WorldWideScience

Sample records for integrating microwave imaging

  1. Microwave imaging

    CERN Document Server

    Pastorino, Matteo

    2010-01-01

    An introduction to the most relevant theoretical and algorithmic aspects of modern microwave imaging approaches Microwave imaging-a technique used in sensing a given scene by means of interrogating microwaves-has recently proven its usefulness in providing excellent diagnostic capabilities in several areas, including civil and industrial engineering, nondestructive testing and evaluation, geophysical prospecting, and biomedical engineering. Microwave Imaging offers comprehensive descriptions of the most important techniques so far proposed for short-range microwave imaging-in

  2. Microwave Breast Imaging System Prototype with Integrated Numerical Characterization

    Directory of Open Access Journals (Sweden)

    Mark Haynes

    2012-01-01

    Full Text Available The increasing number of experimental microwave breast imaging systems and the need to properly model them have motivated our development of an integrated numerical characterization technique. We use Ansoft HFSS and a formalism we developed previously to numerically characterize an S-parameter- based breast imaging system and link it to an inverse scattering algorithm. We show successful reconstructions of simple test objects using synthetic and experimental data. We demonstrate the sensitivity of image reconstructions to knowledge of the background dielectric properties and show the limits of the current model.

  3. Development of local oscillator integrated antenna array for microwave imaging diagnostics

    International Nuclear Information System (INIS)

    Kuwahara, D.; Shinohara, S.; Ito, N.; Nagayama, Y.; Tsuchiya, H.; Yoshikawa, M.; Kohagura, J.; Yoshinaga, T.; Yamaguchi, S.; Kogi, Y.; Mase, A.

    2015-01-01

    Microwave imaging diagnostics are powerful tools that are used to obtain details of complex structures and behaviors of such systems as magnetically confined plasmas. For example, microwave imaging reflectometry and microwave imaging interferometers are suitable for observing phenomena that are involved with electron density fluctuations; moreover, electron cyclotron emission imaging diagnostics enable us to accomplish the significant task of observing MHD instabilities in large tokamaks. However, microwave imaging systems include difficulties in terms of multi-channelization and cost. Recently, we solved these problems by developing a Horn-antenna Mixer Array (HMA), a 50 - 110 GHz 1-D heterodyne- type antenna array, which can be easily stacked as a 2-D receiving array, because it uses an end-fire element. However, the HMA still evidenced problems owing to the requirement for local oscillation (LO) optics and an expensive high-power LO source. To solve this problem, we have developed an upgraded HMA, named the Local Integrated Antenna array (LIA), in which each channel has an internal LO supply using a frequency multiplier integrated circuit. Therefore, the proposed antenna array eliminates the need for both the LO optics and the high-power LO source. This paper describes the principle of the LIA, and provides details about an 8 channel prototype LIA

  4. Microwave Breast Imaging Techniques

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, Tonny

    2010-01-01

    This paper outlines the applicability of microwave radiation for breast cancer detection. Microwave imaging systems are categorized based on their hardware architecture. The advantages and disadvantages of various imaging techniques are discussed. The fundamental tradeoffs are indicated between...... various requirements to be fulfilled in the design of an imaging system for breast cancer detection and some strategies to overcome these limitations....

  5. Integrated Microwave Photonics

    OpenAIRE

    Marpaung, David; Roeloffzen, Chris; Heideman, René; Leinse, Arne; Sales Maicas, Salvador; Capmany Francoy, José

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A particular aspect that recently gains significant interests is the use of photonic integrated circuit (PIC) technology in the MWP field for enhanced functionalities and robustness as well as the r...

  6. Investigation of the use of microwave image line integrated circuits for use in radiometers and other microwave devices in X-band and above

    Science.gov (United States)

    Knox, R. M.; Toulios, P. P.; Onoda, G. Y.

    1972-01-01

    Program results are described in which the use of a/high permittivity rectangular dielectric image waveguide has been investigated for use in microwave and millimeter wavelength circuits. Launchers from rectangular metal waveguide to image waveguide are described. Theoretical and experimental evaluations of the radiation from curved image waveguides are given. Measurements of attenuation due to conductor and dielectric losses, adhesives, and gaps between the dielectric waveguide and the image plane are included. Various passive components are described and evaluations given. Investigations of various techniques for fabrication of image waveguide circuits using ceramic waveguides are also presented. Program results support the evaluation of the image line approach as an advantageous method for realizing low loss integrated electronic circuits for X-band and above.

  7. Advances on integrated microwave photonics

    DEFF Research Database (Denmark)

    Dong, Jianji; Liao, Shasha; Yan, Siqi

    2017-01-01

    Integrated microwave photonics has attracted a lot of attentions and makes significant improvement in last 10 years. We have proposed and demonstrated several schemes about microwave photonics including waveform generation, signal processing and energy-efficient micro-heaters. Our schemes are all...

  8. Integrated microwave photonics

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.; Heideman, Rene; Leinse, Arne; Sales, S.; Capmany, J.

    2013-01-01

    Microwave photonics (MWP) is an emerging field in which radio frequency (RF) signals are generated, distributed, processed and analyzed using the strength of photonic techniques. It is a technology that enables various functionalities which are not feasible to achieve only in the microwave domain. A

  9. Multimodal sensing and imaging technology by integrated scanning electron, force, and nearfield microwave microscopy and its application to submicrometer studies

    OpenAIRE

    Hänßler, Olaf C.

    2018-01-01

    The work covers a multimodal microscope technology for the analysis, manipulation and transfer of materials and objects in the submicrometer range. An atomic force microscope (AFM) allows imaging of the surface topography and a Scanning Microwave Microscope (SMM) detects electromagnetic properties, both operating in a Scanning Electron Microscope (SEM). The described technology demonstrator allows to observe the region-of-interest live with the SEM, while at the same time a characterization w...

  10. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  11. Handheld microwave bomb-detecting imaging system

    Science.gov (United States)

    Gorwara, Ashok; Molchanov, Pavlo

    2017-05-01

    Proposed novel imaging technique will provide all weather high-resolution imaging and recognition capability for RF/Microwave signals with good penetration through highly scattered media: fog, snow, dust, smoke, even foliage, camouflage, walls and ground. Image resolution in proposed imaging system is not limited by diffraction and will be determined by processor and sampling frequency. Proposed imaging system can simultaneously cover wide field of view, detect multiple targets and can be multi-frequency, multi-function. Directional antennas in imaging system can be close positioned and installed in cell phone size handheld device, on small aircraft or distributed around protected border or object. Non-scanning monopulse system allows dramatically decrease in transmitting power and at the same time provides increased imaging range by integrating 2-3 orders more signals than regular scanning imaging systems.

  12. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  13. Microwave Imaging Reflectometer for TEXTOR

    International Nuclear Information System (INIS)

    T. Munsat; E. Mazzucato; H. Park; B.H. Deng; C.W. Domier; N.C. Luhmann, Jr.; J. Wang; Z.G. Xia; A.J.H. Donne; and M. van de Pol

    2002-01-01

    Understanding the behavior of fluctuations in magnetically confined plasmas is essential to the advancement of turbulence-based transport physics. Though microwave reflectometry has proven to be an extremely useful and sensitive tool for measuring small density fluctuations in some circumstances, this technique has been shown to have limited viability for large amplitude, high kq fluctuations and/or core measurements. To this end, a new instrument based on 2-D imaging reflectometry has been developed to measure density fluctuations over an extended plasma region in the TEXTOR tokamak. This technique is made possible by collecting an extended spectrum of reflected waves with large-aperture imaging optics. Details of the imaging reflectometry concept, as well as technical details of the TEXTOR instrument will be presented. Data from roof-of-principle experiments on TEXTOR using a prototype system is presented, as well as results from a systematic off-line study of the advantages and limitations of the imaging reflectometer

  14. A Synthesizable Multicore Platform for Microwave Imaging

    DEFF Research Database (Denmark)

    Schleuniger, Pascal; Karlsson, Sven

    2014-01-01

    Active microwave imaging techniques such as radar and tomography are used in a wide range of medical, industrial, scientific, and military applications. Microwave imaging devices emit radio waves and process their reflections to reconstruct an image. However, data processing remains a challenge...

  15. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  16. A new integrated microwave SQUID circuit design

    International Nuclear Information System (INIS)

    Erne, S.N.; Finnegan, T.F.

    1980-01-01

    In this paper we consider the design and operation of a planar thin-film rf-SQUID circuit which can be realized via microwave-integrated-circuit (MIC) techniques and which differs substantially from pervious microwave SQUID configurations involving either mechanical point-contact or cylindrical thin-film micro-bridge geometries. (orig.)

  17. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  18. Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Fhager, Andreas; Jensen, Peter Damsgaard

    2011-01-01

    Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity and condu......Still more research groups are promoting microwave imaging as a viable supplement or substitution to more conventional imaging modalities. A widespread approach for microwave imaging of the breast is tomographic imaging in which one seeks to reconstruct the distributions of permittivity...... and conductivity in the breast. In this paper two nonlinear tomographic algorithms are compared – one is a single-frequency algorithm and the other is a time-domain algorithm....

  19. A monolithic integrated photonic microwave filter

    Science.gov (United States)

    Fandiño, Javier S.; Muñoz, Pascual; Doménech, David; Capmany, José

    2017-02-01

    Meeting the increasing demand for capacity in wireless networks requires the harnessing of higher regions in the radiofrequency spectrum, reducing cell size, as well as more compact, agile and power-efficient base stations that are capable of smoothly interfacing the radio and fibre segments. Fully functional microwave photonic chips are promising candidates in attempts to meet these goals. In recent years, many integrated microwave photonic chips have been reported in different technologies. To the best of our knowledge, none has monolithically integrated all the main active and passive optoelectronic components. Here, we report the first demonstration of a tunable microwave photonics filter that is monolithically integrated into an indium phosphide chip. The reconfigurable radiofrequency photonic filter includes all the necessary elements (for example, lasers, modulators and photodetectors), and its response can be tuned by means of control electric currents. This is an important step in demonstrating the feasibility of integrated and programmable microwave photonic processors.

  20. 3-Dimensional Iterative Forward Model for Microwave Imaging

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter

    2006-01-01

    The efficient solution of a forward scattering problem is the key point in nonlinear inversion schemes associated with microwave imaging. In this paper the solution is presented for the volume integral equation based on the method of moments (MoM) and accelerated with the adaptive integral method...

  1. Microwave integrated circuit for Josephson voltage standards

    Science.gov (United States)

    Holdeman, L. B.; Toots, J.; Chang, C. C. (Inventor)

    1980-01-01

    A microwave integrated circuit comprised of one or more Josephson junctions and short sections of microstrip or stripline transmission line is fabricated from thin layers of superconducting metal on a dielectric substrate. The short sections of transmission are combined to form the elements of the circuit and particularly, two microwave resonators. The Josephson junctions are located between the resonators and the impedance of the Josephson junctions forms part of the circuitry that couples the two resonators. The microwave integrated circuit has an application in Josephson voltage standards. In this application, the device is asymmetrically driven at a selected frequency (approximately equal to the resonance frequency of the resonators), and a d.c. bias is applied to the junction. By observing the current voltage characteristic of the junction, a precise voltage, proportional to the frequency of the microwave drive signal, is obtained.

  2. Microfabricated Microwave-Integrated Surface Ion Trap

    Science.gov (United States)

    Revelle, Melissa C.; Blain, Matthew G.; Haltli, Raymond A.; Hollowell, Andrew E.; Nordquist, Christopher D.; Maunz, Peter

    2017-04-01

    Quantum information processing holds the key to solving computational problems that are intractable with classical computers. Trapped ions are a physical realization of a quantum information system in which qubits are encoded in hyperfine energy states. Coupling the qubit states to ion motion, as needed for two-qubit gates, is typically accomplished using Raman laser beams. Alternatively, this coupling can be achieved with strong microwave gradient fields. While microwave radiation is easier to control than a laser, it is challenging to precisely engineer the radiated microwave field. Taking advantage of Sandia's microfabrication techniques, we created a surface ion trap with integrated microwave electrodes with sub-wavelength dimensions. This multi-layered device permits co-location of the microwave antennae and the ion trap electrodes to create localized microwave gradient fields and necessary trapping fields. Here, we characterize the trap design and present simulated microwave performance with progress towards experimental results. This research was funded, in part, by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA).

  3. TRMM MICROWAVE IMAGER (TMI) WENTZ OCEAN PRODUCTS V3

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) is a 5-channel, dual-polarized, passive microwave radiometer. Microwave radiation is emitted by the Earth's surface and by water...

  4. Microwave Imaging Using CMOS Integrated Circuits with Rotating 4 × 4 Antenna Array on a Breast Phantom

    Directory of Open Access Journals (Sweden)

    Hang Song

    2017-01-01

    Full Text Available A digital breast cancer detection system using 65 nm technology complementary metal oxide semiconductor (CMOS integrated circuits with rotating 4 × 4 antenna array is presented. Gaussian monocycle pulses are generated by CMOS logic circuits and transmitted by a 4 × 4 matrix antenna array via two CMOS single-pole-eight-throw (SP8T switching matrices. Radar signals are received and converted to digital signals by CMOS equivalent time sampling circuits. By rotating the 4 × 4 antenna array, the reference signal is obtained by averaging the waveforms from various positions to extract the breast phantom target response. A signal alignment algorithm is proposed to compensate the phase shift of the signals caused by the system jitter. After extracting the scattered signal from the target, a bandpass filter is applied to reduce the noise caused by imperfect subtraction between original and the reference signals. The confocal imaging algorithm for rotating antennas is utilized to reconstruct the breast image. A 1 cm3 bacon block as a cancer phantom target in a rubber substrate as a breast fat phantom can be detected with reduced artifacts.

  5. Package Holds Five Monolithic Microwave Integrated Circuits

    Science.gov (United States)

    Mysoor, Narayan R.; Decker, D. Richard; Olson, Hilding M.

    1996-01-01

    Packages protect and hold monolithic microwave integrated circuit (MMIC) chips while providing dc and radio-frequency (RF) electrical connections for chips undergoing development. Required to be compact, lightweight, and rugged. Designed to minimize undesired resonances, reflections, losses, and impedance mismatches.

  6. Microwave SQUID multiplexer demonstration for cosmic microwave background imagers

    Science.gov (United States)

    Dober, B.; Becker, D. T.; Bennett, D. A.; Bryan, S. A.; Duff, S. M.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Hubmayr, J.; Mates, J. A. B.; Reintsema, C. D.; Vale, L. R.; Ullom, J. N.

    2017-12-01

    Key performance characteristics are demonstrated for the microwave superconducting quantum interference device (SQUID) multiplexer (μmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the μmux produces a white, input referred current noise level of 29 pA/ √{H z } at a microwave probe tone power of -77 dB, which is well below the expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure 98 pA/ √{H z } in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e., phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ˜100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the μmux as a viable readout technique for future CMB imaging instruments.

  7. Microwave SQUID Multiplexer Demonstration for Cosmic Microwave Background Imagers.

    Science.gov (United States)

    Dober, B; Becker, D T; Bennett, D A; Bryan, S A; Duff, S M; Gard, J D; Hays-Wehle, J P; Hilton, G C; Hubmayr, J; Mates, J A B; Reintsema, C D; Vale, L R; Ullom, J N

    2017-12-01

    Key performance characteristics are demonstrated for the microwave SQUID multiplexer (µmux) coupled to transition edge sensor (TES) bolometers that have been optimized for cosmic microwave background (CMB) observations. In a 64-channel demonstration, we show that the µmux produces a white, input referred current noise level of [Formula: see text] at -77 dB microwave probe tone power, which is well below expected fundamental detector and photon noise sources for a ground-based CMB-optimized bolometer. Operated with negligible photon loading, we measure [Formula: see text] in the TES-coupled channels biased at 65% of the sensor normal resistance. This noise level is consistent with that predicted from bolometer thermal fluctuation (i.e. phonon) noise. Furthermore, the power spectral density is white over a range of frequencies down to ~ 100 mHz, which enables CMB mapping on large angular scales that constrain the physics of inflation. Additionally, we report cross-talk measurements that indicate a level below 0.3%, which is less than the level of cross-talk from multiplexed readout systems in deployed CMB imagers. These measurements demonstrate the µmux as a viable readout technique for future CMB imaging instruments.

  8. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object

  9. Monolithic microwave integrated circuit with integral array antenna

    International Nuclear Information System (INIS)

    Stockton, R.J.; Munson, R.E.

    1984-01-01

    A monolithic microwave integrated circuit including an integral array antenna. The system includes radiating elements, feed network, phasing network, active and/or passive semiconductor devices, digital logic interface circuits and a microcomputer controller simultaneously incorporated on a single substrate by means of a controlled fabrication process sequence

  10. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  11. Microwave Imaging of Human Forearms: Pilot Study and Image Enhancement

    Directory of Open Access Journals (Sweden)

    Colin Gilmore

    2013-01-01

    Full Text Available We present a pilot study using a microwave tomography system in which we image the forearms of 5 adult male and female volunteers between the ages of 30 and 48. Microwave scattering data were collected at 0.8 to 1.2 GHz with 24 transmitting and receiving antennas located in a matching fluid of deionized water and table salt. Inversion of the microwave data was performed with a balanced version of the multiplicative-regularized contrast source inversion algorithm formulated using the finite-element method (FEM-CSI. T1-weighted MRI images of each volunteer’s forearm were also collected in the same plane as the microwave scattering experiment. Initial “blind” imaging results from the utilized inversion algorithm show that the image quality is dependent on the thickness of the arm’s peripheral adipose tissue layer; thicker layers of adipose tissue lead to poorer overall image quality. Due to the exible nature of the FEM-CSI algorithm used, prior information can be readily incorporated into the microwave imaging inversion process. We show that by introducing prior information into the FEM-CSI algorithm the internal anatomical features of all the arms are resolved, significantly improving the images. The prior information was estimated manually from the blind inversions using an ad hoc procedure.

  12. Microwaves integrated circuits: hybrids and monolithics - fabrication technology

    International Nuclear Information System (INIS)

    Cunha Pinto, J.K. da

    1983-01-01

    Several types of microwave integrated circuits are presented together with comments about technologies and fabrication processes; advantages and disadvantages in their utilization are analysed. Basic structures, propagation modes, materials used and major steps in the construction of hybrid thin film and monolithic microwave integrated circuits are described. Important technological applications are revised and main activities of the microelectronics lab. of the University of Sao Paulo (Brazil) in the field of hybrid and monolithic microwave integrated circuits are summarized. (C.L.B.) [pt

  13. Testing Fixture For Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, Robert; Shalkhauser, Kurt

    1989-01-01

    Testing fixture facilitates radio-frequency characterization of microwave and millimeter-wave integrated circuits. Includes base onto which two cosine-tapered ridge waveguide-to-microstrip transitions fastened. Length and profile of taper determined analytically to provide maximum bandwidth and minimum insertion loss. Each cosine taper provides transformation from high impedance of waveguide to characteristic impedance of microstrip. Used in conjunction with automatic network analyzer to provide user with deembedded scattering parameters of device under test. Operates from 26.5 to 40.0 GHz, but operation extends to much higher frequencies.

  14. Model-based microwave image reconstruction: simulations and experiments

    International Nuclear Information System (INIS)

    Ciocan, Razvan; Jiang Huabei

    2004-01-01

    We describe an integrated microwave imaging system that can provide spatial maps of dielectric properties of heterogeneous media with tomographically collected data. The hardware system (800-1200 MHz) was built based on a lock-in amplifier with 16 fixed antennas. The reconstruction algorithm was implemented using a Newton iterative method with combined Marquardt-Tikhonov regularizations. System performance was evaluated using heterogeneous media mimicking human breast tissue. Finite element method coupled with the Bayliss and Turkel radiation boundary conditions were applied to compute the electric field distribution in the heterogeneous media of interest. The results show that inclusions embedded in a 76-diameter background medium can be quantitatively reconstructed from both simulated and experimental data. Quantitative analysis of the microwave images obtained suggests that an inclusion of 14 mm in diameter is the smallest object that can be fully characterized presently using experimental data, while objects as small as 10 mm in diameter can be quantitatively resolved with simulated data

  15. Dynamic metamaterial aperture for microwave imaging

    International Nuclear Information System (INIS)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R.

    2015-01-01

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture

  16. Dynamic metamaterial aperture for microwave imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sleasman, Timothy; Imani, Mohammadreza F.; Gollub, Jonah N.; Smith, David R. [Center for Metamaterials and Integrated Plasmonics, Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina, 27708 (United States)

    2015-11-16

    We present a dynamic metamaterial aperture for use in computational imaging schemes at microwave frequencies. The aperture consists of an array of complementary, resonant metamaterial elements patterned into the upper conductor of a microstrip line. Each metamaterial element contains two diodes connected to an external control circuit such that the resonance of the metamaterial element can be damped by application of a bias voltage. Through applying different voltages to the control circuit, select subsets of the elements can be switched on to create unique radiation patterns that illuminate the scene. Spatial information of an imaging domain can thus be encoded onto this set of radiation patterns, or measurements, which can be processed to reconstruct the targets in the scene using compressive sensing algorithms. We discuss the design and operation of a metamaterial imaging system and demonstrate reconstructed images with a 10:1 compression ratio. Dynamic metamaterial apertures can potentially be of benefit in microwave or millimeter wave systems such as those used in security screening and through-wall imaging. In addition, feature-specific or adaptive imaging can be facilitated through the use of the dynamic aperture.

  17. Prototype of Microwave Imaging System for Breast-Cancer Screening

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2009-01-01

    Microwave imaging for breast-cancer detection has received the attention of a large number of research groups in the last decade. In this paper, the imaging system currently being developed at the Technical university of Denmark is presented. This includes a description of the antenna system......, the microwave hardware, and the imaging algorithm....

  18. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  19. AMISS - Active and passive MIcrowaves for Security and Subsurface imaging

    Science.gov (United States)

    Soldovieri, Francesco; Slob, Evert; Turk, Ahmet Serdar; Crocco, Lorenzo; Catapano, Ilaria; Di Matteo, Francesca

    2013-04-01

    The FP7-IRSES project AMISS - Active and passive MIcrowaves for Security and Subsurface imaging is based on a well-combined network among research institutions of EU, Associate and Third Countries (National Research Council of Italy - Italy, Technische Universiteit Delft - The Netherlands, Yildiz Technical University - Turkey, Bauman Moscow State Technical University - Russia, Usikov Institute for Radio-physics and Electronics and State Research Centre of Superconductive Radioelectronics "Iceberg" - Ukraine and University of Sao Paulo - Brazil) with the aims of achieving scientific advances in the framework of microwave and millimeter imaging systems and techniques for security and safety social issues. In particular, the involved partners are leaders in the scientific areas of passive and active imaging and are sharing their complementary knowledge to address two main research lines. The first one regards the design, characterization and performance evaluation of new passive and active microwave devices, sensors and measurement set-ups able to mitigate clutter and increase information content. The second line faces the requirements to make State-of-the-Art processing tools compliant with the instrumentations developed in the first line, suitable to work in electromagnetically complex scenarios and able to exploit the unexplored possibilities offered by new instrumentations. The main goals of the project are: 1) Development/improvement and characterization of new sensors and systems for active and passive microwave imaging; 2) Set up, analysis and validation of state of art/novel data processing approach for GPR in critical infrastructure and subsurface imaging; 3) Integration of state of art and novel imaging hardware and characterization approaches to tackle realistic situations in security, safety and subsurface prospecting applications; 4) Development and feasibility study of bio-radar technology (system and data processing) for vital signs detection and

  20. Assessment and Development of Microwave Imaging for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard

    At the Technical University of Denmark (DTU), a 3D tomographic microwave imaging system is currently being developed with the aim of using nonlinear microwave imaging for breast-cancer detection. The imaging algorithm used in the system is based on an iterative Newton-type scheme. In this algorithm...... used in the microwave tomographic imaging system is presented. Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels....... This implies that special care must be taken when the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might...

  1. Microwave impedance imaging on semiconductor memory devices

    Science.gov (United States)

    Kundhikanjana, Worasom; Lai, Keji; Yang, Yongliang; Kelly, Michael; Shen, Zhi-Xun

    2011-03-01

    Microwave impedance microscopy (MIM) maps out the real and imaginary components of the tip-sample impedance, from which the local conductivity and dielectric constant distribution can be derived. The stray field contribution is minimized in our shielded cantilever design, enabling quantitative analysis of nano-materials and device structures. We demonstrate here that the MIM can spatially resolve the conductivity variation in a dynamic random access memory (DRAM) sample. With DC or low-frequency AC bias applied to the tip, contrast between n-doped and p-doped regions in the dC/dV images is observed, and p-n junctions are highlighted in the dR/dV images. The results can be directly compared with data taken by scanning capacitance microscope (SCM), which uses unshielded cantilevers and resonant electronics, and the MIM reveals more information of the local dopant concentration than SCM.

  2. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Sounding Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains temperature and humidity profiles from the NOAA Microwave Integrated Retrieval System (MIRS) using sensor data from the Advanced Technology...

  3. DMSP SSM/I- Microwave Imager

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/I is a seven-channel, four frequency, linearly-polarized, passive microwave radiometric system which measures atmospheric, ocean and terrain microwave...

  4. Microwave integrated circuit mask design, using computer aided microfilm techniques

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, J.M.; Batliwala, E.R.; Ajose, S.O.

    1977-01-01

    This paper examines the possibility of using a computer interfaced with a precision film C.R.T. information retrieval system, to produce photomasks suitable for the production of microwave integrated circuits.

  5. A Microwave Photonic Interference Canceller: Architectures, Systems, and Integration

    Science.gov (United States)

    Chang, Matthew P.

    This thesis is a comprehensive portfolio of work on a Microwave Photonic Self-Interference Canceller (MPC), a specialized optical system designed to eliminate interference from radio-frequency (RF) receivers. The novelty and value of the microwave photonic system lies in its ability to operate over bandwidths and frequencies that are orders of magnitude larger than what is possible using existing RF technology. The work begins, in 2012, with a discrete fiber-optic microwave photonic canceller, which prior work had demonstrated as a proof-of-concept, and culminates, in 2017, with the first ever monolithically integrated microwave photonic canceller. With an eye towards practical implementation, the thesis establishes novelty through three major project thrusts. (Fig. 1): (1) Extensive RF and system analysis to develop a full understanding of how, and through what mechanisms, MPCs affect an RF receiver. The first investigations of how a microwave photonic canceller performs in an actual wireless environment and a digital radio are also presented. (2) New architectures to improve the performance and functionality of MPCs, based on the analysis performed in Thrust 1. A novel balanced microwave photonic canceller architecture is developed and experimentally demonstrated. The balanced architecture shows significant improvements in link gain, noise figure, and dynamic range. Its main advantage is its ability to suppress common-mode noise and reduce noise figure by increasing the optical power. (3) Monolithic integration of the microwave photonic canceller into a photonic integrated circuit. This thrust presents the progression of integrating individual discrete devices into their semiconductor equivalent, as well as a full functional and RF analysis of the first ever integrated microwave photonic canceller.

  6. Microwave Photonic Imaging Radiometer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Passive Microwave Remote Sensing is currently utilized by NASA, NOAA, and USGIS to conduct Earth Science missions, including weather forecasting, early warning...

  7. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    1984-01-01

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  8. Monolithic microwave integrated circuits: Interconnections and packaging considerations

    Science.gov (United States)

    Bhasin, K. B.; Downey, A. N.; Ponchak, G. E.; Romanofsky, R. R.; Anzic, G.; Connolly, D. J.

    Monolithic microwave integrated circuits (MMIC's) above 18 GHz were developed because of important potential system benefits in cost reliability, reproducibility, and control of circuit parameters. The importance of interconnection and packaging techniques that do not compromise these MMIC virtues is emphasized. Currently available microwave transmission media are evaluated to determine their suitability for MMIC interconnections. An antipodal finline type of microstrip waveguide transition's performance is presented. Packaging requirements for MMIC's are discussed for thermal, mechanical, and electrical parameters for optimum desired performance.

  9. A Fast Forward Electromagnetic Solver for Microwave Imaging

    DEFF Research Database (Denmark)

    Chaber, Bartosz; Mohr, Johan Jacob

    2015-01-01

    This paper describes an efficient model of an antenna system for microwave imaging. The authors present techniques employed in the process of preparation of this model, as well as an accuracy comparison with the working prototype system....

  10. RF Testing Of Microwave Integrated Circuits

    Science.gov (United States)

    Romanofsky, R. R.; Ponchak, G. E.; Shalkhauser, K. A.; Bhasin, K. B.

    1988-01-01

    Fixtures and techniques are undergoing development. Four test fixtures and two advanced techniques developed in continuing efforts to improve RF characterization of MMIC's. Finline/waveguide test fixture developed to test submodules of 30-GHz monolithic receiver. Universal commercially-manufactured coaxial test fixture modified to enable characterization of various microwave solid-state devices in frequency range of 26.5 to 40 GHz. Probe/waveguide fixture is compact, simple, and designed for non destructive testing of large number of MMIC's. Nondestructive-testing fixture includes cosine-tapered ridge, to match impedance wavequide to microstrip. Advanced technique is microwave-wafer probing. Second advanced technique is electro-optical sampling.

  11. Integrated microwave photonics for phase modulated systems

    NARCIS (Netherlands)

    Marpaung, D.A.I.; Roeloffzen, C.G.H.

    2012-01-01

    For the last 25 years, microwave photonic (MWP) systems and links have relied almost exclusively on discrete optoelectronic devices, standard optical fibers and fiber-based components. With this concept, various functionalities like RF signal generation, distribution, processing and analysis have

  12. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B., E-mail: bjtobias@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y. [University of California at Davis, Davis, California 95616 (United States)

    2016-11-15

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50–150 GHz) to an intermediate frequency (IF) band (e.g. 0.1–18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  13. Photonics-Based Microwave Image-Reject Mixer

    Directory of Open Access Journals (Sweden)

    Dan Zhu

    2018-03-01

    Full Text Available Recent developments in photonics-based microwave image-reject mixers (IRMs are reviewed with an emphasis on the pre-filtering method, which applies an optical or electrical filter to remove the undesired image, and the phase cancellation method, which is realized by introducing an additional phase to the converted image and cancelling it through coherent combination without phase shift. Applications of photonics-based microwave IRM in electronic warfare, radar systems and satellite payloads are described. The inherent challenges of implementing photonics-based microwave IRM to meet specific requirements of the radio frequency (RF system are discussed. Developmental trends of the photonics-based microwave IRM are also discussed.

  14. Microwave Inspection Nondestructive Imaging Array, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA need for advanced NDE sensor technologies for structural materials, Physical Optics Corporation (POC) proposes to develop a new Microwave...

  15. An introduction to microwave imaging for breast cancer detection

    CERN Document Server

    Conceição, Raquel Cruz; O'Halloran, Martin

    2016-01-01

    This book collates past and current research on one of the most promising emerging modalities for breast cancer detection. Readers will discover how, as a standalone technology or in conjunction with another modality, microwave imaging has the potential to provide reliable, safe and comfortable breast exams at low cost. Current breast imaging modalities include X- ray, Ultrasound, Magnetic Resonance Imaging, and Positron Emission Tomography. Each of these methods suffers from limitations, including poor sensitivity or specificity, high cost, patient discomfort, and exposure to potentially harmful ionising radiation. Microwave breast imaging is based on a contrast in the dielectric properties of breast tissue that exists at microwave frequencies. The book begins by considering the anatomy and dielectric properties of the breast, contrasting historical and recent studies. Next, radar-based breast imaging algorithms are discussed, encompassing both early-stage artefact removal, and data independent and adaptive ...

  16. A model for atmospheric brightness temperatures observed by the special sensor microwave imager (SSM/I)

    Science.gov (United States)

    Petty, Grant W.; Katsaros, Kristina B.

    1989-01-01

    A closed-form mathematical model for the atmospheric contribution to microwave the absorption and emission at the SSM/I frequencies is developed in order to improve quantitative interpretation of microwave imagery from the Special Sensor Microwave Imager (SSM/I). The model is intended to accurately predict upwelling and downwelling atmospheric brightness temperatures at SSM/I frequencies, as functions of eight input parameters: the zenith (nadir) angle, the integrated water vapor and vapor scale height, the integrated cloud water and cloud height, the effective surface temperature, atmospheric lapse rate, and surface pressure. It is shown that the model accurately reproduces clear-sky brightness temperatures computed by explicit integration of a large number of radiosonde soundings representing all maritime climate zones and seasons.

  17. Utilization of multiple frequencies in 3D nonlinear microwave imaging

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2012-01-01

    The use of multiple frequencies in a nonlinear microwave algorithm is considered. Using multiple frequencies allows for obtaining the improved resolution available at the higher frequencies while retaining the regularizing effects of the lower frequencies. However, a number of different challenges...... at lower frequencies are used as starting guesses for reconstructions at higher frequencies. The performance is illustrated using simulated 2-D data and data obtained with the 3-D DTU microwave imaging system....

  18. A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit technology

    International Nuclear Information System (INIS)

    Wang, De-bo; Liao, Xiao-ping

    2009-01-01

    A novel symmetrical microwave power sensor based on GaAs monolithic microwave integrated circuit (MMIC) technology is presented in this paper. In this power sensor, the left section inputs the microwave power, while the right section inputs the dc power. Because of the symmetrical structure, this power sensor is created to provide more accurate microwave power measurement capability without mismatch uncertainty and restrain temperature drift. The loss model is built and the loss voltage is 0.8 mV at 20 GHz when the input power is 100 mW. This power sensor is designed and fabricated using GaAs MMIC technology. And it is measured in the frequency range up to 20 GHz with the input power in the −20 dBm to 19 dBm range. Over the 19 dBm dynamic range, the sensitivity can achieve about 0.2 mV mW −1 . The difference between the input powers in the two sections is below 0.1% for equal output voltages. For an amplitude modulation measurement, the carrier frequency is the main factor to influence the measurement results. In short, the key aspect of this power sensor is that the microwave power measurement can be replaced by a dc power measurement with precise wideband

  19. Heterogeneously Integrated Microwave Signal Generators with Narrow Linewidth Lasers

    Science.gov (United States)

    2017-03-20

    have shown that heterogeneous integration not only allows for a reduced cost due to economy of scale, but also allows for same or even better...advantage of introducing SOAs for microwave generator is the control and boosting of optical power before the detector providing higher RF powers. A

  20. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  1. Integration of semiconductor and ceramic superconductor devices for microwave applications

    International Nuclear Information System (INIS)

    Klopman, B.B.G.; Weijers, H.W.; Gao, J.; Gerritsma, G.J.; Rogalla, H.

    1991-01-01

    Due to the very low-loss properties of ceramic superconductors high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature, facilitates the integration with semiconductor devices. Examples are bandpass amplifiers, microwave-operated SQUIDs combined with GaAs preamplifiers, detectors, and MOSFET low-frequency amplifiers. This paper discusses the design of such circuits on a single one inch alumina substrate using surface mount techniques. Furthermore data on circuits that have been realized in our laboratory will be presented

  2. Microwave imaging for plasma diagnostics and its applications

    International Nuclear Information System (INIS)

    Mase, A.; Kogi, Y.; Ito, N.

    2007-01-01

    Microwave to millimeter-wave diagnostic techniques such as interferometry, reflectometry, scattering, and radiometry have been powerful tools for diagnosing magnetically confined plasmas. Important plasma parameters were measured to clarify the physics issues such as stability, wave phenomena, and fluctuation-induced transport. Recent advances in microwave and millimeter-wave technology together with computer technology have enabled the development of advanced diagnostics for visualization of 2D and 3D structures of plasmas. Microwave/millimeter-wave imaging is expected to be one of the most promising diagnostic methods for this purpose. We report here on the representative microwave diagnostics and their industrial applications as well as application to magnetically-confined plasmas. (author)

  3. 125-GHz Microwave Signal Generation Employing an Integrated Pulse Shaper

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Dong, Jianji

    2017-01-01

    We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...... of the generated microwave waveforms is larger than 100 GHz, and it has wide bandwidth when changing the time delay of the adjacent taps and compactness, capability for integration with electronics and small power consumption are also its merits.......We propose and experimentally demonstrate an on-chip pulse shaper for 125-GHz microwave waveform generation. The pulse shaper is implemented based on a silicon-on-insulator (SOI) platform that has a structure with eight-tap finite impulse response (FIR) and there is an amplitude modulator on each...

  4. Evaluation of the imaging properties of Microwave Imaging Reflectometry

    International Nuclear Information System (INIS)

    Hong, I; Lee, W; Leem, J; Nam, Y; Kim, M; Yun, G S; Park, H K; Domier, C W; Jr, N C Luhmann

    2012-01-01

    Microwave Imaging Reflectometry (MIR) has been developed for unambiguous measurement of electron density fluctuations in fusion plasmas. The loss of phase information limiting the use of conventional reflectometry can be minimized by a large aperture imaging optics and an array of detectors in the MIR embodiment. The evaluation of the optical system is critical for precise reconstruction of the fluctuations. The optical systems of the prototype TEXTOR MIR [2] and newly-designed KSTAR MIR [5] systems have been tested with a corrugated target simulating density fluctuations at the cut-off surface. The reconstructed phase from the MIR system has been compared to the directly measured phase of corrugations taking into account the rotational speed of the target. The effects of optical aberrations and interference between lenses on the phase reconstruction have been investigated by the 2D amplitude measurement of the reflected waves and the diffraction-based optical simulations. (CODE V) A preliminary design of the KSTAR MIR optics has been suggested which can minimize the aberration and interference effects.

  5. Special Sensor Microwave Imager/Sounder (SSMIS) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  6. Special Sensor Microwave Imager/Sounder (SSMIS) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager/Sounder (SSMIS) is a series of passive microwave conically scanning imagers and sounders onboard the DMSP satellites beginning...

  7. Experimental study of microwave-induced thermoacoustic imaging

    Science.gov (United States)

    Jacobs, Ryan T.

    Microwave-Induced Thermoacoustic Imaging (TAI) is a noninvasive hybrid modality which improves contrast by using thermoelastic wave generation induced by microwave absorption. Ultrasonography is widely used in medical practice as a low-cost alternative and supplement to magnetic resonance imaging (MRI). Although ultrasonography has relatively high image resolution (depending on the ultrasonic wavelength at diagnostic frequencies), it suffers from low image contrast of soft tissues. In this work samples are irradiated with sub-microsecond electromagnetic pulses inducing acoustic waves in the sample that are then detected with an unfocused transducer. The advantage of this hybrid modality is the ability to take advantage of the microwave absorption coefficients which provide high contrast in tissue samples. This in combination with the superior spatial resolution of ultrasound waves is important to providing a low-cost alternative to MRI and early breast cancer detection methods. This work describes the implementation of a thermoacoustic experiment using a 5 kW peak power microwave source.

  8. Gigahertz flexible graphene transistors for microwave integrated circuits.

    Science.gov (United States)

    Yeh, Chao-Hui; Lain, Yi-Wei; Chiu, Yu-Chiao; Liao, Chen-Hung; Moyano, David Ricardo; Hsu, Shawn S H; Chiu, Po-Wen

    2014-08-26

    Flexible integrated circuits with complex functionalities are the missing link for the active development of wearable electronic devices. Here, we report a scalable approach to fabricate self-aligned graphene microwave transistors for the implementation of flexible low-noise amplifiers and frequency mixers, two fundamental building blocks of a wireless communication receiver. A devised AlOx T-gate structure is used to achieve an appreciable increase of device transconductance and a commensurate reduction of the associated parasitic resistance, thus yielding a remarkable extrinsic cutoff frequency of 32 GHz and a maximum oscillation frequency of 20 GHz; in both cases the operation frequency is an order of magnitude higher than previously reported. The two frequencies work at 22 and 13 GHz even when subjected to a strain of 2.5%. The gigahertz microwave integrated circuits demonstrated here pave the way for applications which require high flexibility and radio frequency operations.

  9. Integrable microwave filter based on a photonic crystal delay line.

    Science.gov (United States)

    Sancho, Juan; Bourderionnet, Jerome; Lloret, Juan; Combrié, Sylvain; Gasulla, Ivana; Xavier, Stephane; Sales, Salvador; Colman, Pierre; Lehoucq, Gaelle; Dolfi, Daniel; Capmany, José; De Rossi, Alfredo

    2012-01-01

    The availability of a tunable delay line with a chip-size footprint is a crucial step towards the full implementation of integrated microwave photonic signal processors. Achieving a large and tunable group delay on a millimetre-sized chip is not trivial. Slow light concepts are an appropriate solution, if propagation losses are kept acceptable. Here we use a low-loss 1.5 mm-long photonic crystal waveguide to demonstrate both notch and band-pass microwave filters that can be tuned over the 0-50-GHz spectral band. The waveguide is capable of generating a controllable delay with limited signal attenuation (total insertion loss below 10 dB when the delay is below 70 ps) and degradation. Owing to the very small footprint of the delay line, a fully integrated device is feasible, also featuring more complex and elaborate filter functions.

  10. Thermal measurement a requirement for monolithic microwave integrated circuit design

    OpenAIRE

    Hopper, Richard; Oxley, C. H.

    2008-01-01

    The thermal management of structures such as Monolithic Microwave Integrated Circuits (MMICs) is important, given increased circuit packing densities and RF output powers. The paper will describe the IR measurement technology necessary to obtain accurate temperature profiles on the surface of semiconductor devices. The measurement procedure will be explained, including the device mounting arrangement and emissivity correction technique. The paper will show how the measurement technique has be...

  11. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  12. Microwave integrated circuit radiometer front-ends for the Push Broom Microwave Radiometer

    Science.gov (United States)

    Harrington, R. F.; Hearn, C. P.

    1982-01-01

    Microwave integrated circuit front-ends for the L-band, S-band and C-band stepped frequency null-balanced noise-injection Dicke-switched radiometer to be installed in the NASA Langley airborne prototype Push Broom Microwave Radiometer (PBMR) are described. These front-ends were developed for the fixed frequency of 1.413 GHz and the variable frequencies of 1.8-2.8 GHz and 3.8-5.8 GHz. Measurements of the noise temperature of these units were made at 55.8 C, and the results of these tests are given. While the overall performance was reasonable, improvements need to be made in circuit losses and noise temperatures, which in the case of the C-band were from 1000 to 1850 K instead of the 500 K specified. Further development of the prototypes is underway to improve performance and extend the frequency range.

  13. NOAA JPSS Microwave Integrated Retrieval System (MIRS) Advanced Technology Microwave Sounder (ATMS) Precipitation and Surface Products from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains two-dimensional precipitation and surface products from the JPSS Microwave Integrated Retrieval System (MIRS) using sensor data from the...

  14. A Review on Passive and Integrated Near-Field Microwave Biosensors

    Science.gov (United States)

    Guha, Subhajit; Jamal, Farabi Ibne

    2017-01-01

    In this paper we review the advancement of passive and integrated microwave biosensors. The interaction of microwave with biological material is discussed in this paper. Passive microwave biosensors are microwave structures, which are fabricated on a substrate and are used for sensing biological materials. On the other hand, integrated biosensors are microwave structures fabricated in standard semiconductor technology platform (CMOS or BiCMOS). The CMOS or BiCMOS sensor technology offers a more compact sensing approach which has the potential in the future for point of care testing systems. Various applications of the passive and the integrated sensors have been discussed in this review paper. PMID:28946617

  15. RF and microwave integrated circuit development technology, packaging and testing

    CERN Document Server

    Gamand, Patrice; Kelma, Christophe

    2018-01-01

    RF and Microwave Integrated Circuit Development bridges the gap between existing literature, which focus mainly on the 'front-end' part of a product development (system, architecture, design techniques), by providing the reader with an insight into the 'back-end' part of product development. In addition, the authors provide practical answers and solutions regarding the choice of technology, the packaging solutions and the effects on the performance on the circuit and to the industrial testing strategy. It will also discuss future trends and challenges and includes case studies to illustrate examples. * Offers an overview of the challenges in RF/microwave product design * Provides practical answers to packaging issues and evaluates its effect on the performance of the circuit * Includes industrial testing strategies * Examines relevant RF MIC technologies and the factors which affect the choice of technology for a particular application, e.g. technical performance and cost * Discusses future trends and challen...

  16. Using Multilayered Substrate Integrated Waveguide to Design Microwave Gain Equalizer

    Directory of Open Access Journals (Sweden)

    Yongfei Wang

    2014-01-01

    Full Text Available This paper presents the design and experiment of a novel microwave gain equalizer based on the substrate integrated waveguide (SIW technique. The proposed equalizer is formed by an SIW loaded by SIW resonators, which has very compact structure and can compensate for gain slope of microwave systems. Equivalent circuit analysis is given about the proposed structure for a better insight into the structure’s response. A Ku-Band equalizer with four SIW resonators is simulated and fabricated with a multilayer printed circuit board process. The measured results show good performance and agreement with the simulated results; an attenuation slope of −4.5 dB over 12.5–13.5 GHz is reached with a size reduction of 76%.

  17. Three-Dimensional Microwave Imaging for Indoor Environments

    Science.gov (United States)

    Scott, Simon

    Microwave imaging involves the use of antenna arrays, operating at microwave and millimeter-wave frequencies, for capturing images of real-world objects. Typically, one or more antennas in the array illuminate the scene with a radio-frequency (RF) signal. Part of this signal reflects back to the other antennas, which record both the amplitude and phase of the reflected signal. These reflected RF signals are then processed to form an image of the scene. This work focuses on using planar antenna arrays, operating between 17 and 26 GHz, to capture three-dimensional images of people and other objects inside a room. Such an imaging system enables applications such as indoor positioning and tracking, health monitoring and hand gesture recognition. Microwave imaging techniques based on beamforming cannot be used for indoor imaging, as most objects lie within the array near-field. Therefore, the range-migration algorithm (RMA) is used instead, as it compensates for the curvature of the reflected wavefronts, hence enabling near-field imaging. It is also based on fast-Fourier transforms and is therefore computationally efficient. A number of novel RMA variants were developed to support a wider variety of antenna array configurations, as well as to generate 3-D velocity maps of objects moving around a room. The choice of antenna array configuration, microwave transceiver components and transmit power has a significant effect on both the energy consumed by the imaging system and the quality of the resulting images. A generic microwave imaging testbed was therefore built to characterize the effect of these antenna array parameters on image quality in the 20 GHz band. All variants of the RMA were compared and found to produce good quality three-dimensional images with transmit power levels as low as 1 muW. With an array size of 80x80 antennas, most of the imaging algorithms were able to image objects at 0.5 m range with 12.5 mm resolution, although some were only able to achieve

  18. Monolithic Microwave Integrated Circuits Based on GaAs Mesfet Technology

    Science.gov (United States)

    Bahl, Inder J.

    Advanced military microwave systems are demanding increased integration, reliability, radiation hardness, compact size and lower cost when produced in large volume, whereas the microwave commercial market, including wireless communications, mandates low cost circuits. Monolithic Microwave Integrated Circuit (MMIC) technology provides an economically viable approach to meeting these needs. In this paper the design considerations for several types of MMICs and their performance status are presented. Multifunction integrated circuits that advance the MMIC technology are described, including integrated microwave/digital functions and a highly integrated transceiver at C-band.

  19. Extended Special Sensor Microwave Imager (SSM/I) Temperature Data Record (TDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  20. Extended Special Sensor Microwave Imager (SSM/I) Sensor Data Record (SDR) in netCDF

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Special Sensor Microwave Imager (SSM/I) is a seven-channel linearly polarized passive microwave radiometer that operates at frequencies of 19.36 (vertically and...

  1. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Kramer; R. Nazikian; E. Valeo

    2004-01-16

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments.

  2. Simulation of Optical and Synthetic Imaging using Microwave Reflectometry

    International Nuclear Information System (INIS)

    Kramer, G.J.; Nazikian, R.; Valeo, E.

    2004-01-01

    Two-dimensional full-wave time-dependent simulations in full plasma geometry are presented which show that conventional reflectometry (without a lens) can be used to synthetically image density fluctuations in fusion plasmas under conditions where the parallel correlation length greatly exceeds the poloidal correlation length of the turbulence. The advantage of synthetic imaging is that the image can be produced without the need for a large lens of high optical quality, and each frequency that is launched can be independently imaged. A particularly simple arrangement, consisting of a single receiver located at the midpoint of a microwave beam propagating along the plasma midplane is shown to suffice for imaging purposes. However, as the ratio of the parallel to poloidal correlation length decreases, a poloidal array of receivers needs to be used to synthesize the image with high accuracy. Simulations using DIII-D relevant parameters show the similarity of synthetic and optical imaging in present-day experiments

  3. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  4. Solar Flare Dynamic Microwave Imaging with EOVSA

    Science.gov (United States)

    Gary, D. E.; Chen, B.; Nita, G. M.; Fleishman, G. D.; Yu, S.; White, S. M.; Hurford, G. J.; McTiernan, J. M.

    2017-12-01

    The Expanded Owens Valley Solar Array (EOVSA) is both an expansion of our existing solar array and serves as a prototype for a much larger future project, the Frequency Agile Solar Radiotelescope (FASR). EOVSA is now complete, and is producing daily imaging of the full solar disk, including active regions and solar radio bursts at hundreds of frequencies in the range 2.8-18 GHz. We present highlights of the 1-s-cadence dynamic imaging spectroscropy of radio bursts we have obtained to date, along with deeper analysis of multi-wavelength observations and modeling of a well-observed burst. These observations are revealing the full life-cycle of the trapped population of high-energy electrons, from their initial acceleration and subsequent energy-evolution to their eventual decay through escape and thermalization. All of our data are being made available for download in both quick-look image form and in the form of the community-standard CASA measurement sets for subsequent imaging and analysis.

  5. Advanced microwave/millimeter-wave imaging technology

    International Nuclear Information System (INIS)

    Shen, Zuowei; Yang, Lu; Luhmann, N.C. Jr.

    2007-01-01

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources. (author)

  6. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  7. Electromagnetic modeling and characterization of an optically-controlled microwave phase shifterin GaAs integrated technology

    OpenAIRE

    Tripon-Canseliet, C.; Faci, S.; Deshours, F.; Algani, C.; Alquié, G.; Formont, S.; Chazelas, J.

    2005-01-01

    A state of the art of the modeling of microwave photoswitching devices is exposed. A new 3 D electromagnetic modeling allows the design of an optically-controlled microwave phase shifter microwave starting from the traditional circuit of a microwave photoswitch. Measurements of the parameters S of this optically-controlled microwave phase shifter attests the function of this circuit by optical way and highlights the interest of the integration of this new type of microwave phase shifters in ...

  8. Exploiting Microwave Imaging Methods for Real-Time Monitoring of Thermal Ablation

    Directory of Open Access Journals (Sweden)

    Rosa Scapaticci

    2017-01-01

    Full Text Available Microwave thermal ablation is a cancer treatment that exploits local heating caused by a microwave electromagnetic field to induce coagulative necrosis of tumor cells. Recently, such a technique has significantly progressed in the clinical practice. However, its effectiveness would dramatically improve if paired with a noninvasive system for the real-time monitoring of the evolving dimension and shape of the thermally ablated area. In this respect, microwave imaging can be a potential candidate to monitor the overall treatment evolution in a noninvasive way, as it takes direct advantage from the dependence of the electromagnetic properties of biological tissues from temperature. This paper explores such a possibility by presenting a proof of concept validation based on accurate simulated imaging experiments, run with respect to a scenario that mimics an ex vivo experimental setup. In particular, two model-based inversion algorithms are exploited to tackle the imaging task. These methods provide independent results in real-time and their integration improves the quality of the overall tracking of the variations occurring in the target and surrounding regions.

  9. Microwave imaging of spinning object using orbital angular momentum

    Science.gov (United States)

    Liu, Kang; Li, Xiang; Gao, Yue; Wang, Hongqiang; Cheng, Yongqiang

    2017-09-01

    The linear Doppler shift used for the detection of a spinning object becomes significantly weakened when the line of sight (LOS) is perpendicular to the object, which will result in the failure of detection. In this paper, a new detection and imaging technique for spinning objects is developed. The rotational Doppler phenomenon is observed by using the microwave carrying orbital angular momentum (OAM). To converge the radiation energy on the area where objects might exist, the generation method of OAM beams is proposed based on the frequency diversity principle, and the imaging model is derived accordingly. The detection method of the rotational Doppler shift and the imaging approach of the azimuthal profiles are proposed, which are verified by proof-of-concept experiments. Simulation and experimental results demonstrate that OAM beams can still be used to obtain the azimuthal profiles of spinning objects even when the LOS is perpendicular to the object. This work remedies the insufficiency in existing microwave sensing technology and offers a new solution to the object identification problem.

  10. Development of a multi-channel horn mixer array for microwave imaging plasma diagnostics

    International Nuclear Information System (INIS)

    Ito, Naoki; Kuwahara, Daisuke; Nagayama, Yoshio

    2015-01-01

    Microwave to millimeter-wave diagnostics techniques, such as interferometry, reflectometry, scattering, and radiometry, have been powerful tools for diagnosing magnetically confined plasmas. The resultant measurements have clarified several physics issues, including instability, wave phenomena, and fluctuation-induced transport. Electron cyclotron emission imaging has been an important tool in the investigation of temperature fluctuations, while reflectometry has been employed to measure plasma density profiles and their fluctuations. We have developed a horn-antenna mixer array (HMA), a 50 - 110 GHz 1D antenna array, which can be easily stacked as a 2D array. This article describes an upgrade to the horn mixer array that combines well-characterized mixers, waveguide-to-microstrip line transitions, intermediate frequency amplifiers, and internal local oscillator modules using a monolithic microwave integrated circuit technology to improve system performance. We also report on the use of a multi-channel HMA system. (author)

  11. Monolithic microwave integrated circuit devices for active array antennas

    Science.gov (United States)

    Mittra, R.

    1984-01-01

    Two different aspects of active antenna array design were investigated. The transition between monolithic microwave integrated circuits and rectangular waveguides was studied along with crosstalk in multiconductor transmission lines. The boundary value problem associated with a discontinuity in a microstrip line is formulated. This entailed, as a first step, the derivation of the propagating as well as evanescent modes of a microstrip line. The solution is derived to a simple discontinuity problem: change in width of the center strip. As for the multiconductor transmission line problem. A computer algorithm was developed for computing the crosstalk noise from the signal to the sense lines. The computation is based on the assumption that these lines are terminated in passive loads.

  12. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  13. Recent progress on microwave imaging technology and new physics results

    International Nuclear Information System (INIS)

    Tobias, Benjamin; Luhmann, Neville C. Jr.; Domier, Calvin W.

    2011-01-01

    Techniques for visualizing turbulent flow in nature and in the laboratory have evolved over half a millennium from Leonardo da Vinci's sketches of cascading waterfalls to the advanced imaging technologies which are now pervasive in our daily lives. Advancements in millimeter wave imaging have served to usher in a new era in plasma diagnostics, characterized by ever improving 2D, and even 3D, images of complex phenomena in tokamak and stellarator plasmas. Examples at the forefront of this revolution are electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR). ECEI has proved to be a powerful tool as it has provided immediate physics results following successful diagnostic installations on TEXTOR, ASDEX-U, DIII-D, and KSTAR. Recent results from the MIR system on LHD are demonstrating that this technique has the potential for comparable impact in the diagnosis of electron density fluctuations. This has motivated a recent resurgence in MIR research and development, building on a prototype system demonstrated on TEXTOR, toward the realization of combined ECEI/MIR systems on DIII-D and KSTAR for simultaneous imaging of electron temperature and density fluctuations. The systems discussed raise the standard for fusion plasma diagnostics and present a powerful new capability for the validation of theoretical models and numerical simulations. (author)

  14. Large microwave tunability of GaAs-based multiferroic heterostructure for applications in monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Chen Yajie; Gao Jinsheng; Vittoria, C; Harris, V G; Heiman, D

    2010-01-01

    Microwave magnetoelectric coupling in a ferroelectric/ferromagnetic/semiconductor multiferroic (MF) heterostructure, consisting of a Co 2 MnAl epitaxial film grown on a GaAs substrate bonded to a lead magnesium niobate-lead titanate (PMN-PT) crystal, is reported. Ferromagnetic resonance measurements were carried out at X-band under the application of electric fields. Results indicate a frequency tuning of 125 MHz for electric field strength of 8 kV cm -1 resulting in a magnetoelectric coupling coefficient of 3.4 Oe cm kV -1 . This work explores the potential of electronically controlled MF devices for use in future monolithic microwave integrated circuits.

  15. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  16. The Soil Moisture Dependence of TRMM Microwave Imager Rainfall Estimates

    Science.gov (United States)

    Seyyedi, H.; Anagnostou, E. N.

    2011-12-01

    This study presents an in-depth analysis of the dependence of overland rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) on the soil moisture conditions at the land surface. TMI retrievals are verified against rainfall fields derived from a high resolution rain-gauge network (MESONET) covering Oklahoma. Soil moisture (SOM) patterns are extracted based on recorded data from 2000-2007 with 30 minutes temporal resolution. The area is divided into wet and dry regions based on normalized SOM (Nsom) values. Statistical comparison between two groups is conducted based on recorded ground station measurements and the corresponding passive microwave retrievals from TMI overpasses at the respective MESONET station location and time. The zero order error statistics show that the Probability of Detection (POD) for the wet regions (higher Nsom values) is higher than the dry regions. The Falls Alarm Ratio (FAR) and volumetric FAR is lower for the wet regions. The volumetric missed rain for the wet region is lower than dry region. Analysis of the MESONET-to-TMI ratio values shows that TMI tends to overestimate for surface rainfall intensities less than 12 (mm/h), however the magnitude of the overestimation over the wet regions is lower than the dry regions.

  17. Development of horn antenna mixer array with internal local oscillator module for microwave imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, D., E-mail: dkuwahar@cc.tuat.ac.jp [Department of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan); Ito, N. [Department of Intelligent System Engineering, Ube National College of Technology, Ube, Yamaguchi 755-8555 (Japan); Nagayama, Y. [Department of Helical Plasma Research, National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Yoshinaga, T. [Department of Applied Physics, National Defense Academy, Yokosuka, Kanagawa 239-0811 (Japan); Yamaguchi, S. [Department of Pure and Applied Physics, Kansai University, Suita, Osaka 564-8680 (Japan); Yoshikawa, M.; Kohagura, J. [Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Sugito, S. [Equipment Development Center, Institute for Molecular Science, Okazaki, Aichi 444-8585 (Japan); Kogi, Y. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyusyu University, Kasuga, Fukuoka 816-8580 (Japan)

    2014-11-15

    A new antenna array is proposed in order to improve the sensitivity and complexity of microwave imaging diagnostics systems such as a microwave imaging reflectometry, a microwave imaging interferometer, and an electron cyclotron emission imaging. The antenna array consists of five elements: a horn antenna, a waveguide-to-microstrip line transition, a mixer, a local oscillation (LO) module, and an intermediate frequency amplifier. By using an LO module, the LO optics can be removed, and the supplied LO power to each element can be equalized. We report details of the antenna array and characteristics of a prototype antenna array.

  18. Integrating an embedded system in a microwave moisture meter

    Science.gov (United States)

    The conversion of a PC- or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter measures the attenuation and phase shift of low power microwaves traversing the sample, from which the dielectric properties are calculated. T...

  19. Integrating an Embedded System within a Microwave Moisture Meter

    Science.gov (United States)

    In this paper, the conversion of a PC or laptop-controlled microwave moisture meter to a stand-alone meter hosting its own embedded system is discussed. The moisture meter uses low-power microwaves to measure the attenuation and phase shift of the sample, from which the dielectric properties are cal...

  20. Indonesia sea surface temperature from TRMM Microwave Imaging (TMI) sensor

    Science.gov (United States)

    Marini, Y.; Setiawan, K. T.

    2018-05-01

    We analysis the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) data to monitor the sea surface temperature (SST) of Indonesia waters for a decade of 2005-2014. The TMI SST data shows the seasonal and interannual SST in Indonesian waters. In general, the SST average was highest in March-May period with SST average was 29.4°C, and the lowest was in June – August period with the SST average was 28.5°C. The monthly SST average fluctuation of Indonesian waters for 10 years tends to increase. The lowest SST average of Indonesia occurred in August 2006 with the SST average was 27.6° C, while the maximum occurred in May 2014 with the monthly SST average temperature was 29.9 ° C.

  1. Using x-ray mammograms to assist in microwave breast image interpretation.

    Science.gov (United States)

    Curtis, Charlotte; Frayne, Richard; Fear, Elise

    2012-01-01

    Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  2. Using X-Ray Mammograms to Assist in Microwave Breast Image Interpretation

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    Full Text Available Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.

  3. Optimum Image Formation for Spaceborne Microwave Radiometer Products.

    Science.gov (United States)

    Long, David G; Brodzik, Mary J

    2016-05-01

    This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.

  4. Experimental study on microwave vulnerability effect of integrated circuit

    International Nuclear Information System (INIS)

    Fang Jinyong; Shen Juai; Yang Zhiqiang; Qiao Dengjiang

    2003-01-01

    The microwave vulnerability effect of IC was presented in this paper. The damage power threshold of IC will decrease with the decrease of microwave frequency or the increase of pulse repetitive frequency, and if the microwave pulse width become larger, the damage power threshold will decrease too. However, there is an inflexion range and the damage power threshold varies little when the pulse width is larger than the inflexion range. The experiment results show that the damage power threshold of IC fit normal distribution, and the variance is very small, so the damage probability fits 0-1 distribution

  5. Microfabricated Low-Loss Microwave Switch Integration Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...

  6. Microwave imaging for conducting scatterers by hybrid particle swarm optimization with simulated annealing

    International Nuclear Information System (INIS)

    Mhamdi, B.; Grayaa, K.; Aguili, T.

    2011-01-01

    In this paper, a microwave imaging technique for reconstructing the shape of two-dimensional perfectly conducting scatterers by means of a stochastic optimization approach is investigated. Based on the boundary condition and the measured scattered field derived by transverse magnetic illuminations, a set of nonlinear integral equations is obtained and the imaging problem is reformulated in to an optimization problem. A hybrid approximation algorithm, called PSO-SA, is developed in this work to solve the scattering inverse problem. In the hybrid algorithm, particle swarm optimization (PSO) combines global search and local search for finding the optimal results assignment with reasonable time and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The hybrid approach elegantly combines the exploration ability of PSO with the exploitation ability of SA. Reconstruction results are compared with exact shapes of some conducting cylinders; and good agreements with the original shapes are observed.

  7. Design of a Compact Wideband Antenna Array for Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    J. Puskely

    2013-12-01

    Full Text Available In the paper, wideband antenna arrays aimed at microwave imaging applications and SAR applications operating at Ka band were designed. The antenna array feeding network is realized by a low-loss SIW technology. Moreover, we have replaced the large feed network comprised of various T and Y junctions by a simple broadband network of compact size to more reduce losses in the substrate integrated waveguide and also save space on the PCB. The designed power 8-way divider is complemented by a wideband substrate integrated waveguide to a grounded coplanar waveguide transition and directly connected to the antenna elements. The measured results of antenna array are consistent with our simulation. Obtained results of the developed array demonstrated improvement compared to previously developed binary feed networks with microstrip or SIW splitters.

  8. Challenges in the Design of Microwave Imaging Systems for Breast Cancer Detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2011-01-01

    community. This paper presents the survey of the ongoing research in the field of microwave imaging of biological tissues, with major focus on the breast tumor detection application. The existing microwave imaging systems are categorized on the basis of the employed measurement concepts. The advantages......Among the various breast imaging modalities for breast cancer detection, microwave imaging is attractive due to the high contrast in dielectric properties between the cancerous and normal tissue. Due to this reason, this modality has received a significant interest and attention from the microwave...... and disadvantages of the implemented imaging techniques are discussed. The fundamental tradeoffs between the various system requirements are indicated. Some strategies to overcome these limitations are outlined....

  9. Effect of transurethral microwave thermotherapy. An evaluation with MR imaging

    International Nuclear Information System (INIS)

    Nordenstam, G.; Aspelin, P.; Isberg, B.; Svensson, L.; Hallin, A.; Berlin, T.

    1996-01-01

    Purpose: To detect morphological changes in the prostate, as depicted with MR imaging, in order to clarify the effects of transurethral microwave thermotherapy (TUMT). Material and Methods: Twenty patients with prostatism and a prostatic volume of 30-71 cm 3 underwent MR examination before, the day after, and 6 months after treatment. TUMT was carried out with a Prostatron. A method to detect oedematous changes on heavily T2-weighted MR images was developed and used as an indicator of morphological changes. Results: The study showed some correlation (r=0.59) between the energy given at TUMT and an increased T2 signal. All patients with increased T2 signal except one were found among those who received the highest amount of energy to the prostate. Of 8 patients, 6 showed a symptomatic response to the treatment and 2 did not. There was a weak statistical correlation (r=0.41) between treatment response and increased T2 signal. Conclusion: The study does not support the view that TUMT leads to significant necrosis in the prostate with loss of tissue and retraction. We theorize that the response to TUMT may be caused by a denervation of the prostate. (orig.)

  10. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging

    Science.gov (United States)

    Iqbal, Adeel; Sun, Zhiwei; Wall, Matthew; Alwahabi, Zeyad T.

    2017-10-01

    This study reports a sensitive spectroscopic method for quantitative elemental detection by manipulating the temporal and spatial parameters of laser-induced plasma. The method was tested for indium detection in solid samples, in which laser ablation was used to generate a tiny plasma. The lifetime of the laser-induced plasma can be extended to hundreds of microseconds using microwave injection to remobilize the electrons. In this novel method, temporal integrated signal of indium emission was significantly enhanced. Meanwhile, the projected detectable area of the excited indium atoms was also significantly improved using an interference-, instead of diffraction-, based technique, achieved by directly imaging microwave-enhanced plasma through a novel narrow-bandpass filter, exactly centered at the indium emission line. Quantitative laser-induce breakdown spectroscopy was also recorded simultaneously with the new imaging method. The intensities recorded from both methods exhibit very good mutual linear relationship. The detection intensity was improved to 14-folds because of the combined improvements in the plasma lifetime and the area of detection.

  11. Development of a High-Throughput Microwave Imaging System for Concealed Weapons Detection

    Science.gov (United States)

    2016-07-15

    hardware. Index Terms—Microwave imaging, multistatic radar, Fast Fourier Transform (FFT). I. INTRODUCTION Near-field microwave imaging is a non- ionizing ...real-time microwave camera at 24 ghz,” IEEE Transactions on Antennas and Propagation , vol. 60, no. 2, pp. 1114– 1125, 2012. [2] E. C. Fear, X. Li, S. C...on Biomedical Engineering, vol. 49, no. 8, pp. 812–822, 2002. [3] D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter- wave

  12. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    Science.gov (United States)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  13. The new images of the microwave sky: a concordance cosmology?

    CERN Document Server

    Bernardis, P D; Bock, J J; Bond, J R; Borrill, J; Boscaleri, A; Coble, K; Contaldi, C R; Crill, B P; De Gasperis, G; De Troia, G; Farese, P; Ganga, K; Giacometti, M; Hivon, E; Hristov, V V; Iacoangeli, A; Jaffe, A H; Jones, W C; Lange, A E; Martinis, L; Mason, P; Mauskopf, P D; Melchiorri, A; Montroy, T; Natoli, P; Netterfield, C B; Pascale, E; Piacentini, F; Pogosyan, D; Polenta, G; Pongetti, F; Prunet, S; Romeo, G; Ruhl, J E; Scaramuzzi, F; Vittorio, N

    2002-01-01

    The existence and anisotropy of the cosmic microwave background (CMB), the large scale distribution of Galaxies, the expansion of the Universe and the abundance of light elements can be all be explained with a single cosmological model. In this paper we focus on the CMB anisotropy maps produced by the BOOMERanG experiment and on their impact on cosmology. The images are consistent with the result of acoustic oscillations of the photons-matter plasma in the pre-recombination Universe (z > or approx. 1000). We show how the instrument and the observations have been optimized and how the basic parameters of the model are derived from the data. These observations of the CMB are gaussian and point to a low curvature Universe (omega approx 1), as expected in the inflation scenario. In order to fit these observations and other cosmological evidence, the composition of the Universe must have significant contributions from dark matter (omega sub m approx 0.3) and dark energy (omega subLAMBDA approx 0.7).

  14. Active Sensor for Microwave Tissue Imaging with Bias-Switched Arrays.

    Science.gov (United States)

    Foroutan, Farzad; Nikolova, Natalia K

    2018-05-06

    A prototype of a bias-switched active sensor was developed and measured to establish the achievable dynamic range in a new generation of active arrays for microwave tissue imaging. The sensor integrates a printed slot antenna, a low-noise amplifier (LNA) and an active mixer in a single unit, which is sufficiently small to enable inter-sensor separation distance as small as 12 mm. The sensor’s input covers the bandwidth from 3 GHz to 7.5 GHz. Its output intermediate frequency (IF) is 30 MHz. The sensor is controlled by a simple bias-switching circuit, which switches ON and OFF the bias of the LNA and the mixer simultaneously. It was demonstrated experimentally that the dynamic range of the sensor, as determined by its ON and OFF states, is 109 dB and 118 dB at resolution bandwidths of 1 kHz and 100 Hz, respectively.

  15. Advanced RF and microwave functions based on an integrated optical frequency comb source.

    Science.gov (United States)

    Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J

    2018-02-05

    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.

  16. Non-Invasive Imaging Method of Microwave Near Field Based on Solid State Quantum Sensing

    OpenAIRE

    Yang, Bo; Du, Guanxiang; Dong, Yue; Liu, Guoquan; Hu, Zhenzhong; Wang, Yongjin

    2018-01-01

    In this paper, we propose a non-invasive imaging method of microwave near field using a diamond containing nitrogen-vacancy centers. We applied synchronous pulsed sequence combined with charge coupled device camera to measure the amplitude of the microwave magnetic field. A full reconstruction formulation of the local field vector, including the amplitude and phase, is developed by measuring both left and right circular polarizations along the four nitrogen-vacancy axes. Compared to the raste...

  17. Parameter Search Algorithms for Microwave Radar-Based Breast Imaging: Focal Quality Metrics as Fitness Functions.

    Science.gov (United States)

    O'Loughlin, Declan; Oliveira, Bárbara L; Elahi, Muhammad Adnan; Glavin, Martin; Jones, Edward; Popović, Milica; O'Halloran, Martin

    2017-12-06

    Inaccurate estimation of average dielectric properties can have a tangible impact on microwave radar-based breast images. Despite this, recent patient imaging studies have used a fixed estimate although this is known to vary from patient to patient. Parameter search algorithms are a promising technique for estimating the average dielectric properties from the reconstructed microwave images themselves without additional hardware. In this work, qualities of accurately reconstructed images are identified from point spread functions. As the qualities of accurately reconstructed microwave images are similar to the qualities of focused microscopic and photographic images, this work proposes the use of focal quality metrics for average dielectric property estimation. The robustness of the parameter search is evaluated using experimental dielectrically heterogeneous phantoms on the three-dimensional volumetric image. Based on a very broad initial estimate of the average dielectric properties, this paper shows how these metrics can be used as suitable fitness functions in parameter search algorithms to reconstruct clear and focused microwave radar images.

  18. Vacuum Gap Microstrip Microwave Resonators for 2.5-D Integration in Quantum Computing

    International Nuclear Information System (INIS)

    Lewis, Rupert M.; Henry, Michael David; Schroeder, Katlin

    2017-01-01

    We demonstrate vacuum gap λ/2 microwave resonators as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Furthermore, we discuss creating low loss circuits in this geometry.

  19. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core...

  20. Development of anatomically and dielectrically accurate breast phantoms for microwave imaging applications

    Science.gov (United States)

    O'Halloran, M.; Lohfeld, S.; Ruvio, G.; Browne, J.; Krewer, F.; Ribeiro, C. O.; Inacio Pita, V. C.; Conceicao, R. C.; Jones, E.; Glavin, M.

    2014-05-01

    Breast cancer is one of the most common cancers in women. In the United States alone, it accounts for 31% of new cancer cases, and is second only to lung cancer as the leading cause of deaths in American women. More than 184,000 new cases of breast cancer are diagnosed each year resulting in approximately 41,000 deaths. Early detection and intervention is one of the most significant factors in improving the survival rates and quality of life experienced by breast cancer sufferers, since this is the time when treatment is most effective. One of the most promising breast imaging modalities is microwave imaging. The physical basis of active microwave imaging is the dielectric contrast between normal and malignant breast tissue that exists at microwave frequencies. The dielectric contrast is mainly due to the increased water content present in the cancerous tissue. Microwave imaging is non-ionizing, does not require breast compression, is less invasive than X-ray mammography, and is potentially low cost. While several prototype microwave breast imaging systems are currently in various stages of development, the design and fabrication of anatomically and dielectrically representative breast phantoms to evaluate these systems is often problematic. While some existing phantoms are composed of dielectrically representative materials, they rarely accurately represent the shape and size of a typical breast. Conversely, several phantoms have been developed to accurately model the shape of the human breast, but have inappropriate dielectric properties. This study will brie y review existing phantoms before describing the development of a more accurate and practical breast phantom for the evaluation of microwave breast imaging systems.

  1. Advances in microwaves 8

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 8 covers the developments in the study of microwaves. The book discusses the circuit forms for microwave integrated circuits; the analysis of microstrip transmission lines; and the use of lumped elements in microwave integrated circuits. The text also describes the microwave properties of ferrimagnetic materials, as well as their interaction with electromagnetic waves propagating in bounded waveguiding structures. The integration techniques useful at high frequencies; material technology for microwave integrated circuits; specific requirements on technology for d

  2. Microwave Technology for Brain Imaging and Monitoring: Physical Foundations, Potential and Limitations

    DEFF Research Database (Denmark)

    Scapaticci, Rosa; Bjelogrlic, Mina; Tobon Vasquez, Jorge

    2018-01-01

    This chapter provides an introduction to the physical principles underlying the adoption of microwave technology as a biomedical imaging modality for diagnosis and follow-up of neurological diseases and injuries (e.g., stroke, haematoma). In particular, a theoretical analysis, supported...... by numerical simulations and experiments, will be given to describe the physical constraints that arise in this kind of application and the relevant limitations. In addition, we discuss the main aspects to be faced when implementing microwave imaging technology in a clinical scenario, by exploiting a design...

  3. Nonlinear microwave imaging using Levenberg-Marquardt method with iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2014-01-01

    Development of microwave imaging methods applicable in sparse investigation domains is becoming a research focus in computational electromagnetics (D.W. Winters and S.C. Hagness, IEEE Trans. Antennas Propag., 58(1), 145-154, 2010). This is simply due to the fact that sparse/sparsified domains naturally exist in many applications including remote sensing, medical imaging, crack detection, hydrocarbon reservoir exploration, and see-through-the-wall imaging.

  4. Nonlinear microwave imaging using Levenberg-Marquardt method with iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2014-07-01

    Development of microwave imaging methods applicable in sparse investigation domains is becoming a research focus in computational electromagnetics (D.W. Winters and S.C. Hagness, IEEE Trans. Antennas Propag., 58(1), 145-154, 2010). This is simply due to the fact that sparse/sparsified domains naturally exist in many applications including remote sensing, medical imaging, crack detection, hydrocarbon reservoir exploration, and see-through-the-wall imaging.

  5. On-chip integration of a superconducting microwave circulator and a Josephson parametric amplifier

    Science.gov (United States)

    Rosenthal, Eric I.; Chapman, Benjamin J.; Moores, Bradley A.; Kerckhoff, Joseph; Malnou, Maxime; Palken, D. A.; Mates, J. A. B.; Hilton, G. C.; Vale, L. R.; Ullom, J. N.; Lehnert, K. W.

    Recent progress in microwave amplification based on parametric processes in superconducting circuits has revolutionized the measurement of feeble microwave signals. These devices, which operate near the quantum limit, are routinely used in ultralow temperature cryostats to: readout superconducting qubits, search for axionic dark matter, and characterize astrophysical sensors. However, these amplifiers often require ferrite circulators to separate incoming and outgoing traveling waves. For this reason, measurement efficiency and scalability are limited. In order to facilitate the routing of quantum signals we have created a superconducting, on-chip microwave circulator without permanent magnets. We integrate our circulator on-chip with a Josephson parametric amplifier for the purpose of near quantum-limited directional amplification. In this talk I will present a design overview and preliminary measurements.

  6. 2-D Fused Image Reconstruction approach for Microwave Tomography: a theoretical assessment using FDTD Model.

    Science.gov (United States)

    Bindu, G; Semenov, S

    2013-01-01

    This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.

  7. Microwave tomography of extremities: 2. Functional fused imaging of flow reduction and simulated compartment syndrome

    International Nuclear Information System (INIS)

    Semenov, Serguei; Nair, Bindu; Kellam, James; Williams, Thomas; Quinn, Michael; Sizov, Yuri; Nazarov, Alexei; Pavlovsky, Andrey

    2011-01-01

    Medical imaging has recently expanded into the dual- or multi-modality fusion of anatomical and functional imaging modalities. This significantly improves the diagnostic power while simultaneously increasing the cost of already expensive medical devices or investigations and decreasing their mobility. We are introducing a novel imaging concept of four-dimensional (4D) microwave tomographic (MWT) functional imaging: three dimensional (3D) in the spatial domain plus one dimensional (1D) in the time, functional dynamic domain. Instead of a fusion of images obtained by different imaging modalities, 4D MWT fuses absolute anatomical images with dynamic, differential images of the same imaging technology. The approach was successively validated in animal experiments with short-term arterial flow reduction and a simulated compartment syndrome in an initial simplified experimental setting using a dedicated MWT system. The presented fused images are not perfect as MWT is a novel imaging modality at its early stage of the development and ways of reading reconstructed MWT images need to be further studied and understood. However, the reconstructed fused images present clear evidence that microwave tomography is an emerging imaging modality with great potentials for functional imaging.

  8. Optimization of the imaging response of scanning microwave microscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sardi, G. M.; Lucibello, A.; Proietti, E.; Marcelli, R., E-mail: romolo.marcelli@imm.cnr.it [National Research Council, Institute for Microelectronics and Microsystems, Via del Fosso del Cavaliere 100, 00133 Rome (Italy); Kasper, M.; Gramse, G. [Biophysics Institute, Johannes Kepler University, Gruberstrasse 40, 4020 Linz (Austria); Kienberger, F. [Keysight Technologies Austria GmbH, Gruberstrasse 40, 4020 Linz (Austria)

    2015-07-20

    In this work, we present the analytical modeling and preliminary experimental results for the choice of the optimal frequencies when performing amplitude and phase measurements with a scanning microwave microscope. In particular, the analysis is related to the reflection mode operation of the instrument, i.e., the acquisition of the complex reflection coefficient data, usually referred as S{sub 11}. The studied configuration is composed of an atomic force microscope with a microwave matched nanometric cantilever probe tip, connected by a λ/2 coaxial cable resonator to a vector network analyzer. The set-up is provided by Keysight Technologies. As a peculiar result, the optimal frequencies, where the maximum sensitivity is achieved, are different for the amplitude and for the phase signals. The analysis is focused on measurements of dielectric samples, like semiconductor devices, textile pieces, and biological specimens.

  9. Adaptive and robust statistical methods for processing near-field scanning microwave microscopy images.

    Science.gov (United States)

    Coakley, K J; Imtiaz, A; Wallis, T M; Weber, J C; Berweger, S; Kabos, P

    2015-03-01

    Near-field scanning microwave microscopy offers great potential to facilitate characterization, development and modeling of materials. By acquiring microwave images at multiple frequencies and amplitudes (along with the other modalities) one can study material and device physics at different lateral and depth scales. Images are typically noisy and contaminated by artifacts that can vary from scan line to scan line and planar-like trends due to sample tilt errors. Here, we level images based on an estimate of a smooth 2-d trend determined with a robust implementation of a local regression method. In this robust approach, features and outliers which are not due to the trend are automatically downweighted. We denoise images with the Adaptive Weights Smoothing method. This method smooths out additive noise while preserving edge-like features in images. We demonstrate the feasibility of our methods on topography images and microwave |S11| images. For one challenging test case, we demonstrate that our method outperforms alternative methods from the scanning probe microscopy data analysis software package Gwyddion. Our methods should be useful for massive image data sets where manual selection of landmarks or image subsets by a user is impractical. Published by Elsevier B.V.

  10. HTS thin films: Passive microwave components and systems integration issues

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B. [National Aeronautics and Space Administration, Cleveland, OH (United States)

    1994-12-31

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory`s High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects.

  11. HTS thin films: Passive microwave components and systems integration issues

    International Nuclear Information System (INIS)

    Miranda, F.A.; Chorey, C.M.; Bhasin, K.B.

    1994-01-01

    The excellent microwave properties of the High-Temperature-Superconductors (HTS) have been amply demonstrated in the laboratory by techniques such as resonant cavity, power transmission and microstrip resonator measurements. The low loss and high Q passive structures made possible with HTS, present attractive options for applications in commercial, military and space-based systems. However, to readily insert HTS into these systems improvement is needed in such areas as repeatability in the deposition and processing of the HTS films, metal-contact formation, wire bonding, and overall film endurance to fabrication and assembly procedures. In this paper we present data compiled in our lab which illustrate many of the problems associated with these issues. Much of this data were obtained in the production of a space qualified hybrid receiver-downconverter module for the Naval Research Laboratory's High Temperature Superconductivity Space Experiment II (HTSSE-II). Examples of variations observed in starting films and finished circuits will be presented. It is shown that under identical processing the properties of the HTS films can degrade to varying extents. Finally, we present data on ohmic contacts and factors affecting their adhesion to HTS films, strength of wire bonds made to such contacts, and aging effects

  12. Continuous imaging space in three-dimensional integral imaging

    International Nuclear Information System (INIS)

    Zhang Lei; Yang Yong; Wang Jin-Gang; Zhao Xing; Fang Zhi-Liang; Yuan Xiao-Cong

    2013-01-01

    We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Evaluation of microwave thermotherapy with histopathology, magnetic resonance imaging and temperature mapping

    NARCIS (Netherlands)

    Huidobro, Christian; Bolmsjö, Magnus; Larson, Thayne; de la Rosette, Jean; Wagrell, Lennart; Schelin, Sonny; Gorecki, Tomasz; Mattiasson, Anders

    2004-01-01

    Purpose: Interstitial temperature mapping was used to determine the heat field within the prostate by the Coretherm. (ProstaLund, Lund, Sweden) transurethral microwave thermotherapy device. Gadolinium. enhanced magnetic resonance imaging (MRI) and histopathology were used to determine the extent and

  14. Stratified spherical model for microwave imaging of the brain: Analysis and experimental validation of transmitted power

    DEFF Research Database (Denmark)

    Bjelogrlic, Mina; Volery, Maxime; Fuchs, Benjamin

    2018-01-01

    This work presents the analysis of power transmission of a radiating field inside the human head for microwave imaging applications. For this purpose, a spherical layered model composed of dispersive biological tissues is investigated in the range of (0.5–4) GHz and is confronted to experimental ...

  15. Microwave GaAs Integrated Circuits On Quartz Substrates

    Science.gov (United States)

    Siegel, Peter H.; Mehdi, Imran; Wilson, Barbara

    1994-01-01

    Integrated circuits for use in detecting electromagnetic radiation at millimeter and submillimeter wavelengths constructed by bonding GaAs-based integrated circuits onto quartz-substrate-based stripline circuits. Approach offers combined advantages of high-speed semiconductor active devices made only on epitaxially deposited GaAs substrates with low-dielectric-loss, mechanically rugged quartz substrates. Other potential applications include integration of antenna elements with active devices, using carrier substrates other than quartz to meet particular requirements using lifted-off GaAs layer in membrane configuration with quartz substrate supporting edges only, and using lift-off technique to fabricate ultrathin discrete devices diced separately and inserted into predefined larger circuits. In different device concept, quartz substrate utilized as transparent support for GaAs devices excited from back side by optical radiation.

  16. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom

    2009-11-11

    Local electrical imaging using microwave impedance microscope is performed on graphene in different modalities, yielding a rich hierarchy of the local conductivity. The low-conductivity graphite oxide and its derivatives show significant electronic inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can also be used to verify the electrical contact between overlapped graphene pieces. © 2009 American Chemical Society.

  17. Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging

    Science.gov (United States)

    Noroozian, Omid

    Superconducting microwave resonators have the potential to revolutionize submillimeter and far-infrared astronomy, and with it our understanding of the universe. The field of low-temperature detector technology has reached a point where extremely sensitive devices like transition-edge sensors are now capable of detecting radiation limited by the background noise of the universe. However, the size of these detector arrays are limited to only a few thousand pixels. This is because of the cost and complexity of fabricating large-scale arrays of these detectors that can reach up to 10 lithographic levels on chip, and the complicated SQUID-based multiplexing circuitry and wiring for readout of each detector. In order to make substantial progress, next-generation ground-based telescopes such as CCAT or future space telescopes require focal planes with large-scale detector arrays of 104--10 6 pixels. Arrays using microwave kinetic inductance detectors (MKID) are a potential solution. These arrays can be easily made with a single layer of superconducting metal film deposited on a silicon substrate and pattered using conventional optical lithography. Furthermore, MKIDs are inherently multiplexable in the frequency domain, allowing ˜ 10 3 detectors to be read out using a single coaxial transmission line and cryogenic amplifier, drastically reducing cost and complexity. An MKID uses the change in the microwave surface impedance of a superconducting thin-film microresonator to detect photons. Absorption of photons in the superconductor breaks Cooper pairs into quasiparticles, changing the complex surface impedance, which results in a perturbation of resonator frequency and quality factor. For excitation and readout, the resonator is weakly coupled to a transmission line. The complex amplitude of a microwave probe signal tuned on-resonance and transmitted on the feedline past the resonator is perturbed as photons are absorbed in the superconductor. The perturbation can be

  18. Cryogenic microwave imaging of metal–insulator transition in doped silicon

    KAUST Repository

    Kundhikanjana, Worasom; Lai, Keji; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    We report the instrumentation and experimental results of a cryogenic scanning microwave impedance microscope. The microwave probe and the scanning stage are located inside the variable temperature insert of a helium cryostat. Microwave signals in the distance modulation mode are used for monitoring the tip-sample distance and adjusting the phase of the two output channels. The ability to spatially resolve the metal-insulator transition in a doped silicon sample is demonstrated. The data agree with a semiquantitative finite element simulation. Effects of the thermal energy and electric fields on local charge carriers can be seen in the images taken at different temperatures and dc biases. © 2011 American Institute of Physics.

  19. On the performance of SART and ART algorithms for microwave imaging

    Science.gov (United States)

    Aprilliyani, Ria; Prabowo, Rian Gilang; Basari

    2018-02-01

    The development of advanced technology leads to the change of human lifestyle in current society. One of the disadvantage impact is arising the degenerative diseases such as cancers and tumors, not just common infectious diseases. Every year, victims of cancers and tumors grow significantly leading to one of the death causes in the world. In early stage, cancer/tumor does not have definite symptoms, but it will grow abnormally as tissue cells and damage normal tissue. Hence, early cancer detection is required. Some common diagnostics modalities such as MRI, CT and PET are quite difficult to be operated in home or mobile environment such as ambulance. Those modalities are also high cost, unpleasant, complex, less safety and harder to move. Hence, this paper proposes a microwave imaging system due to its portability and low cost. In current study, we address on the performance of simultaneous algebraic reconstruction technique (SART) algorithm that was applied in microwave imaging. In addition, SART algorithm performance compared with our previous work on algebraic reconstruction technique (ART), in order to have performance comparison, especially in the case of reconstructed image quality. The result showed that by applying SART algorithm on microwave imaging, suspicious cancer/tumor can be detected with better image quality.

  20. GHRSST Level 2P Regional Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) for the Atlantic Ocean (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  1. GHRSST Level 2P Global Subskin Sea Surface Temperature from TRMM Microwave Imager (TMI) onboard Tropical Rainfall Measurement Mission (TRMM) satellite (GDS versions 1 and 2)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GDS2 Version -The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to the Special Sensor...

  2. GHRSST L2P Gridded Global Subskin Sea Surface Temperature from the Tropical Rainfall Mapping Mission (TRMM) Microwave Imager (TMI) (GDS version 1)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) is a well calibrated passive microwave radiometer, similar to SSM/I, that contains lower...

  3. Microwave Imaging Sensor Using Compact Metamaterial UWB Antenna with a High Correlation Factor

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-07-01

    Full Text Available The design of a compact metamaterial ultra-wideband (UWB antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. This proposed UWB antenna is made of four metamaterial unit cells, where each cell is an integration of a modified split ring resonator (SRR, capacitive loaded strip (CLS and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A low-cost FR4 substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 1.6 mm, relative permeability of one, relative permittivity of 4.60 and loss tangent of 0.02. The overall antenna size is 19.36 mm × 27.72 mm × 1.6 mm where the electrical dimension is 0.20 λ × 0.28 λ × 0.016 λ at the 3.05 GHz lower frequency band. Voltage Standing Wave Ratio (VSWR measurements have illustrated that this antenna exhibits an impedance bandwidth from 3.05 GHz to more than 15 GHz for VSWR < 2 with an average gain of 4.38 dBi throughout the operating frequency band. The simulations (both HFSS and computer simulation technology (CST and the measurements are in high agreement. A high correlation factor and the capability of detecting tumour simulants confirm that this reported UWB antenna can be used as an imaging sensor.

  4. Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) Gridded Orbital Data Set (G2A12) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — The TRMM Microwave Imager (TMI) Gridded Orbital rainfall data, a special product derived from the TRMM standard product, TMI rain profile (2A-12), and mapped to a...

  5. Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) Gridded Orbital Data Set (G2B31) V6

    Data.gov (United States)

    National Aeronautics and Space Administration — Combined TRMM Microwave Imager (TMI) and Precipitation Radar (PR) gridded orbital rainfall data, is a special product derived from the TRMM standard product (2B-31)...

  6. Design and application of multilayer monolithic microwave integrated circuit transformers

    Energy Technology Data Exchange (ETDEWEB)

    Economides, S.B

    1999-07-01

    fabricated on standard foundry processes. With careful modelling it is also feasible to integrate the two couplers into a single tri-filar transformer structure. This is a robust balun topology, which could be widely adopted. A push-pull MESFET amplifier with 8 dB gain demonstrated this at 12 GHz, using the balun chips connected to amplifier circuits. (author)

  7. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  8. Aspect-Aided Dynamic Non-Negative Sparse Representation-Based Microwave Image Classification

    Directory of Open Access Journals (Sweden)

    Xinzheng Zhang

    2016-09-01

    Full Text Available Classification of target microwave images is an important application in much areas such as security, surveillance, etc. With respect to the task of microwave image classification, a recognition algorithm based on aspect-aided dynamic non-negative least square (ADNNLS sparse representation is proposed. Firstly, an aspect sector is determined, the center of which is the estimated aspect angle of the testing sample. The training samples in the aspect sector are divided into active atoms and inactive atoms by smooth self-representative learning. Secondly, for each testing sample, the corresponding active atoms are selected dynamically, thereby establishing dynamic dictionary. Thirdly, the testing sample is represented with ℓ 1 -regularized non-negative sparse representation under the corresponding dynamic dictionary. Finally, the class label of the testing sample is identified by use of the minimum reconstruction error. Verification of the proposed algorithm was conducted using the Moving and Stationary Target Acquisition and Recognition (MSTAR database which was acquired by synthetic aperture radar. Experiment results validated that the proposed approach was able to capture the local aspect characteristics of microwave images effectively, thereby improving the classification performance.

  9. Precipitation from the GPM Microwave Imager and Constellation Radiometers

    Science.gov (United States)

    Kummerow, Christian; Randel, David; Kirstetter, Pierre-Emmanuel; Kulie, Mark; Wang, Nai-Yu

    2014-05-01

    Satellite precipitation retrievals from microwave sensors are fundamentally underconstrained requiring either implicit or explicit a-priori information to constrain solutions. The radiometer algorithm designed for the GPM core and constellation satellites makes this a-priori information explicit in the form of a database of possible rain structures from the GPM core satellite and a Bayesian retrieval scheme. The a-priori database will eventually come from the GPM core satellite's combined radar/radiometer retrieval algorithm. That product is physically constrained to ensure radiometric consistency between the radars and radiometers and is thus ideally suited to create the a-priori databases for all radiometers in the GPM constellation. Until a robust product exists, however, the a-priori databases are being generated from the combination of existing sources over land and oceans. Over oceans, the Day-1 GPM radiometer algorithm uses the TRMM PR/TMI physically derived hydrometer profiles that are available from the tropics through sea surface temperatures of approximately 285K. For colder sea surface temperatures, the existing profiles are used with lower hydrometeor layers removed to correspond to colder conditions. While not ideal, the results appear to be reasonable placeholders until the full GPM database can be constructed. It is more difficult to construct physically consistent profiles over land due to ambiguities in surface emissivities as well as details of the ice scattering that dominates brightness temperature signatures over land. Over land, the a-priori databases have therefore been constructed by matching satellite overpasses to surface radar data derived from the WSR-88 network over the continental United States through the National Mosaic and Multi-Sensor QPE (NMQ) initiative. Databases are generated as a function of land type (4 categories of increasing vegetation cover as well as 4 categories of increasing snow depth), land surface temperature and

  10. Evaluation of multichannel Wiener filters applied to fine resolution passive microwave images of first-year sea ice

    Science.gov (United States)

    Full, William E.; Eppler, Duane T.

    1993-01-01

    The effectivity of multichannel Wiener filters to improve images obtained with passive microwave systems was investigated by applying Wiener filters to passive microwave images of first-year sea ice. Four major parameters which define the filter were varied: the lag or pixel offset between the original and the desired scenes, filter length, the number of lines in the filter, and the weight applied to the empirical correlation functions. The effect of each variable on the image quality was assessed by visually comparing the results. It was found that the application of multichannel Wiener theory to passive microwave images of first-year sea ice resulted in visually sharper images with enhanced textural features and less high-frequency noise. However, Wiener filters induced a slight blocky grain to the image and could produce a type of ringing along scan lines traversing sharp intensity contrasts.

  11. The EUMETSAT Polar System - Second Generation (EPS-SG) micro-wave imaging (MWI) mission

    Science.gov (United States)

    Bojkov, B. R.; Accadia, C.; Klaes, D.; Canestri, A.; Cohen, M.

    2017-12-01

    The EUMETSAT Polar System (EPS) will be followed by a second generation system called EPS-SG. This new family of missions will contribute to the Joint Polar System being jointly set up with NOAA in the timeframe 2020-2040. These satellites will fly, like Metop (EPS), in a sun synchronous, low earth orbit at 830 km altitude and 09:30 local time descending node, providing observations over the full globe with revisit times of 12 hours. EPS-SG consists of two different satellites configurations, the EPS-SGa series dedicated to IR and MW sounding, and the EPS-SGb series dedicated to microwave imaging and scatterometry. The EPS-SG family will consist of three successive launches of each satellite-type. The Microwave Imager (MWI) will be hosted on Metop-SGb series of satellites, with the primary objective of supporting Numerical Weather Prediction (NWP) at regional and global scales. Other applications will be observation of surface parameters such as sea ice concentration and hydrology applications. The 18 MWI instrument frequencies range from 18.7 GHz to 183 GHz. All MWI channels up to 89 GHz will measure V- and H polarizations. The MWI was also designed to provide continuity of measurements for select heritage microwave imager channels (e.g. SSM/I, AMSR-E). The additional sounding channels such as the 50-55 and 118 GHz bands will provide additional cloud and precipitation information over sea and land. This combination of channels was successfully tested on the NPOESS Aircraft Sounder Testbed - Microwave Sounder (NAST-M) airborne radiometer, and it is the first time that will be implemented in a conical scanning configuration in a single instrument. An overview of the EPS-SG programme and the MWI instrument will be presented.

  12. Stereoscopic Integrated Imaging Goggles for Multimodal Intraoperative Image Guidance.

    Directory of Open Access Journals (Sweden)

    Christopher A Mela

    Full Text Available We have developed novel stereoscopic wearable multimodal intraoperative imaging and display systems entitled Integrated Imaging Goggles for guiding surgeries. The prototype systems offer real time stereoscopic fluorescence imaging and color reflectance imaging capacity, along with in vivo handheld microscopy and ultrasound imaging. With the Integrated Imaging Goggle, both wide-field fluorescence imaging and in vivo microscopy are provided. The real time ultrasound images can also be presented in the goggle display. Furthermore, real time goggle-to-goggle stereoscopic video sharing is demonstrated, which can greatly facilitate telemedicine. In this paper, the prototype systems are described, characterized and tested in surgeries in biological tissues ex vivo. We have found that the system can detect fluorescent targets with as low as 60 nM indocyanine green and can resolve structures down to 0.25 mm with large FOV stereoscopic imaging. The system has successfully guided simulated cancer surgeries in chicken. The Integrated Imaging Goggle is novel in 4 aspects: it is (a the first wearable stereoscopic wide-field intraoperative fluorescence imaging and display system, (b the first wearable system offering both large FOV and microscopic imaging simultaneously,

  13. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    Science.gov (United States)

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  14. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    Science.gov (United States)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  15. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    Science.gov (United States)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  16. Optically controlled phased array antenna concepts using GaAs monolithic microwave integrated circuits

    Science.gov (United States)

    Kunath, R. R.; Bhasin, K. B.

    1986-01-01

    The desire for rapid beam reconfigurability and steering has led to the exploration of new techniques. Optical techniques have been suggested as potential candidates for implementing these needs. Candidates generally fall into one of two areas: those using fiber optic Beam Forming Networks (BFNs) and those using optically processed BFNs. Both techniques utilize GaAs Monolithic Microwave Integrated Circuits (MMICs) in the BFN, but the role of the MMIC for providing phase and amplitude variations is largely eliminated by some new optical processing techniques. This paper discusses these two types of optical BFN designs and provides conceptual designs of both systems.

  17. New Structure for a Six-Port Reflectometer in Monolithic Microwave Integrated-Circuit Technology

    OpenAIRE

    Wiedmann , Frank; Huyart , Bernard; Bergeault , Eric; Jallet , Louis

    1997-01-01

    International audience; This paper presents a new structure for a six-port reflectometer which due to its simplicity can be implemented very easily in monolithic microwave integrated-circuit (MMIC) technology. It uses nonmatched diode detectors with a high input impedance which are placed around a phase shifter in conjunction with a power divider for the reference detector. The circuit has been fabricated using the F20 GaAs process of the GEC–Marconi foundry and operates between 1.3 GHz and 3...

  18. Wideband Monolithic Microwave Integrated Circuit Frequency Converters with GaAs mHEMT Technology

    OpenAIRE

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten; Vidkjær, Jens

    2005-01-01

    We present monolithic microwave integrated circuit (MMIC) frequency converter, which can be used for up and down conversion, due to the large RF and IF port bandwidth. The MMIC converters are based on commercially available GaAs mHEMT technology and are comprised of a Gilbert mixer cell core, baluns and combiners. Single ended and balanced configurations DC and AC coupled have been investigated. The instantaneous 3 dB bandwidth at both the RF and the IF port of the frequency converters is ∼ 2...

  19. Strict integrity control of biomedical images

    Science.gov (United States)

    Coatrieux, Gouenou; Maitre, Henri; Sankur, Bulent

    2001-08-01

    The control of the integrity and authentication of medical images is becoming ever more important within the Medical Information Systems (MIS). The intra- and interhospital exchange of images, such as in the PACS (Picture Archiving and Communication Systems), and the ease of copying, manipulation and distribution of images have brought forth the security aspects. In this paper we focus on the role of watermarking for MIS security and address the problem of integrity control of medical images. We discuss alternative schemes to extract verification signatures and compare their tamper detection performance.

  20. Simultaneous Microwave Imaging System for Density and Temperature Fluctuation Measurements on TEXTOR

    International Nuclear Information System (INIS)

    Park, H.; Mazzucato, E.; Munsat, T.; Domier, C.W.; Johnson, M.; Luhmann, N.C. Jr.; Wang, J.; Xia, Z.; Classen, I.G.J.; Donne, A.J.H.; Pol, M.J. van de

    2004-01-01

    Diagnostic systems for fluctuation measurements in plasmas have, of necessity, evolved from simple 1-D systems to multi-dimensional systems due to the complexity of the MHD and turbulence physics of plasmas illustrated by advanced numerical simulations. Using the recent significant advancements in millimeter wave imaging technology, Microwave Imaging Reflectometry (MIR) and Electron Cyclotron Emission Imaging (ECEI), simultaneously measuring density and temperature fluctuations, are developed for TEXTOR. The MIR system was installed on TEXTOR and the first experiment was performed in September, 2003. Subsequent MIR campaigns have yielded poloidally resolved spectra and assessments of poloidal velocity. The new 2-D ECE Imaging system (with a total of 128 channels), installed on TEXTOR in December, 2003, successfully captured a true 2-D images of Te fluctuations of m=1 oscillation (''sawteeth'') near the q ∼ 1 surface for the first time

  1. Optics System Design of Microwave Imaging Reflectometry for the EAST Tokamak

    International Nuclear Information System (INIS)

    Zhu Yilun; Zhao Zhenling; Tong Li; Chen Dongxu; Xie Jinlin; Liu Wandong

    2016-01-01

    A front-end optics system has been developed for the EAST microwave imaging reflectometry for 2D density fluctuation measurement. Via the transmitter optics system, a combination of eight transmitter beams with independent frequencies is employed to illuminate wide poloidal regions on eight distinct cutoff layers. The receiver optics collect the reflected wavefront and project them onto the vertical detector array with 12 antennas. Utilizing optimized Field Curvature adjustment lenses in the receiver optics, the front-end optics system provides a flexible and perfect matching between the image plane and a specified cutoff layer in the plasma, which ensures the correct data interpretation of density fluctuation measurement. (paper)

  2. Microwave tomography for functional imaging of extremity soft tissues: feasibility assessment

    International Nuclear Information System (INIS)

    Semenov, Serguei; Kellam, James; Althausen, Peter; Williams, Thomas; Abubakar, Aria; Bulyshev, Alexander; Sizov, Yuri

    2007-01-01

    It is important to assess the viability of extremity soft tissues, as this component is often the determinant of the final outcome of fracture treatment. Microwave tomography (MWT) and sensing might be able to provide a fast and mobile assessment of such properties. MWT imaging of extremities possesses a complicated, nonlinear, high dielectric contrast inverse problem of diffraction tomography. There is a high dielectric contrast between bone and soft tissue in the extremities. A contrast between soft tissue abnormalities is less pronounced when compared with the high bone-soft tissue contrast. The goal of this study was to assess the feasibility of MWT for functional imaging of extremity soft tissues, i.e. to detect a relatively small contrast within soft tissues in closer proximity to high contrast boney areas. Both experimental studies and computer simulation were performed. Experiments were conducted using live pigs with compromised blood flow and compartment syndrome within an extremity. A whole 2D tomographic imaging cycle at 1 GHz was computer simulated and images were reconstructed using the Newton, MR-CSI and modified Born methods. Results of experimental studies demonstrate that microwave technology is sensitive to changes in the soft tissue blood content and elevated compartment pressure. It was demonstrated that MWT is feasible for functional imaging of extremity soft tissues, circulatory-related changes, blood flow and elevated compartment pressure

  3. Image and pathological changes after microwave ablation of breast cancer: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenbin [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Jiang, Yanni [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Chen, Lin; Ling, Lijun; Liang, Mengdi; Pan, Hong [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Siqi [Department of Radiology, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Ding, Qiang [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Liu, Xiaoan, E-mail: liuxiaoan@126.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China); Wang, Shui, E-mail: ws0801@hotmail.com [Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029 (China)

    2014-10-15

    Highlights: • We report successful experience of MWA in breast cancer under local anesthesia. • We report MR imaging evaluation of microwave ablation zone in breast cancer. • Pathological changes after microwave ablation in breast cancer was reported. • 2 min MWA caused an ablation zone with three diameters > 2 cm in breast cancer. - Abstract: Purpose: To prospectively assess MR imaging evaluation of the ablation zone and pathological changes after microwave ablation (MWA) in breast cancer. Materials and methods: Twelve enrolled patients, diagnosed with non-operable locally advanced breast cancer (LABC), were treated by MWA and then neoadjuvant chemotherapy, followed by surgery. MR imaging was applied to evaluate the effect of MWA. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the ablated area. Results: All MWA procedures were performed successfully under local anesthesia. For a mean duration of 2.15 min, the mean largest, middle and smallest diameters in the ablated zone 24-h post-ablation in MR imaging were 2.98 cm ± 0.53, 2.51 cm ± 0.41 and 2.23 cm ± 0.41, respectively. The general shape of the ablation zone was close to a sphere. The ablated area became gradually smaller in MR imaging. No adverse effects related to MWA were noted in all 12 patients during and after MWA. HE staining could confirm the effect about 3 months after MWA, which was confirmed by TEM. Conclusions: 2 min MWA can cause an ablation zone with three diameters larger than 2 cm in breast cancer, which may be suitable for the local treatment of breast cancer up to 2 cm in largest diameter. However, the long-term effect of MWA in the treatment of small breast cancer should be determined in the future.

  4. Flow cytometry and integrated imaging

    Directory of Open Access Journals (Sweden)

    V. Kachel

    2000-06-01

    Full Text Available It is a serious problem to relate the results of a flow cytometric analysis of a marine sample to different species. Images of particles selectively triggered by the flow cytometric analysis and picked out from the flowing stream give a valuable additional information on the analyzed organisms. The technical principles and problems of triggered imaging in flow are discussed, as well as the positioning of the particles in the plane of focus, freezing the motion of the quickly moving objects and what kinds of light sources are suitable for pulsed illumination. The images have to be stored either by film or electronically. The features of camera targets and the memory requirements for storing the image data and the conditions for the triggering device are shown. A brief explanation of the features of three realized flow cytometric imaging (FCI systems is given: the Macro Flow Planktometer built within the EUROMAR MAROPT project, the Imaging Module of the European Plankton Analysis System, supported by the MAST II EurOPA project and the most recently developed FLUVO VI universal flow cytometer including HBO 100- and laser excitation for fluorescence and scatter, Coulter sizing as well as bright field and and phase contrast FCI.

  5. Calibration of a Microwave Imaging System Using a Known Scatterer

    DEFF Research Database (Denmark)

    Rubæk, Tonny; Zhurbenko, Vitaliy

    2010-01-01

    the transmission and receiving channels inside of the transceiver modules has been detected. This is most likely caused by the lessthan- perfect isolation of the switches in the modules as well as leakage through the PCB itself. Since the presence of such a leakage signal in the measurements seriously influence...... that the low-amplitude RF signals, available at the terminals of the antennas, only need to travel a very short distance to get to the low-noise amplifier, while the RF as well as the IF signals running to and from the transceiver modules all have significant amplitudes. However, some leakage between...... the imaging capability of the system, it is of interest to remove it. In this work, a calibration procedure capable of removing a constant offset, i.e., the leakage, from the measured signals is presented. The calibration procedure is based on a comparison between the relative change observed between...

  6. MIDAS: Automated Approach to Design Microwave Integrated Inductors and Transformers on Silicon

    Directory of Open Access Journals (Sweden)

    L. Aluigi

    2013-09-01

    Full Text Available The design of modern radiofrequency integrated circuits on silicon operating at microwave and millimeter-waves requires the integration of several spiral inductors and transformers that are not commonly available in the process design-kits of the technologies. In this work we present an auxiliary CAD tool for Microwave Inductor (and transformer Design Automation on Silicon (MIDAS that exploits commercial simulators and allows the implementation of an automatic design flow, including three-dimensional layout editing and electromagnetic simulations. In detail, MIDAS allows the designer to derive a preliminary sizing of the inductor (transformer on the bases of the design entries (specifications. It draws the inductor (transformer layers for the specific process design kit, including vias and underpasses, with or without patterned ground shield, and launches the electromagnetic simulations, achieving effective design automation with respect to the traditional design flow for RFICs. With the present software suite the complete design time is reduced significantly (typically 1 hour on a PC based on Intel® Pentium® Dual 1.80GHz CPU with 2-GB RAM. Afterwards both the device equivalent circuit and the layout are ready to be imported in the Cadence environment.

  7. Reprocessing the Historical Satellite Passive Microwave Record at Enhanced Spatial Resolutions using Image Reconstruction

    Science.gov (United States)

    Hardman, M.; Brodzik, M. J.; Long, D. G.; Paget, A. C.; Armstrong, R. L.

    2015-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Currently available global gridded passive microwave data sets serve a diverse community of hundreds of data users, but do not meet many requirements of modern Earth System Data Records (ESDRs) or Climate Data Records (CDRs), most notably in the areas of intersensor calibration, quality-control, provenance and consistent processing methods. The original gridding techniques were relatively primitive and were produced on 25 km grids using the original EASE-Grid definition that is not easily accommodated in modern software packages. Further, since the first Level 3 data sets were produced, the Level 2 passive microwave data on which they were based have been reprocessed as Fundamental CDRs (FCDRs) with improved calibration and documentation. We are funded by NASA MEaSUREs to reprocess the historical gridded data sets as EASE-Grid 2.0 ESDRs, using the most mature available Level 2 satellite passive microwave (SMMR, SSM/I-SSMIS, AMSR-E) records from 1978 to the present. We have produced prototype data from SSM/I and AMSR-E for the year 2003, for review and feedback from our Early Adopter user community. The prototype data set includes conventional, low-resolution ("drop-in-the-bucket" 25 km) grids and enhanced-resolution grids derived from the two candidate image reconstruction techniques we are evaluating: 1) Backus-Gilbert (BG) interpolation and 2) a radiometer version of Scatterometer Image Reconstruction (SIR). We summarize our temporal subsetting technique, algorithm tuning parameters and computational costs, and include sample SSM/I images at enhanced resolutions of up to 3 km. We are actively

  8. Synthetic Aperture Microwave Imaging (SAMI) of the plasma edge on NSTX-U

    Science.gov (United States)

    Vann, Roddy; Taylor, Gary; Brunner, Jakob; Ellis, Bob; Thomas, David

    2016-10-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a unique phased-array microwave camera with a +/-40° field of view in both directions. It can image cut-off surfaces corresponding to frequencies in the range 10-34.5GHz; these surfaces are typically in the plasma edge. SAMI operates in two modes: either imaging thermal emission from the plasma (often modified by its interaction with the plasma edge e.g. via BXO mode conversion) or ``active probing'' i.e. injecting a broad beam at the plasma surface and imaging the reflected/back-scattered signal. SAMI was successfully pioneered on the Mega-Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy. SAMI has now been installed and commissioned on the National Spherical Torus Experiment Upgrade (NSTX-U) at Princeton Plasma Physics Laboratory. The firmware has been upgraded to include real-time digital filtering, which enables continuous acquisition of the Doppler back-scattered active probing data. In this poster we shall present SAMI's analysis of the plasma edge on NSTX-U including measurements of the edge pitch angle on NSTX-U using SAMI's unique 2-D Doppler-backscattering capability.

  9. Wide-band antenna design for use in minimal-scan, microwave tomographic imaging

    Science.gov (United States)

    Klaser, Jacob

    Microwave tomography is widely used in biomedical imaging and nondestructive evaluation of dielectric materials. A novel microwave tomography system that uses an electrically-conformable mirror to steer the incident energy for producing multi-view projection data is being developed in the Non-Destructive Evaluation Laboratory (NDEL). Such a system will have a significant advantage over existing tomography systems in terms of simplicity of design and operation, particularly when there is limited-access of the structure that is being imaged. The major components of a mirror-based tomography system are the source mirror assembly, and a receiver array for capturing the multi-view projection data. This thesis addresses the design and development of the receiver array. This imaging array features balanced, anti-podal Vivaldi antennas, which offer large bandwidth, high gain and a compact size. From the simulations, as well as the experimental results for the antenna, the return loss (S 11) is below -10dB for the range from 2.2GHz to 8.2GHz, and the gain is measured to be near 6dB. The data gathered from the receiver array is then run through MATLAB code for tomographic reconstruction using the Filtered Back-Propagation algorithm from limited-view projections. Initial results of reconstruction from the measured data shows the feasibility of the approach, but a significant challenge remains in interpolating the data for a limited number of receiving antenna elements and removing noise from the reconstructed image.

  10. Advances in gallium arsenide monolithic microwave integrated-circuit technology for space communications systems

    Science.gov (United States)

    Bhasin, K. B.; Connolly, D. J.

    1986-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. In this paper, current developments in GaAs MMIC technology are described, and the status and prospects of the technology are assessed.

  11. Surface scanning through a cylindrical tank of coupling fluid for clinical microwave breast imaging exams

    International Nuclear Information System (INIS)

    Pallone, Matthew J.; Meaney, Paul M.; Paulsen, Keith D.

    2012-01-01

    Purpose: Microwave tomographic image quality can be improved significantly with prior knowledge of the breast surface geometry. The authors have developed a novel laser scanning system capable of accurately recovering surface renderings of breast-shaped phantoms immersed within a cylindrical tank of coupling fluid which resides completely external to the tank (and the aqueous environment) and overcomes the challenges associated with the optical distortions caused by refraction from the air, tank wall, and liquid bath interfaces. Methods: The scanner utilizes two laser line generators and a small CCD camera mounted concentrically on a rotating gantry about the microwave imaging tank. Various calibration methods were considered for optimizing the accuracy of the scanner in the presence of the optical distortions including traditional ray tracing and image registration approaches. In this paper, the authors describe the construction and operation of the laser scanner, compare the efficacy of several calibration methods—including analytical ray tracing and piecewise linear, polynomial, locally weighted mean, and thin-plate-spline (TPS) image registrations—and report outcomes from preliminary phantom experiments. Results: The results show that errors in calibrating camera angles and position prevented analytical ray tracing from achieving submillimeter accuracy in the surface renderings obtained from our scanner configuration. Conversely, calibration by image registration reliably attained mean surface errors of less than 0.5 mm depending on the geometric complexity of the object scanned. While each of the image registration approaches outperformed the ray tracing strategy, the authors found global polynomial methods produced the best compromise between average surface error and scanner robustness. Conclusions: The laser scanning system provides a fast and accurate method of three dimensional surface capture in the aqueous environment commonly found in microwave

  12. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  13. Highly integrated image sensors enable low-cost imaging systems

    Science.gov (United States)

    Gallagher, Paul K.; Lake, Don; Chalmers, David; Hurwitz, J. E. D.

    1997-09-01

    The highest barriers to wide scale implementation of vision systems have been cost. This is closely followed by the level of difficulty of putting a complete imaging system together. As anyone who has every been in the position of creating a vision system knows, the various bits and pieces supplied by the many vendors are not under any type of standardization control. In short, unless you are an expert in imaging, electrical interfacing, computers, digital signal processing, and high speed storage techniques, you will likely spend more money trying to do it yourself rather than to buy the exceedingly expensive systems available. Another alternative is making headway into the imaging market however. The growing investment in highly integrated CMOS based imagers is addressing both the cost and the system integration difficulties. This paper discusses the benefits gained from CMOS based imaging, and how these benefits are already being applied.

  14. Nonlinear 3-D Microwave Imaging for Breast-Cancer Screening: Log, Phase, and Log-Phase Formulation

    DEFF Research Database (Denmark)

    Jensen, Peter Damsgaard; Rubæk, Tonny; Mohr, Johan Jacob

    2011-01-01

    The imaging algorithm used in the 3-D microwave imaging system for breast cancer screening, currently being developed at the Technical University of Denmark, is based on an iterative Newton-type algorithm. In this algorithm, the distribution of the electromagnetic constitutive parameters is updat...

  15. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    OpenAIRE

    C., PRABHAKARA; R., IACOVAZZI; J. M., YOO; K. M., KIM; NASA Goddard Space Flight Center; Center for Research on the Changing Earth System; EWHA Womans University; Science Systems and Applications, Inc.

    2005-01-01

    Over the tropical land regions scatter plots of the rain rate (R_), deduced from the TRMM Precipitation Radar (PR) versus the observed 85GHz brightness temperature (T_) made by the TRMM Microwave Imager (TMI) radiometer, for a period of a season over a given geographic region of 3°×5°(lat×lon), indicate that there are two maxima in rain rate. One strong maximum occurs when T_ has a value of about 220K, and the other weaker one when T_ is much colder ~150K. Also these two maxima are vividly re...

  16. Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition

    Directory of Open Access Journals (Sweden)

    Nicolas Desbois

    2015-11-01

    Full Text Available The Cu(I-catalysed Huisgen cycloaddition, known as “click” reaction, has been applied to the synthesis of a range of triazole-linked porphyrin/corrole to DOTA/NOTA derivatives. Microwave irradiation significantly accelerates the reaction. The synthesis of heterobimetallic complexes was easily achieved in up to 60% isolated yield. Heterobimetallic complexes were easily prepared as potential MRI/PET (SPECT bimodal contrast agents incorporating one metal (Mn, Gd for the enhancement of contrast for MRI applications and one “cold” metal (Cu, Ga, In for future radionuclear imaging applications. Preliminary relaxivity measurements showed that the reported complexes are promising contrast agents (CA in MRI.

  17. Microwave imaging of dielectric cylinder using level set method and conjugate gradient algorithm

    International Nuclear Information System (INIS)

    Grayaa, K.; Bouzidi, A.; Aguili, T.

    2011-01-01

    In this paper, we propose a computational method for microwave imaging cylinder and dielectric object, based on combining level set technique and the conjugate gradient algorithm. By measuring the scattered field, we tried to retrieve the shape, localisation and the permittivity of the object. The forward problem is solved by the moment method, while the inverse problem is reformulate in an optimization one and is solved by the proposed scheme. It found that the proposed method is able to give good reconstruction quality in terms of the reconstructed shape and permittivity.

  18. A Directional Antenna in a Matching Liquid for Microwave Radar Imaging

    Directory of Open Access Journals (Sweden)

    Saeed I. Latif

    2015-01-01

    Full Text Available The detailed design equations and antenna parameters for a directional antenna for breast imaging are presented in this paper. The antenna was designed so that it could be immersed in canola oil to achieve efficient coupling of the electromagnetic energy to the breast tissue. Ridges were used in the horn antenna to increase the operating bandwidth. The antenna has an exponentially tapered section for impedance matching. The double-ridged horn antenna has a wideband performance from 1.5 GHz to 5 GHz (3.75 GHz or 110% of impedance bandwidth, which is suitable for breast microwave radar imaging. The fabricated antenna was tested and compared with simulated results, and similar bandwidths were obtained. Experiments were conducted on breast phantoms using these antennas, to detect a simulated breast lesion. The reconstructed image from the experiments shows distinguishable tumor responses indicating promising results for successful breast cancer detection.

  19. Analysis of identification of digital images from a map of cosmic microwaves

    Science.gov (United States)

    Skeivalas, J.; Turla, V.; Jurevicius, M.; Viselga, G.

    2018-04-01

    This paper discusses identification of digital images from the cosmic microwave background radiation map formed according to the data of the European Space Agency "Planck" telescope by applying covariance functions and wavelet theory. The estimates of covariance functions of two digital images or single images are calculated according to the random functions formed of the digital images in the form of pixel vectors. The estimates of pixel vectors are formed on expansion of the pixel arrays of the digital images by a single vector. When the scale of a digital image is varied, the frequencies of single-pixel color waves remain constant and the procedure for calculation of covariance functions is not affected. For identification of the images, the RGB format spectrum has been applied. The impact of RGB spectrum components and the color tensor on the estimates of covariance functions was analyzed. The identity of digital images is assessed according to the changes in the values of the correlation coefficients in a certain range of values by applying the developed computer program.

  20. Tomodensitometry images: integration in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Dessy, F; Hoornaert, M T [Jolimont Hospital, Haine Saint Paul (France). Cancer and Nuclear Medicine Dept.; Malchair, F [Biomed Engineering, Boncelles (France)

    1995-12-01

    With a view to utilization of CT scan images in radiotherapy, the effective energy and the linearity of four different scanners (Siemens somatom CR, HiQS, Plus and Picker PQ 2000) and two non standard scanners, simulators with CT option (Webb 1990) (Varian Ximatron and Oldelft Simulx CT) has been measured using the method described by White and Speller in 1980. When the linearity relation in presented using the density or the electron density as the abscissa, a blurred area where two different components of equal density or electron density can have two different Hounsfield`s numbers. Using the linearity relation, the density of Rando`s lung heterogeneity is determined. We calculated a treatment planning (TP) using this value and made a comparison between the TP and the real absorbed dose with was measured using diodes. The comparison between the TP and the relative Absorbed doses showed a difference of up to 4.5%.

  1. Microwave Technologies as Part of an Integrated Weed Management Strategy: A Review

    Directory of Open Access Journals (Sweden)

    Graham Brodie

    2012-01-01

    Full Text Available Interest in controlling weed plants using radio frequency or microwave energy has been growing in recent years because of the growing concerns about herbicide resistance and chemical residues in the environment. This paper reviews the prospects of using microwave energy to manage weeds. Microwave energy effectively kills weed plants and their seeds; however, most studies have focused on applying the microwave energy over a sizable area, which requires about ten times the energy that is embodied in conventional chemical treatments to achieve effective weed control. A closer analysis of the microwave heating phenomenon suggests that thermal runaway can reduce microwave weed treatment time by at least one order of magnitude. If thermal runaway can be induced in weed plants, the energy costs associated with microwave weed management would be comparable with chemical weed control.

  2. An Attempt of Nondestructive Imaging of Sugar Distribution inside a Fruit Using Microwaves

    Science.gov (United States)

    Watanabe, Masakazu; Miyakawa, Michio

    Chirp Pulse Microwave Computed Tomography (CP-MCT) that was originally developed for noninvasive imaging of a human body was applied to visualize sugar distribution inside a fruit. It can visualize not only permittivity distribution itself of a fruit but also various physical- or chemical-quantities relating to the permittivity value. Almost all fruits are dielectric materials containing much water, sugar, acids and so on. But for water, the principal ingredient of a fruit is sugar. Most of the fruits contain sugar from 8% to 22% by weight at the harvest time. Therefore sugar content distribution should be measured by CP-MCT nondestructively. By using apples and Japanese pears, feasibility of sugar distribution imaging has been evaluated by comparing the gray level of CP-MCT and sugar content of the cross section. The averaged correlation coefficients of the apple and pear are 0.793 and 0.681.

  3. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    Science.gov (United States)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  4. Integrated-circuit microwave detector based on granular high-Tc thin films. [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Drobinin, A.V.; Lutovinov, V.S.; Starostenko, I.V. (Moscow Inst. of Radioengineering, Electronics and Automation, (MIREA), Moscow (USSR))

    1991-12-01

    A highly sensitive integrative-circuit microwave detector based on granular High-Tc film has been designed. All matching circuits and High-Tc microbridge are located on the same substrate. The voltage responsivity 10{sup 3} V/W has been found at 65 K and frequency 5 GHz. Different modes of microwave detection have been observed: bolometric response near Tc in high-quality films, rectification mode caused by an array of weak links dominating in low-quality films, detection caused by nonlinear magnetic flux motion. (orig.).

  5. Crystal growth of hexaferrite architecture for magnetoelectrically tunable microwave semiconductor integrated devices

    Science.gov (United States)

    Hu, Bolin

    Hexaferrites (i.e., hexagonal ferrites), discovered in 1950s, exist as any one of six crystallographic structural variants (i.e., M-, X-, Y-, W-, U-, and Z-type). Over the past six decades, the hexaferrites have received much attention owing to their important properties that lend use as permanent magnets, magnetic data storage materials, as well as components in electrical devices, particularly those operating at RF frequencies. Moreover, there has been increasing interest in hexaferrites for new fundamental and emerging applications. Among those, electronic components for mobile and wireless communications especially incorporated with semiconductor integrated circuits at microwave frequencies, electromagnetic wave absorbers for electromagnetic compatibility, random-access memory (RAM) and low observable technology, and as composite materials having low dimensions. However, of particular interest is the magnetoelectric (ME) effect discovered recently in the hexaferrites such as SrScxFe12-xO19 (SrScM), Ba2--xSrxZn 2Fe12O22 (Zn2Y), Sr4Co2Fe 36O60 (Co2U) and Sr3Co2Fe 24O41 (Co2Z), demonstrating ferroelectricity induced by the complex internal alignment of magnetic moments. Further, both Co 2Z and Co2U have revealed observable magnetoelectric effects at room temperature, representing a step toward practical applications using the ME effect. These materials hold great potential for applications, since strong magnetoelectric coupling allows switching of the FE polarization with a magnetic field (H) and vice versa. These features could lead to a new type of storage devices, such as an electric field-controlled magnetic memory. A nanoscale-driven crystal growth of magnetic hexaferrites was successfully demonstrated at low growth temperatures (25--40% lower than the temperatures required often for crystal growth). This outcome exhibits thermodynamic processes of crystal growth, allowing ease in fabrication of advanced multifunctional materials. Most importantly, the

  6. Natural color image segmentation using integrated mechanism

    Institute of Scientific and Technical Information of China (English)

    Jie Xu (徐杰); Pengfei Shi (施鹏飞)

    2003-01-01

    A new method for natural color image segmentation using integrated mechanism is proposed in this paper.Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the global color information to estimate roughly the distribution of objects in the image, while short ones are merged based on their positions and local color differences to eliminate the negative affection caused by texture or other trivial features in image. Region growing technique is employed to achieve final segmentation results. The proposed method unifies edges, whole and local color distributions, as well as spatial information to solve the natural image segmentation problem.The feasibility and effectiveness of this method have been demonstrated by various experiments.

  7. Information and image integration: project spectrum

    Science.gov (United States)

    Blaine, G. James; Jost, R. Gilbert; Martin, Lori; Weiss, David A.; Lehmann, Ron; Fritz, Kevin

    1998-07-01

    The BJC Health System (BJC) and the Washington University School of Medicine (WUSM) formed a technology alliance with industry collaborators to develop and implement an integrated, advanced clinical information system. The industry collaborators include IBM, Kodak, SBC and Motorola. The activity, called Project Spectrum, provides an integrated clinical repository for the multiple hospital facilities of the BJC. The BJC System consists of 12 acute care hospitals serving over one million patients in Missouri and Illinois. An interface engine manages transactions from each of the hospital information systems, lab systems and radiology information systems. Data is normalized to provide a consistent view for the primary care physician. Access to the clinical repository is supported by web-based server/browser technology which delivers patient data to the physician's desktop. An HL7 based messaging system coordinates the acquisition and management of radiological image data and sends image keys to the clinical data repository. Access to the clinical chart browser currently provides radiology reports, laboratory data, vital signs and transcribed medical reports. A chart metaphor provides tabs for the selection of the clinical record for review. Activation of the radiology tab facilitates a standardized view of radiology reports and provides an icon used to initiate retrieval of available radiology images. The selection of the image icon spawns an image browser plug-in and utilizes the image key from the clinical repository to access the image server for the requested image data. The Spectrum system is collecting clinical data from five hospital systems and imaging data from two hospitals. Domain specific radiology imaging systems support the acquisition and primary interpretation of radiology exams. The spectrum clinical workstations are deployed to over 200 sites utilizing local area networks and ISDN connectivity.

  8. Three-Dimensional Microwave Imaging for Concealed Weapon Detection Using Range Stacking Technique

    Directory of Open Access Journals (Sweden)

    Weixian Tan

    2017-01-01

    Full Text Available Three-dimensional (3D microwave imaging has been proven to be well suited for concealed weapon detection application. For the 3D image reconstruction under two-dimensional (2D planar aperture condition, most of current imaging algorithms focus on decomposing the 3D free space Green function by exploiting the stationary phase and, consequently, the accuracy of the final imagery is obtained at a sacrifice of computational complexity due to the need of interpolation. In this paper, from an alternative viewpoint, we propose a novel interpolation-free imaging algorithm based on wavefront reconstruction theory. The algorithm is an extension of the 2D range stacking algorithm (RSA with the advantages of low computational cost and high precision. The algorithm uses different reference signal spectrums at different range bins and then forms the target functions at desired range bin by a concise coherent summation. Several practical issues such as the propagation loss compensation, wavefront reconstruction, and aliasing mitigating are also considered. The sampling criterion and the achievable resolutions for the proposed algorithm are also derived. Finally, the proposed method is validated through extensive computer simulations and real-field experiments. The results show that accurate 3D image can be generated at a very high speed by utilizing the proposed algorithm.

  9. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  10. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters.

    Science.gov (United States)

    Tian, Chao; Jiang, Zheng; Chen, Weidong; Wang, Dongjin

    2017-10-21

    Microwave staring correlated imaging (MSCI) can achieve ultra-high resolution in real aperture staring radar imaging using the correlated imaging process (CIP) under all-weather and all-day circumstances. The CIP must combine the received echo signal with the temporal-spatial stochastic radiation field. However, a precondition of the CIP is that the continuous imaging region must be discretized to a fine grid, and the measurement matrix should be accurately computed, which makes the imaging process highly complex when the MSCI system observes a wide area. This paper proposes an adaptive imaging approach for the targets in discrete clusters to reduce the complexity of the CIP. The approach is divided into two main stages. First, as discrete clustered targets are distributed in different range strips in the imaging region, the transmitters of the MSCI emit narrow-pulse waveforms to separate the echoes of the targets in different strips in the time domain; using spectral entropy, a modified method robust against noise is put forward to detect the echoes of the discrete clustered targets, based on which the strips with targets can be adaptively located. Second, in a strip with targets, the matched filter reconstruction algorithm is used to locate the regions with targets, and only the regions of interest are discretized to a fine grid; sparse recovery is used, and the band exclusion is used to maintain the non-correlation of the dictionary. Simulation results are presented to demonstrate that the proposed approach can accurately and adaptively locate the regions with targets and obtain high-quality reconstructed images.

  11. CloudSat-Based Assessment of GPM Microwave Imager Snowfall Observation Capabilities

    Directory of Open Access Journals (Sweden)

    Giulia Panegrossi

    2017-12-01

    Full Text Available The sensitivity of Global Precipitation Measurement (GPM Microwave Imager (GMI high-frequency channels to snowfall at higher latitudes (around 60°N/S is investigated using coincident CloudSat observations. The 166 GHz channel is highlighted throughout the study due to its ice scattering sensitivity and polarization information. The analysis of three case studies evidences the important combined role of total precipitable water (TPW, supercooled cloud water, and background surface composition on the brightness temperature (TB behavior for different snow-producing clouds. A regression tree statistical analysis applied to the entire GMI-CloudSat snowfall dataset indicates which variables influence the 166 GHz polarization difference (166 ∆TB and its relation to snowfall. Critical thresholds of various parameters (sea ice concentration (SIC, TPW, ice water path (IWP are established for optimal snowfall detection capabilities. The 166 ∆TB can identify snowfall events over land and sea when critical thresholds are exceeded (TPW > 3.6 kg·m−2, IWP > 0.24 kg·m−2 over land, and SIC > 57%, TPW > 5.1 kg·m−2 over sea. The complex combined 166 ∆TB-TB relationship at higher latitudes and the impact of supercooled water vertical distribution are also investigated. The findings presented in this study can be exploited to improve passive microwave snowfall detection algorithms.

  12. Identifying and Analyzing Uncertainty Structures in the TRMM Microwave Imager Precipitation Product over Tropical Ocean Basins

    Science.gov (United States)

    Liu, Jianbo; Kummerow, Christian D.; Elsaesser, Gregory S.

    2016-01-01

    Despite continuous improvements in microwave sensors and retrieval algorithms, our understanding of precipitation uncertainty is quite limited, due primarily to inconsistent findings in studies that compare satellite estimates to in situ observations over different parts of the world. This study seeks to characterize the temporal and spatial properties of uncertainty in the Tropical Rainfall Measuring Mission Microwave Imager surface rainfall product over tropical ocean basins. Two uncertainty analysis frameworks are introduced to qualitatively evaluate the properties of uncertainty under a hierarchy of spatiotemporal data resolutions. The first framework (i.e. 'climate method') demonstrates that, apart from random errors and regionally dependent biases, a large component of the overall precipitation uncertainty is manifested in cyclical patterns that are closely related to large-scale atmospheric modes of variability. By estimating the magnitudes of major uncertainty sources independently, the climate method is able to explain 45-88% of the monthly uncertainty variability. The percentage is largely resolution dependent (with the lowest percentage explained associated with a 1 deg x 1 deg spatial/1 month temporal resolution, and highest associated with a 3 deg x 3 deg spatial/3 month temporal resolution). The second framework (i.e. 'weather method') explains regional mean precipitation uncertainty as a summation of uncertainties associated with individual precipitation systems. By further assuming that self-similar recurring precipitation systems yield qualitatively comparable precipitation uncertainties, the weather method can consistently resolve about 50 % of the daily uncertainty variability, with only limited dependence on the regions of interest.

  13. Three-dimensional ultrasound image-guided robotic system for accurate microwave coagulation of malignant liver tumours.

    Science.gov (United States)

    Xu, Jing; Jia, Zhen-zhong; Song, Zhang-jun; Yang, Xiang-dong; Chen, Ken; Liang, Ping

    2010-09-01

    The further application of conventional ultrasound (US) image-guided microwave (MW) ablation of liver cancer is often limited by two-dimensional (2D) imaging, inaccurate needle placement and the resulting skill requirement. The three-dimensional (3D) image-guided robotic-assisted system provides an appealing alternative option, enabling the physician to perform consistent, accurate therapy with improved treatment effectiveness. Our robotic system is constructed by integrating an imaging module, a needle-driven robot, a MW thermal field simulation module, and surgical navigation software in a practical and user-friendly manner. The robot executes precise needle placement based on the 3D model reconstructed from freehand-tracked 2D B-scans. A qualitative slice guidance method for fine registration is introduced to reduce the placement error caused by target motion. By incorporating the 3D MW specific absorption rate (SAR) model into the heat transfer equation, the MW thermal field simulation module determines the MW power level and the coagulation time for improved ablation therapy. Two types of wrists are developed for the robot: a 'remote centre of motion' (RCM) wrist and a non-RCM wrist, which is preferred in real applications. The needle placement accuracies were robot with the RCM wrist was improved to 1.6 +/- 1.0 mm when real-time 2D US feedback was used in the artificial-tissue phantom experiment. By using the slice guidance method, the robot with the non-RCM wrist achieved accuracy of 1.8 +/- 0.9 mm in the ex vivo experiment; even target motion was introduced. In the thermal field experiment, a 5.6% relative mean error was observed between the experimental coagulated neurosis volume and the simulation result. The proposed robotic system holds promise to enhance the clinical performance of percutaneous MW ablation of malignant liver tumours. Copyright 2010 John Wiley & Sons, Ltd.

  14. Integrated InP frequency discriminator for Phase-modulated microwave photonic links.

    Science.gov (United States)

    Fandiño, J S; Doménech, J D; Muñoz, P; Capmany, J

    2013-02-11

    We report the design, fabrication and characterization of an integrated frequency discriminator on InP technology for microwave photonic phase modulated links. The optical chip is, to the best of our knowledge, the first reported in an active platform and the first to include the optical detectors. The discriminator, designed as a linear filter in intensity, features preliminary SFDR values the range between 67 and 79 dB.Hz(2/3) for signal frequencies in the range of 5-9 GHz limited, in principle, by the high value of the optical losses arising from the use of several free space coupling devices in our experimental setup. As discussed, these losses can be readily reduced by the use of integrated spot-size converters improving the SFDR by 17.3 dB (84-96 dB.Hz(2/3)). Further increase up to a range of (104-116 dB.Hz(2/3)) is possible by reducing the system noise eliminating the EDFA employed in the setup and using a commercially available laser source providing higher output power and lower relative intensity noise. Other paths for improvement requiring a filter redesign to be linear in the optical field are also discussed.

  15. Imaging Total Stations - Modular and Integrated Concepts

    Science.gov (United States)

    Hauth, Stefan; Schlüter, Martin

    2010-05-01

    Keywords: 3D-Metrology, Engineering Geodesy, Digital Image Processing Initialized in 2009, the Institute for Spatial Information and Surveying Technology i3mainz, Mainz University of Applied Sciences, forces research towards modular concepts for imaging total stations. On the one hand, this research is driven by the successful setup of high precision imaging motor theodolites in the near past, on the other hand it is pushed by the actual introduction of integrated imaging total stations to the positioning market by the manufacturers Topcon and Trimble. Modular concepts for imaging total stations are manufacturer independent to a large extent and consist of a particular combination of accessory hardware, software and algorithmic procedures. The hardware part consists mainly of an interchangeable eyepiece adapter offering opportunities for digital imaging and motorized focus control. An easy assembly and disassembly in the field is possible allowing the user to switch between the classical and the imaging use of a robotic total station. The software part primarily has to ensure hardware control, but several level of algorithmic support might be added and have to be distinguished. Algorithmic procedures allow to reach several levels of calibration concerning the geometry of the external digital camera and the total station. We deliver insight in our recent developments and quality characteristics. Both the modular and the integrated approach seem to have its individual strengths and weaknesses. Therefore we expect that both approaches might point at different target applications. Our aim is a better understanding of appropriate applications for robotic imaging total stations. First results are presented. Stefan Hauth, Martin Schlüter i3mainz - Institut für Raumbezogene Informations- und Messtechnik FH Mainz University of Applied Sciences Lucy-Hillebrand-Straße 2, 55128 Mainz, Germany

  16. Microwave Imaging of Three-Dimensional Targets by Means of an Inexact-Newton-Based Inversion Algorithm

    Directory of Open Access Journals (Sweden)

    Claudio Estatico

    2013-01-01

    Full Text Available A microwave imaging method previously developed for tomographic inspection of dielectric targets is extended to three-dimensional objects. The approach is based on the full vector equations of the electromagnetic inverse scattering problem. The ill-posedness of the problem is faced by the application of an inexact-Newton method. Preliminary reconstruction results are reported.

  17. Imaging the p-n junction in a gallium nitride nanowire with a scanning microwave microscope

    Energy Technology Data Exchange (ETDEWEB)

    Imtiaz, Atif [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Wallis, Thomas M.; Brubaker, Matt D.; Blanchard, Paul T.; Bertness, Kris A.; Sanford, Norman A.; Kabos, Pavel, E-mail: kabos@boulder.nist.gov [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Weber, Joel C. [Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States); Coakley, Kevin J. [Information Technology Laboratory, National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2014-06-30

    We used a broadband, atomic-force-microscope-based, scanning microwave microscope (SMM) to probe the axial dependence of the charge depletion in a p-n junction within a gallium nitride nanowire (NW). SMM enables the visualization of the p-n junction location without the need to make patterned electrical contacts to the NW. Spatially resolved measurements of S{sub 11}{sup ′}, which is the derivative of the RF reflection coefficient S{sub 11} with respect to voltage, varied strongly when probing axially along the NW and across the p-n junction. The axial variation in S{sub 11}{sup ′}  effectively mapped the asymmetric depletion arising from the doping concentrations on either side of the junction. Furthermore, variation of the probe tip voltage altered the apparent extent of features associated with the p-n junction in S{sub 11}{sup ′} images.

  18. A precise electromagnetic field model useful for development of microwave imaging systems

    DEFF Research Database (Denmark)

    Chaber, Bartosz; Mohr, Johan Jacob

    2016-01-01

    was created in an iterative fashion in order to determine how much details are needed to make it reliable, while keeping it efficient.Findings - The authors found that the commercial software seems like a viable platform for developing electromagnetic solvers. The resulting computer model is easy to prepare......Purpose - The paper describes a fast forward electromagnetic model built with help of commercial software. The purpose of this paper is to create an efficient and robust electromagnetic field model that could be easily plugged into a working microwave imaging system. The secondary purpose...... is to evaluate advantages and disadvantages of such a commercial packages for creating such a model.Design/methodology/approach - In this paper the authors decided to build the model using COMSOL Multiphysics software suite, ultimately comparing its result to measurements of a real device. The numerical model...

  19. Microwave Synthesis of Nearly Monodisperse Core/Multishell Quantum Dots with Cell Imaging Applications

    Directory of Open Access Journals (Sweden)

    Xu Hengyi

    2010-01-01

    Full Text Available Abstract We report in this article the microwave synthesis of relatively monodisperse, highly crystalline CdSe quantum dots (QDs overcoated with Cd0.5Zn0.5S/ZnS multishells. The as-prepared QDs exhibited narrow photoluminescence bandwidth as the consequence of homogeneous size distribution and uniform crystallinity, which was confirmed by transmission electron microscopy. A high photoluminescence quantum yield up to 80% was measured for the core/multishell nanocrystals. Finally, the resulting CdSe/Cd0.5Zn0.5S/ZnS core/multishell QDs have been successfully applied to the labeling and imaging of breast cancer cells (SK-BR3.

  20. Microwave Imaging Reflectometry for the Measurement of Turbulent Fluctuations in Tokamaks

    International Nuclear Information System (INIS)

    Mazzucato, E.

    2004-01-01

    This article describes a numerical study of microwave reflectometry for the measurement of turbulent fluctuations in tokamak-like plasmas with a cylindrical geometry. Similarly to what was found previously in plane-stratified plasmas, the results indicate that the characteristics of density fluctuations cannot be uniquely determined from the reflected waves if the latter are allowed to propagate freely to the point of detection, as in standard reflectometry. Again, we find that if the amplitude of fluctuations is below a threshold that is set by the spectrum of poloidal wave numbers, the local characteristics of density fluctuations can be obtained from the phase of reflected waves when these are collected with a wide aperture antenna, and an image of the cutoff is formed onto an array of phase-sensitive detectors

  1. Integral transformations applied to image encryption

    International Nuclear Information System (INIS)

    Vilardy, Juan M.; Torres, Cesar O.; Perez, Ronal

    2017-01-01

    In this paper we consider the application of the integral transformations for image encryption through optical systems, a mathematical algorithm under Matlab platform using fractional Fourier transform (FrFT) and Random Phase Mask (RPM) for digital images encryption is implemented. The FrFT can be related to others integral transforms, such as: Fourier transform, Sine and Cosine transforms, Radial Hilbert transform, fractional Sine transform, fractional Cosine transform, fractional Hartley transform, fractional Wavelet transform and Gyrator transform, among other transforms. The encryption scheme is based on the use of the FrFT, the joint transform correlator and two RPMs, which provide security and robustness to the implemented security system. One of the RPMs used during encryption-decryption and the fractional order of the FrFT are the keys to improve security and make the system more resistant against security attacks. (paper)

  2. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  3. 2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas

    Science.gov (United States)

    Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.

    2016-02-01

    Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.

  4. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    Science.gov (United States)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively

  5. Status and Integrated Focal Plane Characterization of Simons Array - Cosmic Microwave Background Polarimetry Experiment

    Science.gov (United States)

    Roberts, Hayley; POLARBEAR

    2018-06-01

    Simons Array is a cosmic microwave background (CMB) polarization experiment located at 5,200 meter altitude site in the Atacama desert in Chile. The science goals of the Simons Array are to characterize the CMB B-mode signal from gravitational lensing, and search for B-mode polarization generated from inflationary gravitational waves.In 2012, POLARBEAR-1 (PB-1) began observations and the POLARBEAR team has published the first measurements of non-zero polarization B-mode polarization angular power spectrum where gravitational lensing of CMB is the dominant signal.POLARBEAR-2A (PB-2A), the first of three receivers of Simons Array, will have 7,588 polarization sensitive Transition Edge Sensor (TES) bolometers with frequencies 90 GHz and 150 GHz. This represents a factor of 6 increase in detector count compared to PB-1. Once Simons Array is fully deployed, the focal plane array will consist 22,764 TES bolometers across 90 GHz, 150 GHz, 220 GHz, and 270 GHz with a projected instantaneous sensitivity of 2.5 µK√s. Here we present the status of PB-2A and characterization of the integrated focal plane to be deployed summer of 2018.

  6. A low cost, printed microwave based level sensor with integrated oscillator readout circuitry

    KAUST Repository

    Karimi, Muhammad Akram

    2017-10-24

    This paper presents an extremely low cost, tube conformable, printed T-resonator based microwave level sensor, whose resonance frequency shifts by changing the level of fluids inside the tube. Printed T-resonator forms the frequency selective element of the tunable oscillator. Unlike typical band-pass resonators, T-resonator has a band-notch characteristics because of which it has been integrated with an unstable amplifying unit having negative resistance in the desired frequency range. Magnitude and phase of input reflection coefficient of the transistor has been optimized over the desired frequency range. Phase flattening technique has been introduced to maximize the frequency shift of the oscillator. With the help of this technique, we were able to enhance the percentage tuning of the oscillator manifolds which resulted into a level sensor with higher sensitivity. The interface level of fluids (oil and water in our case) causes a relative change in oscillation frequency by more than 50% compared to maximum frequency shift of 8% reported earlier with dielectric tunable oscillators.

  7. Ni-Cr thin film resistor fabrication for GaAs monolithic microwave integrated circuits

    International Nuclear Information System (INIS)

    Vinayak, Seema; Vyas, H.P.; Muraleedharan, K.; Vankar, V.D.

    2006-01-01

    Different Ni-Cr alloys were sputter-deposited on silicon nitride-coated GaAs substrates and covered with a spin-coated polyimide layer to develop thin film metal resistors for GaAs monolithic microwave integrated circuits (MMICs). The contact to the resistors was made through vias in the polyimide layer by sputter-deposited Ti/Au interconnect metal. The variation of contact resistance, sheet resistance (R S ) and temperature coefficient of resistance (TCR) of the Ni-Cr resistors with fabrication process parameters such as polyimide curing thermal cycles and surface treatment given to the wafer prior to interconnect metal deposition has been studied. The Ni-Cr thin film resistors exhibited lower R S and higher TCR compared to the as-deposited Ni-Cr film that was not subjected to thermal cycles involved in the MMIC fabrication process. The change in resistivity and TCR values of Ni-Cr films during the MMIC fabrication process was found to be dependent on the Ni-Cr alloy composition

  8. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    Science.gov (United States)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  9. Comparison analysis between filtered back projection and algebraic reconstruction technique on microwave imaging

    Science.gov (United States)

    Ramadhan, Rifqi; Prabowo, Rian Gilang; Aprilliyani, Ria; Basari

    2018-02-01

    Victims of acute cancer and tumor are growing each year and cancer becomes one of the causes of human deaths in the world. Cancers or tumor tissue cells are cells that grow abnormally and turn to take over and damage the surrounding tissues. At the beginning, cancers or tumors do not have definite symptoms in its early stages, and can even attack the tissues inside of the body. This phenomena is not identifiable under visual human observation. Therefore, an early detection system which is cheap, quick, simple, and portable is essensially required to anticipate the further development of cancer or tumor. Among all of the modalities, microwave imaging is considered to be a cheaper, simple, and portable system method. There are at least two simple image reconstruction algorithms i.e. Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART), which have been adopted in some common modalities. In this paper, both algorithms will be compared by reconstructing the image from an artificial tissue model (i.e. phantom), which has two different dielectric distributions. We addressed two performance comparisons, namely quantitative and qualitative analysis. Qualitative analysis includes the smoothness of the image and also the success in distinguishing dielectric differences by observing the image with human eyesight. In addition, quantitative analysis includes Histogram, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) calculation were also performed. As a result, quantitative parameters of FBP might show better values than the ART. However, ART is likely more capable to distinguish two different dielectric value than FBP, due to higher contrast in ART and wide distribution grayscale level.

  10. Integrated Microwave Photonic Isolators: Theory, Experimental Realization and Application in a Unidirectional Ring Mode-Locked Laser Diode

    Directory of Open Access Journals (Sweden)

    Martijn J.R. Heck

    2015-09-01

    Full Text Available A novel integrated microwave photonic isolator is presented. It is based on the timed drive of a pair of optical modulators, which transmit a pulsed or oscillating optical signal with low loss, when driven in phase. A signal in the reverse propagation direction will find the modulators out of phase and, hence, will experience high loss. Optical and microwave isolation ratios were simulated to be in the range up to 10 dB and 20 dB, respectively, using parameters representative for the indium phosphide platform. The experimental realization of this device in the hybrid silicon platform showed microwave isolation in the 9 dB–22 dB range. Furthermore, we present a design study on the use of these isolators inside a ring mode-locked laser cavity. Simulations show that unidirectional operation can be achieved, with a 30–50-dB suppression of the counter propagating mode, at limited driving voltages. The potentially low noise and feedback-insensitive operation of such a laser makes it a very promising candidate for use as on-chip microwave or comb generators.

  11. IBIS: the imager on-board integral

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Lebrun, F.; Goldwurm, A.; Laurent, P.; Mirabel, I.F.; Vigroux, L.; Di Cocco, G.; Labanti, C.; Bird, A.J.; Broenstad, K.; La Rosa, G.; Sacco, B.; Quadrini, E.M.; Ramsey, B.; Weisskopf, M.C.; Reglero, V.; Sabau, L.; Staubert, R.; Zdziarski, A.A.

    2003-01-01

    The IBIS telescope is the high angular resolution gamma-ray imager on-board the INTEGRAL Observatory, successfully launched from Baikonur (Kazakhstan) on October 2002. This medium size ESA project, planned for a 2 year mission with possible extension to 5, is devoted to the observation of the gamma-ray sky in the energy range from 3 keV to 10 MeV (Winkler 2001). The IBIS imaging system is based on two independent solid state detector arrays optimised for low (15-1000 keV) and high (0.175-10.0 MeV) energies surrounded by an active VETO System. This high efficiency shield is essential to minimise the background induced by high energy particles in the highly ex-centric out of van Allen belt orbit. A Tungsten Coded Aperture Mask, 16 mm thick and ∼ 1 squared meter in dimension is the imaging device. The IBIS telescope will serve the scientific community at large providing a unique combination of unprecedented high energy wide field imaging capability coupled with broad band spectroscopy and high resolution timing over the energy range from X to gamma rays. To date the IBIS telescope is working nominally in orbit since more than 9 month. (authors)

  12. A low cost, printed microwave based level sensor with integrated oscillator readout circuitry

    KAUST Repository

    Karimi, Muhammad Akram; Arsalan, Muhammad; Shamim, Atif

    2017-01-01

    This paper presents an extremely low cost, tube conformable, printed T-resonator based microwave level sensor, whose resonance frequency shifts by changing the level of fluids inside the tube. Printed T-resonator forms the frequency selective

  13. Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements

    Science.gov (United States)

    Gong, Jie; Wu, Dongliang

    2017-01-01

    Scattering differences induced by frozen particle microphysical properties are investigated, using the vertically (V) and horizontally (H) polarized radiances from the Global Precipitation Measurement (GPM) Microwave Imager (GMI) 89 and 166GHz channels. It is the first study on global frozen particle microphysical properties that uses the dual-frequency microwave polarimetric signals. From the ice cloud scenes identified by the 183.3 3GHz channel brightness temperature (TB), we find that the scatterings of frozen particles are highly polarized with V-H polarimetric differences (PD) being positive throughout the tropics and the winter hemisphere mid-latitude jet regions, including PDs from the GMI 89 and 166GHz TBs, as well as the PD at 640GHz from the ER-2 Compact Scanning Submillimeter-wave Imaging Radiometer (CoSSIR) during the TC4 campaign. Large polarization dominantly occurs mostly near convective outflow region (i.e., anvils or stratiform precipitation), while the polarization signal is small inside deep convective cores as well as at the remote cirrus region. Neglecting the polarimetric signal would result in as large as 30 error in ice water path retrievals. There is a universal bell-curve in the PD TB relationship, where the PD amplitude peaks at 10K for all three channels in the tropics and increases slightly with latitude. Moreover, the 166GHz PD tends to increase in the case where a melting layer is beneath the frozen particles aloft in the atmosphere, while 89GHz PD is less sensitive than 166GHz to the melting layer. This property creates a unique PD feature for the identification of the melting layer and stratiform rain with passive sensors. Horizontally oriented non-spherical frozen particles are thought to produce the observed PD because of different ice scattering properties in the V and H polarizations. On the other hand, changes in the ice microphysical habitats or orientation due to turbulence mixing can also lead to a reduced PD in the deep

  14. Vertically Integrated Edgeless Photon Imaging Camera

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab; Deptuch, Grzegorz [Fermilab; Shenai, Alpana [Fermilab; Maj, Piotr [AGH-UST, Cracow; Kmon, Piotr [AGH-UST, Cracow; Grybos, Pawel [AGH-UST, Cracow; Szczygiel, Robert [AGH-UST, Cracow; Siddons, D. Peter [Brookhaven; Rumaiz, Abdul [Brookhaven; Kuczewski, Anthony [Brookhaven; Mead, Joseph [Brookhaven; Bradford, Rebecca [Argonne; Weizeorick, John [Argonne

    2017-01-01

    The Vertically Integrated Photon Imaging Chip - Large, (VIPIC-L), is a large area, small pixel (65μm), 3D integrated, photon counting ASIC with zero-suppressed or full frame dead-time-less data readout. It features data throughput of 14.4 Gbps per chip with a full frame readout speed of 56kframes/s in the imaging mode. VIPIC-L contain 192 x 192 pixel array and the total size of the chip is 1.248cm x 1.248cm with only a 5μm periphery. It contains about 120M transistors. A 1.3M pixel camera module will be developed by arranging a 6 x 6 array of 3D VIPIC-L’s bonded to a large area silicon sensor on the analog side and to a readout board on the digital side. The readout board hosts a bank of FPGA’s, one per VIPIC-L to allow processing of up to 0.7 Tbps of raw data produced by the camera.

  15. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    Science.gov (United States)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  16. Microwave tomography for an effective imaging in GPR on UAV/airborne observational platforms

    Science.gov (United States)

    Soldovieri, Francesco; Catapano, Ilaria; Ludeno, Giovanni

    2017-04-01

    GPR was originally thought as a non-invasive diagnostics technique working in contact with the underground or structure to be investigated. On the other hand, in the recent years several challenging necessities and opportunities entail the necessity to work with antenna not in contact with the structure to be investigated. This necessity arises for example in the case of landmine detection but also for cultural heritage diagnostics. Other field of application regards the forward-looking GPR aiming at shallower hidden targets forward the platfrom (vehicle) carrying the GPR [1]. Finally, a recent application is concerned with the deployment of airborne/UAV GPR, able to ensure several advantages in terms of large scale surveys and "freedom" of logistics constraint [2]. For all the above mentioned cases, the interest is towards the development of effective data processing able to make imaging task in real time. The presentation will show different data processing strategies, based on microwave tomography [1,2], for a reliable and real time imaging in the case of GPR platforms far from the interface of the structure/underground to be investigated. [1] I. Catapano, A. Affinito, A. Del Moro,.G. Alli, and F. Soldovieri, "Forward-Looking Ground-Penetrating Radar via a Linear Inverse Scattering Approach," IEEE Transactions on Geoscience and Remote Sensing, vol. 53, pp. 5624 - 5633, Oct. 2015. [2] I. Catapano, L. Crocco, Y. Krellmann, G. Triltzsch, and F. Soldovieri, "A tomographic approach for helicopter-borne ground penetrating radar imaging," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 378-382, May 2012.

  17. Microwave Imaging Using a Tunable Reflectarray Antenna and Superradiance in Open Quantum Systems

    Science.gov (United States)

    Tayebi, Amin

    Theory, experiment, and computation are the three paradigms for scientific discoveries. This dissertation includes work in all three areas. The first part is dedicated to the practical design and development of a microwave imaging system, a problem mostly experimental and computational in nature. The second part discusses theoretical foundations of possible future advances in quantum signal transmission. In part one, a new active microwave imaging system is proposed. At the heart of this novel system lies an electronically reconfigurable beam-scanning reflectarray antenna. The high tuning capability of the reflectarray provides a broad steering range of +/- 60 degrees in two distinct frequency bands: S and F bands. The array, combined with an external source, dynamically steers the incoming beam across this range in order to generate multi-angle projection data for target detection. The collected data is then used for image reconstruction by means of time reversal signal processing technique. Our design significantly reduces cost and operational complexities compared to traditional imaging systems. In conventional systems, the region of interest is enclosed by a costly array of transceiver antennas which additionally requires a complicated switching circuitry. The inclusion of the beam scanning array and the utilization of a single source, eliminates the need for multiple antennas and the involved circuitry. In addition, unlike conventional setups, this system is not constrained by the dimensions of the object under test. Therefore the inspection of large objects, such as extended laminate structures, composite airplane wings and wind turbine blades becomes possible. Experimental results of detection of various dielectric targets as well as detecting anomalies within them, such as defects and metallic impurities, using the imaging prototype are presented. The second part includes the theoretical consideration of three different problems: quantum transport through

  18. A Miniaturized Antenna with Negative Index Metamaterial Based on Modified SRR and CLS Unit Cell for UWB Microwave Imaging Applications

    Directory of Open Access Journals (Sweden)

    Md. Moinul Islam

    2015-01-01

    Full Text Available A miniaturized antenna employing a negative index metamaterial with modified split-ring resonator (SRR and capacitance-loaded strip (CLS unit cells is presented for Ultra wideband (UWB microwave imaging applications. Four left-handed (LH metamaterial (MTM unit cells are located along one axis of the antenna as the radiating element. Each left-handed metamaterial unit cell combines a modified split-ring resonator (SRR with a capacitance-loaded strip (CLS to obtain a design architecture that simultaneously exhibits both negative permittivity and negative permeability, which ensures a stable negative refractive index to improve the antenna performance for microwave imaging. The antenna structure, with dimension of 16 × 21 × 1.6 mm3, is printed on a low dielectric FR4 material with a slotted ground plane and a microstrip feed. The measured reflection coefficient demonstrates that this antenna attains 114.5% bandwidth covering the frequency band of 3.4–12.5 GHz for a voltage standing wave ratio of less than 2 with a maximum gain of 5.16 dBi at 10.15 GHz. There is a stable harmony between the simulated and measured results that indicate improved nearly omni-directional radiation characteristics within the operational frequency band. The stable surface current distribution, negative refractive index characteristic, considerable gain and radiation properties make this proposed negative index metamaterial antenna optimal for UWB microwave imaging applications.

  19. Research in Image Understanding as Applied to 3-D Microwave Tomographic Imaging with Near Optical Resolution.

    Science.gov (United States)

    1987-03-01

    Oct. 1985. 28. D.L. Jaggard, K. Schultz, Y. Kim and P. Frangos , "Inverse Scattering for Dielectric Media", Annual OSA Meeting, Wash. D.C., Oct. 1985...T.H. Chu - Graduate Student (50%) C.Y. Ho - Graduate Student (50%) Y. Kim - Graduate Student (50%) K S. Lee - Graduate Student (50%) P. Frangos ...1982. 3. P. Frangos (Ph.D.) - "One-Dimensional Inverse Scattering: Exact Methods and Applications". 4. C.L. Werner (Ph.D.) - ŗ-D Imaging of Coherent and

  20. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging.

    Science.gov (United States)

    Osborne, Elizabeth A; Atkins, Tonya M; Gilbert, Dustin A; Kauzlarich, Susan M; Liu, Kai; Louie, Angelique Y

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  1. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Osborne, Elizabeth A; Atkins, Tonya M; Kauzlarich, Susan M; Gilbert, Dustin A; Liu Kai; Louie, Angelique Y

    2012-01-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization. (paper)

  2. Microwave Spectrometry for the Assessment of the Structural Integrity and Restenosis Degree of Coronary Stents

    Science.gov (United States)

    Arauz-Garofalo, Gianluca; Lopez-Dominguez, Victor; Garcia-Santiago, Antoni; Tejada, Javier; O'Callaghan, Joan; Rodriguez-Leor, Oriol; Bayes-Genis, Antoni; Gmag Team; Hugtp Team; Upc Team

    2013-03-01

    Cardiovascular disease is the main cause of death worldwide. Coronary stents are one of the most important improvements to reduce deaths from cardiovascular disorders. Stents are prosthetic tube-shaped devices which are used to rehabilitate obstructed arteries. Despite their obvious advantages, reocclusion occurs in some cases arising from restenosis or structural distortions, so stented patients require chronic monitoring (involving invasive or ionizing procedures). We study microwave scattering spectra (between 2.0 - 18.0 GHz) of metallic stents in open air, showing that they behave like dipole antennas in terms of microwave scattering. They exhibit characteristic resonant frequencies in their microwave absorbance spectra that are univocally related to their length and diameter. This fact allows one to detect stent fractures or collapses. We also investigate the ``dielectric shift'' in the frequency of the resonances mentioned above due to the presence of different fluids along the stent lumen. This shift could give us information about the restenosis degree of implanted stents.

  3. Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data

    Science.gov (United States)

    Negri, Andrew J.; Adler, Robert F.; Nelkin, Eric J.; Huffman, George J.

    1994-01-01

    Climatologies of convective precipitation were derived from passive microwave observations from the Special Sensor Microwave Imager using a scattering-based algorithm of Adler et al. Data were aggregated over periods of 3-5 months using data from 4 to 5 years. Data were also stratified by satellite overpass times (primarily 06 00 and 18 00 local time). Four regions (Mexico, Amazonia, western Africa, and the western equatorial Pacific Ocean (TOGA COARE area) were chosen for their meteorological interest and relative paucity of conventional observations. The strong diurnal variation over Mexico and the southern United States was the most striking aspect of the climatologies. Pronounced morning maxima occured offshore, often in concativities in the coastline, the result of the increased convergence caused by the coastline shape. The major feature of the evening rain field was a linear-shaped maximum along the western slope of the Sierra Madre Occidental. Topography exerted a strong control on the rainfall in other areas, particularly near the Nicaragua/Honduras border and in Guatemala, where maxima in excess of 700 mm/month were located adjacent to local maxima in terrain. The correlation between the estimates and monthly gage data over the southern United States was low (0.45), due mainly to poor temporal sampling in any month and an inadequate sampling of the diurnal cycle. Over the Amazon Basin the differences in morning versus evening rainfall were complex, with an alternating series of morning/evening maxima aligned southwest to northeast from the Andes to the northeast Brazilian coast. A real extent of rainfall in Amazonia was slightly higher in the evening, but a maximum in morning precipitation was found on the Amazon River just east of Manaus. Precipitation over the water in the intertropical convergence zone (ITCZ) north of Brazil was more pronounced in the morning, and a pronounced land-/sea-breeze circulation was found along the northeast coast of Brazil

  4. Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09-micron High Electron Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-01

    ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for...originator. ARL-TN-0743 ● MAR 2016 US Army Research Laboratory Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo...To) October 2015–January 2016 4. TITLE AND SUBTITLE Microwave Integrated Circuit Amplifier Designs Submitted to Qorvo for Fabrication with 0.09

  5. Diagnostic imaging in pregraduate integrated curricula

    International Nuclear Information System (INIS)

    Kainberger, F.; Kletter, K.

    2007-01-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula. (orig.)

  6. [Diagnostic imaging in pregraduate integrated curricula].

    Science.gov (United States)

    Kainberger, F; Kletter, K

    2007-11-01

    Pregraduate medical curricula are currently undergoing a reform process that is moving away from a traditional discipline-related structure and towards problem-based integrated forms of teaching. Imaging sciences, with their inherently technical advances, are specifically influenced by the effects of paradigm shifts in medical education. The teaching of diagnostic radiology should be based on the definition of three core competencies: in vivo visualization of normal and abnormal morphology and function, diagnostic reasoning, and interventional treatment. On the basis of these goals, adequate teaching methods and e-learning tools should be implemented by focusing on case-based teaching. Teaching materials used in the fields of normal anatomy, pathology, and clinical diagnosis may help diagnostic radiology to play a central role in modern pregraduate curricula.

  7. Stereoscopic image production: live, CGI, and integration

    Science.gov (United States)

    Criado, Enrique

    2006-02-01

    This paper shortly describes part of the experience gathered in more than 10 years of stereoscopic movie production, some of the most common problems found and the solutions, with more or less fortune, we applied to solve those problems. Our work is mainly focused in the entertainment market, theme parks, museums, and other cultural related locations and events. In our movies, we have been forced to develop our own devices to permit correct stereo shooting (stereoscopic rigs) or stereo monitoring (real-time), and to solve problems found with conventional film editing, compositing and postproduction software. Here, we discuss stereo lighting, monitoring, special effects, image integration (using dummies and more), stereo-camera parameters, and other general 3-D movie production aspects.

  8. Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Rubæk, T.; Krozer, V.

    2010-01-01

    An active microwave-imaging system for non-invasive detection of breast cancer based on dedicated hardware is described. Thirty-two transceiving channels are used to measure the amplitude and phase of the scattered fields in the three-dimensional (3D) imaging domain using electronic scanning. The 3...... is created within 2 h using the single-frequency reconstruction algorithm. The performance of the system is illustrated by an analysis of the standard deviations in amplitude and phase of a series of measurements as well as by a simple image reconstruction example....... is important for measurement accuracy and reproducibility as well as for patient comfort. The dedicated hardware achieves a receiver noise figure of 2.3 dB at a gain of 97 dB. The operating frequency range is from 0.3 to 3 GHz. The image acquisition time at one frequency is approximately 50 s and an image...

  9. Integrating imaging modalities: what makes sense from a workflow perspective?

    International Nuclear Information System (INIS)

    Schulthess, Gustav K. von; Burger, Cyrill

    2010-01-01

    From a workflow/cost perspective integrated imaging is not an obvious solution. An analysis of scanning costs as a function of system cost and relevant imaging times is presented. This analysis ignores potential clinical advantages of integrated imaging. An analysis comparing separate vs integrated imaging costs was performed by deriving pertinent equations and using reasonable cost numbers for imaging devices and systems, room and other variable costs. Integrated systems were divided into those sequentially and simultaneously. Sequential scanning can be done with two devices placed in a single or in two different scanning rooms. Graphs were derived which represent the cost difference between integrated imaging system options and their separate counterparts vs scanning time on one of the devices and cost ratio of an integrated system and its counterpart of separate devices. Integrated systems are favoured by the fact that patients have to be up- and downloaded only once. If imaging times become longer than patient changing times, imaging on separate devices is advantageous. An integrated imaging cost advantage is achieved if the integrated systems typically and overall cost three fourths or less of the separate systems. If PET imaging takes 15 min or less, PET/CT imaging costs less than separate PET and CT imaging, while this time is below 5 min for SPECT/CT. A two-room integrated system has the added advantage that patient download time is not cost relevant, when imaging times on the two devices differ by more than the patient download time. PET/CT scanning is a cost-effective implementation of an integrated system unlike most current SPECT/CT systems. Integration of two devices in two rooms by a shuttle seems the way how to make PET/MR cost-effective and may well also be a design option for SPECT/CT systems. (orig.)

  10. Integrated imaging – the complementary roles of radiology and ...

    African Journals Online (AJOL)

    Imaging techniques are moving towards integrated diagnostic clinical imaging. J Warwick,1 .... the stomach lesion and a lymph node. ese are shown on CT with calci cation ... fractures are diagnosed using conventional radiographs, but bone.

  11. Hierarchy of Electronic Properties of Chemically Derived and Pristine Graphene Probed by Microwave Imaging

    KAUST Repository

    Kundhikanjana, Worasom; Lai, Keji; Wang, Hailiang; Dai, Hongjie; Kelly, Michael A.; Shen, Zhi-xun

    2009-01-01

    inhomogeneity. For the conductive chemical graphene, the residual defects lead to a systematic reduction of the microwave signals. In contrast, the signals on pristine graphene agree well with a lumped-element circuit model. The local impedance information can

  12. Design and Experimental Evaluation of a Non-Invasive Microwave Head Imaging System for Intracranial Haemorrhage Detection.

    Directory of Open Access Journals (Sweden)

    A T Mobashsher

    Full Text Available An intracranial haemorrhage is a life threatening medical emergency, yet only a fraction of the patients receive treatment in time, primarily due to the transport delay in accessing diagnostic equipment in hospitals such as Magnetic Resonance Imaging or Computed Tomography. A mono-static microwave head imaging system that can be carried in an ambulance for the detection and localization of intracranial haemorrhage is presented. The system employs a single ultra-wideband antenna as sensing element to transmit signals in low microwave frequencies towards the head and capture backscattered signals. The compact and low-profile antenna provides stable directional radiation patterns over the operating bandwidth in both near and far-fields. Numerical analysis of the head imaging system with a realistic head model in various situations is performed to realize the scattering mechanism of haemorrhage. A modified delay-and-summation back-projection algorithm, which includes effects of surface waves and a distance-dependent effective permittivity model, is proposed for signal and image post-processing. The efficacy of the automated head imaging system is evaluated using a 3D-printed human head phantom with frequency dispersive dielectric properties including emulated haemorrhages with different sizes located at different depths. Scattered signals are acquired with a compact transceiver in a mono-static circular scanning profile. The reconstructed images demonstrate that the system is capable of detecting haemorrhages as small as 1 cm3. While quantitative analyses reveal that the quality of images gradually degrades with the increase of the haemorrhage's depth due to the reduction of signal penetration inside the head; rigorous statistical analysis suggests that substantial improvement in image quality can be obtained by increasing the data samples collected around the head. The proposed head imaging prototype along with the processing algorithm demonstrates

  13. A Model for Estimation of Rain Rate on Tropical Land from TRMM Microwave Imager Radiometer Observations

    Science.gov (United States)

    Prabhakara, C.; Iacovazzi, R., Jr.; Yoo, J.-M.; Kim, Kyu-Myong

    2004-01-01

    Over the tropical land regions observations of the 85 GHz brightness temperature (T(sub 85v)) made by the TRMM Microwave Imager (TMI) radiometer when analyzed with the help of rain rate (R(sub pR)) deduced from the TRMM Precipitation Radar (PR) indicate that there are two maxima in rain rate. One strong maximum occurs when T(sub 85) has a value of about 220 K and the other weaker one when T(sub 85v) is much colder approx. 150 K. Together with the help of earlier studies based on airborne Doppler Radar observations and radiative transfer theoretical simulations, we infer the maximum near 220 K is a result of relatively weak scattering due to super cooled rain drops and water coated ice hydrometeors associated with a developing thunderstorm (Cb) that has a strong updraft. The other maximum is associated with strong scattering due to ice particles that are formed when the updraft collapses and the rain from the Cb is transit2oning from convective type to stratiform type. Incorporating these ideas and with a view to improve the estimation of rain rate from existing operational method applicable to the tropical land areas, we have developed a rain retrieval model. This model utilizes two parameters, that have a horizontal scale of approx. 20km, deduced from the TMI measurements at 19, 21 and 37 GHz (T(sub 19v), T(sub 21v), T(sub 37v). The third parameter in the model, namely the horizontal gradient of brightness temperature within the 20 km scale, is deduced from TMI measurements at 85 GHz. Utilizing these parameters our retrieval model is formulated to yield instantaneous rain rate on a scale of 20 km and seasonal average on a mesoscale that agree well with that of the PR.

  14. CT imaging during microwave ablation: Analysis of spatial and temporal tissue contraction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong; Brace, Christopher L., E-mail: clbrace@wisc.edu [Departments of Radiology and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53705 (United States)

    2014-11-01

    Purpose: To analyze the spatial distribution and temporal development of liver tissue contraction during high-temperature ablation by using intraprocedural computed tomography (CT) imaging. Methods: A total of 46 aluminum fiducial markers were positioned in a 60 × 45 mm grid, in a single plane, around a microwave ablation antenna in each of six ex vivo bovine liver samples. Ablations were performed for 10 min at 100 W. CT data of the liver sample were acquired every 30 s during ablation. Fiducial motion between acquisitions was tracked in postprocessing and used to calculate measures of tissue contraction and contraction rates. The spatial distribution and temporal evolution of contraction were analyzed. Results: Fiducial displacement indicated that the zone measured postablation was 8.2 ± 1.8 mm (∼20%) smaller in the radial direction and 7.1 ± 1.0 mm (∼10%) shorter in the longitudinal direction than the preablation tissue dimension. Therefore, the total ablation volume was reduced from its preablation value by approximately 45%. Very little longitudinal contraction was noted in the distal portion of the ablation zone. Central tissues contracted more than 60%, which was near an estimated limit of ∼70% based on initial water content. More peripheral tissues contracted only 15% in any direction. Contraction rates peaked during the first 60 s of heating with a roughly exponential decay over time. Conclusions: Ablation zones measured posttreatment are significantly smaller than the pretreatment tissue dimensions. Tissue contraction is spatially dependent, with the greatest effect occurring in the central ablation zone. Contraction rate peaks early and decays over time.

  15. Pixel extraction based integral imaging with controllable viewing direction

    International Nuclear Information System (INIS)

    Ji, Chao-Chao; Deng, Huan; Wang, Qiong-Hua

    2012-01-01

    We propose pixel extraction based integral imaging with a controllable viewing direction. The proposed integral imaging can provide viewers three-dimensional (3D) images in a very small viewing angle. The viewing angle and the viewing direction of the reconstructed 3D images are controlled by the pixels extracted from an elemental image array. Theoretical analysis and a 3D display experiment of the viewing direction controllable integral imaging are carried out. The experimental results verify the correctness of the theory. A 3D display based on the integral imaging can protect the viewer’s privacy and has huge potential for a television to show multiple 3D programs at the same time. (paper)

  16. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  17. Lingual thyroid: value of integrated imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giovagnorio, F. [Sezione di Radiologia e Diagnostica per Immagini, Dipt. di Medicina Sperimentale e Patologia, Univ. `La Sapienza`, Rome (Italy); Cordier, A. [Ist. di Clinica Otorinolaringoiatrica, Univ. `La Sapienza`, Rome (Italy); Romeo, R. [Ist. di Clinica Otorinolaringoiatrica, Univ. `La Sapienza`, Rome (Italy)

    1996-02-01

    Lingual thyroid is an uncommon cause of oropharyngeal mass, due to a congential anomaly of thyroidal development and migration: It is defined precisely as the presence of thyroid tissue in the midline of the tongue base between circumvallatae papilae and the epiglottis. We report a case of lignual thyroid in which the integration of clinical data, sonography, color-duplex Doppler, MRI and scintigraphy was determinant in demonstrating the disease. A 22-year-old woman presented with a sensation of foreign body in the throat, dysphonia, dyspnoea and dysphagia; we performed sonography (7.5 MHz linear probe), color Doppler (7 MHz Doppler frequeny, PRF 3500 Hz) and MRI (1.5 T, spin-echo T1- and T2-weighted images with administration of Gd-DTPA); a scan with {sup 123}I demonstrated a relevant uptake at the base of the tongue, but no uptake at the typical thyroid location. The gland was removed and partially transplanted in the strap muscles of the neck. (orig.)

  18. Lingual thyroid: value of integrated imaging

    International Nuclear Information System (INIS)

    Giovagnorio, F.; Cordier, A.; Romeo, R.

    1996-01-01

    Lingual thyroid is an uncommon cause of oropharyngeal mass, due to a congential anomaly of thyroidal development and migration: It is defined precisely as the presence of thyroid tissue in the midline of the tongue base between circumvallatae papilae and the epiglottis. We report a case of lignual thyroid in which the integration of clinical data, sonography, color-duplex Doppler, MRI and scintigraphy was determinant in demonstrating the disease. A 22-year-old woman presented with a sensation of foreign body in the throat, dysphonia, dyspnoea and dysphagia; we performed sonography (7.5 MHz linear probe), color Doppler (7 MHz Doppler frequeny, PRF 3500 Hz) and MRI (1.5 T, spin-echo T1- and T2-weighted images with administration of Gd-DTPA); a scan with 123 I demonstrated a relevant uptake at the base of the tongue, but no uptake at the typical thyroid location. The gland was removed and partially transplanted in the strap muscles of the neck. (orig.)

  19. Microwave imaging of a solar limb flare - Comparison of spectra and spatial geometry with hard X-rays

    Science.gov (United States)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1985-01-01

    A solar limb flare was mapped using the Very Large Array (VLA) together with hard X-ray (HXR) spectral and spatial observations of the Solar Maximum Mission satellite. Microwave flux records from 2.8 to 19.6 GHz were instrumental in determining the burst spectrum, which has a maximum at 10 GHz. The flux spectrum and area of the burst sources were used to determine the number of electrons producing gyrosynchrotron emission, magnetic field strength, and the energy distribution of gyrosynchrotron-emitting electrons. Applying the thick target model to the HXR spectrum, the number of high energy electrons responsible for the X-ray bursts was found to be 10 to the 36th, and the electron energy distribution was approximately E exp -5, significantly different from the parameters derived from the microwave observations. The HXR imaging observations exhibit some similiarities in size and structure o the first two burst sources mapped with the VLA. However, during the initial burst, the HXR source was single and lower in the corona than the double 6 cm source. The observations are explained in terms of a single loop with an isotropic high-energy electron distribution which produced the microwaves, and a larger beamed component which produced the HXR at the feet of the loop.

  20. Preparation of a Carbon Doped Tissue-Mimicking Material with High Dielectric Properties for Microwave Imaging Application

    Directory of Open Access Journals (Sweden)

    Siang-Wen Lan

    2016-07-01

    Full Text Available In this paper, the oil-in-gelatin based tissue-mimicking materials (TMMs doped with carbon based materials including carbon nanotube, graphene ink or lignin were prepared. The volume percent for gelatin based mixtures and oil based mixtures were both around 50%, and the doping amounts were 2 wt %, 4 wt %, and 6 wt %. The effect of doping material and amount on the microwave dielectric properties including dielectric constant and conductivity were investigated over an ultra-wide frequency range from 2 GHz to 20 GHz. The coaxial open-ended reflection technology was used to evaluate the microwave dielectric properties. Six measured values in different locations of each sample were averaged and the standard deviations of all the measured dielectric properties, including dielectric constant and conductivity, were less than one, indicating a good uniformity of the prepared samples. Without doping, the dielectric constant was equal to 23 ± 2 approximately. Results showed with doping of carbon based materials that the dielectric constant and conductivity both increased about 5% to 20%, and the increment was dependent on the doping amount. By proper selection of doping amount of the carbon based materials, the prepared material could map the required dielectric properties of special tissues. The proposed materials were suitable for the phantom used in the microwave medical imaging system.

  1. Micromachined Integrated Transducers for Ultrasound Imaging

    DEFF Research Database (Denmark)

    la Cour, Mette Funding

    The purpose of this project is to develop capacitive micromachined ultrasonic transducers (CMUTs) for medical imaging. Medical ultrasound transducers used today are fabricated using piezoelectric materials and bulk processing. To fabricate transducers capable of delivering a higher imaging...

  2. Securing Digital Images Integrity using Artificial Neural Networks

    Science.gov (United States)

    Hajji, Tarik; Itahriouan, Zakaria; Ouazzani Jamil, Mohammed

    2018-05-01

    Digital image signature is a technique used to protect the image integrity. The application of this technique can serve several areas of imaging applied to smart cities. The objective of this work is to propose two methods to protect digital image integrity. We present a description of two approaches using artificial neural networks (ANN) to digitally sign an image. The first one is “Direct Signature without learning” and the second is “Direct Signature with learning”. This paper presents the theory of proposed approaches and an experimental study to test their effectiveness.

  3. Flat dielectric metasurface lens array for three dimensional integral imaging

    Science.gov (United States)

    Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong

    2018-05-01

    In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.

  4. New microwave-integrated Soxhlet extraction. An advantageous tool for the extraction of lipids from food products.

    Science.gov (United States)

    Virot, Matthieu; Tomao, Valérie; Colnagui, Giulio; Visinoni, Franco; Chemat, Farid

    2007-12-07

    A new process of Soxhlet extraction assisted by microwave was designed and developed. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. A second-order central composite design (CCD) has been used to investigate the performance of the new device. The results provided by analysis of variance and Pareto chart, indicated that the extraction time was the most important factor followed by the leaching time. The response surface methodology allowed us to determine optimal conditions for olive oil extraction: 13 min of extraction time, 17 min of leaching time, and 720 W of irradiation power. The proposed process is suitable for lipids determination from food. Microwave-integrated Soxhlet (MIS) extraction has been compared with a conventional technique, Soxhlet extraction, for the extraction of oil from olives (Aglandau, Vaucluse, France). The oils extracted by MIS for 32 min were quantitatively (yield) and qualitatively (fatty acid composition) similar to those obtained by conventional Soxhlet extraction for 8 h. MIS is a green technology and appears as a good alternative for the extraction of fat and oils from food products.

  5. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    Science.gov (United States)

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  6. Broadband microwave photonic fully tunable filter using a single heterogeneously integrated III-V/SOI-microdisk-based phase shifter.

    Science.gov (United States)

    Lloret, Juan; Morthier, Geert; Ramos, Francisco; Sales, Salvador; Van Thourhout, Dries; Spuesens, Thijs; Olivier, Nicolas; Fédéli, Jean-Marc; Capmany, José

    2012-05-07

    A broadband microwave photonic phase shifter based on a single III-V microdisk resonator heterogeneously integrated on and coupled to a nanophotonic silicon-on-insulator waveguide is reported. The phase shift tunability is accomplished by modifying the effective index through carrier injection. A comprehensive semi-analytical model aiming at predicting its behavior is formulated and confirmed by measurements. Quasi-linear and continuously tunable 2π phase shifts at radiofrequencies greater than 18 GHz are experimentally demonstrated. The phase shifter performance is also evaluated when used as a key element in tunable filtering schemes. Distortion-free and wideband filtering responses with a tuning range of ~100% over the free spectral range are obtained.

  7. Resolution and robustness to noise of the sensitivity-based method for microwave imaging with data acquired on cylindrical surfaces

    International Nuclear Information System (INIS)

    Zhang, Yifan; Tu, Sheng; Amineh, Reza K; Nikolova, Natalia K

    2012-01-01

    The spatial resolution limit of a Jacobian-based microwave imaging algorithm and its robustness to noise are evaluated. The focus here is on tomographic systems where the wideband data are acquired with a vertically scanned circular sensor array and at each scanning step a 2D image is reconstructed in the plane of the sensor array. The theoretical resolution is obtained as one-half of the maximum-frequency wavelength with far-zone data and about two-thirds of the array radius with near-zone data. Validation examples are given using analytical electromagnetic models. The algorithm is shown to be robust to noise when the response data are corrupted by Gaussian white noise. (paper)

  8. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji; Kundhikanjana, Worasom; Kelly, Michael A.; Shen, Zhi-Xun

    2011-01-01

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  9. Nanoscale microwave microscopy using shielded cantilever probes

    KAUST Repository

    Lai, Keji

    2011-04-21

    Quantitative dielectric and conductivity mapping in the nanoscale is highly desirable for many research disciplines, but difficult to achieve through conventional transport or established microscopy techniques. Taking advantage of the micro-fabrication technology, we have developed cantilever-based near-field microwave probes with shielded structures. Sensitive microwave electronics and finite-element analysis modeling are also utilized for quantitative electrical imaging. The system is fully compatible with atomic force microscope platforms for convenient operation and easy integration of other modes and functions. The microscope is ideal for interdisciplinary research, with demonstrated examples in nano electronics, physics, material science, and biology.

  10. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production

    International Nuclear Information System (INIS)

    Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G.

    2015-01-01

    A new simple flow system which is made up of a multi-rotor high-shear mixer connected to a multimode microwave reactor has been assembled. This simple loop reactor has been successfully used in the NaOH-catalyzed transesterification of refined palm oil in methanol. Thanks to optimal mass/heat transfer, full conversion was achieved within 5 min (biodiesel yield of 99.80%). High-quality biodiesel was obtained that is in accordance with international specifications and analytical ASTM standards. The procedure's high efficiency and low energy consumption should pave the way for process scale up. - Highlights: • The combination of HSM-MW flow system for biodiesel production has been proposed. • Highly efficient mass and heat transfer in transesterification reaction. • The hybrid reactor enables a complete conversion in 5 min reaction time. • The new system halved the energy consumption of conventional processes

  11. Electronic viewbox: An integrated image diagnostic working station

    International Nuclear Information System (INIS)

    Minato, K.; Komori, M.; Hirakawa, A.; Kuwahara, M.; Yonekura, Y.; Torizuka, K.; Brill, A.B.

    1985-01-01

    Recent development in medical imaging technology have been introducing variety of digital images in clinical medicine, and handling these multi-modality digital images in one place is needed for efficient clinical diagnosis. The authors proposed a concept of an integrated image diagnostic working station, in which a physician can look into all clinical images, can select any key image for diagnosis and can read it in detail. A prototype working station named ''Electronic Viewbox'' has been developed for this purpose. It has three distinctive features. 1. The stored images of a patient are shown at a glance. In order to achieve this function, each original image is attached to a small image, where the data are compressed to reserve the essence of the image, and many of these small images are displayed on a CRT screen. This small image is used as an index for picking up a key image in the archived clinical images. 2. The working station is compact enough to be set on a desk. Only two CRTs and a pointing device are assembled. These two CRT screens are used mutually for retrieving key images and for displaying the original images. 3. All operations can be done interactively using cursor and icons

  12. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  13. Integrating Web Services into Map Image Applications

    National Research Council Canada - National Science Library

    Tu, Shengru

    2003-01-01

    Web services have been opening a wide avenue for software integration. In this paper, we have reported our experiments with three applications that are built by utilizing and providing web services for Geographic Information Systems (GIS...

  14. Broadband image sensor array based on graphene-CMOS integration

    Science.gov (United States)

    Goossens, Stijn; Navickaite, Gabriele; Monasterio, Carles; Gupta, Shuchi; Piqueras, Juan José; Pérez, Raúl; Burwell, Gregory; Nikitskiy, Ivan; Lasanta, Tania; Galán, Teresa; Puma, Eric; Centeno, Alba; Pesquera, Amaia; Zurutuza, Amaia; Konstantatos, Gerasimos; Koppens, Frank

    2017-06-01

    Integrated circuits based on complementary metal-oxide-semiconductors (CMOS) are at the heart of the technological revolution of the past 40 years, enabling compact and low-cost microelectronic circuits and imaging systems. However, the diversification of this platform into applications other than microcircuits and visible-light cameras has been impeded by the difficulty to combine semiconductors other than silicon with CMOS. Here, we report the monolithic integration of a CMOS integrated circuit with graphene, operating as a high-mobility phototransistor. We demonstrate a high-resolution, broadband image sensor and operate it as a digital camera that is sensitive to ultraviolet, visible and infrared light (300-2,000 nm). The demonstrated graphene-CMOS integration is pivotal for incorporating 2D materials into the next-generation microelectronics, sensor arrays, low-power integrated photonics and CMOS imaging systems covering visible, infrared and terahertz frequencies.

  15. Classification Method in Integrated Information Network Using Vector Image Comparison

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2014-05-01

    Full Text Available Wireless Integrated Information Network (WMN consists of integrated information that can get data from its surrounding, such as image, voice. To transmit information, large resource is required which decreases the service time of the network. In this paper we present a Classification Approach based on Vector Image Comparison (VIC for WMN that improve the service time of the network. The available methods for sub-region selection and conversion are also proposed.

  16. Microwave Ovens

    Science.gov (United States)

    ... Products and Procedures Home, Business, and Entertainment Products Microwave Ovens Share Tweet Linkedin Pin it More sharing ... 1030.10 - Microwave Ovens Required Reports for the Microwave Oven Manufacturers or Industry Exemption from Certain Reporting ...

  17. An integrated compact airborne multispectral imaging system using embedded computer

    Science.gov (United States)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  18. Microwave engineering

    CERN Document Server

    Pozar, David M

    2012-01-01

    The 4th edition of this classic text provides a thorough coverage of RF and microwave engineering concepts, starting from fundamental principles of electrical engineering, with applications to microwave circuits and devices of practical importance.  Coverage includes microwave network analysis, impedance matching, directional couplers and hybrids, microwave filters, ferrite devices, noise, nonlinear effects, and the design of microwave oscillators, amplifiers, and mixers. Material on microwave and RF systems includes wireless communications, radar, radiometry, and radiation hazards. A large

  19. Investigation of Optimal Integrated Circuit Raster Image Vectorization Method

    Directory of Open Access Journals (Sweden)

    Leonas Jasevičius

    2011-03-01

    Full Text Available Visual analysis of integrated circuit layer requires raster image vectorization stage to extract layer topology data to CAD tools. In this paper vectorization problems of raster IC layer images are presented. Various line extraction from raster images algorithms and their properties are discussed. Optimal raster image vectorization method was developed which allows utilization of common vectorization algorithms to achieve the best possible extracted vector data match with perfect manual vectorization results. To develop the optimal method, vectorized data quality dependence on initial raster image skeleton filter selection was assessed.Article in Lithuanian

  20. Integral image rendering procedure for aberration correction and size measurement.

    Science.gov (United States)

    Sommer, Holger; Ihrig, Andreas; Ebenau, Melanie; Flühs, Dirk; Spaan, Bernhard; Eichmann, Marion

    2014-05-20

    The challenge in rendering integral images is to use as much information preserved by the light field as possible to reconstruct a captured scene in a three-dimensional way. We propose a rendering algorithm based on the projection of rays through a detailed simulation of the optical path, considering all the physical properties and locations of the optical elements. The rendered images contain information about the correct size of imaged objects without the need to calibrate the imaging device. Additionally, aberrations of the optical system may be corrected, depending on the setup of the integral imaging device. We show simulation data that illustrates the aberration correction ability and experimental data from our plenoptic camera, which illustrates the capability of our proposed algorithm to measure size and distance. We believe this rendering procedure will be useful in the future for three-dimensional ophthalmic imaging of the human retina.

  1. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  2. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  3. The Anisotropy of the Microwave Background to l = 3500: Deep Field Observations with the Cosmic Background Imager

    Science.gov (United States)

    Mason, B. S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    We report measurements of anisotropy in the cosmic microwave background radiation over the multipole range l approximately 200 (right arrow) 3500 with the Cosmic Background Imager based on deep observations of three fields. These results confirm the drop in power with increasing l first reported in earlier measurements with this instrument, and extend the observations of this decline in power out to l approximately 2000. The decline in power is consistent with the predicted damping of primary anisotropies. At larger multipoles, l = 2000-3500, the power is 3.1 sigma greater than standard models for intrinsic microwave background anisotropy in this multipole range, and 3.5 sigma greater than zero. This excess power is not consistent with expected levels of residual radio source contamination but, for sigma 8 is approximately greater than 1, is consistent with predicted levels due to a secondary Sunyaev-Zeldovich anisotropy. Further observations are necessary to confirm the level of this excess and, if confirmed, determine its origin.

  4. Improved microgrid arrangement for integrated imaging polarimeters.

    Science.gov (United States)

    LeMaster, Daniel A; Hirakawa, Keigo

    2014-04-01

    For almost 20 years, microgrid polarimetric imaging systems have been built using a 2×2 repeating pattern of polarization analyzers. In this Letter, we show that superior spatial resolution is achieved over this 2×2 case when the analyzers are arranged in a 2×4 repeating pattern. This unconventional result, in which a more distributed sampling pattern results in finer spatial resolution, is also achieved without affecting the conditioning of the polarimetric data-reduction matrix. Proof is provided theoretically and through Stokes image reconstruction of synthesized data.

  5. Microwave photonics shines

    Science.gov (United States)

    Won, Rachel

    2011-12-01

    The combination of microwave photonics and optics has advanced many applications in defence, wireless communications, imaging and network infrastructure. Rachel Won talks to Jianping Yao from the University of Ottawa in Canada about the importance of this growing field.

  6. Hardware for computing the integral image

    OpenAIRE

    Fernández-Berni, J.; Rodríguez-Vázquez, Ángel; Río, Rocío del; Carmona-Galán, R.

    2015-01-01

    La presente invención, según se expresa en el enunciado de esta memoria descriptiva, consiste en hardware de señal mixta para cómputo de la imagen integral en el plano focal mediante una agrupación de celdas básicas de sensado-procesamiento cuya interconexión puede ser reconfigurada mediante circuitería periférica que hace posible una implementación muy eficiente de una tarea de procesamiento muy útil en visión artificial como es el cálculo de la imagen integral en escenarios tales como monit...

  7. Integration of virtual and real scenes within an integral 3D imaging environment

    Science.gov (United States)

    Ren, Jinsong; Aggoun, Amar; McCormick, Malcolm

    2002-11-01

    The Imaging Technologies group at De Montfort University has developed an integral 3D imaging system, which is seen as the most likely vehicle for 3D television avoiding psychological effects. To create real fascinating three-dimensional television programs, a virtual studio that performs the task of generating, editing and integrating the 3D contents involving virtual and real scenes is required. The paper presents, for the first time, the procedures, factors and methods of integrating computer-generated virtual scenes with real objects captured using the 3D integral imaging camera system. The method of computer generation of 3D integral images, where the lens array is modelled instead of the physical camera is described. In the model each micro-lens that captures different elemental images of the virtual scene is treated as an extended pinhole camera. An integration process named integrated rendering is illustrated. Detailed discussion and deep investigation are focused on depth extraction from captured integral 3D images. The depth calculation method from the disparity and the multiple baseline method that is used to improve the precision of depth estimation are also presented. The concept of colour SSD and its further improvement in the precision is proposed and verified.

  8. 3D integration technologies for imaging applications

    International Nuclear Information System (INIS)

    Moor, Piet de

    2008-01-01

    The aim of this paper is to give an overview of micro-electronic technologies under development today, and how they are impacting on the radiation detection and imaging of tomorrow. After a short introduction, the different enabling technologies will be discussed. Finally, a few examples of ongoing developments at IMEC on advanced detector systems will be given

  9. A 128 x 128 CMOS Active Pixel Image Sensor for Highly Integrated Imaging Systems

    Science.gov (United States)

    Mendis, Sunetra K.; Kemeny, Sabrina E.; Fossum, Eric R.

    1993-01-01

    A new CMOS-based image sensor that is intrinsically compatible with on-chip CMOS circuitry is reported. The new CMOS active pixel image sensor achieves low noise, high sensitivity, X-Y addressability, and has simple timing requirements. The image sensor was fabricated using a 2 micrometer p-well CMOS process, and consists of a 128 x 128 array of 40 micrometer x 40 micrometer pixels. The CMOS image sensor technology enables highly integrated smart image sensors, and makes the design, incorporation and fabrication of such sensors widely accessible to the integrated circuit community.

  10. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  11. Determination of mean rainfall from the Special Sensor Microwave/Imager (SSM/I) using a mixed lognormal distribution

    Science.gov (United States)

    Berg, Wesley; Chase, Robert

    1992-01-01

    Global estimates of monthly, seasonal, and annual oceanic rainfall are computed for a period of one year using data from the Special Sensor Microwave/Imager (SSM/I). Instantaneous rainfall estimates are derived from brightness temperature values obtained from the satellite data using the Hughes D-matrix algorithm. The instantaneous rainfall estimates are stored in 1 deg square bins over the global oceans for each month. A mixed probability distribution combining a lognormal distribution describing the positive rainfall values and a spike at zero describing the observations indicating no rainfall is used to compute mean values. The resulting data for the period of interest are fitted to a lognormal distribution by using a maximum-likelihood. Mean values are computed for the mixed distribution and qualitative comparisons with published historical results as well as quantitative comparisons with corresponding in situ raingage data are performed.

  12. Integrated image storage solution for the Cath department.

    Science.gov (United States)

    Weterings, R A

    1998-10-01

    Contemporary Image Storage systems for the Catheterization department manage and distribute digital cardiac images according to the "cine-film" paradigm. The images are digital, but the applications have not changed much. This situation will change in the near future. New systems are being developed to store additional (clinical related) data with X-ray Angiographic (XA) Images. Furthermore, the image storage domains are no longer an island in the hospital infrastructure. Efficiency requires the availability of images with other data at the various "point of care" locations. This in turn raises requirements and expectations about the standards in the area of application interoperability, since no single vendor can supply the complete solution. Recent DICOM (Digital Imaging and Communications in Medicine) standardization activities play an important role in extending the current scope of image oriented storage solutions towards a more integrated imaging and information (clinical) folder for the Cath department. The paper will address the following issues: New requirements on "self-contained" Image Storage solutions for the Cath lab. How to deal with the demand for interdepartmental communication using upcoming (new) DICOM standards and HL7 (Health Level Seven) in this area. The increasing influence of computer technology, replacing vendor-specific solutions by general-accepted standards from the Information Technology (IT) world. A step-wise approach to come to an integrated clinical (patient) folder with inherent capabilities for data interchange with other Cardiology departments and the hospitals information infrastructure.

  13. Microwave engineering concepts and fundamentals

    CERN Document Server

    Khan, Ahmad Shahid

    2014-01-01

    Detailing the active and passive aspects of microwaves, Microwave Engineering: Concepts and Fundamentals covers everything from wave propagation to reflection and refraction, guided waves, and transmission lines, providing a comprehensive understanding of the underlying principles at the core of microwave engineering. This encyclopedic text not only encompasses nearly all facets of microwave engineering, but also gives all topics—including microwave generation, measurement, and processing—equal emphasis. Packed with illustrations to aid in comprehension, the book: •Describes the mathematical theory of waveguides and ferrite devices, devoting an entire chapter to the Smith chart and its applications •Discusses different types of microwave components, antennas, tubes, transistors, diodes, and parametric devices •Examines various attributes of cavity resonators, semiconductor and RF/microwave devices, and microwave integrated circuits •Addresses scattering parameters and their properties, as well a...

  14. Separable projection integrals for higher-order correlators of the cosmic microwave sky: Acceleration by factors exceeding 100

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, J.P., E-mail: jb914@cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge (United Kingdom); Pennycook, S.J. [Intel Corporation (United Kingdom); Fergusson, J.R.; Jäykkä, J.; Shellard, E.P.S. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge (United Kingdom)

    2016-04-01

    We present a case study describing efforts to optimise and modernise “Modal”, the simulation and analysis pipeline used by the Planck satellite experiment for constraining general non-Gaussian models of the early universe via the bispectrum (or three-point correlator) of the cosmic microwave background radiation. We focus on one particular element of the code: the projection of bispectra from the end of inflation to the spherical shell at decoupling, which defines the CMB we observe today. This code involves a three-dimensional inner product between two functions, one of which requires an integral, on a non-rectangular domain containing a sparse grid. We show that by employing separable methods this calculation can be reduced to a one-dimensional summation plus two integrations, reducing the overall dimensionality from four to three. The introduction of separable functions also solves the issue of the non-rectangular sparse grid. This separable method can become unstable in certain scenarios and so the slower non-separable integral must be calculated instead. We present a discussion of the optimisation of both approaches. We demonstrate significant speed-ups of ≈100×, arising from a combination of algorithmic improvements and architecture-aware optimisations targeted at improving thread and vectorisation behaviour. The resulting MPI/OpenMP hybrid code is capable of executing on clusters containing processors and/or coprocessors, with strong-scaling efficiency of 98.6% on up to 16 nodes. We find that a single coprocessor outperforms two processor sockets by a factor of 1.3× and that running the same code across a combination of both microarchitectures improves performance-per-node by a factor of 3.38×. By making bispectrum calculations competitive with those for the power spectrum (or two-point correlator) we are now able to consider joint analysis for cosmological science exploitation of new data.

  15. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    Science.gov (United States)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  16. Machine Learning on Images: Combining Passive Microwave and Optical Data to Estimate Snow Water Equivalent

    Science.gov (United States)

    Dozier, J.; Tolle, K.; Bair, N.

    2014-12-01

    We have a problem that may be a specific example of a generic one. The task is to estimate spatiotemporally distributed estimates of snow water equivalent (SWE) in snow-dominated mountain environments, including those that lack on-the-ground measurements. Several independent methods exist, but all are problematic. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall. Comparison with streamflow measurements in mountain ranges where such data are available shows this method to be accurate, but the big disadvantage is that SWE can only be calculated retroactively after snow disappears, and even then only for areas with little accumulation during the melt season. Passive microwave sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow or in forests, saturation in deep snow, subpixel variability in the mountains owing to the large (~25 km) pixel size, and SWE overestimation in the presence of large grains such as depth and surface hoar. Throughout the winter and spring, snow-covered area can be measured at sub-km spatial resolution with optical sensors, with accuracy and timeliness improved by interpolating and smoothing across multiple days. So the question is, how can we establish the relationship between Reconstruction—available only after the snow goes away—and passive microwave and optical data to accurately estimate SWE during the snow season, when the information can help forecast spring runoff? Linear regression provides one answer, but can modern machine learning techniques (used to persuade people to click on web advertisements) adapt to improve forecasts of floods and droughts in areas where more than one billion people depend on snowmelt for their water resources?

  17. Ultra-broadband Nonlinear Microwave Monolithic Integrated Circuits in SiGe, GaAs and InP

    DEFF Research Database (Denmark)

    Krozer, Viktor; Johansen, Tom Keinicke; Djurhuus, Torsten

    2006-01-01

    .5 GHz and ≫ 10 GHz for SiGe BiCMOS and GaAs MMIC, respectively. Analysis of the frequency behaviour of frequency converting devices is presented for improved mixer design. Millimeter-wave front-end components for advanced microwave imaging and communications purposes have also been demonstrated......Analog MMIC circuits with ultra-wideband operation are discussed in view of their frequency limitation and different circuit topologies. Results for designed and fabricated frequency converters in SiGe, GaAs, and InP technologies are presented in the paper. RF type circuit topologies exhibit a flat...... conversion gain with a 3 dB bandwidth of 10 GHz for SiGe and in excess of 20 GHz for GaAs processes. The concurrent LO-IF isolation is better than -25 dB, without including the improvement due to the combiner circuit. The converter circuits exhibit similar instantaneous bandwidth at IF and RF ports of ≫ 7...

  18. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 108 2

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1 SIN 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  19. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A1, S/N 109, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  20. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    Science.gov (United States)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  1. Development of an integrated filing system for endoscopic images.

    Science.gov (United States)

    Fujino, M A; Ikeda, M; Yamamoto, Y; Kinose, T; Tachikawa, H; Morozumi, A; Sano, S; Kojima, Y; Nakamura, T; Kawai, T

    1991-01-01

    A new integrated filing system for endoscopic images has been developed, comprising a main image filing system and subsystems located at different stations. A hybrid filing system made up of both digital and analog filing devices was introduced to construct this system that combines the merits of the two filing methods. Each subsystem provided with a video processor, is equipped with a digital filing device, and routine images were recorded in the analog image filing device of the main system. The use of a multi-input adapter enabled simultaneous input of analog images from up to 8 video processors. Recorded magneto-optical disks make it possible to recall the digital images at any station in the hospital; the disks are copied without image degradation and also utilised for image processing. This system promises reliable storage and integrated, efficient management of endoscopic information. It also costs less to install than the so-called PACS (picture archiving and communication system), which connects all the stations of the hospital using optical fiber cables.

  2. Integrating Radar Image Data with Google Maps

    Science.gov (United States)

    Chapman, Bruce D.; Gibas, Sarah

    2010-01-01

    A public Web site has been developed as a method for displaying the multitude of radar imagery collected by NASA s Airborne Synthetic Aperture Radar (AIRSAR) instrument during its 16-year mission. Utilizing NASA s internal AIRSAR site, the new Web site features more sophisticated visualization tools that enable the general public to have access to these images. The site was originally maintained at NASA on six computers: one that held the Oracle database, two that took care of the software for the interactive map, and three that were for the Web site itself. Several tasks were involved in moving this complicated setup to just one computer. First, the AIRSAR database was migrated from Oracle to MySQL. Then the back-end of the AIRSAR Web site was updated in order to access the MySQL database. To do this, a few of the scripts needed to be modified; specifically three Perl scripts that query that database. The database connections were then updated from Oracle to MySQL, numerous syntax errors were corrected, and a query was implemented that replaced one of the stored Oracle procedures. Lastly, the interactive map was designed, implemented, and tested so that users could easily browse and access the radar imagery through the Google Maps interface.

  3. Optimization of Segmentation Quality of Integrated Circuit Images

    Directory of Open Access Journals (Sweden)

    Gintautas Mušketas

    2012-04-01

    Full Text Available The paper presents investigation into the application of genetic algorithms for the segmentation of the active regions of integrated circuit images. This article is dedicated to a theoretical examination of the applied methods (morphological dilation, erosion, hit-and-miss, threshold and describes genetic algorithms, image segmentation as optimization problem. The genetic optimization of the predefined filter sequence parameters is carried out. Improvement to segmentation accuracy using a non optimized filter sequence makes 6%.Artcile in Lithuanian

  4. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vahdatkhah, Parisa [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Madaah Hosseini, Hamid Reza, E-mail: Madaah@sharif.ir [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Khodaei, Azin [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Montazerabadi, Ali Reza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Irajirad, Rasoul [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Oghabian, Mohamad Ali [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Delavari, Hamid H., E-mail: Hamid.delavari@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran, PO Box 14115-143 (Iran, Islamic Republic of)

    2015-05-12

    Highlights: • A rapid microwave-assisted polyol process used to synthesize Gd{sub 2}O{sub 3} nanoparticles. • In situ surface modification of ultrasmall Gd{sub 2}O{sub 3}NPs with PVP has been performed. • Gd{sub 2}O{sub 3}NPs shows considerable increasing of relaxivity in comparison to Gd-chelates. • PVP-covered Gd{sub 2}O{sub 3}NPs show appropriate stability for approximately 15 days. • Spectrophotometric indicates the leaching of free Gd ions not occurred versus time. - Abstract: Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd{sub 2}O{sub 3} nanoparticles (NPs) with enhanced T{sub 1}-weighted signal intensity and r{sub 2}/r{sub 1} ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd{sub 2}O{sub 3}NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r{sub 1}) and transversal relaxation (r{sub 2}) of Gd{sub 2}O{sub 3}NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd{sub 2}O{sub 3}NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd{sub 2}O{sub 3}NPs formation and in situ surface modification of PVP-grafted Gd{sub 2}O{sub 3}NPs is proposed.

  5. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  6. Assessing Radiometric Stability of the 17-Plus-Year TRMM Microwave Imager 1B11 Version-8 (GPM05 Brightness Temperature Product

    Directory of Open Access Journals (Sweden)

    Ruiyao Chen

    2017-12-01

    Full Text Available The NASA Tropical Rainfall Measuring Mission (TRMM Microwave Imager (TMI has produced a 17-plus-year time-series of calibrated microwave radiances that have remarkable value for investigating the effects of the Earth’s climate change over the tropics. Recently, the Global Precipitation Measurement (GPM Inter-Satellite Radiometric Calibration (XCAL Working Group have performed various calibration and corrections that yielded the legacy TMI 1B11 Version 8 (also called GPM05 brightness temperature product, which will be released in late 2017 by the NASA Precipitation Processing System. Since TMI served as the radiometric transfer standard for the TRMM constellation microwave radiometer sensors, it is important to document its accuracy. In this paper, the various improvements applied to TMI 1B11 V8 are summarized, and the radiometric calibration stability is evaluated by comparisons with a radiative transfer model and by XCAL evaluations with the Global Precipitation Measuring Microwave Imager during their 13-month overlap period. Evaluation methods will be described and results will be presented, which demonstrate that TMI has achieved a radiometric stability level of a few deciKelvin over almost two decades.

  7. Integrated variable projection approach (IVAPA) for parallel magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Qiao; Sheng, Jinhua

    2012-10-01

    Parallel magnetic resonance imaging (pMRI) is a fast method which requires algorithms for the reconstructing image from a small number of measured k-space lines. The accurate estimation of the coil sensitivity functions is still a challenging problem in parallel imaging. The joint estimation of the coil sensitivity functions and the desired image has recently been proposed to improve the situation by iteratively optimizing both the coil sensitivity functions and the image reconstruction. It regards both the coil sensitivities and the desired images as unknowns to be solved for jointly. In this paper, we propose an integrated variable projection approach (IVAPA) for pMRI, which integrates two individual processing steps (coil sensitivity estimation and image reconstruction) into a single processing step to improve the accuracy of the coil sensitivity estimation using the variable projection approach. The method is demonstrated to be able to give an optimal solution with considerably reduced artifacts for high reduction factors and a low number of auto-calibration signal (ACS) lines, and our implementation has a fast convergence rate. The performance of the proposed method is evaluated using a set of in vivo experiment data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Portable Wideband Microwave Imaging System for Intracranial Hemorrhage Detection Using Improved Back-projection Algorithm with Model of Effective Head Permittivity

    Science.gov (United States)

    Mobashsher, Ahmed Toaha; Mahmoud, A.; Abbosh, A. M.

    2016-02-01

    Intracranial hemorrhage is a medical emergency that requires rapid detection and medication to restrict any brain damage to minimal. Here, an effective wideband microwave head imaging system for on-the-spot detection of intracranial hemorrhage is presented. The operation of the system relies on the dielectric contrast between healthy brain tissues and a hemorrhage that causes a strong microwave scattering. The system uses a compact sensing antenna, which has an ultra-wideband operation with directional radiation, and a portable, compact microwave transceiver for signal transmission and data acquisition. The collected data is processed to create a clear image of the brain using an improved back projection algorithm, which is based on a novel effective head permittivity model. The system is verified in realistic simulation and experimental environments using anatomically and electrically realistic human head phantoms. Quantitative and qualitative comparisons between the images from the proposed and existing algorithms demonstrate significant improvements in detection and localization accuracy. The radiation and thermal safety of the system are examined and verified. Initial human tests are conducted on healthy subjects with different head sizes. The reconstructed images are statistically analyzed and absence of false positive results indicate the efficacy of the proposed system in future preclinical trials.

  9. An integrated continuous class-F-1 mode power amplifier design approach for microwave enhanced portable diagnostic applications

    OpenAIRE

    Imtiaz, Azeem; Lees, Jonathan; Choi, Heungjae; Joshi, Lovleen Tina

    2015-01-01

    © 2015 IEEE. This paper presents a novel technique for designing a microwave power delivery system targeted at compact and portable microwave-assisted diagnostic healthcare applications to help tackle the growing problem of anti-microbial resistance. The arrangement comprises a purpose-built cylindrical cavity resonator within which, the bacterial samples are exposed, driven by a high-efficiency 10-W GaN amplifier, critically coupled via a simple, adjustable internal loop antenna. The experim...

  10. Integrated optical 3D digital imaging based on DSP scheme

    Science.gov (United States)

    Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.

    2008-03-01

    We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.

  11. Integrated ultrasound and gamma imaging probe for medical diagnosis

    International Nuclear Information System (INIS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Polito, C.; Orlandi, C.; Fabbri, A.; Vincentis, G. De

    2016-01-01

    In the last few years, integrated multi-modality systems have been developed, aimed at improving the accuracy of medical diagnosis correlating information from different imaging techniques. In this contest, a novel dual modality probe is proposed, based on an ultrasound detector integrated with a small field of view single photon emission gamma camera. The probe, dedicated to visualize small organs or tissues located at short depths, performs dual modality images and permits to correlate morphological and functional information. The small field of view gamma camera consists of a continuous NaI:Tl scintillation crystal coupled with two multi-anode photomultiplier tubes. Both detectors were characterized in terms of position linearity and spatial resolution performances in order to guarantee the spatial correspondence between the ultrasound and the gamma images. Finally, dual-modality images of custom phantoms are obtained highlighting the good co-registration between ultrasound and gamma images, in terms of geometry and image processing, as a consequence of calibration procedures

  12. Integrating a FISH imaging system into the cytology laboratory

    Directory of Open Access Journals (Sweden)

    Denice Smith G

    2010-01-01

    Full Text Available We have implemented an interactive imaging system for the interpretation of UroVysion fluorescence in situ hybridization (FISH to improve throughput, productivity, quality control and diagnostic accuracy. We describe the Duet imaging system, our experiences with implementation, and outline the financial investment, space requirements, information technology needs, validation, and training of cytotechnologists needed to integrate such a system into a cytology laboratory. Before purchasing the imaging system, we evaluated and validated the instrument at our facility. Implementation required slide preparation changes, IT modifications, development of training programs, and revision of job descriptions for cytotechnologists. A darkened room was built to house the automated scanning station and microscope, as well as two imaging stations. IT changes included generation of storage for archival images on the LAN, addition of external hard drives for back-up, and changes to cable connections for communication between remote locations. Training programs for cytotechnologists, and pathologists/fellows/residents were developed, and cytotechnologists were integrated into multiple steps of the process. The imaging system has resulted in increased productivity for pathologists, concomitant with an expanded role of cytotechnologists in multiple critical steps, including FISH, scan setup, reclassification, and initial interpretation.

  13. Microwave Irradiation

    Indian Academy of Sciences (India)

    Way to Eco-friendly, Green Chemistry. Rashmi ... The rapid heating of food in the kitchen using microwave ovens ... analysis; application to waste treatment; polymer technology; ... of microwave heating in organic synthesis since the first contri-.

  14. A framework for integration of heterogeneous medical imaging networks.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís S; Costa, Carlos

    2014-01-01

    Medical imaging is increasing its importance in matters of medical diagnosis and in treatment support. Much is due to computers that have revolutionized medical imaging not only in acquisition process but also in the way it is visualized, stored, exchanged and managed. Picture Archiving and Communication Systems (PACS) is an example of how medical imaging takes advantage of computers. To solve problems of interoperability of PACS and medical imaging equipment, the Digital Imaging and Communications in Medicine (DICOM) standard was defined and widely implemented in current solutions. More recently, the need to exchange medical data between distinct institutions resulted in Integrating the Healthcare Enterprise (IHE) initiative that contains a content profile especially conceived for medical imaging exchange: Cross Enterprise Document Sharing for imaging (XDS-i). Moreover, due to application requirements, many solutions developed private networks to support their services. For instance, some applications support enhanced query and retrieve over DICOM objects metadata. This paper proposes anintegration framework to medical imaging networks that provides protocols interoperability and data federation services. It is an extensible plugin system that supports standard approaches (DICOM and XDS-I), but is also capable of supporting private protocols. The framework is being used in the Dicoogle Open Source PACS.

  15. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  16. Initial Investigation of preclinical integrated SPECT and MR imaging.

    Science.gov (United States)

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  17. Feasibility Study on S-Band Microwave Radiation and 3D-Thermal Infrared Imaging Sensor-Aided Recognition of Polymer Materials from End-of-Life Vehicles

    Directory of Open Access Journals (Sweden)

    Jiu Huang

    2018-04-01

    Full Text Available With the increase the worldwide consumption of vehicles, end-of-life vehicles (ELVs have kept rapidly increasing in the last two decades. Metallic parts and materials of ELVs can be easily reused and recycled, but the automobile shredder residues (ASRs, of which elastomer and plastic materials make up the vast majority, are difficult to recycle. ASRs are classified as hazardous materials in the main industrial countries, and are required to be materially recycled up to 85–95% by mass until 2020. However, there is neither sufficient theoretical nor practical experience for sorting ASR polymers. In this research, we provide a novel method by using S-Band microwave irradiation together with 3D scanning as well as infrared thermal imaging sensors for the recognition and sorting of typical plastics and elastomers from the ASR mixture. In this study, an industrial magnetron array with 2.45 GHz irradiation was utilized as the microwave source. Seven kinds of ELV polymer (PVC, ABS, PP, EPDM, NBR, CR, and SBR crushed scrap residues were tested. After specific power microwave irradiation for a certain time, the tested polymer materials were heated up to different extents corresponding to their respective sensitivities to microwave irradiation. Due to the variations in polymer chemical structure and additive agents, polymers have different sensitivities to microwave radiation, which leads to differences in temperature rises. The differences of temperature increase were obtained by a thermal infrared sensor, and the position and geometrical features of the tested scraps were acquired by a 3D imaging sensor. With this information, the scrap material could be recognized and then sorted. The results showed that this method was effective when the tested polymer materials were heated up to more than 30 °C. For full recognition of the tested polymer scraps, the minimum temperature variations of 5 °C and 10.5 °C for plastics and elastomers were needed

  18. X-ray imaging studies of electron cyclotron microwave-heated plasmas in the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Failor, B.H.

    1986-02-01

    An x-ray pinhole camera designed to efficiently detect photons with energies between 5 and 250 keV was built to image bremsstrahlung emission from a microwave-heated hot electron plasma. This plasma is formed at one of the thermal barrier locations in the Tandem Experiment-Upgrade at Lawrence Livermore National Laboratory. The instrument consists of a lead aperture, an x-ray converter in the form of a sodium-activated cesium iodide scintillator, light intensifier electronics, and a recording medium that may either be high speed film or a CCD array. The nominal spatial and temporal resolutions are one part in 40 and 17 msec, respectively. The component requirements for optimum performance were determined both analytically and by computer simulation, and were verified experimentally. The details of these results are presented. The instrument has been used to measure x-ray emission from the TMX-U west end cell. Data acquired with the x-ray camera has allowed us to infer the temporal evolution of the mirror-trapped electron radial profile

  19. Data Quality Assessment of FY-3C MWRI Microwave Imager from CMA, ECMWF and the Met Office

    Science.gov (United States)

    Lu, Q.; WU, S.; Dou, F.; Sun, F.; Lawrence, H.; Geer, A.; English, S.; Newman, S.; Bell, W.; Bormann, N.; Carminati, F.

    2017-12-01

    MWRI is a conical-scanning microwave imager following on from the heritage of similar instruments such as SSMI/S and AMSR-2, with ten channels at frequencies between 10.65 GHz and 89 GHz. MWRI is flown on the China Meteorological Administration's (CMA's) Feng-Yun-3 (FY-3) satellite series, including on FY-3C and the upcoming FY-3D, scheduled for launch in September 2017. Here we present an evaluation of the data from MWRI on the FY-3C satellite launched in 2013. At CMA, the MWRI instrumental parameters and statistics between observation and simulation from RTTOV and CRTM radiative transfer modeling were monitored to characterise instrumental uncertainty from calibration and assess the data quality. The data were also assessed using model-equivalent brightness temperatures from the ECMWF and Met Office short-range forecasts. The forecasts were first transformed into brightness temperature space using the RTTOV radiative transfer code. By analysing observed minus model background ("O-B") brightness temperature departures we were able to investigate the instrument and geophysical state dependence of biases. We show examples of how biases can impact the data quality, related to ascending/descending node differences and radio frequency interference. We discuss the prospects of assimilation of MWRI data at NWP centres.

  20. Design and Fabrication of Vertically-Integrated CMOS Image Sensors

    Science.gov (United States)

    Skorka, Orit; Joseph, Dileepan

    2011-01-01

    Technologies to fabricate integrated circuits (IC) with 3D structures are an emerging trend in IC design. They are based on vertical stacking of active components to form heterogeneous microsystems. Electronic image sensors will benefit from these technologies because they allow increased pixel-level data processing and device optimization. This paper covers general principles in the design of vertically-integrated (VI) CMOS image sensors that are fabricated by flip-chip bonding. These sensors are composed of a CMOS die and a photodetector die. As a specific example, the paper presents a VI-CMOS image sensor that was designed at the University of Alberta, and fabricated with the help of CMC Microsystems and Micralyne Inc. To realize prototypes, CMOS dies with logarithmic active pixels were prepared in a commercial process, and photodetector dies with metal-semiconductor-metal devices were prepared in a custom process using hydrogenated amorphous silicon. The paper also describes a digital camera that was developed to test the prototype. In this camera, scenes captured by the image sensor are read using an FPGA board, and sent in real time to a PC over USB for data processing and display. Experimental results show that the VI-CMOS prototype has a higher dynamic range and a lower dark limit than conventional electronic image sensors. PMID:22163860

  1. Accuracy assessment of topographic mapping using UAV image integrated with satellite images

    International Nuclear Information System (INIS)

    Azmi, S M; Ahmad, Baharin; Ahmad, Anuar

    2014-01-01

    Unmanned Aerial Vehicle or UAV is extensively applied in various fields such as military applications, archaeology, agriculture and scientific research. This study focuses on topographic mapping and map updating. UAV is one of the alternative ways to ease the process of acquiring data with lower operating costs, low manufacturing and operational costs, plus it is easy to operate. Furthermore, UAV images will be integrated with QuickBird images that are used as base maps. The objective of this study is to make accuracy assessment and comparison between topographic mapping using UAV images integrated with aerial photograph and satellite image. The main purpose of using UAV image is as a replacement for cloud covered area which normally exists in aerial photograph and satellite image, and for updating topographic map. Meanwhile, spatial resolution, pixel size, scale, geometric accuracy and correction, image quality and information contents are important requirements needed for the generation of topographic map using these kinds of data. In this study, ground control points (GCPs) and check points (CPs) were established using real time kinematic Global Positioning System (RTK-GPS) technique. There are two types of analysis that are carried out in this study which are quantitative and qualitative assessments. Quantitative assessment is carried out by calculating root mean square error (RMSE). The outputs of this study include topographic map and orthophoto. From this study, the accuracy of UAV image is ± 0.460 m. As conclusion, UAV image has the potential to be used for updating of topographic maps

  2. Uncertainty management in integrated modelling, the IMAGE case

    International Nuclear Information System (INIS)

    Van der Sluijs, J.P.

    1995-01-01

    Integrated assessment models of global environmental problems play an increasingly important role in decision making. This use demands a good insight regarding the reliability of these models. In this paper we analyze uncertainty management in the IMAGE-project (Integrated Model to Assess the Greenhouse Effect). We use a classification scheme comprising type and source of uncertainty. Our analysis shows reliability analysis as main area for improvement. We briefly review a recently developed methodology, NUSAP (Numerical, Unit, Spread, Assessment and Pedigree), that systematically addresses the strength of data in terms of spread, reliability and scientific status (pedigree) of information. This approach is being tested through interviews with model builders. 3 tabs., 20 refs

  3. INTEGRATION OF IMAGE-DERIVED AND POS-DERIVED FEATURES FOR IMAGE BLUR DETECTION

    Directory of Open Access Journals (Sweden)

    T.-A. Teo

    2016-06-01

    Full Text Available The image quality plays an important role for Unmanned Aerial Vehicle (UAV’s applications. The small fixed wings UAV is suffering from the image blur due to the crosswind and the turbulence. Position and Orientation System (POS, which provides the position and orientation information, is installed onto an UAV to enable acquisition of UAV trajectory. It can be used to calculate the positional and angular velocities when the camera shutter is open. This study proposes a POS-assisted method to detect the blur image. The major steps include feature extraction, blur image detection and verification. In feature extraction, this study extracts different features from images and POS. The image-derived features include mean and standard deviation of image gradient. For POS-derived features, we modify the traditional degree-of-linear-blur (blinear method to degree-of-motion-blur (bmotion based on the collinear condition equations and POS parameters. Besides, POS parameters such as positional and angular velocities are also adopted as POS-derived features. In blur detection, this study uses Support Vector Machines (SVM classifier and extracted features (i.e. image information, POS data, blinear and bmotion to separate blur and sharp UAV images. The experiment utilizes SenseFly eBee UAV system. The number of image is 129. In blur image detection, we use the proposed degree-of-motion-blur and other image features to classify the blur image and sharp images. The classification result shows that the overall accuracy using image features is only 56%. The integration of image-derived and POS-derived features have improved the overall accuracy from 56% to 76% in blur detection. Besides, this study indicates that the performance of the proposed degree-of-motion-blur is better than the traditional degree-of-linear-blur.

  4. Microwave Sensors for Breast Cancer Detection.

    Science.gov (United States)

    Wang, Lulu

    2018-02-23

    Breast cancer is the leading cause of death among females, early diagnostic methods with suitable treatments improve the 5-year survival rates significantly. Microwave breast imaging has been reported as the most potential to become the alternative or additional tool to the current gold standard X-ray mammography for detecting breast cancer. The microwave breast image quality is affected by the microwave sensor, sensor array, the number of sensors in the array and the size of the sensor. In fact, microwave sensor array and sensor play an important role in the microwave breast imaging system. Numerous microwave biosensors have been developed for biomedical applications, with particular focus on breast tumor detection. Compared to the conventional medical imaging and biosensor techniques, these microwave sensors not only enable better cancer detection and improve the image resolution, but also provide attractive features such as label-free detection. This paper aims to provide an overview of recent important achievements in microwave sensors for biomedical imaging applications, with particular focus on breast cancer detection. The electric properties of biological tissues at microwave spectrum, microwave imaging approaches, microwave biosensors, current challenges and future works are also discussed in the manuscript.

  5. Multimodal Imaging Nanoparticles Derived from Hyaluronic Acid for Integrated Preoperative and Intraoperative Cancer Imaging

    Directory of Open Access Journals (Sweden)

    William M. Payne

    2017-01-01

    Full Text Available Surgical resection remains the most promising treatment strategy for many types of cancer. Residual malignant tissue after surgery, a consequence in part due to positive margins, contributes to high mortality and disease recurrence. In this study, multimodal contrast agents for integrated preoperative magnetic resonance imaging (MRI and intraoperative fluorescence image-guided surgery (FIGS are developed. Self-assembled multimodal imaging nanoparticles (SAMINs were developed as a mixed micelle formulation using amphiphilic HA polymers functionalized with either GdDTPA for T1 contrast-enhanced MRI or Cy7.5, a near infrared fluorophore. To evaluate the relationship between MR and fluorescence signal from SAMINs, we employed simulated surgical phantoms that are routinely used to evaluate the depth at which near infrared (NIR imaging agents can be detected by FIGS. Finally, imaging agent efficacy was evaluated in a human breast tumor xenograft model in nude mice, which demonstrated contrast in both fluorescence and magnetic resonance imaging.

  6. The Center for Integrated Molecular Brain Imaging (Cimbi) database

    DEFF Research Database (Denmark)

    Knudsen, Gitte M.; Jensen, Peter S.; Erritzoe, David

    2016-01-01

    We here describe a multimodality neuroimaging containing data from healthy volunteers and patients, acquired within the Lundbeck Foundation Center for Integrated Molecular Brain Imaging (Cimbi) in Copenhagen, Denmark. The data is of particular relevance for neurobiological research questions rela...... currently contains blood and in some instances saliva samples from about 500 healthy volunteers and 300 patients with e.g., major depression, dementia, substance abuse, obesity, and impulsive aggression. Data continue to be added to the Cimbi database and biobank....

  7. BODY IMAGE IN CHILDHOOD: AN INTEGRATIVE LITERATURE REVIEW.

    Science.gov (United States)

    Neves, Clara Mockdece; Cipriani, Flávia Marcelle; Meireles, Juliana Fernandes Filgueiras; Morgado, Fabiane Frota da Rocha; Ferreira, Maria Elisa Caputo

    2017-01-01

    To analyse the scientific literature regarding the evaluation of body image in children through an integrative literature review. An intersection of the keywords "body image" AND "child" was conducted in Scopus, Medline and Virtual Health Library (BVS - Biblioteca Virtual de Saúde) databases. The electronic search was based on studies published from January 2013 to January 2016, in order to verify the most current investigations on the subject. Exclusion criteria were: articles in duplicate; no available summaries; not empirical; not assessing any component of body image; the sample did not consider the target age of this research (0 to 12 years old) and/or considered clinical populations; besides articles not fully available. 7,681 references were identified, and, after the exclusion criteria were implemented, 33 studies were analysed. Results showed that the perceptual and attitudinal dimensions focusing on body dissatisfaction were explored, mainly evaluated by silhouette scales. Intervention programs were developed internationally to prevent negative body image in children. The studies included in this review evaluated specific aspects of body image in children, especially body perception and body dissatisfaction. The creation of specific tools for children to evaluate body image is recommended to promote the psychosocial well being of individuals throughout human development.

  8. Integration of optical imaging with a small animal irradiator

    International Nuclear Information System (INIS)

    Weersink, Robert A.; Ansell, Steve; Wang, An; Wilson, Graham; Shah, Duoaud; Lindsay, Patricia E.; Jaffray, David A.

    2014-01-01

    Purpose: The authors describe the integration of optical imaging with a targeted small animal irradiator device, focusing on design, instrumentation, 2D to 3D image registration, 2D targeting, and the accuracy of recovering and mapping the optical signal to a 3D surface generated from the cone-beam computed tomography (CBCT) imaging. The integration of optical imaging will improve targeting of the radiation treatment and offer longitudinal tracking of tumor response of small animal models treated using the system. Methods: The existing image-guided small animal irradiator consists of a variable kilovolt (peak) x-ray tube mounted opposite an aSi flat panel detector, both mounted on a c-arm gantry. The tube is used for both CBCT imaging and targeted irradiation. The optical component employs a CCD camera perpendicular to the x-ray treatment/imaging axis with a computer controlled filter for spectral decomposition. Multiple optical images can be acquired at any angle as the gantry rotates. The optical to CBCT registration, which uses a standard pinhole camera model, was modeled and tested using phantoms with markers visible in both optical and CBCT images. Optically guided 2D targeting in the anterior/posterior direction was tested on an anthropomorphic mouse phantom with embedded light sources. The accuracy of the mapping of optical signal to the CBCT surface was tested using the same mouse phantom. A surface mesh of the phantom was generated based on the CBCT image and optical intensities projected onto the surface. The measured surface intensity was compared to calculated surface for a point source at the actual source position. The point-source position was also optimized to provide the closest match between measured and calculated intensities, and the distance between the optimized and actual source positions was then calculated. This process was repeated for multiple wavelengths and sources. Results: The optical to CBCT registration error was 0.8 mm. Two

  9. An Integrated Tone Mapping for High Dynamic Range Image Visualization

    Science.gov (United States)

    Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun

    2018-01-01

    There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.

  10. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  11. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles.

    Science.gov (United States)

    Wen, Liewei; Yang, Sihua; Zhong, Junping; Zhou, Quan; Xing, Da

    2017-01-01

    Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.

  12. Imaging of microwave-induced acoustic fields in LiNbO{sub 3} by high-performance Brillouin microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Krueger, J K [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Univ. des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Elmazria, O [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Bouvot, L [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Universite H. Poincare, Nancy I, F-54506 (France); Mainka, J [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Fachrichtung 7.2, Experimentalphysik, Universitaet des Saarlandes, Bau 38, D-66041 Saarbruecken (Germany); Sanctuary, R [Laboratoire Europeen de Recherche Universitaire: Saarland-Lorraine, Universitaet des Saarlandes, D-66041 Saarbruecken (Germany)]|[Laboratoire de Physique des Materiaux, Campus Luxembourg-Limpertsberg, L-1511 Luxembourg (Luxembourg); Rouxel, D [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France); Alnot, P [Lab. Europeen de Recherche Univ.: Saarland-Lorraine, Univ. des Saarlandes, D-66041 Saarbruecken (Germany)]|[Lab. de Physique des Milieux Ionises et Applications, CNRS-UMR 7040, Univ. H. Poincare, Nancy I, F-54506 (France)

    2005-06-21

    High performance Brillouin microscopy (BM) has been used to characterize the spatial distribution of piezoelectrically induced acoustic fields excited at microwave frequencies in a LiNbO{sub 3} single crystal. It is demonstrated that under suitable conditions BM is able to detect microwave-induced bulk as well as surface acoustic waves. Brillouin spectroscopy is able to probe sound wave intensities of induced phonons, which are as small as those of thermal phonons.

  13. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  14. Development of an integrated MOX-scrap recycling flow-sheet by dry and wet routes using microwave heating techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, G K; Malav, R K; Karande, A P; Bhargava, V K; Kamath, H S [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur (India)

    1999-01-01

    A simple, short and efficient scrap, recycling flow-sheet, which is exclusively based on microwave heating techniques and, includes both dry and wet routes, for (U,Pu)O{sub 2} fuel scrap recycling has been developed and evaluated. (author) 6 refs., 1 tab.

  15. MUSIC algorithm for location searching of dielectric anomalies from S-parameters using microwave imaging

    Science.gov (United States)

    Park, Won-Kwang; Kim, Hwa Pyung; Lee, Kwang-Jae; Son, Seong-Ho

    2017-11-01

    Motivated by the biomedical engineering used in early-stage breast cancer detection, we investigated the use of MUltiple SIgnal Classification (MUSIC) algorithm for location searching of small anomalies using S-parameters. We considered the application of MUSIC to functional imaging where a small number of dipole antennas are used. Our approach is based on the application of Born approximation or physical factorization. We analyzed cases in which the anomaly is respectively small and large in relation to the wavelength, and the structure of the left-singular vectors is linked to the nonzero singular values of a Multi-Static Response (MSR) matrix whose elements are the S-parameters. Using simulations, we demonstrated the strengths and weaknesses of the MUSIC algorithm in detecting both small and extended anomalies.

  16. A Dual-Mode Microwave Applicator for Liver Tumor Thermotherapy

    Science.gov (United States)

    Reimann, Carolin; Schüßler, Martin; Jakoby, Rolf; Bazrafshan, Babak; Hübner, Frank; Vogl, Thomas

    2018-03-01

    The concept of a novel dual-mode microwave applicator for diagnosis and thermal ablation treatment of tumorous tissue is presented in this paper. This approach is realized by integrating a planar resonator array to, firstly, detect abnormalities by a relative dielectric analysis, and secondly, perform a highly localized thermal ablation. A further essential advantage is addressed by designing the applicator to be MRI compatible to provide a multimodal imaging procedure. Investigations for an appropriate frequency range lead to the use of much higher operating frequencies between 5 GHz and 10 GHz, providing a significantly lower power consumption for microwave ablation of only 20 W compared to commercial available applicators.

  17. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model

    Science.gov (United States)

    Koszela, K.; OtrzÄ sek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The farming area for vegetables in Poland is constantly changed and modified. Each year the cultivation structure of particular vegetables is different. However, it is the cultivation of carrots that plays a significant role among vegetables. According to the Main Statistical Office (GUS), in 2012 carrot held second position among the cultivated root vegetables, and it was estimated at 835 thousand tons. In the world we are perceived as the leading producer of carrot, due to the fourth place in the ranking of global producers. Poland is the largest producer of this vegetable in the EU [1]. It is also noteworthy, that the demand for dried vegetables is still increasing. This tendency affects the development of drying industry in our country, contributing to utilization of the product surplus. Dried vegetables are used increasingly often in various sectors of food products industry, due to high nutrition value, as well as to changing alimentary preferences of consumers [2-3]. Dried carrot plays a crucial role among dried vegetables, because of its wide scope of use and high nutrition value. It contains a lot of carotene and sugar present in the form of crystals. Carrot also undergoes many different drying processes, which makes it difficult to perform a reliable quality assessment and classification of this dried material. One of many qualitative properties of dried carrot, having important influence on a positive or negative result of the quality assessment, is color and shape. The aim of the research project was to develop a method for the analysis of microwave-vacuum dried carrot images, and its application for the classification of individual fractions in the sample studied for quality assessment. During the research digital photographs of dried carrot were taken, which constituted the basis for assessment performed by a dedicated computer programme developed as a part of the research. Consequently, using a neural model, the dried material was classified [4-6].

  18. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer

    International Nuclear Information System (INIS)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-01-01

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  19. Adaptive HIFU noise cancellation for simultaneous therapy and imaging using an integrated HIFU/imaging transducer.

    Science.gov (United States)

    Jeong, Jong Seob; Cannata, Jonathan Matthew; Shung, K Kirk

    2010-04-07

    It was previously demonstrated that it is feasible to simultaneously perform ultrasound therapy and imaging of a coagulated lesion during treatment with an integrated transducer that is capable of high intensity focused ultrasound (HIFU) and B-mode ultrasound imaging. It was found that coded excitation and fixed notch filtering upon reception could significantly reduce interference caused by the therapeutic transducer. During HIFU sonication, the imaging signal generated with coded excitation and fixed notch filtering had a range side-lobe level of less than -40 dB, while traditional short-pulse excitation and fixed notch filtering produced a range side-lobe level of -20 dB. The shortcoming is, however, that relatively complicated electronics may be needed to utilize coded excitation in an array imaging system. It is for this reason that in this paper an adaptive noise canceling technique is proposed to improve image quality by minimizing not only the therapeutic interference, but also the remnant side-lobe 'ripples' when using the traditional short-pulse excitation. The performance of this technique was verified through simulation and experiments using a prototype integrated HIFU/imaging transducer. Although it is known that the remnant ripples are related to the notch attenuation value of the fixed notch filter, in reality, it is difficult to find the optimal notch attenuation value due to the change in targets or the media resulted from motion or different acoustic properties even during one sonication pulse. In contrast, the proposed adaptive noise canceling technique is capable of optimally minimizing both the therapeutic interference and residual ripples without such constraints. The prototype integrated HIFU/imaging transducer is composed of three rectangular elements. The 6 MHz center element is used for imaging and the outer two identical 4 MHz elements work together to transmit the HIFU beam. Two HIFU elements of 14.4 mm x 20.0 mm dimensions could

  20. Microwave undulator

    International Nuclear Information System (INIS)

    Batchelor, K.

    1986-03-01

    The theory of a microwave undulator utilizing a plane rectangular waveguide operating in the TE/sub 10n/ mode and other higher order modes is presented. Based on this, a possible undulator configuration is analyzed, leading to the conclusion that the microwave undulator represents a viable option for undulator wavelength down to about 1 cm where peak voltage and available microwave power considerations limit effectiveness. 4 refs., 4 figs

  1. Microwave Microscope

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...

  2. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    Science.gov (United States)

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  3. Ultrasound guided percutaneous microwave ablation of benign thyroid nodules: Safety and imaging follow-up in 222 patients

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Wenwen [Binzhou Medical University, #346 Guan-hai Road, Lai-shan, Yantai, Shandong 264003 (China); Wang, Shurong, E-mail: 7762808@sina.com [Department of Ultrasound, Muping Area People' s Hospital, #629 Nan-hua Street, Mu-ping, Yantai, Shandong 264100 (China); Wang, Bin [Binzhou Medical University, #346 Guan-hai Road, Lai-shan, Yantai, Shandong 264003 (China); Xu, Qingling; Yu, Shoujun; Yonglin, Zhang; Wang, Xiju [Department of Ultrasound, Muping Area People' s Hospital, #629 Nan-hua Street, Mu-ping, Yantai, Shandong 264100 (China)

    2013-01-15

    Objective: Microwave ablation is a minimally invasive technique that has been used to treat benign and malignant tumors of liver, lung and kidney. Towards thyroid nodules, only a few cases are reported so far. The aim of the study was to investigate the effectiveness and safety of ultrasound-guided percutaneous microwave ablation in the treatment of benign thyroid nodules with a large sample. Materials and methods: A total of 477 benign thyroid nodules in 222 patients underwent microwave ablation in our department from July 2009 to March 2012. Microwave ablation was carried out using microwave antenna (16G) under local anesthesia. Nodule volume, thyroid function and clinical symptoms were evaluated before treatment and at 1, 3, more than 6 months. The study was ethics committee approved and written informed consents were obtained from all patients. Results: All thyroid nodules significantly decreased in size after microwave ablation. A 6-month follow-up was achieved in 254 of 477 nodules, and the mean decrease in the volume of thyroid nodules was from 2.13 ± 4.42 ml to 0.45 ± 0.90 ml, with a mean percent decrease of 0.65 ± 0.65. A volume-reduction ratio greater than 50% was observed in 82.3% (209/254) of index nodules, and 30.7% (78/254) of index nodules disappeared 6-month after the ablation. The treatment was well tolerated and no major complications were observed except pain and transient voice changes. Conclusions: Microwave ablation seems to be a safe and effective technique for the treatment of benign thyroid nodules. Further prospective randomized studies are needed to define the role of the procedure in the treatment of thyroid nodules.

  4. Integration of intraoperative stereovision imaging for brain shift visualization during image-guided cranial procedures

    Science.gov (United States)

    Schaewe, Timothy J.; Fan, Xiaoyao; Ji, Songbai; Roberts, David W.; Paulsen, Keith D.; Simon, David A.

    2014-03-01

    Dartmouth and Medtronic Navigation have established an academic-industrial partnership to develop, validate, and evaluate a multi-modality neurosurgical image-guidance platform for brain tumor resection surgery that is capable of updating the spatial relationships between preoperative images and the current surgical field. A stereovision system has been developed and optimized for intraoperative use through integration with a surgical microscope and an image-guided surgery system. The microscope optics and stereovision CCD sensors are localized relative to the surgical field using optical tracking and can efficiently acquire stereo image pairs from which a localized 3D profile of the exposed surface is reconstructed. This paper reports the first demonstration of intraoperative acquisition, reconstruction and visualization of 3D stereovision surface data in the context of an industry-standard image-guided surgery system. The integrated system is capable of computing and presenting a stereovision-based update of the exposed cortical surface in less than one minute. Alternative methods for visualization of high-resolution, texture-mapped stereovision surface data are also investigated with the objective of determining the technical feasibility of direct incorporation of intraoperative stereo imaging into future iterations of Medtronic's navigation platform.

  5. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.; Kundhikanjana, W.; Peng, H.; Cui, Y.; Kelly, M. A.; Shen, Z. X.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately

  6. Ball-in-ball ZrO2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors.

    Science.gov (United States)

    Long, Dan; Niu, Meng; Tan, Longfei; Fu, Changhui; Ren, Xiangling; Xu, Ke; Zhong, Hongshan; Wang, Jingzhuo; Li, Laifeng; Meng, Xianwei

    2017-06-29

    Combined thermo-chemotherapy displays outstanding synergically therapeutic efficiency when compared with standalone thermotherapy and chemotherapy. Herein, we developed a smart tri-stimuli-responsive drug delivery system involving X@BB-ZrO 2 NPs (X represents loaded IL, DOX, keratin and tetradecanol) based on novel ball-in-ball-structured ZrO 2 nanoparticles (BB-ZrO 2 NPs). The microwave energy conversion efficiency of BB-ZrO 2 NPs was 41.2% higher than that of traditional single-layer NPs due to the cooperative action of self-reflection and spatial confinement effect of the special two-layer hollow nanostructure. The tri-stimuli-responsive controlled release strategy indicate that integrated pH, redox and microwaves in single NPs based on keratin and tetradecanol could effectively enhance the specific controlled release of DOX. The release of DOX was only 8.1% in PBS with pH = 7.2 and GSH = 20 μM. However, the release could reach about 50% at the tumor site (pH = 5.5, GSH = 13 mM) under microwave ablation. The as-made X@BB-ZrO 2 NPs exhibited perfect synergic therapy effect of chemotherapy and microwave ablation both in subcutaneous tumors (H22 tumor-bearing mice) and deep tumors (liver transplantation VX2 tumor-bearing rabbit model). There was no recurrence and death in the X@BB-ZrO 2 + MW group during the therapy of subcutaneous tumors even on the 42 nd day. The growth rates in the deep tumor of the control, MW and X@BB-ZrO 2 + MW groups were 290.1%, 14.1% and -42% 6 days after ablation, respectively. Dual-source CT was used to monitor the metabolism behavior of the as-made BB-ZrO 2 NPs and traditional CT was utilized to monitor the tumor growth in rabbits. Frozen section examination and ICP results indicated the precise control of drug delivery and enhanced cytotoxicity by the tri-stimuli-responsive controlled release strategy. The ball-in-ball ZrO 2 NPs with high microwave energy conversion efficiency were first developed for synergic microwave ablation and

  7. Constructing Two-, Zero-, and One-Dimensional Integrated Nanostructures: an Effective Strategy for High Microwave Absorption Performance.

    Science.gov (United States)

    Sun, Yuan; Xu, Jianle; Qiao, Wen; Xu, Xiaobing; Zhang, Weili; Zhang, Kaiyu; Zhang, Xing; Chen, Xing; Zhong, Wei; Du, Youwei

    2016-11-23

    A novel "201" nanostructure composite consisting of two-dimensional MoS 2 nanosheets, zero-dimensional Ni nanoparticles and one-dimensional carbon nanotubes (CNTs) was prepared successfully by a two-step method: Ni nanopaticles were deposited onto the surface of few-layer MoS 2 nanosheets by a wet chemical method, followed by chemical vapor deposition growth of CNTs through the catalysis of Ni nanoparticles. The as-prepared 201-MoS 2 -Ni-CNTs composites exhibit remarkably enhanced microwave absorption performance compared to Ni-MoS 2 or Ni-CNTs. The minimum reflection loss (RL) value of 201-MoS 2 -Ni-CNTs/wax composites with filler loading ratio of 30 wt % reached -50.08 dB at the thickness of 2.4 mm. The maximum effective microwave absorption bandwidth (RL< -10 dB) of 6.04 GHz was obtained at the thickness of 2.1 mm. The excellent absorption ability originates from appropriate impedance matching ratio, strong dielectric loss and large surface area, which are attributed to the "201" nanostructure. In addition, this method could be extended to other low-dimensional materials, proving to be an efficient and promising strategy for high microwave absorption performance.

  8. Integration of image exposure time into a modified laser speckle imaging method

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J [Optics Department, INAOE, Puebla (Mexico); Huang, Y C [Department of Electrical Engineering and Computer Science, University of California, Irvine, CA (United States); Choi, B, E-mail: jcram@inaoep.m [Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA (United States)

    2010-11-21

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  9. Integration of image exposure time into a modified laser speckle imaging method

    International Nuclear Information System (INIS)

    RamIrez-San-Juan, J C; Salazar-Hermenegildo, N; Ramos-Garcia, R; Munoz-Lopez, J; Huang, Y C; Choi, B

    2010-01-01

    Speckle-based methods have been developed to characterize tissue blood flow and perfusion. One such method, called modified laser speckle imaging (mLSI), enables computation of blood flow maps with relatively high spatial resolution. Although it is known that the sensitivity and noise in LSI measurements depend on image exposure time, a fundamental disadvantage of mLSI is that it does not take into account this parameter. In this work, we integrate the exposure time into the mLSI method and provide experimental support of our approach with measurements from an in vitro flow phantom.

  10. 40° image intensifier tubes in an integrated helmet system

    Science.gov (United States)

    Schreyer, Herbert; Boehm, Hans-Dieter V.; Svedevall, B.

    1993-12-01

    EUROCOPTER has been under contract to the French and German ministries of defence for five years to develop the TIGER, a second generation anti-tank helicopter. A piloting thermal imager has been installed on a steerable platform in the helicopter nose in order to achieve the possibility of flying round the clock. In addition to this sensor, which is sensitive at a wavelength of 10 micrometers , the German side has proposed using an Integrated Helmet System in the PAH 2. This helmet, manufactured by GEC-Marconi Avionics, incorporates two cathode ray tubes (CRT) and two image intensifier tubes which allow the pilot to use an additional sensor in the visible and near infrared spectrum. The electronic part will be built by Teldix. EUROCOPTER DEUTSCHLAND has received the first demonstrator of this helmet for testing in the EUROCOPTER Visionics Laboratory. Later, the C-prototype will be integrated into a BK 117 helicopter (AVT Avionik Versuchstrager). This new helmet has a field of view of 40 degree(s), and exit pupil of 15 mm and improved possibilities of adjusting the optical part. Laboratory tests have been carried out to test important parameters like optical resolution under low light level conditions, field of view, eye relief or exit pupil. The CRT channels have been tested for resolution, distortion, vignetting and homogeneity. The requirements and the properties of the helmet, test procedures and the results of these tests are presented in the paper.

  11. Three Birds with One Fe3O4 Nanoparticle: Integration of Microwave Digestion, Solid Phase Extraction, and Magnetic Separation for Sensitive Determination of Arsenic and Antimony in Fish.

    Science.gov (United States)

    Jia, Yun; Yu, Huimin; Wu, Li; Hou, Xiandeng; Yang, Lu; Zheng, Chengbin

    2015-06-16

    An environmentally friendly and fast sample treatment approach that integrates accelerated microwave digestion (MWD), solid phase extraction, and magnetic separation into a single step was developed for the determination of arsenic and antimony in fish samples by using Fe3O4 magnetic nanoparticles (MNPs). Compared to conventional microwave digestion, the consumption of HNO3 was reduced significantly to 12.5%, and the digestion time and temperature were substantially decreased to 6 min and 80 °C, respectively. This is largely attributed to Fe3O4 magnetic nanoparticles being a highly effective catalyst for rapid generation of oxidative radicals from H2O2, as well as an excellent absorber of microwave irradiation. Moreover, potential interferences from sample matrices were eliminated because the As and Sb species adsorbed on the nanoparticles were efficiently separated from the digests with a hand-held magnet prior to analysis. Limits of detection for arsenic and antimony were in the range of 0.01-0.06 μg g(-1) and 0.03-0.08 μg g(-1) by using hydride generation atomic fluorescence spectrometry, respectively, and further improved to 0.002-0.005 μg g(-1) and 0.005-0.01 μg g(-1) when inductively coupled plasma mass spectrometry was used as a detector. The precision of replicate measurements (n = 9) was better than 6% by analyzing 0.1 g test sample spiked with 1 μg g(-1) arsenic and antimony. The proposed method was validated by analysis of two certified reference materials (DORM-3 and DORM-4) with good recoveries (90%-106%).

  12. Cryogenic microwave channelized receiver

    International Nuclear Information System (INIS)

    Rauscher, C.; Pond, J.M.; Tait, G.B.

    1996-01-01

    The channelized receiver being presented demonstrates the use of high temperature superconductor technology in a microwave system setting where superconductor, microwave-monolithic-integrated-circuit, and hybrid-integrated-circuit components are united in one package and cooled to liquid-nitrogen temperatures. The receiver consists of a superconducting X-band four-channel demultiplexer with 100-MHz-wide channels, four commercial monolithically integrated mixers, and four custom-designed hybrid-circuit detectors containing heterostructure ramp diodes. The composite receiver unit has been integrated into the payload of the second-phase NRL high temperature superconductor space experiment (HTSSE-II). Prior to payload assembly, the response characteristics of the receiver were measured as functions of frequency, temperature, and drive levels. The article describes the circuitry, discusses the key issues related to design and implementation, and summarizes the experimental results

  13. Microwave Assisted Drug Delivery

    DEFF Research Database (Denmark)

    Jónasson, Sævar Þór; Zhurbenko, Vitaliy; Johansen, Tom Keinicke

    2014-01-01

    In this work, the microwave radiation is adopted for remote activation of pharmaceutical drug capsules inside the human body in order to release drugs at a pre-determined time and location. An array of controllable transmitting sources is used to produce a constructive interference at a certain...... focus point inside the body, where the drugs are then released from the specially designed capsules. An experimental setup for microwave activation has been developed and tested on a body phantom that emulates the human torso. A design of sensitive receiving structures for integration with a drug...

  14. Integration Of An MR Image Network Into A Clinical PACS

    Science.gov (United States)

    Ratib, Osman M.; Mankovich, Nicholas J.; Taira, Ricky K.; Cho, Paul S.; Huang, H. K.

    1988-06-01

    A direct link between a clinical pediatric PACS module and a FONAR MRI image network was implemented. The original MR network combines together the MR scanner, a remote viewing station and a central archiving station. The pediatric PACS directly connects to the archiving unit through an Ethernet TCP-IP network adhering to FONAR's protocol. The PACS communication software developed supports the transfer of patient studies and the patient information directly from the MR archive database to the pediatric PACS. In the first phase of our project we developed a package to transfer data between a VAX-111750 and the IBM PC I AT-based MR archive database through the Ethernet network. This system served as a model for PACS-to-modality network communication. Once testing was complete on this research network, the software and network hardware was moved to the clinical pediatric VAX for full PACS integration. In parallel to the direct transmission of digital images to the Pediatric PACS, a broadband communication system in video format was developed for real-time broadcasting of images originating from the MR console to 8 remote viewing stations distributed in the radiology department. These analog viewing stations allow the radiologists to directly monitor patient positioning and to select the scan levels during a patient examination from remote locations in the radiology department. This paper reports (1) the technical details of this implementation, (2) the merits of this network development scheme, and (3) the performance statistics of the network-to-PACS interface.

  15. Integration and the performance of healthcare networks: do integration strategies enhance efficiency, profitability, and image?

    Directory of Open Access Journals (Sweden)

    Thomas T.H. Wan

    2001-06-01

    Full Text Available Purpose: This study examines the integration effects on efficiency and financial viability of the top 100 integrated healthcare networks (IHNs in the United States. Theory: A contingency- strategic theory is used to identify the relationship of IHNs' performance to their structural and operational characteristics and integration strategies. Methods: The lists of the top 100 IHNs ranked in two years, 1998 and 1999, by the SMG Marketing Group were merged to create a database for the study. Multiple indicators were used to examine the relationship between IHNs' characteristics and their performance in efficiency and financial viability. A path analytical model was developed and validated by the Mplus statistical program. Factors influencing the top 100 IHNs' images, represented by attaining ranking among the top 100 in two consecutive years, were analysed. Results and conclusion: No positive associations were found between integration and network performance in efficiency or profits. Longitudinal data are needed to investigate the effect of integration on healthcare networks' financial performance.

  16. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J.J.A.; Bueno, J.; Yates, Stephen J.C.; Yurduseven, O.; Llombart Juan, N.; Karatsu, K.; Baryshev, A. M.; Ferrarini, L; Endo, A.; Thoen, D.J.; de Visser, P.J.; Janssen, R.M.J.; Murugesan, V.; Driessen, E.F.C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-01-01

    Aims. Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  17. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems.

  18. Rice status and microwave characteristics: Analysis of rice paddy fields at Kojima Bay [Okayama, Japan] using multi-frequency and polarimetric Pi-SAR radar data images

    International Nuclear Information System (INIS)

    Ishitsuka, N.; Saito, G.; Ouchi, K.; Davidson, G.; Mohri, K.; Uratsuka, S.

    2003-01-01

    Abstract South-east Asia has a rainy-season at the crop growing period, and it is difficult to observe agricultural land in this season using optical remote sensing. Synthetic Aperture Radar (SAR) can observe the earth's surface without being influenced by of clouds. However, it is less useful for observing agricultural land, because satellite SAR has only one data band. Recently, SAR is able to provide multi band and multi polarimetric data. Pi-SAR, an airborne SAR developed by NASDA and CRL, can provide L and X bands and fully polarimetric data. Rice is the main crop in Asia, and we studied the characteristic microwave scatter on rice paddy fields using Pi-SAR data. Our study area was the rice paddy fields in Kojima reclaimed land in Japan. We had two fully polarimetric data sets from 13 July 1999 and 4 October 2000. First, we processed the color polarimetric composite image. Next we calibrated the phase of each polarimetric data using river area by the Kimura method. After that we performed decomposition analysis and drew polarimetric signatures for understanding the status of rice paddy fields. At the rice planting period, rice paddy fields are filled with water and rice plants are very small. The SAR microwave scatters on water surfaces like a mirror, called 'mirror (or specular) reflection'. This phenomenon makes backscatter a small value at the water-covered area. The image from July is about one month after trans-planting and rice plants are 20-40 cm in height. X-band microwave scatters on the rice surface, but L-band microwave passes through rice bodies and shows mirror refraction on water surfaces. Some strong backscatter occur on rice paddy fields especially VV polarization because of bragg scattering. The fields where bragg scattering returns strong VV scatter because the space between rice stems cause resonation in the L-band wavelength. We can easily understand bragg scatter by using polarimetric data. Using the image from October at

  19. An Integrative Object-Based Image Analysis Workflow for Uav Images

    Science.gov (United States)

    Yu, Huai; Yan, Tianheng; Yang, Wen; Zheng, Hong

    2016-06-01

    In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya'an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  20. AN INTEGRATIVE OBJECT-BASED IMAGE ANALYSIS WORKFLOW FOR UAV IMAGES

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-06-01

    Full Text Available In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for later Object Based Image Analysis (OBIA. More precisely, we first introduce an efficient image stitching algorithm after the geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT representation for the large mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., the simple linear iterative clustering (SLIC. Finally, we build an object-based hierarchical structure by fully considering the spectral and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake demonstrate the effectiveness and efficiency of our proposed method.

  1. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation.

    Science.gov (United States)

    Zhao, Qun; Fang, Fei; Wu, Ci; Wu, Qi; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-03-17

    An integrated sample preparation method, termed "imFASP", which combined in-situ filter-aided sample pretreatment and microwave-assisted trypsin digestion, was developed for preparation of microgram and even nanogram amounts of complex protein samples with high efficiency in 1 h. For imFASP method, proteins dissolved in 8 M urea were loaded onto a filter device with molecular weight cut off (MWCO) as 10 kDa, followed by in-situ protein preconcentration, denaturation, reduction, alkylation, and microwave-assisted tryptic digestion. Compared with traditional in-solution sample preparation method, imFASP method generated more protein and peptide identifications (IDs) from preparation of 45 μg Escherichia coli protein sample due to the higher efficiency, and the sample preparation throughput was significantly improved by 14 times (1 h vs. 15 h). More importantly, when the starting amounts of E. coli cell lysate decreased to nanogram level (50-500 ng), the protein and peptide identified by imFASP method were improved at least 30% and 44%, compared with traditional in-solution preparation method, suggesting dramatically higher peptide recovery of imFASP method for trace amounts of complex proteome samples. All these results demonstrate that the imFASP method developed here is of high potential for high efficient and high throughput preparation of trace amounts of complex proteome samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thermoreflectance temperature imaging of integrated circuits: calibration technique and quantitative comparison with integrated sensors and simulations

    International Nuclear Information System (INIS)

    Tessier, G; Polignano, M-L; Pavageau, S; Filloy, C; Fournier, D; Cerutti, F; Mica, I

    2006-01-01

    Camera-based thermoreflectance microscopy is a unique tool for high spatial resolution thermal imaging of working integrated circuits. However, a calibration is necessary to obtain quantitative temperatures on the complex surface of integrated circuits. The spatial and temperature resolutions reached by thermoreflectance are excellent (360 nm and 2.5 x 10 -2 K in 1 min here), but the precision is more difficult to assess, notably due to the lack of comparable thermal techniques at submicron scales. We propose here a Peltier element control of the whole package temperature in order to obtain calibration coefficients simultaneously on several materials visible on the surface of the circuit. Under high magnifications, movements associated with thermal expansion are corrected using a piezo electric displacement and a software image shift. This calibration method has been validated by comparison with temperatures measured using integrated thermistors and diodes and by a finite volume simulation. We show that thermoreflectance measurements agree within a precision of ±2.3% with the on-chip sensors measurements. The diode temperature is found to underestimate the actual temperature of the active area by almost 70% due to the thermal contact of the diode with the substrate, acting as a heat sink

  3. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  4. High power microwaves

    CERN Document Server

    Benford, James; Schamiloglu, Edl

    2016-01-01

    Following in the footsteps of its popular predecessors, High Power Microwaves, Third Edition continues to provide a wide-angle, integrated view of the field of high power microwaves (HPMs). This third edition includes significant updates in every chapter as well as a new chapter on beamless systems that covers nonlinear transmission lines. Written by an experimentalist, a theorist, and an applied theorist, respectively, the book offers complementary perspectives on different source types. The authors address: * How HPM relates historically and technically to the conventional microwave field * The possible applications for HPM and the key criteria that HPM devices have to meet in order to be applied * How high power sources work, including their performance capabilities and limitations * The broad fundamental issues to be addressed in the future for a wide variety of source types The book is accessible to several audiences. Researchers currently in the field can widen their understanding of HPM. Present or pot...

  5. Microwave Measurements

    CERN Document Server

    Skinner, A D

    2007-01-01

    The IET has organised training courses on microwave measurements since 1983, at which experts have lectured on modern developments. Their lecture notes were first published in book form in 1985 and then again in 1989, and they have proved popular for many years with a readership beyond those who attended the courses. The purpose of this third edition of the lecture notes is to bring the latest techniques in microwave measurements to this wider audience. The book begins with a survey of the theory of current microwave circuits and continues with a description of the techniques for the measureme

  6. Microwave photonics

    CERN Document Server

    Lee, Chi H

    2006-01-01

    Wireless, optical, and electronic networks continue to converge, prompting heavy research into the interface between microwave electronics, ultrafast optics, and photonic technologies. New developments arrive nearly as fast as the photons under investigation, and their commercial impact depends on the ability to stay abreast of new findings, techniques, and technologies. Presenting a broad yet in-depth survey, Microwave Photonics examines the major advances that are affecting new applications in this rapidly expanding field.This book reviews important achievements made in microwave photonics o

  7. The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits

    Science.gov (United States)

    Ponchak, George E.; Alterovitz, Samuel A.; Katehi, Linda P. B.; Bhattacharya, Pallab K.

    1997-01-01

    Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred. To achieve these goals, industry, academia and the government agencies supporting them chose to develop technologies with the greatest possibility of surpassing the state of the art performance. Thus, Si, which was already widely used for digital circuits but had material characteristics that were perceived to limit its high frequency performance, was bypassed for a progression of devices starting with GaAs Metal Semiconductor Field Effect Transistors (MESFETs) and ending with InP Pseudomorphic High Electron Mobility Transistors (PHEMTs). For each new material or device structure, the electron mobility increased, and therefore, the high frequency characteristics of the device were improved. In addition, ultra small geometry lithographic processes were developed to reduce the gate length to 0.1 pm which further increases the cutoff frequency. The resulting devices had excellent performance through the millimeter-wave spectrum.

  8. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Tests of Dec 1999/Jan 2000 (S/O 784077, OC-454)

    Science.gov (United States)

    Heffner, R.

    2000-01-01

    This is the Engineering Test Report, AMSU-A2 METSAT Instrument (S/N 108) Acceptance Level Vibration Test of Dec 1999/Jan 2000 (S/O 784077, OC-454), for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  9. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Initial Comprehensive Performance Test Report, P/N 1331200-2-IT, S/N 105/A2, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). The specification establishes the requirements for the Comprehensive Performance Test (CPT) and Limited Performance Test (LPT) of the Advanced Microwave Sounding, Unit-A2 (AMSU-A2), referred to herein as the unit. The unit is defined on Drawing 1331200. 1.2 Test procedure sequence. The sequence in which the several phases of this test procedure shall take place is shown in Figure 1, but the sequence can be in any order.

  10. Development of the integrated control system for the microwave ion source of the PEFP 100-MeV proton accelerator

    Science.gov (United States)

    Song, Young-Gi; Seol, Kyung-Tae; Jang, Ji-Ho; Kwon, Hyeok-Jung; Cho, Yong-Sub

    2012-07-01

    The Proton Engineering Frontier Project (PEFP) 20-MeV proton linear accelerator is currently operating at the Korea Atomic Energy Research Institute (KAERI). The ion source of the 100-MeV proton linac needs at least a 100-hour operation time. To meet the goal, we have developed a microwave ion source that uses no filament. For the ion source, a remote control system has been developed by using experimental physics and the industrial control system (EPICS) software framework. The control system consists of a versa module europa (VME) and EPICS-based embedded applications running on a VxWorks real-time operating system. The main purpose of the control system is to control and monitor the operational variables of the components remotely and to protect operators from radiation exposure and the components from critical problems during beam extraction. We successfully performed the operation test of the control system to confirm the degree of safety during the hardware performance.

  11. Wideband Radio Frequency Interference Detection for Microwave Radiometer Subsystem

    Data.gov (United States)

    National Aeronautics and Space Administration — Anthropogenic Radio-Frequency Interference (RFI) is threatening the quality and utility of multi-frequency passive microwave radiometry. The GPM Microwave Imager...

  12. Transmission imaging for integrated PET-MR systems.

    Science.gov (United States)

    Bowen, Spencer L; Fuin, Niccolò; Levine, Michael A; Catana, Ciprian

    2016-08-07

    Attenuation correction for PET-MR systems continues to be a challenging problem, particularly for body regions outside the head. The simultaneous acquisition of transmission scan based μ-maps and MR images on integrated PET-MR systems may significantly increase the performance of and offer validation for new MR-based μ-map algorithms. For the Biograph mMR (Siemens Healthcare), however, use of conventional transmission schemes is not practical as the patient table and relatively small diameter scanner bore significantly restrict radioactive source motion and limit source placement. We propose a method for emission-free coincidence transmission imaging on the Biograph mMR. The intended application is not for routine subject imaging, but rather to improve and validate MR-based μ-map algorithms; particularly for patient implant and scanner hardware attenuation correction. In this study we optimized source geometry and assessed the method's performance with Monte Carlo simulations and phantom scans. We utilized a Bayesian reconstruction algorithm, which directly generates μ-map estimates from multiple bed positions, combined with a robust scatter correction method. For simulations with a pelvis phantom a single torus produced peak noise equivalent count rates (34.8 kcps) dramatically larger than a full axial length ring (11.32 kcps) and conventional rotating source configurations. Bias in reconstructed μ-maps for head and pelvis simulations was  ⩽4% for soft tissue and  ⩽11% for bone ROIs. An implementation of the single torus source was filled with (18)F-fluorodeoxyglucose and the proposed method quantified for several test cases alone or in comparison with CT-derived μ-maps. A volume average of 0.095 cm(-1) was recorded for an experimental uniform cylinder phantom scan, while a bias of  <2% was measured for the cortical bone equivalent insert of the multi-compartment phantom. Single torus μ-maps of a hip implant phantom showed significantly

  13. Integration of vibro-acoustography imaging modality with the traditional mammography.

    Science.gov (United States)

    Hosseini, H Gholam; Alizad, A; Fatemi, M

    2007-01-01

    Vibro-acoustography (VA) is a new imaging modality that has been applied to both medical and industrial imaging. Integrating unique diagnostic information of VA with other medical imaging is one of our research interests. In this work, we establish correspondence between the VA images and traditional X-ray mammogram by adopting a flexible control-point selection technique for image registration. A modified second-order polynomial, which simply leads to a scale/rotation/translation invariant registration, was used. The results of registration were used to spatially transform the breast VA images to map with the X-ray mammography with a registration error of less than 1.65 mm. The fused image is defined as a linear integration of the VA and X-ray images. Moreover, a color-based fusion technique was employed to integrate the images for better visualization of structural information.

  14. Microwave-assisted synthesis of BSA-modified silver nanoparticles as a selective fluorescent probe for detection and cellular imaging of cadmium(II)

    International Nuclear Information System (INIS)

    Gu, Yu; Li, Nan; Gao, Mengmeng; Wang, Zilu; Xiao, Deli; Li, Yun; Jia, Huning; He, Hua

    2015-01-01

    We have developed a microwave-assisted method for the synthesis of silver nanoparticles (AgNPs) whose surface is modified with bovine serum albumin (BSA). The reaction involves reduction of the BSA-Ag(I) complex by tyrosine in strongly alkaline solution to form BSA-AgNPs. The reaction takes a few minutes only owing to rapid and uniform microwave heating. The modified AgNPs were characterized by UV–vis and fluorescence spectroscopy, transmission electron microscopy and X- ray photoelectron spectroscopy. The BSA-AgNPs are yellow and display luminescence with a maximum at 521 nm if excited at 465 nm. They have a hydrodynamic diameter of 3–5 nm and possess good colloidal stability in the pH 4.6 to 12.0 range. The fluorescence of the BSA-AgNPs is enhanced by Cd(II) ion due to the formation of a stable hybrid conjugate referred to as Cd-BSA-AgNPs. The effect was exploited to quantify Cd(II) in spiked real water samples with a 4.7 nM detection limit, and also to fluorescently image Cd(II) in Hepatoma cells. (author)

  15. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  16. Experimental demonstration of interferometric imaging using photonic integrated circuits.

    Science.gov (United States)

    Su, Tiehui; Scott, Ryan P; Ogden, Chad; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Yu, Runxiang; Yoo, S J B

    2017-05-29

    This paper reports design, fabrication, and demonstration of a silica photonic integrated circuit (PIC) capable of conducting interferometric imaging with multiple baselines around λ = 1550 nm. The PIC consists of four sets of five waveguides (total of twenty waveguides), each leading to a three-band spectrometer (total of sixty waveguides), after which a tunable Mach-Zehnder interferometer (MZI) constructs interferograms from each pair of the waveguides. A total of thirty sets of interferograms (ten pairs of three spectral bands) is collected by the detector array at the output of the PIC. The optical path difference (OPD) of each interferometer baseline is kept to within 1 µm to maximize the visibility of the interference measurement. We constructed an experiment to utilize the two baselines for complex visibility measurement on a point source and a variable width slit. We used the point source to demonstrate near unity value of the PIC instrumental visibility, and used the variable slit to demonstrate visibility measurement for a simple extended object. The experimental result demonstrates the visibility of baseline 5 and 20 mm for a slit width of 0 to 500 µm in good agreement with theoretical predictions.

  17. Microwave solidification project overview

    Energy Technology Data Exchange (ETDEWEB)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included.

  18. Microwave solidification project overview

    International Nuclear Information System (INIS)

    Sprenger, G.

    1993-01-01

    The Rocky Flats Plant Microwave Solidification Project has application potential to the Mixed Waste Treatment Project and the The Mixed Waste Integrated Program. The technical areas being addressed include (1) waste destruction and stabilization; (2) final waste form; and (3) front-end waste handling and feed preparation. This document covers need for such a program; technology description; significance; regulatory requirements; and accomplishments to date. A list of significant reports published under this project is included

  19. Synthetic aperture integration (SAI) algorithm for SAR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W; Beer, N. Reginald

    2013-07-09

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. In vivo integrated photoacoustic ophthalmoscopy, optical coherence tomography, and scanning laser ophthalmoscopy for retinal imaging

    Science.gov (United States)

    Song, Wei; Zhang, Rui; Zhang, Hao F.; Wei, Qing; Cao, Wenwu

    2012-12-01

    The physiological and pathological properties of retina are closely associated with various optical contrasts. Hence, integrating different ophthalmic imaging technologies is more beneficial in both fundamental investigation and clinical diagnosis of several blinding diseases. Recently, photoacoustic ophthalmoscopy (PAOM) was developed for in vivo retinal imaging in small animals, which demonstrated the capability of imaging retinal vascular networks and retinal pigment epithelium (RPE) at high sensitivity. We combined PAOM with traditional imaging modalities, such as fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), and auto-fluorescence scanning laser ophthalmoscopy (AF-SLO), for imaging rats and mice. The multimodal imaging system provided more comprehensive evaluation of the retina based on the complementary imaging contrast mechanisms. The high-quality retinal images show that the integrated ophthalmic imaging system has great potential in the investigation of blinding disorders.

  1. INTEGRATION OF SPATIAL INFORMATION WITH COLOR FOR CONTENT RETRIEVAL OF REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    Bikesh Kumar Singh

    2010-08-01

    Full Text Available There is rapid increase in image databases of remote sensing images due to image satellites with high resolution, commercial applications of remote sensing & high available bandwidth in last few years. The problem of content-based image retrieval (CBIR of remotely sensed images presents a major challenge not only because of the surprisingly increasing volume of images acquired from a wide range of sensors but also because of the complexity of images themselves. In this paper, a software system for content-based retrieval of remote sensing images using RGB and HSV color spaces is presented. Further, we also compare our results with spatiogram based content retrieval which integrates spatial information along with color histogram. Experimental results show that the integration of spatial information in color improves the image analysis of remote sensing data. In general, retrievals in HSV color space showed better performance than in RGB color space.

  2. Integrating Digital Images into the Art and Art History Curriculum.

    Science.gov (United States)

    Pitt, Sharon P.; Updike, Christina B.; Guthrie, Miriam E.

    2002-01-01

    Describes an Internet-based image database system connected to a flexible, in-class teaching and learning tool (the Madison Digital Image Database) developed at James Madison University to bring digital images to the arts and humanities classroom. Discusses content, copyright issues, ensuring system effectiveness, instructional impact, sharing the…

  3. Integration of Medical Imaging Including Ultrasound into a New Clinical Anatomy Curriculum

    Science.gov (United States)

    Moscova, Michelle; Bryce, Deborah A.; Sindhusake, Doungkamol; Young, Noel

    2015-01-01

    In 2008 a new clinical anatomy curriculum with integrated medical imaging component was introduced into the University of Sydney Medical Program. Medical imaging used for teaching the new curriculum included normal radiography, MRI, CT scans, and ultrasound imaging. These techniques were incorporated into teaching over the first two years of the…

  4. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    Science.gov (United States)

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  5. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 1: A cloud ensemble/radiative parameterization for sensor response (report version)

    Science.gov (United States)

    Olson, William S.; Raymond, William H.

    1990-01-01

    The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.

  6. Time-of-flight depth image enhancement using variable integration time

    Science.gov (United States)

    Kim, Sun Kwon; Choi, Ouk; Kang, Byongmin; Kim, James Dokyoon; Kim, Chang-Yeong

    2013-03-01

    Time-of-Flight (ToF) cameras are used for a variety of applications because it delivers depth information at a high frame rate. These cameras, however, suffer from challenging problems such as noise and motion artifacts. To increase signal-to-noise ratio (SNR), the camera should calculate a distance based on a large amount of infra-red light, which needs to be integrated over a long time. On the other hand, the integration time should be short enough to suppress motion artifacts. We propose a ToF depth imaging method to combine advantages of short and long integration times exploiting an imaging fusion scheme proposed for color imaging. To calibrate depth differences due to the change of integration times, a depth transfer function is estimated by analyzing the joint histogram of depths in the two images of different integration times. The depth images are then transformed into wavelet domains and fused into a depth image with suppressed noise and low motion artifacts. To evaluate the proposed method, we captured a moving bar of a metronome with different integration times. The experiment shows the proposed method could effectively remove the motion artifacts while preserving high SNR comparable to the depth images acquired during long integration time.

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: Final Comprehensive Performance Test Report, P/N 1331720-2TST, S/N 105/A1

    Science.gov (United States)

    Platt, R.

    1999-01-01

    This is the Performance Verification Report, Final Comprehensive Performance Test (CPT) Report, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A). This specification establishes the requirements for the CPT and Limited Performance Test (LPT) of the AMSU-1A, referred to here in as the unit. The sequence in which the several phases of this test procedure shall take place is shown.

  8. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems.

    Science.gov (United States)

    Ehsan, Shoaib; Clark, Adrian F; Naveed ur Rehman; McDonald-Maier, Klaus D

    2015-07-10

    The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF), allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video). Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44%) in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  9. Integral Images: Efficient Algorithms for Their Computation and Storage in Resource-Constrained Embedded Vision Systems

    Directory of Open Access Journals (Sweden)

    Shoaib Ehsan

    2015-07-01

    Full Text Available The integral image, an intermediate image representation, has found extensive use in multi-scale local feature detection algorithms, such as Speeded-Up Robust Features (SURF, allowing fast computation of rectangular features at constant speed, independent of filter size. For resource-constrained real-time embedded vision systems, computation and storage of integral image presents several design challenges due to strict timing and hardware limitations. Although calculation of the integral image only consists of simple addition operations, the total number of operations is large owing to the generally large size of image data. Recursive equations allow substantial decrease in the number of operations but require calculation in a serial fashion. This paper presents two new hardware algorithms that are based on the decomposition of these recursive equations, allowing calculation of up to four integral image values in a row-parallel way without significantly increasing the number of operations. An efficient design strategy is also proposed for a parallel integral image computation unit to reduce the size of the required internal memory (nearly 35% for common HD video. Addressing the storage problem of integral image in embedded vision systems, the paper presents two algorithms which allow substantial decrease (at least 44.44% in the memory requirements. Finally, the paper provides a case study that highlights the utility of the proposed architectures in embedded vision systems.

  10. Selenium analysis by an integrated microwave digestion-needle trap device with hydride sorption on carbon nanotubes and electrothermal atomic absorption spectrometry determination

    Science.gov (United States)

    Maratta Martínez, Ariel; Vázquez, Sandra; Lara, Rodolfo; Martínez, Luis Dante; Pacheco, Pablo

    2018-02-01

    An integrated microwave assisted digestion (MW-AD) - needle trap device (NTD) for selenium determination in grape pomace samples is presented. The NTD was filled with oxidized multiwall carbon nanotubes (oxMWCNTS) where Se hydrides were preconcentrated. Determination was carried out by flow injection-electrothermal atomic absorption spectrometry (FI-ETAAS). The variables affecting the system were established by a multivariate design (Plackett Burman), indicating that the following variables significantly affect the system: sample amount, HNO3 digestion solution concentration, NaBH4 volume and elution volume. A Box-Behnken design was implemented to determine the optimized values of these variables. The system improved Se atomization in the graphite furnace, since only trapped hydrides reached the graphite furnace, and the pyrolysis stage was eliminated according to the aqueous matrix of the eluate. Under optimized conditions the system reached a limit of quantification of 0.11 μg kg- 1, a detection limit of 0.032 μg kg- 1, a relative standard deviation of 4% and a preconcentration factor (PF) of 100, reaching a throughput sample of 5 samples per hour. Sample analysis show Se concentrations between 0.34 ± 0.03 μg kg- 1 to 0.48 ± 0.03 μg kg- 1 in grape pomace. This system provides minimal reagents and sample consumption, eliminates discontinuous stages between samples processing reaching a simpler and faster Se analysis.

  11. Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index

    Science.gov (United States)

    Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.

    1988-01-01

    Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.

  12. CW 100MW microwave power transfer in space

    International Nuclear Information System (INIS)

    Takayama, K.; Hiramatsu, S.; Shiho, M.

    1991-01-01

    A proposal is made for high-power microwave transfer in space. The concept consists in a microwave power station integrating a multistage microwave free-electron laser and asymmetric dual-reflector system. Its use in space is discussed. 9 refs., 2 figs., 1 tab

  13. Partial fourier and parallel MR image reconstruction with integrated gradient nonlinearity correction.

    Science.gov (United States)

    Tao, Shengzhen; Trzasko, Joshua D; Shu, Yunhong; Weavers, Paul T; Huston, John; Gray, Erin M; Bernstein, Matt A

    2016-06-01

    To describe how integrated gradient nonlinearity (GNL) correction can be used within noniterative partial Fourier (homodyne) and parallel (SENSE and GRAPPA) MR image reconstruction strategies, and demonstrate that performing GNL correction during, rather than after, these routines mitigates the image blurring and resolution loss caused by postreconstruction image domain based GNL correction. Starting from partial Fourier and parallel magnetic resonance imaging signal models that explicitly account for GNL, noniterative image reconstruction strategies for each accelerated acquisition technique are derived under the same core mathematical assumptions as their standard counterparts. A series of phantom and in vivo experiments on retrospectively undersampled data were performed to investigate the spatial resolution benefit of integrated GNL correction over conventional postreconstruction correction. Phantom and in vivo results demonstrate that the integrated GNL correction reduces the image blurring introduced by the conventional GNL correction, while still correcting GNL-induced coarse-scale geometrical distortion. Images generated from undersampled data using the proposed integrated GNL strategies offer superior depiction of fine image detail, for example, phantom resolution inserts and anatomical tissue boundaries. Noniterative partial Fourier and parallel imaging reconstruction methods with integrated GNL correction reduce the resolution loss that occurs during conventional postreconstruction GNL correction while preserving the computational efficiency of standard reconstruction techniques. Magn Reson Med 75:2534-2544, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  14. A Novel Image Retrieval Based on Visual Words Integration of SIFT and SURF.

    Directory of Open Access Journals (Sweden)

    Nouman Ali

    Full Text Available With the recent evolution of technology, the number of image archives has increased exponentially. In Content-Based Image Retrieval (CBIR, high-level visual information is represented in the form of low-level features. The semantic gap between the low-level features and the high-level image concepts is an open research problem. In this paper, we present a novel visual words integration of Scale Invariant Feature Transform (SIFT and Speeded-Up Robust Features (SURF. The two local features representations are selected for image retrieval because SIFT is more robust to the change in scale and rotation, while SURF is robust to changes in illumination. The visual words integration of SIFT and SURF adds the robustness of both features to image retrieval. The qualitative and quantitative comparisons conducted on Corel-1000, Corel-1500, Corel-2000, Oliva and Torralba and Ground Truth image benchmarks demonstrate the effectiveness of the proposed visual words integration.

  15. Invited Article: Electrically tunable silicon-based on-chip microdisk resonator for integrated microwave photonic applications

    Directory of Open Access Journals (Sweden)

    Weifeng Zhang

    2016-11-01

    Full Text Available Silicon photonics with advantages of small footprint, compatibility with the mature CMOS fabrication technology, and its potential for seamless integration with electronics is making a significant difference in realizing on-chip integration of photonic systems. A microdisk resonator (MDR with a strong capacity in trapping and storing photons is a versatile element in photonic integrated circuits. Thanks to the large index contrast, a silicon-based MDR with an ultra-compact footprint has a great potential for large-scale and high-density integrations. However, the existence of multiple whispering gallery modes (WGMs and resonance splitting in an MDR imposes inherent limitations on its widespread applications. In addition, the waveguide structure of an MDR is incompatible with that of a lateral PN junction, which leads to the deprivation of its electrical tunability. To circumvent these limitations, in this paper we propose a novel design of a silicon-based MDR by introducing a specifically designed slab waveguide to surround the disk and the lateral sides of the bus waveguide to suppress higher-order WGMs and to support the incorporation of a lateral PN junction for electrical tunability. An MDR based on the proposed design is fabricated and its optical performance is evaluated. The fabricated MDR exhibits single-mode operation with a free spectral range of 28.85 nm. Its electrical tunability is also demonstrated and an electro-optic frequency response with a 3-dB modulation bandwidth of ∼30.5 GHz is measured. The use of the fabricated MDR for the implementation of an electrically tunable optical delay-line and a tunable fractional-order temporal photonic differentiator is demonstrated.

  16. Imaging of Archaeological Remains at Barcombe Roman Villa using Microwave Tomographic Depictions of Ground Penetrating Radar Data

    Science.gov (United States)

    Soldovieri, F.; Utsi, E.; Alani, A.; Persico, R.

    2012-04-01

    to 600MHz (the frequency range of the antennas used). The 2-dimensional plots were formed into a 3-dimensional cube and time slices extracted, on the basis of maximum signal return, at 16ns, 25ns and 29ns. In this work, we show the reprocessing of the GPR data via a microwave tomographic approach based on a linear approximation of the inverse scattering problem [4]. In particular, the effectiveness of this approach ensures a reliable and high resolution representation/visualization of the scene very large in terms of probing wavelength. This has been made possible thanks to the adoption of the approach presented in [5] where the 3D representation was achieved by performing 2D reconstruction and after obtaining the 3D Cube from these 2D reconstructed profiles. In particular, the re-examination of GPR data using microwave tomography has allowed to improve definition of the villa outline and to detect earlier prehistoric remains. [1] Rudling, D., & Butler, C. "Roundhouse to Villa" in Sussex Past & Present 95, pp 6 - 7, 2001. [2] Utsi, E., Wortley Villa paper currently in preparation of EAGE special issue. [3] Utsi, E., & Alani, A. "Barcombe Roman Villa: An Exercise in GPR Time Slicingand Comparative Geophysics", in Koppenjan, S., & Hua, L. (eds) Proceedings of the Ninth International Conference on Ground Penetrating Radar, 2002. [4] F. Soldovieri, R. Persico, E. Utsi, V. Utsi, "The application of inverse scattering techniques with ground penetrating radar to the problem of rebar location in concrete", NDT & E International, Vol. 39, Issue 7, October 2006, Pages 602-607. [5] R. Persico, F. Soldovieri, E. Utsi, "Microwave tomography for processing of GPR data at Ballachulish", Journal of Geophysics and Engineering, vol.7, no. 2, pp. 164-173, June 2010

  17. Integrating two spectral imaging systems in an automated mineralogy application

    CSIR Research Space (South Africa)

    Harris, D

    2009-11-01

    Full Text Available is treated in batches, with trays of mono-layered material presented to various imaging systems. The identification of target grains is achieved by means of spectral imaging in two wavelength bands (Visible, and Long Wave Infrared). Target grains...

  18. Integrated imaging sensor systems with CMOS active pixel sensor technology

    Science.gov (United States)

    Yang, G.; Cunningham, T.; Ortiz, M.; Heynssens, J.; Sun, C.; Hancock, B.; Seshadri, S.; Wrigley, C.; McCarty, K.; Pain, B.

    2002-01-01

    This paper discusses common approaches to CMOS APS technology, as well as specific results on the five-wire programmable digital camera-on-a-chip developed at JPL. The paper also reports recent research in the design, operation, and performance of APS imagers for several imager applications.

  19. Integrated photoacoustic/ultrasound imaging: applications and new techniques

    NARCIS (Netherlands)

    van den Berg, P.J.

    2017-01-01

    Photoacoustic imaging (PAI) is a unique combination of optical sensitivity to tissue chromophores like hemoglobin, and ultrasonic resolution. Research in this PhD thesis is made possible by the development of a probe that combines PAI with regular ultrasound imaging. This probe is handheld and

  20. Integration of speckle de-noising and image segmentation using ...

    Indian Academy of Sciences (India)

    2Department of Electronics and Communication Engineering, National Institute of Technology Karnataka,. Surathkal, Mangalore 575 025, India. ... cal images obtained from the satellites are often prone to bad climatic conditions and hence ... (2009) for satellite image segmentation. Mean shift segmentation (MSS) is a non-.

  1. Temperature Sensors Integrated into a CMOS Image Sensor

    NARCIS (Netherlands)

    Abarca Prouza, A.N.; Xie, S.; Markenhof, Jules; Theuwissen, A.J.P.

    2017-01-01

    In this work, a novel approach is presented for measuring relative temperature variations inside the pixel array of a CMOS image sensor itself. This approach can give important information when compensation for dark (current) fixed pattern noise (FPN) is needed. The test image sensor consists of

  2. Supporting Keyword Search for Image Retrieval with Integration of Probabilistic Annotation

    Directory of Open Access Journals (Sweden)

    Tie Hua Zhou

    2015-05-01

    Full Text Available The ever-increasing quantities of digital photo resources are annotated with enriching vocabularies to form semantic annotations. Photo-sharing social networks have boosted the need for efficient and intuitive querying to respond to user requirements in large-scale image collections. In order to help users formulate efficient and effective image retrieval, we present a novel integration of a probabilistic model based on keyword query architecture that models the probability distribution of image annotations: allowing users to obtain satisfactory results from image retrieval via the integration of multiple annotations. We focus on the annotation integration step in order to specify the meaning of each image annotation, thus leading to the most representative annotations of the intent of a keyword search. For this demonstration, we show how a probabilistic model has been integrated to semantic annotations to allow users to intuitively define explicit and precise keyword queries in order to retrieve satisfactory image results distributed in heterogeneous large data sources. Our experiments on SBU (collected by Stony Brook University database show that (i our integrated annotation contains higher quality representatives and semantic matches; and (ii the results indicating annotation integration can indeed improve image search result quality.

  3. Microwave power engineering applications

    CERN Document Server

    Okress, Ernest C

    2013-01-01

    Microwave Power Engineering, Volume 2: Applications introduces the electronics technology of microwave power and its applications. This technology emphasizes microwave electronics for direct power utilization and transmission purposes. This volume presents the accomplishments with respect to components, systems, and applications and their prevailing limitations in the light of knowledge of the microwave power technology. The applications discussed include the microwave heating and other processes of materials, which utilize the magnetron predominantly. Other applications include microwave ioni

  4. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    Science.gov (United States)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  5. Integration of Trace Images in Three-dimensional Crime Scene Reconstruction

    Directory of Open Access Journals (Sweden)

    Quentin Milliet

    2016-01-01

    Full Text Available Forensic image analysis has greatly developed with the proliferation of photography and video recording devices. Trace images of serious incidents are increasingly captured by first responders, witnesses, bystanders, or surveillance systems. Image perception is exposed with a special emphasis on the influence of the field of view on observation. In response to the pitfalls of the mental eye, a way to systematize the integration of images as traces in three-dimensional crime scene reconstruction is proposed. The systematic approach is based on the application of photogrammetric principles to slightly modify the usual photographic documentation as well as on the early collection and review of available trace images. The integration of images as traces provides valuable contributions to contextualize what happened at a crime scene based on the information that can be obtained from images. In a wider perspective, the systematic analysis of images fosters the use and interpretation of forensic evidence to complement witness statements in the criminal justice system. This article outlines the benefits of integrating trace images into a coherent reconstruction framework in order to improve interpretation of their content. A solution is proposed to integrate perception differences between the field of view of cameras and the human eye.

  6. Microwave Radiometry and Radiometers for Ocean Applications

    DEFF Research Database (Denmark)

    Skou, Niels

    2008-01-01

    aperture radiometer technique, both yielding imaging capability without scanning. Typical applications of microwave radiometry concerning oceans are: sea salinity, sea surface temperature, wind speed and direction, sea ice detection and classification. However, in an attempt to measure properties...

  7. 77 FR 1017 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Science.gov (United States)

    2012-01-09

    ... packaged high electron mobility transistors and packaged microwave ``monolithic integrated circuits'' power... paragraph .b.3 of this entry. (4) Packaged microwave ``monolithic integrated circuits'' (packaged MMIC... Related Controls: (1) See ECCN 3A001.b.2 for certain microwave ``monolithic integrated circuits'' (MMIC...

  8. Development of integrated semiconductor optical sensors for functional brain imaging

    Science.gov (United States)

    Lee, Thomas T.

    Optical imaging of neural activity is a widely accepted technique for imaging brain function in the field of neuroscience research, and has been used to study the cerebral cortex in vivo for over two decades. Maps of brain activity are obtained by monitoring intensity changes in back-scattered light, called Intrinsic Optical Signals (IOS), that correspond to fluctuations in blood oxygenation and volume associated with neural activity. Current imaging systems typically employ bench-top equipment including lamps and CCD cameras to study animals using visible light. Such systems require the use of anesthetized or immobilized subjects with craniotomies, which imposes limitations on the behavioral range and duration of studies. The ultimate goal of this work is to overcome these limitations by developing a single-chip semiconductor sensor using arrays of sources and detectors operating at near-infrared (NIR) wavelengths. A single-chip implementation, combined with wireless telemetry, will eliminate the need for immobilization or anesthesia of subjects and allow in vivo studies of free behavior. NIR light offers additional advantages because it experiences less absorption in animal tissue than visible light, which allows for imaging through superficial tissues. This, in turn, reduces or eliminates the need for traumatic surgery and enables long-term brain-mapping studies in freely-behaving animals. This dissertation concentrates on key engineering challenges of implementing the sensor. This work shows the feasibility of using a GaAs-based array of vertical-cavity surface emitting lasers (VCSELs) and PIN photodiodes for IOS imaging. I begin with in-vivo studies of IOS imaging through the skull in mice, and use these results along with computer simulations to establish minimum performance requirements for light sources and detectors. I also evaluate the performance of a current commercial VCSEL for IOS imaging, and conclude with a proposed prototype sensor.

  9. An Integrated Dictionary-Learning Entropy-Based Medical Image Fusion Framework

    Directory of Open Access Journals (Sweden)

    Guanqiu Qi

    2017-10-01

    Full Text Available Image fusion is widely used in different areas and can integrate complementary and relevant information of source images captured by multiple sensors into a unitary synthetic image. Medical image fusion, as an important image fusion application, can extract the details of multiple images from different imaging modalities and combine them into an image that contains complete and non-redundant information for increasing the accuracy of medical diagnosis and assessment. The quality of the fused image directly affects medical diagnosis and assessment. However, existing solutions have some drawbacks in contrast, sharpness, brightness, blur and details. This paper proposes an integrated dictionary-learning and entropy-based medical image-fusion framework that consists of three steps. First, the input image information is decomposed into low-frequency and high-frequency components by using a Gaussian filter. Second, low-frequency components are fused by weighted average algorithm and high-frequency components are fused by the dictionary-learning based algorithm. In the dictionary-learning process of high-frequency components, an entropy-based algorithm is used for informative blocks selection. Third, the fused low-frequency and high-frequency components are combined to obtain the final fusion results. The results and analyses of comparative experiments demonstrate that the proposed medical image fusion framework has better performance than existing solutions.

  10. Capturing method for integral three-dimensional imaging using multiviewpoint robotic cameras

    Science.gov (United States)

    Ikeya, Kensuke; Arai, Jun; Mishina, Tomoyuki; Yamaguchi, Masahiro

    2018-03-01

    Integral three-dimensional (3-D) technology for next-generation 3-D television must be able to capture dynamic moving subjects with pan, tilt, and zoom camerawork as good as in current TV program production. We propose a capturing method for integral 3-D imaging using multiviewpoint robotic cameras. The cameras are controlled through a cooperative synchronous system composed of a master camera controlled by a camera operator and other reference cameras that are utilized for 3-D reconstruction. When the operator captures a subject using the master camera, the region reproduced by the integral 3-D display is regulated in real space according to the subject's position and view angle of the master camera. Using the cooperative control function, the reference cameras can capture images at the narrowest view angle that does not lose any part of the object region, thereby maximizing the resolution of the image. 3-D models are reconstructed by estimating the depth from complementary multiviewpoint images captured by robotic cameras arranged in a two-dimensional array. The model is converted into elemental images to generate the integral 3-D images. In experiments, we reconstructed integral 3-D images of karate players and confirmed that the proposed method satisfied the above requirements.

  11. Integrated three-dimensional display of MR, CT, and PET images of the brain

    International Nuclear Information System (INIS)

    Levin, D.N.; Herrmann, A.; Chen, G.T.Y.

    1988-01-01

    MR, CT, and PET studies depict complementary aspects of brain anatomy and function. The authors' own image-processing software and a Pixar image computer were used to create three-dimensional models of brain soft tissues from MR images, of the skull and calcifications from CT scans, and of brain metabolism from PET images. An image correlation program, based on surface fitting, was used for retrospective registration and merging of these three-dimensional models. The results are demonstrated in a video clip showing how the operator may rotate and perform electronic surgery on the integrated, multimodality three-dimensional model of each patient's brain

  12. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    Science.gov (United States)

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  13. Scalable Integrated Region-Based Image Retrieval Using IRM and Statistical Clustering.

    Science.gov (United States)

    Wang, James Z.; Du, Yanping

    Statistical clustering is critical in designing scalable image retrieval systems. This paper presents a scalable algorithm for indexing and retrieving images based on region segmentation. The method uses statistical clustering on region features and IRM (Integrated Region Matching), a measure developed to evaluate overall similarity between images…

  14. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    International Nuclear Information System (INIS)

    Allinson, N.; Anaxagoras, T.; Aveyard, J.; Arvanitis, C.; Bates, R.; Blue, A.; Bohndiek, S.; Cabello, J.; Chen, L.; Chen, S.; Clark, A.; Clayton, C.; Cook, E.; Cossins, A.; Crooks, J.; El-Gomati, M.; Evans, P.M.; Faruqi, W.; French, M.; Gow, J.

    2009-01-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)-designed for in-pixel intelligence; FPN-designed to develop novel techniques for reducing fixed pattern noise; HDR-designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS-with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)-a novel, stitched LAS; and eLeNA-which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  15. Neutron imaging integrated circuit and method for detecting neutrons

    Science.gov (United States)

    Nagarkar, Vivek V.; More, Mitali J.

    2017-12-05

    The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge state less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.

  16. The Multidimensional Integrated Intelligent Imaging project (MI-3)

    Energy Technology Data Exchange (ETDEWEB)

    Allinson, N.; Anaxagoras, T. [Vision and Information Engineering, University of Sheffield (United Kingdom); Aveyard, J. [Laboratory for Environmental Gene Regulation, University of Liverpool (United Kingdom); Arvanitis, C. [Radiation Physics, University College, London (United Kingdom); Bates, R.; Blue, A. [Experimental Particle Physics, University of Glasgow (United Kingdom); Bohndiek, S. [Radiation Physics, University College, London (United Kingdom); Cabello, J. [Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford (United Kingdom); Chen, L. [Electron Optics, Applied Electromagnetics and Electron Optics, University of York (United Kingdom); Chen, S. [MRC Laboratory for Molecular Biology, Cambridge (United Kingdom); Clark, A. [STFC Rutherford Appleton Laboratories (United Kingdom); Clayton, C. [Vision and Information Engineering, University of Sheffield (United Kingdom); Cook, E. [Radiation Physics, University College, London (United Kingdom); Cossins, A. [Laboratory for Environmental Gene Regulation, University of Liverpool (United Kingdom); Crooks, J. [STFC Rutherford Appleton Laboratories (United Kingdom); El-Gomati, M. [Electron Optics, Applied Electromagnetics and Electron Optics, University of York (United Kingdom); Evans, P.M. [Institute of Cancer Research, Sutton, Surrey SM2 5PT (United Kingdom)], E-mail: phil.evans@icr.ac.uk; Faruqi, W. [MRC Laboratory for Molecular Biology, Cambridge (United Kingdom); French, M. [STFC Rutherford Appleton Laboratories (United Kingdom); Gow, J. [Imaging for Space and Terrestrial Applications, Brunel University, London (United Kingdom)] (and others)

    2009-06-01

    MI-3 is a consortium of 11 universities and research laboratories whose mission is to develop complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) and to apply these sensors to a range of imaging challenges. A range of sensors has been developed: On-Pixel Intelligent CMOS (OPIC)-designed for in-pixel intelligence; FPN-designed to develop novel techniques for reducing fixed pattern noise; HDR-designed to develop novel techniques for increasing dynamic range; Vanilla/PEAPS-with digital and analogue modes and regions of interest, which has also been back-thinned; Large Area Sensor (LAS)-a novel, stitched LAS; and eLeNA-which develops a range of low noise pixels. Applications being developed include autoradiography, a gamma camera system, radiotherapy verification, tissue diffraction imaging, X-ray phase-contrast imaging, DNA sequencing and electron microscopy.

  17. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini [Department of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Lintang, Hendrik O. [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat, E-mail: rafaqat@kimia.fs.utm.my [Centre for Sustainable Nanomaterials (CSNano), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2015-11-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca{sup 2+} ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA.

  18. Continuous microwave flow synthesis of mesoporous hydroxyapatite

    International Nuclear Information System (INIS)

    Akram, Muhammad; Alshemary, Ammar Z.; Goh, Yi-Fan; Wan Ibrahim, Wan Aini; Lintang, Hendrik O.; Hussain, Rafaqat

    2015-01-01

    We have successfully used continuous microwave flow synthesis (CMFS) technique for the template free synthesis of mesoporous hydroxyapatite. The continuous microwave flow reactor consisted of a modified 2.45 GHz household microwave, peristaltic pumps and a Teflon coil. This cost effective and efficient system was exploited to produce semi-crystalline phase pure nano-sized hydroxyapatite. Effect of microwave power, retention time and the concentration of reactants on the phase purity, degree of crystallinity and surface area of the final product was studied in detail. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study the phase purity and composition of the product, while transmission electron microscopy (TEM) was used to study the effect of process parameters on the morphology of hydroxyapatite. The TEM analysis confirmed the formation of spherical particles at low microwave power; however the morphology of the particles changed to mesoporous needle and rod-like structure upon exposing the reaction mixture to higher microwave power and longer retention time inside the microwave. The in-vitro ion dissolution behavior of the as synthesized hydroxyapatite was studied by determining the amount of Ca 2+ ion released in SBF solution. - Highlights: • Continuous microwave flow synthesis method was used to prepare hydroxyapatite. • Increase in microwave power enhanced the degree of crystallinity. • TEM images confirmed the presence of mesopores on the surface of HA

  19. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  20. Ultra Wide X-Band Microwave Imaging of Concealed Weapons and Explosives Using 3D-SAR Technique

    Directory of Open Access Journals (Sweden)

    P. Millot

    2015-01-01

    Full Text Available In order to detect and image concealed weapons and explosives, an electromagnetic imaging tool with its related signal processing is presented. The aim is to penetrate clothes and to find personal-born weapons and explosives under clothes. The chosen UWB frequency range covers the whole X-band. The frequency range is justified after transmission measurements of numerous clothes that are dry or slightly wet. The apparatus and the 3D near-field SAR processor are described. A strategy for contour identification is presented with results of some simulants of weapon and explosive. A conclusion is drawn on the possible future of this technique.

  1. Precipitable water and surface humidity over global oceans from special sensor microwave imager and European Center for Medium Range Weather Forecasts

    Science.gov (United States)

    Liu, W. T.; Tang, Wenqing; Wentz, Frank J.

    1992-01-01

    Global fields of precipitable water W from the special sensor microwave imager were compared with those from the European Center for Medium Range Weather Forecasts (ECMWF) model. They agree over most ocean areas; both data sets capture the two annual cycles examined and the interannual anomalies during an ENSO episode. They show significant differences in the dry air masses over the eastern tropical-subtropical oceans, particularly in the Southern Hemisphere. In these regions, comparisons with radiosonde data indicate that overestimation by the ECMWF model accounts for a large part of the differences. As a check on the W differences, surface-level specific humidity Q derived from W, using a statistical relation, was compared with Q from the ECMWF model. The differences in Q were found to be consistent with the differences in W, indirectly validating the Q-W relation. In both W and Q, SSMI was able to discern clearly the equatorial extension of the tongues of dry air in the eastern tropical ocean, while both ECMWF and climatological fields have reduced spatial gradients and weaker intensity.

  2. Amyloid Imaging: Poised for Integration into Medical Practice.

    Science.gov (United States)

    Anand, Keshav; Sabbagh, Marwan

    2017-01-01

    Amyloid imaging represents a significant advance as an adjunct in the diagnosis of Alzheimer's disease (AD) because it is the first imaging modality that identifies in vivo changes known to be associated with the pathogenesis. Initially, 11 C-PIB was developed, which was the prototype for many 18 F compounds, including florbetapir, florbetaben, and flutemetamol, among others. Despite the high sensitivity and specificity of amyloid imaging, it is not commonly used in clinical practice, mainly because it is not reimbursed under current Center for Medicare and Medicaid Services guidelines in the USA. To guide the field in who would be most appropriate for the utility of amyloid positron emission tomography, current studies are underway [Imaging Dementia Evidence for Amyloid Scanning (IDEAS) Study] that will inform the field on the utilization of amyloid positron emission tomography in clinical practice. With the advent of monoclonal antibodies that specifically target amyloid antibody, there is an interest, possibly a mandate, to screen potential treatment recipients to ensure that they are suitable for treatment. In this review, we summarize progress in the field to date.

  3. 3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging

    Science.gov (United States)

    Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak

    2017-10-01

    Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.

  4. IOTA: integration optimization, triage and analysis tool for the processing of XFEL diffraction images.

    Science.gov (United States)

    Lyubimov, Artem Y; Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Brewster, Aaron S; Murray, Thomas D; Sauter, Nicholas K; Berger, James M; Weis, William I; Brunger, Axel T

    2016-06-01

    Serial femtosecond crystallography (SFX) uses an X-ray free-electron laser to extract diffraction data from crystals not amenable to conventional X-ray light sources owing to their small size or radiation sensitivity. However, a limitation of SFX is the high variability of the diffraction images that are obtained. As a result, it is often difficult to determine optimal indexing and integration parameters for the individual diffraction images. Presented here is a software package, called IOTA , which uses a grid-search technique to determine optimal spot-finding parameters that can in turn affect the success of indexing and the quality of integration on an image-by-image basis. Integration results can be filtered using a priori information about the Bravais lattice and unit-cell dimensions and analyzed for unit-cell isomorphism, facilitating an improvement in subsequent data-processing steps.

  5. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  6. A low-cost, modular, microwave-linked, color TV inspection system

    International Nuclear Information System (INIS)

    Panda, N.C.

    1991-01-01

    This paper reports that many custom-built radiation-shielded CCTV inspection systems for nuclear facilities are available in the market. This author, however, could find no reference to units using low-cost nodular technology for wireless transmission and control of color CCTV signals in radiation environments. The system that was developed is a process control observation tool geared toward identifying locations ad volumes of accumulated in-cell solids. It also performs remote integrity assessments of tanks and pipe routings that are required by regulatory agencies. System highlights are: microwave transmission of video and control signals, low cost, low maintenance, and modular design. Use of standard components enables easy exchange of modules. Microwave transmission resolved the complications of a wired system while increasing reliability and safety. The video image is created by the remote in-cell color TV camera and transmitted by microwave out of the cell to TV monitors at consoles in non-radiation zones

  7. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    Science.gov (United States)

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  8. Surveillance of siRNA integrity by FRET imaging

    Science.gov (United States)

    Järve, Anne; Müller, Julius; Kim, Il-Han; Rohr, Karl; MacLean, Caroline; Fricker, Gert; Massing, Ulrich; Eberle, Florian; Dalpke, Alexander; Fischer, Roger; Trendelenburg, Michael F.; Helm, Mark

    2007-01-01

    Techniques for investigation of exogenous small interfering RNA (siRNA) after penetration of the cell are of substantial interest to the development of efficient transfection methods as well as to potential medical formulations of siRNA. A FRET-based visualization method including the commonplace dye labels fluorescein and tetramethylrhodamin (TMR) on opposing strands of siRNA was found compatible with RNA interference (RNAi). Investigation of spectral properties of three labelled siRNAs with differential FRET efficiencies in the cuvette, including pH dependence and FRET efficiency in lipophilic environments, identified the ratio of red and green fluorescence (R/G-ratio) as a sensitive parameter, which reliably identifies samples containing >90% un-degraded siRNA. Spectral imaging of siRNAs microinjected into cells showed emission spectra indistinguishable from those measured in the cuvette. These were used to establish a calibration curve for assessing the degradation state of siRNA in volume elements inside cells. An algorithm, applied to fluorescence images recorded in standard green and red fluorescence channels, produces R/G-ratio images of high spatial resolution, identifying volume elements in the cell with high populations of intact siRNA with high fidelity. To demonstrate the usefulness of this technique, the movement of intact siRNA molecules are observed after introduction into the cytosol by microinjection, standard transfection and lipofection with liposomes. PMID:17890733

  9. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  10. FPGA IMPLEMENTATION OF ADAPTIVE INTEGRATED SPIKING NEURAL NETWORK FOR EFFICIENT IMAGE RECOGNITION SYSTEM

    Directory of Open Access Journals (Sweden)

    T. Pasupathi

    2014-05-01

    Full Text Available Image recognition is a technology which can be used in various applications such as medical image recognition systems, security, defense video tracking, and factory automation. In this paper we present a novel pipelined architecture of an adaptive integrated Artificial Neural Network for image recognition. In our proposed work we have combined the feature of spiking neuron concept with ANN to achieve the efficient architecture for image recognition. The set of training images are trained by ANN and target output has been identified. Real time videos are captured and then converted into frames for testing purpose and the image were recognized. The machine can operate at up to 40 frames/sec using images acquired from the camera. The system has been implemented on XC3S400 SPARTAN-3 Field Programmable Gate Arrays.

  11. Advanced Microwave Circuits and Systems

    DEFF Research Database (Denmark)

    This book is based on recent research work conducted by the authors dealing with the design and development of active and passive microwave components, integrated circuits and systems. It is divided into seven parts. In the first part comprising the first two chapters, alternative concepts...... amplifier architectures. In addition, distortion analysis and power combining techniques are considered. Another key element in most microwave systems is a signal generator. It forms the heart of all kinds of communication and radar systems. The fourth part of this book is dedicated to signal generators...... push currently available technologies to the limits. Some considerations to meet the growing requirements are provided in the fifth part of this book. The following part deals with circuits based on LTCC and MEMS technologies. The book concludes with chapters considering application of microwaves...

  12. Advanced image based methods for structural integrity monitoring: Review and prospects

    Science.gov (United States)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  13. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  14. Depth extraction method with high accuracy in integral imaging based on moving array lenslet technique

    Science.gov (United States)

    Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing

    2018-03-01

    In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.

  15. Integrated semiconductor optical sensors for chronic, minimally-invasive imaging of brain function.

    Science.gov (United States)

    Lee, Thomas T; Levi, Ofer; Cang, Jianhua; Kaneko, Megumi; Stryker, Michael P; Smith, Stephen J; Shenoy, Krishna V; Harris, James S

    2006-01-01

    Intrinsic optical signal (IOS) imaging is a widely accepted technique for imaging brain activity. We propose an integrated device consisting of interleaved arrays of gallium arsenide (GaAs) based semiconductor light sources and detectors operating at telecommunications wavelengths in the near-infrared. Such a device will allow for long-term, minimally invasive monitoring of neural activity in freely behaving subjects, and will enable the use of structured illumination patterns to improve system performance. In this work we describe the proposed system and show that near-infrared IOS imaging at wavelengths compatible with semiconductor devices can produce physiologically significant images in mice, even through skull.

  16. Images of Economic Integration Groups in Russian Political Discourse

    Directory of Open Access Journals (Sweden)

    E. V. Rudenko

    2015-01-01

    Full Text Available In comparison with other countries, Russian citizens watch all the details of everything that happens outside the country, especially if it concerns economic partnerships and Russia’s participation in different organizations and associations. The official view of Russian cooperation with other countries in various formats is presented in nationwide media, though the public opinion is not usually accepted there. However, with the help of images, that are created in the political discourse, one can understand, what kind of support can the government expect, working in a certain direction, which is important, considering the aspiration to raise awareness and civil activity. 

  17. Tapping mode microwave impedance microscopy

    KAUST Repository

    Lai, K.

    2009-01-01

    We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.

  18. Integration of Transport-relevant Data within Image Record of the Surveillance System

    Directory of Open Access Journals (Sweden)

    Adam Stančić

    2016-10-01

    Full Text Available Integration of the collected information on the road within the image recorded by the surveillance system forms a unified source of transport-relevant data about the supervised situation. The basic assumption is that the procedure of integration changes the image to the extent that is invisible to the human eye, and the integrated data keep identical content. This assumption has been proven by studying the statistical properties of the image and integrated data using mathematical model modelled in the programming language Python using the combinations of the functions of additional libraries (OpenCV, NumPy, SciPy and Matplotlib. The model has been used to compare the input methods of meta-data and methods of steganographic integration by correcting the coefficients of Discrete Cosine Transform JPEG compressed image. For the procedures of steganographic data processing the steganographic algorithm F5 was used. The review paper analyses the advantages and drawbacks of the integration methods and present the examples of situations in traffic in which the formed unified sources of transport-relevant information could be used.

  19. Establishment of quality, reliability and design standards for low, medium, and high power microwave hybrid microcircuits

    Science.gov (United States)

    Robinson, E. A.

    1973-01-01

    Quality, reliability, and design standards for microwave hybrid microcircuits were established. The MSFC Standard 85M03926 for hybrid microcircuits was reviewed and modifications were generated for use with microwave hybrid microcircuits. The results for reliability tests of microwave thin film capacitors, transistors, and microwave circuits are presented. Twenty-two microwave receivers were tested for 13,500 unit hours. The result of 111,121 module burn-in and operating hours for an integrated solid state transceiver module is reported.

  20. Probing the local microwave properties of superconducting thin films by a scanning microwave near-field microscope

    CERN Document Server

    Wu, L Y; Wang, K L; Jiang, T; Kang, L; Yang, S Z; Wu, P H

    2002-01-01

    In this paper, we present our approach to probe the local microwave properties of superconducting thin films by using the microwave near-field scanning technique. We have employed a coaxial cavity together with a niobium tip as the probe and established a scanning sample stage cooled by liquid nitrogen to study thin film devices at low temperature in our scanning microwave near-field microscope. Nondestructive images have been obtained on the inhomogeneity of the YBaCuO superconducting thin films at microwave frequency. We believe that these results would be helpful in evaluating the microwave performance of the devices.

  1. Diagnostic medical imaging systems. X-ray radiography and angiography, computerized tomography, nuclear medicine, NMR imaging, sonography, integrated image information systems. 3. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Morneburg, H.

    1995-01-01

    This third edition is based on major review and updating work. Many recent developments have been included, as for instance novel systems for fluoroscopy and mammography, spiral CT and electron beam CT, nuclear medical tomography ( SPECT and PET), novel techniques for fast NMR imaging, spectral and colour coded duplex sonography, as well as a new chapter on integrated image information systems, including network installations. (orig.) [de

  2. Integration of digital gross pathology images for enterprise-wide access

    Directory of Open Access Journals (Sweden)

    Milon Amin

    2012-01-01

    Full Text Available Background: Sharing digital pathology images for enterprise- wide use into a picture archiving and communication system (PACS is not yet widely adopted. We share our solution and 3-year experience of transmitting such images to an enterprise image server (EIS. Methods: Gross pathology images acquired by prosectors were integrated with clinical cases into the laboratory information system′s image management module, and stored in JPEG2000 format on a networked image server. Automated daily searches for cases with gross images were used to compile an ASCII text file that was forwarded to a separate institutional Enterprise Digital Imaging and Communications in Medicine (DICOM Wrapper (EDW server. Concurrently, an HL7-based image order for these cases was generated, containing the locations of images and patient data, and forwarded to the EDW, which combined data in these locations to generate images with patient data, as required by DICOM standards. The image and data were then "wrapped" according to DICOM standards, transferred to the PACS servers, and made accessible on an institution-wide basis. Results: In total, 26,966 gross images from 9,733 cases were transmitted over the 3-year period from the laboratory information system to the EIS. The average process time for cases with successful automatic uploads (n=9,688 to the EIS was 98 seconds. Only 45 cases (0.5% failed requiring manual intervention. Uploaded images were immediately available to institution- wide PACS users. Since inception, user feedback has been positive. Conclusions: Enterprise- wide PACS- based sharing of pathology images is feasible, provides useful services to clinical staff, and utilizes existing information system and telecommunications infrastructure. PACS-shared pathology images, however, require a "DICOM wrapper" for multisystem compatibility.

  3. Imaging FTS: A Different Approach to Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Laurent Drissen

    2014-01-01

    Full Text Available Imaging Fourier transform spectroscopy (iFTS is a promising, although technically very challenging, option for wide-field hyperspectral imagery. We present in this paper an introduction to the iFTS concept and its advantages and drawbacks, as well as examples of data obtained with a prototype iFTS, SpIOMM, attached to the 1.6 m telescope of the Observatoire du Mont-Mégantic: emission line ratios in the spiral galaxy NGC 628 and absorption line indices in the giant elliptical M87. We conclude by introducing SpIOMM's successor, SITELLE, which will be installed at the Canada-France-Hawaii Telescope in 2014.

  4. Effects of post-deposition oxygen annealing on tuning properties of Ba0.8Sr0.2TiO3 thin-film capacitors for microwave integrated circuits

    International Nuclear Information System (INIS)

    Liu, Y.R.; Lai, P.T.; Li, G.Q.; Li, B.; Peng, J.B.; Lo, H.B.

    2005-01-01

    Barium strontium titanate (BST) thin-films deposited on a SiO 2 /Si substrate by argon ion-beam sputtering technique were annealed at 400, 500 and 600 deg. C in oxygen for 30 min, respectively, and were used to fabricate integrated parallel-plate capacitors by standard integrated-circuit technology. These capacitors can achieve tunability greater than 60% at an applied dc voltage of 2 V and a frequency of 100 kHz at room temperature. Considering tunability, loss factor and hysteresis effect, the BST thin-film annealed at 500 deg. C is superior for making tunable microwave integrated capacitors. The effects of annealing treatment in oxygen on the tuning properties of the thin-film capacitors are analyzed, and the results indicate that the tunability is strongly dependent on both oxygen vacancies and negatively charged oxygen, trapped at the grain boundary and/or at the electrode/dielectric interface

  5. A microwave-augmented plasma torch module

    International Nuclear Information System (INIS)

    Kuo, S P; Bivolaru, Daniel; Williams, Skip; Carter, Campbell D

    2006-01-01

    A new plasma torch device which combines arc and microwave discharges to enhance the size and enthalpy of the plasma torch is described. A cylindrical-shaped plasma torch module is integrated into a tapered rectangular cavity to form a microwave adaptor at one end, which couples the microwave power injected into the cavity from the other end to the arc plasma generated by the torch module. A theoretical study of the microwave coupling from the cavity to the plasma torch, as the load, is presented. The numerical results indicate that the microwave power coupling efficiency exceeds 80%. Operational tests of the device indicate that the microwave power is coupled to the plasma torch and that the arc discharge power is increased. The addition of microwave energy enhances the height, volume and enthalpy of the plasma torch when the torch operates at a low airflow rate, and even when the flow speed is supersonic, a noticeable microwave effect on the plasma torch is observed. In addition, the present design allows the torch to be operated as both a fuel injector and igniter. Ignition of ethylene fuel injected through the centre of a tungsten carbide tube acting as the central electrode is demonstrated

  6. Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image.

    Science.gov (United States)

    Saadia, Ayesha; Rashdi, Adnan

    2016-12-01

    Ultrasound is widely used for imaging due to its cost effectiveness and safety feature. However, ultrasound images are inherently corrupted with speckle noise which severely affects the quality of these images and create difficulty for physicians in diagnosis. To get maximum benefit from ultrasound imaging, image denoising is an essential requirement. To perform image denoising, a two stage methodology using fuzzy weighted mean and fractional integration filter has been proposed in this research work. In stage-1, image pixels are processed by applying a 3 × 3 window around each pixel and fuzzy logic is used to assign weights to the pixels in each window, replacing central pixel of the window with weighted mean of all neighboring pixels present in the same window. Noise suppression is achieved by assigning weights to the pixels while preserving edges and other important features of an image. In stage-2, the resultant image is further improved by fractional order integration filter. Effectiveness of the proposed methodology has been analyzed for standard test images artificially corrupted with speckle noise and real ultrasound B-mode images. Results of the proposed technique have been compared with different state-of-the-art techniques including Lsmv, Wiener, Geometric filter, Bilateral, Non-local means, Wavelet, Perona et al., Total variation (TV), Global Adaptive Fractional Integral Algorithm (GAFIA) and Improved Fractional Order Differential (IFD) model. Comparison has been done on quantitative and qualitative basis. For quantitative analysis different metrics like Peak Signal to Noise Ratio (PSNR), Speckle Suppression Index (SSI), Structural Similarity (SSIM), Edge Preservation Index (β) and Correlation Coefficient (ρ) have been used. Simulations have been done using Matlab. Simulation results of artificially corrupted standard test images and two real Echocardiographic images reveal that the proposed method outperforms existing image denoising techniques

  7. 77 FR 3386 - Export and Reexport License Requirements for Certain Microwave and Millimeter Wave Electronic...

    Science.gov (United States)

    2012-01-24

    ... microwave ``monolithic integrated circuits'' power amplifiers that meet certain criteria with respect to... packaged microwave ``monolithic integrated circuits'' (MMIC) power amplifiers that meet certain criteria.... 110825537-2038-02] RIN 0694-AF38 Export and Reexport License Requirements for Certain Microwave and...

  8. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  9. Integrated teaching of anatomy and radiology using three-dimensional image post-processing

    International Nuclear Information System (INIS)

    Rengier, Fabian; Tengg-Kobligk, Hendrik von; Doll, Sara; Kirsch, Joachim; Kauczor, Hans-Ulrich; Giesel, Frederik L.

    2009-01-01

    This article presents a new way of teaching by integrating both anatomy and radiology using three-dimensional image post-processing tools. One preclinical and one clinical module were developed for integrated teaching of anatomy and radiology. Potential benefits were assessed by anonymous evaluation among the 176 participating students. The students highly appreciated the new approach, especially the high degree of interactivity with the post-processing software and the possibility to correlate the real dissection with the virtual dissection. Students agreed that three-dimensional imaging and post-processing improved their understanding of difficult anatomical topics and topographical relations. We consider the new approach to provide great additional benefits for participating students regarding preparation for everyday clinical practice. In particular, it imparts familiarity with imaging and image post-processing techniques and may improve anatomical understanding, radiological diagnostic skills and three-dimensional appreciation. (orig.)

  10. Localization and Imaging of Integrated Circuit Defect Using Simple Optical Feedback Detection

    Directory of Open Access Journals (Sweden)

    Vernon Julius Cemine

    2004-12-01

    Full Text Available High-contrast microscopy of semiconductor and metal edifices in integrated circuits is demonstrated by combining laser-scanning confocal reflectance microscopy, one-photon optical-beam-induced current (1P-OBIC imaging, and optical feedback detection via a commercially available semiconductor laser that also serves as the excitation source. The confocal microscope has a compact in-line arrangement with no external photodetector. Confocal and 1P-OBIC images are obtained simultaneously from the same focused beam that is scanned across the sample plane. Image pairs are processed to generate exclusive high-contrast distributions of the semiconductor, metal, and dielectric sites in a GaAs photodiode array sample. The method is then utilized to demonstrate defect localization and imaging in an integrated circuit.

  11. An integrated 3-D image of cerebral blood vessels and CT view of tumor

    International Nuclear Information System (INIS)

    Suetens, P.; Baert, A.L.; Gybels, J.; Haegemans, S.; Jansen, P.; Oosterlinck, A.; Wilms, G.

    1984-01-01

    The authors developed a method that yields an integrated three-dimensional image of cerebral blood vessels and CT view of tumor. This method allows the neurosurgeon to choose any electrode trajectory that looks convenient to him, without imminent danger of causing a hemorrhage. Besides offering more safety to stereotactic interventions, this integrated 3-D image also has other applications. First, it gives a better characterization of most focal mass lesions seen by CT. Second, it allows high dose focal irradiation to be effected in such a way as to avoid arteries and veins. Third, it provides useful information for planning the strategy of open surgery

  12. 3D stereotaxis for epileptic foci through integrating MR imaging with neurological electrophysiology data

    International Nuclear Information System (INIS)

    Luo Min; Peng Chenglin; Wang Kang; Lei Wenyong; Luo Song; Wang Xiaolin; Wang Xuejian; Wu Ruoqiu; Wu Guofeng

    2005-01-01

    Objective: To improve the accuracy of the epilepsy diagnoses by integrating MR image from PACS with data from neurological electrophysiology. The integration is also very important for transmiting diagnostic information to 3D TPS of radiotherapy. Methods: The electroencephalogram was redisplayed by EEG workstation, while MR image was reconstructed by Brainvoyager software. 3D model of patient brain was built up by combining reconstructed images with electroencephalogram data in Base 2000. 30 epileptic patients (18 males and 12 females) with their age ranged from 12 to 54 years were confirmed by using the integrated MR images and the data from neurological electrophysiology and their 3D stereolocating. Results: The corresponding data in 3D model could show the real situation of patients' brain and visually locate the precise position of the focus. The suddessful rate of 3D guided operation was greatly improved, and the number of epileptic onset was markedly decreased. The epilepsy was stopped for 6 months in 8 of the 30 patients. Conclusion: The integration of MR image and information of neurological electrophysiology can improve the diagnostic level for epilepsy, and it is crucial for imp roving the successful rate of manipulations and the epilepsy analysis. (authors)

  13. Microwave heating type evaporator

    International Nuclear Information System (INIS)

    Taura, Masazumi; Nishi, Akio; Morimoto, Takashi; Izumi, Jun; Tamura, Kazuo; Morooka, Akihiko.

    1987-01-01

    Purpose: To prevent evaporization stills against corrosion due to radioactive liquid wastes. Constitution: Microwaves are supplied from a microwave generator by way of a wave guide tube and through a microwave permeation window to the inside of an evaporatization still. A matching device is attached to the wave guide tube for transmitting the microwaves in order to match the impedance. When the microwaves are supplied to the inside of the evaporization still, radioactive liquid wastes supplied from a liquid feed port by way of a spray tower to the inside of the evaporization still is heated and evaporated by the induction heating of the microwaves. (Seki, T.)

  14. On-Chip Microwave Quantum Hall Circulator

    Directory of Open Access Journals (Sweden)

    A. C. Mahoney

    2017-01-01

    Full Text Available Circulators are nonreciprocal circuit elements that are integral to technologies including radar systems, microwave communication transceivers, and the readout of quantum information devices. Their nonreciprocity arises from the interference of microwaves over the centimeter scale of the signal wavelength, in the presence of bulky magnetic media that breaks time-reversal symmetry. Here, we realize a completely passive on-chip microwave circulator with size 1/1000th the wavelength by exploiting the chiral, “slow-light” response of a two-dimensional electron gas in the quantum Hall regime. For an integrated GaAs device with 330  μm diameter and about 1-GHz center frequency, a nonreciprocity of 25 dB is observed over a 50-MHz bandwidth. Furthermore, the nonreciprocity can be dynamically tuned by varying the voltage at the port, an aspect that may enable reconfigurable passive routing of microwave signals on chip.

  15. Comparison of time series of integrated water vapor measured using radiosonde, GPS and microwave radiometer at the CNR-IMAA Atmospheric Observatory

    Science.gov (United States)

    Amato, Franceso; Rosoldi, Marco; Madonna, Fabio

    2015-04-01

    . radiosondes (processed using GRUAN processing algorithm); 4. a microwave radiometer (data processed using a retrieval based on a neural network). F. Amato, M. Rosoldi, and F. Madonna Consiglio Nazionale delle Ricerche, Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA), Tito Scalo, Potenza, Italy Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric

  16. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    International Nuclear Information System (INIS)

    Neuner, Irene; Kaffanke, Joachim B.; Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans; Shah, N. Jon

    2012-01-01

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as 18 F-fluoroethyl-l-tyrosine (FET) or 11 C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  17. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment

    Energy Technology Data Exchange (ETDEWEB)

    Neuner, Irene [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Psychiatry, Psychotherapy and Psychosomatics, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany); Kaffanke, Joachim B. [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); MR-Transfer e.K., Wuppertal (Germany); Langen, Karl-Josef; Kops, Elena Rota; Tellmann, Lutz; Stoffels, Gabriele; Weirich, Christoph; Filss, Christian; Scheins, Juergen; Herzog, Hans [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); Shah, N. Jon [Institute of Neuroscience and Medicine 4, INM 4, Juelich (Germany); RWTH Aachen University, Department of Neurology, Aachen (Germany); JARA-BRAIN-Translational Medicine, Aachen (Germany)

    2012-12-15

    The development of integrated magnetic resonance (MR)-positron emission tomography (PET) hybrid imaging opens up new horizons for imaging in neuro-oncology. In cerebral gliomas the definition of tumour extent may be difficult to ascertain using standard MR imaging (MRI) only. The differentiation of post-therapeutic scar tissue, tumour rests and tumour recurrence is challenging. The relationship to structures such as the pyramidal tract to the tumour mass influences the therapeutic neurosurgical approach. The diagnostic information may be enriched by sophisticated MR techniques such as diffusion tensor imaging (DTI), multiple-volume proton MR spectroscopic imaging (MRSI) and functional MRI (fMRI). Metabolic imaging with PET, especially using amino acid tracers such as {sup 18}F-fluoroethyl-l-tyrosine (FET) or {sup 11}C-l-methionine (MET) will indicate tumour extent and response to treatment. The new technologies comprising MR-PET hybrid systems have the advantage of providing comprehensive answers by a one-stop-job of 40-50 min. The combined approach provides data of different modalities using the same iso-centre, resulting in optimal spatial and temporal realignment. All images are acquired exactly under the same physiological conditions. We describe the imaging protocol in detail and provide patient examples for the different imaging modalities such as FET-PET, standard structural imaging (T1-weighted, T2-weighted, T1-weighted contrast agent enhanced), DTI, MRSI and fMRI. (orig.)

  18. BIGRE: A LOW CROSS-TALK INTEGRAL FIELD UNIT TAILORED FOR EXTRASOLAR PLANETS IMAGING SPECTROSCOPY

    International Nuclear Information System (INIS)

    Antichi, Jacopo; Mouillet, David; Puget, Pascal; Beuzit, Jean-Luc; Dohlen, Kjetil; Gratton, Raffaele G.; Mesa, Dino; Claudi, Riccardo U.; Giro, Enrico; Boccaletti, Anthony

    2009-01-01

    Integral field spectroscopy represents a powerful technique for the detection and characterization of extrasolar planets through high-contrast imaging since it allows us to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high-contrast imaging is the impact of the diffraction effects and the noncommon path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical Traitement Integral des Galaxies par l'Etude de leurs Rays (TIGER) design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.

  19. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  20. Microwave detection of air showers with MIDAS

    International Nuclear Information System (INIS)

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d’Orfeuil, B.

    2012-01-01

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20 ° ×10 ° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  1. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    Science.gov (United States)

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  2. Integration of electro-anatomical and imaging data of the left ventricle: An evaluation framework.

    Science.gov (United States)

    Soto-Iglesias, David; Butakoff, Constantine; Andreu, David; Fernández-Armenta, Juan; Berruezo, Antonio; Camara, Oscar

    2016-08-01

    Integration of electrical and structural information for scar characterization in the left ventricle (LV) is a crucial step to better guide radio-frequency ablation therapies, which are usually performed in complex ventricular tachycardia (VT) cases. This integration requires finding a common representation where to map the electrical information from the electro-anatomical map (EAM) surfaces and tissue viability information from delay-enhancement magnetic resonance images (DE-MRI). However, the development of a consistent integration method is still an open problem due to the lack of a proper evaluation framework to assess its accuracy. In this paper we present both: (i) an evaluation framework to assess the accuracy of EAM and imaging integration strategies with simulated EAM data and a set of global and local measures; and (ii) a new integration methodology based on a planar disk representation where the LV surface meshes are quasi-conformally mapped (QCM) by flattening, allowing for simultaneous visualization and joint analysis of the multi-modal data. The developed evaluation framework was applied to estimate the accuracy of the QCM-based integration strategy on a benchmark dataset of 128 synthetically generated ground-truth cases presenting different scar configurations and EAM characteristics. The obtained results demonstrate a significant reduction in global overlap errors (50-100%) with respect to state-of-the-art integration techniques, also better preserving the local topology of small structures such as conduction channels in scars. Data from seventeen VT patients were also used to study the feasibility of the QCM technique in a clinical setting, consistently outperforming the alternative integration techniques in the presence of sparse and noisy clinical data. The proposed evaluation framework has allowed a rigorous comparison of different EAM and imaging data integration strategies, providing useful information to better guide clinical practice in

  3. Perceived self-image in adolescent idiopathic scoliosis: an integrative review of the literature

    Directory of Open Access Journals (Sweden)

    Maria Isabel Bonilla Carrasco

    2014-08-01

    Full Text Available Objective: To learn about the experiences of adolescents diagnosed with idiopathic scoliosis. Method: Integrative review of the literature published within a specified time frame. Results: For both sexes, the predominant clinical symptom of this condition appears to be the negative effect that the deformity exerts on perceived self-image. Quantitative studies used numerical scores to assess perceptions of body image but did not analyse emotional aspects. Patients treated surgically were found to have a better self-image than patients treated with a brace. Quality of life was improved by a reduction in the magnitude of the curve. Conclusion: Spinal deformity exerts a psychological effect on adolescent girls.

  4. An integrated environment for fast development and performance assessment of sonar image processing algorithms - SSIE

    DEFF Research Database (Denmark)

    Henriksen, Lars

    1996-01-01

    The sonar simulator integrated environment (SSIE) is a tool for developing high performance processing algorithms for single or sequences of sonar images. The tool is based on MATLAB providing a very short lead time from concept to executable code and thereby assessment of the algorithms tested...... of the algorithms is the availability of sonar images. To accommodate this problem the SSIE has been equipped with a simulator capable of generating high fidelity sonar images for a given scene of objects, sea-bed AUV path, etc. In the paper the main components of the SSIE is described and examples of different...... processing steps are given...

  5. [Perceived self-image in adolescent idiopathic scoliosis: an integrative review of the literature].

    Science.gov (United States)

    Carrasco, Maria Isabel Bonilla; Ruiz, Maria Carmen Solano

    2014-08-01

    To learn about the experiences of adolescents diagnosed with idiopathic scoliosis. Integrative review of the literature published within a specified time frame. For both sexes, the predominant clinical symptom of this condition appears to be the negative effect that the deformity exerts on perceived self-image. Quantitative studies used numerical scores to assess perceptions of body image but did not analyse emotional aspects. Patients treated surgically were found to have a better self-image than patients treated with a brace. Quality of life was improved by a reduction in the magnitude of the curve. Spinal deformity exerts a psychological effect on adolescent girls.

  6. An integrated multimodality image-guided robot system for small-animal imaging research

    International Nuclear Information System (INIS)

    Hsu, Wen-Lin; Hsin Wu, Tung; Hsu, Shih-Ming; Chen, Chia-Lin; Lee, Jason J.S.; Huang, Yung-Hui

    2011-01-01

    We design and construct an image-guided robot system for use in small-animal imaging research. This device allows the use of co-registered small-animal PET-MRI images to guide the movements of robotic controllers, which will accurately place a needle probe at any predetermined location inside, for example, a mouse tumor, for biological readouts without sacrificing the animal. This system is composed of three major components: an automated robot device, a CCD monitoring mechanism, and a multimodality registration implementation. Specifically, the CCD monitoring mechanism was used for correction and validation of the robot device. To demonstrate the value of the proposed system, we performed a tumor hypoxia study that involved FMISO small-animal PET imaging and the delivering of a pO 2 probe into the mouse tumor using the image-guided robot system. During our evaluation, the needle positioning error was found to be within 0.153±0.042 mm of desired placement; the phantom simulation errors were within 0.693±0.128 mm. In small-animal studies, the pO 2 probe measurements in the corresponding hypoxia areas showed good correlation with significant, low tissue oxygen tensions (less than 6 mmHg). We have confirmed the feasibility of the system and successfully applied it to small-animal investigations. The system could be easily adapted to extend to other biomedical investigations in the future.

  7. OC ToGo: bed site image integration into OpenClinica with mobile devices

    Science.gov (United States)

    Haak, Daniel; Gehlen, Johan; Jonas, Stephan; Deserno, Thomas M.

    2014-03-01

    Imaging and image-based measurements nowadays play an essential role in controlled clinical trials, but electronic data capture (EDC) systems insufficiently support integration of captured images by mobile devices (e.g. smartphones and tablets). The web application OpenClinica has established as one of the world's leading EDC systems and is used to collect, manage and store data of clinical trials in electronic case report forms (eCRFs). In this paper, we present a mobile application for instantaneous integration of images into OpenClinica directly during examination on patient's bed site. The communication between the Android application and OpenClinica is based on the simple object access protocol (SOAP) and representational state transfer (REST) web services for metadata, and secure file transfer protocol (SFTP) for image transfer, respectively. OpenClinica's web services are used to query context information (e.g. existing studies, events and subjects) and to import data into the eCRF, as well as export of eCRF metadata and structural information. A stable image transfer is ensured and progress information (e.g. remaining time) visualized to the user. The workflow is demonstrated for a European multi-center registry, where patients with calciphylaxis disease are included. Our approach improves the EDC workflow, saves time, and reduces costs. Furthermore, data privacy is enhanced, since storage of private health data on the imaging devices becomes obsolete.

  8. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  9. ISAR Imaging of Ship Targets Based on an Integrated Cubic Phase Bilinear Autocorrelation Function

    Directory of Open Access Journals (Sweden)

    Jibin Zheng

    2017-03-01

    Full Text Available For inverse synthetic aperture radar (ISAR imaging of a ship target moving with ocean waves, the image constructed with the standard range-Doppler (RD technique is blurred and the range-instantaneous-Doppler (RID technique has to be used to improve the image quality. In this paper, azimuth echoes in a range cell of the ship target are modeled as noisy multicomponent cubic phase signals (CPSs after the motion compensation and a RID ISAR imaging algorithm is proposed based on the integrated cubic phase bilinear autocorrelation function (ICPBAF. The ICPBAF is bilinear and based on the two-dimensionally coherent energy accumulation. Compared to five other estimation algorithms, the ICPBAF can acquire higher cross term suppression and anti-noise performance with a reasonable computational cost. Through simulations and analyses with the synthetic model and real radar data, we verify the effectiveness of the ICPBAF and corresponding RID ISAR imaging algorithm.

  10. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  11. Stakeholders' Perceptions Regarding the Use of Patient Photographs Integrated with Medical Imaging Studies.

    Science.gov (United States)

    Sadigh, Gelareh; Applegate, Kimberly E; Ng, Timothy W; Hendrix, Kamilah A; Tridandapani, Srini

    2016-06-01

    Integrating digital facial photographs of pediatric patients as identifiers (ID) with medical imaging (integrated photographic IDs) may increase the detection of mislabeled studies. The purpose of this study was to determine how different stakeholders would receive this novel technology. Parents or guardians of patients in a children's hospital outpatient radiology department, radiology faculty and residents, and radiology technologists and nurses were asked to complete a survey. The perception about the anticipated use of integrated photographic ID in different clinical scenarios was investigated, and its predictors were determined using logistic regression analysis. Four hundred ninety-eight parents responded (response rate 83 %); 96 and 97 % supported the use of integrated photographic ID, if it improves the radiologist's imaging interpretation or decreases the rate of mislabeled errors, respectively. Thirty-eight percent were worried that photographic IDs would impact patients' privacy. Ninety-four percent believed that they should be asked for their consent prior to obtaining their child's photograph. Seventy-eight radiologists responded (response rate 39 %); 63 and 59 % believed that the use of integrated photographic ID would result in improvement in accurate interpretation of images and identification of mislabeled patient errors, respectively. Forty-nine percent of radiologists had concern that integrated photographic ID would increase interpretation time. Fifty technologists and nurses responded (response rate 59 %); 71 and 73 % supported the technology if it resulted in more acute interpretation of images and identification of mislabeled patients, respectively. A majority of stakeholders support integrated photographic ID in order to improve safety. A majority of parents believe that consent should be obtained.

  12. Microwave energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Kyoto Univ. (Japan)

    1989-03-05

    Laying stress on the technological problems and effect on the environment of microwave energy transmission, recent scientific and engineering problems and related subjects are described. Because no fuel is required for the solar power generation, the power generation system can not be considered as an expensive one when the unit cost of energy is taken into consideration. Some of the important technological problems in the microwave energy transmission are accurate microwave beam control technology to receiving stations and improvement in the efficiency of transmission system. Microwave energy beam has effects on living bodies, communication, and plasma atmosphere of the earth. Microwave energy transmission using a space flyer unit is scheduled. Its objective is the development of microwave wireless transmission technology and the study of the correlation between high power microwave and ionosphere plasma. Experiments on such a small scale application as a microwave driven space ship to bring results seem also important. 12 refs., 13 figs.

  13. Image Retrieval based on Integration between Color and Geometric Moment Features

    International Nuclear Information System (INIS)

    Saad, M.H.; Saleh, H.I.; Konbor, H.; Ashour, M.

    2012-01-01

    Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.

  14. Dynamic autofocus for continuous-scanning time-delay-and-integration image acquisition in automated microscopy.

    Science.gov (United States)

    Bravo-Zanoguera, Miguel E; Laris, Casey A; Nguyen, Lam K; Oliva, Mike; Price, Jeffrey H

    2007-01-01

    Efficient image cytometry of a conventional microscope slide means rapid acquisition and analysis of 20 gigapixels of image data (at 0.3-microm sampling). The voluminous data motivate increased acquisition speed to enable many biomedical applications. Continuous-motion time-delay-and-integrate (TDI) scanning has the potential to speed image acquisition while retaining sensitivity, but the challenge of implementing high-resolution autofocus operating simultaneously with acquisition has limited its adoption. We develop a dynamic autofocus system for this need using: 1. a "volume camera," consisting of nine fiber optic imaging conduits to charge-coupled device (CCD) sensors, that acquires images in parallel from different focal planes, 2. an array of mixed analog-digital processing circuits that measure the high spatial frequencies of the multiple image streams to create focus indices, and 3. a software system that reads and analyzes the focus data streams and calculates best focus for closed feedback loop control. Our system updates autofocus at 56 Hz (or once every 21 microm of stage travel) to collect sharply focused images sampled at 0.3x0.3 microm(2)/pixel at a stage speed of 2.3 mms. The system, tested by focusing in phase contrast and imaging long fluorescence strips, achieves high-performance closed-loop image-content-based autofocus in continuous scanning for the first time.

  15. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    Science.gov (United States)

    Leonard, Regis F.; Bhasin, Kul B.

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure. (For individual items see A93-25777 to A93-25814)

  16. IMAGE: An Integrated Model for the Assessment of the Greenhouse Effect

    NARCIS (Netherlands)

    Rotmans J; Boois H de; Swart RJ

    1989-01-01

    In dit rapport wordt beschreven hoe het RIVM-simulatiemodel IMAGE (an Integrated Model for the Assessment of the Greenhouse Effect) is opgebouwd. Het model beoogt een geintegreerd overzicht te geven van de broeikasproblematiek alsmede inzicht te verschaffen in de wezenlijke drijfveren van het

  17. On the boundary conditions and optimization methods in integrated digital image correlation

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Verhaegh, B.J.; Hoefnagels, J.P.M.; Ruybalid, A.; van der Sluis, O.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    In integrated digital image correlation (IDIC) methods attention must be paid to the influence of using a correct geometric and material model, but also to make the boundary conditions in the FE simulation match the real experiment. Another issue is the robustness and convergence of the IDIC

  18. Advances in microwaves 7

    CERN Document Server

    Young, Leo

    2013-01-01

    Advances in Microwaves, Volume 7 covers the developments in the study of microwaves. The book discusses the effect of surface roughness on the propagation of the TEM mode, as well as the voltage breakdown of microwave antennas. The text also describes the theory and design considerations of single slotted-waveguide linear arrays and the techniques and theories that led to the achievement of wide bandwidths and ultralow noise temperatures for communication applications. The book will prove invaluable to microwave engineers.

  19. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter.

    Science.gov (United States)

    Fandiño, Javier S; Muñoz, Pascual

    2013-11-01

    A photonic system capable of estimating the unknown frequency of a CW microwave tone is presented. The core of the system is a complementary optical filter monolithically integrated in InP, consisting of a ring-assisted Mach-Zehnder interferometer with a second-order elliptic response. By simultaneously measuring the different optical powers produced by a double-sideband suppressed-carrier modulation at the outputs of the photonic integrated circuit, an amplitude comparison function that depends on the input tone frequency is obtained. Using this technique, a frequency measurement range of 10 GHz (5-15 GHz) with a root mean square value of frequency error lower than 200 MHz is experimentally demonstrated. Moreover, simulations showing the impact of a residual optical carrier on system performance are also provided.

  20. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4.5H2O)

    International Nuclear Information System (INIS)

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-01-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400mT using electromagnets. Divalent copper ion (Cu 2+ ) in copper sulfate pentahydrate (CuSO 4 .5H 2 O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction

  1. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O)

    Energy Technology Data Exchange (ETDEWEB)

    Tani, Atsushi [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan)]. E-mail: atani@ess.sci.osaka-u.ac.jp; Ueno, Takehiro [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Yamanaka, Chihiro [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Katsura, Makoto [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan); Ikeya, Motoji [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama Toyonaka, Osaka 560-0043 (Japan)

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400mT using electromagnets. Divalent copper ion (Cu{sup 2+}) in copper sulfate pentahydrate (CuSO{sub 4}.5H{sub 2}O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  2. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4 . 5H2O).

    Science.gov (United States)

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  3. Microwave processing heats up

    Science.gov (United States)

    Microwaves are a common appliance in many households. In the United States microwave heating is the third most popular domestic heating method food foods. Microwave heating is also a commercial food processing technology that has been applied for cooking, drying, and tempering foods. It's use in ...

  4. Cosmic Microwave Background Timeline

    Science.gov (United States)

    Cosmic Microwave Background Timeline 1934 : Richard Tolman shows that blackbody radiation in an will have a blackbody cosmic microwave background with temperature about 5 K 1955: Tigran Shmaonov anisotropy in the cosmic microwave background, this strongly supports the big bang model with gravitational

  5. [A new concept for integration of image databanks into a comprehensive patient documentation].

    Science.gov (United States)

    Schöll, E; Holm, J; Eggli, S

    2001-05-01

    Image processing and archiving are of increasing importance in the practice of modern medicine. Particularly due to the introduction of computer-based investigation methods, physicians are dealing with a wide variety of analogue and digital picture archives. On the other hand, clinical information is stored in various text-based information systems without integration of image components. The link between such traditional medical databases and picture archives is a prerequisite for efficient data management as well as for continuous quality control and medical education. At the Department of Orthopedic Surgery, University of Berne, a software program was developed to create a complete multimedia electronic patient record. The client-server system contains all patients' data, questionnaire-based quality control, and a digital picture archive. Different interfaces guarantee the integration into the hospital's data network. This article describes our experiences in the development and introduction of a comprehensive image archiving system at a large orthopedic center.

  6. Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) - Initial experiences

    International Nuclear Information System (INIS)

    Romaneehsen, B.; Oberholzer, K.; Kreitner, K.-F.; Mueller, L.P.

    2003-01-01

    Purpose: To investigate the feasibility of using multiple receiver coil elements for time saving integrated parallel imaging techniques (iPAT) in traumatic musculoskeletal disorders. Material and methods: 6 patients with traumatic derangements of the knee, ankle and hip underwent MR imaging at 1.5 T. For signal detection of the knee and ankle, we used a 6-channel body array coil that was placed around the joints, for hip imaging two 4-channel body array coils and two elements of the spine array coil were combined for signal detection. All patients were investigated with a standard imaging protocol that mainly consisted of different turbo spin-echo sequences (PD-, T 2 -weighted TSE with and without fat suppression, STIR). All sequences were repeated with an integrated parallel acquisition technique (iPAT) using a modified sensitivity encoding (mSENSE) technique with an acceleration factor of 2. Overall image quality was subjectively assessed using a five-point scale as well as the ability for detection of pathologic findings. Results: Regarding overall image quality, there were no significant differences between standard imaging and imaging using mSENSE. All pathologies (occult fracture, meniscal tear, torn and interpositioned Hoffa's cleft, cartilage damage) were detected by both techniques. iPAT led to a 48% reduction of acquisition time compared with standard technique. Additionally, time savings with iPAT led to a decrease of pain-induced motion artifacts in two cases. Conclusion: In times of increasing cost pressure, iPAT using multiple coil elements seems to be an efficient and economic tool for fast musculoskeletal imaging with diagnostic performance comparable to conventional techniques. (orig.) [de

  7. Microwave ablation devices for interventional oncology.

    Science.gov (United States)

    Ward, Robert C; Healey, Terrance T; Dupuy, Damian E

    2013-03-01

    Microwave ablation is one of the several options in the ablation armamentarium for the treatment of malignancy, offering several potential benefits when compared with other ablation, radiation, surgical and medical treatment modalities. The basic microwave system consists of the generator, power distribution system and antennas. Often under image (computed tomography or ultrasound) guidance, a needle-like antenna is inserted percutaneously into the tumor, where local microwave electromagnetic radiation is emitted from the probe's active tip, producing frictional tissue heating, capable of causing cell death by coagulation necrosis. Half of the microwave ablation systems use a 915 MHz generator and the other half use a 2450 MHz generator. To date, there are no completed clinical trials comparing microwave devices head-to-head. Prospective comparisons of microwave technology with other treatment alternatives, as well as head-to-head comparison with each microwave device, is needed if this promising field will garner more widespread support and use in the oncology community.

  8. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    Energy Technology Data Exchange (ETDEWEB)

    Sudiana, I. Nyoman, E-mail: sudiana75@yahoo.com; Ngkoimani, La Ode; Usman, Ida [Department of Physics, Faculty of Mathematic and Natural Science, Halu Oleo University, Kampus Bumi Tridharma Anduonohu, Kendari 93232 (Indonesia); Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke [Research Center for Development of Far-Infrared Region, University of Fukui, 3-9-1 Bunkyo, Fukui-shi 910-8507 (Japan); Aripin, H. [Center for Material Processing and Renewable Energy, Faculty of Learning Teacher and Education Science, Siliwangi University, Jl. Siliwangi 24 Tasikmalaya 46115, West Java (Indonesia)

    2016-03-11

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  9. The microwave effects on the properties of alumina at high frequencies of microwave sintering

    International Nuclear Information System (INIS)

    Sudiana, I. Nyoman; Ngkoimani, La Ode; Usman, Ida; Mitsudo, Seitaro; Sako, Katsuhide; Inagaki, Shunsuke; Aripin, H.

    2016-01-01

    Microwave sintering of materials has attracted much research interest because of its significant advantages (e.g. reduced sintering temperatures and soaking times) over the conventional heating. Most researchers compared processes that occurred during the microwave and conventional heating at the same temperature and time. The enhancements found in the former method are indicated as a 'non-thermal effect' which is usually used for explaining the phenomena in microwave processing. Numerous recent studies have been focused on the effect to elucidate the microwave interaction mechanism with materials. Moreover, recent progress on microwave sources such as gyrotrons has opened the possibility for processing materials by using a higher microwave frequency. Therefore, the technology is expected to exhibit a stronger non-thermal effect. This paper presents results from a series of experiments to study the non-thermal effect on microwave sintered alumina. Sintering by using a wide rage of microwave frequencies up to 300 GHz as well as a conventional furnace was carried out. The linear shrinkages of samples for each sintering method were measured. Pores and grains taken from scanning electron microstructure (SEM) images of cut surfaces were also examined. The results of a comparative study of the shrinkages and microstructure evolutions of the sintered samples under annealing in microwave heating systems and in an electric furnace were analyzed. A notably different behavior of the shrinkages and microstructures of alumina after being annealed was found. The results suggested that microwave radiations provided an additional force for mass transports. The results also indicated that the sintering process depended on microwave frequencies.

  10. Medical technology integration: CT, angiography, imaging-capable OR-table, navigation and robotics in a multifunctional sterile suite.

    Science.gov (United States)

    Jacob, A L; Regazzoni, P; Bilecen, D; Rasmus, M; Huegli, R W; Messmer, P

    2007-01-01

    Technology integration is an enabling technological prerequisite to achieve a major breakthrough in sophisticated intra-operative imaging, navigation and robotics in minimally invasive and/or emergency diagnosis and therapy. Without a high degree of integration and reliability comparable to that achieved in the aircraft industry image guidance in its different facets will not ultimately succeed. As of today technology integration in the field of image-guidance is close to nonexistent. Technology integration requires inter-departmental integration of human and financial resources and of medical processes in a dialectic way. This expanded techno-socio-economic integration has profound consequences for the administration and working conditions in hospitals. At the university hospital of Basel, Switzerland, a multimodality multifunction sterile suite was put into operation after a substantial pre-run. We report the lessons learned during our venture into the world of medical technology integration and describe new possibilities for similar integration projects in the future.

  11. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  12. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    Science.gov (United States)

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  13. Proceedings of microwave processing of materials 3

    International Nuclear Information System (INIS)

    Beatty, R.L.

    1992-01-01

    This book contains proceedings of the third MRS Symposium on Microwave Processing of Materials. Topics covered include: Microwave Processing Overviews, Numerical Modeling Techniques, Microwave Processing System Design, Microwave/Plasma Processing, Microwave/Materials Interactions, Microwave Processing of Ceramics, Microwave Processing of Polymers, Microwave Processing of Hazardous Wastes, Microwave NDE Techniques and Dielectric Properties and Measurements

  14. Microwave heating denitration device

    International Nuclear Information System (INIS)

    Sato, Hajime; Morisue, Tetsuo.

    1984-01-01

    Purpose: To suppress energy consumption due to a reflection of microwaves. Constitution: Microwaves are irradiated to the nitrate solution containing nuclear fuel materials, to cause denitrating reaction under heating and obtain oxides of the nuclear fuel materials. A microwave heating and evaporation can for reserving the nitrate solution is disposed slantwise relative to the horizontal plane and a microwave heating device is connected to the evaporation can, and inert gases for agitation are supplied to the solution within the can. Since the evaporation can is slanted, wasteful energy consumption due to the reflection of the microwaves can be suppressed. (Moriyama, K.)

  15. Towards integration of PET/MR hybrid imaging into radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Paulus, Daniel H.; Thorwath, Daniela; Schmidt, Holger; Quick, Harald H.

    2014-01-01

    Purpose: Multimodality imaging has become an important adjunct of state-of-the-art radiation therapy (RT) treatment planning. Recently, simultaneous PET/MR hybrid imaging has become clinically available and may also contribute to target volume delineation and biological individualization in RT planning. For integration of PET/MR hybrid imaging into RT treatment planning, compatible dedicated RT devices are required for accurate patient positioning. In this study, prototype RT positioning devices intended for PET/MR hybrid imaging are introduced and tested toward PET/MR compatibility and image quality. Methods: A prototype flat RT table overlay and two radiofrequency (RF) coil holders that each fix one flexible body matrix RF coil for RT head/neck imaging have been evaluated within this study. MR image quality with the RT head setup was compared to the actual PET/MR setup with a dedicated head RF coil. PET photon attenuation and CT-based attenuation correction (AC) of the hardware components has been quantitatively evaluated by phantom scans. Clinical application of the new RT setup in PET/MR imaging was evaluated in anin vivo study. Results: The RT table overlay and RF coil holders are fully PET/MR compatible. MR phantom and volunteer imaging with the RT head setup revealed high image quality, comparable to images acquired with the dedicated PET/MR head RF coil, albeit with 25% reduced SNR. Repositioning accuracy of the RF coil holders was below 1 mm. PET photon attenuation of the RT table overlay was calculated to be 3.8% and 13.8% for the RF coil holders. With CT-based AC of the devices, the underestimation error was reduced to 0.6% and 0.8%, respectively. Comparable results were found within the patient study. Conclusions: The newly designed RT devices for hybrid PET/MR imaging are PET and MR compatible. The mechanically rigid design and the reproducible positioning allow for straightforward CT-based AC. The systematic evaluation within this study provides the

  16. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    Energy Technology Data Exchange (ETDEWEB)

    Turley, Jessica; Claridge Mackonis, Elizabeth [Department of Radiation Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales (Australia)

    2015-09-15

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging.

  17. An imaging evaluation of the simultaneously integrated boost breast radiotherapy technique

    International Nuclear Information System (INIS)

    Turley, Jessica; Claridge Mackonis, Elizabeth

    2015-01-01

    To evaluate in-field megavoltage (MV) imaging of simultaneously integrated boost (SIB) breast fields to determine its feasibility in treatment verification for the SIB breast radiotherapy technique, and to assess whether the current-imaging protocol and treatment margins are sufficient. For nine patients undergoing SIB breast radiotherapy, in-field MV images of the SIB fields were acquired on days that regular treatment verification imaging was performed. The in-field images were matched offline according to the scar wire on digitally reconstructed radiographs. The offline image correction results were then applied to a margin recipe formula to calculate safe margins that account for random and systematic uncertainties in the position of the boost volume when an offline correction protocol has been applied. After offline assessment of the acquired images, 96% were within the tolerance set in the current department-imaging protocol. Retrospectively performing the maximum position deviations on the Eclipse™ treatment planning system demonstrated that the clinical target volume (CTV) boost received a minimum dose difference of 0.4% and a maximum dose difference of 1.4% less than planned. Furthermore, applying our results to the Van Herk margin formula to ensure that 90% of patients receive 95% of the prescribed dose, the calculated CTV margins were comparable to the current departmental procedure used. Based on the in-field boost images acquired and the feasible application of these results to the margin formula the current CTV-planning target volume margins used are appropriate for the accurate treatment of the SIB boost volume without additional imaging

  18. Integration of computer imaging and sensor data for structural health monitoring of bridges

    International Nuclear Information System (INIS)

    Zaurin, R; Catbas, F N

    2010-01-01

    The condition of civil infrastructure systems (CIS) changes over their life cycle for different reasons such as damage, overloading, severe environmental inputs, and ageing due normal continued use. The structural performance often decreases as a result of the change in condition. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, integrated use of video images and sensor data in the context of structural health monitoring is demonstrated as promising technologies for the safety of civil structures in general and bridges in particular. First, the challenges and possible solutions to using video images and computer vision techniques for structural health monitoring are presented. Then, the synchronized image and sensing data are analyzed to obtain unit influence line (UIL) as an index for monitoring bridge behavior under identified loading conditions. Subsequently, the UCF 4-span bridge model is used to demonstrate the integration and implementation of imaging devices and traditional sensing technology with UIL for evaluating and tracking the bridge behavior. It is shown that video images and computer vision techniques can be used to detect, classify and track different vehicles with synchronized sensor measurements to establish an input–output relationship to determine the normalized response of the bridge

  19. General Principles of Integrity Checking of Digital Images and Application for Steganalysis

    Directory of Open Access Journals (Sweden)

    Kobozeva Alla A.

    2016-06-01

    Full Text Available The new common approach for integrity checking of digital images is developed. The new features of formal parameters defining image are revealed, theoretically grounded and practically tested. The characteristics of the mutual arrangement of left and right singular vectors corresponding to the largest singular value of the image’s matrix (block of matrix and the vector composed of singular numbers is obtained. Formal parameters are obtained using normal singular decomposition of matrix (block of matrix which is uniquely determined. It is shown that for most blocks of original image (no matter lossy or lossless the angle between the left (right mentioned singular vector and vector composed of singular numbers is defined by the angle between the n-optimal vector and the vector of standard basis of the range corresponding dimension. It is shown that the determined feature brakes for the mentioned formal parameters in a non-original image. This shows the integrity violation of the image, i.e. the existence of the additional information embedded using steganography algorithms. So this can be used as a basis for development of new universal steganography methods and algorithms, and one example of the realization is proposed. The efficiency of the proposed algorithm won’t depend on the details of steganography method used for embedding. All the obtained results can be easily adapted for the digital video and audio analysis.

  20. Role of HIS/RIS DICOM interfaces in the integration of imaging into the Department of Veterans Affairs healthcare enterprise

    Science.gov (United States)

    Kuzmak, Peter M.; Dayhoff, Ruth E.

    1998-07-01

    The U.S. Department of Veterans Affairs is integrating imaging into the healthcare enterprise using the Digital Imaging and Communication in Medicine (DICOM) standard protocols. Image management is directly integrated into the VistA Hospital Information System (HIS) software and clinical database. Radiology images are acquired via DICOM, and are stored directly in the HIS database. Images can be displayed on low- cost clinician's workstations throughout the medical center. High-resolution diagnostic quality multi-monitor VistA workstations with specialized viewing software can be used for reading radiology images. DICOM has played critical roles in the ability to integrate imaging functionality into the Healthcare Enterprise. Because of its openness, it allows the integration of system components from commercial and non- commercial sources to work together to provide functional cost-effective solutions (see Figure 1). Two approaches are used to acquire and handle images within the radiology department. At some VA Medical Centers, DICOM is used to interface a commercial Picture Archiving and Communications System (PACS) to the VistA HIS. At other medical centers, DICOM is used to interface the image producing modalities directly to the image acquisition and display capabilities of VistA itself. Both of these approaches use a small set of DICOM services that has been implemented by VistA to allow patient and study text data to be transmitted to image producing modalities and the commercial PACS, and to enable images and study data to be transferred back.

  1. How well do time-integratedimages represent hot electron spatial distributions?

    Science.gov (United States)

    Ovchinnikov, V. M.; Kemp, G. E.; Schumacher, D. W.; Freeman, R. R.; Van Woerkom, L. D.

    2011-07-01

    A computational study is described, which addresses how well spatially resolved time-integratedimages recorded in intense laser-plasma experiments correlate with the distribution of "hot" (>1 MeV) electrons as they propagate through the target. The hot electron angular distribution leaving the laser-plasma region is critically important for many applications such as Fast Ignition or laser based x-ray sources; and Kα images are commonly used as a diagnostic. It is found that Kα images can easily mislead due to refluxing and other effects. Using the particle-in-cell code LSP, it is shown that a Kα image is not solely determined by the initial population of forward directed hot electrons, but rather also depends upon "delayed" hot electrons, and in fact continues to evolve long after the end of the laser interaction. Of particular note, there is a population of hot electrons created during the laser-plasma interaction that acquire a velocity direction opposite that of the laser and subsequently reflux off the front surface of the target, deflect when they encounter magnetic fields in the laser-plasma region, and then traverse the target in a wide spatial distribution. These delayed fast electrons create significant features in the Kα time-integrated images. Electrons refluxing from the sides and the back of the target are also found to play a significant role in forming the final Kα image. The relative contribution of these processes is found to vary depending on depth within target. These effects make efforts to find simple correlations between Kα images and, for example, Fast Ignition relevant parameters prone to error. Suggestions for future target design are provided.

  2. Flatbed-type 3D display systems using integral imaging method

    Science.gov (United States)

    Hirayama, Yuzo; Nagatani, Hiroyuki; Saishu, Tatsuo; Fukushima, Rieko; Taira, Kazuki

    2006-10-01

    We have developed prototypes of flatbed-type autostereoscopic display systems using one-dimensional integral imaging method. The integral imaging system reproduces light beams similar of those produced by a real object. Our display architecture is suitable for flatbed configurations because it has a large margin for viewing distance and angle and has continuous motion parallax. We have applied our technology to 15.4-inch displays. We realized horizontal resolution of 480 with 12 parallaxes due to adoption of mosaic pixel arrangement of the display panel. It allows viewers to see high quality autostereoscopic images. Viewing the display from angle allows the viewer to experience 3-D images that stand out several centimeters from the surface of the display. Mixed reality of virtual 3-D objects and real objects are also realized on a flatbed display. In seeking reproduction of natural 3-D images on the flatbed display, we developed proprietary software. The fast playback of the CG movie contents and real-time interaction are realized with the aid of a graphics card. Realization of the safety 3-D images to the human beings is very important. Therefore, we have measured the effects on the visual function and evaluated the biological effects. For example, the accommodation and convergence were measured at the same time. The various biological effects are also measured before and after the task of watching 3-D images. We have found that our displays show better results than those to a conventional stereoscopic display. The new technology opens up new areas of application for 3-D displays, including arcade games, e-learning, simulations of buildings and landscapes, and even 3-D menus in restaurants.

  3. The impact of microwaves irradiation and temperature manipulation ...

    African Journals Online (AJOL)

    The impact of microwaves irradiation and temperature manipulation for control of stored-products insects. ... This treatment could provide an effective and friendly environmental treatment technique in integrated pest management (IPM) program. Key words: Cold storage, microwaves, saw-toothed grain beetle, cigarette ...

  4. Explicating industrial brand equity: Integrating brand trust, brand performance and industrial brand image

    OpenAIRE

    Syed Alwi, SF; Nguyen, B; Melewar; Yeat-Hui, L; Liu, M

    2016-01-01

    Purpose (mandatory) The research explores brand equity from multiple perspectives (tangible and intangible) and their joint consequences, namely, on industrial buyers’ brand loyalty and their long-term commitment. The aim is to provide a more comprehensive framework of the buyer’s behavioral response in the business to business context by integrating both trust elements and industrial brand attributes (brand performance and industrial brand image). In addition, the study explores the mediatio...

  5. Interfaces and Integration of Medical Image Analysis Frameworks: Challenges and Opportunities.

    Science.gov (United States)

    Covington, Kelsie; McCreedy, Evan S; Chen, Min; Carass, Aaron; Aucoin, Nicole; Landman, Bennett A

    2010-05-25

    Clinical research with medical imaging typically involves large-scale data analysis with interdependent software toolsets tied together in a processing workflow. Numerous, complementary platforms are available, but these are not readily compatible in terms of workflows or data formats. Both image scientists and clinical investigators could benefit from using the framework which is a most natural fit to the specific problem at hand, but pragmatic choices often dictate that a compromise platform is used for collaboration. Manual merging of platforms through carefully tuned scripts has been effective, but exceptionally time consuming and is not feasible for large-scale integration efforts. Hence, the benefits of innovation are constrained by platform dependence. Removing this constraint via integration of algorithms from one framework into another is the focus of this work. We propose and demonstrate a light-weight interface system to expose parameters across platforms and provide seamless integration. In this initial effort, we focus on four platforms Medical Image Analysis and Visualization (MIPAV), Java Image Science Toolkit (JIST), command line tools, and 3D Slicer. We explore three case studies: (1) providing a system for MIPAV to expose internal algorithms and utilize these algorithms within JIST, (2) exposing JIST modules through self-documenting command line interface for inclusion in scripting environments, and (3) detecting and using JIST modules in 3D Slicer. We review the challenges and opportunities for light-weight software integration both within development language (e.g., Java in MIPAV and JIST) and across languages (e.g., C/C++ in 3D Slicer and shell in command line tools).

  6. Amotivation in Schizophrenia: Integrated Assessment With Behavioral, Clinical, and Imaging Measures

    OpenAIRE

    Wolf, Daniel H.; Satterthwaite, Theodore D.; Kantrowitz, Jacob J.; Katchmar, Natalie; Vandekar, Lillie; Elliott, Mark A.; Ruparel, Kosha

    2014-01-01

    Motivational deficits play a central role in disability caused by schizophrenia and constitute a major unmet therapeutic need. Negative symptoms have previously been linked to hypofunction in ventral striatum (VS), a core component of brain motivation circuitry. However, it remains unclear to what extent this relationship holds for specific negative symptoms such as amotivation, and this question has not been addressed with integrated behavioral, clinical, and imaging measures. Here, 41 indiv...

  7. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy

    International Nuclear Information System (INIS)

    Chun, Hyung J.; Wilson, Kitch O.; Huang, Mei; Wu, Joseph C.

    2007-01-01

    Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy. (orig.)

  8. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.

    Science.gov (United States)

    Doehrmann, Oliver; Weigelt, Sarah; Altmann, Christian F; Kaiser, Jochen; Naumer, Marcus J

    2010-03-03

    Information integration across different sensory modalities contributes to object recognition, the generation of associations and long-term memory representations. Here, we used functional magnetic resonance imaging adaptation to investigate the presence of sensory integrative effects at cortical levels as early as nonprimary auditory and extrastriate visual cortices, which are implicated in intermediate stages of object processing. Stimulation consisted of an adapting audiovisual stimulus S(1) and a subsequent stimulus S(2) from the same basic-level category (e.g., cat). The stimuli were carefully balanced with respect to stimulus complexity and semantic congruency and presented in four experimental conditions: (1) the same image and vocalization for S(1) and S(2), (2) the same image and a different vocalization, (3) different images and the same vocalization, or (4) different images and vocalizations. This two-by-two factorial design allowed us to assess the contributions of auditory and visual stimulus repetitions and changes in a statistically orthogonal manner. Responses in visual regions of right fusiform gyrus and right lateral occipital cortex were reduced for repeated visual stimuli (repetition suppression). Surprisingly, left lateral occipital cortex showed stronger responses to repeated auditory stimuli (repetition enhancement). Similarly, auditory regions of interest of the right middle superior temporal gyrus and sulcus exhibited repetition suppression to auditory repetitions and repetition enhancement to visual repetitions. Our findings of crossmodal repetition-related effects in cortices of the respective other sensory modality add to the emerging view that in human subjects sensory integrative mechanisms operate on earlier cortical processing levels than previously assumed.

  9. High-resolution non-destructive three-dimensional imaging of integrated circuits

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  10. Integrated imaging (ultrasound, computed tomography, intravenous urography) in diagnosing renal tumors and tumor-like formations

    International Nuclear Information System (INIS)

    Drudi, F.M.; Capanna, G.; Poggi, R.; Occhiato, R.; Iannicelli, E.; Nardo, R.; di Passariello, R.

    1994-01-01

    This is an assessment of semiologic imaging criteria based on computerised tomography, ultrasound diagnosis and intravenous urography in renal tumors. The purpose is to obtain differential diagnostic data capable to modify the treatment approach. Over the last three years, a total of 570 cases of kidney tumors are observed. In 490 of them (86%) the imaging patterns obtained by either of the three techniques leads to correct diagnosis. In 62 of the remaining 80 patients, the integration of two techniques allows to unveil the neoplastic nature of the disease (27 cases), or the presence of a benign process (35 cases). In 15 of the remaining 18 cases only integration of the three techniques results in diagnosing renal tumors or tumor-like conditions (3 adeno-carcinomas, 5 abscesses, 3 cases of tuberculosis, 2 - pyeloxanthogranulomatosis, 2 dysmorphisms). In the last three cases definite diagnosis is made on the basis of needle biopsy. The radiological diagnosis is confirmed intraoperatively or during clinical follow-up study. The obtained data underscore the clinical relevance of imaging integration in evaluating renal lesions. This is particularly valid whenever the clinical data are nonspecific or misleading. 15 refs., 3 figs., 5 tabs. (orig.)

  11. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    Science.gov (United States)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  12. An image compression method for space multispectral time delay and integration charge coupled device camera

    International Nuclear Information System (INIS)

    Li Jin; Jin Long-Xu; Zhang Ran-Feng

    2013-01-01

    Multispectral time delay and integration charge coupled device (TDICCD) image compression requires a low-complexity encoder because it is usually completed on board where the energy and memory are limited. The Consultative Committee for Space Data Systems (CCSDS) has proposed an image data compression (CCSDS-IDC) algorithm which is so far most widely implemented in hardware. However, it cannot reduce spectral redundancy in multispectral images. In this paper, we propose a low-complexity improved CCSDS-IDC (ICCSDS-IDC)-based distributed source coding (DSC) scheme for multispectral TDICCD image consisting of a few bands. Our scheme is based on an ICCSDS-IDC approach that uses a bit plane extractor to parse the differences in the original image and its wavelet transformed coefficient. The output of bit plane extractor will be encoded by a first order entropy coder. Low-density parity-check-based Slepian—Wolf (SW) coder is adopted to implement the DSC strategy. Experimental results on space multispectral TDICCD images show that the proposed scheme significantly outperforms the CCSDS-IDC-based coder in each band

  13. Development of Two Color Fluorescent Imager and Integrated Fluidic System for Nanosatellite Biology Applications

    Science.gov (United States)

    Wu, Diana Terri; Ricco, Antonio Joseph; Lera, Matthew P.; Timucin, Linda R.; Parra, Macarena P.

    2012-01-01

    Nanosatellites offer frequent, low-cost space access as secondary payloads on launches of larger conventional satellites. We summarize the payload science and technology of the Microsatellite in-situ Space Technologies (MisST) nanosatellite for conducting automated biological experiments. The payload (two fused 10-cm cubes) includes 1) an integrated fluidics system that maintains organism viability and supports growth and 2) a fixed-focus imager with fluorescence and scattered-light imaging capabilities. The payload monitors temperature, pressure and relative humidity, and actively controls temperature. C. elegans (nematode, 50 m diameter x 1 mm long) was selected as a model organism due to previous space science experience, its completely sequenced genome, size, hardiness, and the variety of strains available. Three strains were chosen: two green GFP-tagged strains and one red tdTomato-tagged strain that label intestinal, nerve, and pharyngeal cells, respectively. The integrated fluidics system includes bioanalytical and reservoir modules. The former consists of four 150 L culture wells and a 4x5 mm imaging zone the latter includes two 8 mL fluid reservoirs for reagent and waste storage. The fluidic system is fabricated using multilayer polymer rapid prototyping: laser cutting, precision machining, die cutting, and pressure-sensitive adhesives it also includes eight solenoid-operated valves and one mini peristaltic pump. Young larval-state (L2) nematodes are loaded in C. elegans Maintenance Media (CeMM) in the bioanalytical module during pre-launch assembly. By the time orbit is established, the worms have grown to sufficient density to be imaged and are fed fresh CeMM. The strains are pumped sequentially into the imaging area, imaged, then pumped into waste. Reagent storage utilizes polymer bags under slight pressure to prevent bubble formation in wells or channels. The optical system images green and red fluorescence bands by excitation with blue (473 nm peak

  14. Rapid and Green Analytical Method for the Determination of Quinoline Alkaloids from Cinchona succirubra Based on Microwave-Integrated Extraction and Leaching (MIEL Prior to High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Farid Chemat

    2011-11-01

    Full Text Available Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield and qualitatively (quinine, quinidine, cinchonine, cinchonidine similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  15. Rapid and green analytical method for the determination of quinoline alkaloids from Cinchona succirubra based on Microwave-Integrated Extraction and Leaching (MIEL) prior to high performance liquid chromatography.

    Science.gov (United States)

    Fabiano-Tixier, Anne-Sylvie; Elomri, Abdelhakim; Blanckaert, Axelle; Seguin, Elisabeth; Petitcolas, Emmanuel; Chemat, Farid

    2011-01-01

    Quinas contains several compounds, such as quinoline alkaloids, principally quinine, quinidine, cinchonine and cichonidine. Identified from barks of Cinchona, quinine is still commonly used to treat human malaria. Microwave-Integrated Extraction and Leaching (MIEL) is proposed for the extraction of quinoline alkaloids from bark of Cinchona succirubra. The process is performed in four steps, which ensures complete, rapid and accurate extraction of the samples. Optimal conditions for extraction were obtained using a response surface methodology reached from a central composite design. The MIEL extraction has been compared with a conventional technique soxhlet extraction. The extracts of quinoline alkaloids from C. succirubra obtained by these two different methods were compared by HPLC. The extracts obtained by MIEL in 32 min were quantitatively (yield) and qualitatively (quinine, quinidine, cinchonine, cinchonidine) similar to those obtained by conventional Soxhlet extraction in 3 hours. MIEL is a green technology that serves as a good alternative for the extraction of Cinchona alkaloids.

  16. Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study.

    Science.gov (United States)

    Bennett, Ilana J; Stark, Craig E L

    2016-03-01

    Pattern separation describes the orthogonalization of similar inputs into unique, non-overlapping representations. This computational process is thought to serve memory by reducing interference and to be mediated by the dentate gyrus of the hippocampus. Using ultra-high in-plane resolution diffusion tensor imaging (hrDTI) in older adults, we previously demonstrated that integrity of the perforant path, which provides input to the dentate gyrus from entorhinal cortex, was associated with mnemonic discrimination, a behavioral outcome designed to load on pattern separation. The current hrDTI study assessed the specificity of this perforant path integrity-mnemonic discrimination relationship relative to other cognitive constructs (identified using a factor analysis) and white matter tracts (hippocampal cingulum, fornix, corpus callosum) in 112 healthy adults (20-87 years). Results revealed age-related declines in integrity of the perforant path and other medial temporal lobe (MTL) tracts (hippocampal cingulum, fornix). Controlling for global effects of brain aging, perforant path integrity related only to the factor that captured mnemonic discrimination performance. Comparable integrity-mnemonic discrimination relationships were also observed for the hippocampal cingulum and fornix. Thus, whereas perforant path integrity specifically relates to mnemonic discrimination, mnemonic discrimination may be mediated by a broader MTL network. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Reconfigurable Integrated Optoelectronics

    Directory of Open Access Journals (Sweden)

    Richard Soref

    2011-01-01

    Full Text Available Integrated optics today is based upon chips of Si and InP. The future of this chip industry is probably contained in the thrust towards optoelectronic integrated circuits (OEICs and photonic integrated circuits (PICs manufactured in a high-volume foundry. We believe that reconfigurable OEICs and PICs, known as ROEICs and RPICs, constitute the ultimate embodiment of integrated photonics. This paper shows that any ROEIC-on-a-chip can be decomposed into photonic modules, some of them fixed and some of them changeable in function. Reconfiguration is provided by electrical control signals to the electro-optical building blocks. We illustrate these modules in detail and discuss 3D ROEIC chips for the highest-performance signal processing. We present examples of our module theory for RPIC optical lattice filters already constructed, and we propose new ROEICs for directed optical logic, large-scale matrix switching, and 2D beamsteering of a phased-array microwave antenna. In general, large-scale-integrated ROEICs will enable significant applications in computing, quantum computing, communications, learning, imaging, telepresence, sensing, RF/microwave photonics, information storage, cryptography, and data mining.

  18. Integration of prior knowledge into dense image matching for video surveillance

    Science.gov (United States)

    Menze, M.; Heipke, C.

    2014-08-01

    Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines.

  19. CLOSE RANGE HYPERSPECTRAL IMAGING INTEGRATED WITH TERRESTRIAL LIDAR SCANNING APPLIED TO ROCK CHARACTERISATION AT CENTIMETRE SCALE

    Directory of Open Access Journals (Sweden)

    T. H. Kurz

    2012-07-01

    Full Text Available Compact and lightweight hyperspectral imagers allow the application of close range hyperspectral imaging with a ground based scanning setup for geological fieldwork. Using such a scanning setup, steep cliff sections and quarry walls can be scanned with a more appropriate viewing direction and a higher image resolution than from airborne and spaceborne platforms. Integration of the hyperspectral imagery with terrestrial lidar scanning provides the hyperspectral information in a georeferenced framework and enables measurement at centimetre scale. In this paper, three geological case studies are used to demonstrate the potential of this method for rock characterisation. Two case studies are applied to carbonate quarries where mapping of different limestone and dolomite types was required, as well as measurements of faults and layer thicknesses from inaccessible parts of the quarries. The third case study demonstrates the method using artificial lighting, applied in a subsurface scanning scenario where solar radiation cannot be utilised.

  20. Road Network Extraction from VHR Satellite Images Using Context Aware Object Feature Integration and Tensor Voting

    Directory of Open Access Journals (Sweden)

    Mehdi Maboudi

    2016-08-01

    Full Text Available Road networks are very important features in geospatial databases. Even though high-resolution optical satellite images have already been acquired for more than a decade, tools for automated extraction of road networks from these images are still rare. One consequence of this is the need for manual interaction which, in turn, is time and cost intensive. In this paper, a multi-stage approach is proposed which integrates structural, spectral, textural, as well as contextual information of objects to extract road networks from very high resolution satellite images. Highlights of the approach are a novel linearity index employed for the discrimination of elongated road segments from other objects and customized tensor voting which is utilized to fill missing parts of the network. Experiments are carried out with different datasets. Comparison of the achieved results with the results of seven state-of-the-art methods demonstrated the efficiency of the proposed approach.