WorldWideScience

Sample records for integrating coal pretreatment

  1. Effective pretreatment of coal for briquetting

    Energy Technology Data Exchange (ETDEWEB)

    Sunami, Y; Nishioka, K; Sugimoto, Y

    1980-01-01

    The pretreatment of coal for briquetting is considered in an attempt to improve the quality of the briquets produced. Crushing of coal to obtain a size distribution suitable for close packing was found to be effective in improving coking properties while drying of coal was found to be effective in increasing briquet density. (In Japanese)

  2. The effects of pretreatment and the addition of polar compounds on the production of 'HyperCoal' from subbituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Kensuke Masaki; Takahiro Yoshida; Chunqi Li; Toshimasa Takanohashi; Ikuo Saito [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Institute for Energy Utilization

    2004-08-01

    The effects of acid and hydrothermal pretreatments and the addition of polar compounds on the production of ashless-coal (HyperCoal) from subbituminous coals using cost-effective industrial solvents were investigated. The extraction yield of Wyodak subbituminous coal (C%, 75.0%) using crude methylnaphthalene oil (CMNO) at 360{sup o}C was increased significantly by 19% following acid pretreatment; it was 41.3% for the raw coal and 60.5% for the acid-treated coal. The addition of strongly polar compounds, such as N-methyl-2-pyrrolidinone (NMP), also increased the extraction yields. For Pasir subbituminous coal (%, 73.0%) the yield increased by 10% from 54.3% for the raw coal to 64.2% when 20% NMP was added to CMNO. The highest extraction yield of 72.2% was obtained for acid-treated Wyodak coal using CMNO with 20% NMP added. The ash content in HyperCoal tended to decrease following acid pretreatment and was less than 200 ppm in some coals. Hydrothermal pretreatment had a negative effect on the thermal extraction at 360{sup o}C, but increased the yield at extraction temperatures below 200{sup o}C. 20 refs., 7 figs., 2 tabs.

  3. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    Full Text Available The preventive pre-treatment of low grade solid fuels is safer, faster, better, and less costly vs. the "end-of-the-pipe" post treatment solutions. The "3R" (Recycle-Reduce-Reuse integrated environment control technology provides preventive pre-treatment of low grade solid fuels, such as brown coal and contaminated solid fuels to achieve high grade cleansed fuels with anthracite and coke comparable quality. The goal of the 3R technology is to provide cost efficient and environmentally sustainable solutions by preventive pre-treatment means for extended operations of the solid fuel combustion power plants with capacity up to 300 MWe power capacities. The 3R Anthracite Clean Coal end product and technology may advantageously be integrated to the oxyfuel-oxy-firing, Foster Wheeler anthracite arc-fired utility type boiler and Heat Pipe Reformer technologies in combination with CO2 capture and storage programs. The 3R technology is patented original solution. Advantages. Feedstock flexibility: application of pre-treated multi fuels from wider fuel selection and availability. Improved burning efficiency. Technology flexibility: efficient and advantageous inter-link to proven boiler technologies, such as oxyfuel and arcfired boilers. Near zero pollutants for hazardous-air-pollutants: preventive separation of halogens and heavy metals into small volume streams prior utilization of cleansed fuels. >97% organic sulphur removal achieved by the 3R thermal pre-treatment process. Integrated carbon capture and storage (CCS programs: the introduction of monolitic GHG gas is improving storage safety. The 3R technology offers significant improvements for the GHG CCS conditions. Cost reduction: decrease of overall production costs when all real costs are calculated. Improved safety: application of preventive measures. For pre-treatment a specific purpose designed, developed, and patented pyrolysis technology used, consisting of a horizontally arranged externally

  4. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  5. Formulation, Pretreatment, and Densification Options to Improve Biomass Specifications for Co-Firing High Percentages with Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; J Richard Hess; Richard D. Boardman; Shahab Sokhansanj; Christopher T. Wright; Tyler L. Westover

    2012-06-01

    There is a growing interest internationally to use more biomass for power generation, given the potential for significant environmental benefits and long-term fuel sustainability. However, the use of biomass alone for power generation is subject to serious challenges, such as feedstock supply reliability, quality, and stability, as well as comparative cost, except in situations in which biomass is locally sourced. In most countries, only a limited biomass supply infrastructure exists. Alternatively, co-firing biomass alongwith coal offers several advantages; these include reducing challenges related to biomass quality, buffering the system against insufficient feedstock quantity, and mitigating the costs of adapting existing coal power plants to feed biomass exclusively. There are some technical constraints, such as low heating values, low bulk density, and grindability or size-reduction challenges, as well as higher moisture, volatiles, and ash content, which limit the co-firing ratios in direct and indirect co-firing. To achieve successful co-firing of biomass with coal, biomass feedstock specifications must be established to direct pretreatment options in order to modify biomass materials into a format that is more compatible with coal co-firing. The impacts on particle transport systems, flame stability, pollutant formation, and boiler-tube fouling/corrosion must also be minimized by setting feedstock specifications, which may include developing new feedstock composition by formulation or blending. Some of the issues, like feeding, co-milling, and fouling, can be overcome by pretreatment methods including washing/leaching, steam explosion, hydrothermal carbonization, and torrefaction, and densification methods such as pelletizing and briquetting. Integrating formulation, pretreatment, and densification will help to overcome issues related to physical and chemical composition, storage, and logistics to successfully co-fire higher percentages of biomass ( > 40

  6. Reactivities of acid and/or tetralin pretreated Wandoan coal for a Curie point flash pyrolysis; Sanzen shori, tetralin yobaimae shori Wandoan tan no kyusoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Kishino, M.; Sakanishi, K.; Korai, Y.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    Discussions were given on effects of acid pretreatment and tetralin swelling in Wandoan coal on a Curie point flash pyrolysis (which used a Curie point pyrolyzer). Residue yield loss effects were obtained at 3.9% in hydrochloric acid pretreatment, and 6.2% in acetic acid pretreatment. The effects of tetralin swelling pretreatment were compared in the similar manner in terms of the residue yield loss. The effects were 4.0% in untreated coal, 2.0% in the hydrochloric acid pretreatment, and 0.6% in the acetic acid pretreatment. It is thought that components that can be activated by acetic acid have already been activated, but the remaining components would not be activated by tetralin. Average microporosity (area) in the remaining particle as a whole shows very little difference both in acetic acid pretreated coal and untreated coal. However, with the acetic acid pretreatment, pores smaller than 4{mu}m{sup 2} disappeared, and pores as large as 205 to 411{mu}m{sup 2} increased largely. This phenomenon was observed as an increase in foaming degree under microscopic observation, even if the average microporosity remains equal. Thermoplasticity of the coal increased, and so did volatilization reactivity as a result of the acetic acid pretreatment, resulting in appearance of a large number of large pores. 6 refs., 2 figs., 2 tabs.

  7. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Thermal Pretreatment of Wood for Co-gasification/co-firing of Biomass and Coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ping [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Howard, Bret [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Hedges, Sheila [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Morreale, Bryan [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Van Essendelft, Dirk [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Berry, David [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2013-10-29

    Utilization of biomass as a co-feed in coal and biomass co-firing and co-gasification requires size reduction of the biomass. Reducing biomass to below 0.2 mm without pretreatment is difficult and costly because biomass is fibrous and compressible. Torrefaction is a promising thermal pretreatment process and has the advantages of increasing energy density, improving grindability, producing fuels with more homogenous compositions and hydrophobic behavior. Temperature is the most important factor for the torrefaction process. Biomass grindability is related to cell wall structure, thickness and composition. Thermal treatment such as torrefaction can cause chemical changes that significantly affect the strength of biomass. The objectives of this study are to understand the mechanism by which torrefaction improves the grindability of biomass and discuss suitable temperatures for thermal pretreatment for co-gasification/co-firing of biomass and coal. Wild cherry wood was selected as the model for this study. Samples were prepared by sawing a single tangential section from the heartwood and cutting it into eleven pieces. The samples were consecutively heated at 220, 260, 300, 350, 450 and 550⁰C for 0.5 hr under flowing nitrogen in a tube furnace. Untreated and treated samples were characterized for physical properties (color, dimensions and weight), microstructural changes by SEM, and cell wall composition changes and thermal behaviors by TGA and DSC. The morphology of the wood remained intact through the treatment range but the cell walls were thinner. Thermal treatments were observed to decompose the cell wall components. Hemicellulose decomposed over the range of ~200 to 300⁰C and resulted in weakening of the cell walls and subsequently improved grindability. Furthermore, wood samples treated above 300⁰C lost more than 39% in mass. Therefore, thermal pretreatment above the hemicelluloses decomposition temperature but below 300⁰C is probably sufficient to

  9. The economic pre-treatment of coal mine drainage water with caustic and ozone.

    Science.gov (United States)

    Boyden, B H; Nador, L; Addleman, S; Jeston, L

    2017-09-01

    Coal mine drainage waters are low in pH with varying amounts of iron and manganese and are generally brackish. The Austar Coal Mine in NSW, Australia, sought alternatives to their current lime dosing as the pre-treatment before the downstream reverse osmosis plant. Undesirable operating aspects of the current system include manganese and gypsum scaling/fouling, the need for anti-scalants and reduced water recovery. Thirteen processes for acid mine drainage were initially considered. The preferred process of caustic and ozone for Mn(II) oxidation was pilot tested at up to 0.74 kL/hr at the mine site. Under proper conditions and no aeration, about 81 per cent of the Fe could be removed (initially at 156 mg/L) as green rust. Supplemental aeration followed first-order kinetics and allowed 99.9 per cent Fe(II) oxidation and removal but only with a hydraulic residence time of about 47 minutes. The addition of supplemental Cu catalyst improved Fe removal. Ozone applied after caustic was effective in stoichiometrically oxidising recalcitrant Mn(II) and any remaining Fe(II). Control of the ozonation was achieved using the oxidation reduction potential during oxidation of the Mn(II) species. The use of caustic, followed by ozone, proved economically comparable to the current lime pre-treatment.

  10. Principles of integrated modeling of coal seam mining

    Energy Technology Data Exchange (ETDEWEB)

    Magda, R

    1983-01-01

    Mathematical modeling of underground coal mining is discussed. Construction of a mathematical model of an underground mine is analyzed. The model is based on integrating the elementary units (modules). A so-called elementary mining field is defined with the example of a longwall face. A model of an elementary coal seam zone is constructed by integrating the elementary mining fields (in time and space) and supplementing them with a suitable model of mine roadway structure. By integrating the elementary coal seam zones a model of mining level is constructed. Such a mathematical model is used for optimizing the selected mining parameters e.g. structure of mine roadways, size of a coal mine, and organizational scheme of underground mining in a mine or in a mine section using the standardized optimization criterion e.g. investment. Use of the integration model of underground mining for optimizing coal mine construction is evaluated. The following elements of investment and operating cost are considered: shaft excavation, shaft equipment, investment in mining sections, ventilation, mine draining etc. 1 reference.

  11. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  12. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR).

    Science.gov (United States)

    Zhu, Hao; Han, Yuxing; Ma, Wencheng; Han, Hongjun; Ma, Weiwei

    2017-12-01

    Three identical anoxic-aerobic membrane bioreactors (MBRs) were operated in parallel for 300 consecutive days for raw (R 1 ), ozonated (R 2 ) and catalytic ozonated (R 3 ) biologically pretreated coal gasification wastewater (BPCGW) treatment. The results demonstrated that catalytic ozonation process (COP) applied asa pretreatment remarkably improved the performance of the unsatisfactory single MBR. The overall removal efficiencies of COD, NH 3 -N and TN in R 3 were 92.7%, 95.6% and 80.6%, respectively. In addition, typical nitrogenous heterocyclic compounds (NHCs) of quinoline, pyridine and indole were completely removed in the integrated process. Moreover, COP could alter sludge properties and reshape microbial community structure, thus delaying the occurrence of membrane fouling. Finally, the total cost for this integrated process was estimated to be lower than that of single MBR. The results of this study suggest that COP is a good option to enhance pollutants removal and alleviate membrane fouling in the MBR for BPCGW treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of pretreating of host oil on coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Hajdu, P.E.; Tierney, J.W.; Wender, I. [Univ. of Pittsburgh, PA (United States)

    1995-12-31

    The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lower molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.

  14. Coal mine enterprise integration based on strategic alliance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Q.; Sun, J.; Xu, S. [Tsinghua University, Beijing (China). Dept. of Computer Science and Technology

    2003-07-01

    The relationship between coal mine and related enterprise was analysed. Aiming at the competitive world market as well as the dynamic requirement, a coal mine enterprise integration strategy and a enterprise strategic alliance were proposed for the product providing service business pattern. The modelling method of the enterprise strategic alliance was proposed, including the relationship view model, information view model and business process view model. The idea of enterprise strategic alliance is useful for enterprise integration. 6 refs., 2 figs.

  15. Energy options and the role of coal: an integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Isaacs, E. [Alberta Energy Research Institute, Edmonton, AB (Canada)

    2006-07-01

    Considers energy goals and options with particular regard to providing affordable energy to Canada. Gasification of coal and carbon to provide a reliable source of clean power and heat to the oil sand industry and for feedstocks for the production of fertilizer, methanol, petrochemicals, and ultra-clean fuels is examined. The layout for integrated gasification polygeneration with carbon feed and plans for Canada's first commercial gasification plant (the Nexen Long Lake Project) are shown in diagrams. Progress in coal gasification at a clean coal Luscar/Sherritt pilot plant is outlined. Clean coal technology is part of a strategy to provide integration across energy systems, generate value for all hydrocarbon resources, and minimize emissions. 15 figs., 2 tabs.

  16. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  17. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Method selection for mercury removal from hard coal

    Directory of Open Access Journals (Sweden)

    Dziok Tadeusz

    2017-01-01

    Full Text Available Mercury is commonly found in coal and the coal utilization processes constitute one of the main sources of mercury emission to the environment. This issue is particularly important for Poland, because the Polish energy production sector is based on brown and hard coal. The forecasts show that this trend in energy production will continue in the coming years. At the time of the emission limits introduction, methods of reducing the mercury emission will have to be implemented in Poland. Mercury emission can be reduced as a result of using coal with a relatively low mercury content. In the case of the absence of such coals, the methods of mercury removal from coal can be implemented. The currently used and developing methods include the coal cleaning process (both the coal washing and the dry deshaling as well as the thermal pretreatment of coal (mild pyrolysis. The effectiveness of these methods various for different coals, which is caused by the diversity of coal origin, various characteristics of coal and, especially, by the various modes of mercury occurrence in coal. It should be mentioned that the coal cleaning process allows for the removal of mercury occurring in mineral matter, mainly in pyrite. The thermal pretreatment of coal allows for the removal of mercury occurring in organic matter as well as in the inorganic constituents characterized by a low temperature of mercury release. In this paper, the guidelines for the selection of mercury removal method from hard coal were presented. The guidelines were developed taking into consideration: the effectiveness of mercury removal from coal in the process of coal cleaning and thermal pretreatment, the synergy effect resulting from the combination of these processes, the direction of coal utilization as well as the influence of these processes on coal properties.

  19. Energy saving and emission reduction: A project of coal-resource integration in Shanxi Province, China

    International Nuclear Information System (INIS)

    Zhang Jianjun; Fu Meichen; Geng Yuhuan; Tao Jin

    2011-01-01

    The small or middle coal mines with illegal operations in developing countries or regions can cause bad energy waste and environmental disruption. The project of coal-resource integration in Shanxi Province of China gives a new idea or an approach to energy saving and emission reduction. It is a social- and economic-ecological project. The paper shows the targets of energy saving and emission reduction in Shanxi Province, and analyses the aims, significance, design process and implementation of the integration project. Based on that, the paper discusses the challenges and opportunities the project brings. The analysis shows that the project of coal-resource integration in developing countries or regions can effectively improve mining technologies, collect capital and impel international cooperation and exchange. Finally, the paper analyses the concerns about the future, including the possible problems of implementation period, industrial updating, environmental impact and re-employment. However, the successful integration of coal resources can mitigate energy crisis and climate crisis and promote cleaner production effectively. - Highlights: → Coal-resource integration gives a new idea or an approach to energy saving and emission reduction. → Coal-resource integration mitigates climate crisis and promotes cleaner production. → Coal-resource integration brings challenges and opportunities to traditional mining industries.

  20. The future of integrated coal gasification combined cycle power plants

    International Nuclear Information System (INIS)

    Mueller, R.; Termuehlen, H.

    1991-01-01

    This paper examines the future of integrated coal gasification combined cycle (IGCC) power plants as affected by various technical, economical and environmental trends in power generation. The topics of the paper include a description of natural gas-fired combined cycle power plants, IGCC plants, coal gasifier concepts, integration of gasifiers into combined cycle power plants, efficiency, environmental impacts, co-products of IGCC power plants, economics of IGCC power plants, and a review of IGCC power plant projects

  1. Low severity conversion of activated coal

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  2. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  3. Removal of mercury from coal via a microbial pretreatment process

    Science.gov (United States)

    Borole, Abhijeet P [Knoxville, TN; Hamilton, Choo Y [Knoxville, TN

    2011-08-16

    A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.

  4. Investment practices in Australian coal: the practice and profit of quasi-integration in the Australia-Japan coal trade

    International Nuclear Information System (INIS)

    Colley, Peter

    1997-01-01

    The Australian coal industry has frequently been described as a perpetual case of 'profitless prosperity'. Industry literature on the subject usually sources this problem to government charges on the industry and to labour costs. However, these alleged problems do not appear to have diminished the enthusiasm for new investment in the industry. This study argues that a more complete explanation must look at who is investing in the Australian coal industry, what the rationale for those investments is, how they are financed and what their specific profitability is. The particular examination made here is of the quasi-integration investment practices of Japanese trading, steel and power companies -easily the largest group of buyers in the international coal trade. The close co-operation between Japanese government and business in this strategic raw materials industry is documented, as are the methods of subsidised investment. An examination of the financial performance of these companies' Australian coal investments shows that the profitability of their investments is significantly below that of most other investors in Australian mining over a recent 5-year period. Taken together, there is significant support for the conclusion that a process of co-ordinated quasi-integration has taken place and that the principal aim of such investments has not been to make profits from coal-mining. (author)

  5. Low severity conversion of activated coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hirschon, A.S.; Ross, D.S.

    1990-01-01

    The results suggest that coal contains regions with structural components significantly reactive under the hydrothermal environment. Although the specific mechanism for this process remains to be developed, this activity is reminiscent of findings in studies of accelerated maturation of oil shale, where hydrothermal treatment (hydrous pyrolysis) leads to the production of petroleum hydrocarbons. In line with what has been seen in the oil shale work, the pretreatment-generated hydrocarbons and phenols appear to represent a further or more complete maturation of some fraction of the organic material within the coal. These observations could have an impact in two areas. The first is in the area of coal structure, where immature, reactive regions have not been included in the structures considered at present. The second area of interest is the more practical one of conversions to coal liquids and pyrolytic tars. It seems clear that the hydrothermal pretreatment changes the coal in some manner that favorably affects the product quality substantially and, as in the CO/water liquefaction case, favorably affects the yields. The conversions of coals of lower rank, i.e., less mature coals, could particularly benefit in terms of both product quality and product quantity. The second portion of this project also shows important benefits to coal conversion technology. It deals with synthesizing catalysts designed to cleave the weak links in the coal structure and then linking these catalysts with the pretreatment methods in Task 2. The results show that highly dispersed catalysts can effectively be used to increase the yields of soluble material. An important aspect of highly dispersed catalysts are that they can effectively catalyze coal conversion even in poor liquefaction solvents, thus making them very attractive in processes such as coprocessing where inexpensive liquefaction media such as resids are used.

  6. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  7. Comparison of two modified coal ash ferric-carbon micro-electrolysis ceramic media for pretreatment of tetracycline wastewater.

    Science.gov (United States)

    Yang, Kunlun; Jin, Yang; Yue, Qinyan; Zhao, Pin; Gao, Yuan; Wu, Suqing; Gao, Baoyu

    2017-05-01

    Application of modified sintering ferric-carbon ceramics (SFC) and sintering-free ferric-carbon ceramics (SFFC) based on coal ash and scrap iron for pretreatment of tetracycline (TET) wastewater was investigated in this article. Physical property, morphological character, toxic metal leaching content, and crystal component were studied to explore the application possibility of novel ceramics in micro-electrolysis reactors. The influences of operating conditions including influent pH, hydraulic retention time (HRT), and air-water ratio (A/W) on the removal of tetracycline were studied. The results showed that SFC and SFFC were suitable for application in micro-electrolysis reactors. The optimum conditions of SFC reactor were pH of 3, HRT of 7 h, and A/W of 10. For SFFC reactor, the optimum conditions were pH of 2, HRT of 7 h, and A/W of 15. In general, the TET removal efficiency of SFC reactor was better than that of SFFC reactor. However, the harden resistance of SFFC was better than that of SFC. Furthermore, the biodegradability of TET wastewater was improved greatly after micro-electrolysis pretreatment for both SFC and SFFC reactors.

  8. Test and evaluate the tri-gas low-Btu coal-gasification process. Final report, October 21, 1977-October 31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M.G.

    1980-12-01

    This report describes the continuation of work done to develop the BCR TRI-GAS multiple fluidized-bed gasification process. The objective is the gasification of all ranks of coals with the only product being a clean, low-Btu fuel gas. Design and construction of a 100 lb/h process and equipment development unit (PEDU) was completed on the previous contract. The process consists of three fluid-bed reactors in series, each having a specific function: Stage 1 - pretreatment; Stage 2- - gasification; Stage 3 - maximization of carbon utilization. Under the present contract, 59 PEDU tests have been conducted. A number of these were single-stage tests, mostly in Stage 1; however, integrated PEDU tests were conducted with a western coal (Rosebud) and two eastern coals (Illinois No. 6 and Pittsburgh seam). Both Rosebud and Pittsburgh seam coals were gasified with the PEDU operating in the design mode. Operation with Illinois No. 6 seam coal was also very promising; however, time limitations precluded further testing with this coal. One of the crucial tasks was to operate the Stage 1 reactor to pretreat and devolatilize caking coals. By adding a small amount of air to the fluidizing gas, the caking properties of the coal can be eliminated. However, it was also desirable to release a high percentage of the volatile matter from the coal in this vessel. To accomplish this, the reactor had to be operated above the agglomerating temperature of caking coals. By maintaining a low ratio of fresh to treated coal, this objective was achieved. Both Illinois No. 6 and Pittsburgh seam coals were treated at temperatures of 800 to 900 F without agglomerating in the vessel.

  9. Integrated engineering and cost model for management of coal combustion byproducts

    Energy Technology Data Exchange (ETDEWEB)

    Sevim, H. [Department of Mining Engineering, Southern Illinois University at Carbondale, Carbondale, Illinois (United States); Renninger, S. [US Department of Energy, Morgantown Energy Technology Center, Morgantown, West Virginia (United States)

    1998-07-01

    An integrated engineering and cost model has been developed as a part of an overall research project for exploring the technical, environmental and economic feasibility of disposing coal combustion byproducts and flue gas desulfurisation products in underground coal mines in Illinois. The features of the model have been keyed in user-friendly software. In this paper, the purpose and the structure of the model are described. The capabilities of the software are illustrated through an example involving transportation of byproducts in containers from a power plant to a mine site, and subsequent placement of the byproducts in a abandoned underground coal mine using a hydraulic injection system. 3 refs.

  10. BARZAS DEPOSIT SAPROPELITE COALS: PROSPECTS OF INTEGRATED DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    L. V. Kuznetsova

    2018-03-01

    Full Text Available The urgency of the problem. Sapropelite coals of the Barzas deposit of Kuzbass are good raw materials for producing liquid fuel, lubricating oils, paraffin, etc. Apart from that, they are enriched with molybdenum, niobium, rubidium, yttrium and titanium. The content of these deposits is higher than the minimal content, which determines the industrial importance of coal as a source of ore raw materials. However, until now, the field is not being developed because of the economic inexpediency and the lack of a solution to the problem of recycling of incineration and semi-coking waste, which have high ash content and a large volume. The purpose of the study: to develop the concept of integrated development of the Barzas sapropelite coal deposit on the basis of creating efficient, environmentally friendly and low-waste production. Research methodology. The analysis of geological and mining conditions of the formation, which is called the Main, the results of its geochemical studies of existing technologies of mining and processing the high-ash solid fuels. The promising areas of their development were also considered. Cluster approach to the development of sapropelite coal deposits. Results. Coal mining at the sites with different geological conditions can be carried out with openly-underground mobile means of mechanization. The First mine field can be developed by the underground way on the development system called “Long poles along the strike”. This can be attained by means of the comprehensive mechanization of the Second mine field. Also, “Long poles along strike, take out the strips by the drop” are combined sections of a mechanized roof support with mobile means of cutting and transportation of coal – the Third mine field. The energy-chemical cluster of the Barzas deposit of sapropelite coals is a complex of the enterprises, which are technologically connected among them. They are concentrated on the same territory, which includes

  11. A comparison study on the deoxygenation of coal mine methane over coal gangue and coke under microwave heating conditions

    International Nuclear Information System (INIS)

    Guo, Xuan; Ren, Jun; Xie, Chuanjin; Lin, Jianying; Li, Zhong

    2015-01-01

    Highlights: • Microwave has great advantages of energy and time saving in CMM deoxygenation. • Microwave pretreatment results in graphitization of carbonaceous materials. • Coal gangue shows benefit in restricting CH 4 decomposition compared to coke. • Under optimal conditions, there is no residual oxygen and CH 4 is less than 2.2%. - Abstract: Microwave heating has great advantages in saving energy and time; in this study, it has been first successfully applied in the deoxidization process of coal mine methane (CMM), where carbon in coal gangue reacts with oxygen in CMM. Compared with traditional heating, microwave pretreatment resulted in rapid heating of coal gangue in CMM deoxygenation, which was attributable to the graphitization of carbonaceous materials. This prominent advantage of microwave heating can contribute to deoxygenation. In addition, deoxygenation effectiveness for both coke and coal gangue under microwave heating was investigated. It was discovered that coke acted as a catalyst to some extent to accelerate methane decomposition. However, this effect could be greatly restricted when coal gangue was used in the deoxygenation process because of its chemical inertness. Under optimal conditions (650 °C and 300 mL/min), there was no residual oxygen in the outlet gas, and methane loss was less than 2.2%

  12. A novel solar energy integrated low-rank coal fired power generation using coal pre-drying and an absorption heat pump

    International Nuclear Information System (INIS)

    Xu, Cheng; Bai, Pu; Xin, Tuantuan; Hu, Yue; Xu, Gang; Yang, Yongping

    2017-01-01

    Highlights: •An improved solar energy integrated LRC fired power generation is proposed. •High efficient and economic feasible solar energy conversion is achieved. •Cold-end losses of the boiler and condenser are reduced. •The energy and exergy efficiencies of the overall system are improved. -- Abstract: A novel solar energy integrated low-rank coal (LRC) fired power generation using coal pre-drying and an absorption heat pump (AHP) was proposed. The proposed integrated system efficiently utilizes the solar energy collected from the parabolic trough to drive the AHP to absorb the low-grade waste heat of the steam cycle, achieving larger amount of heat with suitable temperature for coal’s moisture removal prior to the furnace. Through employing the proposed system, the solar energy could be partially converted into the high-grade coal’s heating value and the cold-end losses of the boiler and the steam cycle could be reduced simultaneously, leading to a high-efficient solar energy conversion together with a preferable overall thermal efficiency of the power generation. The results of the detailed thermodynamic and economic analyses showed that, using the proposed integrated concept in a typical 600 MW LRC-fired power plant could reduce the raw coal consumption by 4.6 kg/s with overall energy and exergy efficiencies improvement of 1.2 and 1.8 percentage points, respectively, as 73.0 MW th solar thermal energy was introduced. The cost of the solar generated electric power could be as low as $0.044/kW h. This work provides an improved concept to further advance the solar energy conversion and utilisation in solar-hybrid coal-fired power generation.

  13. Mild-temperature dilute acid pretreatment for integration of first and second generation ethanol processes.

    Science.gov (United States)

    Nair, Ramkumar B; Kalif, Mahdi; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2017-12-01

    The use of hot-water (100°C) from the 1st generation ethanol plants for mild-temperature lignocellulose pretreatment can possibly cut down the operational (energy) cost of 2nd generation ethanol process, in an integrated model. Dilute-sulfuric and -phosphoric acid pretreatment at 100°C was carried out for wheat bran and whole-stillage fibers. Pretreatment time and acid type influenced the release of sugars from wheat bran, while acid-concentration was found significant for whole-stillage fibers. Pretreatment led up-to 300% improvement in the glucose yield compared to only-enzymatically treated substrates. The pretreated substrates were 191-344% and 115-300% richer in lignin and glucan, respectively. Fermentation using Neurospora intermedia, showed 81% and 91% ethanol yields from wheat bran and stillage-fibers, respectively. Sawdust proved to be a highly recalcitrant substrate for mild-temperature pretreatment with only 22% glucose yield. Both wheat bran and whole-stillage are potential substrates for pretreatment using waste heat from the 1st generation process for 2nd generation ethanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Enteric virus removal from water by coal-based sorbents: development of low-cost water filters

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, M.; Sattar, S.A.

    1986-01-01

    Using poliovirus type 1 (Sabin) and dechlorinated tap water, several coal-based sorbents were tested for their capacity to remove viruses from water. The sorbents included bituminous coal from Giridih, India, pretreated/impregnated with either alum, ferric hydroxide, lime or manganese dioxide. Filtrasorb-400, commercially available active carbon, was used as a reference. In batch tests, with input virus concentration of 2.34-2.83x10/sup 6/ PFU/1 and sorbent concentration of 10 g/l, alum pretreated coal removed about 96% of the virus when pH of the water was between 6.3 and 8.9. Virus sorption was rapid and a plateau was reached in 30 min. Compared with the active carbon, alum pretreated coal exhibited greater sorption energy and about one log higher limiting poliovirus sorption capacity. Downflow column study indicated the potential of alum pretreated coal as a filter media for removing enteric viruses from water. A previous study showed this sorbent to be capable of removing enteric bacteria as well. Water filters prepared from such low-cost material may prove useful for domestic use in rural areas of India and other developing countries. 19 refs.

  15. Intelligent control and maintenance of management integrated system based on multi-agents for coal preparation plant

    Energy Technology Data Exchange (ETDEWEB)

    Meng, F.; Wang, Y. [China University of Mining and technology, Xuzhou (China). School of Information and Electrical Engineering

    2006-06-15

    This paper discusses the progress of computer integrated processing (CIPS) of coal preparation and then presents an intelligence controlled production process, device-maintenance and production-management system of coal preparation based on multi-agents (IICMMS-CP). The construction of the IICMMS-CP, the distributed network control system based on live intelligence control stations and the strategy of implementing a distributed intelligence control system are studied in order to overcome the disadvantages brought about by the wide use of the PLC system by coal preparation plants. The software frame, based on a Multi-Agent Intelligence Control and Maintenance Management integrated system, is studied and the implementation methods of IICMMS-CP are discussed. The characteristics of distributed architecture, cooperation and parallel computing meet the needs of integrated control of coal preparation plants with large-scale spatial production distribution, densely-related processes and complex systems. Its application further improves the reliability and precision of process control, accuracy of fault identification and intelligence of production adjustment, establishes a technical basis for system integration and flexible production. The main function of the system has been tested in a coal preparation plant to good effect in stabilizing product quality, improving efficiency and reducing consumption. 17 refs., 4 figs.

  16. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    Science.gov (United States)

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  17. Coal waste slurries as a fuel for integrated gasification combined cycle plants

    Directory of Open Access Journals (Sweden)

    Lutynski Marcin A.

    2016-01-01

    Full Text Available The article summarizes recent development in integrated gasification combined cycle technology and lists existing and planned IGCC plants. A brief outlook on the IGCC gasification technology is given with focus on entrained-flow gasifiers where the low-quality coal waste slurry fuel can be used. Desired properties of coal and ash for entrained-flow gasifiers are listed. The coal waste slurries, which were deposited at impoundments in Upper Silesian Coal Basin, were considered as a direct feed for such gasifiers. The average ash content, moisture content and lower heating value were analysed and presented as an average values. Entrained-flow commercial gasifiers can be considered as suitable for the coal slurry feed, however the ash content of coal slurries deposited in impoundments is too high for the direct use as the feed for the gasifiers. The moisture content of slurries calculated on as received basis meets the requirements of entrained-flow slurry feed gasifiers. The content of fines is relatively high which allow to use the slurries in entrained-flow gasifiers.

  18. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    Underground coal gasification allows for the utilisation of coal reserves that are economically not exploitable due to complex geological boundary conditions. The present study investigates underground coal gasification as a potential economic approach for conversion of deep-seated coals into a high-calorific synthesis gas to support the Bulgarian energy system. Coupling of underground coal gasification providing synthesis gas to fuel a combined cycle gas turbine with carbon capture and storage is considered to provide substantial benefits in supporting the Bulgarian energy system with a competitive source of energy. In addition, underground voids originating from coal consumption increase the potential for geological storage of carbon dioxide resulting from the coupled process of energy production. Cost-effectiveness, energy consumption and carbon dioxide emissions of this coupled process are investigated by application of a techno-economic model specifically developed for that purpose. Capital (CAPEX) and operational expenditure (OPEX) are derived from calculations using six dynamic sub-models describing the entire coupled process and aiming at determination of the levelised costs of electricity generation (COE). The techno-economic model is embedded into an energy system-modelling framework to determine the potential integration of the introduced low carbon energy production technology into the Bulgarian energy system and its competitiveness at the energy market. For that purpose, boundary conditions resulting from geological settings as well as those determined by the Bulgarian energy system and its foreseeable future development have to be considered in the energy system-modelling framework. These tasks comprise integration of the present infrastructure of the Bulgarian energy production and transport system. Hereby, the knowledge on the existing power plant stock and its scheduled future development are of uttermost importance, since only phasing-out power

  19. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  1. Digital coal mine integrated automation system based on Controlnet

    Energy Technology Data Exchange (ETDEWEB)

    Jin-yun Chen; Shen Zhang; Wei-ran Zuo [China University of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2007-06-15

    A three-layer model for digital communication in a mine is proposed. Two basic platforms are discussed: a uniform transmission network and a uniform data warehouse. An actual, ControlNet based, transmission network platform suitable for the Jining No.3 coal mine in China is presented. This network is an information superhighway intended to integrate all existing and new automation subsystems. Its standard interface can be used with future subsystems. The network, data structure and management decision-making all employ this uniform hardware and software. This effectively avoids the problems of system and information islands seen in traditional mine-automation systems. The construction of the network provides a stable foundation for digital communication in the Jining No.3 coal mine. 9 refs., 5 figs.

  2. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.; Heldebrant, David J.; Freeman, Charles J.

    2016-05-11

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankine Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.

  3. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Doug Strickland; Albert Tsang

    2002-10-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis

  4. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Edward Levy

    2012-06-29

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination

  5. Flash pyrolysis of coal-solvent slurry prepared from the oxidized coal and the coal dissolved in solvent; Ichibu yokaishita sanka kaishitsutan slurry no jinsoku netsubunkai

    Energy Technology Data Exchange (ETDEWEB)

    Maki, T.; Mae, K.; Okutsu, H.; Miura, K. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-28

    In order to develop a high-efficiency coal pyrolysis method, flash pyrolysis was experimented on slurry prepared by using liquid-phase oxidation reformed coal and a methanol-based solvent mixture. Australian Morwell coal was used for the experiment. The oxidized coal, into which carboxyl groups have been introduced, has the condensation structure relaxed largely, and becomes highly fluid slurry by means of the solvent. Char production can be suppressed by making the oxidation-pretreated coal into slurry, resulting in drastically improved pyrolytic conversion. The slurry was divided into dissolved solution, dried substance, extracted residue, and residual slurry, which were pyrolized independently. The dissolved solution showed very high conversion. Improvement in the conversion is contributed by separating the dissolved substances (coal macromolecules) at molecular levels, coagulating the molecules, suppressing cross-link formation, and reducing molecular weight of the dissolved substances. Oxidized coal can be dissolved to 80% or higher by using several kinds of mixed solvents. As a result of the dissolution, a possibility was suggested on pyrolysis which is easy in handling and high in conversion. 7 refs., 6 figs., 2 tabs.

  6. An integrated environment monitoring system for underground coal mines--Wireless Sensor Network subsystem with multi-parameter monitoring.

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-07-21

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  7. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Science.gov (United States)

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected. PMID:25051037

  8. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2014-07-01

    Full Text Available Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs. We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between the WSN and the CMS. In order to implement the WSN for underground coal mines, two work modes are designed: periodic inspection and interrupt service; the relevant supporting technologies, such as routing mechanism, collision avoidance, data aggregation, interconnection with the CMS, etc., are proposed and analyzed. As WSN nodes are limited in energy supply, calculation and processing power, an integrated network management scheme is designed in four aspects, i.e., topology management, location management, energy management and fault management. Experiments were carried out both in a laboratory and in a real underground coal mine. The test results indicate that the proposed integrated environment monitoring system for underground coal mines is feasible and all designs performed well as expected.

  9. A review on biomass classification and composition, cofiring issues and pretreatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2011-08-01

    Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a) reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.

  10. Performance evaluation of high-sulphur coal-fired USC plant integrated with SNOX and CO2 capture sections

    International Nuclear Information System (INIS)

    Cau, Giorgio; Tola, Vittorio; Bassano, Claudia

    2015-01-01

    In recent years coal-fired power plants have increased their role in the global energy scenario thanks to reliability, security of fuel supply and lower cost of fuel and electricity. In this framework global warming issues require a sustainable use of coal and great efforts for greenhouse gases reduction, addressing research and development projects towards more efficient solutions in terms of efficiency and environmental impact. With this aim in this paper a performance assessment of an Ultra Super Critical (USC) steam plant integrated with a CO 2 removal section was carried out. The study is based on simulation models specifically developed through Aspen-Plus and Gate-Cycle software platforms. Performance was assessed referring to typical USC commercial size plants (400–600 MW), fuelled by a mix of a low-sulphur coal and a Sardinian (Sulcis) high-sulphur coal. The USC plant, based on a reheated and regenerative Rankine cycle, is integrated with an SNOX section, with integrated DeNO x and DeSO x processes, and a low temperature CO 2 capture section. The SNOX technology shows several advantages in comparison to conventional de-nitrification and de-sulphuration systems. In particular it is capable to remove both nitrogen and sulphur oxides, requiring less energy absorption compared to traditional FGD systems, allowing a further preheating of the combustion air and without producing process waste. Besides the SNOX releases a commercial product as the sulphuric acid (H 2 SO 4 ) and operational costs are reduced when sulphur content in the coal increases. The CO 2 capture system was based on a chemical absorption process. A conventional system based on an amine (monoethanolamine, MEA) aqueous solution was considered. In order to match high pressure and purity CO 2 transportation requirements, the CO 2 removal section is also integrated with a conditioning and compression section. A performance assessment of the USC plant was carried out varying the high-sulphur coal

  11. Effect of some pre-treatments on the adsorption of methylene blue by Balkaya lignite

    International Nuclear Information System (INIS)

    Karaca, S.; Guerses, A.; Bayrak, R.

    2004-01-01

    In this study, the effects of some pre-treatments, such as HCl treatment, demineralization and pyrolysis, under a CO 2 atmosphere at different temperatures on the adsorption of methylene blue by Balkaya lignite were investigated. The adsorption capacities of the samples were determined before and after these pre-treatments. In addition, the removals of pyritic and organic sulfur and ash contents for the same coal samples were also defined. It was found that the adsorption capacities of the samples decreased after these pre-treatments. The decrease in adsorption capacity with pyrolysis can be attributed to the changes in surface morphology and/or pore size distribution of the coal samples. On the other hand, the observed decrease in adsorption capacity with removal of carbonates and silicates shows that these minerals have an important effect on methylene blue adsorption, and the adsorption considerably occurs through electrostatic interactions. In addition, the obtained results showed that the organic sulfur presence in the coal matrix have a positive effect on the methylene blue adsorption

  12. Novel pre-treatment of zeolite materials for the removal of sodium ions: potential materials for coal seam gas co-produced wastewater.

    Science.gov (United States)

    Santiago, Oscar; Walsh, Kerry; Kele, Ben; Gardner, Edward; Chapman, James

    2016-01-01

    Coal seam gas (CSG) is the extraction of methane gas that is desorbed from the coal seam and brought to the surface using a dewatering and depressurisation process within the saturated coalbed. The extracted water is often referred to as co-produced CSG water. In this study, co-produced water from the coal seam of the Bowen Basin (QLD, Australia) was characterised by high concentration levels of Na(+) (1156 mg/L), low concentrations of Ca(2+) (28.3 mg/L) and Mg(2+) (5.6 mg/L), high levels of salinity, which are expected to cause various environmental problems if released to land or waters. The potential treatment of co-produced water using locally sourced natural ion exchange (zeolite) material was assessed. The zeolite material was characterized for elemental composition and crystal structure. Natural, untreated zeolite demonstrated a capacity to adsorb Na(+) ions of 16.16 mEq/100 g, while a treated zeolite using NH4 (+) using a 1.0 M ammonium acetate (NH4C2H3O2) solution demonstrated an improved 136 % Na(+) capacity value of 38.28 mEq/100 g after 720 min of adsorption time. The theoretical exchange capacity of the natural zeolite was found to be 154 mEq/100 g. Reaction kinetics and diffusion models were used to determine the kinetic and diffusion parameters. Treated zeolite using a NH4 (+) pre-treatment represents an effective treatment to reduce Na(+) concentration in coal seam gas co-produced waters, supported by the measured and modelled kinetic rates and capacity.

  13. Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation.

    Science.gov (United States)

    Banerjee, Goutami; Car, Suzana; Liu, Tongjun; Williams, Daniel L; Meza, Sarynna López; Walton, Jonathan D; Hodge, David B

    2012-04-01

    Alkaline hydrogen peroxide (AHP) has several attractive features as a pretreatment in the lignocellulosic biomass-to-ethanol pipeline. Here, the feasibility of scaling-up the AHP process and integrating it with enzymatic hydrolysis and fermentation was studied. Corn stover (1 kg) was subjected to AHP pretreatment, hydrolyzed enzymatically, and the resulting sugars fermented to ethanol. The AHP pretreatment was performed at 0.125 g H(2) O(2) /g biomass, 22°C, and atmospheric pressure for 48 h with periodic pH readjustment. The enzymatic hydrolysis was performed in the same reactor following pH neutralization of the biomass slurry and without washing. After 48 h, glucose and xylose yields were 75% and 71% of the theoretical maximum. Sterility was maintained during pretreatment and enzymatic hydrolysis without the use of antibiotics. During fermentation using a glucose- and xylose-utilizing strain of Saccharomyces cerevisiae, all of the Glc and 67% of the Xyl were consumed in 120 h. The final ethanol titer was 13.7 g/L. Treatment of the enzymatic hydrolysate with activated carbon prior to fermentation had little effect on Glc fermentation but markedly improved utilization of Xyl, presumably due to the removal of soluble aromatic inhibitors. The results indicate that AHP is readily scalable and can be integrated with enzyme hydrolysis and fermentation. Compared to other leading pretreatments for lignocellulosic biomass, AHP has potential advantages with regard to capital costs, process simplicity, feedstock handling, and compatibility with enzymatic deconstruction and fermentation. Biotechnol. Bioeng. 2012; 109:922-931. © 2011 Wiley Periodicals, Inc. Copyright © 2011 Wiley Periodicals, Inc.

  14. Demonstration of Pressurizing Coal/Biomass Mixtures Using Posimetric Solids Pump Technology

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Acharya, Harish; Cui, Zhe; Furman, Anthony; Giammattei, Mark; Rader, Jeff; Vazquez, Arturo

    2012-12-31

    This document is the Final Technical Report for a project supported by U.S. DOE NETL (Contract No. DE-FE0000507), GE Global Research, GE Energy, and Idaho National Laboratory (INL). This report discusses key project accomplishments for the period beginning August 7, 2009 and ending December 31, 2012. In this project, pressurized delivery of coal/biomass mixtures using GE Posimetric* solids pump technology was achieved in pilot scale experiments. Coal/biomass mixtures containing 10-50 wt% biomass were fed against pressures of 65-450 psi. Pressure capability increased with decreasing biomass content for a given pump design, and was linked to the interaction of highly compressible coal/biomass mixtures with the pump outlet design. Biomass pretreatment specifications for particle size and moisture content were defined based on bench-scale flowability, compressibility, friction, and permeability experiments that mimic the behavior of the Posimetric pump. A preliminary economic assessment of biomass pretreatment and pump operation for coal/biomass mixtures (CBMs) was conducted.

  15. Spectral characterization of superficial coal groups

    International Nuclear Information System (INIS)

    Ahmad, I.; Khan, M.A.; Ishaq, M.; Shakirullah; Bahadur, A.

    2004-01-01

    Spectral characterization of superficial coal groups was performed in KBr pellets. KBr Pellets were prepared for virgin and variously pretreated coal samples. Spectra of satisfactory resolution were obtained in wave number range-4000-400 cm /sup -1/. Presence of broad absorption bands corresponds to hydroxyl, carbonyl, carboxyl and phenolic functionalities in the spectra clearly define their presence in all samples understudy. Forced oxidation proved effective for oxidation of both aliphatic and aromatic configurations, which can be revealed from the respective spectra. (author)

  16. FY 1981 Report on the results of Sunshine Project. Coal energy; 1981 nendo sunshine keikaku seika hokokusho. Sekitan energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This report presents the results of (researches on solvolysis liquefaction mechanisms and reaction promotion with oil- and coal-based solvents), conducted as part of the research and development project for coal liquefaction techniques. The FY 1981 program includes researches on (1) the effects of liquefaction reaction conditions on liquefaction yield and production of light products for coal species of low degree of carbonization, including brown coal, (2) the effects of pretreatment of coal on its liquefaction reactivity, and (3) up-grading of the solvolysis coal liquid (SCL). For the item (1), HA240 (hydrogenated Ashland's A240) is used to investigate its liquefaction capacity for various coal species of low degree of carbonization, including brown coal. For the item (2), the effects of pretreatment in a hot water bath with reflux was investigated for sub-bituminous coal in the FY 1980. In the FY 1981, various pretreatment methods are attempted for enhancing liquefaction reactivity of brown coal. As a result, it is found that ash content of brown coal is decreased to one-third of the initial level, when it is treated in a diluted hydrochloric acid bath with reflux. For the item (3), SCL hydrogenated by Birch reduction (B-SCL, 1) is compared with H-SCL with respect to properties, structures and thermal crackability, to discuss the items required for the catalyst to be used in the second stage by clarifying effectiveness of the catalyst. (NEDO)

  17. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    Energy Technology Data Exchange (ETDEWEB)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine

  18. Integration of coal gasification and packed bed CLC for high efficiency and near-zero emission power generation

    NARCIS (Netherlands)

    Spallina, V.; Romano, M.C.; Chiesa, P.; Gallucci, F.; Sint Annaland, van M.; Lozza, G.

    2014-01-01

    A detailed thermodynamic analysis has been carried out of large-scale coal gasification-based power plant cycles with near zero CO2 emissions, integrated with chemical looping combustion (CLC). Syngas from coal gasification is oxidized in dynamically operated packed bed reactors (PBRs), generating a

  19. Integrated circuit devices in control systems of coal mining complexes

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Systems of automatic monitoring and control of coal mining complexes developed in the 1960's used electromagnetic relays, thyristors, and flip-flops on transistors of varying conductivity. The circuits' designers, devoted much attention to ensuring spark safety, lowering power consumption, and raising noise immunity and repairability of functional devices. The fast development of integrated circuitry led to the use of microelectronic components in most devices of mine automation. An analysis of specifications and experimental research into integrated circuits (IMS) shows that the series K 176 IMS components made by CMOS technology best meet mine conditions of operation. The use of IMS devices under mine conditions has demonstrated their high reliability. Further development of integrated circuitry involve using microprocessors and microcomputers. (SC)

  20. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  1. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  2. Self-Scrubbing Coal -- an integrated approach to clean air

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, K.E. [Custom Coals Corp., Pittsburgh, PA (United States)

    1997-12-31

    Carefree Coal is coal cleaned in a proprietary dense-media cyclone circuit, using ultrafine magnetite slurries, to remove noncombustible material, including up to 90% of the pyritic sulfur. Deep cleaning alone, however, cannot produce a compliance fuel from coals with high organic sulfur contents. In these cases, Self-Scrubbing Coal will be produced. Self-Scrubbing Coal is produced in the same manner as Carefree Coal except that the finest fraction of product from the cleaning circuit is mixed with limestone-based additives and briquetted. The reduced ash content of the deeply-cleaned coal will permit the addition of relatively large amounts of sorbent without exceeding boiler ash specifications or overloading electrostatic precipitators. This additive reacts with sulfur dioxide (SO{sub 2}) during combustion of the coal to remove most of the remaining sulfur. Overall, sulfur reductions in the range of 80--90% are achieved. After nearly 5 years of research and development of a proprietary coal cleaning technology coupled with pilot-scale validation studies of this technology and pilot-scale combustion testing of Self-Scrubbing Coal, Custom Coals Corporation organized a team of experts to prepare a proposal in response to DOE`s Round IV Program Opportunity Notice for its Clean Coal Technology Program under Public Law 101-121 and Public Law 101-512. The main objective of the demonstration project is the production of a coal fuel that will result in up to 90% reduction in sulfur emissions from coal-fired boilers at a cost competitive advantage over other technologies designed to accomplish the same sulfur emissions and over naturally occurring low sulfur coals.

  3. Phytoremediation of coal mine spoil dump through integrated biotechnological approach

    Energy Technology Data Exchange (ETDEWEB)

    Juwarkar, A.A.; Jambhulkar, H.P. [National Environmental Engineering Research Institute, Nagpur (India)

    2008-07-15

    Field experiment was conducted on mine spoil dump on an area of 10 ha, to restore the fertility and productivity of the coal mine spoil dump using integrated biotechnological approach. The approach involves use of effluent treatment plant sludge (ETP sludge), as an organic amendment, biofertilizers and mycorrihzal fungi along with suitable plant species. The results of the study indicated that amendment with effluent treatment plant sludge (ETP sludge), at 50 ton/ha improved the physico-chemical properties of coal mine spoil. Due to biofertilizer inoculation different microbial groups such as Rhizobium, Azotobacter and VAM spores, which were practically absent in mine spoil improved greatly. Inoculation of biofertilizer and application of ETP sludge helped in reducing the toxicity of heavy metals such as chromium, zinc, copper, iron, manganese lead, nickel and cadmium, which were significantly reduced to 41%, 43%, 37%, 37%, 34%, 39%, 37% and 40%, respectively, due to the increased organic matter content in the ETP sludge and its alkaline pH (8.10-8.28), at which the metals gets immobilized and translocation of metals is arrested. Thus, amendment and biofertilizer application provided better supportive material for anchorage and growth of the plant on coal mine spoil dump.

  4. Coal trends and prospects in Malaysia. Malaysia no sekitan doko to mitoshi

    Energy Technology Data Exchange (ETDEWEB)

    Husin, T. (Tenaga Nasional Berhad (Malaysia))

    1993-03-01

    This paper describes problems in coal development and coal processing techniques used in Malaysia. Malaysia has a national organization placing importance on maximizing natural gas source development, but no such an organization is available for coal. Necessity exists in developing transportation infrastructures that can transport coal at a competitive price from coal mines to users inside and outside the country. Majority of the Merit Pila coal is produced in mines with relatively thin coal beds, which raise production cost higher. Coal resources are mostly of low calorific power. Since the coal resource development is a new economic activity, it requires training of people in related areas, and frameworks of legislative regulation. Important in coal development is to select technologies that can meet environmental requirements and stand with competitions in the world coal markets. New coal processing technologies available for discussion in coal refining processes include relaxed gasification or pyrolysis, coal liquefaction, coal-water mixture to mix coal powder and water with additives, coal pretreatment techniques, coal cleaning techniques, and fluidized bed combustion. 1 fig., 1 tab.

  5. Advances in coalbed methane reservoirs using integrated reservoir characterization and hydraulic fracturing in Karaganda coal basin, Kazakhstan

    Science.gov (United States)

    Ivakhnenko, Aleksandr; Aimukhan, Adina; Kenshimova, Aida; Mullagaliyev, Fandus; Akbarov, Erlan; Mullagaliyeva, Lylia; Kabirova, Svetlana; Almukhametov, Azamat

    2017-04-01

    Coalbed methane from Karaganda coal basin is considered to be an unconventional source of energy for the Central and Eastern parts of Kazakhstan. These regions are situated far away from the main traditional sources of oil and gas related to Precaspian petroleum basin. Coalbed methane fields in Karaganda coal basin are characterized by geological and structural complexity. Majority of production zones were characterized by high methane content and extremely low coal permeability. The coal reservoirs also contained a considerable natural system of primary, secondary, and tertiary fractures that were usually capable to accommodate passing fluid during hydraulic fracturing process. However, after closing was often observed coal formation damage including the loss of fluids, migration of fines and higher pressures required to treat formation than were expected. Unusual or less expected reservoir characteristics and values of properties of the coal reservoir might be the cause of the unusual occurred patterns in obtained fracturing, such as lithological peculiarities, rock mechanical properties and previous natural fracture systems in the coals. Based on these properties we found that during the drilling and fracturing of the coal-induced fractures have great sensitivity to complex reservoir lithology and stress profiles, as well as changes of those stresses. In order to have a successful program of hydraulic fracturing and avoid unnecessary fracturing anomalies we applied integrated reservoir characterization to monitor key parameters. In addition to logging data, core sample analysis was applied for coalbed methane reservoirs to observe dependence tiny lithological variations through the magnetic susceptibility values and their relation to permeability together with expected principal stress. The values of magnetic susceptibility were measured by the core logging sensor, which is equipped with the probe that provides volume magnetic susceptibility parameters

  6. A newer concept of setting up coal refineries in coal utilising industries through environmentally sound clean coal technology of organosuper refining of coals

    International Nuclear Information System (INIS)

    Sharma, D.K.

    1994-01-01

    In order to reduce the losses of premium organic matter of coal and its immense potential energy which is present in the form of stronger interatomic and intramolecular bonding energies, a newer and convenient technique of recovering the premium organic matter from low grade coals by organosuper-refining technique which operates under ambient pressure conditions has been developed. The residual coal obtained can be used as environmentally clean fuel or as a feedstock for the industries based on carbonization and gasification. It is suggested that a beginning be made by setting up coal refineries in coal utilizing industries on the basis of the presently developed new technology of organosuper-refining of coals to recover premium grade organic chemical feed stocks from coals before utilizing coal by techniques such as bubble bed or recirculatory fluidized bed or pulverized coal combustion in thermal power stations, carbonization in steel plants or other carbonization units, gasification in fertilizer industries or in integrated coal gasification combined cycle power generation. Thus, coal refineries may produce value added aromatic chemical feed stocks, formed coke or coke manufacturing; and carbon fillers for polymers. (author). 100 refs., 1 fig

  7. Basic studies on coal liquefaction reaction, reforming and utilization of liquefaction products

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, M. (National Institute for Resources and Environment, Tsukuba (Japan))

    1993-09-01

    This report describes the achievement of research and development of coal liquefaction technologies in the Sunshine Project for FY 1992, regarding the coal liquefaction reaction, reforming and utilization of liquefaction products. For the fundamental study on coal liquefaction reaction, were investigated effect of asphaltene in petroleum residue on coprocessing, pretreatment effect in coprocessing of Taiheiyo coal and tarsand bitumen using oil soluble catalyst, solubilization and liquefaction of Taiheiyo coal at mild conditions with the aid of super acid, and flash hydropyrolysis of finely pulverized swollen coal under high hydrogen pressure. On the other hand, for the study on hydrotreatment of coal derived liquid, were investigated catalytic hydroprocessing of Wandoan coal liquids, production of gasoline from coal liquids by fluid catalytic cracking, solvent extraction of phenolic compounds from coal liquids, and separation of hetero compounds in coal liquid by means of high pressure crystallization. Further progress in these studies has been confirmed. 9 figs., 6 tabs.

  8. An Integrated Process of Ionic Liquid Pretreatment and Enzymatic Hydrolysis of Lignocellulosic Biomass with Immobilised Cellulase

    Directory of Open Access Journals (Sweden)

    Mihaela Ungurean

    2014-08-01

    Full Text Available An integrated process of lignocellulosic biomass conversion was set up involving pretreatment by an ionic liquid (IL and hydrolysis of cellulose using cellulase immobilised by the sol-gel method, with recovery and reuse of both the IL and biocatalyst. As all investigated ILs, regardless of the nature of the anion and the cation, led to the loss of at least 50% of the hydrolytic activity of cellulase, the preferred solution involved reprecipitation of cellulose and lignin after the pretreatment, instead of performing the enzymatic hydrolysis in the same reaction system. The cellulose recovered after pretreatment with 1-ethyl-3-methylimidazolium acetate ([Emim][Ac] and dimethylsulfoxide (DMSO (1:1 ratio, v/v was hydrolysed with almost double yield after 8 h of reaction time with the immobilised cellulase, compared to the reference microcrystalline cellulose. The dissolution capacity of the pretreatment mixture was maintained at satisfactory level during five reuse cycles. The immobilised cellulase was recycled in nine reaction cycles, preserving about 30% of the initial activity.

  9. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  10. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  11. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  12. Studies of initial stage in coal liquefaction. Effect of decomposition of oxygen-functional groups on coal liquefaction; Ekika hanno no shoki katei ni kansuru kenkyu. 3. Gansanso kannoki no bunkai kyodo to ekika hanno eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Komeiji, A.; Kaneko, T.; Shimazaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    Pretreatment of brown coal in oil was conducted using 1-methyl naphthalene or mixture of tetralin and 1-methyl naphthalene as solvent at temperatures ranging from 300 to 430{degree}C under nitrogen atmosphere. Effects of the solvent properties on the structural change of oxygen-functional groups (OFG) and coal liquefaction were investigated by means of quantitative analysis of OFG and solid state {sup 13}C-NMR measurement. When hydrogen transfer from solvent was insufficient, it was suggested that brown coal molecules loose their hydrogen to be aromatized. While, at lower temperatures ranging from 300 to 350{degree}C, hydrogen contained in brown coal molecules was consumed for the stabilization of pyrolytic radicals, and the deterioration of liquefaction was not observed. When hydrogen transfer from solvent was insufficient at higher temperatures above 400{degree}C in nitrogen atmosphere during pretreatment in oil, crosslinking like benzofuran type was formed by dehydration condensation of hydroxyl group in brown coal, to deteriorate the liquefaction, remarkably. The addition of donor solvent like tetralin decreased the formation of crosslinking like benzofuran type, which suppressed the deterioration of liquefaction. 8 refs., 5 figs.

  13. Coal and clean coal technology: challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, Andrew [IEA Clean Coal Centre, London (United Kingdom)

    2013-07-01

    Globally, there is a growing concern about fuel diversity and security of supply, particularly with regard to oil and natural gas. In contrast, coal is available from a much wider range of sources and has greater price stability. Consequently, coal use is increasing rapidly, and by 2030 may well reach a level of more than 4,500 Mtoe, corresponding to close to a doubling of current levels. However, at the same time, tightening regulations will require better solutions for achieving environmental compliance, for which coal has a number of key issues to address. Most of the coal will be used in the power generation sector. Consequently, the key research challenges are to develop and deploy methods by which coal can be used cleanly, efficiently, and in a sustainable way. These include improvements to existing coal utilisation technologies, particularly to improve operational flexibility and availability, while reducing energy use through higher efficiencies. There is an increasing need to ensure improved emissions control, with the emphasis on achieving ever-lower emissions of particulates, SO{sub 2} and NO{sub x} while also introducing control of trace species, particularly mercury. Alongside this, a key challenge is the integration of techniques that can capture CO{sub 2} then transport and store it within secure geological formations, thereby resulting in near zero emissions of CO{sub 2}. From a power plant perspective, the need is to achieve such integration while minimising any adverse impact on power plant efficiency, performance of existing emissions control systems, operational flexibility and availability. At the same time, means to minimize the additional costs associated with such technology must be established.

  14. Physicochemical pretreatments and hydrolysis of furfural residues via carbon-based sulfonated solid acid.

    Science.gov (United States)

    Ma, Bao Jun; Sun, Yuan; Lin, Ke Ying; Li, Bing; Liu, Wan Yi

    2014-03-01

    Potential commercial physicochemical pretreatment methods, NaOH/microwave and NaOH/ultrasound were developed, and the carbon-based sulfonated solid acid catalysts were prepared for furfural residues conversion into reducing sugars. After the two optimum pretreatments, both the content of cellulose increased (74.03%, 72.28%, respectively) and the content of hemicellulose (94.11%, 94.17% of removal rate, respectively) and lignin (91.75%, 92.09% of removal rate, respectively) decreased in furfural residues. The reducing sugar yields of furfural residues with the two physicochemical pretreatments on coal tar-based solid acid reached 33.94% and 33.13%, respectively, higher than that pretreated via NaOH alone (27%) and comparable to that pretreated via NaOH/H2O2 (35.67%). The XRD patterns, IR spectra and SEM images show microwave and ultrasound improve the pretreatment effect. The results demonstrate the carbon-based sulfonated solid acids and the physicochemical pretreatments are green, effective, low-cost for furfural residues conversion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Development of an integrated pretreatment fractionation process for fermentable sugars and lignin: Application to almond (Prunus dulcis) shell

    International Nuclear Information System (INIS)

    Gong, Dachun; Holtman, Kevin M.; Franqui-Espiet, Diana; Orts, William J.; Zhao, Ruming

    2011-01-01

    An environmentally friendly pretreatment process was developed to fractionate cellulose, hemicellulose and lignin from almond (Prunus dulcis) shells, consisting of hot water pretreatment (HWP) coupled with organic solvent (organosolv) pretreatment of water/ethanol (OWEP). This integrated pretreatment process proved more effective on the basis of yield of fermentable sugar and lignin separation compared with HWP alone, dilute acid pretreatment (DAP), ammonia pretreatment (AP), lime pretreatment LP, organosolv water/ethanol pretreatment (OWEP), and organosolv water/acetone pretreatment (OWAP). In the coupled hot water-organosolv process, hemicellulose sugars were recovered in the first residual liquid while varying amounts of cellulose was retained in the residual solid. The lignin fraction was obtained by simply adjusting the pH from the second liquid. The optimal two-stage process consisted of first HWP stage at 195 o C for 30 min, resulting in w glucose = 95.4% glucose recovery yield and w xylose = 92.2% xylose removal. The second organosolv OWEP stage was operated at 195 o C for 20 min, in ethanol in water mixtures of ethanol = 50% and resulted in nearly w glucose = 100% glucose recovery yield, w xylose = 90% xylose and w lignin = 61% lignin removal. After enzymatic hydrolysis, glucose yield was up to w glucose = 95%, compared to 61% yield from untreated almond. Images obtained via scanning electron microscopy (SEM) highlighted the differences in almond structure from the varying pretreatment methods during biomass fractionation. -- Highlights: → Almond shells are an under-utilized agriculture byproduct available in the world. → Almond shells are particularly attractive as bioenergy feedstock. → We have developed a new fractionation process for the almond shell. → The new process combined the HWP with OWEP. → The fractionation process has potential in the utilization of almond shell.

  16. HTGR-Integrated Coal To Liquids Production Analysis

    International Nuclear Information System (INIS)

    Gandrik, Anastasia M.; Wood, Rick A.

    2010-01-01

    As part of the DOE's Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to 'shift' the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700 C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: (1) 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal consumption by 66

  17. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  18. An Integrated Environment Monitoring System for Underground Coal Mines—Wireless Sensor Network Subsystem with Multi-Parameter Monitoring

    OpenAIRE

    Zhang, Yu; Yang, Wei; Han, Dongsheng; Kim, Young-Il

    2014-01-01

    Environment monitoring is important for the safety of underground coal mine production, and it is also an important application of Wireless Sensor Networks (WSNs). We put forward an integrated environment monitoring system for underground coal mine, which uses the existing Cable Monitoring System (CMS) as the main body and the WSN with multi-parameter monitoring as the supplementary technique. As CMS techniques are mature, this paper mainly focuses on the WSN and the interconnection between t...

  19. Biosolubilization gamma irradiate ion result coal by mould trichoderma sp

    International Nuclear Information System (INIS)

    Pingkan Aditiawati; Dea Indriani Astuti; Irawan Sugoro; Dwiwahju Sasongko

    2011-01-01

    Biosolubilization of coal is process of converting solid coal to liquid fuel/chemicals by mean of microorganism. The aim of this research was to study the effect of gamma rays irradiation with varian doses of irradiation into solubilization of subbituminous coal by Trichoderma sp. The dosage used was 5, 10, and 20 kGy and unirradiated coal as control. The method was submerged culture in MSS+ medium and incubated at room temperature and agitated at 150 rpm for 21 th days. The parameters observed were colonization, pH and biosolubilization product based on absorbance value at λ 250nm and λ 450nm and GC/MS analysis for the best treatment. The results showed that coal biosolubilization could be increased by gamma irradiation. The mould could growth well in medium containing irradiated coal and the medium of pH was decreased after incubation. The biosolubilization was increased but the irradiation dosage of coal didn't affect significantly. The best dose was 20 kGy with product biosolubilization similar to gasoline and solar. Based on the result, the pre-treatment of gamma irradiation on coal has potency to increased biosolubilization. (author)

  20. Enteric virus removal inactivation by coal-based media

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Chaudhuri, M. [Indian Institute of Technology, Kanpur (India). Dept. of Civil Engineering

    1995-02-01

    Four coal-based media, viz. alum-pretreated or ferric hydroxide-impregnated Giridih bituminous coal and lignite (alum-GBC, Fe-GBC; alum-lignite and Fe-Lignite) were laboratory tested to assess their potential in removing/inactivating enteric viruses in water. Batch-sorption screening tests, employing a poliovirus-spiked canal water, indicated high poliovirus sorption by Fe-GBC and alum-GBC in a short contact time of 5 min. Based on the results of further batch-sorption tests, using silver incorporated media (alum/Ag-GBC, alum-GBC-Ag and Fe-GBC-Ag), as well as aesthetic water quality consideration and previous findings on removal of coliforms and turbidity, alum/Ag-GBC, alum-GBC and alum-GBC-AG were included in downflow column studies employing poliovirus-spiked canal water. All three media showed potential in removing/inactivating enteric viruses. In a separate column study employing a joint challenge of poliovirus and rotavirus, alum/Ag-GBC removed 59.3-86.5% of the viruses along with more than 99% reduction in indigenous heterotrophic bacteria. Alum/silver-pretreated bituminous coal medium appears promising for use in household water filters in rural areas of the developing world. However, improved medium preparation to further enhance its efficiency is needed; also, its efficacy in removing/inactivating indigenous enteric bacteria, viruses and protozoa has to be ensured and practicalities or economics of application need to be considered.

  1. Pretreatment technologies for industrial effluents: Critical review on bioenergy production and environmental concerns.

    Science.gov (United States)

    Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan

    2018-07-15

    The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Coal comes clean

    International Nuclear Information System (INIS)

    Minchener, A.

    1991-01-01

    Coal's status as the dominant fuel for electricity generation is under threat because of concern over the environmental impacts of acid rain and the greenhouse effect. Sulphur dioxide and nitrogen oxides cause acid rain and carbon dioxide is the main greenhouse gas. All are produced when coal is burnt. Governments are therefore tightening the emission limits for fossil-fuel power plants. In the United Kingdom phased reductions of sulphur dioxide and nitrogen oxides emissions are planned. It will be the responsibility of the power generator to take the necessary steps to reduce the emissions. This will be done using a number of technologies which are explained and outlined briefly - flue gas desulfurization, separation of coal into high and low-sulphur coal, direct desulfurization of coal, circulating fluidised bed combustion, integrated-gasification combined cycle systems and topping cycles. All these technologies are aiming at cleaner, more efficient combustion of coal. (UK)

  3. Hydrothermal pretreatment of coal. Quarterly report No. 1, September 21--December 15, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of ``OH`` seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  4. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  5. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  6. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  7. Reclamation of coal mine spoil dump through integrated biotechnological approach

    International Nuclear Information System (INIS)

    Juwarkar, A.S.; Thawale, P.R.; Mowade, S.; Shrivastava, S.; Deshbhratar, P.B.; Juwarkar, A.

    1994-01-01

    Laboratory and field studies were carried out to restore the fertility and productivity of coal mine spoil using primary clarifier sludge from paper mill effluent treatment plant and use of specialised culture of biofertilizers and mycorrhizal fungi. Plants namely Tectona grandis, Delbergia sissoo, Gmelina arporea, Emblica officinalis and Cassia seamea were grown. Sludge amendment enhanced the survival rate of plants to 80% compared to 20% in unamended spoil. Plants grown on unamended spoil showed stunted growth. Growth of plants increased by 188-484% when sludge was applied at the rate of 100 tonnes per hectare. At 100 tones per hectare sludge amendment, biofertilizer and mycorrhizae treatment there were 83.7 nodules in shishum as against only 4.6 nodules in case of spoil alone. Further root length was 276% and 281% more respectively in case of shishum and teak. Inoculation of plant saplings with respective biofertilizers and mycorrhizae further increased the plant growth by 144-198%. At Durgapur coal mine, 56,000 saplings of Tectona grandis, Gmelina arporea, Delbergia sissoo, Emblica officinalis, Azadirachta indica, Acacia ariculiformis, Prosopis etc were successfully planted on spoil dump using integrated biotechnological approach. 10 refs., 5 tabs

  8. Pyrolysis and liquefaction of acetone and mixed acetone/ tetralin swelled Mukah Balingian Malaysian sub-bituminous coal-The effect on coal conversion and oil yield

    International Nuclear Information System (INIS)

    Mohd Pauzi Abdullah; Mohd Azlan Mohd Ishak; Khudzir Ismail

    2008-01-01

    The effect of swelling on Mukah Balingian (MB) Malaysian sub-bituminous coal macrostructure was observed by pyrolysing the swelled coal via thermogravimetry under nitrogen at ambient pressure. The DTG curves of the pyrolyzed swelled coal samples show the presence of evolution peaks at temperature ranging from 235 - 295 degree Celsius that are due to releasing of light molecular weight hydrocarbons. These peaks, however, were not present in the untreated coal, indicating some changes in the coal macrostructure has occurred in the swelled coal samples. The global pyrolysis kinetics for coal that follows the first-order decomposition reaction was used to evaluate the activation energy of the pyrolyzed untreated and swelled coal samples. The results thus far have shown that the activation energy for the acetone and mixed acetone/ tetralin-swelled coal samples exhibit lower values than untreated coal, indicating less energy is required during the pyrolysis process due to the weakening of the coal-coal macromolecular interaction network. Moreover, liquefaction on the swelled coal samples that was carried out at temperatures ranging from 360 to 450 degree Celsius at 4 MPa of nitrogen pressure showed the enhancement of the coal conversion and oil yield at temperature of 420 degree Celsius, with retrogressive reaction started to dominate at higher temperature as indicated by decreased and increased in oil yield and high molecular weight pre-asphaltene, respectively. These observations suggest that the solvent swelling pre-treatment using acetone and mixed acetone/ tetralin can improve the coal conversion and oil yields at less severe liquefaction condition. (author)

  9. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  10. Effect of heat treatment changes on swelling treatment of coal; Sekitan no bojun shori sayo ni oyobosu netsushori henka no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Satsuka, T.; Mashimo, K.; Wainai, T. [Nihon University, Tokyo (Japan). College of Science and Technology

    1996-10-28

    Discussions were given on effects of heat treatment at relatively low temperatures as a pretreatment for coal liquefaction on coal swelling and hydrogenolysis reaction. Taiheiyo coal was heated to 200{degree}C for one hour as a pretreatment. The attempted heating methods consisted of four steps of rapid heating (6.7{degree}C/min)quenching (20{degree}C/min), rapid heating/natural cooling (0.7{degree}C/min), heating (1.0{degree}C/min)/quenching, and heating/natural cooling. The swelling treatment was composed of adding methanol benzene into heat treated coal, and leaving it at room temperature for 24 hours. The hydrogenolysis was carried out by using a tetralin solvent and at an initial hydrogen pressure of 20 kg/cm{sup 2} and a temperature of 350{degree}C and for a time of one hour. Hydrogenolysis conversion in the heat treated coal was found lower than that of the original coal because of generation of liquefaction inactive components due to thermal polymerization. When the heat treated coal is swollen by using the solvent, gas yield from the hydrogenolysis reaction decreased due to gas suppression effect, and the conversion was lower than that of the original coal. Heat treatment suggests densification of the coal structure. Swollen coal shows no conspicuous difference in the heat treatment methods against the hydrogenolysis due to the swelling effect. 3 refs., 5 figs., 1 tab.

  11. FY 1992 report on the Coal Kind Committee; 1992 nendo tanshu iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    The paper reported the FY 1992 activities of the Coal Kind Committee. The Coal Kind Committee in this fiscal year was held on September 28, 1992 (1st) and on March 4, 1993 (second), and report/discussion were made about the performance test in Chinese coal liquefaction, survey of coal kind selection, development of handling technology, etc. As to the performance test in Chinese coal liquefaction, there were the data very different in quality among the data, and it was pointed out that it was necessary to make a close re-examination of sites for sample collection and sampling methods. Relating to the survey of coal kind selection, the following were pointed out: The inertinite value in the maceral analysis was not necessarily in agreement with the reactivity; The inertinite was dependent largely on temperature for the reaction; It was necessary to make parameters based on the chemical structure. As to the development of the coal utilization hydrogen production technology, the paper reported the experimental survey of coal pretreatment, development of new deheterocyclicity and deashing technologies, experimental survey of coal handling, etc. (NEDO)

  12. An Improved Flexible Solar Thermal Energy Integration Process for Enhancing the Coal-Based Energy Efficiency and NOx Removal Effectiveness in Coal-Fired Power Plants under Different Load Conditions

    Directory of Open Access Journals (Sweden)

    Yu Han

    2017-09-01

    Full Text Available An improved flexible solar-aided power generation system (SAPG for enhancing both selective catalytic reduction (SCR de-NOx efficiency and coal-based energy efficiency of coal-fired power plants is proposed. In the proposed concept, the solar energy injection point is changed for different power plant loads, bringing about different benefits for coal-fired power generation. For partial/low load, solar energy is beneficially used to increase the flue gas temperature to guarantee the SCR de-NOx effectiveness as well as increase the boiler energy input by reheating the combustion air. For high power load, solar energy is used for saving steam bleeds from turbines by heating the feed water. A case study for a typical 1000 MW coal-fired power plant using the proposed concept has been performed and the results showed that, the SCR de-NOx efficiency of proposed SAPG could increase by 3.1% and 7.9% under medium load and low load conditions, respectively, as compared with the reference plant. The standard coal consumption rate of the proposed SAPG could decrease by 2.68 g/kWh, 4.05 g/kWh and 6.31 g/kWh for high, medium and low loads, respectively, with 0.040 USD/kWh of solar generated electricity cost. The proposed concept opens up a novel solar energy integration pattern in coal-fired power plants to improve the pollutant removal effectiveness and decrease the coal consumption of the power plant.

  13. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  14. Coal-fired MHD test progress at the Component Development and Integration Facility

    International Nuclear Information System (INIS)

    Hart, A.T.; Rivers, T.J.; Alsberg, C.M.; Filius, K.D.

    1992-01-01

    The Component Development and Integration Facility (CDIF) is a Department of Energy test facility operated by MSE, Inc. In the fall of 1984, a 50-MW t , pressurized, slag rejecting coal-fired combustor (CFC) replaced the oil-fired combustor in the test train. In the spring of 1989, a coal-fired precombustor was added to the test hardware, and current controls were installed in the spring of 1990. In the fall of 1990, the slag rejector was installed. MSE test hardware activities included installing the final workhorse channel and modifying the coalfired combustor by installing improved design and proof-of-concept (POC) test pieces. This paper discusses the involvement of this hardware in test progress during the past year. Testing during the last year emphasized the final workhorse hardware testing. This testing will be discussed. Facility modifications and system upgrades for improved operation and duration testing will be discussed. In addition, this paper will address long-term testing plans

  15. Thermodynamic analysis and conceptual design for partial coal gasification air preheating coal-fired combined cycle

    Science.gov (United States)

    Xu, Yue; Wu, Yining; Deng, Shimin; Wei, Shirang

    2004-02-01

    The partial coal gasification air pre-heating coal-fired combined cycle (PGACC) is a cleaning coal power system, which integrates the coal gasification technology, circulating fluidized bed technology, and combined cycle technology. It has high efficiency and simple construction, and is a new selection of the cleaning coal power systems. A thermodynamic analysis of the PGACC is carried out. The effects of coal gasifying rate, pre-heating air temperature, and coal gas temperature on the performances of the power system are studied. In order to repower the power plant rated 100 MW by using the PGACC, a conceptual design is suggested. The computational results show that the PGACC is feasible for modernizing the old steam power plants and building the new cleaning power plants.

  16. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  17. Characteristics of fundamental combustion and NOx emission using various rank coals.

    Science.gov (United States)

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  18. Advanced direct liquefaction concepts for PETC generic units. [Mainly, the effect of preteatment of coal with carbon monoxide and steam

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    CAER/UK: Detail coal and starting solvents from Wilsonville were analyzed to develop the data necessary to conduct process studies in the CO Pretreatment and Catalyst Evaluation segment of this program. A comparison of the solvent separation analysis with the distillation/separation used at Wilsonville showed that the residual solvent components contained a large amount of residual pentane soluble products. The ashy resid contained 3% iron and 400 ppM molybdenum. Although the iron content in the distillate and deashed resid was much less, namely about 200 ppM., the molybdenum concentrations in these fractions were not significantly reduced over the concentration in the ashy resid, i.e., 200 ppM in each. The pretreatment of coal with CO/H{sub 2}O in the presence of NaOH and Na{sub 2}CO{sub 3} has been shown to give a product which is lower in oxygen content and higher in hydrogen content compared to the raw coal. The atomic H/C ratios of the H{sub 2}O-insolubles, THF insolubles and the PA+A fractions of the products-together with the hydrogen consumption data suggested that the raw coal has been substantially depolymerized and hydrogenated via the WGS reaction during the pretreatment process. The extensive amount of molecular reconstruction that has occurred in the solid product was evident from the ease of solubilization of the product into pyridine. The result of the pretreatment process is a product which is highly reactive under hydroliquefaction conditions at 400{degrees}C. Reaction rates seem to be much faster than the raw coal, especially at shorter reaction times, providing the opportunity for major reductions in plant vessel sizes, and preliminary data has led us to believe that better efficiency in hydrogen utilization is achieved.

  19. Coal consumption and economic growth in Taiwan

    International Nuclear Information System (INIS)

    Yang, H.Y.

    2000-01-01

    The purpose of this paper is to examine the causality issue between coal consumption and economic growth for Taiwan. The co-integration and Granger's causality test are applied to investigate the relationship between the two economic series. Results of the co-integration and Granger's causality test based on 1954--1997 Taiwan data show a unidirectional causality from economic growth to coal consumption with no feedback effects. Their major finding supports the neutrality hypothesis of coal consumption with respect to economic growth. Further, the finding has practical policy implications for decision makers in the area of macroeconomic planning, as coal conservation is a feasible policy with no damaging repercussions on economic growth

  20. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    Directory of Open Access Journals (Sweden)

    Marco A. García-Morales

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high content of color (5952 ± 76 Pt-Co, turbidity (1648 ± 49 FAU, and COD (3608 ± 250 mg/L. Therefore, enhanced performance could be achieved by combining pretreatment techniques to increase the efficiencies of the physical, chemical, and biological treatments. In the integrated process, there was a turbidity reduction of 96.1 ± 0.2% and an increase in dissolved oxygen from 3.8 ± 0.05 mg/L (inlet sand filtration to 6.05 ± 0.03 mg/L (outlet sand filtration after 120 min of treatment. These results indicate good water quality necessary for all forms of elemental life. Color and COD removals were 98.2 ± 0.2% and 39.02 ± 2.2%, respectively, during the electrocoagulation process (0.2915 mA/cm2 current density and 120 min of treatment. The proposed integrated process could be an attractive alternative of pretreatment of real wastewater to increase water quality of conventional treatments.

  1. Effect of pre-swelling of coal on its solvent extraction and liquefaction properties

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Zhicai Wang; Meixia Cao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-10-15

    Effects of pre-swelling of coal on solvent extraction and liquefaction properties were studied with Shenhua coal. It was found that pre-swelling treatments of the coal in three solvents, i.e., toluene (TOL), N-methyl-2-pyrrolidinone (NMP) and tetralin (THN) increased its extraction yield and liquefaction conversion, and differed the liquefied product distributions. The pre-swollen coals after removing the swelling solvents showed increased conversion in liquefaction compared with that of the swollen coals in the presence of swelling solvents. It was also found that the yields of (oil + gas) in liquefaction of the pre-swollen coals with NMP and TOL dramatically decreased in the presence of swelling solvent. TG and FTIR analyses of the raw coal, the swollen coals and the liquefied products were carried out in order to investigate the mechanism governing the effects of pre-swelling treatment on coal extraction and liquefaction. The results showed that the swelling pre-treatment could disrupt some non-covalent interactions of the coal molecules, relax its network structure and loosened the coal structure. It would thus benefit diffusion of a hydrogen donor solvent into the coal structure during liquefaction, and also enhance the hydrogen donating ability of the hydrogen-rich species derived from the coal. 21 refs., 4 figs., 3 tabs.

  2. The effect of catalysts blending on coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, F.; Gulyurtlu, I.; Lobo, L.S.; Cabrita, I. [INETI, Lisbon (Portugal)

    1999-05-01

    The effect of several catalysts on coal hydropyrolysis efficiency was studied, having selected catalysts with different characteristics and behaviours. For the experimental conditions used Fe{sub 2}O{sub 3} and ICI 41-6 showed selectivity towards lighter fractions, whilst ZnCl{sub 2} led to the highest coal conversion and to the greatest preasphaltenes yields. These results suggested the use of mixtures of catalysts. The heavier molecules of asphaltenes produced as a result of ZnCl{sub 2} action, could then be converted into lighter fractions by the action of a selective catalyst. Coal hydropyrolysis tests were undertaken using ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3} or ICI 41-6. These mixtures of catalysts led to increased conversions and higher product yields. The best results were obtained in the presence of ZnCl{sub 2} mixed with Fe{sub 2}O{sub 3}. In an attempt to interpret these results, coal structure before and after swelling pre-treatment was also studied using SEM. 17 refs., 11 figs., 1 tab.

  3. Corrosion behavior of Haynes registered 230 registered nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    International Nuclear Information System (INIS)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung; Kim, Min Jung

    2015-01-01

    The corrosion behavior of commercially available Haynes registered 230 registered nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes registered 230 registered nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes registered 556 registered .

  4. Economic and environmental aspects of coal preparation and the impact on coal use for power generation

    International Nuclear Information System (INIS)

    Lockhart, N.C.

    1995-01-01

    Australia is the world's largest coal exporter, and coal is the nation's largest export and dominant revenue earner. The future competitiveness of coal will be maintained through improved preparation of coal for traditional markets, by upgrading for new markets, and via coal utilization processes that are more efficient and environmentally acceptable. Australia is also a niche supplier of technologies and services with the potential to expand. This potential extends to the increasing vertical integration of coal supplies (whether Australian, indigenous or blended) with downstream utilization such as power generation. Technological advancement is a key element of industry strategy and coal preparation research and development, and clean coal technologies are critical aspects. This paper summarizes these issues, linking the economic and environmental aspects across the coal production and utilization chain. (author). 2 tabs., 1 fig., 6 refs

  5. Coal technology in a sustainable society

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    Coal is a major world energy resource. For many countries it is the primary fuel in electricity generation. As world energy demand increases so also will the demand for coal. Steel and aluminium-essential elements in the fabric of modern society -also rely heavily on coal. This article points out that the Australian coal industry is responding to the challenges facing coal by investigating a sustainable development strategy and examining the full life cycle outcomes of coal as fuel and reductant. The challenge is to deliver much more efficient ways of extracting energy from coal. The most effective strategies are seen to be: ash displacement credits, synergies with renewables and integration with other industries

  6. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  7. Integrated Waste Treatment Unit (IWTU) Input Coal Analyses and Off-Gass Filter (OGF) Content Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, Carol M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, David M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Guenther, Chris P. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Shekhawat, Dushyant [National Energy Technology Lab. (NETL), Morgantown, WV (United States); VanEssendelft, Dirk T. [National Energy Technology Lab. (NETL), Morgantown, WV (United States); Means, Nicholas C. [AECOM Technology Corp., Oak Ridge, TN (United States)

    2015-04-23

    A full engineering scale Fluidized Bed Steam Reformer (FBSR) system is being used at the Idaho Nuclear Technology and Engineering Center (INTEC) to stabilize acidic Low Activity Waste (LAW) known as Sodium Bearing Waste (SBW). The INTEC facility, known as the Integrated Waste Treatment Unit (IWTU), underwent an Operational Readiness Review (ORR) and a Technology Readiness Assessment (TRA) in March 2014. The IWTU began non-radioactive simulant processing in late 2014 and by January, 2015 ; the IWTU had processed 62,000 gallons of simulant. The facility is currently in a planned outage for inspection of the equipment and will resume processing simulated waste feed before commencing to process 900,000 gallons of radioactive SBW. The SBW acidic waste will be made into a granular FBSR product (carbonate based) for disposal in the Waste Isolation Pilot Plant (WIPP). In the FBSR process calcined coal is used to create a CO2 fugacity to force the waste species to convert to carbonate species. The quality of the coal, which is a feed input, is important because the reactivity, moisture, and volatiles (C,H,N,O, and S) in the coal impact the reactions and control of the mineralizing process in the primary steam reforming vessel, the Denitration and Mineralizing Reformer (DMR). Too much moisture in the coal can require that additional coal be used. However since moisture in the coal is only a small fraction of the moisture from the fluidizing steam this can be self-correcting. If the coal reactivity or heating value is too low then the coal feedrate needs to be adjusted to achieve the desired heat generation. Too little coal and autothermal heat generation in the DMR cannot be sustained and/or the carbon dioxide fugacity will be too low to create the desired carbonate mineral species. Too much coal and excess S and hydroxide species can form. Excess sulfur from coal that (1) is too rich in sulfur or (2) from overfeeding coal can promote wall scale and contribute to corrosion

  8. Achievement report for fiscal 1982 on Sunshine Program. Coal energy; 1982 nendo sunshine keikaku seika hokokusho. Sekitan energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1982-07-01

    This research program consists of (1) the solid catalyst-aided reforming of various petroleum based oils and heavy coal oils into Solvolysis solvents and the secondary hydrogenolysis, (2) a search for pre-treatment for improvement on the sub-bituminous coal liquefaction yield, and (3) a search for measures for improvement on the brown coal liquefaction yield. Studied in this fiscal year are (1) the high-temperature short-contact time liquefaction of brown coal, (2) the role of catalyst support for selective upgrading of SRC (solvent refined coal), and (3) reforming of thermal melting feature of low rank coal by preliminary deashing at room temperature. In relation with Item (1), it is found that the dehydrogenation or reaction to carbonization of molecules involved in hydrogen donation is structure-sensitive but that thermolysis of coal is accelerated under high-temperature conditions to allow transfer hydrogen to contribute uniformly. It is deemed also that matching is excellent between hydrogen transfer and thermolysis, that the solvent dissolution level is elevated, and that the reaction short in duration inhibits consecutive polymerization reaction. These are supposed to be effective in improving on the liquefaction yield and in rendering heavy constituents lighter. In relation with Item (2), it is found that the experimentally manufactured catalysts are effective in reducing the weight of heavy constituents. In relation with Item (3), a carbonization reforming method is experimentally implemented in which the ash that affects carbonization is further removed by a pre-treatment at room temperature. (NEDO)

  9. Prospect of coal liquefaction in Indonesia

    International Nuclear Information System (INIS)

    Hartiniati; Dasuki, A.S.; Artanto, Yu.; Sulaksono, D.; Gunanjar

    1997-01-01

    With the current known oil reserves of about 11 billion barrel and annual production of approximately 500 million barrel, the country's oil reserves will be depleted by 2010, and Indonesia would have become net oil importer if no major oil fields be found somewhere in the archipelago. Under such circumstances the development of new sources of liquid fuel becomes a must, and coal liquefaction can be one possible solution for the future energy problem in Indonesia, particularly in the transportation sector due to the availability of coal in huge amount. This paper present the prospect of coal liquefaction in Indonesia and look at the possibility of integrating the process with HTR as a heat supplier. Evaluation of liquidability of several low grade Indonesian coals will also be presented. Coal from South Banko-Tanjung Enim is found to be one of the most suitable coal for liquefaction. Several studies show that an advanced coal liquefaction technology recently developed has the potential to reduce not only the environmental impact but also the production cost. The price of oil produced in the year 2000 is expected to reach US $ 17.5 ∼ 19.2/barrel and this will compete with the current oil price. Not much conclusion can be drawn from the idea of integrating HTR with coal liquefaction plant due to limited information available. (author). 7 figs, 3 tabs

  10. Clean coal technology challenges for China

    Energy Technology Data Exchange (ETDEWEB)

    Mao, J. [Tsinghua University, Beijing (China). Dept. of Thermal Engineering

    2001-01-01

    China is rich in coal reserves and also the largest coal producer and consumer in the world. Coal constitutes over 70% of the total energy consumption, some 86% of coal production is burned directly, which causes serious air pollution problems. However, based on China's specific energy structure, coal utilisation will remain the dominant means of energy usage and clean coal technology must be the way forward if the environmental problems are to be resolved. This article discusses China's Clean Coal Technology Program, its implementation, including the clean coal technologies being developed and introduced, with reference to the key R & D institutes for each of the coal-using sectors. The article is an edited version of the 2000 Robens Coal Science Lecture, delivered in London in October 2000. The China Coal Technology Program for the 9th Five-Year Plan (1996-2000) was approved in 1997. The technologies included in the Program considered in this article are in: coal washing and grading, coal briquette, coal water slurry; circulating fluidised bed technology; pressurised fluidised bed combined cycle; integrated gasification combined cycle; coal gasification, coal liquefaction and flue gas desulfurisation. 4 tabs.

  11. Test and survey on a next generation coal liquefying catalyst. Coal molecule scientific test and survey as the base for commercializing the coal liquefying technology; Jisedai sekitan ekika shokubai shiken chosa. Sekitan ekika gijutsu shogyoka kiban to shite no sekitan bunshi kagaku shiken chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The test and survey on a next generation coal liquefying catalyst present a new proposal to raise catalytic activity in coal liquefaction, and perform demonstration experiments in a laboratory scale to search for possibility of developing a new coal liquefying catalyst from various viewpoints. To explain, discussions were given on the catalyst to perform the followings: liquefaction under extremely mild conditions by using ultra strong acids not limited only to metals; ion exchange method and swell carrying method to raise catalyst dispersion very highly, enhance the catalytic activity, and reduce the amount of catalyst to be used; mechanism of producing catalyst activating species to further enhance the activity of iron catalysts; and pursuit of morphological change in the activating species. The coal molecule scientific test and survey as the base for commercializing the coal liquefying technology performed the studies on the following items: pretreatment of coal that can realize reduction of coal liquefaction cost; configuration of the liquefaction reaction, liquefying catalysts, hydrocarbon gas generating mechanism, status of catalysts after liquefaction reaction, and reduction in gas purification cost by using gas separating membranes. Future possibilities were further searched through frank and constructive opinion exchanges among the committee members. (NEDO)

  12. Economics of coal-based electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hemming, D F; Johnston, R; Teper, M

    1979-01-01

    The report deals with base-load electricity generation from coal and compares the economics of four alternative technologies: conventional pulverised-fuel (PF) boiler with steam cycle; atmospheric fluidised-bed (AFB) boiler with steam cycle; pressurised fluidised-bed (PFB) boiler with combined cycle; and integrated air-blown coal gasification with combined cycle systems are compared for both a high sulphur (3.5%) coal with environmental regulations requiring 85% sulphur removal, and for a low sulphur coal without sulphur removal. The results indicate that there is no single clear 'winner' among the advanced technologies. The optimum system depends on coal price, required rate-of-return, sulphur content of the coal, taxation regime etc. (34 refs.) (Available from IEA Coal Research, Economic Assessment Service)

  13. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  14. WABASH RIVER COAL GASIFICATION REPOWERING PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-09-01

    The close of 1999 marked the completion of the Demonstration Period of the Wabash River Coal Gasification Repowering Project. This Final Report summarizes the engineering and construction phases and details the learning experiences from the first four years of commercial operation that made up the Demonstration Period under Department of Energy (DOE) Cooperative Agreement DE-FC21-92MC29310. This 262 MWe project is a joint venture of Global Energy Inc. (Global acquired Destec Energy's gasification assets from Dynegy in 1999) and PSI Energy, a part of Cinergy Corp. The Joint Venture was formed to participate in the Department of Energy's Clean Coal Technology (CCT) program and to demonstrate coal gasification repowering of an existing generating unit impacted by the Clean Air Act Amendments. The participants jointly developed, separately designed, constructed, own, and are now operating an integrated coal gasification combined-cycle power plant, using Global Energy's E-Gas{trademark} technology (E-Gas{trademark} is the name given to the former Destec technology developed by Dow, Destec, and Dynegy). The E-Gas{trademark} process is integrated with a new General Electric 7FA combustion turbine generator and a heat recovery steam generator in the repowering of a 1950's-vintage Westinghouse steam turbine generator using some pre-existing coal handling facilities, interconnections, and other auxiliaries. The gasification facility utilizes local high sulfur coals (up to 5.9% sulfur) and produces synthetic gas (syngas), sulfur and slag by-products. The Project has the distinction of being the largest single train coal gasification combined-cycle plant in the Western Hemisphere and is the cleanest coal-fired plant of any type in the world. The Project was the first of the CCT integrated gasification combined-cycle (IGCC) projects to achieve commercial operation.

  15. Department of Energy pretreatment of high-level and low-level wastes

    International Nuclear Information System (INIS)

    McGinnis, C.P.; Hunt, R.D.

    1995-01-01

    The remediation of the 1 x 10 8 gal of highly radioactive waste in the underground storage tanks (USTs) at five US Department of Energy (DOE) sites is one of DOE's greatest challenges. Therefore, the DOE Office of Environmental Management has created the Tank Focus Area (TFA) to manage an integrated technology development program that results in the safe and efficient remediation of UST waste. The TFA has divided its efforts into five areas, which are safety, characterization, retrieval/closure, pretreatment, and immobilization. All DOE pretreatment activities are integrated by the Pretreatment Technical Integration Manager of the TFA. For FY 1996, the 14 pretreatment tasks are divided into 3 systems: supernate separations, sludge treatment, and solid/liquid separation. The plans and recent results of these TFA tasks, which include two 25,000-gal demonstrations and two former TFA tasks on Cs removal, are presented. The pretreatment goals are to minimize the volume of high-level waste and the radioactivity in low-level waste

  16. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  17. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  18. Palynology in coal systems analysis-The key to floras, climate, and stratigraphy of coal-forming environments

    Science.gov (United States)

    Nichols, D.J.

    2005-01-01

    Palynology can be effectively used in coal systems analysis to understand the nature of ancient coal-forming peat mires. Pollen and spores preserved in coal effectively reveal the floristic composition of mires, which differed substantially through geologic time, and contribute to determination of depositional environment and paleo- climate. Such applications are most effective when integrated with paleobotanical and coal-petrographic data. Examples of previous studies of Miocene, Carboniferous, and Paleogene coal beds illustrate the methods and results. Palynological age determinations and correlations of deposits are also important in coal systems analysis to establish stratigraphic setting. Application to studies of coalbed methane generation shows potential because certain kinds of pollen are associated with gas-prone lithotypes. ??2005 Geological Society of America.

  19. Effect of hydrothermal treatment on some properties of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi-cai; Shui Heng-fu; Zhang De-xiang; Gao Jin-sheng [East China University of Science and Technology, Shanghai (China). College of Resource and Environmental Engineering

    2006-10-15

    Effects of hydrothermal treatment on swelling, extraction and liquefaction behavior of Shenhua coal were studied through analyses of element content, ash content, volatile content and IR spectrum of treated coal. The results indicate that hydrogenation of coal is distinctly carried out in the process of hydrothermal pre-treatment and the hydrogen content of treated coal is more than that of raw coal. The contents of ash and volatile matters of treated coal are lower than those of raw coal. With the increase of treatment temperature the volatile content of the hydrothermal treated coal decreases and the ash content of treated coal increases. CO{sub 2} is main gas product and unvaries with the temperature changing, whereas CO and CH{sub 4} are formed when the temperature is above 250{sup o}C and increase with the temperature during hydrothermal treatment. Hydrothermal treatment is not in favor of coal swelling and the swelling ratio of treated coal decreases with the increase of treatment temperature. The swelling ratio of extraction residue by CS{sub 2}/NMP mixed solvent in NMP solvent is lower than that of the corresponding raw coal. The CS{sub 2}/NMP mixed solvent extraction yields of coal treated at appropriate temperature are higher than that of raw coal, but the extraction yields of treated coal obtained by n-hexane, toluene and THF successive Soxhelt extraction are lower. Hydrothermal treatment at 250-300{sup o}C can increase the conversion of treated coal in direct hydro-liquefaction. The gas + oil yield of treated coal is lower than that of raw coal and the preasphaltene yield of treated coal is much higher. IR spectra of treated coals show that the forms of non-covalent bonds are changed by hydrothermal treatment, and the hydrolysis of ester and ether bonds and the pyrolysis of aromatic side chains also maybe occur at high treatment temperature. 21 refs., 3 figs., 4 tabs.

  20. Integrated strategy for N-methylformanilide production from carbon dioxide of flue gas in coal-fired power plant

    International Nuclear Information System (INIS)

    Han, Jeehoon

    2017-01-01

    Highlights: • A ‘green’ N-methylformanilide production process based new carbon dioxide conversion technologies is developed. • Monoethanolamine-based system for capturing carbon dioxide from the flue gas of a coal-fired power plant is deployed. • Gamma-valerolactone is used a solvent and catalyst for converting carbon dioxide to N-methylformanilide. • New separations for recovery of N-methylformanilide and gamma-valerolactone are developed. • Economic evaluation of the proposed process is performed. - Abstract: In this work, an integrated strategy is developed for producing N-methylformanilide from the carbon dioxide of flue gas in a coal-fired power plant. Based on lab-scale experimental studies presenting maximum yields (96%) with low reaction concentrations (below 25 wt% reactants) using large volumes of gamma-valerolactone as a solvent and catalyst, the integrated strategy focuses on the development of commercial-scale processes that consist of a monoethanolamine-based carbon dioxide separation subsystem and a catalytic conversion subsystem of N-Methylaniline with carbon dioxide to N-methylformanilide. Moreover, a heat exchanger network is designed to minimize the total energy requirements by transferring the heat between subsystems. In the proposed integrated strategy, the energy efficiency after heat integration (77.5%) is higher than that before heat integration (74.5%). Economic analysis results show that the minimum selling price of N-methylformanilide ($1592.1 Mt"−"1 using the best possible parameters) for use in this integrated strategy is cost-competitive with the current market price ($2984 Mt"−"1).

  1. Innovative pretreatment strategies for biogas production.

    Science.gov (United States)

    Patinvoh, Regina J; Osadolor, Osagie A; Chandolias, Konstantinos; Sárvári Horváth, Ilona; Taherzadeh, Mohammad J

    2017-01-01

    Biogas or biomethane is traditionally produced via anaerobic digestion, or recently by thermochemical or a combination of thermochemical and biological processes via syngas (CO and H 2 ) fermentation. However, many of the feedstocks have recalcitrant structure and are difficult to digest (e.g., lignocelluloses or keratins), or they have toxic compounds (such as fruit flavors or high ammonia content), or not digestible at all (e.g., plastics). To overcome these challenges, innovative strategies for enhanced and economically favorable biogas production were proposed in this review. The strategies considered are commonly known physical pretreatment, rapid decompression, autohydrolysis, acid- or alkali pretreatments, solvents (e.g. for lignin or cellulose) pretreatments or leaching, supercritical, oxidative or biological pretreatments, as well as combined gasification and fermentation, integrated biogas production and pretreatment, innovative biogas digester design, co-digestion, and bio-augmentation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Improved coal grinding and fuel flow control in thermal power plants

    DEFF Research Database (Denmark)

    Niemczyk, Piotr; Bendtsen, Jan Dimon

    2011-01-01

    A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated in the m......A novel controller for coal circulation and pulverized coal flow in a coal mill is proposed. The design is based on optimal control theory for bilinear systems with additional integral action. The states are estimated from the grinding power consumption and the amount of coal accumulated...... as well as when parameter uncertainties and noise are present. The proposed controller lowers the grinding power consumption while in most cases exhibiting superior performance in comparison with the PID controller....

  3. Carbon-free hydrogen production from low rank coal

    Science.gov (United States)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  4. Pre-treatment of biofuels for power production. Final report (1998). K. Joule 3 - OPTEB, Task: No. 19/20

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, P.A.; Sander, B.; Dam-Johansen, K.

    1999-10-01

    Co-firing of straw and coal on existing pulverised coal fired power plants may cause problems with deposition, corrosion, deactivation of SCR catalysts and impedes the utilisation of the fly ash, because of the high chlorine and potassium content of straw. Experiments with co-combustion of straw and coal on boilers plants have shown, that when maximal 20% of straw on a thermal basis is applied the most serious problems is the deactivation of high dust SCR catalysts and the deterioration of fly ash quality. The objective of this work was to evaluate a large-scale pre-treatment process for straw. The process applies pyrolysis at a moderate temperature, where the alkaline is retained in the char. The char is then washed and char and pyrolysis gasses can be co-fired with coal without causing serious problems. Fundamental laboratory studies as well as technical investigations were conducted to evaluate the pre-treatment concept. The laboratory studies were mainly done to improve the understanding of potassium and chlorine release during pyrolysis and the extraction of char with water. Some work were also done with respect to particle characterisation, straw pyrolysis kinetic and straw char combustion. The technical evaluation of a plant with 20 tons/hour capacity included investigations of possible reactor technologies, waste water handling, power efficiency and investment costs. Based on the laboratory experiments a pyrolysis temperature of 500 to 600 deg. C is recommended for the pre-treatment process. A high degree of pyrolysis is obtained without a significant release of potassium to the gas, but a release of 30 to 60% of the chlorine can not be avoided. Extraction of potassium from char with water is a two-step process, where the first step is a fast dissolution of potassium salts and the second step is a slow release of potassium from the interior of the char particle. A high potassium removal during char wash could not be obtained for all types of char within

  5. Coal and public perceptions

    International Nuclear Information System (INIS)

    Porter, R.C.

    1993-01-01

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  6. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  8. Integrating pretreatment and retrieval: Results from the July 1997 Tanks Focus Area workshop

    International Nuclear Information System (INIS)

    1998-07-01

    If scientists and researchers working to solve the tank waste challenges, technical program office managers at the tank sites, and others understand the connection between retrieval and pretreatment activities, more efficient processes and reduced costs can be achieved. To make this possible, researchers involved in retrieval and pretreatment activities met at the Conference Center in Richland, Washington, on July 16 and 17, 1997, to discuss the connections between these activities. The purpose of the workshop was to help participants (1) gain a better understanding of retrieval and pretreatment process needs and experiences; (2) gain practical knowledge of the applications, capabilities, and requirements of retrieval and pretreatment technologies being developed and deployed; and (3) focus on identifying and troubleshooting interface issues and problems. The end product of this meeting was to create a checklist of retrieval and pretreatment parameters to consider when developing new technologies or managing work at the sites in these areas. For convenience, the information is also organized by pretreatment parameter and retrieval-pretreatment parameter in Section 5.0

  9. Biomass torrefaction: A promising pretreatment technology for biomass utilization

    Science.gov (United States)

    Chen, ZhiWen; Wang, Mingfeng; Ren, Yongzhi; Jiang, Enchen; Jiang, Yang; Li, Weizhen

    2018-02-01

    Torrefaction is an emerging technology also called mild pyrolysis, which has been explored for the pretreatment of biomass to make the biomass more favorable for further utilization. Dry torrefaction (DT) is a pretreatment of biomass in the absence of oxygen under atmospheric pressure and in a temperature range of 200-300 degrees C, while wet torrrefaction (WT) is a method in hydrothermal or hot and high pressure water at the tempertures within 180-260 degrees C. Torrrefied biomass is hydrophobic, with lower moisture contents, increased energy density and higher heating value, which are more comparable to the characteristics of coal. With the improvement in the properties, torrefied biomass mainly has three potential applications: combustion or co-firing, pelletization and gasification. Generally, the torrefaction technology can accelerate the development of biomass utilization technology and finally realize the maximum applications of biomass energy.

  10. A new integration model of the calcium looping technology into coal fired power plants for CO_2 capture

    International Nuclear Information System (INIS)

    Ortiz, C.; Chacartegui, R.; Valverde, J.M.; Becerra, J.A.

    2016-01-01

    Highlights: • A CaL-CFPP (coal fired power plant) integration model is proposed and efficiency penalty is estimated. • Carbonation in the diffusion stage is considered to predict the capture efficiency. • Low efficiency penalty may be achieved by operating with longer particles’ residence time. • Simulation results show that the energy penalty ranges between 4% and 7% points. - Abstract: The Ca-Looping (CaL) process is at the root of a promising 2nd generation technology for post-combustion CO_2 capture at coal fired power plants. The process is based on the reversible and quick carbonation/calcination reaction of CaO/CaCO_​_3 at high temperatures and allows using low cost, widely available and non toxic CaO precursors such as natural limestone. In this work, the efficiency penalty caused by the integration of the Ca-looping technology into a coal fired power plant is analyzed. The results of the simulations based on the proposed integration model show that efficiency penalty varies between 4% and 7% points, which yields lower energy costs than other more mature post-combustion CO_2 capture technologies such as the currently commercial amine scrubbing technology. A principal feature of the CaL process at CO_2 capture conditions is that it produces a large amount of energy and therefore an optimized integration of the systems energy flows is essential for the feasibility of the integration at the commercial level. As a main novel contribution, CO_2 capture efficiency is calculated in our work by considering the important role of the solid-state diffusion controlled carbonation phase, which becomes relevant when CaO regeneration is carried out under high CO_2 partial pressure as is the case with the CaL process for CO_2 capture. The results obtained based on the new model suggest that integration energy efficiency would be significantly improved as the solids residence time in the carbonator reactor is increased.

  11. Quarterly coal report, January--March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.

    1998-08-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for January through March 1998 and aggregated quarterly historical data for 1992 through the fourth quarter of 1997. Appendix A displays, from 1992 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. 58 tabs.

  12. Quarterly coal report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

  13. Fiscal 2001 achievement report. Development of coal gas production technology for fuel cells - Research using pilot test facility - for public release (Test result report - 2/3); 2001 nendo seika hokokusho (Kokai you). Nenryo denchi you sekitan gas seizo gijutsu kaihatsu - Pilot shiken setsubi ni yoru kenkyu (Shiken kekka hokokusho 2/3)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    For the development of a coal gasification furnace optimum for fuel cells, a pilot test facility was constructed, and the results of tests and inspections conducted therefor are put together. They include an individual test of the receiving pit hopper vibrator, individual test of the pulverized coal related rotary valve, individual test of the pretreatment compressed air fan, individual test of the coal pulverizer lubricating device, individual test of the coal pulverizer pressure device, individual test of the coal pulverizer, individual test of the coal pulverizer motor, individual test of the coal feeder, individual test of the pulverized coal bunker exhaust fan, individual test of the pulverized coal bunker exhaust fan motor, test of capacity for pulverized coal, individual test of the pulverized coal conveyer blower, test of the sequence of the same, test of pulverizer inert clearing, individual test of the pretreatment condensed water pump in the coal pretreatment device, test of airborne conveyance in the same, verification test of inter-hopper transfer in the same, test of coal pulverization in the same, test operation of the raw material air/low pressure nitrogen compressor in the air separation facility, test operation of the raw material air freezer in the same, and a test operation of the MS adsorber/MS regeneration electric heater. (NEDO)

  14. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  15. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  16. Corrosion behavior of Haynes {sup registered} 230 {sup registered} nickel-based super-alloys for integrated coal gasification combined cycle syngas plants. A plant exposure study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sungkyu; Lee, Jieun; Kang, Suk-Hwan; Lee, Seung-Jong; Yun, Yongseung [Institute for Advanced Engineering (IAE), Gyeonggi-do (Korea, Republic of). Plant Engineering Center; Kim, Min Jung [Sungkyunkwan Univ, Gyeonggi-do (Korea, Republic of). Advanced Materials Technology Research Center

    2015-07-01

    The corrosion behavior of commercially available Haynes {sup registered} 230 {sup registered} nickel-based alloy samples was investigated by exposure to coal-gasifying integrated coal gasification combined cycle pilot plant facilities affiliated with the Institute for Advanced Engineering (2.005 MPa and 160-300 C). The morphological and microstructural analyses of the exposed samples were conducted using scanning electron microscopy and energy-dispersive X-ray spectroscopy analysis on the external surface of the recovered corrosion test samples to obtain information of the corrosion scale. These analyses based on the pre- and post-exposure corrosion test samples combined with thermodynamic Ellingham-Pourbaix stability diagrams provided preliminary insight into the mechanism of the observed corrosion behavior prevailing in the piping materials that connected the particulate removal unit and water scrubber of the integrated coal gasification combined cycle pilot plant. Uniform material wastage was observed after 46 hours of operation, and a preliminary corrosion mechanism was suggested: the observed material waste and corrosion behavior of the Haynes {sup registered} 230 {sup registered} nickel-based alloy samples cut off from the coal syngas integrated coal gasification combined cycle plant were explained by the formation of discontinuous (complex) oxide phases and subsequent chlorine-induced active oxidation under the predominantly reducing environment encountered. This contribution continues the already published studies of the Fe-Ni-Cr-Co alloy Haynes {sup registered} 556 {sup registered}.

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  18. Fiscal 1990 report on the bituminous coal liquefaction section meeting; 1990 nendo rekiseitan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    At the 1st, 2nd, and 3rd group meetings held for the fiscal year, reports are delivered and discussions are made concerning the progress of research and development activities. Reported and discussed in relation to the pilot plant support research, etc., are studies with the 1t/d PSU (process supporting unit) (Nippon Steel Corporation, Mitsui Coal Liquefaction Co., Ltd., and Japan Coal Oil Co., Ltd.); development of an optimum coal refining technique (Sumitomo Coal Mining Co., Ltd.); development of an optimum pretreatment technique and improvement on distillate distribution (Sumitomo Metal Industries, Ltd.); studies of coal liquefaction conditions (Mitsui Engineering and Shipbuilding Co., Ltd.); and studies of solvent hydrogenation catalysts (Sumitomo Metal Mining Co., Ltd., and Chiyoda Corp.). Reported and discussed in relation to researches using a bituminous coal liquefaction pilot plant are the progress of the 150t/d PP (pilot plant) effort (Japan Coal Oil Co., Ltd.) and the outlines of pilot surveys (Japan Coal Oil Co., Ltd.), the latter covering liquefaction solvent performance optimization, slurry pre-heating furnaces, coal slurry properties, and so forth. (NEDO)

  19. Unified integration intervals for the structural characterization of oil, coal or fractions there of by 1h NMR and 13c NMR

    International Nuclear Information System (INIS)

    Avella, Eliseo; Fierro, Ricardo

    2010-01-01

    Based on an analysis of publications reported between 1972 and 2006, it became clear that there are inaccuracies in the limits of the ranges of integration that the authors assigned to signals in nuclear magnetic resonance (NMR) to the structural characterization of petroleum, coals and their derived fractions, from their hydrogen (1H NMR) and carbon (13C NMR) spectra. Consequently, consolidated limits were determined for the integration of 1H NMR spectra and 13C NMR of these samples using a statistical treatment applied to the limits of integration intervals already published. With these unified limits, correlation NMR charts were developed that are useful for the allocation of the integral at such intervals, and at smaller intervals defined in terms of the intersection between different assignments. Also raised equations needed to establish the integral attributable to specific fragments in an attempt to make a more accurate structural characterization from NMR spectra of oil, coal or fractions derived.

  20. DEVELOPMENT AND DEMONSTRATION OF INTEGRATED CARBON RECOVERY SYSTEMS FROM FINE COAL PROCESSING WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Y.P. Chugh; D. Patil; A. Patwardhan; R.Q. Honaker; B.K. Parekh; D. Tao; Latif Khan

    2000-07-01

    The project involves the development of an efficient, environmentally friendly system for the economical recovery of carbon from fine-coal refuse ponds. The project will be conducted in two phases. Phase I was involved in the development and evaluation of process equipment and techniques to be used in carbon recovery, product dewatering and reconstitution, and refuse management. Phase II will integrate the various units into a continuously operating circuit that will be demonstrated at a site selected based on the results presented in this study.

  1. Coal gasification and the power production market

    International Nuclear Information System (INIS)

    Howington, K.; Flandermeyer, G.

    1995-01-01

    The US electric power production market is experiencing significant changes sparking interest in the current and future alternatives for power production. Coal gasification technology is being marketed to satisfy the needs of the volatile power production industry. Coal gasification is a promising power production process in which solid coal is burned to produce a synthesis gas (syn gas). The syn gas may be used to fuel combustion integrated into a facility producing electric power. Advantages of this technology include efficient power production, low flue gas emissions, flexible fuel utilization, broad capability for facility integration, useful process byproducts, and decreased waste disposal. The primary disadvantages are relatively high capital costs and lack of proven long-term operating experience. Developers of coal gasification intend to improve on these disadvantages and lop a strong position in the power generation market. This paper is a marketing analysis of the partial oxidation coal gasification processes emerging in the US in response to the market factors of the power production industry. A brief history of these processes is presented, including the results of recent projects exploring the feasibility of integrated gasification combined cycle (IGCC) as a power production alternative. The current power generation market factors are discussed, and the status of current projects is presented including projected performance

  2. Report for the coal type committee in fiscal 1992; 1992 nendo tanshu iinkai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper reports the activities of the coal type committee in fiscal 1992, and summarizes the main technological achievements. In the Chinese coal liquefaction test, fiscal 1991 has performed liquefaction tests on Fushun coal by using a small continuous testing facility (0.1 t/d) at the Coal Chemistry Research Institute in Beijing. Fiscal 1992 has completed the liquefaction tests on Shengli coal. In October, a liquefaction test was carried out by using Tianzhu coal according to the NEDOL process. This paper reports the result of the liquefaction test on the Shengli coal, and the result of the analysis on the Fushun coal liquefied oil. The coal type selection and investigation having been performed to date reveals close correlation among the maceral composition of coal, coal rank and liquefied oil yield. Coals having good reactivity and suitable for liquefaction are generally suitable also for gasification. In the pretreatment of coal as a gasification material for hydrogen manufacture, a test was performed by using A heavy oil and tar sand bitumen plus A heavy oil as the granulating agents. With Montana coal, the highest de-ashing rate was achieved when the oil was added at 35% by weight. Both of the reaction rate and oil yield were improved. A handling test was carried out up to 72.5 degrees C, wherein Tatung coal presented no problems in both of the discharging and sticking tendencies. (NEDO)

  3. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  4. Statistical modeling of an integrated boiler for coal fired thermal power plant.

    Science.gov (United States)

    Chandrasekharan, Sreepradha; Panda, Rames Chandra; Swaminathan, Bhuvaneswari Natrajan

    2017-06-01

    The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R 2 analysis and ANOVA (Analysis of Variance). The dependability of the process variable (temperature) on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM) supported by DOE (design of experiments) are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant.

  5. Coal structure and reactivity changes induced by chemical demineralisation

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Pevida, C.; Garcia, R.; Pis, J.J. [Department of Energy and Environment, Instituto Nacional del Carbon, CSIC, Apartado 73, 33080 Oviedo (Spain); Steel, K.M.; Patrick, J.W. [Fuel Technology Group, School of Chemical, Environmental and Mining Engineering, Nottingham University, University Park, NG7 2RD Nottingham (United Kingdom)

    2002-12-01

    The aim of this work was to determine the influence that an advanced demineralisation procedure has on the combustion characteristics of coal. A high-volatile bituminous coal with 6.2% ash content was treated in a mixture of hydrofluoric and fluorosilicic acids (HF/H{sub 2}SiF{sub 6}). Nitric acid was used either as a pretreatment, or as a washing stage after HF/H{sub 2}SiF{sub 6} demineralisation, with an ash content as low as 0.3% being attained in the latter case. The structural changes produced by the chemical treatment were evaluated by comparison of the FTIR spectra of the raw and treated coal samples. The devolatilisation and combustibility behaviour of the samples was studied by using a thermobalance coupled to a mass spectrometer (TGA-MS) for evolved gas analysis. The combustibility characteristics of the cleaned samples were clearly improved, there being a decrease in SO{sub 2} emissions.

  6. Effects of Mikania glomerata Spreng. and Mikania laevigata Schultz Bip. ex Baker (Asteraceae) extracts on pulmonary inflammation and oxidative stress caused by acute coal dust exposure

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, T.P.; Silveira, P.C.; Rocha, L.G.; Rezin, G.T.; Rocha, J.; Citadini-Zanette, V.; Romao, P.T.; Dal-Pizzol, F.; Pinho, R.A.; Andrade, V.M.; Streck, E.L. [University Extremo Catarinense, Criciuma (Brazil)

    2008-12-15

    Several studies have reported biological effects of Mikania glomerata and Mikania laevigata, used in Brazilian folk medicine for respiratory diseases. Pneumoconiosis is characterized by pulmonary inflammation caused by coal dust exposure. In this work, we evaluated the effect of pretreatment with M. glomerata and M. laevigata extracts (MGE and MLE, respectively) (100 mg/kg, s.c.) on inflammatory and oxidative stress parameters in lung of rats subjected to a single coal dust intratracheal instillation. Rats were pretreated for 2 weeks with saline solution, MGE, or MLE. On day 15, the animals were anesthetized, and gross mineral coal dust or saline solutions were administered directly in the lung by intratracheal instillation. Fifteen days after coal dust instillation, the animals were killed. Bronchoalveolar lavage (BAL) was obtained; total cell count and lactate dehydrogenase (LDH) activity were determined. In the lung, myeloperoxidase activity, thiobarbituric acid-reactive substances (TBARS) level, and protein carbonyl and sulfhydryl contents were evaluated. In BAL of treated animals, we verified an increased total cell count and LDH activity. MGE and MLE prevented the increase in cell count, but only MLE prevented the increase in LDH. Myeloperoxidase and TBARS levels were not affected, protein carbonylation was increased, and the protein thiol levels were decreased by acute coal dust intratracheal administration. The findings also suggest that both extracts present an important protective effect on the oxidation of thiol groups. Moreover, pretreatment with MGE and MLE also diminished lung inflammatory infiltration induced by coal dust, as assessed by histopathologic analyses.

  7. Technology for beneficiation of non-coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Bose, S.K.

    1987-04-01

    This article outlines the need for efficient non-coking coal beneficiation plants in India to cope with mass production from opencast coal mines. The existing use of magnetite in heavy medium separation processes is expensive and not very efficient in respect to removing shales from opencast lump coals. Instead a new technique is proposed using a ROMJIG washing plant developed in the Federal Republic of Germany. This provides a very efficient, low cost washing system for the coals and allows the continued integration with the coal blending plants. This simplified technology allows for flexible working hours to meet demand and will allow new developments to continue including fuel slurry pipelines, automated testing of coals and new pulverized boiler fuels.

  8. Genotoxic Evaluation of Mikania laevigata Extract on DNA Damage Caused by Acute Coal Dust Exposure

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, T.P.; Heuser, V.D.; Tavares, P.; Leffa, D.D.; da Silva, G.A.; Citadini-Zanette, V.; Romao, P.R.T.; Pinho, R.A.; Streck, E.L.; Andrade,V.M. [University of Extremo Catarinense, Criciuma, SC (Brazil)

    2009-06-15

    We report data on the possible antigenotoxic activity of Mikania laevigata extract (MLE) after acute intratracheal instillation of coal dust using the comet assay in peripheral blood, bone marrow, and liver cells and the micronucleus test in peripheral blood of Wistar rats. The animals were pretreated for 2 weeks with saline solution (groups 1 and 2) or MLE (100 mg/kg) (groups 3 and 4). On day 15, the animals were anesthetized with ketamine (80 mg/kg) and xylazine (20 mg/kg), and gross mineral coal dust (3 mg/0.3 mL saline) (groups 2 and 4) or saline solution (0.3 mL) (groups 1 and 3) was administered directly in the lung by intratracheal administration. Fifteen days after coal dust or saline instillation, the animals were sacrificed, and the femur, liver, and peripheral blood were removed. The results showed a general increase in the DNA damage values at 8 hours for all treatment groups, probably related to surgical procedures that had stressed the animals. Also, liver cells from rats treated with coal dust, pretreated or not with MLE, showed statistically higher comet assay values compared to the control group at 14 days after exposure. These results could be expected because the liver metabolizes a variety of organic compounds to more polar by-products. On the other hand, the micronucleus assay results did not show significant differences among groups. Therefore, our data do not support the antimutagenic activity of M. laevigata as a modulator of DNA damage after acute coal dust instillation.

  9. Modeling of integrated environmental control systems for coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to conventional'' technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  10. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  11. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  12. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  13. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  14. Removal of pollutants from poor quality coals by pyrolysis

    Directory of Open Access Journals (Sweden)

    Natas Panagiotis

    2006-01-01

    Full Text Available Combustion of poor quality coals and wastes is used today worldwide for energy production. However, this entails significant environmental risks due to the presence of polluting compounds in them, i. e. S, N, Hg, and Cl. In the complex environment of combustion these substances are forming conventional (i. e. SOx, NOx and toxic (PCDD/Fs pollutants, while, the highly toxic Hg is volatilized in the gas phase mainly as elemental mercury. Aiming to meet the recently adopted strict environmental standards, and the need of affordable in cost clean power production, a preventive fuels pre-treatment technique, based on low temperature carbonization, has been tested. Clean coals were produced from two poor quality Greek coals (Ptolemais and Megalopolis and an Australian coal sample, in a lab-scale fixed bed reactor under helium atmosphere and ambient pressure. The effect of carbonization temperature (200-900 °C and residence time (5-120 minutes on the properties of the chars, obtained after pyrolysis, was investigated. Special attention was paid to the removal of pollutants such as S, N, Hg, and Cl. To account for possible mineral matter effects, mainly on sulphur removal, tests were also performed with demineralized coal. Reactivity variation of produced clean coals was evaluated by performing non-isothermal combustion tests in a TA Q600 thermo gravimetric analyzer. Results showed that the low temperature carbonization technique might contribute to clean coal production by effectively removing the major part of the existing polluting compounds contained in coal. Therefore, depending on coal type, nitrogen, mercury, and chlorine abatement continuously increases with temperature, while sulphur removal seems to reach a plateau above 500-600 °C. More-over, the prolongation of carbonization time above 20 minutes does not affect the elemental conversion of the pollutants and carbonization at 500-600 °C for ~20 minutes may be considered sufficient for clean

  15. Evaluation of risk strategy and market efficiency in the International coal market: A case study of the Japanese coking coal market

    International Nuclear Information System (INIS)

    Wang, T.

    1992-01-01

    Market efficiency and buyers' risk strategy in the Japanese coking import market are examined. The Japanese coal market is found to be inefficient. Japanese buyers traditionally have purchased coals from the United States at a high price and, since the second half of the 1980's, have paid the highest average price to Canadian producers. Given the abundant low cost Australian coals, this purchasing pattern does not meet the cost minimization criteria for efficiency. This is explained mainly by the buyers' risk management strategy. To more accurately examine price differentiation, the complexity of coal quality is considered first. A statistical method is used to estimate comparison of supply regions and a detailed investigation on market conduct is based on quality-adjusted prices, which are assumed to represent the prices of homogeneous coals. Although various reasons are used by researchers to explain Japanese buyers power, this study finds vertical integration of the Japanese companies to be the most important factor creating that power. A detailed survey of vertical integration is made. Finally, a monetary value of the risk premium is estimated by using the partial elasticity of substitution. Total payments by Japanese coking coal buyers for risk premiums are estimated. These represent the extra dollars paid by the Japanese to US and Canadian coal producers for purchasing their coals instead of Australian coals

  16. Development of an integrated research and development program on eastern Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, D

    1981-01-01

    Coal production and use, R and D performers on eastern Canadian coals, coordination of an R and D program, technical problems of the coal industry and R and D requirements, and recommendations for a research and development program are described. (27 refs.)

  17. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  18. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  19. Evaluation criteria for enhanced solar–coal hybrid power plant performance

    International Nuclear Information System (INIS)

    Zhao, Yawen; Hong, Hui; Jin, Hongguang

    2014-01-01

    Attention has been directed toward hybridizing solar energy with fossil power plants since the 1990s to improve reliability and efficiency. Appropriate evaluation criteria were important in the design and optimization of solar–fossil hybrid systems. Two new criteria to evaluate the improved thermodynamic performances in a solar hybrid power plant were developed in this study. Correlations determined the main factors influencing the improved thermodynamic performances. The proposed criteria can be used to effectively integrate solar–coal hybridization systems. Typical 100 MW–1000 MW coal-fired power plants hybridized with solar heat at approximately 300 °C, which was used to preheat the feed water before entering the boiler, were evaluated using the criteria. The integration principle of solar–coal hybrid systems was also determined. The proposed evaluation criteria may be simple and reasonable for solar–coal hybrid systems with multi-energy input, thus directing system performance enhancement. - Highlights: • New criteria to evaluate the solar hybrid power plant were developed. • Typical solar–coal hybrid power plants were evaluated using the criteria. • The integration principle of solar–coal hybrid systems was determined. • The benefits of the solar–coal hybrid system are enhanced at lower solar radiation

  20. Quarterly coal report, April--June 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  1. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  2. Combined Mechanical Destruction and Alkaline Pretreatment of Wheat Straw for Enhanced Enzymatic Saccharification

    Directory of Open Access Journals (Sweden)

    Qianqian Wang

    2014-09-01

    Full Text Available Wheat straw was pretreated by combined mechanical destruction and alkaline pretreatments to enhance enzymatic saccharification. Four strategies were employed to evaluate the potential of wheat straw as a feedstock for fermentable sugar production. The effects of the pretreatments on the substrate morphology, size distribution, chemical composition, and cellulose crystallinity, along with the subsequent enzymatic digestibility, were investigated. Optical microscope images showed that mechanical pretreatment alone resulted in poor fiber defibrillation, wherein samples mostly consisted of rigid fiber bundles, while integrated mechanical destruction and alkaline pretreatment led to relatively good fiber defibrillation. Low temperature NaOH/urea pretreatment can fibrillate the rigid fiber bundles into a relatively loose network and alter the structure of the treated substrate to make cellulose more accessible. The glucan conversion rates were 77% and 95% for integrated mechanical destruction and alkaline pretreatments and mechanical destruction followed by low temperature NaOH/urea and ammonium/urea pretreatments, respectively, after 72 h of enzymatic hydrolysis with enzyme loadings of 10 FPU cellulase per g of oven-dry substrate.

  3. Report on evaluation/selection surveys on coal species, processes and others. Appendix; Tanshu process nado hyoka sentei chosa hokokusho. Furoku

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This report, consisting of 7 chapters, summarizes literature related to liquefaction of coal. Chapter 1 describes the results of the (Project Lignite), i.e., development of the concept of two-stage liquefaction of lignite. Chapter 2 describes the COSTEAM process, which uses synthesis gas (CO-H{sub 2}) as the reducing agent and coal moisture as the hydrogen source for liquefaction of coal of low degree of carbonization, e.g., brown coal. Chapter 3 describes solubilization of coal with alcohol, where coal is reacted with ethanol and NaOH at 300 to 420 degrees C. Chapter 4 describes liquefaction of coal and production of lighter products with tetrahydroquinoline as the hydrogen donor. Chapter 5 describes low-temperature carbonization as the process for liquefying coal, in particular brown coal. Chapter 6 describes possibility of development of new liquefaction techniques for brown coal, including solvolysis for liquefaction, role, recovery and reuse of catalysts, short contact time processes, and coal pretreatment. Chapter 7 describes economic viability of the secondary hydrogenation. (NEDO)

  4. Statistical modeling of an integrated boiler for coal fired thermal power plant

    Directory of Open Access Journals (Sweden)

    Sreepradha Chandrasekharan

    2017-06-01

    Full Text Available The coal fired thermal power plants plays major role in the power production in the world as they are available in abundance. Many of the existing power plants are based on the subcritical technology which can produce power with the efficiency of around 33%. But the newer plants are built on either supercritical or ultra-supercritical technology whose efficiency can be up to 50%. Main objective of the work is to enhance the efficiency of the existing subcritical power plants to compensate for the increasing demand. For achieving the objective, the statistical modeling of the boiler units such as economizer, drum and the superheater are initially carried out. The effectiveness of the developed models is tested using analysis methods like R2 analysis and ANOVA (Analysis of Variance. The dependability of the process variable (temperature on different manipulated variables is analyzed in the paper. Validations of the model are provided with their error analysis. Response surface methodology (RSM supported by DOE (design of experiments are implemented to optimize the operating parameters. Individual models along with the integrated model are used to study and design the predictive control of the coal-fired thermal power plant. Keywords: Chemical engineering, Applied mathematics

  5. Determination of Kinetic Parameters of Coal Pyrolysis to Simulate the Process of Underground Coal Gasification (UCG

    Directory of Open Access Journals (Sweden)

    Beata Urych

    2014-01-01

    Originality/value: The devolatilization of a homogenous lump of coal is a complex issue. Currently, the CFD technique (Computational Fluid Dynamics is commonly used for the multi-dimensional and multiphase phenomena modelling. The mathematical models, describing the kinetics of the decomposition of coal, proposed in the article can, therefore, be an integral part of models based on numerical fluid mechanics.

  6. The directory of US coal and technology export resources

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The purpose of The Directory remains focused on offering a consolidated resource to potential buyers of US coal, coal technology, and expertise. This is consistent with the US policy on coal and coal technology trade, which continues to emphasize export market strategy implementation. Within this context, DOE will continue to support the teaming'' approach to marketing; i.e., vertically integrated large project teams to include multiple industry sectors, such as coal producers, engineering and construction firms, equipment manufacturers, financing and service organizations.

  7. Ninth annual international Pittsburgh coal conference - proceedings

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Over 200 papers are presented under the following headings: coal preparation; Clean Coal Technology Program status; pre- and post-utilization processing; advanced conversion technologies; integrated gasification combined cycle; indirect liquefaction; advanced liquefaction process development; conversion processes; coal - from a user's perspective; issues associated with coal use in heat engines; fundamentals of combustion; advanced combustion systems; low quality fuel applications/fluidised beds; combustion systems; ash and sludge disposal/utilization; developing SO 2 /NO x control technologies; technical overview of air toxics; scientific, economic and policy perspectives on global climate change; Clean Air Act compliance strategies; environmental policy/technology; spontaneous combustion; and special topics

  8. Coal, energy of the future

    International Nuclear Information System (INIS)

    Lepetit, V.; Guezel, J.Ch.

    2006-01-01

    Coal is no longer considered as a 'has been' energy source. The production and demand of coal is growing up everywhere in the world because it has some strategic and technological advantages with respect to other energy sources: cheap, abundant, available everywhere over the world, in particular in countries with no geopolitical problems, and it is independent of supplying infrastructures (pipelines, terminals). Its main drawback is its polluting impact (dusts, nitrogen and sulfur oxides, mercury and CO 2 ). The challenge is to develop clean and high efficiency coal technologies like supercritical steam power plants or combined cycle coal gasification plants with a 50% efficiency, and CO 2 capture and sequestration techniques (post-combustion, oxy-combustion, chemical loop, integrated gasification gas combined cycle (pre-combustion)). Germany, who will abandon nuclear energy by 2021, is massively investing in the construction of high efficiency coal- and lignite-fired power plants with pollution control systems (denitrification and desulfurization processes, dust precipitators). (J.S.)

  9. Fiscal 1996 survey report on the environmentally friendly type coal utilization system feasibility study. Feasibility study of the environmentally friendly type coal utilization system in Thailand; Kankyo chowagata sekitan riyo system kanosei chosa. Tai ni okeru kankyo chowagata sekitan riyo system kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper investigated and studied the present situation and future trend of coal utilization and distribution in Thailand, and the present situation of environmental effects and the measures taken for environmental protection. Around 2010, coal will probably be produced only at EGAT`s Mae Moh (MM) coal mine. Demand for overseas coal is expected to be 40-50 million tons in 2011, and preparation of the coal center becomes a subject. For general industry use coal, pretreatment such as coal preparation, coal blending and briquetting is needed, considering coal quality, usage, transport distance and environmental effects. Brown coal of MM coal mine is a lignite with high sulfur, high ash content and low heating value. Wide spread of its use can be expected if upgrading is possible such as desulfurization, deashing, increasing heating value. In the electric power generation field, the absorber was installed at the existing boiler of the mine-mouth generating plant to conduct a verification test on high grade desulfurization of ultra-high sulfur lignite. In the industry field, the circulating fluidized bed boiler was adopted. In the residential/commercial field, introduction of briquette was proposed. 80 refs., 84 tabs.

  10. Prospects for advanced coal-fuelled fuel cell power plants

    International Nuclear Information System (INIS)

    Jansen, D.; Laag, P.C. van der; Oudhuis, A.B.J.; Ribberink, J.S.

    1994-01-01

    As part of ECN's in-house R and D programmes on clean energy conversion systems with high efficiencies and low emissions, system assessment studies have been carried out on coal gasification power plants integrated with high-temperature fuel cells (IGFC). The studies also included the potential to reduce CO 2 emissions, and to find possible ways for CO 2 extraction and sequestration. The development of this new type of clean coal technology for large-scale power generation is still far off. A significant market share is not envisaged before the year 2015. To assess the future market potential of coal-fuelled fuel cell power plants, the promise of this fuel cell technology was assessed against the performance and the development of current state-of-the-art large-scale power generation systems, namely the pulverized coal-fired power plants and the integrated coal gasification combined cycle (IGCC) power plants. With the anticipated progress in gas turbine and gas clean-up technology, coal-fuelled fuel cell power plants will have to face severe competition from advanced IGCC power plants, despite their higher efficiency. (orig.)

  11. Report on evaluation/selection surveys on coal species, processes and others; Tanshu process nado hyoka sentei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program analyzes the applicable coal species centered by Australia's Victoria brown coal and Chinese coal, which are promising alternative fuel sources for Japan for their reserves, prices, availability, suitability for liquefaction, etc, in order to clarify the possible problems, and commercialize the liquefaction techniques in the early stage. This report consists of 6 chapters. Chapter 1 describes development situations of brown coal, specifically for Australia's Victoria brown coal and Chinese coal. Chapter 2 describes characteristics of the reactions involved in the brown coal liquefaction. Chapter 3 describes current status of various liquefaction processes (solvolysis, solvent extraction, direct hydrogenation and C-SRC) under development in Japan, and problems involved in their future developments. Chapter 4 describes current status of the elementary techniques, e.g., those for slurry pretreatment (e.g., dehydration and crushing), solid/liquid separation, secondary hydrogenation, product upgrading and gasification. Chapter 5 describes the related techniques, and Chapter 6 discusses the demonstration survey results of de-ashing, primary/secondary hydrogenation, and dehydration of brown coal. (NEDO)

  12. Report on evaluation/selection surveys on coal species, processes and others; Tanshu process nado hyoka sentei chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This program analyzes the applicable coal species centered by Australia's Victoria brown coal and Chinese coal, which are promising alternative fuel sources for Japan for their reserves, prices, availability, suitability for liquefaction, etc, in order to clarify the possible problems, and commercialize the liquefaction techniques in the early stage. This report consists of 6 chapters. Chapter 1 describes development situations of brown coal, specifically for Australia's Victoria brown coal and Chinese coal. Chapter 2 describes characteristics of the reactions involved in the brown coal liquefaction. Chapter 3 describes current status of various liquefaction processes (solvolysis, solvent extraction, direct hydrogenation and C-SRC) under development in Japan, and problems involved in their future developments. Chapter 4 describes current status of the elementary techniques, e.g., those for slurry pretreatment (e.g., dehydration and crushing), solid/liquid separation, secondary hydrogenation, product upgrading and gasification. Chapter 5 describes the related techniques, and Chapter 6 discusses the demonstration survey results of de-ashing, primary/secondary hydrogenation, and dehydration of brown coal. (NEDO)

  13. Role of bioavailable iron in coal dust-induced activation of activator protein-1 and nuclear factor of activated T cells: difference between Pennsylvania and Utah coal dusts.

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2002-11-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers' pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH(2)-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions.

  14. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  15. National Coal Utilization Assessment. An integrated assessment of increased coal use in the Midwest: impacts and constraints. [14 states Midwest region

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    This study examines the impacts and constraints to increased coal production and use for a 14-state Midwestern region. The assessment considers technology characteristics, energy supply and demand trends, siting constraints, impacts on water availability and coal reserves, impacts on air and water quality, and ecosystems, effects of trace elements, social and economic impacts, and health risks. The significant air quality constraints to coal use are related to the short-term National Ambient Air Quality Standards, PSD standards, and exposure to sulfates. In general, cumulative water supply in the 14-state region is adequate to satisfy foreseeable energy requirements; however, on a localized basis significant water shortages may develop which could constrain a smaller portion of the energy development. Water quality impacts are primarily restricted to areas with insufficient water resources. Coal mining will continue to have significant effects on water quality in smaller streams draining the major coal regions unless strict control practices are maintained. Coal-conversion plants may cause localized water quality problems; however, the effluent characteristics of these plants are not well-known. A significant amount of the coal development is anticipated to occur in counties with high susceptibility to social and economic impacts. The timing, magnitude, and nature of these impacts could be mitigated by the development of effective management strategies.

  16. Radiant-and-plasma technology for coal processing

    Directory of Open Access Journals (Sweden)

    Vladimir Messerle

    2012-12-01

    Full Text Available Radiant-and-plasma technology for coal processing is presented in the article. Thermodynamic computation and experiments on plasma processing of bituminous coal preliminary electron-beam activated were fulfilled in comparison with plasma processing of the coal. Positive influence of the preliminary electron-beam activation of coal on synthesis gas yield was found. Experiments were carried out in the plasma gasifier of 100 kW power. As a result of the measurements of material and heat balance of the process gave the following integral indicators: weight-average temperature of 2200-2300 K, and carbon gasification degree of 82,4-83,2%. Synthesis gas yield at thermochemical preparation of raw coal dust for burning was 24,5% and in the case of electron-beam activation of coal synthesis gas yield reached 36,4%, which is 48% higher.

  17. Women and men coal miners: coping with gender integration underground

    Energy Technology Data Exchange (ETDEWEB)

    Yount, K.R.

    1986-01-01

    The central purpose of this research is to initiate a theoretical understanding of the integration of women into traditionally-male, physical-labor jobs. The primary sources of data consist of in depth interviews with women and men underground coal miners and company personnel, and field notes collected during participant observation work in mining communities. Part I addresses the relationship between conditions of production and modes of interaction in underground mines. Personality traits conceived as aspects of masculinity are traced to efforts to cope with the stressors of engaging in physical labor in a work setting characterized by lack of work autonomy, a high degree of threat, and a high degree of interdependence for task accomplishment. Part II focuses on situational and individual factors affecting the integration of women in the workplace. Although most women miners are satisfied with their work, a gender based division of labor has arisen in which women are concentrated in low-prestige laborer positions. The processes involved in undermining a woman's work reputation and self-concept are summarized and forms of discrimination that recreate aspects of the female sterotype and lead to the development of sex segregation in the workplace are to the development of sex segregation in the workplace are discussed.

  18. A requiem for the European coal and steel community (1952-2002)

    NARCIS (Netherlands)

    Groenendijk, Nico; Hospers, Gerrit J.

    2002-01-01

    In July 2002 the Treaty on the European Coal and Steel Community (ECSC) expired. The ECSC is now being dissolved, its assets are transferred into special research funds, and European coal and steel policy is integrated into mainstream EU industrial policy. The ECSC's main task was to integrate the

  19. Life cycle assessment of sewage sludge co-incineration in a coal-based power station.

    Science.gov (United States)

    Hong, Jingmin; Xu, Changqing; Hong, Jinglan; Tan, Xianfeng; Chen, Wei

    2013-09-01

    A life cycle assessment was conducted to evaluate the environmental and economic effects of sewage sludge co-incineration in a coal-fired power plant. The general approach employed by a coal-fired power plant was also assessed as control. Sewage sludge co-incineration technology causes greater environmental burden than does coal-based energy production technology because of the additional electricity consumption and wastewater treatment required for the pretreatment of sewage sludge, direct emissions from sludge incineration, and incinerated ash disposal processes. However, sewage sludge co-incineration presents higher economic benefits because of electricity subsidies and the income generating potential of sludge. Environmental assessment results indicate that sewage sludge co-incineration is unsuitable for mitigating the increasing pressure brought on by sewage sludge pollution. Reducing the overall environmental effect of sludge co-incineration power stations necessitates increasing net coal consumption efficiency, incinerated ash reuse rate, dedust system efficiency, and sludge water content rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. International Coal Report's coal year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McCloskey, G [ed.

    1991-05-31

    Following introductory articles on factors affecting trade in coal and developments in the freight market, tables are given for coal exports and coal imports for major countries worldwide for 1989 and 1990. Figures are also included for coal consumption in Canada and the Eastern bloc,, power station consumption in Japan, coal supply and demand in the UK, electric utility coal consumption and stocks in the USA, coal production in Australia, Canada and USA by state, and world hard coal production. A final section gives electricity production and hard coal deliveries in the EEC, sales of imported and local coal and world production of pig iron and steel.

  1. Comparison of gamma irradiation and steam explosion pretreatment for ethanol production from agricultural residues

    International Nuclear Information System (INIS)

    Wang, Ke-qin; Xiong, Xing-yao; Chen, Jing-ping; Chen, Liang; Su, Xiaojun; Liu, Yun

    2012-01-01

    It was evaluated the influence of gamma irradiation and steam explosion pretreatment on the components and the water-soluble sugars of rice straw. Compared with the steam explosion pretreated rice straw, cellucose, hemicellucose and lignin for irradiation pretreated rice sample were much more greatly degraded and the relative content of glucose was significantly enhanced from 6.58% to 47.44%. Interestingly, no glucuronide acid was detected in irradiation pretreated rice straw, while glucuronide acid with the content from 8.5 mg/g to 9.2 mg/g was obtained in steam explosion pretreated sample. Followed by enzymatic hydrolysis, higher concentration of reducing sugars (including glucose and xylose) of irradiation pretreated rice sample (90.3 mg/g) was obtained, which was approximately 2.4- and 1.1- fold higher of the unpretreated (37.2 mg/g) and of steam explosion pretreated sample (85.4 mg/g). To further verify the effectiveness of irradiation pretreatment, characterizations of rice straw, corn stalk and bagasse by an integrated process of dilute acid/enzymatic hydrolysis and irradiation pretreatment were also investigated. -- Highlights: ► We compare irradiation and steam explosion pretreatments for bioethanol production. ► We examine changes in compositions of the components and the water-soluble sugars. ► No glucuronide acid was detected in gamma irradiation pretreated rice straw. ► We evaluate an integrated method of acid/enzyme-hydrolyzed irradiation pretreatment.

  2. Fluidized bed selective pyrolysis of coal

    Science.gov (United States)

    Shang, Jer Y.; Cha, Chang Y.; Merriam, Norman W.

    1992-01-01

    The present invention discloses a process for the pyrolysis of coal which comprises the effective utilization of two zonal inclined fluidized beds, where said zones can be selectively controlled as to temperature and heating rate. The first zonal inclined fluidized bed serves as a dryer for crushed coal and additionally is controlled to selectively pyrolyze said coal producing substantially carbon dioxide for recycle use. The second zonal inclined fluidized bed further pyrolyzes the coal to gaseous, liquid and char products under controlled temperature and heating rate zones designed to economically integrate the product mix. The gas and liquid products are recovered from the gaseous effluent stream while the char which remains can be further treated or utilized in a subsequent process step.

  3. Integrated report on the toxicological mitigation of coal liquids by hydrotreatment and other processes. [Petroleum and coal-derived products

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, M.R.; Griest, W.H.; Ho, C.H.; Smith, L.H.; Witschi, H.P.

    1986-06-01

    Research here on the toxicological properties of coal-derived liquids focuses on characterizing the refining process and refined products. Principle attention is given to the potential tumorigenicity of coal-derived fuels and to the identification of means to further reduce tumorigenicity should this be found necessary. Hydrotreatment is studied most extensively because it will be almost certainly required to produce commercial products and because it is likely to also greatly reduce tumorigenic activity relative to that of crude coal-liquid feedstocks. This report presents the results of a lifetime C3H mouse skin tumorigenicity assay of an H-Coal series of oils and considers the relationships between tumorigenicity, chemistry, and processing. Lifetime assay results are reported for an H-Coal syncrude mode light oil/heavy oil blend, a low severity hydrotreatment product, a high severity hydrotreatment product, a naphtha reformate, a heating oil, a petroleum-derived reformate, and a petroleum derived heating oil. Data are compared with those for an earlier study of an SRC-II blend and products of its hydrotreatment. Adequate data are presented to allow an independent qualitative assessment of the conclusions while statistical evaluation of the data is being completed. The report also documents the physical and chemical properties of the oils tested. 33 refs., 14 figs., 53 tabs.

  4. Biodesulphurisation of high sulphur coal by heap leaching

    Energy Technology Data Exchange (ETDEWEB)

    J. Cara; M.T. Carballo; A. Moran; D. Bonilla; O. Escolano; F.J. Garcia Frutos [Universidad de Leon, Leon (Spain). Departamento de Ingenieria Quimica

    2005-10-01

    The biodesulphurisation of coal carried out in pile could be an interesting option to clean coal. In view of the good results obtained in biodesulphurisation test column at lab scale on a sample of semianthracite coal that proceed of an industrial plant with a high sulphur content, mainly pyritic sulphur, the feasibility of the process at pilot plant scale was studied. The pile was formed with 6 ton of gravity middlings coal sample with a grain size -12+0.5 mm from S.A. Hullera Vasco-Leonesa industrial plant. The coal has a total sulphur content of 3.78% and a pyritic sulphur content of 2.88%, the rest of sulphur is organic sulphur. The biodesulphurisation process in pilot plant follows three stages: stabilization of the pile, biodesulphurisation and washing. Heap was sampled twice during stabilisation stage, at the end of desulphurisation process and finally once washed. A pyritic sulphur removal of 39% and total sulphur removal of 23% was obtained. To complete the bioleaching process, the treatment of purge of leachate was carried out with the objective to recycling to head of process. The best treatment was a pre-treatment of the leachate until pH 4, and further treatment by reverse osmosis of the clarified water. Comparing this process with conventional precipitation to reach disposal limits, the reagents consumption and sludges were reduced considerably and due to the high quality of permeate it permits to recycle it to head of process. 18 refs., 6 figs., 6 tabs.

  5. Pretreatment of Real Wastewater from the Chocolate Manufacturing Industry through an Integrated Process of Electrocoagulation and Sand Filtration

    OpenAIRE

    García-Morales, Marco A.; Juárez, Julio César González; Martínez-Gallegos, Sonia; Roa-Morales, Gabriela; Peralta, Ever; del Campo López, Eduardo Martin; Barrera-Díaz, Carlos; Miranda, Verónica Martínez; Blancas, Teresa Torres

    2018-01-01

    The purpose of this study was to evaluate the efficiency of removal of suspended solids in terms of turbidity, color, and chemical oxygen demand (COD) when integrating the electrocoagulation process using aluminum sacrificial anodes and the sand filtration process as a pretreatment of wastewater from the chocolate manufacturing plant in Toluca, México. Wastewater from the chocolate manufacturing industry used in this study is classified as nontoxic, but is characterized as having a high conte...

  6. Effect of structural discontinuities on coal pillar strength as a basis for improving safety in the design of coal pillar systems.

    CSIR Research Space (South Africa)

    Esterhuizen, GS

    1998-12-01

    Full Text Available The stability of underground coal mines depends on the integrity of the pillars which are required to support the overlying strata. Should the pillars collapse, the safety of the persons in the workings will be threatened. The strength of a coal...

  7. New methods in efficient coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, C.O.; Wolach, D.G.; Alexander, A.B. [Savage Industries Inc., Salt Lake City, UT (United States)

    1998-10-01

    With the increasing trend towards railroad mergers in the USA, there is a growing awareness of competition and of the need for railroads to ensure a better value service. This paper discusses the concept of business process outsourcing and its potential to provide an efficient and integrated transport system for coal handling. Examples at US coal distribution facilities are given. 6 photos., 1 fig.

  8. Coal, energy efficiency and environmental issues in South Africa

    International Nuclear Information System (INIS)

    Surridge, A.D.; Grobbelaar, C.J.; Barker, R.; Asamoah, J.K.; Barnard, W.O.

    1997-01-01

    Like China, a large portion of South Africa's primary energy is sourced from coal, and is likely to remain South Africa's major source of energy for the short to medium term. It is imperative to address the environmental dimension as an integral component of coal energy considerations. This issue is discussed through energy efficiency, and South Africa's Low-Smoke Coal Programme as it pertains to the use of coal in households. South Africa is engaged on several other programmes to minimise the impact of coal on the atmospheric environment. Some of those activities have been outlined in this paper. (R.P.)

  9. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Qian, Xiangchen; Wang, Chao; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao

    2012-01-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  10. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  11. Investigation of the impacts of thermal pretreatment on waste activated sludge and development of a pretreatment model.

    Science.gov (United States)

    Burger, Gillian; Parker, Wayne

    2013-09-15

    This study investigated the impacts of high pressure thermal hydrolysis (HPTH) pretreatment on the distribution of chemical oxygen demand (COD) species in waste activated sludge (WAS). In the first phase of the project, WAS from a synthetically-fed biological reactor (BR) was fed to an aerobic digester (AD). In the second phase, WAS from the BR was pretreated by HPTH at 150 °C and 3 bars for 30 min prior to being fed to the AD. A range of physical, biochemical and biological properties were regularly measured in each process stream in both phases. The COD of the BR WAS consisted of storage products (XSTO), active heterotrophs (XH) and endogenous decay products (XE). Pretreatment did not increase the extent to which the BR WAS was aerobically digested and hence it was concluded that the unbiodegradable COD fraction, i.e. XE, was unchanged by pretreatment. However, pretreatment did increase the rate of degradation as it converted 36% of XH to readily biodegradable COD (SB) and the remaining XH to slowly biodegradable COD (XB). Furthermore, XSTO was fully converted to SB by pretreatment. Although pretreatment did not change the VSS concentration in the downstream aerobic digester, it did decrease the ISS concentration by 46 ± 11%. This reduced the total mass of solids produced by the digester by 21 ± 8%. A COD-based HPTH pretreatment model was developed and calibrated. When this model was integrated into BioWin 3.1(®), it was able to accurately simulate both the steady state performance of the overall system employed in this study as well as dynamic respirometry results. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Defining geographic coal markets using price data and shipments data

    International Nuclear Information System (INIS)

    Waarell, Linda

    2005-01-01

    Given the importance of coal in world energy supply an analysis of the relevant geographic market is essential for consumers, producers, as well as for competition policy. The purpose of this paper is to define the relevant economic market for steam and coking coal, and to test the hypothesis of single world markets for these coal products. Methodologically the paper relies on two different tests for defining markets, using both shipments data and price data. The results from both methods point in the same direction. In the case of coking coal the results indicate that the market is essentially global in scope, and also that the market has become more integrated over time. The results for steam coal show that the market is more regional in scope, and there exist no clear tendencies of increased integration over time. One policy implication of the finding that the steam coal market is more regional in scope, and thus that the market boundary is smaller than if the market would have been international, is that a merger and acquisition in this market likely would have been of a more concern for antitrust authorities than the same activity on the coking coal market

  13. Increase in extraction yields of coals by water treatment: Beulah-Zap lignite

    Energy Technology Data Exchange (ETDEWEB)

    Masashi Iino; Toshimasa Takanohashi; Takahiro Shishido; Ikuo Saito; Haruo Kumagai [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2007-01-15

    In a previous paper, we have reported that water pretreatments of Argonne premium coals, Pocahontas No. 3 (PO), Upper Freeport (UF), and Illinois No. 6 (IL) at 600 K increased greatly the room-temperature extraction yields with a 1:1 carbon disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent. In this paper, the water treatment of Beulah-Zap (BZ) lignite has been carried out and the results obtained were compared with those for the three bituminous coals above. The extraction yields of BZ with CS{sub 2}/NMP increased from 5.5% for the raw coal to 21.7% by the water treatment at 600 K. Similar to the other three coals, the water treatments at 500 K gave little increase in the yields. The larger decrease in oxygen content and hydrogen-bonded OH and the increase in the methanol swelling ratio by the water treatment suggest that the yield enhancements for BZ are attributed to the removal of oxygen functional groups and the breaking of hydrogen bonds to a greater extent than that for IL. From the characterizations of the treated coals and the extraction temperature dependency of their extraction yields, it is suggested that, for high-coal-rank coals, PO and UF, the breaking of noncovalent bonds such as {pi}-{pi} interactions between aromatic layers and hydrogen bonds is responsible for the extraction yield enhancements. 14 refs., 3 figs., 2 tabs.

  14. Prospecting for coal in China with remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Ke-long Tan; Yu-qing Wan; Sun-xin Sun; Gui-bao Bao; Jing-shui Kuang [Aerophotogrammetry and Remote Sensing Center of China Coal, Xi' an (China)

    2008-12-15

    In China it is important to explore coal prospecting by taking advantage of modern remote sensing and geographic information system technologies. Given a theoretical basis for coal prospecting by remote sensing, the methodologies and existing problems are demonstrated systematically by summarizing past practices of coal prospecting with remote sensing. A new theory of coal prospecting with remote sensing is proposed. In uncovered areas, coal resources can be prospected by direct interpretation. In coal bearing strata of developed areas covered by thin Quaternary strata or vegetation, prospecting for coal can be carried out by indirect interpretation of geomorphology and vegetation. For deeply buried underground deposits, coal prospecting can rely on tectonic structures, interpretation and analysis of new tectonic clues and regularity of coal formation and preservation controlled by tectonic structures. By applying newly hyper-spectral, multi-polarization, multi-angle, multi-temporal and multi-resolution remote sensing data and carrying out integrated analysis of geographic attributes, ground attributes, geophysical exploration results, geochemical exploration results, geological drilling results and remote sensing data by GIS tools, coal geology resources and mineralogical regularities can be explored and coal resource information can be acquired with some confidence. 12 refs., 4 figs., 3 tabs.

  15. Clean coal reference plants: Pulverized coal boiler with flue gas desulfurization. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Clean Coal Technology Demonstration Program (CCT) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of full-scale facilities. The goal of the program is to provide the U.S. energy marketplace with a number of advanced, more efficient, and environmentally responsive coal-using technologies. To achieve this goal, a multiphased effort consisting of five separate solicitations has been completed. The Morgantown Energy Technology Center (METC) has the responsibility for monitoring the CCT Projects within certain technology categories, which, in general, correspond to the center`s areas of technology development. Primarily the categories of METC CCT projects are: atmospheric fluid bed combustion, pressurized fluidized bed combustion, integrated gasification combined cycle, mild gasification, and industrial applications.

  16. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  17. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  18. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  19. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  20. Pilot plant for hydrogasification of coal with nuclear heat

    International Nuclear Information System (INIS)

    Falkenhain, G.; Velling, G.

    1976-01-01

    In the framework of a research and development programme sponsored by the Ministry of Research and Technology of the Federal Republic of Germany, two process variants for hydrogasification of coal by means of nuclear heat have been developed by the Rheinische Braunkohlenwerke AG, Cologne. For testing these process variants a semi-technical pilot plant for gasification of coal under pressure in a fluidized bed was constructed. The pilot plant, in which the gasification of lignite and hard coal is planned, is designed for a throughput of 100kg carbon per hour corresponding to 400kg raw lignite per hour or 150kg hard coal per hour. The plant should provide data on the influence of the most essential process parameters (pressure, temperature, residence time of gas and coal, type and pre-treatment of feed coal) on the performance of gasification and raw gas composition. Different plant components will also be tested. Since the pilot plant will permit testing of both process variants of hydrogasification, it was designed in such a way that it is possible to vary a great number of process parameters. Thus, for instance, the pressure can be chosen in a range up to 100 bar and pure hydrogen or mixtures of hydrogen, carbon monoxide and steam can be applied as gasification agents. The gasifier is an internally insulated fluidized bed reactor with an inner diameter of 200mm and a height of about 8m, to which an internally insulated cyclone for separation of the entrained fines is attached. The raw gas is then cooled down by direct water scrubbing. (author)

  1. Quarterly coal report, October--December 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-05-01

    The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

  2. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes

    International Nuclear Information System (INIS)

    Ionescu, Gabriela; Rada, Elena Cristina; Ragazzi, Marco; Mărculescu, Cosmin; Badea, Adrian; Apostol, Tiberiu

    2013-01-01

    Highlights: • Appropriate solution for MSW management in new and future EU countries. • Decrease of landfill disposal applying an Integrated MSW approach. • Technological impediments and environmental assessment. - Abstract: In this paper an Integrated Municipal Solid Waste scenario model (IMSW-SM) with a potential practical application in the waste management sector is analyzed. The model takes into account quantification and characterization of Municipal Solid Waste (MSW) streams from different sources, selective collection (SC), advanced mechanical sorting, material recovery and advanced thermal treatment. The paper provides a unique chain of advanced waste pretreatment stages of fully commingled waste streams, leading to an original set of suggestions and future contributions to a sustainable IMSWS, taking into account real data and EU principles. The selection of the input data was made on MSW management real case studies from two European regions. Four scenarios were developed varying mainly SC strategies and thermal treatment options. The results offer useful directions for decision makers in order to calibrate modern strategies in different realities

  3. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The objective of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines.

  4. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. (Advanced Fuel Research, Inc., East Hartford, CT (United States)); Smoot, L.D.; Brewster, B.S. (Brigham Young Univ., Provo, UT (United States))

    1991-09-25

    The objectives of this study are to establish the mechanisms and rates of basic steps in coal conversion processes, to integrate and incorporate this information into comprehensive computer models for coal conversion processes, to evaluate these models and to apply them to gasification, mild gasification and combustion in heat engines. (VC)

  5. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  6. European coal technology applied by the Danish power companies

    Energy Technology Data Exchange (ETDEWEB)

    Frydenberg, B. [Elsamprojekt A/S, Fredericia (Denmark)

    1996-12-31

    The development of coal-fired power plants has shown remarkable improvements with regard to efficiency and cleaner technology, and as coal remains the most important fuel for electric power production, it is important to make use of this technological development to reduce CO{sub 2} emissions. Of the three available technologies: Integrated Coal Gasification and Combined Cycle, Fluid Bed Combustion and Pulverised Coal with Ultra Supercritical Steam Data, the technology chosen by I/S ELSAM is the PC-USC with power production efficiencies growing from 45% to 50%. 5 figs., 1 tab.

  7. Nanometre-sized pores in coal: Variations between coal basins and coal origin

    Science.gov (United States)

    Sakurovs, Richard; Koval, Lukas; Grigore, Mihaela; Sokolava, Anna; Ruppert, Leslie F.; Melnichenko, Yuri B.

    2018-01-01

    We have used small angle neutron scattering (SANS) to investigate the differences in methane and hexane penetration in pores in bituminous coal samples from the U.S., Canada, South Africa, and China, and maceral concentrates from Australian coals. This work is an extension of previous work that showed consistent differences between the extent of penetration by methane into 10–20 nm size pores in inertinite in bituminous coals from Australia, North America and Poland.In this study we have confirmed that there are differences in the response of inertinite to methane and hexane penetration in coals sourced from different coal basins. Inertinite in Permian Australian coals generally has relatively high numbers of pores in the 2.5–250 nm size range and the pores are highly penetrable by methane and hexane; coals sourced from Western Canada had similar penetrability to these Australian coals. However, the penetrability of methane and hexane into inertinite from the Australian Illawarra Coal Measures (also Permian) is substantially less than that of the other Australian coals; there are about 80% fewer 12 nm pores in Illawarra inertinite compared to the other Australian coals examined. The inertinite in coals sourced from South Africa and China had accessibility intermediate between the Illawarra coals and the other Australian coals.The extent of hexane penetration was 10–20% less than CD4 penetration into the same coal and this difference was most pronounced in the 5–50 nm pore size range. Hexane and methane penetrability into the coals showed similar trends with inertinite content.The observed variations in inertinite porosity between coals from different coal regions and coal basins may explain why previous studies differ in their observations of the relationships between gas sorption behavior, permeability, porosity, and maceral composition. These variations are not simply a demarcation between Northern and Southern Hemisphere coals.

  8. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  9. A novel integrated process of coal pyrolysis and methane CO{sub 2} reforming

    Energy Technology Data Exchange (ETDEWEB)

    Jing Wang; Pengfei Wang; Lijun Jin; Haoquan Hu [Dalian University of Technology, Dalian (China)

    2007-07-01

    In the paper, a novel pyrolysis method, namely coal pyrolysis coupling with CO{sub 2} reforming of methane (CRMP) or catalytic pyrolysis of coal coupling with CO{sub 2} reforming of methane (CRMCP), for improving the tar yield of coal pyrolysis was introduced. The behaviours of YM coal in both processes were investigated and compared with pyrolysis under N{sub 2} and H{sub 2}. The results show that the tar yield of coal pyrolysis in both processes obviously increase compared with that in N{sub 2} or H{sub 2}. When YM coal pyrolysis was carried out in stream of mixture gas CH{sub 4}/CO{sub 2} (1:1) with the existence of the catalyst at 0.1 MPa and 800{sup o}C, the tar yield is 2.8 times for CRMP and 4.3 times for CRMCP as that of pyrolysis under N{sub 2} and 1.7 and 2.6 times as that of hydropyrolysis at the same conditions, respectively. Sulfur content of char obtained from CRMP and CRMCP process are lower, especially in CRMP process, than that from N{sub 2} or H{sub 2}. 16 refs., 4 figs., 1 tab.

  10. Modeling of integrated environmental control systems for coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.S.; Salmento, J.S.; Frey, H.C.; Abu-Baker, A.; Berkenpas, M.

    1991-05-01

    The Integrated Environmental Control Model (IECM) was designed to permit the systematic evaluation of environmental control options for pulverized coal-fired (PC) power plants. Of special interest was the ability to compare the performance and cost of advanced pollution control systems to ``conventional`` technologies for the control of particulate, SO{sub 2} and NO{sub x}. Of importance also was the ability to consider pre-combustion, combustion and post-combustion control methods employed alone or in combination to meet tough air pollution emission standards. Finally, the ability to conduct probabilistic analyses is a unique capability of the IECM. Key results are characterized as distribution functions rather than as single deterministic values. (VC)

  11. Waste Separations and Pretreatment Workshop report

    International Nuclear Information System (INIS)

    Cruse, J.M.; Harrington, R.A.; Quadrel, M.J.

    1994-01-01

    This document provides the minutes from the Waste Separations and Pretreatment Workshop sponsored by the Underground Storage Tank-Integrated Demonstration in Salt Lake City, Utah, February 3--5, 1993. The Efficient Separations and Processing-Integrated Program and the Hanford Site Tank Waste Remediation System were joint participants. This document provides the detailed minutes, including responses to questions asked, an attendance list, reproductions of the workshop presentations, and a revised chart showing technology development activities

  12. Effect of Hot-Water Blanching Pretreatment on Drying Characteristics and Product Qualities for the Novel Integrated Freeze-Drying of Apple Slices

    Directory of Open Access Journals (Sweden)

    Hai-ou Wang

    2018-01-01

    Full Text Available The effect of hot-water blanching (HWB on drying characteristics and product qualities of dried apple slices with the novel integrated freeze-drying (NIFD process was investigated by comparing with 3 different FD methods. Compared with the NIFD process without HWB pretreatment (VF-FD, the NIFD process with HWB pretreatment (HWB-VF-FD resulted in a significantly higher mass loss and more sufficient freezing in vacuum-frozen samples, significantly higher rehydration ratio (RR, higher shrinkage ratio (SR, smaller Vitamin C (VC content and lower hardness and better apparent shape in freeze-dried samples, and fewer change to the color of the dried or rehydrated samples (p<0.05. Compared with the conventional FD process with HWB pretreatment (HWB-PF-FD, HWB-VF-FD cost significantly less processing time and FD time and obtained significantly higher RR (p<0.05, almost the equivalent SR, VC content, and hardness, and similar appearance in dried samples. The microstructure of apple cell tissues was analyzed by transmission electron microscopy and scanning electron microscopy to interpret the above differences in drying characteristics and product qualities. The results suggested that the NIFD process of apple slices with HWB pretreatment was a promising alternative method to decrease drying time, achieve similar product quality, and simplify the process steps of the conventional FD technology.

  13. Optimal Level of Woody Biomass Co-Firing with Coal Power Plant Considering Advanced Feedstock Logistics System

    Directory of Open Access Journals (Sweden)

    Sangpil Ko

    2018-05-01

    Full Text Available Co-firing from woody biomass feedstock is one of the alternatives toward increased use of renewable feedstock in existing coal power plants. However, the economic level of co-firing at a particular power plant depends on several site-specific factors. Torrefaction has been identified recently as a promising biomass pretreatment option to lead to reduction of the feedstock delivered cost, and thus facilitate an increase in the co-firing ratio. In this study, a mixed integer linear program (MILP is developed to integrate supply chain of co-firing and torrefaction process and find the optimal level of biomass co-firing in terms of minimized transportation and logistics costs, with or without tax credits. A case study of 26 existing coal power plants in three Great Lakes States of the US is used to test the model. The results reveal that torrefaction process can lead to higher levels of co-firing, but without the tax credit, the effect is limited to the low capacity of power plants. The sensitivity analysis shows that co-firing ratio has higher sensitivity to variation in capital and operation costs of torrefaction than to the variation in the transportation and feedstock purchase costs.

  14. Temperature field distribution of coal seam in heat injection

    OpenAIRE

    Zhang Zhizhen; Peng Weihong; Shang Xiaoji; Wang Kun; Li Heng; Ma Wenming

    2017-01-01

    In this article, we present a natural boundary element method (NBEM) to solve the steady heat flow problem with heat sources in a coal seam. The boundary integral equation is derived to obtain the temperature filed distribution of the coal seam under the different injecting conditions.

  15. Literature Review of Physical and Chemical Pretreatment Processes for Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, P.; Bakker, R. [Wageningen University and Research centre WUR, Food and Biobased Research WUR-FBR, Wageningen (Netherlands); Huijgen, W.J.J. [ECN Biomass, Coal and Environment, Petten (Netherlands); Bermudez Lopez, L. [Abengoa Bioenergia Nuevas Tecnologias ABNT (Spain)

    2010-09-15

    This literature review was performed within the BioSynergy project (2007-2010). BioSynergy is a European Integrated Project supported through the Sixth Framework Programme for Research and Technological Development (038994-SES6). BioSynergy stands for 'BIOmass for the market competitive and environmentally friendly SYNthesis of bio-products together with the production of secondary enERGY carriers through the biorefinery approach'. Within the BioSynergy project the overall goal of the pretreatment routes being developed is to convert raw lignocellulosic biomass into its composing sugars and lignin in a market competitive and environmentally sustainable way. This report reviews lignocellulose pretreatment in general as well as specific pretreatment technologies that are developed within the BioSynergy project including steam explosion (ABNT), mechanical/alkaline fractionation (WUR) and organosolv fractionation (ECN). In addition to these pretreatment technologies, other pretreatment technologies are studied within the BioSynergy project such as acetic/formic acid pretreatment and mild- and strong acid pretreatment.

  16. Hydrothermal pretreatments of macroalgal biomass for biorefineries

    DEFF Research Database (Denmark)

    Ruiz, Héctor A.; Rodríguez-Jasso, Rosa M.; Aguedo, Mario

    2015-01-01

    in accordance with the integrated biorefineries. Furthermore, biorefinery concept requires processes that allow efficient utilization of all components of the biomass. The pretreatment step in a biorefinery is often based on hydrothermal principles of high temperatures in aqueous solution. Therefore...

  17. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  18. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  19. Process integration of chemical looping combustion with oxygen uncoupling in a coal-fired power plant

    International Nuclear Information System (INIS)

    Spinelli, Maurizio; Peltola, Petteri; Bischi, Aldo; Ritvanen, Jouni; Hyppänen, Timo; Romano, Matteo C.

    2016-01-01

    High-temperature solid looping processes for CCS (carbon capture and storage) represent a class of promising technologies that enables CO2 capture with relatively low net efficiency penalties. The novel concept of the CLOU (Chemical Looping with Oxygen Uncoupling) process is based on a system of two interconnected fluidized bed reactors that operate at atmospheric pressure. In the fuel reactor, the capability of certain metal oxides to spontaneously release molecular oxygen at high temperatures is exploited to promote the direct conversion of coal in an oxygen-rich atmosphere. As a novel CO_2 capture concept, the CLOU process requires the optimization of design and operation parameters, which may substantially influence the total power plant performance. This study approaches this issue by performing joint simulations of CLOU reactors using a 1.5D model and a steam cycle power plant. A sensitivity analysis has been performed to investigate the performance and main technical issues that are related to the integration of a CLOU island in a state-of-the-art USC (ultra-supercritical) power plant. In particular, the effect of the key process parameters has been evaluated. Superior performance has been estimated for the power plant, with electrical efficiencies of approximately 42% and more than 95% CO2 avoided. - Highlights: • Process modeling and simulation of CLOU integrated in USC coal power plant carried out. • Comprehensive sensitivity analysis on Cu-based CLOU process performed. • Electrical efficiencies of 42% and more than 95% CO_2 avoided obtained. • Reactor size and operating conditions suitable for industrial applications.

  20. The brown coal subsequent landscape in Saxonia and its integration into the natural waters system; Die Braunkohlefolgelandschaft in Sachsen und ihre Integration in das natuerliche Gewaessersystem

    Energy Technology Data Exchange (ETDEWEB)

    Socher, Martin; Sander, Frank; Herbst, Frank [Saechsisches Staatsministerium fuer Umwelt und Landschaft (Germany). Abt. 4 - Wasser, Boden, Wertstoffe

    2009-07-01

    Until 1989, the regions Central Germany and Lausitz were one of the most important lignite mining regions of the world with a production of raw brown coal of up to 310 million tons annually. Today, only 80 million tons per year are mined. Strongly changed and artificially created waters remained which must be integrated into the natural waters landscape. An outstanding role comes to the redevelopment mining industry.

  1. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  2. Fresh Properties and Flexural Strength of Self-Compacting Concrete Integrating Coal Bottom Ash

    Directory of Open Access Journals (Sweden)

    Jamaluddin Norwati

    2016-01-01

    Full Text Available This paper presents the effect of using coal bottom ash as a partial replacement of fine aggregates in self-compacting concrete (SCC on its fresh properties and flexural strength. A comparison between SCC with various replacements of fine aggregates with coal bottom ash showed that SCC obtained flexural strength decrease on increase of water cement ratio from 0.35 to 0.45. The natural sand was replaced with coal bottom ash up to 30% volumetrically. The fresh properties were investigated by slump flow, T500 spread time, L-box test and sieve segregation resistance in order to evaluate its self-compatibility by compared to control samples embed with natural sand. The results revealed that the flowability and passing ability of SCC mixtures are decreased with higher content of coal bottom ash replacement. The results also showed that the flexural strength is affected by the presence of coal bottom ash in the concrete. In addition, the water cement ratios are influence significantly with higher binder content in concrete.

  3. Coal geopolitics

    International Nuclear Information System (INIS)

    Giraud, P.N.; Suissa, A.; Coiffard, J.; Cretin, D.

    1991-01-01

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs [fr

  4. Removal of mineral oil and wastewater pollutants using hard coal

    Directory of Open Access Journals (Sweden)

    BRANISLAV R. SIMONOVIĆ

    2009-05-01

    Full Text Available This study investigates the use of hard coal as an adsorbent for removal of mineral oil from wastewater. In order to determine the efficiency of hard coal as an adsorbent of mineral oil, process parameters such as sorption capacity (in static and dynamic conditions, temperature, pH, contact time, flow rate, and chemical pretreatment were evaluated in a series of batch and continuous flow experiments. There were significant differences in the mineral oil removal for various pH values examined. The adsorption of mineral oil increased as pH values diverged from 7 (neutral. At lower temperatures, the adsorption was notably higher. The wastewater flow rate was adjusted to achieve optimal water purification. Equilibrium was reached after 10 h in static conditions. At that time, more than 99% of mineral oil had been removed. At the beginning of the filtering process, the adsorption rate increased rapidly, only to show a minor decrease afterwards. Equilibrium data were fitted to Freundlich models to determine the water-hard coal partitioning coefficient. Physical adsorption caused by properties of the compounds was the predominant mechanism in the removal process.

  5. National coal utilization assessment. An integrated assessment of increased coal use in the Midwest: impacts and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Hoover, L. John

    1977-10-01

    This study was performed as a part of the Argonne National Laboratory Regional Studies program, which is sponsored by the Department of Energy. The purpose is to assess the impacts and consequences associated with alternative energy options on a regional basis, and to identify and analyze alternative mitigation and solution strategies for increasing the acceptability of these options. The National Coal Utilization Assessment is being conducted as a part of the Regional Studies Program. This particular study is focusing on impacts and constraints on increased coal utilization. In addition, a major focal point for the study is the identification and analysis of alternative solution strategies applicable to these constraints and problems.

  6. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    Science.gov (United States)

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  7. Does vertical integration have an effect on load factor? - A test on coal-fired plants in England and Wales

    International Nuclear Information System (INIS)

    Lopez, Jose A.; Salies, Evens

    2006-02-01

    Today in the British electricity industry, most electricity suppliers hedge a large proportion of their residential customer base requirements by owning their own plant. The non-storability of electricity and the corresponding need for an instantaneous matching of generation and consumption creates a business need for integration. From a sample of half-hour data on load factor for coal-fired power plants in England and Wales, this paper tests the hypothesis that vertical integration with retail businesses affects the extent to which producers utilize their capacity. We also pay attention to this potential effect during periods of peak demand. (authors)

  8. A new, integrated, approach to mineralization-based CCS

    Energy Technology Data Exchange (ETDEWEB)

    Hunwick, R.J. [Integrated Carbon Sequestration Pty Ltd., Lindfield, NSW (Australia)

    2009-11-15

    Mineralization is an attractive concept for carbon capture and storage as it can avoid some of the potential public acceptance problems of geosequestering pressurised CO{sub 2}. But there are major cost and energy penalty concerns. A new integrated approach to mineralisation, avoiding the intermediate step of CO{sub 2} extraction and promising considerable benefits, is outlined here. The ICS process integrates two operation in the first, an ammonia-rich aqueous solution of ammonium bicarbonate is used to scrub carbon dioxide from flue gases to form a solution enriched in carbon dioxide. In the second, pretreated serpentinite or other suitable ultramafic rock is blended directly into this rich solution prior to the mixture being held under controlled conditions in a purpose-built reactor. The silicate minerals react with ammonium carbonate to form magnesium carbonate and silica, thereby directly removing frrm solution the carbon dioxide that was absorbed in the flue gas scrubbers as insoluble precipitates. The capture solution is regenerated for its recycle to the flue gas scrubbers. Trials at Lucas Hights have demonstrated the direct conversion of silicates to magnesite, and work continues to establish optimum conditions for this reaction to allow a continuous pilot plant to be designed. Their thermodynamic modeling has confirmed the energy efficiency of the process. Pre-feasibility studies into retrofitting ICS to major existing coal-fired power stations to capture at least 90% of their carbon dioxide emissions suggest a total cost of US$50 to capture and store each tonne of the gas permanently. Since the tonnage of rock required for this mineralisation process is six times the tonnage of coal to be fired in the host power station logic dictates that any new power station should be nearer the rock deposit than the coal field that furnishes its fuel. 2 figs.

  9. Steam explosion and its combinatorial pretreatment refining technology of plant biomass to bio-based products.

    Science.gov (United States)

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2015-06-01

    Pretreatment is a key unit operation affecting the refinery efficiency of plant biomass. However, the poor efficiency of pretreatment and the lack of basic theory are the main challenges to the industrial implementation of the plant biomass refinery. The purpose of this work is to review steam explosion and its combinatorial pretreatment as a means of overcoming the intrinsic characteristics of plant biomass, including recalcitrance, heterogeneity, multi-composition, and diversity. The main advantages of the selective use of steam explosion and other combinatorial pretreatments across the diversity of raw materials are introduced. Combinatorial pretreatment integrated with other unit operations is proposed as a means to exploit the high-efficiency production of bio-based products from plant biomass. Finally, several pilot- and demonstration-scale operations of the plant biomass refinery are described. Based on the principle of selective function and structure fractionation, and multi-level and directional composition conversion, an integrated process with the combinatorial pretreatments of steam explosion and other pretreatments as the core should be feasible and conform to the plant biomass refinery concept. Combinatorial pretreatments of steam explosion and other pretreatments should be further exploited based on the type and intrinsic characteristics of the plant biomass used, the bio-based products to be made, and the complementarity of the processes. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fractionation of mercury stable isotopes during coal combustion and seawater flue gas desulfurization

    International Nuclear Information System (INIS)

    Huang, Shuyuan; Yuan, Dongxing; Lin, Haiying; Sun, Lumin; Lin, Shanshan

    2017-01-01

    In the current study, fractionation of mercury isotopes during coal combustion and seawater flue gas desulfurization (SFGD) in a coal-fired power plant using a SFGD system was investigated. Fourteen samples were collected from the power plant. The samples were pretreated with a combustion-trapping method and were analyzed with a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). Compared with the raw coal, the bottom ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −0.45 to −0.03‰. The fly ash was enriched with lighter mercury isotopes with δ 202 Hg values ranging from −1.49 to −0.73‰ for Chinese coal and from −1.47 to −0.62‰ for Indonesian coal. The δ 202 Hg of fresh seawater and desulfurized seawater was found to be −1.32 and −0.32‰ respectively. These δ 202 Hg values indicated that the desulfurized seawater was enriched with heavier mercury isotopes. Based upon the calculated results obtained from the mass balance equation, it was suggested that the stack emissions were enriched with lighter mercury isotopes. Mass independent fractionation was observed in most of the samples with a Δ 199 Hg/Δ 201 Hg ratio of approximately 0.96. The results help in improving the understanding of mercury isotope fractionation during coal combustion and SFGD, and are also useful in tracing the mercury emissions from coal fired power plants. - Highlights: • Spread of 1.5‰ was observed in δ 202 Hg values of raw coals and coal related samples. • The δ 202 Hg values were more negative in fly ash than those in the raw coal. • The flue gas had a significant Hg fractionation after desulfurization. • The stack emissions were enriched with lighter isotopes compared with the raw coal.

  11. Modeling technological learning and its application for clean coal technologies in Japan

    International Nuclear Information System (INIS)

    Nakata, Toshihiko; Sato, Takemi; Wang, Hao; Kusunoki, Tomoya; Furubayashi, Takaaki

    2011-01-01

    Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.

  12. Coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    ACR's Coal 1992, the successor to the ACR Coal Marketing Manual, contains a comprehensive set of data on many aspects of the Australian coal industry for several years leading up to 1992. Tables and text give details of coal production and consumption in New South Wales, Queensland and other states. Statistics of the Australian export industry are complemented by those of South Africa, USA, New Zealand, Canada, Indonesia, China, Colombia, Poland and ex-USSR. Also listed are prices of Australian coking and non-coking coal, Australian coal stocks (and those of other major countries), loading port capacities, freight rates and coal quality requirements (analysis of coals by brand and supplier). A listing of Australian coal exporting companies is provided. A description of the spot Coal Screen Dealing System is given. World hard coal imports are listed by country and coal imports by major Asian countries tabulated. A forecast of demand by coal type and country up to the year 2000 is included.

  13. Characterization of Coal Porosity for Naturally Tectonically Stressed Coals in Huaibei Coal Field, China

    Science.gov (United States)

    Li, Xiaoshi; Hou, Quanlin; Li, Zhuo; Wei, Mingming

    2014-01-01

    The enrichment of coalbed methane (CBM) and the outburst of gas in a coal mine are closely related to the nanopore structure of coal. The evolutionary characteristics of 12 coal nanopore structures under different natural deformational mechanisms (brittle and ductile deformation) are studied using a scanning electron microscope (SEM) and low-temperature nitrogen adsorption. The results indicate that there are mainly submicropores (2~5 nm) and supermicropores (coal and mesopores (10~100 nm) and micropores (5~10 nm) in brittle deformed coal. The cumulative pore volume (V) and surface area (S) in brittle deformed coal are smaller than those in ductile deformed coal which indicates more adsorption space for gas. The coal with the smaller pores exhibits a large surface area, and coal with the larger pores exhibits a large volume for a given pore volume. We also found that the relationship between S and V turns from a positive correlation to a negative correlation when S > 4 m2/g, with pore sizes coal. The nanopore structure (coal. PMID:25126601

  14. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  15. Unconventional Coal in Wyoming: IGCC and Gasification of Direct Coal Liquefaction Residue

    Science.gov (United States)

    Schaffers, William Clemens

    Two unconventional uses for Wyoming Powder River Basin coal were investigated in this study. The first was the use of coal fired integrated gasification combined cycle (IGCC) plants to generate electricity. Twenty-eight different scenarios were modeled using AspenPlusRTM software. These included slurry, mechanical and dried fed gasifiers; Wyodak and Green River coals, 0%, 70%, and 90% CO2 capture; and conventional evaporative vs air cooling. All of the models were constructed on a feed basis of 6,900 tons of coal per day on an "as received basis". The AspenPlus RTM results were then used to create economic models using Microsoft RTM Excel for each configuration. These models assumed a 3 year construction period and a 30 year plant life. Results for capital and operating costs, yearly income, and internal rates of return (IRR) were compared. In addition, the scenarios were evaluated to compare electricity sales prices required to obtain a 12% IRR and to determine the effects of a carbon emissions tax on the sales price. The second part of the study investigated the gasification potential of residue remaining from solvent extraction or liquefaction of Powder River Basin Coal. Coal samples from the Decker mine on the Wyoming-Montana border were extracted with tetralin at a temperature of 360°C and pressure of 250 psi. Residue from the extraction was gasified with CO2 or steam at 833°C, 900°C and 975°C at pressures of 0.1 and 0.4 MPa. Product gases were analyzed with a mass spectrometer. Results were used to determine activation energies, reaction order, reaction rates and diffusion effects. Surface area and electron microscopic analyses were also performed on char produced from the solvent extraction residue.

  16. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  17. Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas

    Energy Technology Data Exchange (ETDEWEB)

    Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

    2010-09-30

    One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this

  18. Coal Quality Expert: Status and software specifications

    International Nuclear Information System (INIS)

    Harrison, C.D.

    1992-01-01

    Under the Clean Coal Technology Program (Clean Coal Round 1), the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI) are funding the development and demonstration of a computer program called the Coal Quality Expert (CQE trademark). When finished, the CQE will be a comprehensive PC-based program which can be used to evaluate several potential coal cleaning, blending, and switching options to reduce power plant emissions while minimizing generation costs. The CQE will be flxible in nature and capable of evaluating various qualities of coal, available transportation options, performance issues, and alternative emissions control strategies. This allows the CQE to determine the most cost-effective coal and the least expensive emissions control strategy for a given plant. To accomplish this, the CQE will be composed of technical models to evaluate performance issues; environmental models to evaluate environmental and regulatory issues; and cost estimating models to predict costs for installations of new and retrofit coal cleaning processes, power production equipment, and emissions control systems as well as other production costs such as consumables (fuel, scrubber additive, etc.), waste disposal, operating and maintenance, and replacement energy costs. These technical, environmental, and economic models as well as a graphical user interface will be developed for the CQE. And, in addition, to take advantage of already existing capability, the CQE will rely on seamless integration of already proven and extensively used computer programs such as the EPRI Coal Quality Information Systems, Coal Quality Impact Model (CQIM trademark), and NO x Pert. 2 figs

  19. Problems of coal-based power generation

    International Nuclear Information System (INIS)

    Noskievic, P.

    1996-01-01

    Current problems of and future trends in coal-based power generation are discussed. The present situation is as follows: coal, oil and gas contribute to world fossil fuel resources 75%, 14%, and 11%, respectively, and if the current trend will continue, will be depleted in 240, 50, and 60 years, respectively; the maximum resource estimates (including resources that have not yet been discovered) are 50% higher for oil and 100% higher for gas, for coal such estimates have not been made. While the world prices of coal are expected to remain virtually constant, the prices of gas will probably increase to be twice as high in 2010. Thus, the role of coal may be higher in the next century than it is now, provided that due attention is paid to improving the efficiency of coal-fired power plants and reducing their adverse environmental effects. A comparison of economic data for coal-fired and gas-fired power plants is as follows: Investment cost (USD/kW): 1400, 800; fixed running cost (USD/kW.y): 33.67, 9.0; variable running cost (USD/kWh): 0.30, 0.15; power use (kJ/kWh): 10.29, 7.91; annual availability (%): 70, 50; fuel price (USD/GJ): 1.00, 4.30; power price (USD/kWh): 4.28, 5.52. The investment cost for coal-fired plants covers new construction including flue gas purification. The integrated gasification combined cycle (IGCC) seems to be the future of coal-based power generation. The future problems to be addressed include ways to reduce air pollution, improving the efficiency of the gas-steam cycle, and improving the combustion process particularly with a view to reducing substantially its environmental impact. (P.A.). 4 figs., 4 tabs., 9 refs

  20. Coal in Europe: what future?: prospects of the coal industry and impacts study of the Kyoto Protocol

    International Nuclear Information System (INIS)

    Rudianto, E.

    2006-12-01

    From the industrial revolution to the 1960's, coal was massively consumed in Europe and its utilization was constantly raised. In the aftermath of World War II, coal had also an important part in reconstruction of Western Europe's economy. However, since the late 1960's, its demand has been declining. There is a (mis)conception from a number of policy makers that saying coal mining and utilizations in Europe is unnecessary. Therefore in the European Union (EU) Green Paper 2000, coal is described as an 'undesirable' fuel and the production of coal on the basis of economic criteria has no prospect. Furthermore, the commitment to the Kyoto Protocol in reducing greenhouse gases emission has aggravated this view. Faced with this situation, the quest for the future of coal industry (mining and utilization) in the lines of an energy policy is unavoidable. This dissertation did a profound inquiry trying to seek answers for several questions: Does the European Union still need coal? If coal is going to play a part in the EU, where should the EU get the coal from? What should be done to diminish negative environmental impacts of coal mining and utilization? and finally in regard to the CO 2 emission concerns, what will the state of the coal industry in the future in the EU? To enhance the analysis, a system dynamic model, called the Dynamics Coal for Europe (the DCE) was developed. The DCE is an Energy-Economy-Environment model. It synthesizes the perspectives of several disciplines, including geology, technology, economy and environment. It integrates several modules including exploration, production, pricing, demand, import and emission. Finally, the model emphasizes the impact of delays and feed-back in both the physical processes and the information and decision-making processes of the system. The calibration process for the DCE shows that the model reproduces past numbers on the scale well for several variables. Based on the results of this calibration process, it can

  1. Bio-coal briquettes using low-grade coal

    Science.gov (United States)

    Estiaty, L. M.; Fatimah, D.; Widodo

    2018-02-01

    The technology in using briquettes for fuel has been widely used in many countries for both domestic and industrial purposes. Common types of briquette used are coal, peat, charcoal, and biomass. Several researches have been carried out in regards to the production and the use of briquettes. Recently, researches show that mixing coal and biomass will result in an environmentally friendly briquette with better combustion and physical characteristics. This type of briquette is known as bio-coal briquettes. Bio-coal briquettes are made from agriculture waste and coal, which are readily available, cheap and affordable. Researchers make these bio-coal briquettes with different aims and objectives, depending on the issues to address, e.g. utilizing agricultural waste as an alternative energy to replace fossil fuels that are depleting its reserves, adding coal to biomass in order to add calorific value to bio-coal briquette, and adding biomass to coal to improve its chemical and physical properties. In our research, biocoal briquettes are made to utilize low grade coal. The biomass we use, however, is different from the ones used in past researches because it has undergone fermentation. The benefits of using such biomass are 1. Fermentation turns the hemi cellulose into a simpler form, so that the burning activation energy decreases while the calorific value increases. 2. Enzym produced will bind to heavy metals from coal as co-factors, forming metals that are environmentally friendly.

  2. Coal

    International Nuclear Information System (INIS)

    Teissie, J.; Bourgogne, D. de; Bautin, F.

    2001-12-01

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  3. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    CoalVal is a menu-driven Windows program that produces cost-of-mining analyses of mine-modeled coal resources. Geological modeling of the coal beds and some degree of mine planning, from basic prefeasibility to advanced, must already have been performed before this program can be used. United States Geological Survey mine planning is done from a very basic, prefeasibility standpoint, but the accuracy of CoalVal's output is a reflection of the accuracy of the data entered, both for mine costs and mine planning. The mining cost analysis is done by using mine cost models designed for the commonly employed, surface and underground mining methods utilized in the United States. CoalVal requires a Microsoft Windows? 98 or Windows? XP operating system and a minimum of 1 gigabyte of random access memory to perform operations. It will not operate on Microsoft Vista?, Windows? 7, or Macintosh? operating systems. The program will summarize the evaluation of an unlimited number of coal seams, haulage zones, tax entities, or other area delineations for a given coal property, coalfield, or basin. When the reader opens the CoalVal publication from the USGS website, options are provided to download the CoalVal publication manual and the CoalVal Program. The CoalVal report is divided into five specific areas relevant to the development and use of the CoalVal program: 1. Introduction to CoalVal Assumptions and Concepts. 2. Mine Model Assumption Details (appendix A). 3. CoalVal Project Tutorial (appendix B). 4. Program Description (appendix C). 5. Mine Model and Discounted Cash Flow Formulas (appendix D). The tutorial explains how to enter coal resource and quality data by mining method; program default values for production, operating, and cost variables; and ones own operating and cost variables into the program. Generated summary reports list the volume of resource in short tons available for mining, recoverable short tons by mining method; the seam or property being mined

  4. Integrated Sensing & Controls for Coal Gasification - Development of Model-Based Controls for GE's Gasifier & Syngas Cooler. Topical Rerport for Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aditya

    2011-02-17

    This Topical Report for the final Phase III of the program summarizes the results from the Task 3 of the program. In this task, the separately designed extended Kalman Filter (EKF) and model predictive controls (MPC) with ideal sensing, developed in Phase II, were integrated to achieve the overall sensing and control system for the gasification section of an IGCC plant. The EKF and MPC algorithms were updated and re-tuned to achieve closed-loop system stability as well as good steady-state and transient control response. In particular, the performance of the integrated EKF and MPC solution was tested extensively through multiple simulation studies to achieve improved steady-state as well as transient performance, with coal as well as coal-petcoke blended fuel, in the presence of unknown modeling errors as well as sensor errors (noise and bias). The simulation studies demonstrated significant improvements in steady state and transient operation performance, similar to that achieved by MPC with ideal sensors in Phase II of the program.

  5. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix A (Part 2). Coal preparation and cleaning assessment study appendix

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    This report presents the results of integrating coal washability and coal reserves data obtained from the U.S. Bureau of Mines. Two computer programs were developed to match the appropriate entries in each data set and then merge the data into the form presented in this report. Approximately 18% of the total demonstrated coal reserves were matched with washability data. However, about 35% of the reserves that account for 80% of current production were successfully matched. Each computer printout specifies the location and size of the reserve, and then describes the coal with data on selected physical and chemical characteristics. Washability data are presented for three crush sizes (1.5 in., /sup 3///sub 8/ in., and 14 mesh) and several specific gravities. In each case, the percent recovery, Btu/lb, percent ash, percent sulfur, lb SO/sub 2//10/sup 6/ Btu, and reserves available at 1.2 lb SO/sub 2//10/sup 6/ Btu are given. The sources of the original data and the methods used in the integration are discussed briefly.

  6. Coking coal outlook from a coal producer's perspective

    International Nuclear Information System (INIS)

    Thrasher, E.

    2008-01-01

    Australian mine production is recovering from massive flooding while Canadian coal shipments are limited by mine and rail capacity. Polish, Czech, and Russian coking coal shipments have been reduced and United States coking coal shipments are reaching their maximum capacity. On the demand side, the Chinese government has increased export taxes on metallurgical coal, coking coal, and thermal coal. Customers seem to be purchasing in waves and steel prices are declining. This presentation addressed the global outlook for coal as well as the challenges ahead in terms of supply and demand. Supply challenges include regulatory uncertainty; environmental permitting; labor; and geology of remaining reserves. Demand challenges include global economic uncertainty; foreign exchange values; the effect of customers making direct investments in mining operations; and freight rates. Consolidation of the coal industry continued and several examples were provided. The presentation also discussed other topics such as coking coal production issues; delayed mining permits and environmental issues; coking coal contract negotiations; and stock values of coking coal producers in the United States. It was concluded that consolidation will continue throughout the natural resource sector. tabs., figs

  7. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model

    International Nuclear Information System (INIS)

    Song, Huijuan; Liu, Guangrui; Wu, Jinhu

    2016-01-01

    Highlights: • Types of carbon in coal structure were investigated by curve-fitted "1"3C NMR spectra. • The work related pyrolysis characteristics and kinetics with coal structure. • Pyrolysis kinetics of low rank coals were studied by DAEM with Miura integral method. • DAEM could supply accurate extrapolations under relatively higher heating rates. - Abstract: The work was conducted to investigate pyrolysis characteristics and kinetics of low rank coals relating with coal structure by thermogravimetric analysis (TGA), the distributed activation energy model (DAEM) and solid-state "1"3C Nuclear Magnetic Resonance (NMR). Four low rank coals selected from different mines in China were studied in the paper. TGA was carried out with a non-isothermal temperature program in N_2 at the heating rate of 5, 10, 20 and 30 °C/min to estimate pyrolysis processes of coal samples. The results showed that corresponding characteristic temperatures and the maximum mass loss rates increased as heating rate increased. Pyrolysis kinetics parameters were investigated by the DAEM using Miura integral method. The DAEM was accurate verified by the good fit between the experimental and calculated curves of conversion degree x at the selected heating rates and relatively higher heating rates. The average activation energy was 331 kJ/mol (coal NM), 298 kJ/mol (coal NX), 302 kJ/mol (coal HLJ) and 196 kJ/mol (coal SD), respectively. The curve-fitting analysis of "1"3C NMR spectra was performed to characterize chemical structures of low rank coals. The results showed that various types of carbon functional groups with different relative contents existed in coal structure. The work indicated that pyrolysis characteristics and kinetics of low rank coals were closely associated with their chemical structures.

  8. Comprehensive evaluation on low-carbon development of coal enterprise groups.

    Science.gov (United States)

    Wang, Bang-Jun; Wu, Yan-Fang; Zhao, Jia-Lu

    2017-12-19

    Scientifically evaluating the level of low-carbon development in terms of theoretical and practical significance is extremely important to coal enterprise groups for implementing national energy-related systems. This assessment can assist in building institutional mechanisms that are conducive for the economic development of coal business cycle and energy conservation as well as promoting the healthy development of coal enterprises to realize coal scientific development and resource utilization. First, by adopting systematic analysis method, this study builds low-carbon development evaluation index system for coal enterprise groups. Second, to determine the weight serving as guideline and criteria of the index, analytic hierarchy process (AHP) is applied using integrated linear weighted sum method to evaluate the level of low-carbon development of coal enterprise groups. Evaluation is also performed by coal enterprise groups, and the process comprises field analysis and evaluation. Finally, industrial policies are proposed regarding the development of low-carbon coal conglomerate strategies and measures. This study aims mainly to guide the low-carbon development of coal enterprise groups, solve the problem of coal mining and the destruction of ecological environment, support the conservation of raw materials and various resources, and achieve the sustainable development of the coal industry.

  9. Report on the bituminous coal liquefaction sub-committee in fiscal 1992; 1992 nendo rekiseitan ekika bukai hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    This paper reports the activities of the bituminous coal liquefaction sub-committee in the Sunshine Project in fiscal 1992. With an intention of developing a technology on the process (NEDOL) suitable for liquefaction of wide range of coal types placing sub-bituminous coal at the center, researches were carried out by using a pilot plant, and engineering data purposed for practical application of the technology were acquired. The construction of the pilot plant was launched in fiscal 1991. It is necessary to execute the pilot plant plan steadily in the future, and at the same time, reliably acquire different data by means of supportive researches. Economic performance of the process is also important. The first sub-committee meeting presented the following agenda: the status of constructing the 150-t/d pilot plant, tests and investigations thereon, research works by using a 1-t/d PSU, development of the most suitable coal refining technology, development of a coal pretreatment technology, improvement of the distilled oil distribution, studies on coal liquefaction conditions, and studies on solvent hydrogenating catalysts. The second sub-committee meeting presented the following agenda: the status of constructing the pilot plant, tests and investigations on improving the performance of natural pylite catalyst and circulating solvent, technological investigations on structuring a liquefying reaction data analyzing system, studies using a 1-t/d PSU, development of the most suitable coal refining technology, studies on coal liquefaction conditions, and studies on solvent hydrogenating catalysts. (NEDO)

  10. Coking coal consumption of POSCO

    International Nuclear Information System (INIS)

    Yoo, B.C.

    1991-01-01

    Pohang Iron and Steel Company Limited (POSCO) was established in 1968. Molten iron was first produced in July 1973 after a 3 year construction period. The long awaited start up of Korea's first integrated steel works provided the momentum for the fast growth of our steel industry. In 1973, the first year of operation, POSCO purchased 770,000 tons of coal from the United States and Australia. The import tonnage was more than doubled in 1976 when we completed the second stage of Pohang Works and has continued to increase reaching 13.1 million tons last year. POSCO's coal consumption will increase one more time next year as the fourth stage of Kwangyang works starts to operate a new blast furnace with an annual molten iron production capacity of 2.8 million tons. Even though the new blast furnace will have the same capacity as the other 3 in Kwangyang, the additional coking coal requirement will be much smaller than the tonnages we needed for the other stages of the works. This paper reports that this is due to the increased use of pulverized coal

  11. An integrated sample pretreatment platform for quantitative N-glycoproteome analysis with combination of on-line glycopeptide enrichment, deglycosylation and dimethyl labeling

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Yejing; Qu, Yanyan; Jiang, Hao; Wu, Qi [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Lihua, E-mail: lihuazhang@dicp.ac.cn [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yuan, Huiming [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Zhou, Yuan [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Xiaodan; Zhang, Yukui [National Chromatographic Research and Analysis Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2014-06-23

    Highlights: • An integrated platform for quantitative N-glycoproteome analysis was established. • On-line enrichment, deglycosylation and labeling could be achieved within 160 min. • A N{sub 2}-assisted interface was applied to improve the compatibility of the platform. • The platform exhibited improved quantification accuracy, precision and throughput. - Abstract: Relative quantification of N-glycoproteomes shows great promise for the discovery of candidate biomarkers and therapeutic targets. The traditional protocol for quantitative analysis of glycoproteomes is usually off-line performed, and suffers from long sample preparation time, and the risk of sample loss or contamination due to manual manipulation. In this study, a novel integrated sample preparation platform for quantitative N-glycoproteome analysis was established, with combination of online N-glycopeptide capture by a HILIC column, sample buffer exchange by a N{sub 2}-assisted HILIC–RPLC interface, deglycosylation by a hydrophilic PNGase F immobilized enzymatic reactor (hIMER) and solid dimethyl labeling on a C18 precolumn. To evaluate the performance of such a platform, two equal aliquots of immunoglobulin G (IgG) digests were sequentially pretreated, followed by MALDI-TOF MS analysis. The signal intensity ratio of heavy/light (H/L) labeled deglycosylated peptides with the equal aliquots was 1.00 (RSD = 6.2%, n = 3), much better than those obtained by the offline protocol, with H/L ratio as 0.76 (RSD = 11.6%, n = 3). Additionally, the total on-line sample preparation time was greatly shortened to 160 min, much faster than that of offline approach (24 h). Furthermore, such an integrated pretreatment platform was successfully applied to analyze the two kinds of hepatocarcinoma ascites syngeneic cell lines with high (Hca-F) and low (Hca-P) lymph node metastasis rates. For H/L labeled Hca-P lysates with the equal aliquots, 99.6% of log 2 ratios (H/L) of quantified glycopeptides ranged from −1

  12. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  13. Coal contract cost reduction through resale of coal

    International Nuclear Information System (INIS)

    Simon, R.

    1990-01-01

    The weak coal market of the 1980's has enabled utilities and other users of coal to enjoy stable or falling prices for coal supplies. Falling prices for coal stimulated the renegotiation of numerous coal contracts in recent years, as buyers look to take advantage of lower fuel prices available in the marketplace. This paper examines the use of coal resale transactions as a means of reducing fuel costs, and analyzes the benefits and risks associated with such transactions

  14. Hierarchical zeolites from class F coal fly ash

    Science.gov (United States)

    Chitta, Pallavi

    Fly ash, a coal combustion byproduct is classified as types class C and class F. Class C fly ash is traditionally recycled for concrete applications and Class F fly ash often disposed in landfills. Class F poses an environmental hazard due to disposal and leaching of heavy metals into ground water and is important to be recycled in order to mitigate the environmental challenges. A major recycling option is to reuse the fly ash as a low-cost raw material for the production of crystalline zeolites, which serve as catalysts, detergents and adsorbents in the chemical industry. Most of the prior literature of fly ash conversion to zeolites does not focus on creating high zeolite surface area zeolites specifically with hierarchical pore structure, which are very important properties in developing a heterogeneous catalyst for catalysis applications. This research work aids in the development of an economical process for the synthesis of high surface area hierarchical zeolites from class F coal fly ash. In this work, synthesis of zeolites from fly ash using classic hydrothermal treatment approach and fusion pretreatment approach were examined. The fusion pretreatment method led to higher extent of dissolution of silica from quartz and mullite phases, which in turn led to higher surface area and pore size of the zeolite. A qualitative kinetic model developed here attributes the difference in silica content to Si/Al ratio of the beginning fraction of fly ash. At near ambient crystallization temperatures and longer crystallization times, the zeolite formed is a hierarchical faujasite with high surface area of at least 360 m2/g. This work enables the large scale recycling of class F coal fly ash to produce zeolites and mitigate environmental concerns. Design of experiments was used to predict surface area and pore sizes of zeolites - thus obviating the need for intense experimentation. The hierarchical zeolite catalyst supports tested for CO2 conversion, yielded hydrocarbons

  15. Biomass pretreatment

    Science.gov (United States)

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  16. Model documentation, Coal Market Module of the National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

  17. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  18. Urine pretreatment for waste water processing systems. [for space station

    Science.gov (United States)

    Winkler, H. E.; Verostko, C. E.; Dehner, G. F.

    1983-01-01

    Recovery of high quality water from urine is an essential part of life support on a Space Station to avoid costly launch and resupply penalties. Water can be effectively recovered from urine by distillation following pretreatment by a chemical agent to inhibit microorganism contamination and fix volatile ammonia constituents. This paper presents the results of laboratory investigations of several pretreatment chemicals which were tested at several concentration levels in combination with sulfuric acid in urine. The optimum pretreatment formulation was then evaluated with urine in the Hamilton Standard Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES). Over 2600 hours of test time was accumulated. Results of these laboratory and system tests are presented in this paper.

  19. Integrating multi-objective optimization with computational fluid dynamics to optimize boiler combustion process of a coal fired power plant

    International Nuclear Information System (INIS)

    Liu, Xingrang; Bansal, R.C.

    2014-01-01

    Highlights: • A coal fired power plant boiler combustion process model based on real data. • We propose multi-objective optimization with CFD to optimize boiler combustion. • The proposed method uses software CORBA C++ and ANSYS Fluent 14.5 with AI. • It optimizes heat flux transfers and maintains temperature to avoid ash melt. - Abstract: The dominant role of electricity generation and environment consideration have placed strong requirements on coal fired power plants, requiring them to improve boiler combustion efficiency and decrease carbon emission. Although neural network based optimization strategies are often applied to improve the coal fired power plant boiler efficiency, they are limited by some combustion related problems such as slagging. Slagging can seriously influence heat transfer rate and decrease the boiler efficiency. In addition, it is difficult to measure slag build-up. The lack of measurement for slagging can restrict conventional neural network based coal fired boiler optimization, because no data can be used to train the neural network. This paper proposes a novel method of integrating non-dominated sorting genetic algorithm (NSGA II) based multi-objective optimization with computational fluid dynamics (CFD) to decrease or even avoid slagging inside a coal fired boiler furnace and improve boiler combustion efficiency. Compared with conventional neural network based boiler optimization methods, the method developed in the work can control and optimize the fields of flue gas properties such as temperature field inside a boiler by adjusting the temperature and velocity of primary and secondary air in coal fired power plant boiler control systems. The temperature in the vicinity of water wall tubes of a boiler can be maintained within the ash melting temperature limit. The incoming ash particles cannot melt and bond to surface of heat transfer equipment of a boiler. So the trend of slagging inside furnace is controlled. Furthermore, the

  20. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  1. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ronald A. Ratti

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  2. Coal Tar and Coal-Tar Pitch

    Science.gov (United States)

    Learn about coal-tar products, which can raise your risk of skin cancer, lung cancer, and other types of cancer. Examples of coal-tar products include creosote, coal-tar pitch, and certain preparations used to treat skin conditions such as eczema, psoriasis, and dandruff.

  3. Is there a future for coal in Ontario?

    International Nuclear Information System (INIS)

    Davies, G.

    2004-01-01

    This PowerPoint presentation examined the efficacy of a governmental decision in 2003 to close all Ontario coal stations by 2007. Coal currently represents one quarter of Ontario's energy and capacity. Projected supply and demand gaps for Ontario were presented for up to 2020. Ontario's supply options were outlined. It was noted that between $30 and $40 billion in investment in the electricity sector will be needed over the next 10 to 15 years. It was observed that closing coal plants may reduce pollution by 6 per cent at a cost of $2 billion. More than half the smog affecting Ontario comes from the United States, while much of the remaining half is caused by transportation emissions. Details of energy strategies related to coal in the United States were discussed. New coal power plant technologies include supercritical combustion; advanced air pollution control; circulating fluidized bed combustion and integrated coal gasification combined cycles. Coal power plant performance criteria were presented. Various research programs in the United States were reviewed, and roadmap performance targets were presented. It was concluded that high prices and uncertainty for natural gas fired options may reinforce views on the need to rethink coal closures. A strategy was recommended in which Ontario pursued economic options for reducing emissions across all sectors. New investments in latest and best technology for emissions reduction in Ontario's coal-fired stations were recommended, as well as a North American agreement on clean air, and increased Canadian participation in U.S. technology development efforts for clean coal and zero emissions plants by 2025. tabs., figs

  4. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  5. Outlook and Challenges for Chinese Coal

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate

  6. Fiscal 2000 project of inviting proposals for international joint research - invitation for international proposal (Substitution No.1). Achievement report on development of biogasification process for low coalification degree coal; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (daitai No.1). Teisekitankadotan no biogas ka process kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    In this biogasification process, coal is subjected to pretreatment and then experiences methane fermentation. The aim is to reduce the amount of CO{sub 2} per unit thermal equivalent to be generated by low coalification degree coal. The electrolytic oxidation technology for coal pretreatment is developed jointly with ESC (Electrosynthesis Company, Inc.), U.S. For the development and improvement of electrolytic oxidation technology, the experimenting electrolytic tank of ESC and a small-scale electrolytic oxidation unit developed by the same are used. Using the developed electrolytic oxidation technology, coal is made meltable at a rate of 2.93%/min, which means that 80% or more of the coal turns meltable in 30 minutes. The technology has its own problem, however, that the power consumption rate is high. The report comprises nine chapters, including (1) the goal and background of research and development, (2) enhancement of research and development, (3) electrolytic oxidation of low coalification degree coal, (4) methane fermentation, (5) prospect of practical application, (6) reference materials and list of literature, and (7) reports on research tours overseas. (NEDO)

  7. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    Science.gov (United States)

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.

  8. Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants

    International Nuclear Information System (INIS)

    Fryda, Lydia; Daza, Claudia; Pels, Jan; Janssen, Arno; Zwart, Robin

    2014-01-01

    Bamboo is a potential sustainable biomass source for renewable heat and power production as it presents common fuel characteristics with other biomass feedstocks regarding heating value and chemical composition. This paper presents an evaluation of the combustion behaviour of the bamboo species Guadua angustifolia Kunth, virgin as well as torrefied, in blends with coal or pure, comparing with other biomass feedstocks such as wood and herbaceous biomass. The bamboo pre-treatment and the combustion experiments were carried out at dedicated installations at ECN, including a laboratory scale batch torrefaction reactor and a combustion simulation test facility. The results on combustion and co-firing reveal that in terms of fouling, the untreated bamboo shows behaviour closer to herbaceous biomass rather than to wood, with specific fouling factors of wood, bamboo and herbaceous biomass of 0.91·10 −3 , 2.9·10 −3 , 3.1·10 −3  K·m 2 ·W −1 ·g −1 respectively. Dry torrefaction improves its physical properties by increasing the density and grindability without improving significantly its fouling behaviour while the fouling behaviour of wet torrefied bamboo is similar to woody biomass; the specific fouling factors of dry torrefied and wet torrefied bamboo are 2.4·10 −3 and 0.89·10 −3  K·m 2 ·W −1 ·g −1 respectively. The fouling behaviour of biomass and coal blends lies between the fuels of the blend. Alternative bamboo species were evaluated using the alkali index A i based on their fuel composition. It appears that the fouling behaviour of alternative species is better than for G. angustifolia, therefore these should be further analysed. - Highlights: • Bamboo species Guadua angustifolia is a promising feedstock for power generation. • Dry and wet torrefaction of selected samples were carried out at ECN. • Virgin (untreated) and pretreated samples were fired pure or in coal blends. • Pretreated bamboo is suitable for large scale power

  9. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  10. Indirect coal liquefaction - the first commercial CTL project in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, K.; Battensby, D.; Marsico, C.; Hooper, M.; Mather, C. [Uhde GmbH (Germany)

    2006-07-01

    The polygeneration of fuels, chemical and power offers an innovative and economically advantageous way to utilise disadvantaged fuels, such as lignite, waste coal and petroleum coke, in a coal-to-liquids (CTL) plant by means of integration of three main process blocks: gasification island to convert coal into clean synthesis gas; Fischer-Tropsch synthesis to convert synthesis gas into clean liquid fuels and chemicals; and combustion of synthesis gas to produce electric power and steam. This paper describes the process and technology side of this indirect coal liquefaction project with key plant data that has been elaborated for a commercial scale CTL project, which is expected to be the first CTL plant in the USA. The plant will use the Shell Coal Gasification process. 6 figs.

  11. Equilibrium Strategy Based Recycling Facility Site Selection towards Mitigating Coal Gangue Contamination

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2017-02-01

    Full Text Available Environmental pollution caused by coal gangue has been a significant challenge for sustainable development; thus, many coal gangue reduction approaches have been proposed in recent years. In particular, coal gangue facility (CGF construction has been considered as an efficient method for the control and recycling of coal gangue. Meanwhile, the identification and selection of suitable CGF sites is a fundamental task for the government. Therefore, based on the equilibrium strategy, a site selection approach under a fuzzy environment is developed to mitigate coal gangue contamination, which integrates a geographical information system (GIS technique and a bi-level model to identify candidate CGF sites and to select the most suitable one. In this situation, the GIS technique used to identify potential feasible sites is able to integrate a great deal of geographical data tofitwithpracticalcircumstances;thebi-levelmodelusedtoscreentheappropriatesitecanreasonably dealwiththeconflictsbetweenthelocalauthorityandthecolliery. Moreover,aKarush–Kuhn–Tucker (KKT condition-based approach is used to find an optimal solution, and a case study is given to demonstrate the effectiveness of the proposed method. The results across different scenarios show that appropriate site selection can achieve coal gangue reduction targets and that a suitable excess stack level can realize an environmental-economic equilibrium. Finally, some propositions and management recommendations are given.

  12. Overview of current and future - clean coal technologies

    International Nuclear Information System (INIS)

    Darthenay, A.

    1995-01-01

    A new generation of advanced coal technology, environmentally cleaner and in many cases more efficient, has been developed: flue gas treatment of pulverized coal combustion, circulating fluidized bed (CFB), integrated gasification with combined cycle (IGCC) and pressurized fluidized bed combustion (PFBC). These techniques are described, giving a balance of their references and of the steps which are still to be got over in order to have industrial processes applicable to large size power plants. 4 tabs

  13. Selection Ideal Coal Suppliers of Thermal Power Plants Using the Matter-Element Extension Model with Integrated Empowerment Method for Sustainability

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2014-01-01

    Full Text Available In order to reduce thermal power generation cost and improve its market competitiveness, considering fuel quality, cost, creditworthiness, and sustainable development capacity factors, this paper established the evaluation system for coal supplier selection of thermal power and put forward the coal supplier selection strategies for thermal power based on integrated empowering and ideal matter-element extension models. On the one hand, the integrated empowering model can overcome the limitations of subjective and objective methods to determine weights, better balance subjective, and objective information. On the other hand, since the evaluation results of the traditional element extension model may fall into the same class and only get part of the order results, in order to overcome this shortcoming, the idealistic matter-element extension model is constructed. It selects the ideal positive and negative matter-elements classical field and uses the closeness degree to replace traditional maximum degree of membership criterion and calculates the positive or negative distance between the matter-element to be evaluated and the ideal matter-element; then it can get the full order results of the evaluation schemes. Simulated and compared with the TOPSIS method, Romania selection method, and PROMETHEE method, numerical example results show that the method put forward by this paper is effective and reliable.

  14. Coal-92

    International Nuclear Information System (INIS)

    Hillring, B.; Sparre, C.

    1992-11-01

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  15. Improving Competitiveness of U.S. Coal Dialogue

    Energy Technology Data Exchange (ETDEWEB)

    Kokkinos, Angelos [Energetics, Inc., Colubmia, MD (United States)

    2018-02-01

    more work is needed, each of these initiatives, included in the sections that follow, details new ideas to increase efficiency and reduce carbon emissions. DOE will integrate the results of this workshop with ongoing research work at the National Laboratories as well as other relevant data sources. This combined information will be used to develop a comprehensive strategy for capitalizing on the opportunity for U.S. coal and mineral competitiveness.

  16. Mode of occurrence of arsenic in four US coals

    Science.gov (United States)

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  17. Technology of new generation of manufacture of liquid products from coal

    Directory of Open Access Journals (Sweden)

    Zhaksyntay Kairbekov

    2012-04-01

    Full Text Available In the given work the review about a condition of research and trial works on technology perfection hydrogenation coals is made. Done design work on processing 65 thousand tons / year Karazhyra coal to liquid fuels and other products of combustion purposes. The basic advantage of the Kazakhstan technology for producing motor fuels coal hydrogenation at low pressure hydrogen (up to 5 MPa compared to the processes developed in the USA, Germany, Japan, Great Britain, and Russia. An integrated low-waste technology and coal processing, which allows the production of industrially important: liquid and patent fuel, binders for briquetting, and allocate bitumen due to the utilization of sludge.

  18. CO2 uptake capacity of coal fly ash

    DEFF Research Database (Denmark)

    Mazzella, Alessandro; Errico, Massimiliano; Spiga, Daniela

    2016-01-01

    Coal ashes are normally considered as a waste obtained by the coal combustion in thermal power plants. Their utilization inside the site where are produced represents an important example of sustainable process integration. The present study was performed to evaluate the application of a gas......-solid carbonation treatment on coal fly ash in order to assess the potential of the process in terms of sequestration of CO2 as well as its influence on the leaching behavior of metals and soluble salts. Laboratory tests, performed under different pressure and temperature conditions, showed that in the pressure......% corresponding to a maximum carbonation efficiency of 74%, estimated on the basis of the initial CaO content. The high degree of ash carbonation achieved in the present research, which was conducted under mild conditions, without add of water and without stirring, showed the potential use of coal fly ash in CO2...

  19. CO2 reduction potential of future coal gasification based power generation technologies

    International Nuclear Information System (INIS)

    Jansen, D.; Oudhuis, A.B.J.; Van Veen, H.M.

    1992-03-01

    Assessment studies are carried out on coal gasification power plants integrated with gas turbines (IGCC) or molten carbonate fuel cells (MCFC) without and with CO 2 -removal. System elements include coal gasification, high-temperature gas-cleaning, molten carbonate fuel cells or gas turbines, CO shift, membrane separation, CO 2 recovery and a bottoming cycle. Various system configurations are evaluated on the basis of thermodynamic computations. The energy balances of the various system configurations clearly indicate that integrated coal gasification MCFC power plants (IGMCFC) with CO 2 removal have high efficiencies (42-47% LHV) compared to IGCC power plants with CO 2 -removal (33-38% LHV) and that the CO 2 -removal is simplified due to the specific properties of the molten carbonate fuel cells. IGMCFC is therefore an option with future prospective in the light of clean coal technologies for power generation with high energy efficiencies and low emissions. 2 figs., 3 tabs., 10 refs

  20. Integrating Waste Heat from CO2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Irvin, Nick [Southern Company Services, Inc., Birmingham, AL (United States); Kowalczyk, Joseph [Southern Company Services, Inc., Birmingham, AL (United States)

    2017-04-01

    In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO2 Cooler which uses product CO2 gas from the capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO2 Cooler used waste heat from the 25-MW CO2 capture plant (but not always from product CO2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption

  1. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  2. Variability of Mercury Content in Coal Matter From Coal Seams of The Upper Silesia Coal Basin

    Science.gov (United States)

    Wierzchowski, Krzysztof; Chećko, Jarosław; Pyka, Ireneusz

    2017-12-01

    The process of identifying and documenting the quality parameters of coal, as well as the conditions of coal deposition in the seam, is multi-stage and extremely expensive. The taking and analyzing of seam samples is the method of assessment of the quality and quantity parameters of coals in deep mines. Depending on the method of sampling, it offers quite precise assessment of the quality parameters of potential commercial coals. The main kind of seam samples under consideration are so-called "documentary seam samples", which exclude dirt bands and other seam contaminants. Mercury content in coal matter from the currently accessible and exploited coal seams of the Upper Silesian Coal Basin (USCB) was assessed. It was noted that the mercury content in coal seams decreases with the age of the seam and, to a lesser extent, seam deposition depth. Maps of the variation of mercury content in selected lithostratigraphic units (layers) of the Upper Silesian Coal Basin have been created.

  3. Coal blending preparation for non-carbonized coal briquettes

    Science.gov (United States)

    Widodo; Fatimah, D.; Estiaty, L. M.

    2018-02-01

    Referring to the national energy policy targets for the years 2025, the government has launched the use of coal briquettes as an alternative energy replacement for kerosene and firewood. Non-carbonized briquettes in the form of coal briquettes as well as bio-coal briquettes are used in many small-medium industries and households, and are rarely used by large industries. The standard quality of coal briquettes used as raw material for non-carbonized briquettes is a minimum calorific value of 4,400 kcal/kg (adb); total sulfur at a maximum of 1% (adb), and water content at plants), the environment of deposition, and the geological conditions of the surrounding area, so that the coal deposits in each region will be different as well as the amount and also the quality. Therefore, the quantity and the quality of coal in each area are different to be eligible in the making of briquettes to do blending. In addition to the coal blending, it is also necessary to select the right materials in the making of coal briquettes and bio-coal briquettes. The formulation of the right mixture of material in the making of briquettes, can be produced of good quality and environmental friendly.

  4. Coal consumption and economic growth nexus: Evidence from bootstrap panel Granger causality test

    Directory of Open Access Journals (Sweden)

    Anoruo Emmanuel

    2017-01-01

    Full Text Available This paper explores the causal relationship between coal consumption and economic growth for a panel of 15 African countries using bootstrap panel Granger causality test. Specifically, this paper uses the Phillips-Perron unit root test to ascertain the order of integration for the coal consumption and economic growth series. A bootstrap panel Granger causality test is employed to determine the direction of causality between coal consumption and economic growth. The results provide evidence of unidirectional causality from economic growth to coal consumption. This finding implies that coal conservation measures may be implemented with little or no adverse impact on economic growth for the sample countries as a group.

  5. Firing a sub-bituminous coal in pulverized coal boilers configured for bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    N. Spitz; R. Saveliev; M. Perelman; E. Korytni; B. Chudnovsky; A. Talanker; E. Bar-Ziv [Ben-Gurion University of the Negev, Beer-Sheva (Israel)

    2008-07-15

    It is important to adapt utility boilers to sub-bituminous coals to take advantage of their environmental benefits while limiting operation risks. We discuss the performance impact that Adaro, an Indonesian sub-bituminous coal with high moisture content, has on opposite-wall and tangentially-fired utility boilers which were designed for bituminous coals. Numerical simulations were made with GLACIER, a computational-fluid-dynamic code, to depict combustion behavior. The predictions were verified with full-scale test results. For analysis of the operational parameters for firing Adaro coal in both boilers, we used EXPERT system, an on-line supervision system developed by Israel Electric Corporation. It was concluded that firing Adaro coal, compared to a typical bituminous coal, lowers NOx and SO{sub 2} emissions, lowers LOI content and improves fouling behavior but can cause load limitation which impacts flexible operation. 21 refs., 7 figs., 3 tabs.

  6. Geochemistry of coals, coal ashes and combustion wastes from coal-fired power stations

    International Nuclear Information System (INIS)

    Vassilev, S.V.; Vassileva, C.G.

    1997-01-01

    Contents, concentration trends, and modes of occurrence of 67 elements in coals, coal ashes, and combustion wastes at eleven Bulgarian thermoelectric power stations (TPS) were studied. A number of trace elements in coal and coal ash have concentrations greater than their respective worldwide average contents (Clarke values). Trace elements are concentrated mainly in the heavy accessory minerals and organic matter in coal. In decreasing order of significance, the trace elements in coal may occur as: element-organic compounds; impurities in the mineral matter; major components in the mineral matter; major and impurity components in the inorganic amorphous matter; and elements in the fluid constituent. A number of trace elements in the waste products, similar to coal ashes, exceed known Clarke contents. Trace elements are mainly enriched in non-magnetic, heavy and fine-grained fractions of fly ash. They are commonly present as impurities in the glass phases, and are included in the crystalline components. Their accessory crystalline phases, element-organic compounds, liquid and gas forms, are of subordinate importance. Some elements from the chalcophile, lithophile and siderophile groups may release into the atmosphere during coal burning. For others, the combustion process appears to be a powerful factor causing their relative enrichment in the fly ash and rarely in the bottom ash and slag. 65 refs., 1 fig., 11 tabs

  7. New coal

    Energy Technology Data Exchange (ETDEWEB)

    1979-07-01

    Specially dedicated to coal, this edition comprises a series of articles of general interest dealing with the position of the French coalmining industry (interview with M.P. Gardent), the coal market in France, the work of CERCHAR, etc. New techniques, in-situ gasification of deep coal, gasification of coal by nuclear methods, the conversion of coal into petrol, the Emile Huchet power plant of Houilleres du Bassin de Lorraine, etc., are dealt with.

  8. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  9. Wabash River coal gasification repowering project -- first year operation experience

    Energy Technology Data Exchange (ETDEWEB)

    Troxclair, E.J. [Destec Energy, Inc., Houston, TX (United States); Stultz, J. [PSI Energy, Inc., West Terre Haute, IN (United States)

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined high sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.

  10. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  11. Biogeochemical interactions between of coal mine water and gas well cement

    Science.gov (United States)

    Gulliver, D. M.; Gardiner, J. B.; Kutchko, B. G.; Hakala, A.; Spaulding, R.; Tkach, M. K.; Ross, D.

    2017-12-01

    Unconventional natural gas wells drilled in Northern Appalachia often pass through abandoned coal mines before reaching the Marcellus or Utica formations. Biogeochemical interactions between coal mine waters and gas well cements have the potential to alter the cement and compromise its sealing integrity. This study investigates the mineralogical, geochemical, and microbial changes of cement cores exposed to natural coal mine waters. Static reactors with Class H Portland cement cores and water samples from an abandoned bituminous Pittsburgh coal mine simulated the cement-fluid interactions at relevant temperature for time periods of 1, 2, 4, and 6 weeks. Fluids were analyzed for cation and anion concentrations and extracted DNA was analyzed by 16S rRNA gene sequencing and shotgun sequencing. Cement core material was evaluated via scanning electron microscope. Results suggest that the sampled coal mine water altered the permeability and matrix mineralogy of the cement cores. Scanning electron microscope images display an increase in mineral precipitates inside the cement matrix over the course of the experiment. Chemistry results from the reaction vessels' effluent waters display decreases in dissolved calcium, iron, silica, chloride, and sulfate. The microbial community decreased in diversity over the 6-week experiment, with Hydrogenophaga emerging as dominant. These results provide insight in the complex microbial-fluid-mineral interactions of these environments. This study begins to characterize the rarely documented biogeochemical impacts that coal waters may have on unconventional gas well integrity.

  12. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment

    Directory of Open Access Journals (Sweden)

    Dale Bruce E

    2009-12-01

    Full Text Available Abstract Background Pretreatment chemistry is of central importance due to its impacts on cellulosic biomass processing and biofuels conversion. Ammonia fiber expansion (AFEX and dilute acid are two promising pretreatments using alkaline and acidic pH that have distinctive differences in pretreatment chemistries. Results Comparative evaluation on these two pretreatments reveal that (i AFEX-pretreated corn stover is significantly more fermentable with respect to cell growth and sugar consumption, (ii both pretreatments can achieve more than 80% of total sugar yield in the enzymatic hydrolysis of washed pretreated solids, and (iii while AFEX completely preserves plant carbohydrates, dilute acid pretreatment at 5% solids loading degrades 13% of xylose to byproducts. Conclusion The selection of pretreatment will determine the biomass-processing configuration, requirements for hydrolysate conditioning (if any and fermentation strategy. Through dilute acid pretreatment, the need for hemicellulase in biomass processing is negligible. AFEX-centered cellulosic technology can alleviate fermentation costs through reducing inoculum size and practically eliminating nutrient costs during bioconversion. However, AFEX requires supplemental xylanases as well as cellulase activity. As for long-term sustainability, AFEX has greater potential to diversify products from a cellulosic biorefinery due to lower levels of inhibitor generation and lignin loss.

  13. Environmentally favourable electricity production using allothermal coal gasification in accordance with the MBG system

    International Nuclear Information System (INIS)

    Rost, M.; Heek, K.H. van; Knop, K.

    1988-01-01

    Combined gas- and steam turbine power plants with integrated coal gasification are an important foundation alone for the further development of coal processing. The basis of the development is a new allothermal coal gasification system in a fluidized bed, which has been developed from the long operating experience accumulated at a half-scale plant. In contrast with the concept adopted so far of combination with nuclear process heat, in the MGB system (M.A.N.-Bergbauforschung-Gaserzeugung) the reaction heat required for the gasification is obtained by burning part of the coal gas produced. The gasification in the fluidized bed occurs at temperatures of between 800 and 850 0 C within a pressure range of between 20 and 25 bar. The paper describes the integration of the MBG system into a 250 MW power plant as well as the state of development of allothermal coal gasification and test results from the half-scale experimental plant. The construction of a demonstration plant, which will be incorporated in the bypass of a bituminous coal-fired unit, is planned in order to prove the function of the gas generator. (orig.) [de

  14. Integrating geothermal into coal-fired power plant with carbon capture: A comparative study with solar energy

    International Nuclear Information System (INIS)

    Wang, Fu; Deng, Shuai; Zhao, Jun; Zhao, Jiapei; Yang, Guohua; Yan, Jinyue

    2017-01-01

    Highlights: • Post-combustion carbon capture integrating geothermal energy was proposed. • A 300 MWe subcritical coal-fired plant was selected as the baseline. • The geothermal assisted carbon capture system was compared with solar assisted carbon capture plant. • Two different locations were chosen for the technical and economical comparison. • Using medium temperature geothermal thermal energy to replace steam extraction performs better performance. - Abstract: A new system integrating geothermal energy into post-combustion carbon capture is proposed in this paper. Geothermal energy at medium temperatures is used to provide the required thermal heat for solvent regeneration. The performance of this system is compared with solar assisted carbon capture plant via technical and economic evaluation. A 300 MWe coal-fired power plant is selected as the reference case, and two different locations based on the local climatic conditions and geothermal resources are chosen for the comparison. The results show that the geothermal assisted post-combustion carbon capture plant has better performances than the solar assisted one in term of the net power output and annual electricity generation. The net plant average efficiency based on lower heating value can be increased by 2.75% with a thermal load fraction of about 41%. Results of economic assessment show that the proposed geothermal assisted post-combustion carbon capture system has lower levelized costs of electricity and cost of carbon dioxide avoidance compared to the solar assisted post-combustion carbon capture plant. In order to achieve comparative advantages over the reference post-combustion carbon capture plant in both locations, the price of solar collector has to be lower than 70 USD/m 2 , and the drilling depth of the geothermal well shall be less than 2.1 km.

  15. Improvement in shelf life of minimally processed cilantro leaves through integration of kinetin pretreatment and packaging interventions: Studies on microbial population dynamics, biochemical characteristics and flavour retention.

    Science.gov (United States)

    Ranjitha, K; Shivashankara, K S; Sudhakar Rao, D V; Oberoi, Harinder Singh; Roy, T K; Bharathamma, H

    2017-04-15

    Effect of integrating optimized combination of pretreatment with packaging on shelf life of minimally processed cilantro leaves (MPCL) was appraised through analysis of their sensory attributes, biochemical characteristics, microbial population and flavour profile during storage. Minimally pretreated cilantro leaves pretreated with 50ppm kinetin and packed in 25μ polypropylene bags showed a shelf life of 21days. Optimized combination helped in efficiently maintaining sensory parameters, flavour profile, and retention of antioxidants in MPCL until 21days. Studies conducted on the effect of optimized combination on microbial population and flavour profile revealed that among different microorganisms, pectinolysers had a significant effect on spoilage of MPCL and their population of ⩽3.59logcfu/g was found to be acceptable. Principal component analysis of headspace volatiles revealed that (E)-2-undecenal, (E)-2-hexadecenal, (E)-2-tetradecenal & (E)-2-tetradecen-1-ol in stored samples clustered with fresh samples and therefore, could be considered as freshness indicators for MPCL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Research, development, demonstration, and early deployment policies for advanced-coal technology in China

    International Nuclear Information System (INIS)

    Zhao Lifeng; Gallagher, Kelly Sims

    2007-01-01

    Advanced-coal technologies will increasingly play a significant role in addressing China's multiple energy challenges. This paper introduces the current status of energy in China, evaluates the research, development, and demonstration policies for advanced-coal technologies during the Tenth Five-Year Plan, and gives policy prospects for advanced-coal technologies in the Eleventh Five-Year Plan. Early deployment policies for advanced-coal technologies are discussed and some recommendations are put forward. China has made great progress in the development of advanced-coal technologies. In terms of research, development, and demonstration of advanced-coal technologies, China has achieved breakthroughs in developing and demonstrating advanced-coal gasification, direct and indirect coal liquefaction, and key technologies of Integrated Gasification Combined Cycle (IGCC) and co-production systems. Progress on actual deployment of advanced-coal technologies has been more limited, in part due to insufficient supporting policies. Recently, industry chose Ultra Super Critical (USC) Pulverized Coal (PC) and Super Critical (SC) PC for new capacity coupled with pollution-control technology, and 300 MW Circulating Fluidized Bed (CFB) as a supplement

  17. Summary of the research achievements in fiscal 1988. Development of coal liquefaction technologies; Sekitan ekika gijutsu kaihatsu. 1988 nendo kenkyu seika no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    This paper reports the summary of the research and development works in fiscal 1988. The following researches were carried out: as development of a bituminous coal liquefaction technology, studies by using a pilot plant, studies on support of the pilot plant (studies by using an experimental plant (studies by using a 1-t/d PSU, development of an optimal pretreatment technology for coals to be used for liquefaction, studies on improvement in fraction oil distribution in the NEDOL process, and studies by using a 1-t/d plant)), and (studies by using a small device (studies on coal liquefying conditions, and studies on solvent hydrogenation catalysts)). Studies were carried out on operation of the pilot plant, and on support of the pilot plant operation. Materials for auxiliary machinery were developed (including in-plant test of new materials), and so were the devices (including development of a let-down valve) as trial fabrication and development of the plant devices and materials. As coal type selection and survey, coal types were surveyed, and liquefaction performance of Chinese coals was tested. In order to develop applications of coal liquefied products and a refining technology, developments were carried out on up-grading of the coal liquefied oil, a petroleum mixing technology, and a technology to separate hetero compounds in coal liquefied oil, and applications of the compounds. (NEDO)

  18. On the analysis of building a public information platform based on e-Commerce for coal logistics

    Directory of Open Access Journals (Sweden)

    Zeguo Qiu

    2013-09-01

    Full Text Available Purpose: Putting forward the concept and features of the public information platform for coal logistics based on electronic commerce, as well as the requirements of upper and lower intersections of the coal supply chain. Meanwhile, this paper will also probe into the current condition of statistics management in coal logistics, and then discuss how to build a public information platform based on electronic commerce for coal logistics. Design/methodology/approach: According to the further exploring the concepts and relevant characteristics and the development of coal logistics and supply chain management in China of the current period. Findings/ Practical implications: An advanced public information platform for coal logistics utilizes to best advantage modern information technologies and managerial concepts in the operation of coal logistics, such as e-commerce, e-information, supply chain management, etc. This not only stimulates efficient integration of business flow, information flow, logistics and capital flow of the coal industry, brings about in-depth integration of the logistics resources of the coal industry, but also greatly improves the efficiency of the operation of coal logistics, reduces the cost of coal logistics, and enhances the overall competitiveness of upstream and downstream companies along the coal supply chain. Research limitations/implications: Although the coal logistics public information platform has been applied in some enterprises in China, not yet in a broader range of applications, which need the joint efforts of all parties. Originality/value: Fitted to the e-commerce era, the Public Information Platform for Coal Logistics envisioned in this article is highly feasible and worthy of reference to relevant institutions.

  19. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also

  20. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  1. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    Science.gov (United States)

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Coal information 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This volume is a comprehensive reference book on current world coal market trends and long-term prospects to 2010. It contains an in-depth analysis of the 1995 international coal market covering prices, demand, trade, supply and production capacity as well as over 450 pages of country specific statistics on OECD and key non-OECD coal producing and consuming countries. The book also includes a summary of environmental policies on climate change and on coal-related air quality issues as well as essential facts on coal-fired power stations in coal-importing regions, on coal ports world-wide and on emission standards for coal-fired boilers in OECD countries. Coal Information is one of a series of annual IEA statistical publications on major energy sources; other reports are Oil and Gas Information and Electricity Information. Coal Information 1995 is published in July 1996. (author)

  3. Effect of Glycerol Pretreatment on Levoglucosan Production from Corncobs by Fast Pyrolysis

    Directory of Open Access Journals (Sweden)

    Liqun Jiang

    2017-11-01

    Full Text Available In this manuscript, glycerol was used in corncobs’ pretreatment to promote levoglucosan production by fast pyrolysis first and then was further utilized as raw material for chemicals production by microbial fermentation. The effects of glycerol pretreatment temperatures (220–240 °C, time (0.5–3 h and solid-to-liquid ratios (5–20% were investigated. Due to the accumulation of crystalline cellulose and the removal of minerals, the levoglucosan yield was as high as 35.8% from corncobs pretreated by glycerol at 240 for 3 h with a 5% solid-to-liquid ratio, which was obviously higher than that of the control (2.2%. After glycerol pretreatment, the fermentability of the recovered glycerol remaining in the liquid stream from glycerol pretreatment was evaluated by Klebsiella pneumoniae. The results showed that the recovered glycerol had no inhibitory effect on the growth and metabolism of the microbe, which was a promising substrate for fermentation. The value-added applications of glycerol could reduce the cost of biomass pretreatment. Correspondingly, this manuscript offers a green, sustainable, efficient and economic strategy for an integrated biorefinery process.

  4. Task 27 -- Alaskan low-rank coal-water fuel demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

  5. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  6. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  7. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  8. Coal industry annual 1997

    International Nuclear Information System (INIS)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  9. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A; Yamashita, T [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  10. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.

    Science.gov (United States)

    Igbinigie, Eric E; Mutambanengwe, Cecil C Z; Rose, Peter D

    2010-03-01

    Fundamental processes involved in the microbial degradation of coal and its derivatives have been well documented. A mutualistic interaction between plant roots and certain microorganisms to aid growth of plants such as Cynodon dactylon (Bermuda grass) on hard coal dumps has recently been suggested. In the present study coal bioconversion activity of nonmycorrhizal fungi was investigated in the C. dactylon/coal rhizosphere. Fungal growth on 2% Duff-agar, gutation formation on nitric acid treated coal and submerged culture activity in nitrogen-rich and -deficient broth formed part of the screening and selection of the fungi. The selected fungal isolates were confirmed to be found in pristine C. dactylon/coal rhizosphere. To simulate bioconversion, a fungal aliquot of this rhizosphere was used as inoculum for a Perfusate fixed bed bioreactor, packed with coal. The results demonstrate an enhanced coal bioconversion facilitated by low molecular weight organics and the bioconversion of coal may be initiated by an introduction of nitrogen moieties to the coal substrate. These findings suggest a phyto-bioconversion of hard coal involving plant and microbes occurring in the rhizosphere to promote the growth of C. dactylon. An understanding of this relationship can serve as a benchmark for coal dumps rehabilitation as well as for the industrial scale bioprocessing of hard coal.

  11. Sustainable global energy development: The case of coal

    International Nuclear Information System (INIS)

    Brendow, Klaus

    2004-01-01

    . Even more expensive advanced clean coal combustion technologies could noticeably displace gas-fired combined cycle plants in regions with 'reasonably cheap gas prices' (EU) at regimes higher than 6500 h/year and even 4500 h/year. The worldwide replacement of old coal power plants by advanced coal combustion technologies would reduce world CO 2 emissions by 7 - 8 %. For the next decade or more, advanced clean coal combustion may well be the most effective single technology option to combat climate change, bridging the time for coal sequestration to gain maturity. Carbon sequestration in integrated multi-product chemical refineries - the next step - and carbon disposal are the subject of intense research. Against these realities and perspectives, coal's image remained poor. The global coal and associated industries would be well advised to join forces in a proactive campaign highlighting the potential of sustainable development from coal. Acceptance by the public and more balanced policies are at that price. Coal is not part of the problem of sustainability and energy poverty, but part of the solution. (author)

  12. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  13. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  14. Coal Fields and Federal Lands of the Conterminous United States

    Science.gov (United States)

    Biewick, Laura

    1997-01-01

    The map depicts the relationship of coal and public lands in the conterminous U. S. Multiple GIS layers are being created for the purpose of deriving estimates of how much coal is owned and administered by the Federal government. Federal coal areas have a profound effect on land-management decisions. Regulatory agencies attempt to balance energy development with alternative land-use and environmental concerns. A GIS database of Federal lands used in energy resource assessments is being developed by the U. S. Geological Survey (USGS) in cooperation with the U.S. Bureau of Land Management (BLM) to integrate information on status of public land, and minerals owned by the Federal government with geologic information on coal resources, other spatial data, coal quality characteristics, and coal availability for development. Using national-scale data we estimate that approximately 60 percent of the area underlain by coal-bearing rocks in the conterminous United States are under Federal surface. Coal produced from Federal leases has tripled from about 12 percent of the total U.S. production in 1976 to almost 34 percent in 1995 (Energy Information Administration website ftp://ftp.eia.doe.gov/pub/coal/cia_95_tables/t13p01.txt). The reason for this increase is demand for low-sulfur coal for use in power plants and the fact that large reserves of this low-sulfur coal are in the western interior U.S., where the Federal government owns the rights to most of the coal reserves. The map was created using Arc/Info 7.0.3 on a UNIX system. The HPGL2 plot file for this map is available from the USGS Energy Resource Surveys Team from http://energy.cr.usgs.gov:8080/energy/coal.html.

  15. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  16. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério

    2018-01-01

    to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process...... was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction...... of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also...

  17. Analysis of coals and biomass pyrolysis using the distributed activation energy model.

    Science.gov (United States)

    Li, Zhengqi; Liu, Chunlong; Chen, Zhichao; Qian, Juan; Zhao, Wei; Zhu, Qunyi

    2009-01-01

    The thermal decomposition of coals and biomass was studied using thermogravimetric analysis with the distributed activation energy model. The integral method resulted in Datong bituminous coal conversions of 3-73% at activation energies of 100-486 kJ/mol. The corresponding frequency factors were e(19.5)-e(59.0)s(-1). Jindongnan lean coal conversions were 8-52% at activation energies of 100-462 kJ/mol. Their corresponding frequency factors were e(13.0)-e(55.8)s(-1). The conversion of corn-stalk skins were 1-84% at activation energies of 62-169 kJ/mol with frequency factors of e(10.8)-e(26.5)s(-1). Datong bituminous coal, Jindongnan lean coal and corn-stalk skins had approximate Gaussian distribution functions with linear ln k(0) to E relationships.

  18. Rosebud SynCoal Partnership, SynCoal{reg_sign} demonstration technology update

    Energy Technology Data Exchange (ETDEWEB)

    Sheldon, R.W. [Rosebud SynCoal Partnership, Billings, MT (United States)

    1997-12-31

    An Advanced Coal Conversion Process (ACCP) technology being demonstrated in eastern Montana (USA) at the heart of one of the world`s largest coal deposits is providing evidence that the molecular structure of low-rank coals can be altered successfully to produce a unique product for a variety of utility and industrial applications. The product is called SynCoal{reg_sign} and the process has been developed by the Rosebud SynCoal Partnership (RSCP) through the US Department of Energy`s multi-million dollar Clean Coal Technology Program. The ACCP demonstration process uses low-pressure, superheated gases to process coal in vibrating fluidized beds. Two vibratory fluidized processing stages are used to heat and convert the coal. This is followed by a water spray quench and a vibratory fluidized stage to cool the coal. Pneumatic separators remove the solid impurities from the dried coal. There are three major steps to the SynCoal{reg_sign} process: (1) thermal treatment of the coal in an inert atmosphere, (2) inert gas cooling of the hot coal, and (3) removal of ash minerals. When operated continuously, the demonstration plant produces over 1,000 tons per day (up to 300,000 tons per year) of SynCoal{reg_sign} with a 2% moisture content, approximately 11,800b Btu/lb and less than 1.0 pound of SO{sub 2} per million Btu. This product is obtained from Rosebud Mine sub-bituminous coal which starts with 25% moisture, 8,600 Btu/lb and approximately 1.6 pounds of SO{sub 2} per million Btu.

  19. Self-scrubbing coal

    International Nuclear Information System (INIS)

    Kindig, J.K.

    1992-01-01

    More than 502 million tons - 65 percent of all coal shipped to utilities in 1990 - were above 1.2 pounds of sulfur dioxide per million Btu. Most of the coal, even though cleaned in conventional coal preparation plants, still does not meet the emission limitation the Clean Air Act Amendments mandate for the year 2000. To cope with this fact, most utilities plan to switch to low sulfur (western U.S. or Central Appalachian) coal or install scrubbers. Both solutions have serous drawbacks. Switching puts local miners out of work and weakens the economy in the utility's service territory. Scrubbing requires a major capital expenditure by the utility. Scrubbers also increase the operating complexity and costs of the generating station and produce yet another environmental problem, scrubber sludge. Employing three new cost-effective technologies developed by Customer Coals International (CCl), most non-compliance coals east of the Mississippi River can be brought into year-2000 compliance. The compliance approach employed, depends upon the characteristics of the raw coal. Three types of raw coal are differentiated, based upon the amount of organic sulfur in the coals and the ease (or difficultly) of liberating the pyrite. They are: Low organic sulfur content and pyrite that liberates easily. Moderate organic sulfur content and pyrite that liberates easily. High organic sulfur content or the pyrite liberates with difficulty. In this paper examples of each type of raw coal are presented below, and the compliance approach employed for each is described. The names of the beneficiated coal products produced from each type of raw coal give above are: Carefree Coal, Self-Scrubbing Coal and Dry-Scrubbing Coal

  20. Underground coal gasification (UCG: A new trend of supply-side economics of fossil fuels

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2016-10-01

    Full Text Available China has a huge demand for energy. Under the present energy structure of rich coal, lean oil, less gas, limited and low-rising rate renewable energy, discussion focus is now on the high-efficient mining of coal as well as its clean-and-low-carbon use. In view of this, based on an analysis of the problems in the coal chemical industry and the present coal utilization ways such as Integrated Gasification Combined Cycle (IGCC, this paper proposes that underground coal gasification (UCG technology is a realistic choice. By virtue of its advantages in many aspects such as safety & environment, integrated use of superior resources, economic feasibility, etc. this technology can serve as the front-end support and guarantee for coal chemical industry and IGCC. Under the present situation, the following proposals were presented to promote the development of this technology. First, R&D of technical products should be strengthened, a comprehensive feasibility study assessment system should be established, and the relevant criteria in the industry should be formulated. Second, precise market positioning of UCG products should be made with much concern on the integrated economic indicators of each product's complete flow scheme, following the principle of “Technical Feasibility First, Economic Optimization Followed”. Third, a perfect operation and management pattern should be established with strict control over high-efficient, environmentally-friendly, safe, harmonious & compact objectives in the whole industry chain. In conclusion, to realize the large-scale UCG commercial production will strongly promote the optimization and innovation of fossil fuels supply-side economics in China.

  1. Time dependent pre-treatment EPID dosimetry for standard and FFF VMAT.

    Science.gov (United States)

    Podesta, Mark; Nijsten, Sebastiaan M J J G; Persoon, Lucas C G G; Scheib, Stefan G; Baltes, Christof; Verhaegen, Frank

    2014-08-21

    Methods to calibrate Megavoltage electronic portal imaging devices (EPIDs) for dosimetry have been previously documented for dynamic treatments such as intensity modulated radiotherapy (IMRT) using flattened beams and typically using integrated fields. While these methods verify the accumulated field shape and dose, the dose rate and differential fields remain unverified. The aim of this work is to provide an accurate calibration model for time dependent pre-treatment dose verification using amorphous silicon (a-Si) EPIDs in volumetric modulated arc therapy (VMAT) for both flattened and flattening filter free (FFF) beams. A general calibration model was created using a Varian TrueBeam accelerator, equipped with an aS1000 EPID, for each photon spectrum 6 MV, 10 MV, 6 MV-FFF, 10 MV-FFF. As planned VMAT treatments use control points (CPs) for optimization, measured images are separated into corresponding time intervals for direct comparison with predictions. The accuracy of the calibration model was determined for a range of treatment conditions. Measured and predicted CP dose images were compared using a time dependent gamma evaluation using criteria (3%, 3 mm, 0.5 sec). Time dependent pre-treatment dose verification is possible without an additional measurement device or phantom, using the on-board EPID. Sufficient data is present in trajectory log files and EPID frame headers to reliably synchronize and resample portal images. For the VMAT plans tested, significantly more deviation is observed when analysed in a time dependent manner for FFF and non-FFF plans than when analysed using only the integrated field. We show EPID-based pre-treatment dose verification can be performed on a CP basis for VMAT plans. This model can measure pre-treatment doses for both flattened and unflattened beams in a time dependent manner which highlights deviations that are missed in integrated field verifications.

  2. Modeling forest ecosystem changes resulting from surface coal mining in West Virginia

    Science.gov (United States)

    John Brown; Andrew J. Lister; Mary Ann Fajvan; Bonnie Ruefenacht; Christine Mazzarella

    2012-01-01

    The objective of this project is to assess the effects of surface coal mining on forest ecosystem disturbance and restoration in the Coal River Subbasin in southern West Virginia. Our approach is to develop disturbance impact models for this subbasin that will serve as a case study for testing the feasibility of integrating currently available GIS data layers, remote...

  3. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  4. Comparative emissions from Pakistani coals and traditional coals

    Energy Technology Data Exchange (ETDEWEB)

    Du, Y X [Guangzhou Medical College (China). Dept. of Hygiene; Huang, L F [Guangzhou Health and Anti-epidemic Station (China)

    1994-12-31

    Briquette coal has been widely used for domestic cooking and heating in many Chinese cites over the last two decades. To determine whether burning briquette coal contributes significantly to indoor air pollution, a study was performed in cities-of Southern China in which the measured levels of SO{sub 2}, NO{sub x}, TSP, SD, B(a)P in the kitchens of coal burning families were compared with levels obtained in families using gas. Significantly higher contentions of these pollutants, whose peaks correlated with daily cooking episodes, were detected in coal burning families. The levels of TSP and B(a)P were further found to be dependent on cooking methods, with deep frying and stir-frying of meat generating the most indoor TSP and B(a)P. Briquette coal burning was found to be the source of B(a)P contamination in food. A higher incidence of chronic pharyngitis as well as a suppressed salivary bacteriolytic enzyme activity were found in children of coal burning families. Epidemiologic and laboratory studies also show a close association between coal burning and the incidence of lung cancer in females. (author)

  5. Third symposium on coal preparation. NCA/BCR coal conference and Expo IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    The third Symposium on Coal preparation, sponsored by the National Coal Association and Bituminous Coal Research, Inc., was held at the Kentucky Fair and Exposition Center, Louisville, Kentucky, October 18-20, 1977. Fourteen papers from the proceedings have been entered individually into EDB and ERA; five additional papers had been entered previously from other sources. Topics covered involved chemical comminution and chemical desulfurization of coal (aimed at reducing sulfur sufficiently with some coals to meet air quality standards without flue gas desulfurization), coal cleaning concepts, removing coal fines and recycling wash water, comparative evaluation of coal preparation methods, coal refuse disposal without polluting the environment, spoil bank reprocessing, noise control in coal preparation plants, etc. (LTN)

  6. Update on the REIPPPP, clean coal, nuclear, natural gas

    CSIR Research Space (South Africa)

    Milazi, Dominic

    2015-12-01

    Full Text Available , clean coal, nuclear, natural gas The Sustainable Energy Resource Handbook Volume 6 Dominic Milazi, Dr Tobias Bischof-Niemz, Abstract Since its release in 2011, the Integrated Resource Plan (IRP 2010-2030), or IRP 2010, has been the authoritative... text setting out South Africa’s electricity plan over the next 20 years. The document indicates timelines on the roll out of key supply side options such as renewable energy, the nuclear, natural gas and coal build programmes, as well as peaking...

  7. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  8. Coal industry annual 1993

    International Nuclear Information System (INIS)

    1994-01-01

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  9. Role of Bioavailable Iron in Coal Dust-Induced Activation of Activator Protein-1 and Nuclear Factor of Activated T Cells

    Science.gov (United States)

    Huang, Chuanshu; Li, Jingxia; Zhang, Qi; Huang, Xi

    2010-01-01

    Activator protein-1 (AP-1) and nuclear factor of activated T cells (NFAT) are two important transcription factors responsible for the regulation of cytokines, which are involved in cell proliferation and inflammation. Coal workers’ pneumoconiosis (CWP) is an occupational lung disease that may be related to chronic inflammation caused by coal dust exposure. In the present study, we demonstrate that coal from the Pennsylvania (PA) coalmine region, which has a high prevalence of CWP, can activate both AP-1 and NFAT in JB6 mouse epidermal cells. In contrast, coal from the Utah (UT) coalmine region, which has a low prevalence of CWP, has no such effects. The PA coal stimulates mitogen-activated protein kinase (MAPK) family members of extracellular signal-regulated kinases (ERKs) and p38 MAPK but not c-Jun-NH2-terminal kinases, as determined by the phosphorylation assay. The increase in AP-1 by the PA coal was completely eliminated by the pretreatment of cells with PD98059, a specific MAPK kinase inhibitor, and SB202190, a p38 kinase inhibitor, further confirming that the PA coal-induced AP-1 activation is mediated through ERKs and p38 MAPK pathways. Deferoxamine (DFO), an iron chelator, synergistically enhanced the PA coal-induced AP-1 activity, but inhibited NFAT activity. For comparison, cells were treated with ferrous sulfate and/or DFO. We have found that iron transactivated both AP-1 and NFAT, and DFO further enhanced iron-induced AP-1 activation but inhibited NFAT. These results indicate that activation of AP-1 and NFAT by the PA coal is through bioavailable iron present in the coal. These data are in agreement with our previous findings that the prevalence of CWP correlates well with levels of bioavailable iron in coals from various mining regions. PMID:12397016

  10. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  11. Asia's coal and clean coal technology market potential

    International Nuclear Information System (INIS)

    Johnson, C.J.; Binsheng Li

    1992-01-01

    The Asian region is unique in the world in having the highest economic growth rate, the highest share of coal in total primary energy consumption and the highest growth rate in electricity generation capacity. The outlook for the next two decades is for accelerated efforts to control coal related emissions of particulates and SO 2 and to a lessor extent NO x and CO 2 . Only Japan has widespread use of Clean Coal Technologies (CCTs) however a number of economies have plans to install CCTs in future power plants. Only CCTs for electricity generation are discussed, and are defined for the purpose of this paper as technologies that substantially reduce SO 2 and/or NO x emissions from coal-fired power plants. The main theses of this paper are that major increases in coal consumption will occur over the 1990-2010 period, and this will be caccompanied by major increases in coal related pollution in some Asian economies. Coal fired electricity generation is projected to grow at a high rate of about 6.9 percent per year over the 1990-2010 period. CCTs are projected to account for about 150 GW of new coal-fired capacity over the 1990-2010 period of about one-third of all new coal-fired capacity. A speculative conclusion is that China will account for the largest share of CCT additions over the 1990-2010 period. Both the US and Japan have comparative advantages that might be combined through cooperation and joint ventures to gain a larger share of the evolving CCT market in Asia. 5 refs., 7 figs., 4 tabs

  12. Economic effects of western Federal land-use restrictions on U.S. coal markets

    Science.gov (United States)

    Watson, William Downing; Medlin, A.L.; Krohn, K.K.; Brookshire, D.S.; Bernknopf, R.L.

    1991-01-01

    Current regulations on land use in the Western United States affect access to surface minable coal resources. This U.S. Geological Survey study analyzes the long-term effects of Federal land-use restrictions on the national cost of meeting future coal demands. The analysis covers 45 years. The U.S. Bureau of Land Management has determined the environmental, aesthetic, and economic values of western Federal coal lands and has set aside certain areas from surface coal mining to protect other valued land uses, including agricultural, environmental, and aesthetic uses. Although there are benefits to preserving natural areas and to developing areas for other land uses, these restrictions produce long-term national and regional costs that have not been estimated previously. The Dynamic Coal Allocation Model integrates coal supply (coal resource tonnage and coal quality by mining cost for 60 coal supply regions) with coal demand (in 243 regions) for the entire United States. The model makes it possible to evaluate the regional economic impacts of coal supply restrictions wherever they might occur in the national coal market. The main factors that the economic methodology considers are (1) coal mining costs, (2) coal transportation costs, (3) coal flue gas desulfurization costs, (4) coal demand, (5) regulations to control sulfur dioxide discharges, and (6) specific reductions in coal availability occurring as a result of land-use restrictions. The modeling system combines these economic factors with coal deposit quantity and quality information--which is derived from the U.S. Geological Survey's National Coal Resources Data System and the U.S. Department of Energy's Demonstrated Reserve Base--to determine a balance between supply and demand so that coal is delivered at minimum cost.

  13. Coal - 96

    International Nuclear Information System (INIS)

    Sparre, C.

    1996-09-01

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO 2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NO x removal. Most other plants are using low NO x burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  14. Liquid CO2/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Goldstein, Harvey [Electric Power Research Institute, Inc., Palo Alto, CA (United States); Dooher, John [Electric Power Research Institute, Inc., Palo Alto, CA (United States)

    2013-09-30

    This study investigates the practicality of using a liquid CO2/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO2 has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO2 is much lower than water. This means it should take less energy to pump liquid CO2 through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO2 is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO2 is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO2 slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO2 has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO2 over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO2/coal slurry properties.

  15. New opportunities for U.S. coal and mineral exporters

    International Nuclear Information System (INIS)

    Watkins, J.A.

    1992-01-01

    U.S. exports of coal, metals and industrial minerals to the European Community were valued at $2.4 billion in 1989, representing 47 percent of total export revenues generated by these materials. Coal was the single largest contributor to the value of mineral exports to the EC with total sales of approximately $2 billion in 1989. With the extinction of trade barriers that will be triggered by the economic and political unification of Europe, new opportunities for U.S. minerals exporters are likely to develop. This paper examines the overall impact of European integration on U.S. metal and industrial mineral exports and provides a more rigorous analysis of the outlook for thermal and coking coal exports to the EC during the next decade

  16. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  17. Swelling behavior of several bituminous coals and their thermally treated coals

    Energy Technology Data Exchange (ETDEWEB)

    Shui, Heng-fu; Cao, Mei-xia; Wang, Zhi-cai [Anhui University of Technology, Maanshan (China). School of Chemistry & Chemical Engineering

    2007-07-01

    The swelling behavior in different solvents of 4 bituminous coals with different ranks and their residues from extraction by CS{sub 2}/NMP mixed solvent (l:1 in volume) were measured. The change in swelling property of the four coals thermally treated at different temperature was observed. The results show that the swelling ratio decreases with increasing rank of coal. For lower rank bituminous coals the swelling ratios in polar solvent are higher than those in non-polar solvent, and this difference decreases with increasing rank. The cross-linking densities of the four residues decrease, and the swelling ratios increase compared with those of raw coals. The swelling ratios of the four thermally treated coals under 150{sup o}C in CS{sub 2} increase, suggesting the decrease in crosslinking density of them. When the thermal treatment temperature increases to 240{sup o}C, the swelling rations of the other three coals in NMP and CS{sub 2} increase again except gas coal, demonstrating the further decrease in crosslinking density. This result is coincident with the extraction yield change in the mixed solvent of the thermally treated coal. For example, the extraction yield of lean coal treated at 240{sup o}C increases from 6.9% to 17.3%. FT-IR results show the removal of oxygen group of the thermally treated coals. This may explain the increase in swelling ratio and extraction yield in the mixed solvent of coal after thermal treatment. The cross-linking density of the thermally treated coal decreases because of the break of hydrogen bonds due to removal of C = 0 and -OH oxygen groups during the thermal treatment, resulting in the increases of swelling ratio and extraction yield in the mixed solvent of thermally treated coal compared with those of raw coal. 15 refs., 3 figs., 6 tabs.

  18. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  19. Optimization of Pre-Treatment Process Parameters to Generate Biodiesel from Microalga

    Directory of Open Access Journals (Sweden)

    Chukwuma Onumaegbu

    2018-03-01

    Full Text Available Cell disruption is an integral part of microalga production process, which improves the release of intracellular products that are essential for biofuel production. In this work, pre-treatment parameters that will enhance the efficiency of lipid production using high-pressure homogenizer on microalgae biomass will be investigated. The high-pressure homogenizer that is considered is a GYB40-10S/GY60-6S; with a pre-treatment pressure of 1000 psi, 2000 psi, and 3000 psi, the number of passes; 1, 2, and 3, a reaction time of 3, 3.5, and 4 h. Pressure and cavitation increase the efficiency of the pre-treatment process of the homogenizer. In addition, homogenization shear force and pressure are the basic significant factors that enhance the efficiency of microalgae cell rupture. Also, the use of modelling to simulate pre-treatment processes (Response Surface Methodology (RSM, Box-Behnken Designs (BBD, and design of experiment (DOE for process optimization will be adopted in this study. The results clearly demonstrate that high-pressure homogenization pre-treatment can effectively disrupt microalga cell walls to enhance lipid recovery efficiency, with a relatively short extraction time, both that are essential for maintaining a good quality of lipids for biofuel production. A maximum of 18% lipid yields were obtained after 3 h of HPH pre-treatment at 3000 psi.

  20. NOx Control Options and Integration for US Coal Fired Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Mike Bockelie; Marc Cremer; Kevin Davis; Martin Denison; Adel Sarofim; Connie Senior; Hong-Shig Shim; Dave Swenson; Bob Hurt; Eric Suuberg; Eric Eddings; Kevin Whitty; Larry Baxter; Calvin Bartholomew; William Hecker

    2006-06-30

    This is the Final Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project was to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) provided co-funding for this program. This project included research on: (1) In furnace NOx control; (2) Impacts of combustion modifications on boiler operation; (3) Selective Catalytic Reduction (SCR) catalyst testing and (4) Ammonia adsorption/removal on fly ash. Important accomplishments were achieved in all aspects of the project. Rich Reagent Injection (RRI), an in-furnace NOx reduction strategy based on injecting urea or anhydrous ammonia into fuel rich regions in the lower furnace, was evaluated for cyclone-barrel and PC fired utility boilers. Field tests successfully demonstrated the ability of the RRI process to significantly reduce NOx emissions from a staged cyclone-fired furnace operating with overfire air. The field tests also verified the accuracy of the Computational Fluid Dynamic (CFD) modeling used to develop the RRI design and highlighted the importance of using CFD modeling to properly locate and configure the reagent injectors within the furnace. Low NOx firing conditions can adversely impact boiler operation due to increased waterwall wastage (corrosion) and increased soot production. A corrosion monitoring system that uses electrochemical noise (ECN) corrosion probes to monitor, on a real-time basis, high temperature corrosion events within the boiler was evaluated. Field tests were successfully conducted at two plants. The Ohio Coal Development Office provided financial assistance to perform the field tests. To investigate soot behavior, an advanced model to predict soot production and destruction was implemented into an existing reacting CFD modeling tool. Comparisons between experimental data collected

  1. Coal industry annual 1996

    International Nuclear Information System (INIS)

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  2. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  3. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  4. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  5. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  6. NOx CONTROL OPTIONS AND INTEGRATION FOR US COAL FIRED BOILERS

    International Nuclear Information System (INIS)

    Mike Bockelie; Marc Cremer; Kevin Davis; Connie Senior; Bob Hurt; Eric Suuberg; Eric Eddings; Larry Baxter

    2002-01-01

    This is the sixth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. Preliminary results from laboratory and field tests of a corrosion probe to predict waterwall wastage indicate good agreement between the electrochemical noise corrosion rates predicted by the probe and corrosion rates measured by a surface profilometer. Four commercial manufacturers agreed to provide catalyst samples to the program. BYU has prepared two V/Ti oxide catalysts (custom, powder form) containing commercially relevant concentrations of V oxide and one containing a W oxide promoter. Two pieces of experimental apparatus being built at BYU to carry out laboratory-scale investigations of SCR catalyst deactivation are nearly completed. A decision was made to carry out the testing at full-scale power plants using a slipstream of gas instead of at the University of Utah pilot-scale coal combustor as originally planned. Design of the multi-catalyst slipstream reactor was completed during this quarter. One utility has expressed interest in hosting a long-term test at one of their plants that co-fire wood with coal. Tests to study ammonia adsorption onto fly ash have clearly established that the only routes that can play a role in binding significant amounts of ammonia to the ash surface, under practical ammonia slip conditions, are those that must involve co-adsorbates

  7. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  8. Coal prices rise

    International Nuclear Information System (INIS)

    McLean, A.

    2001-01-01

    Coking and semi hard coking coal price agreements had been reached, but, strangely enough, the reaching of common ground on semi soft coking coal, ultra low volatile coal and thermal coal seemed some way off. More of this phenomenon later, but suffice to say that, traditionally, the semi soft and thermal coal prices have fallen into place as soon as the hard, or prime, coking coal prices have been determined. The rise and rise of the popularity of the ultra low volatile coals has seen demand for this type of coal grow almost exponentially. Perhaps one of the most interesting facets of the coking coal settlements announced to date is that the deals appear almost to have been preordained. The extraordinary thing is that the preordination has been at the prescience of the sellers. Traditionally, coking coal price fixing has been the prerogative of the Japanese Steel Mills (JSM) cartel (Nippon, NKK, Kawasaki, Kobe and Sumitomo) who presented a united front to a somewhat disorganised force of predominantly Australian and Canadian sellers. However, by the time JFY 2001 had come round, the rules of the game had changed

  9. Health impacts of coal and coal use: Possible solutions

    Science.gov (United States)

    Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L.

    2002-01-01

    Coal will be a dominant energy source in both developed and developing countries for at least the first half of the 21st century. Environmental problems associated with coal, before mining, during mining, in storage, during combustion, and postcombustion waste products are well known and are being addressed by ongoing research. The connection between potential environmental problems with human health is a fairly new field and requires the cooperation of both the geoscience and medical disciplines. Three research programs that illustrate this collaboration are described and used to present a range of human health problems that are potentially caused by coal. Domestic combustion of coal in China has, in some cases, severely affected human health. Both on a local and regional scale, human health has been adversely affected by coals containing arsenic, fluorine, selenium, and possibly, mercury. Balkan endemic nephropathy (BEN), an irreversible kidney disease of unknown origin, has been related to the proximity of Pliocene lignite deposits. The working hypothesis is that groundwater is leaching toxic organic compounds as it passes through the lignites and that these organics are then ingested by the local population contributing to this health problem. Human disease associated with coal mining mainly results from inhalation of particulate matter during the mining process. The disease is Coal Worker's Pneumoconiosis characterized by coal dust-induced lesions in the gas exchange regions of the lung; the coal worker's "black lung disease". ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  11. Integrated basic treatment of activated carbon for enhanced CO{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Adelodun, Adedeji Adebukola; Jo, Young-Min, E-mail: ymjo@khu.ac.kr

    2013-12-01

    We attempted the use of three chemical agents viz nitric acid (HN), calcium nitrate (CaN) and calcium ethanoate (CaEt) to achieve enhanced CO{sub 2} selective adsorption by activated carbon (AC). In dry phase treatment, microporous coconut shell-based carbon (CS) exhibits higher CO{sub 2} capacity than coal-based. However, upon wet-phase pre-treatment, modified CS samples showed lesser CO{sub 2} adsorption efficiency. Surface characterization with X-ray photoelectron spectroscopy confirms the presence of calcium and amine species on the samples with integrated treatment (A-CaN). These samples recorded the highest low-level CO{sub 2} capture despite calcinated CaEt-doped samples (C-CaEt) showing the highest value for pure and high level CO{sub 2} adsorption capacities. The slope and linearity values of isobaric desorption were used to estimate the proportion of CO{sub 2} chemisorbed and heterogeneity of the adsorbents’ surfaces respectively. Consequently, integrated basic impregnation provides the most efficient adsorbents for selective adsorption of both indoor and outdoor CO{sub 2} levels.

  12. Proceedings of the sixth APEC Coal Flow Seminar. Coal in the new millennium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-08-01

    The 6th APEC Coal Flow Seminar titled on 'The coal in the new millennium' was held in Korea from March 14 to March 16, 2000, and the proceedings were summed up. In this seminar, as to economies of coal consumption countries and coal supply countries in the APEC region, discussions were made on coal supply/demand, coal price, environmental problems and others. The keynote address was 'Twenty first century coal in the APEC region and Republic of Korea' given by Mr. Gam Yeol Lee from Korea. The main theme of the seminar was 'The status quo for the coal market,' and lectures titled on the following were given from Japan: 'The status quo of coal purchase by the Japanese electric company and its outlook' and 'A perspective of coal fired IPP under environmental constraints and deregulation of electricity.' Lectures from Australia: 'Responding to coal market growth in APEC regions by the Australian coal industry' and 'The coal price impact on coal supply and demand.' Further discussions were made on 'The long-term outlook for coal supply/demand' and 'Economies report on the outlook for coal supply/demand.' (NEDO)

  13. Colour and toxic characteristics of metakaolinite–hematite pigment for integrally coloured concrete, prepared from iron oxide recovered from a water treatment plant of an abandoned coal mine

    International Nuclear Information System (INIS)

    Sadasivam, Sivachidambaram; Thomas, Hywel Rhys

    2016-01-01

    A metakaolinite-hematite (KH) red pigment was prepared using an ocherous iron oxide sludge recovered from a water treatment plant of an abandoned coal mine. The KH pigment was prepared by heating the kaolinite and the iron oxide sludge at kaolinite's dehydroxylation temperature. Both the raw sludge and the KH specimen were characterised for their colour properties and toxic characteristics. The KH specimen could serve as a pigment for integrally coloured concrete and offers a potential use for the large volumes of the iron oxide sludge collected from mine water treatment plants. - Graphical abstract: A kaolinite based red pigment was prepared using an ocherous iron oxide sludge recovered from an abandoned coal mine water treatment plant. Display Omitted - Highlights: • A red pigment was prepared by heating a kaolinite and an iron oxide sludge. • The iron oxide and the pigment were characterised for their colour properties. • The red pigment can be a potential element for integrally coloured concrete.

  14. Coal -98

    International Nuclear Information System (INIS)

    Sparre, C.

    1998-01-01

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  15. Coal marketing manual 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This manual provides information on the international coal market in tabulated format. Statistics are presented for the Australian coal industry, exports, currency movements, world coal production, coal and coke imports and exports. Detailed information is provided on the Australian coal industry including mine specific summaries. Pricing summaries for thermal and coking coal in 1987, coal quality standards and specifications, trends in coal prices and stocks. Imports and exports for World coal and coke, details of shipping, international ports and iron and steel production. An exporters index of Australian and overseas companies with industry and government contacts is included. 15 figs., 67 tabs.

  16. Workability of coal seams in the Upper Silesian Coal Basin

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W; Fels, M; Soltysik, K

    1978-04-01

    This paper presents results of an investigation on workability of coal seams of stratigraphic groups from 100 to 700 in the: Upper Silesian Coal Basin. Analyzed are 2900 petrographic logs taken in the longwall workings and in narrow openings as well as about 9000 individual samples. Workability of coal seams, floors and partings is determined. Workability is described by the indicator f, (according to the Protodyakonov shatter method) and the indicator U, (compression strength of the unshaped test samples). The mean percentage content of indivi dual petrographic groups of coal as well as the mean workability indicator, f, of coals in the stratigraphic groups of coal seams in Upper Silesia are also determined.

  17. The economic and political integration of Europe

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book covers issues concerning US coal and mineral exports to Europe in the wake of the economic and political integration of Europe. Topics addressed include: The European Energy Charter; the implications of the European Energy Charter for coal companies; and tax issues, coal development and the European Common Market

  18. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  19. Ultravitrinite coals from Chukotka

    Energy Technology Data Exchange (ETDEWEB)

    Lapo, A.V.; Letushova, I.A.

    1979-03-01

    Chemical and petrographic analysis was conducted on coals from the Anadyrya and Bukhti Ugol'noi deposits. Characteristics of the most prevalent type of vitrinite coals in both regions are presented here. Anadyrya coals belong to a transitional phase between brown coal and long flame. Ultravitrinite coals predominate. Gas coals from Bukti Ugol'noi have a higher carbon content than Anadyrya coals. They also have a higher hydrogen content and yield of initial resin. In several cases there was also a higher yield of volatile substances. Chukotka coals are characterized by a 10 percent higher initial resin yield than equally coalified Donetsk coals, other indicators were equal to those of Donetsk coals. Because of this, Chukotka coals are suitable for fuel in power plants and as raw materials in the chemical industry. (15 refs.) (In Russian)

  20. The come back of liquid coal

    International Nuclear Information System (INIS)

    Caulier, S.

    2010-01-01

    The coal-to-liquid (CTL) process has made important progresses and is now perfectly mastered by the South-African company Sasol. At least 6 CTL facilities are under construction in China. Each will produce 80000 barrels/day of diesel fuel and the production is planned to start up by 2017 or 2018. The CTL process is profitable when the oil barrel price exceeds 100 US$ but it depends also of the coal price. However, the process itself is highly energy consuming and also highly polluting with strong CO 2 emissions. A solution to these drawbacks would come from the implementation of poly-generation (separate generation of energy, electricity and heat), and from the use of a combined cycle with integrated gasification. (J.S.)

  1. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  2. Computer-aided planning of brown coal seam mining in regard to coal quality

    Energy Technology Data Exchange (ETDEWEB)

    Ciesielski, R.; Lehmann, A.; Rabe, H.; Richter, S.

    1988-09-01

    Discusses features of the geologic SORVER software developed at the Freiberg Fuel Institute, GDR. The program processes geologic data from exploratory wells, petrographic characteristics of a coal seam model, technological mining parameters and coal quality requirements of consumers. Brown coal reserves of coking coal, gasification coal, briquetting coal and steam coal are calculated. Vertical seam profiles and maps of seam horizon isolines can be plotted using the program. Coal quality reserves along the surface of mine benches, mining block widths and lengths for excavators, maximum possible production of individual coal qualities by selective mining, and coal quality losses due to mining procedures are determined. The program is regarded as a means of utilizing deposit reserves more efficiently. 5 refs.

  3. COAL Conference Poster

    OpenAIRE

    Brown, Taylor Alexander; McGibbney, Lewis John

    2017-01-01

    COAL Conference Poster This archive contains the COAL conference poster for the AGU Fall Meeting 2017 by Taylor Alexander Brown. The Inkscape SVG source is available at https://github.com/capstone-coal/coal-conference-poster/ under the Creative Commons Attribution-ShareAlike 4.0 International license.

  4. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  5. Methods for pretreating biomass

    Science.gov (United States)

    Balan, Venkatesh; Dale, Bruce E; Chundawat, Shishir; Sousa, Leonardo

    2017-05-09

    A method for pretreating biomass is provided, which includes, in a reactor, allowing gaseous ammonia to condense on the biomass and react with water present in the biomass to produce pretreated biomass, wherein reactivity of polysaccharides in the biomass is increased during subsequent biological conversion as compared to the reactivity of polysaccharides in biomass which has not been pretreated. A method for pretreating biomass with a liquid ammonia and recovering the liquid ammonia is also provided. Related systems which include a biochemical or biofuel production facility are also disclosed.

  6. Feasibility of applying coal-fired boiler technology to process heaters

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, T F

    1978-01-01

    The preponderance of coal in US fossil fuel reserves has raised the question of the conversion of hydrocarbon process heaters to coal firing. A review undertaken in 1977 by an API sub-committee concluded that neither existing heaters nor existing heater designs were capable of modification or revision to burn coal, and that new coal-fired design consistent with process requirements would be needed for this purpose. In recognition of this need a cooperative investigation was undertaken by Combustion Engineering and Lummus. The present paper, reporting on this investigation, reviews existing coal-fired boiler equipment and techniques and describes their adaptation to the development of a design concept for a coal-fired process heater. To this end, the design parameters for both steam boilers and fired heaters have been compared and have been incorporated into a workable coal-fired process heater design which includes the following features; a coutant bottom for ash removal, an ash-hopper located under both radiant and convection chambers, a tangent type finned wall construction, a straight through gas flow pattern, a vertical tube convection section, horizontal firing using round burners, and an overall geometry allowing a coil arrangement capable of accommodating varying numbers of parallel serpentine coils. These features are integrated into a conceptual heater design which is detailed in a series of illustrations.

  7. Healy Clean Coal Project: A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-09-01

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict

  8. Baseload coal investment decisions under uncertain carbon legislation.

    Science.gov (United States)

    Bergerson, Joule A; Lave, Lester B

    2007-05-15

    More than 50% of electricity in the U.S. is generated by coal. The U.S. has large coal resources, the cheapest fuel in most areas. Coal fired power plants are likely to continue to provide much of U.S. electricity. However, the type of power plant that should be built is unclear. Technology can reduce pollutant discharges and capture and sequester the CO2 from coal-fired generation. The U.S. Energy Policy Act of 2005 provides incentives for large scale commercial deployment of Integrated Coal Gasification Combined Cycle (IGCC) systems (e.g., loan guarantees and project tax credits). This analysis examines whether a new coal plant should be Pulverized Coal (PC) or IGCC. Do stricter emissions standards (PM, SO2, NOx, Hg) justify the higher costs of IGCC over PC? How does potential future carbon legislation affect the decision to add carbon capture and storage (CCS) technology? Finally, can the impact of uncertain carbon legislation be minimized? We find that SO2, NOx, PM, and Hg emission standards would have to be far more stringent than twice current standards to justify the increased costs of the IGCC system. A C02 tax less than $29/ton would lead companies to continuing to choose PC, paying the tax for emitted CO2. The earlier a decision-maker believes the carbon tax will be imposed and the higher the tax, the more likely companies will choose IGCC w/CCS. Having government announce the date and level of a carbon tax would promote more sensible decisions, but government would have to use a tax or subsidy to induce companies to choose the technology that is best for society.

  9. Coal at the crossroads

    International Nuclear Information System (INIS)

    Scaroni, A.W.; Davis, A.; Schobert, H.; Gordon, R.L.; Ramani, R.V.; Frantz, R.L.

    1992-01-01

    Worldwide coal reserves are very large but coal suffers from an image of being an environmentally unfriendly and inconvenient fuel. Aspects discussed in the article include: coal's poor image; techniques for coal analysis, in particular instrumented techniques; developments in clean coal technology e.g. coal liquefaction, fluidized bed combustion, co-generation and fuel slurries; the environmental impact of mining and land reclamation; and health aspects. It is considered that coal's future depends on overcoming its poor image. 6 photos

  10. Promotive study on preparation of basis for foreign coal import. Study on coal renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Yoji [Japan Economic Research Institute, Tokyo

    1988-09-16

    This is an interim report on the coal renaissance study carried out in 1987 as a part of the Promotive Study on Preparation of Basis for Foreign Coal Import. The background and ideology of coal renaissance, future aspect of demand for coal, problems pertaining to the expansion of application, and a proposal for the expansion of coal usage are described in order. The role of coal expected as an alternate fuel for petroleum, development of new application fields for coal, conversion to coal, contribution of Japan to the stablization of international coal supply are outlined. Coal renaissance aims, based on technology, at stimulation of coal demand, change in the image of coal, and the utilization of the accumulated abundant knowhow. The aspect of coal demand in 2000, solution and current status of various restricting factors relating to the use of coal in general industry, and the remaining problems are discussed. 6 figures, 10 tables.

  11. Making the most of South Africa’s low-quality coal: Converting high-ash coal to fuel gas using bubbling fluidised bed gasifiers

    CSIR Research Space (South Africa)

    Engelbrecht, AD

    2010-08-31

    Full Text Available for process heating or for power generation using the IGCC (Integrated Gasification Combined Cycle) process. A high-ash coal from the Waterberg coalfield was tested in a bubbling fluidised bed gasifier using various gasification agents and operating conditions...

  12. ACR coal 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This publication is a comprehensive reference document on production, exports, prices and demand of coal in world markets. A forecast of demand by coal type and country up to the year 2000 is provided. Statistics of the Australian export industry are complemented by those of South Africa, USA, Canada, Indonesia, China, C.I.S. and Colombia. A very comprehensive coal quality specification for nearly all the coal brands exported from Australia, as well as leading non-Australian coal brands, is included.

  13. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  14. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  15. Non-mine technology of hydrocarbon resources production at complex development of gas and coal deposits

    International Nuclear Information System (INIS)

    Saginov, A.S.; Adilov, K.N.; Akhmetbekov, Sh.U.

    1997-01-01

    Non-mine technology of coal gas seams exploitation is new geological technological method of complex exploitation of coal gas deposits. The method allows sequentially to extract hydrocarbon resources in technological aggregative-mobile condensed states. According to natural methane content in seams the technology includes: methane extraction from sorption volume where it is bounded up with coal; gas output intensification of coal is due to structural changes of substance at the cost of physico-chemical treatment of seam; increase of seam permeability by the methods of active physical and physico-chemical actions on coal seam (hydro-uncovering, pneumatic hydro action etc.). Pilot testing shows efficiency of well mastering with help of depth pumps. In this case works of action of pumping out of operating liquid and gas extraction from coal seam are integrated

  16. The Healy Clean Coal Project: Design verification tests

    International Nuclear Information System (INIS)

    Guidetti, R.H.; Sheppard, D.B.; Ubhayakar, S.K.; Weede, J.J.; McCrohan, D.V.; Rosendahl, S.M.

    1993-01-01

    As part of the Healy Clean Coal Project, TRW Inc., the supplier of the advanced slagging coal combustors, has successfully completed design verification tests on the major components of the combustion system at its Southern California test facility. These tests, which included the firing of a full-scale precombustor with a new non-storage direct coal feed system, supported the design of the Healy combustion system and its auxiliaries performed under Phase 1 of the project. Two 350 million BTU/hr combustion systems have been designed and are now ready for fabrication and erection, as part of Phase 2 of the project. These systems, along with a back-end Spray Dryer Absorber system, designed and supplied by Joy Technologies, will be integrated with a Foster Wheeler boiler for the 50 MWe power plant at Healy, Alaska. This paper describes the design verification tests and the current status of the project

  17. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  18. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  19. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  20. Coal-to-liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cox, A.W.

    2006-03-15

    With crude oil prices rocketing, many of the oil poor, but coal rich countries are looking at coal-to-liquid as an alternative fuel stock. The article outlines the two main types of coal liquefaction technology: direct coal liquefaction and indirect coal liquefaction. The latter may form part of a co-production (or 'poly-generation') project, being developed in conjunction with IGCC generation projects, plus the production of other chemical feedstocks and hydrogen. The main part of the article, based on a 'survey by Energy Intelligence and Marketing Research' reviews coal-to-liquids projects in progress in the following countries: Australia, China, India, New Zealand, the Philippines, Qatar and the US. 2 photos.

  1. Carbon dioxide emission factors for U.S. coal by origin and destination

    Science.gov (United States)

    Quick, J.C.

    2010-01-01

    This paper describes a method that uses published data to calculate locally robust CO2 emission factors for U.S. coal. The method is demonstrated by calculating CO2 emission factors by coal origin (223 counties, in 1999) and destination (479 power plants, in 2005). Locally robust CO2 emission factors should improve the accuracy and verification of greenhouse gas emission measurements from individual coal-fired power plants. Based largely on the county origin, average emission factors for U.S. lignite, subbituminous, bituminous, and anthracite coal produced during 1999 were 92.97,91.97,88.20, and 98.91 kg CO2/GJgross, respectively. However, greater variation is observed within these rank classes than between them, which limits the reliability of CO2 emission factors specified by coal rank. Emission factors calculated by destination (power plant) showed greater variation than those listed in the Emissions & Generation Resource Integrated Database (eGRID), which exhibit an unlikely uniformity that is inconsistent with the natural variation of CO2 emission factors for U.S. coal. ?? 2010 American Chemical Society.

  2. Thermodynamic analyses of solar thermal gasification of coal for hybrid solar-fossil power and fuel production

    International Nuclear Information System (INIS)

    Ng, Yi Cheng; Lipiński, Wojciech

    2012-01-01

    Thermodynamic analyses are performed for solar thermal steam and dry gasification of coal. The selected types of coal are anthracite, bituminous, lignite and peat. Two model conversion paths are considered for each combination of the gasifying agent and the coal type: production of the synthesis gas with its subsequent use in a combined cycle power plant to generate power, and production of the synthesis gas with its subsequent use to produce gasoline via the Fischer–Tropsch synthesis. Replacement of a coal-fired 35% efficient Rankine cycle power plant and a combustion-based integrated gasification combined cycle power plant by a solar-based integrated gasification combined cycle power plant leads to the reduction in specific carbon dioxide emissions by at least 47% and 27%, respectively. Replacement of a conventional gasoline production process via coal gasification and a subsequent Fischer–Tropsch synthesis with gasoline production via solar thermal coal gasification with a subsequent Fischer–Tropsch synthesis leads to the reduction in specific carbon dioxide emissions by at least 39%. -- Highlights: ► Thermodynamic analyses for steam and dry gasification of coal are presented. ► Hybrid solar-fossil paths to power and fuels are compared to those using only combustion. ► Hybrid power production can reduce specific CO 2 emissions by more than 27%. ► Hybrid fuel production can reduce specific CO 2 emissions by more than 39%.

  3. Characterization of Coal Quality Based On Ash Content From M2 Coal-Seam Group, Muara Enim Formation, South Sumatra Basin

    Directory of Open Access Journals (Sweden)

    Frillia Putri Nasution

    2017-09-01

    Full Text Available Muara Enim Formation is well known as coal-bearing formation in South Sumatra Basin. As coal-bearing formation, this formation was subjects of many integrated study. Muara Enim Formation can be divided into four coal-seam group, M1, M2, M3, and M4. The M2 group comprising of Petai (C, Suban (B, Lower Mangus (A2, and Upper Mangus (A1. Depositional environments of Group M2 is transitional lower delta plain with sub-depositional are crevasse splay and distributary channel. The differentiation of both sub-depositional environments can be caused the quality of coal deposit. One of quality aspects is ash content. This research conducted hopefully can give better understanding of relationship between depositional environments to ash content. Group M2 on research area were found only Seam C, Seam B, and Seam A2, that has distribution from north to central so long as 1400 m. Coal-seam thickness C ranged between 3.25-9.25 m, Seam B range 7.54-13.43 m, and Seam C range 1.53-8.37 m, where all of coal-seams thickening on the central part and thinning-splitting to northern part and southern part. The ash content is formed from burning coal residue material. Ash contents on coal seam caused by organic and inorganic compound which resulted from mixing modified material on surrounded when transportation, sedimentation, and coalification process. There are 27 sample, consists of 9 sample from Seam C, 8 sample from Seam B, and 10 sample from Seam A2. Space grid of sampling is 100-150 m. Ash content influenced by many factors, but in research area, main factor is existence of inorganic parting. Average ash content of Seam C is 6,04%, Seam B is 5,05%, and Seam A2 is 3,8%. Low ash content influenced by settle environment with minor detrital material. High ash content caused by oxidation and erosional process when coalification process. Ash content on coal in research area originated from detritus material carried by channel system into brackish area or originated

  4. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  5. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  6. Proceedings of the advanced coal-fired power systems `95 review meeting, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, H.M.; Mollot, D.J.; Venkataraman, V.K.

    1995-06-01

    This document contains papers presented at The advanced Coal-Fired Power Systems 1995 Review Meeting. Research was described in the areas of: integrated gasification combined cycle technology; pressurized fluidized-bed combustion; externally fired combined cycles; a summary stauts of clean coal technologies; advanced turbine systems and hot gas cleanup. Individual projects were processed separately for the United States Department of Energy databases.

  7. Material balance in coal. 2. Oxygen determination and stoichiometry of 33 coals

    International Nuclear Information System (INIS)

    Volborth, A.; Miller, G.E.; Garner, C.K.; Jerabek, P.A.

    1977-01-01

    The chemical analysis of coal can be supplemented by the determination of oxygen in high and low temperature ash, in coal as received and in coal dried at 105 0 C. The rapid method utilizes fast-neutron activation. The reaction 16 O(n,p) 16 N and counting of the 6.1 and 7.1 MeV gammas of 7.3 second half-life are used. A specially designed dual transfer and simultaneous counting system gives very accurate results. Oxygen in 33 coals ranging from lignite to low volatile bituminous coal is determined and compared with ''oxygen by difference.'' Considerable discrepancies are observed. Better stoichiometric results are obtained if oxygen in coal ash, in wet coal and in the dried coal is determined. This permits the estimation of the true material balances using data of the ultimate and the proximate coal analysis. The oxygen determination provides the coal chemist with an accurate basis and can be used to rank coal. The summation of the percent of carbon, nitrogen, hydrogen, sulfur, and oxygen becomes more meaningful and some errors can be detected and the state of completeness of coal analysis thus evaluated. Total sulfur can be estimated and oxidation effects during drying can be detected. These affect the moisture determination. It appears that after more data are collected, the interpretation of solid fuel analyses may be facilitated and will be stoichiometrically more meaningful. It is shown that it may be possible to simplify the present time-consuming methods of coal analysis

  8. Australian black coal statistics 1990

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This second edition of Australian black coal statistics replaces the Joint Coal Board's publication 'Black coal in Australia'. It includes an expanded international coal trade supplement. Sections cover resources of black coal, coal supply and demand, coal production, employment and productivity of mines, export data, coal consumption and a directory of producers.

  9. Microbial diversity of western Canadian subsurface coal beds and methanogenic coal enrichment cultures

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Tara J.; Foght, Julia M. [Department of Biological Sciences, University of Alberta, Edmonton, Alberta (Canada); Budwill, Karen [Carbon and Energy Management, Alberta Innovates-Technology Futures, 250 Karl Clark Road, Edmonton, Alberta (Canada)

    2010-05-01

    Coalbed methane is an unconventional fuel source associated with certain coal seams. Biogenic methane can comprise a significant portion of the gas found in coal seams, yet the role of microbes in methanogenesis in situ is uncertain. The purpose of this study was to detect and identify major bacterial and archaeal species associated with coal sampled from sub-bituminous methane-producing coal beds in western Canada, and to examine the potential for methane biogenesis from coal. Enrichment cultures of coal samples were established to determine how nutrient amendment influenced the microbial community and methane production in the laboratory. 16S rRNA gene clone libraries were constructed using DNA extracted and amplified from uncultured coal samples and from methanogenic coal enrichment cultures. Libraries were screened using restriction fragment length polymorphism, and representative clones were sequenced. Most (> 50%) of the bacterial sequences amplified from uncultured coal samples were affiliated with Proteobacteria that exhibit nitrate reduction, nitrogen fixation and/or hydrogen utilization activities, including Pseudomonas, Thauera and Acidovorax spp., whereas enrichment cultures were dominated by Bacteroidetes, Clostridia and/or Lactobacillales. Archaeal 16S rRNA genes could not be amplified from uncultured coal, suggesting that methanogens are present in coal below the detection levels of our methods. However, enrichment cultures established with coal inocula produced significant volumes of methane and the archaeal clone libraries were dominated by sequences closely affiliated with Methanosarcina spp. Enrichment cultures incubated with coal plus organic nutrients produced more methane than either nutrient or coal supplements alone, implying that competent methanogenic consortia exist in coal beds but that nutrient limitations restrict their activity in situ. This report adds to the scant literature on coal bed microbiology and suggests how microbes may be

  10. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    Science.gov (United States)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in

  11. COAL OF THE FUTURE (Supply Prospects for Thermal Coal by 2030-2050)

    OpenAIRE

    2007-01-01

    The report, produced by Messrs. Energy Edge Ltd. (the U.K.) for the JRC Institute for Energy, aims at making a techno-economic analysis of novel extraction technologies for coal and their potential contribution to the global coal supply. These novel extraction technologies include: advanced coal mapping techniques, improved underground coal mining, underground coal gasification and utilisation of coalmine methane gas.

  12. Thermal expansion of coking coals

    Energy Technology Data Exchange (ETDEWEB)

    Orlik, M.; Klimek, J. (Vyzkumny a Zkusebni Ustav Nova Hut, Ostrava (Czechoslovakia))

    1992-12-01

    Analyzes expansion of coal mixtures in coke ovens during coking. Methods for measuring coal expansion on both a laboratory and pilot plant scale are comparatively evaluated. The method, developed, tested and patented in Poland by the Institute for Chemical Coal Processing in Zabrze (Polish standard PN-73/G-04522), is discussed. A laboratory device developed by the Institute for measuring coal expansion is characterized. Expansion of black coal from 10 underground mines in the Ostrava-Karvina coal district and from 9 coal mines in the Upper Silesia basin in Poland is comparatively evaluated. Investigations show that coal expansion reaches a maximum for coal types with a volatile matter ranging from 20 to 25%. With increasing volatile matter in coal, its expansion decreases. Coal expansion increases with increasing swelling index. Coal expansion corresponds with coal dilatation. With increasing coal density its expansion increases. Coal mixtures should be selected in such a way that their expansion does not cause a pressure exceeding 40 MPa. 11 refs.

  13. Venezuelan coal

    International Nuclear Information System (INIS)

    Vazquez, L.U.

    1991-01-01

    The existence of coal deposits in Venezuela has been known since the early nineteenth century, when the Naricual Mines were discovered in the State of Anzoategui Eastern Venezuela. Through the years the Venezuelan coal business had its ups and downs, but it was not until 1988 that we could properly say that our coal began to play a role in the international market. This paper reports that it is only now, in the nineties, that Venezuelan coal projects have come under a planning, promotional and developmental policy preparing the ground for the great projects Venezuela will have in the not-too-distant future

  14. Residual coal exploitation and its impact on sustainable development of the coal industry in China

    International Nuclear Information System (INIS)

    Zhang, Yujiang; Feng, Guorui; Zhang, Min; Ren, Hongrui; Bai, Jinwen; Guo, Yuxia; Jiang, Haina; Kang, Lixun

    2016-01-01

    Although China owns large coal reserves, it now faces the problem of depletion of its coal resources in advance. The coal-based energy mix in China will not change in the short term, and a means of delaying the coal resources depletion is therefore urgently required. The residual coal was exploited first with a lower recovery percentage and was evaluated as commercially valuable damaged coal. This approach is in comparison to past evaluations when the residual coal was allocated as exploitation losses. Coal recovery rates, the calculation method of residual coal reserves and statistics of its mines in China were given. On this basis, a discussion concerning the impacts on the delay of China's coal depletion, development of coal exploitation and sustainable developments, as well as technologies and relevant policies, were presented. It is considered that the exploitation of residual coal can effectively delay China's coal depletion, inhibit the construction of new mines, redress the imbalance between supply and demand of coal in eastern China, improve the mining area environment and guarantee social stability. The Chinese government supports the exploitation technologies of residual coal. Hence, exploiting residual coal is of considerable importance in sustainable development of the coal industry in China. - Highlights: •Pay attention to residual coal under changing energy-mix environment in China. •Estimate residual coal reserves and investigate its exploitation mines. •Discuss impacts of residual coal exploitation on delay of coal depletion in China. •Discuss impacts on coal mining industry and residual coal exploitation technology. •Give corresponding policy prescriptions.

  15. Drainage from coal mines: Chemistry and environmental problems

    International Nuclear Information System (INIS)

    Wildeman, T.

    1991-01-01

    Much of the research on coal-mine drainage chemistry was conducted a decade ago, and now increased environmental awareness has brought about renewed interest in the findings. Consideration of the trace minerals and elements in coal points to the possible generation of acidic waters upon weathering, especially when pyrite is present. When pyrite weathers, it produces H + and Fe 3+ which catalyze the incongruent weathering of other carbonates and sulfides. In this weathering mechanism, catalysis by bacteria is important. Of the environmental problems in coal mine drainage, the mineral acidity of the water is the most serious. This is caused not only by the H + , but also by Mn 4+ , Fe 3+ , and Al 3+ that are found or generated within the drainage. Case studies in Kentucky, Pennsylvania, Illinois, and Colorado show that the abundance and form of pyrite in the deposit and in the overburden determines the level of acidity and the concentration of heavy metal pollutants in the drainage. Recent trends in environmental enforcement that emphasize integrated stream water standards and biotoxicity assays point to the possibility that the concentrations of heavy metals in coal mine drainages may cause environmental concern

  16. Lignocellulosic Biomass Pretreatment Using AFEX

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P. S.; Marshall, Derek; Dale, Bruce E.

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  17. From coal to biomass gasification: Comparison of thermodynamic efficiency

    International Nuclear Information System (INIS)

    Prins, Mark J.; Ptasinski, Krzysztof J.; Janssen, Frans J.J.G.

    2007-01-01

    The effect of fuel composition on the thermodynamic efficiency of gasifiers and gasification systems is studied. A chemical equilibrium model is used to describe the gasifier. It is shown that the equilibrium model presents the highest gasification efficiency that can be possibly attained for a given fuel. Gasification of fuels with varying composition of organic matter, in terms of O/C and H/C ratio as illustrated in a Van Krevelen diagram, is compared. It was found that exergy losses in gasifying wood (O/C ratio around 0.6) are larger than those for coal (O/C ratio around 0.2). At a gasification temperature of 927 deg. C, a fuel with O/C ratio below 0.4 is recommended, which corresponds to a lower heating value above 23 MJ/kg. For gasification at 1227 deg. C, a fuel with O/C ratio below 0.3 and lower heating value above 26 MJ/kg is preferred. It could thus be attractive to modify the properties of highly oxygenated biofuels prior to gasification, e.g. by separation of wood into its components and gasification of the lignin component, thermal pre-treatment, and/or mixing with coal in order to enhance the heating value of the gasifier fuel

  18. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  19. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  20. GIS-based Analysis of LS Factor under Coal Mining Subsidence Impacts in Sandy Region

    Directory of Open Access Journals (Sweden)

    W. Xiao

    2014-09-01

    Full Text Available Coal deposits in the adjacent regions of Shanxi, Shaanxi, and Inner Mongolia province (SSI account for approximately two-thirds of coal in China; therefore, the SSI region has become the frontier of coal mining and its westward movement. Numerous adverse impacts to land and environment have arisen in these sandy, arid, and ecologically fragile areas. Underground coal mining activities cause land to subside and subsequent soil erosion, with slope length and slope steepness (LS as the key influential factor. In this investigation, an SSI mining site was chosen as a case study area, and 1 the pre-mining LS factor was obtained using a digital elevation model (DEM dataset; 2 a mining subsidence prediction was implemented with revised subsidence prediction factors; and 3 the post-mining LS factor was calculated by integrating the pre-mining DEM dataset and coal mining subsidence prediction data. The results revealed that the LS factor leads to some changes in the bottom of subsidence basin and considerable alterations at the basin’s edges of basin. Moreover, the LS factor became larger in the steeper terrain under subsidence impacts. This integrated method could quantitatively analyse LS changes and spatial distribution under mining impacts, which will benefit and provide references for soil erosion evaluations in this region

  1. China’s farewell to coal: A forecast of coal consumption through 2020

    International Nuclear Information System (INIS)

    Hao, Yu; Zhang, Zong-Yong; Liao, Hua; Wei, Yi-Ming

    2015-01-01

    In recent decades, China has encountered serious environmental problem, especially severe air pollution that has affected eastern and northern China frequently. Because most air pollutants in China are closely related to coal combustion, the restriction of coal consumption is critical to the improvement of the environment in China. In this study, a panel of 29 Chinese provinces from 1995 to 2012 is utilized to predict China’s coal consumption through 2020. After controlling for the spatial correlation of coal consumption among neighboring provinces, an inverted U-shaped Environmental Kuznets Curve (EKC) between coal consumption per capita and GDP per capita in China is detected. Furthermore, based on the estimation results and reasonable predictions of key control variables, China’s provincial and national coal consumption through 2020 is forecasted. Specifically, under the benchmark scenario, consumption is expected to continue growing at a decreasing rate until 2020, when China’s coal consumption would be approximately 4.43 billion tons. However, if China can maintain relatively high growth rate (an annual growth rate of 7.8 percent), the turning point in total coal consumption would occur in 2019, with projected consumption peaking at 4.16 billion tons. - Highlights: • Provincial panel data is used to investigate the influential factors of coal consumption in China. • The spatial correlations of coal consumption in neighboring provinces are fully considered. • An inverted-U shaped Environmental Kuznets Curve for coal consumption in China has been found. • Based on the estimation results, China’s national coal consumption before 2020 is forecasted. • Under the basic scenario, China’s national coal consumption will grow at a decreasing speed till 2020.

  2. Coal in competition

    Energy Technology Data Exchange (ETDEWEB)

    Manners, G

    1985-06-01

    During the past decade world coal consumption has expanded by about 26% whilst energy demands overall have grown by only 17%. This is because of the increased price of oil products, plus a period during which the costs of mining coal in many parts of the world have been moderately well contained. Over-ambitious forecasts of coal demand have encouraged the considerable over-investment in coalmining capacity that exists today. Costs of winning coal and transporting it are low, but sales depend on the rate of growth of a country's demand for energy. Some countries are more successful at marketing coal than others. Amongst the major factors that influence the rate of substitution of one source of energy for another is the nature and age of the boiler stock. The outcome of the developing environmental debate and calls for reduction in SO/sub 2/ and NO/sub x/ emissions from coal-fired boilers is going to affect coal's fortunes in the 1990's.

  3. The migration law of overlay rock and coal in deeply inclined coal seam with fully mechanized top coal caving.

    Science.gov (United States)

    Liu, Jian; Chen, Shan-Le; Wang, Hua-Jun; Li, Yu-Cheng; Geng, Xiaowei

    2015-07-01

    In a mine area, some environment geotechnics problems always occure, induced by mined-out region such as the subsidence and cracks at ground level, deformation and destruction of buildings, landslides destruction of water resources and the ecological environment. In order to research the migration of surrounding rock and coal in steeply inclined super high seams which used fully mechanized top coal caving, a working face of a certain mine was made as an example, analyzed the migration law of the overlay rock and coal under different caving ratio of fully mechanized top coal caving with numerical simulation analysis. The results suggest that the laws of overlay rock deformation caused by deeply inclined coal seam were different from horizontal coal seam. On the inclined direction, with an increase of dip angle and caving ratio, the vertical displacement of overlay rock and coal became greater, the asymmetric phenomenon of vertical displacement became obvious. On the trend direction, active region and transition region in goaf became smaller along with the increase of mining and caving ratio. On the contrary, the stable region area became greater. Therefore, there was an essential difference between the mechanism of surface movement deformation with deeply inclined coal seam and that with horizontal coal seam.

  4. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  5. Comparison Analysis of Coal Biodesulfurization and Coal's Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Science.gov (United States)

    Hong, Fen-Fen; He, Huan; Liu, Jin-Yan; Tao, Xiu-Xiang; Zheng, Lei; Zhao, Yi-Dong

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal's pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal's pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal's pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32%) and jarosite (18.99%) were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34%) and elemental sulfur (50.72%) but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process. PMID:24288464

  6. Modelling and analysis of global coal markets

    International Nuclear Information System (INIS)

    Trueby, Johannes

    2013-01-01

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  7. Modelling and analysis of global coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes

    2013-01-17

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  8. Radiometric dating of marine-influenced coal using Re–Os geochronology

    Science.gov (United States)

    Tripathy, Gyana Ranjan; Hannah, Judith L.; Stein, Holly J.; Geboy, Nicholas J.; Ruppert, Leslie F.

    2016-01-01

    Coal deposits are integral to understanding the structural evolution and thermal history of sedimentary basins and correlating contemporeous estuarine and fluvial delatic strata with marine sections. While marine shales may readily lend themselves to Re–Os dating due to the dominance of hydrogenous Re and Os, the lack of a chronometer for near-shore sedimentary environments hampers basinwide correlations in absolute time. Here, we employ the Re–Os geochronometer, along with total organic carbon (TOC) and Rock–Eval data, to determine the timing and conditions of a marine incursion at the top of the Matewan coal bed, Kanawha Formation, Pottsville Group, West Virginia, USA. The observed range for hydrogen index (HI: 267–290 mg hydrocarbon/gram total organic carbon) for these coal samples suggests dominance of aliphatic hydrocarbons with low carbon (coal are higher by few orders of magnitude than published data for terrestrial coal. A Re–Os isochron for the Matewan coal provides an age of 325±14 Ma (Model 3; MSWD = 12; n=19; 2σ ). This is the first Re–Os age derived from coal samples; the age overlaps a new composite Re–Os age of 317±2 Ma for the immediately overlying Betsie Shale Member.

  9. Australia's export coal industry: a project of the Coal Australia Promotion Program. 2. ed.

    International Nuclear Information System (INIS)

    1995-01-01

    This booklet presents an overview of the Australian coal industry, emphasises the advantages of using Australian coal and outlines government policies, both Commonwealth and State, which impact on coal mine development, mine ownership and coal exports. It also provides information on the operations and products of each producer supplying coal and coke to export markets and gives contact details for each. The emphasis is on black coal, but information on coal briquettes and coke is also provided. Basic information on the rail networks used for the haulage of export coal and on each of the bulk coal loading terminals is also included.(Author). 3 figs., photos

  10. King coal: miners, coal, and Britain's industrial future

    Energy Technology Data Exchange (ETDEWEB)

    Hall, T.

    1981-01-01

    The coal industry in the United Kingdom and the history of the mineworkers, from their attempts at unionization until the present day, are described. Reasons for the policy of closing pits and dismantling the coal industry, and for importing coal are discussed and analyzed.

  11. The European Coal Market: Will Coal Survive the EC's Energy and Climate Policies?

    International Nuclear Information System (INIS)

    Cornot-Gandolphe, Sylvie

    2012-01-01

    The European coal industry is at a crossroads. The European Commission (EC) Energy Policy by 2020, the 20/20/20 targets, is not favourable to coal: a 20% decrease in CO 2 emissions does not favour coal compared with natural gas, its main competitor in electricity generation; a 20% increase in energy efficiency will lead to a decrease in energy/coal consumption; a 20% increase in renewables will displace other energy sources, including coal. The recent EC Energy road-map to 2050 targets a cut in GHG emissions by 80-95%. Under such a tough emissions reduction target, the future use of coal is tied with CCS technologies for which public acceptance and an adequate CO 2 price are crucial. The Large Combustion Plants Directive has already had a huge impact on EU coal-fired electricity generation. In UK, a third of coal-fired power capacity will be closed by the end of 2015 at the latest. Phase III of the EU Emissions Trading Scheme requires CO 2 allowances to be auctioned from January 2013, adding a new burden on fossil fuel power plants. The end of state aid to European hard coal production by 2018, in line with EC Council Decision 2010/787/EU, means that domestic production is going to decrease. Does this mean the end of coal in Europe? Maybe not, and certainly not by 2020, although its future after that date is quite uncertain. Coal provides 17% of the EU s primary energy supply, and represents 25% of electricity generation. With the phasing out of nuclear energy in some countries (mainly Germany), coal has gained a period of grace before the transition to a less-carbonised economy. Its consumption by European power utilities increased by 7% in the first half of 2012, boosted by low CO 2 prices and relatively high gas prices. European production still accounts for 60% of the total coal supply in the EU. Coal therefore gives the EU a certain degree of independence and contributes to its security of supply. Hard coal and lignite represent approximately 80% of EU

  12. Clean coal technology: coal's link to the future

    International Nuclear Information System (INIS)

    Siegel, J.S.

    1992-01-01

    Coal, the world's most abundant fossil fuel, is very important to the world's economy. It represents about 70% of the world's fossil energy reserves. It produces about 27% of the world's primary energy, 33% of the world's electricity, and it is responsible for about $21 billion in coal trade - in 1990, 424 million tons were traded on the international market. And, most importantly, because of its wide and even distribution throughout the world, and because of its availability, coal is not subject to the monopolistic practices of other energy options. How coal can meet future fuel demand in an economical, efficient and environmentally responsive fashion, with particular reference to the new technologies and their US applications is discussed. (author). 6 figs

  13. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  14. Antisense pre-treatment increases gene therapy efficacy in dystrophic muscles.

    Science.gov (United States)

    Peccate, Cécile; Mollard, Amédée; Le Hir, Maëva; Julien, Laura; McClorey, Graham; Jarmin, Susan; Le Heron, Anita; Dickson, George; Benkhelifa-Ziyyat, Sofia; Piétri-Rouxel, France; Wood, Matthew J; Voit, Thomas; Lorain, Stéphanie

    2016-08-15

    In preclinical models for Duchenne muscular dystrophy, dystrophin restoration during adeno-associated virus (AAV)-U7-mediated exon-skipping therapy was shown to decrease drastically after six months in treated muscles. This decline in efficacy is strongly correlated with the loss of the therapeutic AAV genomes, probably due to alterations of the dystrophic myofiber membranes. To improve the membrane integrity of the dystrophic myofibers at the time of AAV-U7 injection, mdx muscles were pre-treated with a single dose of the peptide-phosphorodiamidate morpholino (PPMO) antisense oligonucleotides that induced temporary dystrophin expression at the sarcolemma. The PPMO pre-treatment allowed efficient maintenance of AAV genomes in mdx muscles and enhanced the AAV-U7 therapy effect with a ten-fold increase of the protein level after 6 months. PPMO pre-treatment was also beneficial to AAV-mediated gene therapy with transfer of micro-dystrophin cDNA into muscles. Therefore, avoiding vector genome loss after AAV injection by PPMO pre-treatment would allow efficient long-term restoration of dystrophin and the use of lower and thus safer vector doses for Duchenne patients. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.

    Science.gov (United States)

    Liu, Zhi-Hua; Xie, Shangxian; Lin, Furong; Jin, Mingjie; Yuan, Joshua S

    2018-01-01

    pretreatment, together with fermentation optimization, favorably improves lipid production using lignin as the carbon source. Combinatorial pretreatment integrated with fed-batch fermentation was an effective strategy to improve the bioconversion of lignin into lipids, thus facilitating lignin valorization in biorefineries.

  16. Integration of alternative feedstreams for biomass treatment and utilization

    Science.gov (United States)

    Hennessey, Susan Marie [Avondale, PA; Friend, Julie [Claymont, DE; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T [Evergreen, CO; Hames, Bonnie [Westminster, CO

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  17. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    Wang Mingshi; Zheng Baoshan; Wang Binbin; Li Shehong; Wu Daishe; Hu Jun

    2006-01-01

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  18. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  19. Concerning coal: an anthology

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, M.; Hawse, M.L.; Maloney, P.J. [eds.

    1997-12-31

    The anthology takes a humanistic look at coal mining in Illinois. One of its goals is to increase public awareness of coal in American society; it also seeks to enhance understanding of the historical aspects of coal and to study the impact of coal on mining families. Many of the 25 selections in the anthology come from Coal Research Center publications, `Concerning coal` and `Mineral matters`. Articles are arranged in three parts entitled: life in the mining community; mining in folklore, story telling, literature, art and music; and technology as it affected the people of the coal fields. 117 refs., 25 photos. 1 map.

  20. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  1. Twenty-five years of the common market in coal, 1953--1978. [genesis and growth

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Twenty-five years have passed since the European Coal and Steel commmunity was established. An attempt is made to show what economic integration is, what problems have arisen, and how the community has tried to overcome them. Three phases can be distinguished during the period under review--a first phase of growth in the coal industry between 1953 and 1957; a second phase marked by a plentiful supply of cheap hydrocarbons and a rapid reduction in coal output despite exceptional growth, linked with a parallel increase in overall energy requirements; and a third phase from 1973, marked by sharp price increases by the oil producing countries with repercussions on the world market in coal.

  2. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - Comparison of five pretreatment technologies

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Thygesen, Anders; Thomsen, Sune Tjalfe

    2013-01-01

    -assisted pretreatment (PAP) and ball milling (BM), to determine effects of the pretreatment methods on the conversion of C. linum into ethanol by simultaneous saccharification and fermentation (SSF). WO and BM showed the highest ethanol yield of 44. g ethanol/100. g glucan, which was close to the theoretical ethanol......A qualified estimate for pretreatment of the macroalgae Chaetomorpha linum for ethanol production was given, based on the experience of pretreatment of land-based biomass. C. linum was subjected to hydrothermal pretreatment (HTT), wet oxidation (WO), steam explosion (STEX), plasma...... yield of 57. g ethanol/100. g glucan. A 64% higher ethanol yield, based on raw material, was reached after pretreatment with WO and BM compared with unpretreated C. linum, however 50% of the biomass was lost during WO. Results indicated that the right combination of pretreatment and marine macroalgae...

  3. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  4. Process for hydrogenating coal and coal solvents

    Science.gov (United States)

    Tarrer, Arthur R.; Shridharani, Ketan G.

    1983-01-01

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.

  5. Trends in Japanese coal trade

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, S

    1986-01-01

    The author discusses 1) the latest forecast for coal demand in Japan; 2) trends in Japanese steam coal demand, with breakdown by industry; 3) the organization of steam coal supply, with details of the distribution network and of the new coal cartridge system; 4) the demand for metallurgical coal. Other topics outlined include the current status of Japanese coal production, Japanese coal trade, and the development of overseas coal resources. 1 figure, 5 tables.

  6. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Millsteed, Ch.; Jolly, L.; Stuart, R.

    1993-01-01

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  7. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  8. Chemical Pretreatment Methods for the Production of Cellulosic Ethanol: Technologies and Innovations

    Directory of Open Access Journals (Sweden)

    Edem Cudjoe Bensah

    2013-01-01

    Full Text Available Pretreatment of lignocellulose has received considerable research globally due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. Some of the most promising pretreatment methods require the application of chemicals such as acids, alkali, salts, oxidants, and solvents. Thus, advances in research have enabled the development and integration of chemical-based pretreatment into proprietary ethanol production technologies in several pilot and demonstration plants globally, with potential to scale-up to commercial levels. This paper reviews known and emerging chemical pretreatment methods, highlighting recent findings and process innovations developed to offset inherent challenges via a range of interventions, notably, the combination of chemical pretreatment with other methods to improve carbohydrate preservation, reduce formation of degradation products, achieve high sugar yields at mild reaction conditions, reduce solvent loads and enzyme dose, reduce waste generation, and improve recovery of biomass components in pure forms. The use of chemicals such as ionic liquids, NMMO, and sulphite are promising once challenges in solvent recovery are overcome. For developing countries, alkali-based methods are relatively easy to deploy in decentralized, low-tech systems owing to advantages such as the requirement of simple reactors and the ease of operation.

  9. Coal statistics 1977

    Energy Technology Data Exchange (ETDEWEB)

    Statistical Office of the European Communities

    1978-01-01

    Presents tables of data relating to the coal market in the European Community in 1977. The tables cover hard coal production, supply and trade; briquettes; cokes; lignite, brown coal briquettes and peat; and mines and coke ovens.

  10. Reactivity of North Bohemian coals in coprocessing of coal/oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sebor, G.; Cerny, J.; Maxa, D.; Blazek, J. [Inst. of Chemical Technology, Prague (Czechoslovakia); Sykorova, I. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    Autoclave experiments with North Bohemian coal were done in order to evaluate their reactivity in coprocessing with petroleum vacuum residue, Selected coals were comprehensively characterized by using a number of analytical methods. While the coals were of similar geological origin, some of their characteristics differed largely from one coal to another. Despite the differences in physical and chemical structure, the coals provided very similar yields of desired reaction products. The yields of a heavy non- distillable fraction and/or an insoluble solid residue were, under experimental conditions, largely affected by retrogressive reactions (coking). The insoluble solid fractions were examined microscopically under polarized light.

  11. Coal Transition in the United States. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Kok, Irem

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Over the past decade, the US started to cut down the production and the use of coal, which was affected by unfavorable market dynamics and changing federal regulatory environment. Even before the shale gas revolution and uptake of renewables diminish the use of coal in power generation, coal communities were struggling to meet ends. The regional cost differences between producing states, such as the Appalachian and the Powder River Basins, indicates that coal-impacted communities and workers have lived through the impacts of coal transition at varying magnitudes and time periods. In the period between 2014 and 2016, we have seen the crash of major US coal companies due to declining demand for US coal domestically and internationally. Furthermore, Obama administration's climate change policies negatively impacted coal-fired power plants with additional GHG emission requirements, contributing to declining domestic demand for coal. Combined with market downturn, US coal producers already struggle to pay for high operational costs and legal liabilities under bankruptcy conditions. With under-funded state budgets, coal states are also grappling with financial exposure resulting from pension, health care and reclamation liabilities of bankrupt coal companies. In 2016, former President Obama announced the Power Plus Plan to aid coal-impacted communities and workers to prepare for a low carbon future. The federal budget plan targeted diversification of local economies, funding of health and pension funds of miners and retraining for

  12. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  13. Scientific principles underlying the production of metallurgy-grade formed coke from weakly baking coals. Nauchnye osnovy proizvodstva formovannogo metallurgicheskogo koksa iz slabospekayushchikhsya uglei

    Energy Technology Data Exchange (ETDEWEB)

    Speranskaya, G.V.; Tyutyunnikov, Yu.B.; Erkin, L.I.; Nefedov, P.Ya.; Sheptovitskii, M.S.; Toryanik, E.I.

    1987-01-01

    Coking coal resources of the USSR are nonuniformly distributed among major coal basins (Donetsk 26%, Pechora 7%, Kizelovsk and L'vov-Volyn' 0.5% each, Kuznetsk 48.2%, Karaganda 7%, South Yakutiya 4.4%, others 7.4%). Only one-third of the resources are available in the European area of the USSR where the demand for blast-furnace coke is greater. The use of weakly baking and nonbaking coals for the production of metallurgy-grade formed coke has been found to be the simplest way to avoid transportation of fat components of coking blends and to cut the cost of pig iron production under Soviet circumstances. Commercial production of the formed coke should enable the blast-furnace coke production to be raised by 15 Mio t/a now and by 20-22 Mio t/a in the nearest future without the structure of the Soviet coal production being significantly affected. The book describes technical properties of the gas, weakly baking and long-flame coals (G, SS and D types, respectively) from Donetsk, Kuznetsk, Irkutsk and Karaganda coal basins used as coking blend components, discusses many scientific and technological aspects of the industrial-scale process (i.e. thermal pretreatment of coal with a gaseous heat-carrier, effect of pressure on the plastic layer formation in weakly baking coal blends, coke oven construction), and reviews technical properties of formed coke (shape and size of coke lumps, drum strength, macro- and microstructure, thermal stability, reactivity) used in the blast-furnace process. 122 refs., 118 figs., 87 tabs.

  14. Mechanization of operations in underground workings in coal mines and research project trends. [Poland

    Energy Technology Data Exchange (ETDEWEB)

    Reich, K; Skoczynski, W; Sikora, W

    1985-01-01

    Structure of black coal reserves of Poland, imported and Polish made equipment for underground mining, prospects for mechanization of selected operations in underground mines and research programs of the KOMAG Center for Mechanization of Mining are evaluated. Prospects for longwall mining with caving or stowing in thick coal seams (slice mining), thin (0.8 to 1.2 m), level or inclined coal seams and steep seams are analyzed. The following equipment for mechanization of underground mining is evaluated: integrated face systems, shearer loaders, chain conveyors, belt conveyors, coal plows, equipment for mine drivage, hoists, drive systems for mining equipment. The following research programs of the KOMAG Center are reviewed: modernization of face systems for coal seams with uncomplicated mining conditions, development of equipment for thin seam mining, development of types of mining equipment for coal seams from 1.5 to 3.0 m thick with dip angles to 25 degrees, modernization of equipment for thick seam mining, increasing efficiency of mine drivage (new types of heading machines, materials handling equipment for mine drivage), mechanization of auxiliary operations in underground coal mines, improving quality of mining equipment, development of equipment for coal preparation, increasing occupational safety in underground mining.

  15. Coal - 97

    International Nuclear Information System (INIS)

    Sparre, C.

    1997-01-01

    The report deals with the use of coal and coke during 1996. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1996 was 1,2 mill tons and 50% higher than in 1995. The increase is probably temporary and due to high prices of electricity because of lack of water power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generation plants. During the top year 1987 coal was used in 18 hotwater plants and 11 co-generation plants. 1996 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1996 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. The coke consumption in the industry was 1,5 mill tons. 0,3 mill tons of coke were imported. The average price of steam coal imported in Sweden in 1996 was 340 SEK/ton or 2% higher than in 1995. For the world, the average import price was 51,5 USD/ton, nearly the same as the year before. The contract prices for delivery during 1997 are about equal as the end of 1996. All Swedish plants meet their emission limits of dust, SO 2 and NO x given by county administrations or concession boards

  16. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    International Nuclear Information System (INIS)

    Suwala, W.

    1997-01-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors' development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs

  17. Coal sector model: Source data on coal for the energy and power evaluation program (ENPEP)

    Energy Technology Data Exchange (ETDEWEB)

    Suwala, W [Mineral and Energy Economy Research Centre, Polish Academy of Sciences, Cracow (Poland)

    1997-09-01

    Coal is the major primary energy source in Poland and this circumstances requires that the data on coal supply for use in energy planning models should be prepared properly. Economic sectors` development depends on many factors which are usually considered in energy planning models. Thus, data on the development of such sectors as coal mining should be consistent with the economic assumptions made in the energy planning model. Otherwise, coal data could bias the results of the energy planning model. The coal mining and coal distribution models which have been developed at the Polish Academy of Sciences could provide proper coal data of use in ENPEP and other energy planning models. The coal mining model optimizes the most important decisions related to coal productions, such as coal mines development, retirement of non-profitable mines, and construction of new mines. The model uses basic data forecasts of coal mine costs and coal production. Other factors such as demand for coal, world coal prices, etc., are parameters which constitute constraints and requirements for the coal mining development. The output of the model is the amount of coal produced and supply curves for different coal types. Such data are necessary for the coal distribution model and could also be used by ENPEP. This paper describes the model, its structure and how the results of the model could serve as coal-related data for ENPEP. Improvement of some input data forms of the BALANCE module of ENPEP are also suggested in order to facilitate data preparation. (author). 7 figs.

  18. Clean coal technology. Coal utilisation by-products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-08-15

    The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

  19. One coal miner's perspective on the present United States coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.E. [Murray Energy Corp., Pepper Pike, OH (United States)

    2002-07-01

    The President and CEO of the Murray Energy Corporation presented his observations on and concerns about the coal and energy industries in the USA, as a coal miner and an energy trader. He outlines the coal mining operations of the Murray Energy Corporation. He offers critical comments about, for example, some unscrupulous energy trading activities, the future of Powder River Basin coal (which he believes may be curtailed by the introduction of clean coal technologies), the lack of expertise in coal mining, the need to revise the law concerning coal company bankruptcies, the need for the government to provide a means to secure bonds, the need to liberalize black lung disease benefits, and the factors deterring improvement of the performance of the eastern coal industry. He criticises current policy and puts forward some recommendations.

  20. Coal dust symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-01

    This paper gives a report of the paper presented at the symposium held in Hanover on 9 and 10 February 1981. The topics include: the behaviour of dust and coal dust on combustion and explosion; a report on the accidents which occurred at the Laegerdorf cement works' coal crushing and drying plant; current safety requirements at coal crushing and drying plant; and coal crushing and drying. Four papers are individually abstracted. (In German)

  1. Coal Transition in the Czech Republic. An historical case study for the project 'Coal Transitions: Research and Dialogue on the Future of Coal'

    International Nuclear Information System (INIS)

    Reckova, Dominika; Recka, Lukacs; Scasny, Milan

    2017-01-01

    This is one of the 6 country case-studies commissioned to collect experience on past coal transitions. The 6 countries are: Czech Republic, the Netherlands, Poland, Spain, UK, USA. Their role in the Coal Transitions project was to provide background information for a Synthesis Report for decision makers, and provide general lessons for national project teams to take into account in developing their coal transitions pathways for the future. Content: History of coal production and coal reserves; Key features of the Czech economy; Fuel mix in the Czech Republic 1990 - 2014; Key features of coal sector in the Czech Republic after 1990; The use of coal in the Czech Republic and its possible replacement: A. Coal as source of Electricity, B. Coal as Heating source, C. Non - energy coal use; The state role in the coal sector after 1990 - mining limits; Measures to ease transition: Phasing-out of mining activities, Rehabilitation of environmentally damaged land, Programmes financing the remediation of ecological damage, Remediation of environmental damage caused by mining; Future outlook; Lessons learned; References; Annex

  2. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  3. Beneficiation of power grade coals: its relevance to future coal use in India

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1992-01-01

    With consumption increasing from the current level of 220 mt. to over 600 mt. by the year 2010 A.D., coal will continue to enjoy a prime position in the overall energy scene in India. India being endowed with coal resources of high ash content, the major coal consuming industries have, by and large, adjusted the combustion techniques to suit the quality of coal available. However, wide fluctuations in the quality of coal supplies adversely affect their plant performance. With the coal deposits being localised in the eastern and central parts of peninsular India, the load on railway network in carrying coal to other parts of the country will continue to increase and this will emerge as a major constraint in managing the coal supply to the consuming centres located away from the coal fields. It is in this context, the author has discussed the need of setting up of coal cleaning facilities at the pit heads. The extent to which the transport network will be relieved of carrying avoidable muck in coal has been quantified along with the benefits that will accrue in the form of extra transport capacity, better power plant performance and reduced air pollution and solid waste at consumer end. (author). 5 refs., 6 tabs., 8 figs

  4. Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development

    International Nuclear Information System (INIS)

    Chen, QianQian; Tang, ZhiYong; Lei, Yang; Sun, YuHan; Jiang, MianHeng

    2015-01-01

    Highlights: • We report a nuclear–coal hybrid energy systems. • We address the high-carbon energy resource integrating with a low-carbon energy resource. • We establish a systematic techno-economic model. • Improving both energy and carbon efficiency. • A significantly lower CO 2 emission intensity is achieved by the system. - Abstract: Global energy consumption is expected to increase significantly due to the growth of the economy and population. The utilization of fossil resource, especially coal, will likely be constrained by carbon dioxide emissions, known to be the principal contributor to climate change. Therefore, the world is facing the challenge of how to utilize fossil resource without a large carbon footprint. In the present work, a nuclear–coal hybrid energy system is proposed as a potential solution to the aforementioned challenge. A high-carbon energy such as coal is integrated effectively with a low-carbon energy such as nuclear in a flexible and optimized manner, which is able to generate the chemicals and fuels with low carbon dioxide emissions. The nuclear–coal hybrid energy system is presented in this paper for the detailed analysis. In this case, the carbon resource required by the fuel syntheses and chemical production processes is mainly provided by coal while the hydrogen resource is derived from nuclear energy. Such integration can not only lead to a good balance between carbon and hydrogen, but also improve both energy and carbon efficiencies. More importantly, a significantly lower CO 2 emission intensity is achieved. A systematic techno-economic model is established, and a scenario analysis is carried out on the hybrid system to assess the economic competitiveness based on the considerations of various types of externalities. It is found that with the rising carbon tax and coal price as well as the decreasing cost of nuclear energy, the hybrid energy system will become more and more economically competitive with the

  5. Enzymatic hydrolsis of pretreated rice straw

    Energy Technology Data Exchange (ETDEWEB)

    Vlasenko, E.Y.; Shoemaker, S.P. [California Inst. of Food and Agricultural Research, Davis, CA (United States); Ding, H. [California Univ., Davis (Canada). Dept. of Food Science and Technology; Labavitch, J.M. [California Univ., Davis, CA (United States). Dept. of Pomology

    1997-02-01

    California rice straw is being evaluated as a feedstock for production of power and fuel. This paper examines the initial steps in the process: pretreatment of rice straw and enzymatic hydrolysis of the polysaccharides in the pretreated material to soluble sugars. Rice straw was subjected to three distinct pretreatment procedures: acid-catalyzed steam explosion (Swan Biomass Company), acid hydrolysis (U.S. DOE National Renewable Energy Laboratory), and ammonia fiber explosion or AFEX (Texas A and M University). Standard conditions for each pretreatment were used, but none was optimized for rice straw specifically. Six commercial cellulases, products of Genencor International (USA), Novo (Denmark), Iogen (Canada) and Fermtech (Russia) were used for hydrolysis. The Swan- and the acid-pretreatments effectively removed hemicellulose from rice straw, providing high yields of fermentable sugars. The AFEX-pretreatment was distinctly different from other pretreatments in that it did not significantly solubilize hemicellulose. All three pretreatment procedures substantially increased enzymatic digestibility of rice straw. Three commercial Trichoderma-reesei-derived enzyme preparations: Cellulase 100L (Iogen), Spezyme CP (Genencor), and Al (Fermtech), were more active on pretreated rice straw compared than others tested. Conditions for hydrolysis of rice straw using Cellulase 100L were evaluated. The supplementation of this enzyme preparation with cellobiase (Novozyme 188) significantly improved the parameters of hydrolysis for the Swan- and the acid-pretreated materials, but did not affect the hydrolysis of the AFEX-pretreated rice straw. (Author)

  6. Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Liang; Li, Fanxing; Kim, Ray; Bayham, Samuel; McGiveron, Omar; Tong, Andrew; Connell, Daniel; Luo, Siwei; Sridhar, Deepak; Wang, Fei; Sun, Zhenchao; Fan, Liang-Shih

    2013-09-30

    A novel Coal Direct Chemical Looping (CDCL) system is proposed to effectively capture CO2 from existing PC power plants. The work during the past three years has led to an oxygen carrier particle with satisfactory performance. Moreover, successful laboratory, bench scale, and integrated demonstrations have been performed. The proposed project further advanced the novel CDCL technology to sub-pilot scale (25 kWth). To be more specific, the following objectives attained in the proposed project are: 1. to further improve the oxygen carrying capacity as well as the sulfur/ash tolerance of the current (working) particle; 2. to demonstrate continuous CDCL operations in an integrated mode with > 99% coal (bituminous, subbituminous, and lignite) conversion as well as the production of high temperature exhaust gas stream that is suitable for steam generation in existing PC boilers; 3. to identify, via demonstrations, the fate of sulfur and NOx; 4. to conduct thorough techno-economic analysis that validates the technical and economical attractiveness of the CDCL system. The objectives outlined above were achieved through collaborative efforts among all the participants. CONSOL Energy Inc. performed the techno-economic analysis of the CDCL process. Shell/CRI was able to perform feasibility and economic studies on the large scale particle synthesis and provide composite particles for the sub-pilot scale testing. The experience of B&W (with boilers) and Air Products (with handling gases) assisted the retrofit system design as well as the demonstration unit operations. The experience gained from the sub-pilot scale demonstration of the Syngas Chemical Looping (SCL) process at OSU was able to ensure the successful handling of the solids. Phase 1 focused on studies to improve the current particle to better suit the CDCL operations. The optimum operating conditions for the reducer reactor such as the temperature, char gasification enhancer type, and flow rate were identified. The

  7. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  8. Australian coal

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    Total export shipments of coal in Australia in the year ending June 30 1985 reached a record of 83.8 Mt. The export trade is expected to bring in an income of 4 billion Australian dollars in the current year making coal Australia's biggest revenue-earning export commodity. This article presents a brief overview of the Australian coal industry with production and export statistics and information on major open pit and underground mines.

  9. Coal supplier perspective on the future of the utility-coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, G.J. [Kennecott Energy Company, Gillette, WY (United States)

    2000-07-01

    Kennecott Energy is the largest producer within Rio Tinto Energy, in turn owned by Rio Tinto, and has grown by 260% since 1993. However, coal's performance in the world trade market is currently suffering for reasons such as regulatory uncertainty. The presentation looked at how the company is striving to improve coal's future, for example by enhancing coal's value through beneficiation like K-fuels, enhancing pollution control through research efforts like Zero Emissions Coal Alliance and by supporting public outreach and legislation efforts. Coal's future is summed up under headings: earnings, efficiency, environment, education and e-commerce. 17 overheads/viewgraphs outline the presentation.

  10. Prospects for coal and clean coal technologies in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Baruya, P. [IEA Clean Coal Centre, London (United Kingdom)

    2010-02-15

    Vietnam's energy economy is largely served by traditional biofuels and oil products. Within the power generating sector, hydropower and gas-fired power dominate. However, Vietnam still maintains a 40 Mt/y coal industry, parts of which have recently undergone a long overdue programme of renovation and expansion. Vietnam has been a successful exporter of anthracite, with more than half of the country's production being shipped or barged to steel mills in Japan or power stations in southern China, as well as most other Far Eastern coal importers. The industry is due to take a different form. Opencast mining has recently accounted for around 60% of production but this mining method could be phased out as reserves become more difficult and costly to extract. A shift to underground mining is expected, with a greater emphasis on more modern and mechanised production techniques. Coal is located mainly in the coalfields in Quang Ninh in the north easternmost province of Vietnam. The lower rank reserves located within the Red River coalfields, close to the existing anthracite operations, may yield many more millions of tonnes of coal for exploitation. Underground coal gasification could possibly be exploited in the deeper reserves of the Red River Basin. While coal production could rapidly change in future years, the power generation sector is also transforming with the country's 12,000 MWe development programme for new coal-fired power capacity. The economy suffers from a threat of power shortages due to a lack of generating and transmission capacity, while inefficiencies blight both energy production and end-users. Delivering power to the regions of growth remains difficult as the economy and the demand for power outpaces power generation. While hydroelectric power is being pursued, coal is therefore becoming a growing factor in the future prosperity of the Vietnamese economy. 111 refs., 33 figs., 11 tabs.

  11. Cuttability of coal

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, W

    1978-01-01

    The process of cutting dull M, dull bright MB, bright dull BM, and bright B coal under various compressive stress conditions was studied in laboratory tests. The efficiency of ploughs depends much more on the natural mining conditions than does that of shearer-loaders. For seams of medium workability, it is difficult to forecast whether ploughs will be successful. Cuttability tests are a good way of determining whether ploughs can be used. The effort necessary to cut coal in a stressed condition depends not only on such properties as the workability defined by the Protodyakonov index or compressive strength, but also, and mainly, on the petrographic structure and elastic properties of the coal. In bright coals with high elastic strain, and with BM and MB coals, a much greater increment of effort is necessary with increase in compressive stresses. The cuttability of dull coals from difficult mines was not very different.

  12. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  13. Development of rapid bioconversion with integrated recycle technology for ethanol production from extractive ammonia pretreated corn stover.

    Science.gov (United States)

    Jin, Mingjie; Liu, Yanping; da Costa Sousa, Leonardo; Dale, Bruce E; Balan, Venkatesh

    2017-08-01

    High enzyme loading and low productivity are two major issues impeding low cost ethanol production from lignocellulosic biomass. This work applied rapid bioconversion with integrated recycle technology (RaBIT) and extractive ammonia (EA) pretreatment for conversion of corn stover (CS) to ethanol at high solids loading. Enzymes were recycled via recycling unhydrolyzed solids. Enzymatic hydrolysis with recycled enzymes and fermentation with recycled yeast cells were studied. Both enzymatic hydrolysis time and fermentation time were shortened to 24 h. Ethanol productivity was enhanced by two times and enzyme loading was reduced by 30%. Glucan and xylan conversions reached as high as 98% with an enzyme loading of as low as 8.4 mg protein per g glucan. The overall ethanol yield was 227 g ethanol/kg EA-CS (191 g ethanol/kg untreated CS). Biotechnol. Bioeng. 2017;114: 1713-1720. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Coal-fuelled systems for peaking power with 100% CO2 capture through integration of solid oxide fuel cells with compressed air energy storage

    Science.gov (United States)

    Nease, Jake; Adams, Thomas A.

    2014-04-01

    In this study, a coal-fuelled integrated solid oxide fuel cell (SOFC) and compressed air energy storage (CAES) system in a load-following power production scenario is discussed. Sixteen SOFC-based plants with optional carbon capture and sequestration (CCS) and syngas shifting steps are simulated and compared to a state-of-the-art supercritical pulverised coal (SCPC) plant. Simulations are performed using a combination of MATLAB and Aspen Plus v7.3. It was found that adding CAES to a SOFC-based plant can provide load-following capabilities with relatively small effects on efficiencies (1-2% HHV depending on the system configuration) and levelized costs of electricity (∼0.35 ¢ kW-1 h-1). The load-following capabilities, as measured by least-squares metrics, show that this system may utilize coal and achieve excellent load-tracking that is not adversely affected by the inclusion of CCS. Adding CCS to the SOFC/CAES system reduces measurable direct CO2 emission to zero. A seasonal partial plant shutdown schedule is found to reduce fuel consumption by 9.5% while allowing for cleaning and maintenance windows for the SOFC stacks without significantly affecting the performance of the system (∼1% HHV reduction in efficiency). The SOFC-based systems with CCS are found to become economically attractive relative to SCPC above carbon taxes of 22 ton-1.

  15. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  16. Process for hydrogenating coal and coal solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shridharani, K.G.; Tarrer, A.R.

    1983-02-15

    A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260/sup 0/ C to 315/sup 0/ C in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275/sup 0/ C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350/sup 0/ C.

  17. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  18. 75 FR 18015 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2010-04-08

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... coal production, and Indian coal production under section 45. FOR FURTHER INFORMATION CONTACT: Philip... Coal, and Indian Coal:'', Line 26, the language ``is 2.15 cents per kilowatt hour on the'' is corrected...

  19. 78 FR 20176 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2013-04-03

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... renewable electricity production, refined coal production, and Indian coal production under section 45... resources, and to 2013 sales of refined coal and Indian coal produced in the United States or a possession...

  20. 77 FR 21835 - Credit for Renewable Electricity Production, Refined Coal Production, and Indian Coal Production...

    Science.gov (United States)

    2012-04-11

    ..., Refined Coal Production, and Indian Coal Production, and Publication of Inflation Adjustment Factors and... electricity production, refined coal production, and Indian coal production under section 45. DATES: The 2012... sales of refined coal and Indian coal produced in the United States or a possession thereof. Inflation...

  1. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  2. China's coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Karmazin, V A

    1988-09-01

    Presents data on China's coal industry. China's coal reserves are estimated to be 4,000 million Mt; annual production is over 800 Mt. Eleven new mining projects have been recently completed. They were financed with participation of foreign capital (US$ 1,400 million). Twenty-five new mines with 32.27 Mt production capacity were planned to be put into operation in 1988. Annual coal production is expected to increase to 870 Mt in 1990 at a cost of US$ 8,500 million. Numerical data on China's individual coal basins, new schemes, capital outlay and foreign capital participation are given. The dynamic development of China's coal industry since 1949 is briefly reviewed and management methods are explained.

  3. Development of I and C system for the coal feeder of coal firing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Teak Soo; Park, Chan Ho [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    KECC(Kepco Coal Feeder Control System) receives coal weight, conveyor speed and boiler demand signals. It controls coal flow by generating speed signal of feeder which conveys coal in hopper to pulverizer, displaying measured coal quantity and providing local auto and manual manipulator (author). 33 figs.

  4. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  5. Characterization and comparison of biomass produced from various sources: Suggestions for selection of pretreatment technologies in biomass-to-energy

    International Nuclear Information System (INIS)

    Chiang, Kung-Yuh; Chien, Kuang-Li; Lu, Cheng-Han

    2012-01-01

    Highlights: ► Biomass with higher volatile matter content has a higher carbon conversion rate. ► Applying the suitable pretreatment techniques that will enhance the bioenergy yield. ► The ratio of H 2 O/fixed carbon is a critical factor for enhancing the energy conversion. -- Abstract: This study investigated the characteristics of 26 varieties of biomass produced from forestry, agriculture, municipality, and industry in Taiwan to test their applicability in thermal conversion technologies and evaluation of enhanced energy efficiency. Understanding the reactivity of the tested biomass, the cluster analysis was also used in this research to classify into characteristics groups of biomass. This research also evaluated the feasibility of energy application of tested biomass by comparing it to the physicochemical properties of various coals used in Taiwan’s power plants. The experimental results indicated that the volatile matter content of the all tested biomass was 60% and above. It can be concluded that the higher carbon conversion rate will occur in the thermal conversion process of all tested biomass. Based on the results of lower heating value (LHV) of MSW and non-hazardous industrial sludge, the LHV was lower than other tested biomass that was between 1000 and 1800 kcal/kg. This is due to the higher moisture content of MSW and sludge that resulted in the lower LHV. Besides, the LHV of other tested biomass and their derived fuels was similar to the tested coal. However, the energy densities of woody and agricultural waste were smaller than that of the coal because the bulky densities of woody and agricultural wastes were low. That is, the energy utilization efficiency of woody and agricultural waste was relatively low. To improve the energy density of tested biomass, appropriate pre-treatment technologies, such as shredding, pelletizing or torrefied technologies can be applied, that will enhance the energy utilization efficiency of all tested biomass.

  6. Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying

    International Nuclear Information System (INIS)

    Łukowicz, Henryk; Kochaniewicz, Andrzej

    2012-01-01

    The ever-increasing restrictions on greenhouse gas emissions have created a need for new energy technologies. One way to meet these new requirements is to optimise the efficiency of power units. This paper presents two energy technologies that, if used, will increase the efficiency of electricity generation. One of the most effective ways to improve the efficiency of brown coal-fired units is by drying the coal that is fed into the boiler. Here, we describe a technology that uses the waste heat obtained from exhaust gases. This paper also presents an analysis of the feasibility of and potential for using waste heat obtained from exhaust gases to feed Organic Rankine Cycles (ORCs). Several low-temperature working fluids were considered, which were selected based on properties that were best suited for these types of cycles. The impact of these working fluids on the efficiency and capacity of the ORC was also examined. The calculations for ORCs fed with waste heat obtained from exhaust gases from hard coal- and brown coal-fired boilers were compared. -- Highlights: ► We describe a technology that uses the waste heat obtained from exhaust gases. ► The impact of using different working fluids with a low boiling point is examined. ► We describe integrating the ORC with the power unit. ► The use of waste heat from boiler exhaust gases to dry brown coal is proposed. ► We demonstrate a possible increase in power unit efficiency.

  7. Coal gasification integration with solid oxide fuel cell and chemical looping combustion for high-efficiency power generation with inherent CO2 capture

    International Nuclear Information System (INIS)

    Chen, Shiyi; Lior, Noam; Xiang, Wenguo

    2015-01-01

    Highlights: • A novel power system integrating coal gasification with SOFC and chemical looping combustion. • The plant net power efficiency reaches 49.8% with complete CO 2 separation. • Energy and exergy analysis of the entire plant is conducted. • Sensitivity analysis shows a nearly constant power output when SOFC temperature and pressure vary. • NiO oxygen carrier shows higher plant efficiency than using Fe 2 O 3 and CuO. - Abstract: Since solid oxide fuel cells (SOFC) produce electricity with high energy conversion efficiency, and chemical looping combustion (CLC) is a process for fuel conversion with inherent CO 2 separation, a novel combined cycle integrating coal gasification, solid oxide fuel cell, and chemical looping combustion was configured and analyzed. A thermodynamic analysis based on energy and exergy was performed to investigate the performance of the integrated system and its sensitivity to major operating parameters. The major findings include that (1) the plant net power efficiency reaches 49.8% with ∼100% CO 2 capture for SOFC at 900 °C, 15 bar, fuel utilization factor = 0.85, fuel reactor temperature = 900 °C and air reactor temperature = 950 °C, using NiO as the oxygen carrier in the CLC unit. (2) In this parameter neighborhood the fuel utilization factor, the SOFC temperature and SOFC pressure have small effects on the plant net power efficiency because changes in pressure and temperature that increase the power generation by the SOFC tend to decrease the power generation by the gas turbine and steam cycle, and v.v.; an advantage of this system characteristic is that it maintains a nearly constant power output even when the temperature and pressure vary. (3) The largest exergy loss is in the gasification process, followed by those in the CO 2 compression and the SOFC. (4) Compared with the CLC Fe 2 O 3 and CuO oxygen carriers, NiO results in higher plant net power efficiency. To the authors’ knowledge, this is the first

  8. A coal combine

    Energy Technology Data Exchange (ETDEWEB)

    Wlachovsky, I; Bartos, J

    1980-02-15

    A design is presented for a coal combine, equipped with two drum operational units, on whose both ends of the upper surface of the body, two coal saws are mounted with the help of a lever system. These saws, found in an operational position, form a gap in the block of the coal block, which is not embraced by the drum operational unit. The coal block, found between the gap and the support, falls down onto the longwall scraper conveyor. The lever system of each coal saw is controlled by two hydraulic jacks. One of the jacks is mounted vertically on the facial wall of the body of the combine and is used for the hoisting for the required height of the horizontal arm of the lever, reinforced by one end in the hinge on the body of the combine. On the ''free'' end of that lever, a coal saw is mounted in a hinge-like fashion and which is connected by the hydraulic jack to the horizontal arm of the lever system. This hydraulic jack is used for the clamping of the coal saw to the face.

  9. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  10. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  11. Coal world market

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A brief analysis of major tendencies in the world market of coal is presented. It is pointed out that recent years, by and large, were favourable for the development of the world coal industry. Prices for coal (both for power-grade and coking one) in 1995 after many years of depressive state increased by nearly 20 % and reached a maximum of the last decade. International coal trading continues to grow and the tendency may persist in the mext two years

  12. Wabash River Coal Gasification Repowering Project: A DOE Assessment; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2002-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology Program (CCT) is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Wabash River Coal Gasification Repowering (WRCGR) Project, as described in a Report to Congress (U.S. Department of Energy 1992). Repowering consists of replacing an existing coal-fired boiler with one or more clean coal technologies to achieve significantly improved environmental performance. The desire to demonstrate utility repowering with a two-stage, pressurized, oxygen-blown, entrained-flow, integrated gasification combined-cycle (IGCC) system prompted Destec Energy, Inc., and PSI Energy, Inc., to form a joint venture and submit a proposal for this project. In July 1992, the Wabash River Coal Gasification Repowering Project Joint Venture (WRCGRPJV, the Participant) entered into a cooperative agreement with DOE to conduct this project. The project was sited at PSI Energy's Wabash River Generating Station, located in West Terre Haute, Indiana. The purpose of this CCT project was to demonstrate IGCC repowering using a Destec gasifier and to assess long-term reliability, availability, and maintainability of the system at a fully commercial scale. DOE provided 50 percent of the total project funding (for capital and operating costs during the demonstration period) of$438 million

  13. Effect of coal soluble constituents on caking property of coal

    Energy Technology Data Exchange (ETDEWEB)

    Hengfu Shui; Mingdong Zheng; Zhicai Wang; Xunming Li [Anhui University of Technology, Maanshan (China). School of Chemistry and Chemical Engineering, Key Laboratory of Anhui Educational Department

    2007-07-15

    Three cokemaking bituminous coals were extracted by the CS{sub 2}/NMP mixed solvents with different content of NMP, and the effect of the amount and the component of coal soluble constituents on the caking property of the extracted residues of coals were investigated in this study. The CS{sub 2}/NMP mixed solvent (1:1 by volume) was found to give the maximal extraction yields for the three coals, and the fat coal gave the highest extraction yield of 78.6% (daf) corresponding to its highest caking index of 101. It was found that for coking coal, when the extraction yield got to the maximum of 25.3% in the 1:1 by volume of CS{sub 2}/NMP mixed solvent, the residue extracted still had caking property with the caking index of 19. This means parts of the caking constituents of coal are un-extractible because of covalent bonding or strong associative cross-links. The soluble components extracted by the CS{sub 2}/NMP mixed solvent and their effects on the caking indexes of the residues at a similar extraction yield quite differed depending on the NMP content in the mixed solvent. The coal solubles extracted by the CS{sub 2}/NMP mixed solvent with NMP less than 50% contained less light constituents with less of oxygen groups. This may lead to the decrease in the caking indexes for the residues obtained at the similar extraction yields compared to those of the CS{sub 2}/NMP mixed solvent with NMP more than 50%. 11 refs., 5 figs., 3 tabs.

  14. Coal marketing manual 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This manual presents information for the use of marketers, consumers, analysts and investors. The information is presented in a series of tables and figures. Statistics are given for: Australian export tonnages and average export values for 1978-1985; international pig iron production 1976 to 1985; and international crude steel production 1979 to 1985. Trends in Australian export tonnages and prices of coal are reviewed. Details of international loading and discharge ports are given, together with a historical summary of shipping freight-rates since 1982. Long term contract prices for thermal and coking coal to Japan are tabulated. A review of coal and standards is given, together with Australian standards for coal and coke. A section on coal quality is included containing information on consumer coal quality preferences and Australian and Overseas coal brands and qualities. Finally an index is given of contact details of Australian and Overseas exporting companies, government departments, and the Australian Coal Association.

  15. Coal handling system structural analysis for modifications or plant life extension

    International Nuclear Information System (INIS)

    Dufault, A.; Weider, F.; Doyle, P.

    1989-01-01

    One neglected aspect of plant modification or life extension is the extent to which previous projects may have affected the integrity of existing structures. During the course of a project to backfit fire protection facilities to existing coal handling systems, it was found that past modifications had added loads to existing coal handling structures which exceeded the available design margin. This paper describes the studies that discovered the original problem areas, as well as the detailed analysis and design considerations used to repair these structures

  16. Study on standard coal preparation plant for coking coal in Jharia Coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Winiewski, J; Sarkar, G G

    1975-10-01

    The proposed standardization of coal preparation plant will be based on three standard types of crushing station, a standard jig washery or cyclone washery, and three standard types of slurry water treatment section. Some large installations, and some existing washeries after modification, may incorporate heavy media baths for coarse coal and jigs for slack coal, where coal is easy or moderately easy to wash. Flow sheets are given for the standard types of crushing plant, washery, and slurry water circuit. The storage of raw coal and saleable products is briefly discussed.

  17. Steam coal processing technology: handling, high-order processing, COM, meth-coal

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, H.; Onodera, J.

    1982-01-01

    Topics covered include: various handling techologies (overland and marine transport, storage, water removal, drying, comminution and sizing); various coal processing technologies (gravity concentration, magnetic separation, multi-stage flotation, liquid-phase pelletizing, chemical processing); production methods for coal-oil mixtures (COM), their physical properties, stability, storage, transport, advantages, plus recent trends in research and development; production of coal-methanol slurry (meth-coal), its stability, storage, transport, utilization and environmental problems, plus latest trends in research and development. (In Japanese)

  18. Production of carbon molecular sieves from Illinois coal

    Science.gov (United States)

    Lizzio, A.A.; Rostam-Abadi, M.

    1993-01-01

    Carbon molecular sieves (CMS) have become an increasingly important class of adsorbents for application in the separation of gas molecules that vary in size and shape. A study is in progress at the Illinois State Geological Survey to determine whether Illinois basin coals are suitable feedstocks for the production of CMS and to evaluate their potential application in gas separation processes of commercial importance. Chars were prepared from Illinois coal in a fixed-bed reactor under a wide range of heat treatment and activation conditions. The effects of various coal/char pretreatments, including coal demineralization, preoxidation, char activation, and carbon deposition, on the molecular sieve properties of the chars were also investigated. Chars with commercially significant BET surface areas of 1500 m2/g were produced by chemical activation using potassium hydroxide as the activant. These high-surface-area (HSA) chars had more than twice the adsorption capacity of commercial carbon and zeolite molecular sieves. The kinetics of adsorption of various gases, e.g., N2, O2, CO2, CH4, CO and H2, on these chars at 25??C was measured. The O2/N2 molecular sieve properties of one char prepared without chemical activation were similar to those of a commercial CMS. On the other hand, the O2/N2 selectivity of the HSA char was comparable to that of a commercial activated carbon, i.e., essentially unity. Carbon deposition, using methane as the cracking gas, increased the O2/N2 selectivity of the HSA char, but significantly decreased its adsorption capacity. Several chars showed good potential for efficient CO2/CH4 separation; both a relatively high CO2 adsorption capacity and CO2/CH4 selectivity were achieved. The micropore size distribution of selected chars was estimated by equilibrium adsorption of carbon dioxide, n-butane and iso-butane at O??C. The extent of adsorption of each gas corresponded to the effective surface area contained in pores with diameters greater than 3

  19. 78 FR 28242 - Proposed Information Collection; Cleanup Program for Accumulations of Coal and Float Coal Dusts...

    Science.gov (United States)

    2013-05-14

    ... Program for Accumulations of Coal and Float Coal Dusts, Loose Coal, and Other Combustibles AGENCY: Mine... collection for developing and updating a cleanup program for accumulations of coal and float coal dusts, loose coal, and other combustibles in underground coal mines. DATES: All comments must be postmarked or...

  20. Coal to SNG: Technical progress, modeling and system optimization through exergy analysis

    International Nuclear Information System (INIS)

    Li, Sheng; Ji, Xiaozhou; Zhang, Xiaosong; Gao, Lin; Jin, Hongguang

    2014-01-01

    Highlights: • Technical progresses of coal to SNG technologies are reported. • The entire coal to SNG system is modeled. • Coupling between SNG production and power generation is investigated. • Breakthrough points for further energy saving are determined. • System performance is optimized based on the first and second laws of thermodynamics. - Abstract: For both energy security and CO 2 emission reduction, synthetic natural gas (SNG) production from coal is an important path to implement clean coal technologies in China. In this paper, an overview of the progress of coal to SNG technologies, including the development of catalysts, reactor designs, synthesis processes, and systems integration, is provided. The coal to SNG system is modeled, the coupling between SNG production and power generation is investigated, the breakthrough points for further energy savings are determined, and the system performance is optimized based on the first and the second laws of thermodynamics. From the viewpoint of the first law of thermodynamics, the energy conversion efficiency of coal to SNG system can reach 59.8%. To reduce the plant auxiliary power, the breakthrough points are the development of low-energy-consumption oxygen production technology and gas purification technology or seeking new oxidants for coal gasification instead of oxygen. From the viewpoint of the second law of thermodynamics, the major exergy destruction in a coal to SNG system occurs in the coal gasification unit, SNG synthesis unit and the raw syngas cooling process. How to reduce the exergy destruction in these units is the key to energy savings and system performance enhancement. The conversion ratio of the first SNG synthesis reactor and the split ratio of the recycle gas are key factors that determine the performance of both the SNG synthesis process and the whole plant. A “turning point” phenomenon is observed: when the split ratio is higher than 0.90, the exergy destruction of the SNG

  1. A Coal Burst Mitigation Strategy for Tailgate during Deep Mining of Inclined Longwall Top Coal Caving Panels at Huafeng Coal Mine

    Directory of Open Access Journals (Sweden)

    Guorui Feng

    2018-01-01

    Full Text Available A coal burst mitigation strategy for tailgate in mining of deep inclined longwall panels with top coal caving at Huafeng Coal Mine is presented in this paper. Field data showed that coal bursts, rib sloughing or slabbing, large convergence, and so forth frequently occurred within the tailgate entries during development and panel retreating employing standard longwall top coal caving (LTCC layout which resulted in fatal injuries and tremendous profit loss. The contributing factors leading to coal bursts were analyzed. Laboratory tests, in situ measurement, and field observation demonstrate that the intrinsic bursting proneness of the coal seam and immediate roof stratum, deep cover, overlying ultrathick (500–800 m conglomerate strata, faults, and, most importantly, improper panel layout led to coal bursts. By employing a new strategy, that is, longwall mining with split-level gateroads (LMSG, gateroads on either end of a LMSG panel are located at different levels within a coal seam, adjacent LMSG panels overlap end to end, and the tailgate of the adjacent new LMSG panel can be located below the headgate entry of the previous LMSG panel or may be offset horizontally with respect to it. Numerical modeling was carried out to investigate the stress distribution and yield zone development within surrounding rock mass which was validated by field investigation. The results indicate that standard LTCC system gave rise to high ground pressure around tailgate entries next to the gob, while LMSG tailgate entry below the gob edge was in a destressed environment. Therefore, coal bursts are significantly mitigated. Field practice of LMSG at Huafeng Coal Mine demonstrates how the new strategy effectively dealt with coal burst problems in mining of deep inclined longwall panels with a reduced incidence of ground control problems. The new strategy can potentially be applied in similar settings.

  2. Selected problems of coal mining mechanization in the coal industry of Poland

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, J; Sikora, W [Politechnika Slaska, Gliwice (Poland)

    1987-01-01

    Discusses conditions for underground coal mining in Poland, types of equipment for coal cutting, mine haulage and strata control and development trends of mining technologies. In 1985, black coal output was 191.6 Mt; 85.3% came from longwall faces mined by sets of mining equipment (coal cutters, chain conveyors and powered supports). The average coal output per longwall face was 881 t/d, output per face mined by sets for mining equipment was 1,134 t/d. In 1985, 653 shearer loaders and 77 coal plows were used in Polish coal mines. Number of shearer loaders is increasing. Shearer loaders with chainless haulage system were safest and most economic. The shearer loaders were equipped with the POLTRAK chainless haulage system developed in Poland. Research programs concentrate on development of new mining equipment for thin seam mining, steep seam mining, longwall mining with hydraulic stowing, efficient strata control by powered or shield supports under conditions of increased stresses or rock burst hazards. 4 refs.

  3. Coal export facilitation

    International Nuclear Information System (INIS)

    Eeles, L.

    1998-01-01

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  4. 1982 Australian coal conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This third Australian coal conference included papers discussing the market for coal, finance and investment, use of computers, mining, coal research, coal preparation and waste disposal, marketing and trade, and the transport of coal. All papers have been individually abstracted.

  5. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  6. Coal 95

    International Nuclear Information System (INIS)

    Sparre, C.

    1995-01-01

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO 2 and NO x as given by county administrations or concession boards. The cogeneration plants all have some SO 2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO x cleaning system. Most other plants use low NO x burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  7. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  8. Response surface optimization of the thermal acid pretreatment of sugar beet pulp for bioethanol production using Trichoderma viride and Saccharomyces cerevisiae.

    Science.gov (United States)

    El-Gendy, Nour Sh; Madian, Hekmat R; Nassar, Hussein N; Amr, Salem S Abu

    2015-09-15

    Worldwide nowadays, relying on the second generation bioethanol from the lignocellulosic feedstock is a mandatory aim. However, one of the major drawbacks for high ethanol yield is the physical and chemical pretreatment of this kind of feedstock. As the pretreatment is a crucial process operation that modifies the lignocellulosic structure and enhances its accessibility for the high cost hydrolytic enzymes in an attempt to maximize the yield of the fermentable sugars. The objective of this work was to optimize and integrate a physicochemical pretreatment of one of the major agricultural wastes in Egypt; the sugar beet pulp (SBP) and the enzymatic saccharification of the pretreated SBP using a whole fungal cells with a separate bioethanol fermentation batch processes to maximize the bioethanol yield. The response surface methodology was employed in this study to statistically evaluate and optimize the conditions for a thermal acid pretreatment of SBP. The significance and the interaction effects of the concentrations of HCl and SBP and the reaction temperature and time were studied using a three-level central composite design of experiments. A quadratic model equation was obtained to maximize the production of the total reducing sugars. The validity of the predicted model was confirmed. The thermally acid pretreated SBP was further subjected to a solid state fermentation batch process using Trichoderma viride F94. The thermal acid pretreatment and fungal hydrolyzes were integrated with two parallel batch fermentation processes of the produced hydrolyzates using Saccharomyces cerevisiae Y39, that yielded a total of ≈ 48 g/L bioethanol, at a conversion rate of ≈ 0.32 g bioethanol/ g SBP. Applying the proposed integrated process, approximately 97.5 gallon of ethanol would be produced from a ton (dry weight) of SBP.

  9. Optimization of an integrated sponge--granular activated carbon fluidized bed bioreactor as pretreatment to microfiltration in wastewater reuse.

    Science.gov (United States)

    Xing, W; Ngo, H H; Guo, W S; Listowski, A; Cullum, P

    2012-06-01

    A specific integrated fluidized bed bioreactor (iFBBR) was optimized in terms of organic loading rate (OLR), hydraulic retention time (HRT) and frequency of new sustainable flocculant (NSBF) addition for primary treated sewage effluent (PTSE) treatment. It was observed that iFBBR achieved the best performance with the operating conditions of 4 times/day NSBF addition, HRT of 90 min and OLR of 8.64 kg COD/day m(3). The removal efficiencies were found to be more than 93% of dissolved organic carbon (DOC), 61% of total nitrogen (T-N) and 60% of total phosphorus (T-P). iFBBR as pretreatment of submerged microfiltration (SMF) is successful in increasing the critical flux and reducing the membrane fouling. NSBF-iFBBR-SMF hybrid system led to very high organic removal efficiency with an average DOC removal of 97% from synthetic PTSE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Coal use and coal technology study (KIS)

    International Nuclear Information System (INIS)

    Kram, T.; Okken, P.A.; Gerbers, D.; Lako, P.; Rouw, M.; Tiemersma, D.N.

    1991-11-01

    The title study aims to assess the possible role for coal in the Netherlands energy system in the first decades of the next century and the part new coal conversion technologies will play under various conditions. The conditions considered relate to (sectoral) energy demand derived from national scenarios in an international context, to energy prices, to environmental constraints (acidification, solid waste management and disposal) and to the future role for nuclear power production. Targets for reduction of greenhouse gas emissions are not explicitly included, but resulting CO 2 emissions are calculated for each variant case. The part that coal can play in the Dutch energy supply is calculated and analyzed by means

  11. Effect of the grinding behaviour of coal blends on coal utilisation for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, CSIC, Oviedo (Spain); Miles, N. [School of Chemical, Environmental and Mining Engineering, Nottingham Univ. (United Kingdom)

    1999-11-01

    Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different hardgrove grindability index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. (orig.)

  12. Coal in Asia-Pacific. Vol.9. No.1. Third APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The Third APEC (Asia-Pacific Economic Cooperation) Coal Flow Seminar was held featuring regional investment strategies for coal, power infrastructure, and technology transfer in Terrigal, Australia in 26-28, November, 1996. This publication introduces the summary and the papers presented for the keynote speeches and the panels of this seminar. For the keynote speeches, `Investment requirements for steaming coal supplies in APEC member economies,` `Barriers to investment across the APEC regional coal chain,` `The role of advanced coal technologies in greenhouse gas abatement and financing its development and uptake,` `Investment in clean coal power plants,` and `Role of multilateral development banks in financing clean coal technologies to reduce greenhouse gas emission` were presented. In addition, summary and papers describing individual situations of APEC member economies are introduced. 59 refs., 42 figs., 37 tabs.

  13. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    Science.gov (United States)

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  14. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment.

    Science.gov (United States)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério; Dragone, Giuliano; Mussatto, Solange I; Santos, Júlio César Dos

    2018-06-01

    Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.

  15. Development of an inexact optimization model for coupled coal and power management in North China

    International Nuclear Information System (INIS)

    Liu, Y.; Huang, G.H.; Cai, Y.P.; Cheng, G.H.; Niu, Y.T.; An, K.

    2009-01-01

    In this study, an inexact coupled coal and power management (ICCPM) model was developed for planning coupled coal and power management systems through integrating chance-constrained programming (CCP), interval linear programming (ILP) and mixed integer linear programming (MILP) techniques. The ICCPM model can effectively handle uncertainties presented in terms of probability density functions and intervals. It can also facilitate dynamic analysis of capacity expansions, facility installation and coal inventory planning within a multi-period and multi-option context. Complexities in coupled coal and power management systems can be systematically reflected in this model, thus applicability of the modeling process would be highly enhanced. The developed ICCPM model was applied to a case of long-term coupled coal and power management systems planning in north China. Interval solutions associated with different risk levels of constraint violations have been obtained, which can be used for generating decision alternatives and helping identify desired policies. The generated results can also provide desired solutions for coal and power generation, capacity initiation and expansion, and coal blending with a minimized system cost, a maximized system reliability and a maximized coal transportation security. Tradeoffs between system costs and constraint-violation risks can also be tackled.

  16. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  17. Analysis of briquetting process of sewage sludge with coal to combustion process

    Directory of Open Access Journals (Sweden)

    Kosturkiewicz Bogdan

    2016-01-01

    Full Text Available Energy recovery from sewage sludge can be achieved by several thermal technologies, but before those processes sewage sludge requires special pretreatment. The paper presents the investigation of the sewage sludge with coal briquettes as a fuel for combustion process. Research is conducted at Department of Manufacturing Systems and Department of Thermal Engineering and Environmental Protection, AGH University of Science and Technology to develop a technology of briquette preparation. The obtained results showed possibility of briquetting of municipal sewage sludge with coal in roll presses, equipped with asymmetric thickening gravity feed system. The following properties were determined for the obtained briquettes: density, drop strength and compressive strength. Based on physical and chemical analysis of prepared briquettes it was confirmed that briquettes have good fuel properties to combustion process. Thermal behaviour of studied sewage sludge and prepared mixture was investigated by thermogravimetric analysis (TG. For the thermo gravimetric analysis (TG the samples were heated in an alumina crucible from an ambient temperature up to 1000 °C at a constant rates: 10 °C/min, 40 °C/min and 100 °C/min in a 40 ml/min flow of air.

  18. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    OpenAIRE

    Mohammad Siddique; Suhail Ahmed Soomro; Aziza Aftab; Zahid Naeem Qaisrani; Abdul Sattar Jatoi; Asadullah; Ghulamullah Khan; Ehsanullah Kakar

    2016-01-01

    Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their ...

  19. Underground coal mining technology - the future

    Energy Technology Data Exchange (ETDEWEB)

    Lama, R P [Kembla Coal and Coke Pty Limited, Wollongong, NSW (Australia)

    1989-01-01

    Discusses development of underground coal mining in Australia in the last four decades. The following aspects are reviewed: technology for underground mining (longwall mining, unidirectional cutting, bidirectional cutting, operation of more than one shearer on a working face, optimum dimensions of longwall blocks), longwall productivity (productivity increase will depend on increasing the availability factor of equipment, reducing failures due to human errors, organizational models, improving on-site decision making, improving monitoring, maintenance, planning and scheduling, concept of 'Transparent Mine'), roadway development systems (types of heading machines, standard systems for mine drivage and roof bolting and their productivity), size of coal mines, man and material transport systems (20,000-30,000 t/d from a single longwall face, mine shafts with a diameter 9-10 m), mine layout design (layout of longwall blocks, main intakes and returns situated in rock layers), mine environmental systems (ventilation systems, gas control), management, training and interpersonal relationships. Future coal mines will be developed with an integral capacity of 8-10 Mt/a from a single longwall operation with main development arteries placed in rocks. Development of gate roadways will require novel solutions with continuous cutting, loading and bolting. Information technology, with the concept of 'transparent mine', will form the backbone of decision making.

  20. Record coking coal settlements

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, C.

    2005-02-01

    The US$100/tonne psychological barrier in coking coal prices has been well and truly smashed. The article examines developments in coal pricing. It includes quotes from many senior executives in the coal industry as collected at McCloskey's Australian Coal.04 conference held in Sydney, 18-19 November 2004. 2 photos.