical information and knowledge using ontologies in OWL, which facilitates semantic interoperability and thereby the exploitation and secondary use of clinical data. However, it does not yet support the automated assessment of quality of care. CLIF is a stepwise method to formalize quality indicators. The method has been implemented in the CLIF tool which supports its users in generating computable queries based on a patient data model which can be based on archetypes. To enable the automated computation of quality indicators using ontologies and archetypes, we tested whether ArchMS and the CLIF tool can be integrated. We successfully automated the process of generating SPARQL queries from quality indicators that have been formalized with CLIF and integrated them into ArchMS. Hence, ontologies and archetypes can be combined for the execution of formalized quality indicators.

  9. Ontological Realism for the Research Domain Criteria for Mental Disorders.

    Science.gov (United States)

    Ceusters, Werner; Jensen, Mark; Diehl, Alexander D

    2017-01-01

    At the heart of the Research Domain Criteria for Mental Disorders is a matrix in which functional aspects of behavior are related to genotypic and (endo-)phenotypic research findings, and the various techniques through which they can been observed. The matrix is work in progress. As such it currently suffers from several shortcomings, the resolution of which, we contend, are essential to success of NIMH's goal of fostering translational science on mental disorders. Using well-established criteria for assessing the terminological and ontological quality of biomedical representations we identified the major problems to be (1) the abundant presence of terms that lack face value, (2) the absence of what the exact nature of the represented relationships are, and (3) referential imprecision with respect to the intended granularity of what the terms denote. We propose to eliminate these shortcomings by resorting to definitions and formal representations under the umbrella of Ontological Realism as they already have been developed in the areas of mental health, anatomy and biological functions.

  10. Learning Ontology from Object-Relational Database

    Directory of Open Access Journals (Sweden)

    Kaulins Andrejs

    2015-12-01

    Full Text Available This article describes a method of transformation of object-relational model into ontology. The offered method uses learning rules for such complex data types as object tables and collections – arrays of a variable size, as well as nested tables. Object types and their transformation into ontologies are insufficiently considered in scientific literature. This fact served as motivation for the authors to investigate this issue and to write the article on this matter. In the beginning, we acquaint the reader with complex data types and object-oriented databases. Then we describe an algorithm of transformation of complex data types into ontologies. At the end of the article, some examples of ontologies described in the OWL language are given.

  11. Randomised controlled trials in educational research: Ontological ...

    African Journals Online (AJOL)

    based practice in medical and clinical settings because they are associated with a particular ontological and epistemological perspective that is situated within a positivist world view. It assumes that environments and variables can be controlled ...

  12. Using an ontology for network attack planning

    CSIR Research Space (South Africa)

    Van Heerden, R

    2016-09-01

    Full Text Available The modern complexity of network attacks and their counter-measures (cyber operations) requires detailed planning. This paper presents a Network Attack Planning ontology which is aimed at providing support for planning such network operations within...

  13. Ontology Enabled Generation of Embedded Web Services

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Zhang, Weishan; Soares, Goncalo Teofilo Afonso Pinheiro

    2008-01-01

    Web services are increasingly adopted as a service provision mechanism in pervasive computing environments. Implementing web services on networked, embedded devices raises a number of challenges, for example efficiency of web services, handling of variability and dependencies of hardware...... and software platforms, and of devices state and context changes. To address these challenges, we developed a Web service compiler, Limbo, in which Web Ontology Language (OWL) ontologies are used to make the Limbo compiler aware of its compilation context, such as targeted hardware and software. At the same...... time, knowledge on device details, platform dependencies, and resource/power consumption is built into the supporting ontologies, which are used to configure Limbo for generating resource efficient web service code. A state machine ontology is used to generate stub code to facilitate handling of state...

  14. Metadata and Ontologies in Learning Resources Design

    Science.gov (United States)

    Vidal C., Christian; Segura Navarrete, Alejandra; Menéndez D., Víctor; Zapata Gonzalez, Alfredo; Prieto M., Manuel

    Resource design and development requires knowledge about educational goals, instructional context and information about learner's characteristics among other. An important information source about this knowledge are metadata. However, metadata by themselves do not foresee all necessary information related to resource design. Here we argue the need to use different data and knowledge models to improve understanding the complex processes related to e-learning resources and their management. This paper presents the use of semantic web technologies, as ontologies, supporting the search and selection of resources used in design. Classification is done, based on instructional criteria derived from a knowledge acquisition process, using information provided by IEEE-LOM metadata standard. The knowledge obtained is represented in an ontology using OWL and SWRL. In this work we give evidence of the implementation of a Learning Object Classifier based on ontology. We demonstrate that the use of ontologies can support the design activities in e-learning.

  15. A Bayesian Network Approach to Ontology Mapping

    National Research Council Canada - National Science Library

    Pan, Rong; Ding, Zhongli; Yu, Yang; Peng, Yun

    2005-01-01

    This paper presents our ongoing effort on developing a principled methodology for automatic ontology mapping based on BayesOWL, a probabilistic framework we developed for modeling uncertainty in semantic web...

  16. Language and embodied consciousness: A Peircean ontological ...

    African Journals Online (AJOL)

    An ontology of language: its source and place in First Language ... knowledge they supposedly gain in school with their immediate environment and their lived .... looking stick in space looks bent at the point it enters the medium of water.

  17. Making methodology a matter of process ontology

    DEFF Research Database (Denmark)

    Revsbæk, Line

    2016-01-01

    This paper presents a practice of doing qualitative interview analysis from the insights of the process ontology in G. H. Mead’s Philosophy of the Present (1932). The paper presents two cases of analyzing in the present while listening to recorded interview material eliciting researcher’s case...... study and otherwise related experiences creating case narratives inclusive of researcher’s reflexive voice. The paper presents an auto-ethnographic approach to data analysis based on process theory ontology....

  18. On the ontological emergence from quantum regime

    Energy Technology Data Exchange (ETDEWEB)

    Luty, Damian [Adam Mickiewicz University, Poznan (Poland)

    2014-07-01

    There are several views on the relation between quantum physics and theory of relativity (especially General Relativity, GR). A popular perspective is this: GR with its macroscopic gravitational effects will turn out to be a limit of a more fundamental theory which should consider discrete physics and not deal with continuity (like theory of relativity). Thus, GR will emerge from a more basic theory, which should be quantum-like. One could call this an epistemic emergence view towards fundamental theories. The question is, given that scientific realism is valid: should emergence be a fundamental notion in our ontological view about the evolving, physical Universe? Is there an ontological emergence fully compatible with the notion of fundamentality? I argue that if we want to defend ontological emergence (from quantum to macroscopic regime) as something fundamental, we