WorldWideScience

Sample records for integrates math science

  1. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  2. Integrating Literacy, Math, and Science to Make Learning Come Alive

    Science.gov (United States)

    Bintz, William P.; Moore, Sara D.; Hayhurst, Elaine; Jones, Rubin; Tuttle, Sherry

    2006-01-01

    In this article, the authors who are an interdisciplinary team of middle school educators collaboratively developed and implemented an interdisciplinary unit designed to help middle school students: (1) think like mathematicians and scientists; (2) develop specific areas of expertise in math and science; and (3) use literature as a tool to learn…

  3. Rural School Math and Science Teachers' Technology Integration Familiarization

    Science.gov (United States)

    Kalonde, Gilbert

    2017-01-01

    This study explored the significance of technology integration familiarization and the subsequent PD provided to rural middle school teachers with several opportunities to gain technological skills for technology use in rural middle school math and science classrooms. In order to explore the use of technology in rural schools, this study surveyed…

  4. Toad-Ally Cool Math and Science Integration

    Science.gov (United States)

    Brkich, Katie; Allen, Melony; Huffling, Lacey; Matthews, Catherine

    2017-01-01

    "Hop to It," a week-long herpetology-focused summer STEM camp for rising fourth-, fifth-, and sixth-grade girls, provided young females with authentic, hands-on science experiences, allowing them to develop the habits of thought and processes of action used by STEM field experts while also engaging and sustaining their interest in the…

  5. Promoting autonomous learning in English through the implementation of Content and Language Integrated Learning (CLIL in science and maths subjects

    Directory of Open Access Journals (Sweden)

    Andriani Putu Fika

    2018-01-01

    Full Text Available Autonomous learning is a concept in which the learner has the ability to take charge of their own learning. It becomes a notable aspect that should be perceived by students. The aim of this research is for finding out the strategies used by grade two teachers in Bali Kiddy Primary School to promote autonomous learning in English through the implementation of Content and Language Integrated Learning in science and maths subjects. This study was designed in the form of descriptive qualitative study. The data were collected through observation, interview, and document study. The result of the study shows that there are some strategies of promoting autonomous learning in English through the implementation of CLIL in Science and Maths subjects. Those strategies are table of content training, questioning & presenting, journal writing, choosing activities, and using online activity. Those strategies can be adopted or even adapted as the way to promote autonomous learning in English subject.

  6. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  7. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  8. Using TPCK as a Lens to Study the Practices of Math and Science Teachers Involved in a Year-Long Technology Integration Initiative

    Science.gov (United States)

    Dawson, Kara; Ritzhaupt, Albert; Liu, Feng; Rodriguez, Prisca; Frey, Christopher

    2013-01-01

    The purpose of this study was to examine the ways teachers enact technological, pedagogical and content practices in math and science lessons and to document the change with teachers involved in a year-long technology integration initiative. Six hundred seventy-two lessons were analyzed in this research using Technological, Pedagogical Content…

  9. Making the case for STEM integration at the upper elementary level: A mixed methods exploration of opportunity to learn math and science, teachers' efficacy and students' attitudes

    Science.gov (United States)

    Miller, Brianna M.

    Student achievement in science and math has been linked to per capita gross domestic product (GDP) growth propagating the belief that science, technology, engineering, and math (STEM) education is an important factor in economic prosperity. However, The No Child Left Behind Act of 2001 (NCLB), favors math over science, positioning the subjects as competitors rather than collaborators. Additionally, NCLB focuses almost exclusively on the cognitive outcome of students' achievement with the affective outcome of students' attitudes being nearly ignored. Positive attitudes toward science and math early on are essential for subsequent and cumulative decisions students make in taking courses, choosing majors, and pursuing careers. Positioning students' attitudes as a desirable educational outcome comparable to students' achievement is an emerging goal in the literature. Using the case of one school district in south-central Pennsylvania with three elementary schools, 15 upper elementary teachers, and 361 students, the purpose of this study was to better understand influences on upper elementary students' attitudes toward STEM (SA) subjects and careers. The study aimed to explore two influences on SA, opportunity to learn (OTL) and teacher's efficacy (TE), in the comparative contexts of math and science. The studied employed a mixed methods convergent design in which five data sets from four sources were collected over three phases to triangulate three constructs: OTL, TE, and SA. The goal of the study was to offer recommendations to the case school district for enhancing OTL, TE, and thus SA. Findings regarding OTL revealed that the opportunity to learn science was lower than math. Finding regarding TE revealed that outcome expectancy was lower than personal teaching efficacy in both science and math; and, teachers had low STEM career awareness, STEM integration, and technology use. Findings regarding SA revealed a lower perceived usefulness of science compared to math

  10. Mini-Portfolio on Math and Science.

    Science.gov (United States)

    Teaching PreK-8, 1996

    1996-01-01

    Presents six articles dealing with math and science education: "Sneaker Geometry" (Jack George), "Fairs with a Flair" (Diane McCarty), "Generating Excitement with Math Projects" (Jeffrey Kostecky and Louis Roe), "Playing with Numbers" (Diana Smith), "When Student Teachers Want to Do Hands-On Science" (Betsy Feldkamp-Price), and "Science ala Carte"…

  11. Math and science illiteracy: Social and economic impacts

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.L.

    1994-05-01

    Today`s highly competitive global economy is being driven by increasingly rapid technological development. This paper explores the problems of math and science illiteracy in the United States and the potential impact on our economic survival in this environment during the next century. Established educational methods that reward task performance, emphasize passive lecture, and fail to demonstrate relevance to real life are partly to blame. Social norms, stereotypes, and race and gender bias also have an impact. To address this crisis, we need to question the philosophy of an educational system that values task over concept. Many schools have already initiated programs at all grade levels to make math and science learning more relevant, stimulating, and fun. Teaching methods that integrate math and science learning with teamwork, social context, and other academic subjects promote the development of higher-order thinking skills and help students see math and science as necessary skills.

  12. Improving Student Achievement in Math and Science

    Science.gov (United States)

    Sullivan, Nancy G.; Hamsa, Irene Schulz; Heath, Panagiota; Perry, Robert; White, Stacy J.

    1998-01-01

    As the new millennium approaches, a long anticipated reckoning for the education system of the United States is forthcoming, Years of school reform initiatives have not yielded the anticipated results. A particularly perplexing problem involves the lack of significant improvement of student achievement in math and science. Three "Partnership" projects represent collaborative efforts between Xavier University (XU) of Louisiana, Southern University of New Orleans (SUNO), Mississippi Valley State University (MVSU), and the National Aeronautics and Space Administration (NASA), Stennis Space Center (SSC), to enhance student achievement in math and science. These "Partnerships" are focused on students and teachers in federally designated rural and urban empowerment zones and enterprise communities. The major goals of the "Partnerships" include: (1) The identification and dissemination of key indices of success that account for high performance in math and science; (2) The education of pre-service and in-service secondary teachers in knowledge, skills, and competencies that enhance the instruction of high school math and science; (3) The development of faculty to enhance the quality of math and science courses in institutions of higher education; and (4) The incorporation of technology-based instruction in institutions of higher education. These goals will be achieved by the accomplishment of the following objectives: (1) Delineate significant ?best practices? that are responsible for enhancing student outcomes in math and science; (2) Recruit and retain pre-service teachers with undergraduate degrees in Biology, Math, Chemistry, or Physics in a graduate program, culminating with a Master of Arts in Curriculum and Instruction; (3) Provide faculty workshops and opportunities for travel to professional meetings for dissemination of NASA resources information; (4) Implement methodologies and assessment procedures utilizing performance-based applications of higher order

  13. Adventures in Science and Math.

    Science.gov (United States)

    Jones, Tom B.

    This volume presents historical sketches of events and scientists. Produced for use by teachers using the MINNEMAST curriculum materials, the material is intended to exhibit the roles of processes in science throughout history. The seven stories included concern Anaxagoras, Achimedes, Napier, the development of the telescope and microscope, Louis…

  14. Science + Maths = A Better Understanding of Science!

    Science.gov (United States)

    Markwick, Andy; Clark, Kris

    2016-01-01

    Science and mathematics share a common purpose: to explore, understand and explain the pure beauty of our universe and how it works. Using mathematics in science enquiry can enhance children's understanding of science and also provide opportunities for children to apply their mathematical knowledge to "real" contexts. The authors…

  15. PUMAS: Practical Uses of Math And Science

    Science.gov (United States)

    Kahn, R. A.

    2009-12-01

    For more than ten years, PUMAS has provided a forum for disseminating peer-reviewed examples of Practical Uses of Math And Science, aimed at helping pre-college teachers enrich their presentation of math and science topics. Contributors include scientists, engineers, and content experts from many disciplines. The innovative ideas in PUMAS examples tend to be treasures, containing the ‘sparks’ of understanding that comes only from having real-life experience with the material. Examples can be essays, anecdotes, problems, demonstrations, or activities, and can be written in any style that serves the material well. They are keyed to the National Standards and Benchmarks, which provide the critical connection to K-12 curriculum guidelines, and the peer-review process involves at least one scientist with a relevant background, and at least one teacher at an appropriate grade level. The PUMAS Web Site has recently been upgraded. It is now a NASA-wide facility, recognized by both the National Science Teachers Association (NSTA) and the National Council of Teachers of Mathematics (NCTM). This presentation will describe and illustrate the operation of PUMAS, will highlight a few of our many treasures, and will appeal to scientists interested in contributing meaningfully to pre-college education to consider submitting examples to PUMAS.

  16. Science and Math in the Library Media Center Using GLOBE.

    Science.gov (United States)

    Aquino, Teresa L.; Levine, Elissa R.

    2003-01-01

    Describes the Global Learning and Observations to Benefit the Environment (GLOBE) program which helps school library media specialists and science and math teachers bring earth science, math, information literacy, information technology, and student inquiry into the classroom. Discusses use of the Internet to create a global network to study the…

  17. Math and Science Gateways to California's Fastest Growing Careers

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Some students--and parents--think math and science are not too important for their future. As everyday life becomes more dependent on technology, most people will need a better background in math and science to succeed in today's global economy. To get high-paying jobs in some of California's fastest-growing occupations, a strong background in…

  18. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  19. An Integration of Math with Auto Technician Courses

    Science.gov (United States)

    Valenzuela, Hector

    2012-01-01

    This article describes the development of the contextualized math, the course design, student teaching and daily interaction with the students, and the implementation aspects of the research project designed to develop contextualized mathematics and integrate it into the Auto Technician courses. The applied math curriculum was integrated into…

  20. HeartMath and Ubuntu integral healing approaches for social ...

    African Journals Online (AJOL)

    HeartMath and Ubuntu integral healing approaches for social coherence and physical activity. Stephen D. Edwards. Abstract. This research was motivated by many social health problems confronting planet earth. Its aim is to introduce HeartMath and Ubuntu as complimentary, integral healing approaches for promoting ...

  1. Change Vocational Funding to Acquire Qualified Math/Science Teachers.

    Science.gov (United States)

    Heron, Bill

    1985-01-01

    Gives a brief overview of the problems occurring at the high school level due to inadequately paid personnel in the math and science areas, summarizes the current bureaucratic structure surrounding vocational funding, and suggests an alternative. (FL)

  2. Combining Geography, Math, and Science to Teach Climate Change and Sea Level Rise

    Science.gov (United States)

    Oldakowski, Ray; Johnson, Ashley

    2018-01-01

    This study examines the effectiveness of integrating geography into existing math and science curriculum to teach climate change and sea level rise. The desired outcome is to improve student performance in all three subjects. A sample of 120 fifth graders from three schools were taught the integrated curriculum over a period of two to three weeks.…

  3. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Elementary Teachers' Perceptions of Their Professional Teaching Competencies: Differences between Teachers of Math/Science Majors and Non-Math/Science Majors in Taiwan

    Science.gov (United States)

    Wu, Li-Chen; Chao, Li-ling; Cheng, Pi-Yun; Tuan, Hsiao-Lin; Guo, Chorng-Jee

    2018-01-01

    The purpose of this study was to probe the differences of perceived professional teaching competence between elementary school math/science teachers in Taiwan who are majored in math/science and those who are not. A researcher-developed Math/Science Teachers' Professional Development Questionnaire was used in a nationwide survey, using a two-stage…

  5. TEACHER TRAINING: How to Produce Better Math and Science Teachers.

    Science.gov (United States)

    Mervis, J

    2000-09-01

    Two National Research Council panels have released new reports on improving science and math education in the United States. One panel says that the best way to improve teacher education is to make it a continuum, with school districts taking more responsibility for the initial preparation of new teachers and university faculty playing a bigger role in ongoing professional development. The other panel says that more recent science Ph.D.s would be willing to teach high school science and math if the government helped with the transition, if the certification process were compressed, and if they could retain ties to research.

  6. Hardly Rocket Science: Collaboration with Math and Science Teachers Doesn't Need to Be Complicated

    Science.gov (United States)

    Minkel, Walter

    2004-01-01

    While librarians routinely collaborate with reading and humanities teachers, they rarely partner with teachers of math and science--to the loss of students. With the current emphasis on standardized testing and declining student performance in math and science, media specialists need to remedy this situation. Why don't librarians click with…

  7. Dale Chihuly: An Inspiration in Art, Science, and Math!

    Science.gov (United States)

    Hubbert, Beth

    2009-01-01

    Connecting students to the arts in a concrete way can be an effective teaching tool. In this article, the author describes how Dale Chihuly's "Hart Window," which features hand-blown glass disks affixed to the framework of the window, can be an inspiration for interdisciplinary connections in art, science and math. (Contains 4 online resources.)

  8. Hands-On Math and Art Exhibition Promoting Science Attitudes and Educational Plans

    Directory of Open Access Journals (Sweden)

    Helena Thuneberg

    2017-01-01

    Full Text Available The current science, technology, engineering, art, math education (STEAM approach emphasizes integration of abstract science and mathematical ideas for concrete solutions by art. The main aim was to find out how experience of learning mathematics differed between the contexts of school and an informal Math and Art Exhibition. The study participants (N=256 were 12-13 years old from Finland. Several valid questionnaires and tests were applied (e.g., SRQ-A, RAVEN in pre- and postdesign showing a good reliability. The results based on General Linear Modeling and Structural Equation Path Modeling underline the motivational effects. The experience of the effectiveness of hands-on learning at school and at the exhibition was not consistent across the subgroups. The lowest achieving group appreciated the exhibition alternative for math learning compared to learning math at school. The boys considered the exhibition to be more useful than the girls as it fostered their science and technology attitudes. However, for the girls, the attractiveness of the exhibition, the experienced situation motivation, was much more strongly connected to the attitudes on science and technology and the worthiness of mathematics. Interestingly, the pupils experienced that even this short informal learning intervention affected their science and technology attitudes and educational plans.

  9. 77 FR 37016 - Applications for New Awards: Upward Bound Math and Science Program

    Science.gov (United States)

    2012-06-20

    ... DEPARTMENT OF EDUCATION Applications for New Awards: Upward Bound Math and Science Program AGENCY... Bound Math and Science Program. Notice inviting applications for new awards for fiscal year (FY) 2012.... There are three types of grants under the UB Program: regular UB grants, Veterans UB grants, and UB Math...

  10. Math

    CERN Document Server

    Robertson, William C

    2006-01-01

    Flummoxed by formulas? Queasy about equations? Perturbed by pi? Now you can stop cursing over calculus and start cackling over Math, the newest volume in Bill Robertson's accurate but amusing Stop Faking It! best sellers. As Robertson sees it, too many people view mathematics as a set of rules to be followed, procedures to memorize, and theorems to apply. This book focuses on the reasoning behind the rules, from math basics all the way up to a brief introduction to calculus.

  11. Progressing science, technology, engineering, and math (STEM) education in North Dakota with near-space ballooning

    Science.gov (United States)

    Saad, Marissa Elizabeth

    The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the

  12. Integrating Music into Math in a Virtual Reality Game: Learning Fractions

    Science.gov (United States)

    Lim, Taehyeong; Lee, Sungwoong; Ke, Fengfeng

    2016-01-01

    The purpose of this study was to investigate future teachers' experiences and perceptions of using a virtual reality game for elementary math education. The virtual reality game was designed and developed to integrate a musical activity (beat-making) into the math learning of fractions. Five math education major students participated in this…

  13. The role of social support in students' perceived abilities and attitudes toward math and science.

    Science.gov (United States)

    Rice, Lindsay; Barth, Joan M; Guadagno, Rosanna E; Smith, Gabrielle P A; McCallum, Debra M

    2013-07-01

    Social cognitive models examining academic and career outcomes emphasize constructs such as attitude, interest, and self-efficacy as key factors affecting students' pursuit of STEM (science, technology, engineering and math) courses and careers. The current research examines another under-researched component of social cognitive models: social support, and the relationship between this component and attitude and self-efficacy in math and science. A large cross-sectional design was used gathering data from 1,552 participants in four adolescent school settings from 5th grade to early college (41 % female, 80 % white). Students completed measures of perceived social support from parents, teachers and friends as well as their perceived ability and attitudes toward math and science. Fifth grade and college students reported higher levels of support from teachers and friends when compared to students at other grade levels. In addition, students who perceived greater social support for math and science from parents, teachers, and friends reported better attitudes and had higher perceptions of their abilities in math and science. Lastly, structural equation modeling revealed that social support had both a direct effect on math and science perceived abilities and an indirect effect mediated through math and science attitudes. Findings suggest that students who perceive greater social support for math and science from parents, teachers, and friends have more positive attitudes toward math and science and a higher sense of their own competence in these subjects.

  14. An Investigation into the Process of Transference, through the Integration of Art with Science and Math Curricula, in a California Community College: A Case Study

    Science.gov (United States)

    Rachford, Maryann Kvietkauskas

    2011-01-01

    The transference of learning from one discipline to another creates new knowledge between subjects. Students can connect and apply what they learn in one subject to previously existing knowledge. Art expression is an integral part of human nature and has been a means of communication throughout history. Through the integration of art with science…

  15. The Responsive Classroom approach and fifth grade students' math and science anxiety and self-efficacy.

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E; Merritt, Eileen G; Patton, Christine L

    2013-12-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as schools' use of Social and Emotional Learning (SEL) practices to students' math and science self-efficacy. Fifth graders (n = 1,561) completed questionnaires regarding their feelings about math and science. Approximately half of the students attended schools implementing the Responsive Classroom® (RC) approach, an SEL intervention, as part of a randomized controlled trial. Results suggested no difference in math and science self-efficacy between boys and girls. Students who self-reported higher math and science anxiety also reported less self-efficacy toward these subjects. However, the negative association between students' anxiety and self-efficacy was attenuated in schools using more RC practices compared with those using fewer RC practices. RC practices were associated with higher science self-efficacy. Results highlight anxiety as contributing to poor self-efficacy in math and science and suggest that RC practices create classroom conditions in which students' anxiety is less strongly associated with negative beliefs about their ability to be successful in math and science. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. The "Responsive Classroom" Approach and Fifth Grade Students' Math and Science Anxiety and Self-Efficacy

    Science.gov (United States)

    Griggs, Marissa Swaim; Rimm-Kaufman, Sara E.; Merritt, Eileen G.; Patton, Christine L.

    2013-01-01

    Self-efficacy forecasts student persistence and achievement in challenging subjects. Thus, it is important to understand factors that contribute to students' self-efficacy, a key factor in their success in math and science. The current cross-sectional study examined the contribution of students' gender and math and science anxiety as well as…

  17. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors’ Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students’ emotional satisfaction with math. We then compared life science and non–life science majors and found that major had a small to moderate relationship with students’ responses. Gender also had a small relationship with students’ responses, while students’ race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups—students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates’ emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors’ attitudes toward math. PMID:28798211

  18. Integration of NASA Research into Undergraduate Education in Math, Science, Engineering and Technology at North Carolina A&T State University

    Science.gov (United States)

    Monroe, Joseph; Kelkar, Ajit

    2003-01-01

    The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.

  19. Developing Science and Mathematics Teacher Leaders through a Math, Science & Technology Initiative

    Science.gov (United States)

    Green, André M.; Kent, Andrea M.

    2016-01-01

    This study explores the effects of a professional development teacher leadership training program on the pedagogical and content development of math and science teacher leaders at the elementary level. The study is qualitative in nature, and the authors collected data using the online survey instrument Survey Monkey. The major implications of the…

  20. Science and Math Lesson Plans to Meet the Ohio Revised Science Standards and the Next Generation of Standards for Today; Technology (Excel

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-02-01

    Full Text Available Pre-service teachers (K-12 developed and taught lesson plans that met the state and national science and technology standards by integrating Excel and PowerPoint into their lesson. A sample of 74 pre-service teachers in our science education program were required to integrate technology (Excel as they developed science and math lesson plans with graphing as a requirement. These students took pre-test and post-test (n=74 to determine their understanding of Excel in relation to the need of current technology for todays' science classroom. The test results showed that students obtained content gains in Excel graphing in all the inquiry-based lab experiments. They also gained experience in developing math skills, inquiry-based science lesson plans, and communication and presentation skills.

  1. Using Art to Enhance the Learning of Math and Science: Developing an Educational Art-Science Kit about Fractal Patterns in Nature

    Science.gov (United States)

    Rao, Deepa

    This study documents the development of an educational art-science kit about natural fractals, whose aim is to unite artistic and scientific inquiry in the informal learning of science and math. Throughout this research, I argue that having an arts-integrated approach can enhance the learner of science and math concepts. A guiding metaphor in this thesis is the Enlightenment-era cabinet of curiosities that represents a time when art and science were unified in the process of inquiry about the natural world. Over time, increased specialization in the practice of arts and science led to a growing divergence between the disciplines in the educational system. Recently, initiatives like STEAM are underway at the national level to integrate "Arts and Design" into the Science, Technology, Engineering, and Math (STEM) formal education agenda. Learning artifacts like science kits present an opportunity to unite artistic and scientific inquiry in informal settings. Although science kits have been introduced to promote informal learning, presently, many science kits have a gap in their design, whereby the activities consist of recipe-like instructions that do not encourage further inquiry-based learning. In the spirit of the cabinet of curiosities, this study seeks to unify visual arts and science in the process of inquiry. Drawing from educational theories of Dewey, Piaget, and Papert, I developed a novel, prototype "art-science kit" that promotes experiential, hands-on, and active learning, and encourages inquiry, exploration, creativity, and reflection through a series of art-based activities to help users learn science and math concepts. In this study, I provide an overview of the design and development process of the arts-based educational activities. Furthermore, I present the results of a pilot usability study (n=10) conducted to receive user feedback on the designed materials for use in improving future iterations of the art-science fractal kit. The fractal kit

  2. Improving basic math skills through integrated dynamic representation strategies.

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Cabeza, Lourdes; Álvarez-García, David; Rodríguez, Celestino

    2014-01-01

    In this paper, we analyze the effectiveness of the Integrated Dynamic Representation strategy (IDR) to develop basic math skills. The study involved 72 students, aged between 6 and 8 years. We compared the development of informal basic skills (numbers, comparison, informal calculation, and informal concepts) and formal (conventionalisms, number facts, formal calculus, and formal concepts) in an experimental group (n = 35) where we applied the IDR strategy and in a Control group (n = 37) in order to identify the impact of the procedure. The experimental group improved significantly in all variables except for number facts and formal calculus. It can therefore be concluded that IDR favors the development of the skills more closely related to applied mathematics than those related to automatic mathematics and mental arithmetic.

  3. Beyond Science and Math: Integrating Geography Education

    Science.gov (United States)

    Grubbs, Michael E.; Grubbs, Steven

    2015-01-01

    This article discusses the status of World Geography Education and the importance of these concepts in developing 21st century students. Moreover, the authors also showcase how World Geography concepts can be intentionally taught through a technological/engineering, design-based learning challenge that requires students to solve a global housing…

  4. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  5. 34 CFR 645.13 - What additional services do Upward Bound Math and Science Centers provide and how are they...

    Science.gov (United States)

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What additional services do Upward Bound Math and... Program? § 645.13 What additional services do Upward Bound Math and Science Centers provide and how are... provided under § 645.11(b), an Upward Bound Math and Science Center must provide— (1) Intensive instruction...

  6. The Math–Biology Values Instrument: Development of a Tool to Measure Life Science Majors’ Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students’ personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math–Biology Values Instrument (MBVI), an 11-item college-level self-­report instrument grounded in expectancy-value theory, to measure life science students’ interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student’s value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math–biology values and understand how math–biology values are related to students’ achievement and decisions to pursue more advanced quantitative-based courses. PMID:28747355

  7. Evaluating the impact of digital tools to teach math and science in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Evaluating the impact of digital tools to teach math and science in Chile ... Caribbean countries fare poorly in international comparisons of learning assessments. ... to support governments grappling with intellectual property issues in an age of ...

  8. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  9. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Software for math and science education for the deaf.

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Wilbur, Ronnie

    2010-01-01

    In this article, we describe the development of two novel approaches to teaching math and science concepts to deaf children using 3D animated interactive software. One approach, Mathsigner, is non-immersive and the other, SMILE, is a virtual reality immersive environment. The content is curriculum-based, and the animated signing characters are constructed with state-of-the art technology and design. We report preliminary development findings of usability and appeal based on programme features (e.g. 2D/3D, immersiveness, interaction type, avatar and interface design) and subject features (hearing status, gender and age). Programme features of 2D/3D, immersiveness and interaction type were very much affected by subject features. Among subject features, we find significant effects of hearing status (deaf children take longer time and make more mistakes than hearing children) and gender (girls take longer than boys; girls prefer immersive environments rather than desktop presentation; girls are more interested in content than technology compared to boys). For avatar type, we found a preference for seamless, deformable characters over segmented ones. For interface comparisons, there were no subject effects, but an animated interface resulted in reduced time to task completion compared to static interfaces with and without sound and highlighting. These findings identify numerous features that affect software design and appeal and suggest that designers must be careful in their assumptions during programme development.

  11. A Case Study of Coaching in Science, Technology, Engineering, and Math Professional Development

    Science.gov (United States)

    DeChenne, Sue Ellen; Nugent, Gwen; Kunz, Gina; Luo, Linlin; Berry, Brandi; Craven, Katherine; Riggs, April

    2012-01-01

    A professional development experience for science and mathematics teachers that included coaches was provided for ten science and math teachers. This professional development experience had the teachers develop a lesson that utilized the engineering context to teach a science or mathematics concept through guided inquiry as an instructional…

  12. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  13. The impact of maths support tutorials on mathematics confidence and academic performance in a cohort of HE Animal Science students.

    Science.gov (United States)

    van Veggel, Nieky; Amory, Jonathan

    2014-01-01

    Students embarking on a bioscience degree course, such as Animal Science, often do not have sufficient experience in mathematics. However, mathematics forms an essential and integral part of any bioscience degree and is essential to enhance employability. This paper presents the findings of a project looking at the effect of mathematics tutorials on a cohort of first year animal science and management students. The results of a questionnaire, focus group discussions and academic performance analysis indicate that small group tutorials enhance students' confidence in maths and improve students' academic performance. Furthermore, student feedback on the tutorial programme provides a deeper insight into student experiences and the value students assign to the tutorials.

  14. The Blue Blazer Club: Masculine Hegemony in Science, Technology, Engineering, and Math Fields

    Science.gov (United States)

    Page, Melanie C.; Bailey, Lucy E.; Van Delinder, Jean

    2009-01-01

    The under-representation of women in Science, Technology, Engineering, and Math (STEM) fields is of continuing concern, as is the lack of women in senior positions and leadership roles. During a time of increasing demand for science and engineering enterprise, the lack of women and minorities in these academic disciplines needs to be addressed by…

  15. Informal Learning in Science, Math, and Engineering Majors for African American Female Undergraduates

    Science.gov (United States)

    McPherson, Ezella

    2014-01-01

    This research investigates how eight undergraduate African American women in science, math, and engineering (SME) majors accessed cultural capital and informal science learning opportunities from preschool to college. It uses the multiple case study methodological approach and cultural capital as frameworks to better understand the participants'…

  16. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  17. Math and Science Teachers: Recruiting and Retaining California's Workforce. Policy Brief

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Middle and high school math and science teachers provide the foundation for education in the growing science, technology, engineering, and mathematics fields. They are crucial to California's efforts to remain competitive in a global economy. This policy brief looks at the shortage and challenges involved in recruiting and retaining fully prepared…

  18. Math and Science Education for the California Workforce: It Starts with K-12

    Science.gov (United States)

    EdSource, 2008

    2008-01-01

    Workforce projections worldwide show a growing need for people with strong backgrounds in math and science. As the eighth largest economy in the world, California benefits particularly from enterprises in the "STEM" fields (science, technology, engineering, and mathematics). How well California's current public school students are…

  19. Culturally relevant science: An approach to math science education for Hispanics

    Energy Technology Data Exchange (ETDEWEB)

    Montellano, B.O. de

    1996-11-14

    This report describes later stages of a program to develop culturally relevant science and math programs for Hispanic students. Part of this effort was follow-up with 17 teachers who participated in early stages of the program. Response was not very good. Included with the report is a first draft effort for curriculum materials which could be used as is in such a teaching effort. Several of the participating teachers were invited to a writing workshop, where lesson plans were drafted, and critiqued and following rework are listed in this publication. Further work needs to be completed and is ongoing.

  20. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2014-01-01

    Because recent initiatives highlight the need to better support preschool-aged children’s math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hours) of training on math and science or on an alternative topic. Educators’ provision of math and science learning opportunities were documented, as were the fall-to-spring math and science learning gains of children (n = 385) enrolled in their classrooms. Professional development significantly impacted provision of science, but not math, learning opportunities. Professional development did not directly impact children’s math or science learning, although science learning was indirectly affected via the increase in science learning opportunities. Both math and science learning opportunities were positively associated with children’s learning. Results suggest that substantive efforts are necessary to ensure that children have opportunities to learn math and science from a young age. PMID:26257434

  1. Crossing the Gender Gap: A Study of Female Participation and Performance in Advanced Maths and Sciences

    Science.gov (United States)

    Haseltine, Jessica

    2006-10-01

    A statistical analysis of enrollment in AP maths and sciences in the Abilene Independent School District, between 2000 and 2005, studied the relationship between gender, enrollment, and performance. Data suggested that mid-scoring females were less likely than their male counterparts to enroll in AP-level courses. AISD showed higher female : male score ratios than national and state averages but no improvement in enrollment comparisons. Several programs are suggested to improve both participation and performance of females in upper-level math and science courses.

  2. Discussion of Science and Math Teaching Methods: criticism and possibilities in teaching practices

    Directory of Open Access Journals (Sweden)

    Elizabeth Gerhardt Manfredo

    2005-06-01

    Full Text Available This paper presents a discussion of practices among Science and Math teachers in Brazilian Basic Education. Analysis focuses on criticism over teaching practices throughout Basic Education which includes Children, Primary and Medium levels. Discussion highlights the interdisciplinary and educational projects as the most chosen tool for reflective practices. Most educational problems must be solved by the use of shared theoretical choices and investigative methodological approach. Such choices ought to be made during teachers' continuing trainning based on a researcher-teacher action as it provides ways for methodological changes in Sciences and Math Education in the Country

  3. The National Teacher Training Institute for Math, Science and Technology: Exemplary Practice in a Climate of Higher Standards.

    Science.gov (United States)

    Donlevy, James G., Ed.; Donlevy, Tia Rice, Ed.

    1999-01-01

    Reviews the NTTI (National Teacher Training Institute) for Math, Science and Technology model that trains teachers to use video and Internet resources to enhance math and science instruction. Discusses multimedia methodology; standards-based training; program impact in schools; and lesson plans available on the NTTI Web site. (Author/LRW)

  4. Professional Development for Early Childhood Educators: Efforts to Improve Math and Science Learning Opportunities in Early Childhood Classrooms

    Science.gov (United States)

    Piasta, Shayne B.; Logan, Jessica A. R.; Pelatti, Christina Yeager; Capps, Janet L.; Petrill, Stephen A.

    2015-01-01

    Because recent initiatives highlight the need to better support preschool-aged children's math and science learning, the present study investigated the impact of professional development in these domains for early childhood educators. Sixty-five educators were randomly assigned to experience 10.5 days (64 hr) of training on math and science or on…

  5. Gender in STEM Education: An Exploratory Study of Student Perceptions of Math and Science Instructors in the United Arab Emirates

    Science.gov (United States)

    Pasha-Zaidi, Nausheen; Afari, Ernest

    2016-01-01

    The current study addresses student perceptions of math and science professors in the Middle East. Gender disparity in science, technology, engineering, and math (STEM) education continues to exist in higher education, with male professors holding a normative position. This disparity can also be seen in the United Arab Emirates. As female…

  6. Engaging High School Students in Advanced Math and Science Courses for Success in College: Is Advanced Placement the Answer?

    Science.gov (United States)

    Kelley-Kemple, Thomas; Proger, Amy; Roderick, Melissa

    2011-01-01

    The current study provides an in-depth look at Advanced Placement (AP) math and science course-taking in one school district, the Chicago Public Schools (CPS). Using quasi-experimental methods, this study examines the college outcomes of students who take AP math and science courses. Specifically, this study asks whether students who take AP math…

  7. Mimewrighting: Preparing Students for the Real World of Science, Technology, Engineering, and Math

    Science.gov (United States)

    Shope, R. E.

    2013-12-01

    READING, WRITING, & ENACTING SCIENTIFIC & TECHNICAL LITERATURE: Mimewrighting applies the art of mime as an interpretive springboard to integrate conceptual understanding across all content areas. Mimewrighting guides students to read and express complex ideas in carefully crafted movement integrations, mediating experience, so that students obtain an intuitive grasp of difficult and abstract ideas. THE PROBLEM: Reading science writing presents obstacles for middle and high school students, to the point that many students are turned OFF to science altogether. A typical science abstract, written for colleagues, is as densely packed with concept-laden words as a black hole is densely packed with matter- and just as mysterious. What reads to a science colleague as a richly crafted paragraph, from which a myriad of elegantly interrelated concepts can unfold to point to the significance and context of the study at hand, reads as jabberwocky nonsense to the uninitiated student. So, how do we turn such kids (and teachers) back ON to the inquiry-driven desire to seek out challenging and educative experiences? How do we step up to the national challenge to prepare ALL students adequately for the REAL-WORLD demands of science, technology, engineering, math, (STEM) and communications? How do we help kids read, write, and understand scientific and technical literature? AN UNCONVENTIONAL ANSWER: Mimewrighting applies the classic art of mime to unpack the meaning of science writing. We help students view the text as sequences of action, scenarios that can be enacted theatrically for understanding. HOW DOES IT WORK? READ ALOUD, MIME ALONG: It's as simple as read aloud and mime along. And as complex, in that it requires taking the time to acknowledge each concept packed into the passage. Three opening sentences might involve twenty minutes of mimewrighting activity to ensure that students apprehend the patterns, perceive the relationships, and comprehend the dynamics of such a

  8. The influence of female social models in corporate STEM initiatives on girls' math and science attitudes

    Science.gov (United States)

    Medeiros, Donald J.

    The United States' Science, Technology, Engineering, and Mathematics (STEM) workforce is growing slower than in the past, in comparison to demand, and in comparison to other countries. Competitive talent conditions require the United States to develop a strong pipeline of STEM talent within its own citizens. Given the number of female college graduates and their underrepresentation in the STEM workforce, women provide the greatest opportunity for fulfilling this need. The term social model represents the individuals and media that shape children's self-perceptions. Social models have been shown to positively influence girl's perceptions of the value of math and science as well as their expectations of success. This study examined differences in attitudes towards math and science among student participants in corporate STEM programs. Differences were measured based on participant gender and ethnicity, their mentor's gender and ethnicity, and program design differences. The research purpose was to inform the design of corporate STEM programs to improve female participants' attitudes towards math and science and eventually increase the number of women in the STEM workforce. Over three hundred students in differing corporate STEM programs completed math and science attitudinal scales at the start and end of their programs. Study results revealed, prior to program start, female participants had a better attitude towards math and science than male participants. Analysis of the Trends in International Mathematics and Science Study data showed similar results. Overall program results demonstrated higher post program math and science attitudes with no differences based on gender, age, or ethnicity of the participant or mentor. Participants with high program or mentor satisfaction were found to have higher attitudes towards math and science. These results may suggest improving female academic choice requires more focus on their expectations of success than perceived task

  9. Advanced placement math and science courses: Influential factors and predictors for success in college STEM majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country. Although research studies offer several contributing factors that point to a higher attrition rate of women in STEM than their male counterparts, no study has investigated the role that high school advanced placement (AP) math and science courses play in preparing students for the challenges of college STEM courses. The purpose of this study was to discover which AP math and science courses and/or influential factors could encourage more students, particularly females, to consider pursuing STEM fields in college. Further, this study examined which, if any, AP math or science courses positively contribute to a student's overall preparation for college STEM courses. This retrospective study combined quantitative and qualitative research methods. The survey sample consisted of 881 UCLA female and male students pursuing STEM majors. Qualitative data was gathered from four single-gender student focus groups, two female groups (15 females) and two male groups (16 males). This study examined which AP math and science courses students took in high school, who or what influenced them to take those courses, and which particular courses influenced student's choice of STEM major and/or best prepared her/him for the challenges of STEM courses. Findings reveal that while AP math and science course-taking patterns are similar of female and male STEM students, a significant gender-gap remains in five of the eleven AP courses. Students report four main influences on their choice of AP courses; self, desire for math/science major, higher grade point average or class rank, and college admissions. Further, three AP math and science courses were

  10. SKyTeach: Addressing the need for Science and Math Teachers in Kentucky

    Science.gov (United States)

    Bonham, Scott

    2008-10-01

    The shortage of good science and math teachers is a chronic problem that threatens to undermine the future of our profession and economy. While our world is becoming increasingly dependent on technology, many high schools do not even offer physics, in part due to of the unavailability of a qualified teacher. The entire state of Kentucky typically produces 0-2 new physics teachers per year, compared to 200+ elementary teachers per year from WKU alone. The picture is not much better in math and other sciences. SKyTeach is a new program at WKU to address this great need and is part of a national effort to replicate the successful UTeach program. The University of Texas UTeach program graduates 70-90 new math and science teachers a year, in the process providing them with a strong preparation based on current research on how people learn science and math, experience teaching in real classrooms from the start, and strong mentoring and support. UTeach graduates stay in the classroom at rates above the national average, and some fairly quickly move into leadership positions within their schools. A key element is good collaboration between the college of science, that of education, local P-12 schools, and others. Last year thirteen universities across the nation were selected as part of an effort to replicate the UTeach program nation-wide. This effort is supported by the National Science and Math Initiative in a partnership with the UTeach Institute. Our first cohort of students has started this fall, and we have had many successes and challenges as we move forward.

  11. Touring Mars Online, Real-time, in 3D for Math and Science Educators and Students

    Science.gov (United States)

    Jones, Greg; Kalinowski, Kevin

    2007-01-01

    This article discusses a project that placed over 97% of Mars' topography made available from NASA into an interactive 3D multi-user online learning environment beginning in 2003. In 2005 curriculum materials that were created to support middle school math and science education were developed. Research conducted at the University of North Texas…

  12. STEM the Tide: Reforming Science, Technology, Engineering, and Math Education in America

    Science.gov (United States)

    Drew, David E.

    2011-01-01

    One study after another shows American students ranking behind their international counterparts in the STEM fields--science, technology, engineering, and math. Business people such as Bill Gates warn that this alarming situation puts the United States at a serious disadvantage in the high-tech global marketplace of the twenty-first century, and…

  13. The Returns to Educational Training in Math and Science for American Women.

    Science.gov (United States)

    Hills, Stephen M.; De Souza, Gita

    The economic returns of taking math and science courses in high school are estimated for women who do not go on to college and for women entrepreneurs. A human capital model is used to estimate returns for respondents drawn from the National Longitudinal Survey's New Youth Cohort. Wage rates in 1990 of women who were ages 14-21 in 1979 were…

  14. Making Sense of Principal Leadership in Content Areas: The Case of Secondary Math and Science Instruction

    Science.gov (United States)

    Lochmiller, Chad R.; Acker-Hocevar, Michele

    2016-01-01

    We drew upon sense making and leadership content knowledge to explore how high school administrators' understanding of content areas informed their leadership. We used math and science to illustrate our interpretations, noting that other content areas may pose different challenges. We found that principals' limited understanding of these content…

  15. A Rural Math, Science, and Technology Elementary School Tangled up in Global Networks of Practice

    Science.gov (United States)

    Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina

    2010-01-01

    This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced…

  16. ESL Mentoring for Secondary Rural Educators: Math and Science Teachers Become Second Language Specialists through Collaboration

    Science.gov (United States)

    Hansen-Thomas, Holly; Grosso Richins, Liliana

    2015-01-01

    This article draws on data from the capstone graduate course in a specially designed professional development program for rural math and science teachers that describes how participant teachers translated their newly acquired knowledge about English as a second language (ESL) into a mentoring experience for their rural content specialist peers.…

  17. Building Links between Early Socioeconomic Status, Cognitive Ability, and Math and Science Achievement

    Science.gov (United States)

    Blums, Angela; Belsky, Jay; Grimm, Kevin; Chen, Zhe

    2017-01-01

    The present study examined whether and how socioeconomic status (SES) predicts school achievement in science, technology, engineering, and math (STEM) using structural equation modeling and data from the National Institute of Child Health and Human Development Study of Child Care and Youth Development. The present inquiry addresses gaps in…

  18. The Middle School Experience: Effects on the Math and Science Achievement of Adolescents with LD.

    Science.gov (United States)

    Anderman, Eric M.

    1998-01-01

    Using data from the National Education Longitudinal Study and applying hierarchical linear modeling, this study found a strong gap in achievement in math and science between adolescents with and without learning disabilities (LD). The gap was reduced for LD adolescents who did not make a school transition until at least ninth grade. (DB)

  19. Solving Math and Science Problems in the Real World with a Computational Mind

    Science.gov (United States)

    Olabe, Juan Carlos; Basogain, Xabier; Olabe, Miguel Ángel; Maíz, Inmaculada; Castaño, Carlos

    2014-01-01

    This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n = 242) was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in…

  20. How to Recruit Women and Girls to the Science, Technology, Engineering, and Math (STEM) Classroom

    Science.gov (United States)

    Milgram, Donna

    2011-01-01

    Numbers do not exist for the percentage of girls in science, technology, engineering, and math (STEM) academies across the U.S. The most recent career and technical education statistics at the secondary level from the U.S. Department of Education are from 2005, and they show very low numbers of female students in STEM. The absence of women from…

  1. Applied Math & Science Levels Utilized in Selected Trade & Industrial Vocational Education. Final Report.

    Science.gov (United States)

    Gray, James R.

    Research identified and evaluated the level of applied mathematics and science used in selected trade and industrial (T&I) subjects taught in the Kentucky Vocational Education System. The random sample was composed of 52 programs: 21 carpentry, 20 electricity/electronics, and 11 machine shop. The 96 math content items that were identified as…

  2. "I Was Scared to Be the Stupid": Latinas in Residential Academies of Science and Math

    Science.gov (United States)

    Sayman, Donna

    2015-01-01

    This study examines the experiences of Latinas in state residential academies of science, technology, engineering, and math (STEM). Goals of this project focused on understanding their experiences and identifying factors leading to the decision to enroll, along with issues contributing to retention. These schools represent powerful opportunities…

  3. The Effect of Using Mind Maps on the Development of Maths and Science Skills

    Science.gov (United States)

    Polat, Ozgul; Yavuz, Ezgi Aksin; Tunc, Ayse Betul Ozkarabak

    2017-01-01

    The aim of this study is to examine the effect of mind mapping activities on the maths and science skills of children 48 to 60 months of age. The study was designed using an experimental model with a pre-test post-test and a control group. Accordingly, the hypotheses of the study was that there would be meaningful differences in the values…

  4. Persistence Motivations of Chinese Doctoral Students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Zhou, Ji

    2014-01-01

    This study explored what motivated 6 Chinese international students to complete a PhD in science, technology, engineering, and math fields in the United States despite perceived dissatisfaction. This study was grounded in the value-expectancy achievement motivation theory and incorporated a Confucian cultural lens to understand motivation. Four…

  5. Women in Physics: A Comparison to Science, Technology, Engineering, and Math Education over Four Decades

    Science.gov (United States)

    Sax, Linda J.; Lehman, Kathleen J.; Barthelemy, Ramón S.; Lim, Gloria

    2016-01-01

    The dearth of women in science, technology, engineering, and math (STEM) fields has been lamented by scholars, administrators, policymakers, and the general public for decades, and the STEM gender gap is particularly pronounced in physics. While previous research has demonstrated that this gap is largely attributable to a lack of women pursuing…

  6. Addressing the STEM Challenge by Expanding Specialty Math and Science High Schools

    Science.gov (United States)

    Atkinson, Robert D.; Hugo, Janet; Lundgren, Dennis; Shapiro, Martin J.; Thomas, Jerald

    2007-01-01

    If America is to succeed in the innovation-powered global economy, boosting math and science skills will be critical. This is why a wide array of task forces and organizations has recently raised the clarion call for more and better scientists and engineers. While the policy proposals offered are wide ranging, one key policy innovation has…

  7. Math tools 500+ applications in science and arts

    CERN Document Server

    Glaeser, Georg

    2017-01-01

    In this book, topics such as algebra, trigonometry, calculus and statistics are brought to life through over 500 applications ranging from biology, physics and chemistry to astronomy, geography and music. With over 600 illustrations emphasizing the beauty of mathematics, Math Tools complements more theoretical textbooks on the market, bringing the subject closer to the reader and providing a useful reference to students. By highlighting the ubiquity of mathematics in practical fields, the book will appeal not only to students and teachers, but to anyone with a keen interest in mathematics and its applications.

  8. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    OpenAIRE

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  9. Efficacy Expectations and Vocational Interests as Mediators between Sex and Choice of Math/Science College Majors: A Longitudinal Study

    Science.gov (United States)

    Lapan; Shaughnessy; Boggs

    1996-12-01

    A longitudinal study was conducted to test the mediational role of efficacy expectations in relation to sex differences in the choice of a math/science college major. Data on 101 students were gathered prior to their entering college and then again after they had declared a major 3 years later. Path analytic results support the importance of both math self-efficacy beliefs and vocational interest in mathematics in predicting entry into math/science majors and mediating sex differences in these decisions. Also, students who described themselves as more extroverted were less likely to take additional math classes in high school. Students with stronger artistic vocational interests chose majors less related to math and science. School personnel are strongly encouraged to develop programs that challenge the crystallization of efficacy beliefs and vocational interest patterns before students enter college.

  10. PUMAS: The On-line journal of Math and Science Examples for Pre-College Education

    Science.gov (United States)

    Trainer, Melissa G.; Kahn, Ralph A.

    2015-11-01

    PUMAS - “Practical Uses of Math And Science” - is an on-line collection of brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including every day life. The examples are written primarily by scientists, engineers, and other content experts having practical experience with the material. They are aimed mainly at classroom teachers to enrich their presentation of math and science topics. The goal of PUMAS is to capture, for the benefit of pre-college education, the flavor of the vast experience that working scientists have with interesting and practical uses of math and science. There are currently over 80 examples in the PUMAS collection, and they are organized by curriculum topics and tagged with relevant grade levels and curriculum topic benchmarks. The published examples cover a wide range of subject matter: from demonstrating why summer is hot, to describing the fluid dynamics of a lava lamp, to calculating the best age to collect Social Security Benefits. The examples are available to all interested parties via the PUMAS web site: http://pumas.nasa.gov/.We invite the community to participate in the PUMAS collection. We seek scientists and scientific thinkers to provide innovative examples of practical uses for teachers to use to enrich the classroom experience, and content experts to participate in peer-review. We also seek teachers to review examples for originality, accuracy of content, clarity of presentation, and grade-level appropriateness. Finally, we encourage teachers to mine this rich repository for real-world examples to demonstrate the value of math in science in everyday life.

  11. Math Safari.

    Science.gov (United States)

    Nelson, Vaunda; Stanko, Anne

    1992-01-01

    Describes Math Safari, a mathematical, scientific, geographic, informational adventure for fourth grade students. It integrates all curriculum areas and other skills by using information children must find in books to pose math problems about animals. It encourages cooperative learning, critical reading, analysis, and use of research skills. (SM)

  12. Enhancing the Math and Science Experiences of Latinas and Latinos: A Study of the Joaquin Bustoz Math-Science Honors Program

    Science.gov (United States)

    Escontrias, Gabriel, Jr.

    Latinas and Latinos are currently underrepresented in terms of our 21 st century student academic attainment and workforce, compared to the total U.S. Hispanic population. In a field such as mathematical sciences, Hispanic or Latino U.S. citizenship doctoral recipients only accounted for 3.04% in 2009--2010. While there are various initiatives to engage underrepresented STEM populations through education, there is a need to give a voice to the experiences of Latinas and Latinos engaged in such programs. This study explored the experiences of seven Arizona State University undergraduate Latina and Latino Joaquin Bustoz Math-Science Honors Program (JBMSHP) participants as well as examined how the program enhanced their math and science learning experiences. Participants attended either a five-week or eight-week program and ranged in attendance from 2006 to 2011. Students were provided an opportunity to begin university mathematics and science studies before graduating high school. Through a demographic survey and one-on-one guided interview, participants shared their personal journey, their experience in the JBMSHP, and their goals. Using grounded theory, a qualitative research approach, this study focuses on the unique experiences of Latina and Latino participants. Four major themes emerged from the analysis of the data. Each participant applied to the program with a foundation in which they sought to challenge themselves academically through mathematics and/or science. Through their involvement it the JBMSHP, participants recognized benefits during and after the program. All participants recognized the value of these benefits and their participation and praised the program. Overall, the JBMSHP provided the students the resources to grow their academic capital and if they chose seek a STEM related bachelor degree. The results of this study emphasize the need to expand the JBMSHP both within Arizona and nationally. In addition, there is a need to explore the other

  13. Cultivating Common Ground: Integrating Standards-Based Visual Arts, Math and Literacy in High-Poverty Urban Classrooms

    Science.gov (United States)

    Cunnington, Marisol; Kantrowitz, Andrea; Harnett, Susanne; Hill-Ries, Aline

    2014-01-01

    The "Framing Student Success: Connecting Rigorous Visual Arts, Math and Literacy Learning" experimental demonstration project was designed to develop and test an instructional program integrating high-quality, standards-based instruction in the visual arts, math, and literacy. Developed and implemented by arts-in-education organization…

  14. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  15. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  16. Math Avoidance: A Barrier to American Indian Science Education and Science Careers.

    Science.gov (United States)

    Green, Rayna

    1978-01-01

    For American Indian students, math anxiety and math avoidance are the most serious obstacles to general education and to the choice of scientific careers. Indian students interviewed generally exhibited fear and loathing of mathematics and a major lack of basic skills which were caused by a missing or negative impression of the mathematics…

  17. Solving math and science problems in the real world with a computational mind

    Directory of Open Access Journals (Sweden)

    Juan Carlos Olabe

    2014-07-01

    Full Text Available This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n=242 was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in mathematics, participants were introduced to a taxonomic tool for the description of K-12 Math problems. The tool allows the identification, decomposition and description of Type-A problems, the characteristic ones in the traditional curriculum, and of Type-B problems in the new paradigm. The workshops culminated with a set of surveys where participants were asked to assess both the current and the new proposed paradigms. The surveys in this study revealed that according to the majority of participants: (i The K-12 Mathematics curricula are designed to teach students exclusively the resolution of Type-A problems; (ii real life Math problems respond to a paradigm of Type-B problems; and (iii the current Math curriculum should be modified to include this new paradigm.

  18. Similarity of TIMSS Math and Science Achievement of Nations

    Directory of Open Access Journals (Sweden)

    Algirdas Zabulionis

    2001-09-01

    Full Text Available In 1991-97, the International Association for the Evaluation of Educational Achievement (IEA undertook a Third International Mathematics and Science Study (TIMSS in which data about the mathematics and science achievement of the thirteen year-old students in more than 40 countries were collected. These data provided the opportunity to search for patterns of students' answers to the test items: which group of items was relatively more difficult (or more easy for the students from a particular country (or group of countries. Using this massive data set an attempt was made to measure the similarities among country profiles of how students responded to the test items.

  19. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  20. Increasing the Competitive Edge in Math and Science

    Science.gov (United States)

    Kettlewell, Janet S., Ed.; Henry, Ronald J., Ed.

    2009-01-01

    The U. S. is losing its competitive edge in science, technology, engineering, and mathematics (STEM). Thomas Friedman warns that America is not producing enough young people in STEM fields that are essential for entrepreneurship and innovation in the 21st century (The World Is Flat: A Brief History of the Twenty-First Century, 2005). Blue ribbon…

  1. Exploring Pulses through Math, Science, and Nutrition Activities

    Science.gov (United States)

    Smith, Diane K.; Mandal, Bidisha; Wallace, Michael L.; Riddle, Lee Anne; Kerr, Susan; Atterberry, Kelly Ann; Miles, Carol

    2016-01-01

    Purpose/Objectives: The Healthy, Hunger-Free Kids Act of 2010 includes pulses as a required component of the school lunch menu standard. Pulses are nutritionally important staple food crops, and include dry beans, dry peas, garbanzo beans, and lentils. This current study examined the short-term effectiveness of a Science, Technology, Engineering,…

  2. Understanding decisions Latino students make regarding persistence in the science and math pipeline

    Science.gov (United States)

    Munro, Janet Lynn

    This qualitative study focused on the knowledge and perceptions of Latino high school students, as well those of their parents and school personnel, at a southwestern, suburban high school regarding persistence in the math/science pipeline. In the context of the unique school and community setting these students experience, the decision-making process was examined with particular focus on characterizing the relationships that influence the process. While the theoretical framework that informs this study was that of social capital, its primary purpose was to inform the school's processes and policy in support of increased Latino participation in the math and science pipeline. Since course selection may be the most powerful factor affecting school achievement and college-preparedness, and since course selection is influenced by school policy, school personnel, students, parents, and teachers alike, it is important to understand the beliefs and perceptions that characterize the relationships among them. The qualitative research design involved a phenomenological study of nine Latino students, their parents, their teachers and counselors, and certain support personnel from the high school. The school's and community's environment in support of academic intensity served as context for the portrait that developed. Given rapidly changing demographics that bring more and more Latino students to suburban high schools, the persistent achievement gap experienced by Latino students, and the growing dependence of the world economy on a citizenry versed in the math- and science-related fields, a deeper understanding of the decision-making processes Latino 12 students experience can inform school policy as educators struggle to influence those decisions. This study revealed a striking lack of knowledge concerning the college-entrance ramifications of continued course work in math and science beyond that required for graduation, relationships among peers, parents, and school

  3. Evaluating RITES, a Statewide Math and Science Partnership Program

    Science.gov (United States)

    Murray, D. P.; Caulkins, J. L.; Burns, A. L.; de Oliveira, G.; Dooley, H.; Brand, S.; Veeger, A.

    2013-12-01

    The Rhode Island Technology-Enhanced Science project (RITES) is a NSF-MSP Program that seeks to improve science education by providing professional development to science teachers at the 5th through 12th grade levels. At it's heart, RITES is a complex, multifaceted project that is challenging to evaluate because of the nature of its goal: the development of a large, statewide partnership between higher education and K12 public school districts during a time when science education strategies and leadership are in flux. As a result, these difficulties often require flexibility and creativity regarding evaluation, study design and data collection. In addition, the research agenda of the project often overlaps with the evaluator's agenda, making collaboration and communication a crucial component of the project's success. In it's 5th year, RITES and it's evaluators have developed a large number of instruments, both qualitative and quantitative, to provide direction and feedback on the effectiveness of the project's activities. RITES personnel work closely with evaluators and researchers to obtain a measure of how RITES' 'theory-of-action' affects both student outcomes and teacher practice. Here we discuss measures of teacher and student content gains, student inquiry gains, and teacher implementation surveys. Using content questions based on AAAS and MOSART databases, teachers in the short courses and students in classrooms showed significant normalized learning gains with averages generally above 0.3. Students of RITES-trained teachers also outperformed their non-RITES peers on the inquiry-section of the NECAP test, and The results show, after controlling for race and economic status, a small but statistically significant increase in test scores for RITES students. Technology use in the classroom significantly increased for teachers who were 'expected implementers' where 'expected implementers' are those teachers who implemented RITES as the project was designed. This

  4. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  5. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  6. Longitudinal effects of college type and selectivity on degrees conferred upon undergraduate females in physical science, life science, math and computer science, and social science

    Science.gov (United States)

    Stevens, Stacy Mckimm

    There has been much research to suggest that a single-sex college experience for female undergraduate students can increase self-confidence and leadership ability during the college years and beyond. The results of previous studies also suggest that these students achieve in the workforce and enter graduate school at higher rates than their female peers graduating from coeducational institutions. However, some researchers have questioned these findings, suggesting that it is the selectivity level of the colleges rather than the comprised gender of the students that causes these differences. The purpose of this study was to justify the continuation of single-sex educational opportunities for females at the post-secondary level by examining the effects that college selectivity, college type, and time have on the rate of undergraduate females pursuing majors in non-traditional fields. The study examined the percentage of physical science, life science, math and computer science, and social science degrees conferred upon females graduating from women's colleges from 1985-2001, as compared to those at comparable coeducational colleges. Sampling for this study consisted of 42 liberal arts women's (n = 21) and coeducational (n = 21) colleges. Variables included the type of college, the selectivity level of the college, and the effect of time on the percentage of female graduates. Doubly multivariate repeated measures analysis of variance testing revealed significant main effects for college selectivity on social science graduates, and time on both life science and math and computer science graduates. Significant interaction was also found between the college type and time on social science graduates, as well as the college type, selectivity level, and time on math and computer science graduates. Implications of the results and suggestions for further research are discussed.

  7. Gender differences in math and science choices and preferences

    Science.gov (United States)

    Alkhadrawi, Amamah A.

    The purpose of this dissertation is to discover how the myth of gender differences in STEM inform the lived experiences of male and female 12th graders in one high school in Northwest Ohio. Over the years, the observed gender gap favoring males over females in STEM ability has closed, and female students have even surpassed males in some measures. The fact that girls have met and exceeded boys in many measures of STEM ability over time suggests that the historical disparity was the result of social or psychological, and not biological, differences. Even though schools have changed throughout the years to accommodate and encourage female students in STEM, there is still a persistent disparity in participation at the highest levels of STEM in education and in careers. Males still outnumber females in the more mathematical and technical sciences, such as computer science and engineering. This study applied feminist socialization theory and phenomenology as its theoretical framework. The biggest themes that informed student"s choices and preferences were as follows: intended choices follow family influence, myth persists in subtle ways, teenagers have a limited future view, and the chicken and the egg issues of personal interests versus social influence. There are clearly more factors that contribute to this gender socialization, which may be a combination of socioeconomic status and the influence of family.

  8. Exploring Gender Differences across Elementary, Middle, and High School Students' Science and Math Attitudes and Interest

    Science.gov (United States)

    LeGrand, Julie

    The issue of female underrespresentation in science, mathematics, engineering, and technology careers and courses has been well researched over the last several decades. However, as gender gaps in achievement close and representation becomes more equitable in certain academic domains, research has turned to social and cultural factors to explain why fewer women persist in STEM studies and careers than men. The purpose of this study was to examine gender differences in science and math attitudes and interests from elementary school, to middle school, to high school. To examine possible gender-specific shifts in students' interest and attitudes in science and math, 136 students from a suburban, public school district were surveyed at the elementary school level (N=31), middle school level (N=54), and high school level (N=51) and various constructs were used to assess the responses in accordance with expectancy-value theory. Utilizing a mixed-methods approach, a random sample of students from each grade level then participated in focus groups, and corollary themes were identified. Results from a logistical regression analysis and Mann-Whitney Test indicated that significant gender differences exist for interest, efficacy, expectancy, and value within science domains (pgender differences in mathematics are present only at the elementary school level.

  9. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  10. Dr Math gets MUDDY: the "dirt" on how to attract teenagers to Mathematics and Science by using multi-user dungeon games over Mxit on cell phones

    CSIR Research Space (South Africa)

    Butgereit, L

    2010-05-01

    Full Text Available -user dungeon games (MUDs) with a science and mathematical twist were deployed using Mxit (a popular instant messaging system in South Africa) on cell phones to encourage teenagers to learn more about math and science to practice math and science skills...

  11. Preparing culturally responsive teachers of science, technology, engineering, and math using the Geophysical Institute Framework for Professional Development in Alaska

    Science.gov (United States)

    Berry Bertram, Kathryn

    2011-12-01

    The Geophysical Institute (GI) Framework for Professional Development was designed to prepare culturally responsive teachers of science, technology, engineering, and math (STEM). Professional development programs based on the framework are created for rural Alaskan teachers who instruct diverse classrooms that include indigenous students. This dissertation was written in response to the question, "Under what circumstances is the GI Framework for Professional Development effective in preparing culturally responsive teachers of science, technology, engineering, and math?" Research was conducted on two professional development programs based on the GI Framework: the Arctic Climate Modeling Program (ACMP) and the Science Teacher Education Program (STEP). Both programs were created by backward design to student learning goals aligned with Alaska standards and rooted in principles of indigenous ideology. Both were created with input from Alaska Native cultural knowledge bearers, Arctic scientists, education researchers, school administrators, and master teachers with extensive instructional experience. Both provide integrated instruction reflective of authentic Arctic research practices, and training in diverse methods shown to increase indigenous student STEM engagement. While based on the same framework, these programs were chosen for research because they offer distinctly different training venues for K-12 teachers. STEP offered two-week summer institutes on the UAF campus for more than 175 teachers from 33 Alaska school districts. By contrast, ACMP served 165 teachers from one rural Alaska school district along the Bering Strait. Due to challenges in making professional development opportunities accessible to all teachers in this geographically isolated district, ACMP offered a year-round mix of in-person, long-distance, online, and local training. Discussion centers on a comparison of the strategies used by each program to address GI Framework cornerstones, on

  12. Intermediate Trends in Math and Science Partnership-Related Changes in Student Achievement with Management Information System Data

    Science.gov (United States)

    Dimitrov, Dimiter M.

    2009-01-01

    This substudy in the evaluation design of the Math and Science Partnership (MSP) Program Evaluation examines student proficiency in mathematics and science for the MSPs' schools in terms of changes across three years (2003/04, 2004/05, and 2005/06) and relationships with MSP-related variables using Management Information System data with the…

  13. Adolescent Girls' Experiences and Gender-Related Beliefs in Relation to Their Motivation in Math/Science and English

    Science.gov (United States)

    Leaper, Campbell; Farkas, Timea; Brown, Christia Spears

    2012-01-01

    Although the gender gap has dramatically narrowed in recent decades, women remain underrepresented in many science, technology, engineering, and mathematics (STEM) fields. This study examined social and personal factors in relation to adolescent girls' motivation in STEM (math/science) versus non-STEM (English) subjects. An ethnically diverse…

  14. A rural math, science, and technology elementary school tangled up in global networks of practice

    Science.gov (United States)

    Carlone, Heidi B.; Kimmel, Sue; Tschida, Christina

    2010-06-01

    This is an ethnographic study of a newly created math, science, and technology elementary magnet school in a rural community fiercely committed to cultural preservation while facing unprecedented economic instability brought on by massive loss of manufacturing jobs. Our goal was to understand global- and community-level contexts that influenced the school's science curriculum, the ways the school promoted itself to the community, and the implicit meanings of science held by school staff, parents and community members. Main sources of data were the county's newspaper articles from 2003 to 2006, the school's, town's, and business leaders' promotional materials, and interviews with school staff, parents, and community members. A key finding was the school's dual promotion of science education and character education. We make sense of this "science with character" curriculum by unpacking the school and community's entanglements with historical (cultural preservation), political (conservative politics, concerns for youth depravity), and economic (globalization) networks. We describe the ways those entanglements enabled certain reproductive meanings of school science (as add-on, suspect, and elitist) and other novel meanings of science (empathetic, nurturing, place-based). This study highlights the school as a site of struggle, entangled in multiple networks of practice that influence in positive, negative, and unpredictable ways, the enacted science curriculum.

  15. An Exploration of the Ways that Parents Can Influence African American Girls Interest in Achieving in Math and Science

    Science.gov (United States)

    Alexander, Lori L.

    Math and science is the core of science, technology, engineering and math (STEM) education. It is the staying power of economic growth, job opportunities, new technology, innovation and emerging research on a global spectrum in the 21st century. Data reports that African American women are underrepresented in the STEM career field. The focus of this project was to specifically address African American middle school girls achievement gap, awareness and interests in the STEM pipeline. Data for this research was gathered by using Action Research Methodology approach using journals, questionnaire survey and dialogue. Five parents/educators participated in this empirical research study by sharing their personal, lived and unapologetic experiences through eight weeks of action/reflection inquiry. The finding of this research is that parents need to be engaged about STEM and the importance for girls to do well academically early in school with math and science.

  16. Troubled Waters: where Multiple Streams of Inequality Converge in the Math and Science Experiences of Nonprivileged Girls

    Science.gov (United States)

    Parrott, Laurel; Spatig, Linda; Kusimo, Patricia S.; Carter, Carolyn C.; Keyes, Marian

    Water is often hardest to navigate at the confluence of individual streams. As they experience math and science, nonprivileged girls maneuver through roiling waters where the streams of gender, ethnicity, poverty, place, and teaching practices converge. Just as waters of separate streams blend, these issues - too often considered separate factors - become blended and difficult to isolate, and the resulting turbulence produces a bumpy ride. We draw on 3 years of qualitative data collected as part of an intervention program to explore the math and science experiences and perceptions of a group of ethnically diverse, low socioeconomic status rural and urban adolescent Appalachian girls. After describing program and community contexts, we explore "opportunity to leant" issues - specifically, expectations, access to content, and support networks - and examine their schooling experiences against visions of science and math reform and pressures for accountability. Data are discussed within a framework of critical educational theory.

  17. Climate change in the classroom: Reaching out to middle school students through science and math suitcase lessons

    Science.gov (United States)

    Jacobo, A. C.; Collay, R.; Harris, R. N.; de Silva, L.

    2011-12-01

    We have formed a link between the Increasing Diversity in Earth Sciences (IDES) program with the Science and Math Investigative Learning Experiences (SMILE) program, both at Oregon State University. The IDES mission is to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population and the SMILE mission is to provide science and math enrichment for underrepresented and other educationally underserved students in grades 4-12. Traditionally, underserved schools do not have enough time or resources to spend on science and mathematics. Furthermore, numerous budget cuts in many Oregon school districts have negatively impacted math and science cirriculum. To combat this trend we have designed suitcase lessons in climate change that can be carried to a number of classrooms. These lesson plans are scientifically rich and economically attractive. These lessons are designed to engage students in math and science through climate change presentations, group discussions, and hands-on activities. Over the past year we have familiarized ourselves with the academic ability of sixth and seventh graders through in-class observation in Salem Oregon. One of the suit case lessons we developed focuses on climate change by exploring the plight of polar bears in the face of diminishing sea ice. Our presentation will report the results of this activity.

  18. Science, Technology, Engineering and Math Readiness: Ethno-linguistic and gender differences in high-school course selection patterns

    Science.gov (United States)

    Adamuti-Trache, Maria; Sweet, Robert

    2014-03-01

    The study examines science-related course choices of high-school students in the culturally diverse schools of the province of British Columbia, Canada. The analysis employs K-12 provincial data and includes over 44,000 students born in 1990 who graduated from high school by 2009. The research sample reflects the presence of about 27% of students for whom English is not a first language. We construct an empirical model that examines ethno-linguistic and gender differences in Grade 12 course choices while accounting for personal and situational differences among students. The study employs a course selection typology that emphasizes readiness for science, technology, engineering and math fields of study. Findings indicate that math- and science-related course selection patterns are strongly associated with ethnicity, qualified not only by gender and prior math and science achievement but also by the individual's grade level at entry to the system and enrollment in English as a Second Language program. Students who are more likely to engage in math and science courses belong to Asian ethno-linguistic groups and entered the provincial school system during the senior high-school years. We suggest that ethnic diversity and broader academic exposure may play a crucial role in changing the gender composition of science classrooms, university fields of study and science-related occupations.

  19. Mathematical learning instruction and teacher motivation factors affecting science technology engineering and math (STEM) major choices in 4-year colleges and universities: Multilevel structural equation modeling

    Science.gov (United States)

    Lee, Ahlam

    2011-12-01

    Using the Educational Longitudinal Study of 2002/06, this study examined the effects of the selected mathematical learning and teacher motivation factors on graduates' science, technology, engineering, and math (STEM) related major choices in 4-year colleges and universities, as mediated by math performance and math self-efficacy. Using multilevel structural equation modeling, I analyzed: (1) the association between mathematical learning instruction factors (i.e., computer, individual, and lecture-based learning activities in mathematics) and students' STEM major choices in 4-year colleges and universities as mediated by math performance and math self-efficacy and (2) the association between school factor, teacher motivation and students' STEM major choices in 4-year colleges and universities via mediators of math performance and math self-efficacy. The results revealed that among the selected learning experience factors, computer-based learning activities in math classrooms yielded the most positive effects on math self-efficacy, which significantly predicted the increase in the proportion of students' STEM major choice as mediated by math self-efficacy. Further, when controlling for base-year math Item Response Theory (IRT) scores, a positive relationship between individual-based learning activities in math classrooms and the first follow-up math IRT scores emerged, which related to the high proportion of students' STEM major choices. The results also indicated that individual and lecture-based learning activities in math yielded positive effects on math self-efficacy, which related to STEM major choice. Concerning between-school levels, teacher motivation yielded positive effects on the first follow up math IRT score, when controlling for base year IRT score. The results from this study inform educators, parents, and policy makers on how mathematics instruction can improve student math performance and encourage more students to prepare for STEM careers. Students

  20. Factors which deter potential science/math teachers from teaching; changes necessary to ameliorate their concerns

    Science.gov (United States)

    Evans, Robert H.

    In light of the perceived national need for more science and math teachers, this study was conceived to:1.Identify teaching oriented students among freshmen at a mid-western engineering school, who have chosen NOT to become teachers;2.Find out what reasons these potential science and math teachers have for deciding not to pursue teaching careers;3.Determine what amelioration of these problems would be necessary for them to no longer be factors which would inhibit students from becoming teachers.Of a random sample of 110 students drawn from a freshman class, 98 participated fully in the study. Each participant took Holland's Self-Directed Search to determine teaching orientation and author-constructed instruments to assess their concerns about teaching.Results showed teaching oriented students avoided teaching due to low starting salaries, lack of job security, low maximum salaries, not wanting to do the work teacher's do, poor job availability and discouragement by family and friends. Starting salaries of 21,693 and salaries of 32,600 for a teacher with a B.A. and 10 years experience were among the changes deemed necessary to make teaching attractive.

  1. Developing Elementary Math and Science Process Skills Through Engineering Design Instruction

    Science.gov (United States)

    Strong, Matthew G.

    This paper examines how elementary students can develop math and science process skills through an engineering design approach to instruction. The performance and development of individual process skills overall and by gender were also examined. The study, preceded by a pilot, took place in a grade four extracurricular engineering design program in a public, suburban school district. Students worked in pairs and small groups to design and construct airplane models from styrofoam, paper clips, and toothpicks. The development and performance of process skills were assessed through a student survey of learning gains, an engineering design packet rubric (student work), observation field notes, and focus group notes. The results indicate that students can significantly develop process skills, that female students may develop process skills through engineering design better than male students, and that engineering design is most helpful for developing the measuring, suggesting improvements, and observing process skills. The study suggests that a more regular engineering design program or curriculum could be beneficial for students' math and science abilities both in this school and for the elementary field as a whole.

  2. Hazardous Asteroids: Cloaking STEM Skills Training within an Attention-Grabbing Science/Math Course

    Science.gov (United States)

    Ryan, Eileen V.; Ryan, William H.

    2015-11-01

    A graduate-level course was designed and taught during the summer months from 2009 - 2015 in order to contribute to the training and professional development of K-12 teachers residing in the Southwest. The teachers were seeking Master’s degrees via the New Mexico Institute of Mining and Technology’s (NMT’s) Masters of Science Teaching (MST) program, and the course satisfied a science or math requirement. The MST program provides opportunities for in-service teachers to enhance their content backgrounds in science, mathematics, engineering, and technology (SMET). The ultimate goal is to assist teachers in gaining knowledge that has direct application in the classroom.The engaging topic area of near-Earth object (NEO) characterization studies was used to create a fun and exciting framework for mastering basic skills and concepts in physics and astronomy. The objective was to offer a class that had the appropriate science rigor (with an emphasis on mathematics) within a non-threatening format. The course, entitled “Hazardous Asteroids”, incorporates a basic planetary physics curriculum, with challenging laboratories that include a heavy emphasis on math and technology. Since the authors run a NASA-funded NEO research and follow-up program, also folded into the course is the use of the Magdalena Ridge Observatory’s 2.4-meter telescope so participants can take and reduce their own data on a near-Earth asteroid.In exit assessments, the participants have given the course excellent ratings for design and implementation, and the overall degree of satisfaction was high. This validates that a well-constructed (and rigorous) course can be effective in receptively reaching teachers in need of basic skills refreshment. Many of the teachers taking the course were employed in school districts serving at-risk or under-prepared students, and the course helped provide them with the confidence vital to developing new strategies for successful teaching.

  3. Advancing participation of blind students in Science, Technology, Engineering, and Math

    Science.gov (United States)

    Beck-Winchatz, Bernhard; Riccobono, Mark A.

    2008-12-01

    Like their sighted peers, many blind students in elementary, middle, and high school are naturally interested in space. This interest can motivate them to learn fundamental scientific, quantitative, and critical thinking skills, and sometimes even lead to careers in Science, Technology, Engineering, and Math (STEM) disciplines. However, these students are often at a disadvantage in science because of the ubiquity of important graphical information that is generally not available in accessible formats, the unfamiliarity of teachers with non-visual teaching methods, lack of access to blind role models, and the low expectations of their teachers and parents. We discuss joint efforts by the National Aeronautics and Space Administration (NASA) and the National Federation of the Blind’s (NFB) National Center for Blind Youth in Science (NCBYS) to develop and implement strategies to promote opportunities for blind youth in science. These include the development of tactile space science books and curriculum materials, science academies for blind middle school and high school students, and college-level internship and mentoring programs. The partnership with the NFB exemplifies the effectiveness of collaborations between NASA and consumer-directed organizations to improve opportunities for underserved and underrepresented individuals.

  4. The long-term impact of a math, science and technology program on grade school girls

    Science.gov (United States)

    Sullivan, Sandra Judd

    The purpose of this study was to determine if a math, science, and technology intervention program improved grade school girls' attitudes and stereotypes toward science and scientists, as well as participation levels in science-related activities, two years after their participating in the program. The intervention program evaluated was Operation SMART, developed by Girls Incorporated. Participants were recruited from the 6th and 7th grades from two public middle schools in Northern California. One hundred twenty-seven girls signed up for the survey and were assigned to either the SMART group (previous SMART participants) or Non-SMART group (no previous experience with SMART). The survey consisted of five parts: (1) a background information sheet, (2) the Modified Attitudes Toward Science Inventory, (3) the What Do You Do? survey, (4) the Draw-A-Scientist Test-Revised, and (5) a career interests and role models/influencer survey. Results indicated that there were no significant differences between the SMART and Non-SMART groups on any of the test measures. However, middle school attended did have a significant effect on the outcome variables. Girls from Middle School A reported more positive attitudes toward science, while girls from Middle School B reported higher participation levels in extracurricular science activities. Possible explanations for these findings suggest too much time had passed between treatment effect and time of measurement as well as the strong influence of teacher and school environment on girls' attitudes and stereotypes. Recommendations for future research are discussed.

  5. Expedition Zenith: Experiences of eighth grade girls in a non-traditional math/science program

    Science.gov (United States)

    Ulm, Barbara Jean

    2004-11-01

    This qualitative study describes the experiences of a group of sixteen, eighth grade girls participating in a single-sex, math/science program based on gender equity research and constructivist theory. This phenomenological case study highlights the individual changes each girl perceives in herself as a result of her involvement in this program which was based at a suburban middle school just north of New York City. Described in narrative form is what took place during this single-sex program. At the start of the program the girls worked cooperatively in groups to build canoes. The canoes were then used to study a wetland during the final days of the program. To further immerse the participants into nature, the girls also camped during these final days. Data were collected from a number of sources to uncover, as fully as possible, the true essence of the program and the girls' experiences in it. The data collection methods included direct observation; in-depth, open-ended interviews; and written documentation. As a result of data collection, the girls' perceived outcomes and assessment of the program, as well as their recommendations for future math/science programs are revealed. The researcher in this study also acted as teacher, directing the program, and as participant to better understand the experiences of the girls involved in the program. Thus, unique insights could be made. The findings in this study provide insight into the learning of the participants, as well as into the relationships they formed both inside and outside of the program. Their perceived experiences and assessment of the program were then used to develop a greater understanding as to the effectiveness of this non-traditional program. Although this study echoed much of what research says about the needs of girls in learning situations, and therefore, reinforces previously accepted beliefs, it also reveals significant findings in areas previously unaddressed by gender studies. For example

  6. How the Montessori Upper Elementary and Adolescent Environment Naturally Integrates Science, Mathematics, Technology, and the Environment

    Science.gov (United States)

    McNamara, John

    2016-01-01

    John McNamara shares his wisdom and humbly credits Camillo Grazzini, Jenny Höglund, and David Kahn for his growth in Montessori. Recognizing more than what he has learned from his mentors, he shares the lessons he has learned from his students themselves. Math, science, history, and language are so integrated in the curriculum that students…

  7. Talking Math, Blogging Math

    OpenAIRE

    Mathews, Linda Marie

    2009-01-01

    Talking Math, Blogging Math is a curriculum designed to aid middle school Pre- Algebra students' mathematical problem-solving through the use of academic language instruction, explanatory proofs, and online technology (blogging). Talking Math, Blogging Math was implemented over a period of ten weeks during the 2008 - 2009 school year. The school where the curriculum was implemented is a non-traditional classroom-based charter school. The 7th, 8th and 9th grade students attended class twice a ...

  8. Supporting Girls' and Boys' Engagement in Math and Science Learning: A Mixed Methods Study

    Science.gov (United States)

    Fredricks, Jennifer A.; Hofkens, Tara; Wang, Ming-Te; Mortenson, Elizabeth; Scott, Paul

    2018-01-01

    This study uses a mixed method sequential exploratory design to examine motivational and contextual influences on boys' and girls' engagement in math and science, paying particular attention to similarities and differences in the patterns by gender. First, interviews were conducted with 38 middle and high school students who varied in their level…

  9. Friends and Family: A Literature Review on How High School Social Groups Influence Advanced Math and Science Coursetaking

    Science.gov (United States)

    Gottfried, Michael; Owens, Ann; Williams, Darryl; Kim, Hui Yon; Musto, Michela

    2017-01-01

    In this study, we synthesized the literature on how informal contexts, namely friends and family social groups, shape high school students' likelihood of pursuing advanced math and science coursework. Extending scholarly understandings of STEM education, we turned to the body of literature with three guiding questions: (1) What influence do…

  10. Differences between the Sexes among Protestant Christian Middle School Students and Their Attitudes toward Science, Technology, Engineering and Math (STEM)

    Science.gov (United States)

    Michael, Kurt Y.; Alsup, Philip R.

    2016-01-01

    Research focusing on science, technology, engineering, and math (STEM) education among conservative Protestant Christian school students is scarce. Crenshaw's intersectionality theory is examined as it pertains to religion as a group identifier. The STEM Semantic Survey was completed by 157 middle school students attending six different private…

  11. A Latent Curve Model of Parental Motivational Practices and Developmental Decline in Math and Science Academic Intrinsic Motivation

    Science.gov (United States)

    Gottfried, Adele Eskeles; Marcoulides, George A.; Gottfried, Allen W.; Oliver, Pamella H.

    2009-01-01

    A longitudinal approach was used to examine the effects of parental task-intrinsic and task-extrinsic motivational practices on academic intrinsic motivation in the subject areas of math and science. Parental task-intrinsic practices comprise encouragement of children's pleasure and engagement in the learning process, whereas task-extrinsic…

  12. When Is Homework Worth the Time?: Evaluating the Association between Homework and Achievement in High School Science and Math

    Science.gov (United States)

    Maltese, Adam V.; Tai, Robert H.; Fan, Xitao

    2012-01-01

    Even with the history of debate over the merits of homework, there are significant gaps in the research record regarding its benefit to students. The focus of this study is on the association between time spent on homework and academic performance in science and math by assessing survey and transcript data from two nationally representative…

  13. Science, Technology, Engineering and Math (STEM) Academic Librarian Positions during 2013: What Carnegie Classifications Reveal about Desired STEM Skills

    Science.gov (United States)

    Trei, Kelli

    2015-01-01

    This study analyzes the requirements and preferences of 171 science, technology, engineering, and math (STEM) academic librarian positions in the United States as advertised in 2013. This analysis compares the STEM background experience preferences with the Carnegie rankings of the employing institution. The research examines the extent to which…

  14. Implications for School Leaders of the Impact of Math, Science, and Technology Magnet Programs on Middle School Student Achievement

    Science.gov (United States)

    Hinojosa, Lupita

    2012-01-01

    Although many national studies have been conducted on the effectiveness of magnet programs, there is limited research involving math, science, and technology magnet schools and their influence on student academic performance, especially at the middle school level. The purpose of this study was to determine whether a statistical difference existed…

  15. Comparing the Math Anxiety of Secondary School Female Students in Groups (Science and Mathematical Physics) Public Schools

    Science.gov (United States)

    Vakili, Khatoon; Pourrazavy, Zinat alsadat

    2017-01-01

    The aim of this study is comparing math anxiety of secondary school female students in groups (Science and Mathematical Physics) Public Schools, district 2, city of Sari. The purpose of the research is applied research, it is a development branch, and in terms of the nature and method, it is a causal-comparative research. The statistical…

  16. WVU--community partnership that provides science and math enrichment for underrepresented high school students.

    Science.gov (United States)

    Rye, J A; Chester, A L

    1999-04-01

    In response to the need to help West Virginia secondary school students overcome educational and economic barriers and to increase the number of health professionals in the state, the Health Sciences and Technology Academy (hereafter, "the Academy") was established in 1994. The Academy is a partnership between West Virginia University (WVU)--including the Robert C. Byrd Health Sciences Center, Eberly College of Arts and Sciences, and the College of Human Resources and Education--and members of the community, including secondary-school teachers, health care professionals, and other community leaders. The Academy targets students from underrepresented groups (mainly African Americans and financially disadvantaged whites) in grades nine through 12. By November 1997, 290 students (69% girls and 33% African American) from 17 counties were Academy participants. Funding is from the W. K. Kellogg Foundation, Howard Hughes Medical Institute, the National Institutes of Health, the Coca-Cola Foundation, and other sources. Academy programs are an on-campus summer institute and community-based clubs, where students engage in activities for science and math enrichment, leadership development, and health careers awareness. In the Academy's clubs, students carry out extended investigations of problems related to human health and local communities. Most students report that the Academy has increased their interest in health care careers, and almost all who have continued to participate in Academy programs through their senior year have been accepted into college.

  17. Bringing Computational Thinking into the High School Science and Math Classroom

    Science.gov (United States)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  18. Signaling threat: how situational cues affect women in math, science, and engineering settings.

    Science.gov (United States)

    Murphy, Mary C; Steele, Claude M; Gross, James J

    2007-10-01

    This study examined the cues hypothesis, which holds that situational cues, such as a setting's features and organization, can make potential targets vulnerable to social identity threat. Objective and subjective measures of identity threat were collected from male and female math, science, and engineering (MSE) majors who watched an MSE conference video depicting either an unbalanced ratio of men to women or a balanced ratio. Women who viewed the unbalanced video exhibited more cognitive and physiological vigilance, and reported a lower sense of belonging and less desire to participate in the conference, than did women who viewed the gender-balanced video. Men were unaffected by this situational cue. The implications for understanding vulnerability to social identity threat, particularly among women in MSE settings, are discussed.

  19. Developing a Global Science and Math Education System Based on Real Astronomy Data

    Science.gov (United States)

    Pennypacker, Carlton

    2015-03-01

    Global Hands-On Universe (GHOU) is an educational system where students use real astronomy data from (largely optical) telescopes to learn fundamental physics, math, astronomy, and technology.GHOU is a good example of a collaborative global education project, where data, software, teacher training methods, curriculum, activities, telescopes, and human resources are developed by many members of GHOU and then shared internationally.Assessments show that in this program students learn more science and math than in conventional classroom teaching, and students change their attitudes towards choosing careers in science and technology.GHOU is an exemplar of appropriate use of computers in the classroom for real data analysis.The International Asteroid Search program of GHOU has helped students discover over 700 asteroids. Half a dozen high schools have named the asteroids they have found after their high school (some from here in Texas!).GHOU has found resonance with many teachers and students around the world, reaching approximately 20,000 global teachers in the International Year of Astronomy in 2009.In addition, activities from French HOU are part of the official French National Curriculum, and exit exam, teacher training syllabus and teacher exit exams. GHOU has found particular enthusiasms in nations with increasing technology basis - for example, GHOU is reaching many teachers in China, Chile, Indonesia, Kenya, Venezuela, with expansion plans for Cuba underway. Some nations, such as Portugal, have reached reasonable fractions of their teachers through GHOU. Workshops are planned in Iran, and HOU colleagues are starting to build a GHOU telescope in Israel. US HOU had trained approximately 1000 teachers in the United States, before the closing of the NSF Teacher Enhancement Section.But as many new large and smaller telescopes come on line - e.g., the Large Synoptic Survey Telescope - the need for GHOU around the world and even the United States will only increase.

  20. Upward Bound: An Untapped Fountain Of Youth Wanting To Learn About Math And Science

    Science.gov (United States)

    Gillis-Davis, J. J.; Sherman, S. B.; Gillis-Davis, L. C.; Svelling, K. L.

    2009-12-01

    We developed a two-phased curricula aimed at high school students in Hawaii’s Upward Bound (UB) programs. The course, called “Tour Through the Solar System”, was tested in the summer 2008-2009 programs of two of the four Hawaii UB programs. Authorized by Congress in 1965, UB is a federal program funded by the U.S. Department of Education to serve students underrepresented in higher education. Students enrolled in UB are predominantly low income, or from families in which neither parent holds a bachelor’s degree. UB programs make a measurable improvement in retaining high school students in the education pipeline in part by using innovative educational and outreach programs to spark students’ interest in learning while building academic self-confidence. Curricula developed for UB are sustainable because there are 964 programs in the United States, and U territories. Education and outreach products can be presented at regional and national meetings, which directors of the UB programs attend. Broad regulations and varied instruction formats allow curriculum developers a flexible and creative framework for developing classes. For instance, regulations stipulate that programs must provide participants with academic instruction in mathematics, laboratory sciences, composition, literature, and foreign languages in preparation for college entrance. UB meets these guidelines through school-year academic activities and a six-week summer school program. In designing our curricula the primary goals were to help students learn how to learn and encourage them to develop an interest in the fields of science, technology, engineering and math using NASA planetary data sets in a Problem-Based Learning (PBL) environment. Our focus on planetary science stems from our familiarity with the data sets, our view that NASA data sets are a naturally inspirational tool to engage high school students, and its cross-disciplinary character: encompassing geology, chemistry, astronomy

  1. Technology and Communications Coursework: Facilitating the Progression of Students with Learning Disabilities through High School Science and Math Coursework.

    Science.gov (United States)

    Shifrer, Dara; Callahan, Rebecca

    2010-09-01

    Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework-traditionally considered non-academic coursework-than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability.

  2. Comparing Self-Regulatory and Early Academic Skills as Predictors of Later Math, Reading, and Science Elementary School Achievement

    Science.gov (United States)

    Murrah, William M., III

    The achievement score gaps between advantaged and disadvantaged children at school entry is a major problem in education today. Identifying the skills critical for school readiness is an important step in developing interventions aimed at addressing these score gaps. The purpose of this study is to compare a number of school readiness skills with an eye toward finding out which are the best predictors of later academic achievement in math, reading, and science. The predictors were early reading, math, general knowledge, socioemotional skills, and motor skills. Data were obtained from the Early Childhood Longitudinal Study of 1998 (NCES, 1998) database. While controlling for an extensive set of family characteristics, predictions were made across five years - from the end of kindergarten to the end of fifth grade. Consistent with current findings, reading and math skills predicted later achievement. Interestingly, general knowledge, attention, and fine motor skills also proved to be important predictors of later academic achievement, but socioemotional skills were not. The findings were interpreted from a neurobiological perspective involving the development of self-regulation. These school entry skills are used to predict later achievement in reading, math, and science. I argued that in addition to acquiring early academic knowledge, children need to regulate the use of this knowledge to meet academic goals.

  3. Characteristics Associated with Persistence and Retention among First-Generation College Students Majoring in Science, Technology, Engineering, or Math

    Science.gov (United States)

    Burnett, Lorie Lasseter

    Persistence and retention of college students is a great concern in American higher education. The dropout rate is even more apparent among first-generation college students, as well as those majoring in science, technology, engineering, and math (STEM). More students earning STEM degrees are needed to fill the many jobs that require the skills obtained while in college. More importantly, those students who are associated with a low-socioeconomic background may use a degree to overcome poverty. Although many studies have been conducted to determine the characteristics associated with student attrition among first-generation students or STEM majors, very little information exists in terms of persistence and retention among the combined groups. The current qualitative study identified some of the characteristics associated with persistence and retention among first-generation college students who are also STEM majors. Participants were juniors or seniors enrolled at a regional 4-year institution. Face-to-face interviews were conducted to allow participants to share their personal experiences as first-generation STEM majors who continue to persist and be retained by their institution. Tinto's Theory of Individual Departure (1987) was used as a framework for the investigation. This theory emphasizes personal and academic background, personal goals, disconnecting from one's own culture, and institutional integration as predictors of persistence. The findings of the investigation revealed that persisting first-generation STEM majors are often connected to family, but have been able to separate that connection with that of the institution. They also are goal-driven and highly motivated and have had varied pre-college academic experiences. These students are academically integrated and socially integrated in some ways, but less than their non-first-generation counterparts. They are overcoming obstacles that students from other backgrounds may not experience. They receive

  4. Shoring Up Math and Science in the Elementary Grades: Schools Enlist Specialists to Teach Science Lessons

    Science.gov (United States)

    Jacobson, Linda

    2004-01-01

    As science gets squeezed in the elementary curriculum, at least two Florida districts are trying a new approach to keeping hands-on lessons a part of pupils' experiences. This article reports how Broward and Palm Beach county districts have increased the number of science specialists working in their elementary schools--teachers who, like physical…

  5. PUMAS (Practical Uses of Math And Science) - Low Cost, High Impact

    Science.gov (United States)

    Kahn, R. A.

    2004-12-01

    PUMAS is an on-line journal, aimed at giving pre-college teachers brief examples showing how math and science topics taught in K-12 classes can be used in interesting settings, including everyday life. The concept is a simple one - (1) ask scientists, engineers, and other content experts to write up their favorite examples of practical uses, (2) ask the authors to key their examples to the National Standards and Benchmarks, so the material is grade-appropriate and useful in the classroom, (3) have each example peer-reviewed by at least one scientist with a relevant background, and at least one teacher at an appropriate grade level, helping keep an emphasis on quality, and (4) disseminate the examples widely and inexpensively through the PUMAS Web Site (http://pumas.jpl.nasa.gov). PUMAS examples may be activities, anecdotes, descriptions of "neat ideas," formal exercises, puzzles, or demonstrations; each one is a gem, written in the voice of its author. The PUMAS site also provides opportunities for feedback on individual examples and on the journal as a whole. As with most scientific journals, the writing, reviewing, and editing efforts are volunteered; they leverage the "community service" offered by so many teachers and scientists. We have streamlined all aspects of the example submission, review, and search processes so participants can contribute at a high level, with a minimum of extraneous effort. The primary PUMAS operating expenses cover Web Site technical maintenance and computer security. The PUMAS site receives several thousand unique queries per week, and publishes an average of about one new example per month. Maintaining a strong user base has been helped by endorsements from such organizations as the NSTA and NCTM. To contributors we offer an avenue for making a real impact on pre-college education with a relatively small time commitment, and the opportunity for peer-reviewed publication. We are always looking for good examples of the Practical Uses

  6. Prediction of Basic Math Course Failure Rate in the Physics, Meteorology, Mathematics, Actuarial Sciences and Pharmacy Degree Programs

    Directory of Open Access Journals (Sweden)

    Luis Rojas-Torres

    2014-09-01

    Full Text Available This paper summarizes a study conducted in 2013 with the purpose of predicting the failure rate of math courses taken by Pharmacy, Mathematics, Actuarial Science, Physics and Meteorology students at Universidad de Costa Rica (UCR. Using the Logistics Regression statistical techniques applied to the 2010 cohort, failure rates were predicted of students in the aforementioned programs in one of their Math introductory courses (Calculus 101 for Physics and Meteorology, Math Principles for Mathematics and Actuarial Science and Applied Differential Equations for Pharmacy. For these models, the UCR admission average, the student’s genre, and the average correct answers in the Quantitative Skills Test were used as predictor variables. The most important variable for all models was the Quantitative Skills Test, and the model with the highest correct classification rate was the Logistics Regression. For the estimated Physics-Meteorology, Pharmacy and Mathematics-Actuarial Science models, correct classifications were 89.8%, 73.6%, and 93.9%, respectively.

  7. The effect of using mind maps on the development of maths and science skills

    Directory of Open Access Journals (Sweden)

    Ozgul Polat

    2017-03-01

    Full Text Available The aim of this study is to examine the effect of mind mapping activities on the maths and science skills of children 48 to 60 months of age. The study was designed using an experimental model with a pre-test post-test and a control group. Accordingly, the hypotheses of the study was that there would be meaningful differences in the values obtained from the pre-test and post-test scores in favor of the children working with mind maps compared to the ones who did not work with mind maps. In the examination of the development of mind maps, it was observed that as the children engaged in preparing mind maps, they used skills requiring high-level mind organization. Mind maps, which can be used in all areas of life, are believed to be supportive of children's development areas and to be an important strategy for children to adopt and experience during the time of childhood.

  8. MendelWeb: An Electronic Science/Math/History Resource for the WWW.

    Science.gov (United States)

    Blumberg, Roger B.

    This paper describes a hypermedia resource, called MendelWeb that integrates elementary biology, discrete mathematics, and the history of science. MendelWeb is constructed from Gregor Menders 1865 paper, "Experiments in Plant Hybridization". An English translation of Mendel's paper, which is considered to mark the birth of classical and…

  9. An exploration of the gateway math and science course relationships in the Los Angeles Community College District

    Science.gov (United States)

    Buchanan, Donald G.

    This study evaluated selected demographic, pre-enrollment, and economic status variables in comparison to college-level performance factors of GPA and course completion ratios for gateway math and science courses. The Transfer and Retention of Urban Community College Students (TRUCCS) project team collected survey and enrollment data for this study in the Los Angeles Community College District (LACCD). The TRUCCS team surveyed over 5,000 students within the nine campus district beginning in the fall of 2000 and spring of 2001 with follow-up data for next several years. This study focused on the math and science courses; established background demographics; evaluated pre-enrollment high school self-reported grades; reviewed high school and college level math courses taken; investigated specific gateway courses of biology, chemistry and physics; and compared them to the overall GPAs and course completion ratios for 4,698 students. This involved the SPSS development of numerous statistical products including the data from frequency distributions, means, cross-tabulations, group statistics t-tests, independent samples t-tests, and one-way ANOVA. Findings revealed demographic and economic relationships of significance for students' performance factors of GPA and course completion ratios. Furthermore, findings revealed significant differences between the gender, age, ethnicity and economic employment relationships. Conclusions and implications for institutions of higher education were documented. Recommendations for dissemination, intervention programs, and future research were also discussed.

  10. Culturally relevant science: An approach to math science education for Hispanics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz de Montellano, B.

    1996-11-14

    As planned a letter was sent out to 17 teachers who had participated in a Summer 1994 workshop on ``Culturally Relevant Science for Hispanics`` at Michigan State. These teachers were supposed to have spent the intervening time developing lesson plans and curricula. The letter requested a report of any activities undertaken and copies of lesson plans and materials developed by February 1996 with a stipend of $400 for satisfactory reports. It was a disappointment to only get 9 responses and not all of them demonstrating a satisfactory level of activity. Diana Marinez, Dean of Science at Texas A and M University, Corpus Christi, who is the other developer of this curriculum and the author reviewed the submitted materials and chose those showing the most promise to be invited to participate in the Summer Writing Workshop. Spring of 1996 and particularly in May--June, the author wrote a partial first draft of a companion volume for the teacher`s manual which would provide a rationale for doing culturally relevant science, present the cultural and the scientific background that teachers would need in order to be able to teach. One of the goals of this curriculum is that it should be off-the-shelf ready to teach and that teachers would not have to do extra research to encourage its adoption. The outline of the book is appendix 1. The Writing Workshop was held at Texas A and M University, Corpus Christi from July 14 to July 27, 1996. Participating teachers chose topics that they were interested in developing and wrote first drafts. These were distributed to all participants and critiqued by the workshop directors before being rewritten. Some teachers were more productive than others depending on their science background. In total an impressive number of lesson plans were written. These lesson plans are listed in Appendix 3. Appendix 4 is a sample lesson. Work still needs to be done on both the source book and the teachers` manual.

  11. Self-efficacy beliefs of underrepresented minorities in science, technology, engineering, and math

    Science.gov (United States)

    Garibay, Guadalupe

    The purpose of this study is to understand the self-perceptions, confidence, and self-efficacy of underrepresented minorities (URMs) as they undertake Science, Technology, Engineering and Math (STEM) courses during their K-12 years in urban-public schools. Through the lens of Bandura's self-efficacy theory, this study analyzed self-efficacious behaviors as they revealed themselves in K-12 classrooms. The participants were 11th- and 12th-grade students, their parents, their STEM teachers, and their mentor. The goal was to understand what has been inhibiting the growth of URM representation in STEM majors and in STEM fields. This qualitative study was designed to understand the participants' stories and uncover personal characteristics such as grit, perseverance, and determination in the face of obstacles. The instruments used in this study were interviews, observations, and self-efficacy surveys. The findings revealed that the participants' perceptions of the students' abilities to succeed in a STEM field were all tentatively positive. The participants focused on the many obstacles already overcome by the students and used it as precedent for future success. All the student-participants shared a similar set of adult types in their lives--adults who believed not only in their STEM abilities, but also in their abilities to face obstacles, who were willing to give their time and expertise when necessary, and who shared similar experiences in terms of the lack of educational resources or of economic struggles. It was these shared experiences that strengthened the beliefs that, if the adult participants could succeed in education or succeed in spite of poverty, the student participants could succeed, as well.

  12. Women in physics: A comparison to science, technology, engineering, and math education over four decades

    Science.gov (United States)

    Lim, Gloria

    Women have been underrepresented in many STEM fields including physics. The gap appears to be largely attributable to a lack of women pursuing physics in college, and little is known about the characteristics and career interests of women who do plan to major in physics. Using nationwide data on first-time, full-time college students, this study set out to: (1) document national trends in plans to major in physics among women entering college; (2) document the career aspirations of women who intend to major in physics; and (3) explore the characteristics of women who intend to major in physics and how this population has evolved across time. The results show that women's interest in physics has been consistently low in the past four decades. The most popular career aspiration among women who plan to major in physics is research scientist, although this career aspiration is declining in popularity. Further, this study identifies a distinctive profile of the average female physics student as compared to women in other STEM fields and women across all majors. Women who plan to pursue a physics major tend to be confident in their math abilities, value college as an opportunity to learn, plan to attend graduate school, and are less likely than women in other fields to have a social activist orientation. The paper concludes with implications for scholars, educators, administrators, and policymakers as they seek to recruit more women in to the physics field. This research is supported by the National Science Foundation, HRD No. 1135727. Part of this work was also completed with the support of a Fulbright Fellowship in Finland.

  13. Combining Graphic Arts, Hollywood and the Internet to Improve Distance Learning in Science and Math

    Science.gov (United States)

    Tso-Varela, S.; Friedberg, R.; Lipnick, D.

    We on the Navajo Reservation face the daunting problem of trying to educate a widely scattered student population over a landmass (25,000+ sq. miles) larger than all the New England states combined. Compounding this problem is the fact that English is a second language for many students and that many of our students lack basic foundation skills. One of the obvious answers is Distance Learning Programs. But, in the past Distance Learning Programs have been notably ineffective on the Navajo Reservation. An experimental Internet Astronomy that we taught last summer showed conclusively that we must specifically tailor our Distance Learning courses to a Navajo audience. As with many college level science courses, our experimental course was English intensive and there lies the crux of the problem. With the help of our colleague institutions, Los Alamos National Laboratory, University of California at Berkeley, University of New Mexico, Kennesaw State University, and New Mexico Highlands University, we undertook to replace 90% of the traditional verbiage with art, an idiom much accepted on the Navajo Reservation. We used the Walt Disney Studios as a model. Specifically, we studied the Pvt. Snafu cartoons used by the War Department in World War II. We tried to emulate their style and techniques. We developed our own cartoon characters, Astroboy, Professor Tso and Roxanne. We combined high quality graphic art, animation, cartooning, Navajo cultural elements, Internet hyperlinks and voiceovers to tell the story of Astronomy 101 Lab. In addition we have added remedial math resources and other helpful resources to our web site. We plan to test initial efforts in an experimental Internet course this summer.

  14. Culturally relevant science: An approach to math science education for hispanics. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Montellano, B.O. de

    1996-11-14

    This progress report summarizes results of a teacher workshop. A letter sent to 17 teachers who had participated in the workshop requested a report of any activities undertaken and copies of lesson plans and materials developed. Only nine responses were received, and not all of them demonstrated a satisfactory level of activity. Teachers who submitted materials showing the most promise were invited to participate in the Summer Writing Workshop. A partial first draft of a companion volume for the teacher`s manual was written which provides a rationale for culturally relevant science and presents the cultural and scientific background needed. The outline of the book is presented in Appendix 1. Appendix 2 is a sample chapter from the book.

  15. Math in Action. Hands-On, Minds-On Math.

    Science.gov (United States)

    Waite-Stupiansky, Sandra; Stupiansky, Nicholas G.

    1998-01-01

    Hands-on math must also involve students' minds in creative thinking. Math manipulatives must be used for uncovering, not just discovering. This paper presents guidelines for planning hands-on, minds-on math for elementary students. Suggestions include dialoging, questioning, integrating manipulatives and other tools, writing, and evaluating. (SM)

  16. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  17. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance.

    Science.gov (United States)

    Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.

  18. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Science.gov (United States)

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID

  19. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    Directory of Open Access Journals (Sweden)

    Elizabeth A Necka

    2015-10-01

    Full Text Available Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap to assess individuals’ self-math overlap. This nonverbal single-item measure showed that identifying oneself with math (having higher self-math overlap was strongly associated with lower math anxiety (r=-.610. We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be

  20. The trials, tribulations, and triumphs of black faculty in the math and science pipeline: A life history approach

    Science.gov (United States)

    Williams, Lisa D.

    2000-12-01

    This study explores the career progression and life history of black mathematicians and scientists who teach on university faculties in the United States. It investigates the following questions: Why are there so few black mathematicians and scientists in colleges and universities in the United States? What is the experience of black students who express an interest in science and math? What barriers do black scientists and mathematicians face as they move through school towards their career in higher education? What factors facilitate their success? The current literature shows that there are few women and minorities teaching or working in math and science compared to white men, although reasons for this underrepresentation are still not well understood. I explored this phenomenon by conducting two sets of in-depth interviews with twelve black faculty, six women, six men, from both historically black and predominantly white higher educational institutions in the United States. My interviews were based upon a life history approach that identified the participants' perceptions of the barriers and obstacles, as well as the supports and facilitators encountered in their schooling and career progression. The findings from the study show the importance of a strong family, community, and teacher support for the participants throughout their schooling. Support systems continued to be important in their faculty positions. These support systems include extended family members, teachers, community members, supervisors, and classmates, who serve as role models and mentors. The life study interviews provide striking evidence of the discrimination, isolation, and harassment due to race and gender experienced by black male and female mathematicians and scientists. The racial discrimination and the compounding effect of racism and sexism play out differently for the male and female participants in this study. This study suggests directions for future research on the experiences

  1. Factorial, Convergent, and Discriminant Validity of TIMSS Math and Science Motivation Measures: A Comparison of Arab and Anglo-Saxon Countries

    Science.gov (United States)

    Marsh, Herbert W.; Abduljabbar, Adel Salah; Abu-Hilal, Maher M.; Morin, Alexandre J. S.; Abdelfattah, Faisal; Leung, Kim Chau; Xu, Man K.; Nagengast, Benjamin; Parker, Philip

    2013-01-01

    For the international Trends in International Mathematics and Science Study (TIMSS2007) math and science motivation scales (self-concept, positive affect, and value), we evaluated the psychometric properties (factor structure, method effects, gender differences, and convergent and discriminant validity) in 4 Arab-speaking countries (Saudi Arabia,…

  2. Professional Parity Between Co-Teachers in Secondary Science and Math As Influenced By Administrative Support

    Science.gov (United States)

    Nordh, Camilla S.

    2011-12-01

    School improvement plans, budget constraints, and compliance mandates targeting academic progress for all students indicate a need for maximal professional efficacy at every level in the educational system, including parity between co-teachers in the co-teaching service delivery model. However, research shows that the special education co-teacher frequently assumes an assistive role while the general education co-teacher adopts a leading role in the classroom. When the participants in a co-teaching partnership fail to equitably share the professional responsibilities for which both teachers are qualified to perform, overall efficacy is compromised in that the special education teacher is not exercising his or her qualified expertise. Administrative support can be a primary influencing factor in increasing parity between the co-teachers. A qualitative study using a phenomenological design was conducted to explore the influences of co-teacher attitudes and administrative support on professional parity in co-taught secondary science and math classrooms. Content analysis was used to interpret data from interviews with five special education and 15 general education co-teachers at eight secondary schools in a suburban school district in a mid-Atlantic state. Five themes emerged from the data: content mastery by the special education co-teacher, joint planning time for co-teachers, continuity within co-teaching dyads, compatible personalities between co-teachers, and clear administrative expectations about co-teaching. Results indicate that administrative support to consider the content mastery of the special education co-teacher is the most influential factor to parity, followed by the co-teaching partners having joint planning time and that both can be implemented through scheduling and assignment considerations rather than training initiatives. The results provide an examination of each theme as it pertains to the issue of professional efficacy in co-teaching and

  3. Math and Science Pursuits: A Self-Efficacy Intervention Comparison Study

    Science.gov (United States)

    Cordero, Elizabeth D.; Porter, Sarah H.; Israel, Tania; Brown, Michael T.

    2010-01-01

    This study compared two interventions to increase math self-efficacy among undergraduate students. Ninety-nine first-year undergraduate students participated in an intervention involving performance accomplishment or an intervention combining performance accomplishment and belief-perseverance techniques in which participants constructed a…

  4. Making a Math Teaching Aids of Junior High School Based on Scientific Approach Through an Integrated and Sustainable Training

    Science.gov (United States)

    Pujiastuti, E.; Mashuri

    2017-04-01

    Not all of teachers of Mathematics in Junior High School (JHS) can design and create teaching aids. Moreover, if teaching aids should be designed so that it can be used in learning through scientific approaches. The problem: How to conduct an integrated and sustainable training that the math teacher of JHS, especially in Semarang can design and create teaching aids that can be presented to the scientific approach? The purpose of this study to find a way of integrated and continuous training so that the math teacher of JHS can design and create teaching aids that can be presented to the scientific approach. This article was based on research with a qualitative approach. Through trials activities of resulting of training model, Focus Group Discussions (FGD), interviews, and triangulation of the results of the research were: (1) Produced a training model of integrated and sustainable that the mathematics teacher of JHS can design and create teaching aids that can be presented to the scientific approach. (2) In training, there was the provision of material and workshop (3) There was a mentoring in the classroom. (4) Sustainability of the consultation. Our advice: (1) the trainer should be clever, (2) the training can be held at the holidays, while the assistance during the holiday season was over.

  5. Enhancing Mathematical Communication for Virtual Math Teams

    Science.gov (United States)

    Stahl, Gerry; Çakir, Murat Perit; Weimar, Stephen; Weusijana, Baba Kofi; Ou, Jimmy Xiantong

    2010-01-01

    The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT) service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies…

  6. Critical thinking in higher education: The influence of teaching styles and peer collaboration on science and math learning

    Science.gov (United States)

    Quitadamo, Ian Joseph

    Many higher education faculty perceive a deficiency in students' ability to reason, evaluate, and make informed judgments, skills that are deemed necessary for academic and job success in science and math. These skills, often collected within a domain called critical thinking (CT), have been studied and are thought to be influenced by teaching styles (the combination of beliefs, behavior, and attitudes used when teaching) and small group collaborative learning (SGCL). However, no existing studies show teaching styles and SGCL cause changes in student CT performance. This study determined how combinations of teaching styles called clusters and peer-facilitated SGCL (a specific form of SGCL) affect changes in undergraduate student CT performance using a quasi-experimental pre-test/post-test research design and valid and reliable CT performance indicators. Quantitative analyses of three teaching style cluster models (Grasha's cluster model, a weighted cluster model, and a student-centered/teacher-centered cluster model) and peer-facilitated SGCL were performed to evaluate their ability to cause measurable changes in student CT skills. Based on results that indicated weighted teaching style clusters and peer-facilitated SGCL are associated with significant changes in student CT, we conclude that teaching styles and peer-facilitated SGCL influence the development of undergraduate CT in higher education science and math.

  7. Taking Advantage of STEM (Science, Technology, Engineering, and Math) Popularity to Enhance Student/Public Engagement

    Science.gov (United States)

    Dittrich, T. M.

    2011-12-01

    For a student group on campus, "the public" can refer to other students on campus or citizens from the community (including children, parents, teenagers, professionals, tradespeople, older people, and others). All of these groups have something to offer that can enrich the experiences of a student group. Our group focuses on science, technology, engineering and math (STEM) education in K-12 schools, university courses, and outreach activities with the general public. We will discuss the experiences of "All Things STEM" on the University of Colorado-Boulder campus and outreach in Boulder and Weld County, CO. Our experiences include (1) tours and events that offer an opportunity for student/public interaction, (2) grant requests and projects that involve community outreach, and (3) organizing conferences and events with campus/public engagement. Since our group is STEM-oriented, tours of water treatment plants, recycling centers, and science museums are a great way to create connections. Our most successful campus/public tour is our annual tour of the Valmont Station coal power plant near Boulder. We solicit students from all over campus and Boulder public groups with the goal to form a diverse and intimate 8 person group (students, school teachers, mechanics, hotel managers, etc.) that takes a 1.5 hr tour of the plant guided by the Chief Engineer. This includes a 20 minute sit-down discussion of anything the group wants to talk about including energy policy, plant history, recent failures, coal versus other fuels, and environmental issues. The tour concludes with each member placing a welding shield over their face and looking at the flames in the middle of the boiler, a little excitement that adds to the connections the group forms with each other. We have received over 11,000 to work with local K-12 schools and CU-Boulder undergraduate and graduate classes to develop a platform to help students learn and explain water quality concepts in a more practical manner

  8. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  9. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  10. Understand electrical and electronics maths

    CERN Document Server

    Bishop, Owen

    1993-01-01

    Understand Electrical and Electronics Maths covers elementary maths and the aspects of electronics. The book discusses basic maths including quotients, algebraic fractions, logarithms, types of equations and balancing of equations. The text also describes the main features and functions of graphs and the solutions to simpler types of electronics problems. The book then tackles the applications of polar coordinates in electronics, limits, differentiation and integration, and the applications of maths of rates of change in electronics. The activities of an electronic circuit; techniques of math

  11. Evaluation of the Academy of Math, Science, and Engineering at Luther Burbank High School During the 1984-85 School Year. Evaluation Report No. 21.

    Science.gov (United States)

    Sacramento City Unified School District, CA.

    The Academy of Math, Science, and Engineering was established at the Luther Burbank High School of Sacramento, California as a rigorous and competitive academic alternative program. This report contains an evaluation of the second year (1984-85) of the program. Program accomplishments are reviewed in the categories of: (1) student enrollment; (2)…

  12. Elementary Teacher Perceptions of Principal Leadership, Teacher Self-Efficacy in Math and Science, and Their Relationships to Student Academic Achievement

    Science.gov (United States)

    Richard, Bertha Cookie

    2013-01-01

    The purpose of this study was to investigate elementary teacher perceptions of elementary principal instructional leadership and elementary teacher evaluation of self-efficacy at low and high performing low socio-economic elementary schools. These variables were examined to determine whether relationships with math and science academic achievement…

  13. Underrepresented Entrepreneurship: A Mixed Method Study Evaluating Postsecondary Persistence Approaches for Minorities in Science Technology Engineering Math (STEM) to Graduate Studies and STEM Entrepreneurship Education

    Science.gov (United States)

    Goodwyn, Kamela Joy

    2017-01-01

    Small businesses with emphasis in science, technology, engineering and math (STEM) are catalytic in launching the United States' global presence and competitiveness into the twenty-first century through innovation and technology. The projected growth compared to non-STEM occupations, is almost twice as high for STEM occupations which further…

  14. Crisis in Science and Math Education. Hearing before the Committee on Governmental Affairs, United States Senate. One Hundred First Congress, First Session.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Senate Committee on Environment and Public Works.

    This document contains the transcript of a senate hearing on the crisis in science and math education. The document includes the opening statements of Senators Glenn, Kohl, Bingaman, Lieberman, Heinz, and Sasser, and the testimony of seven witnesses including: Honorable Mark O. Hatfield, Senator from the State of Oregon; Carl Sagan, Ph.D. Cornell…

  15. Why They Leave: The Impact of Stereotype Threat on the Attrition of Women and Minorities from Science, Math and Engineering Majors

    Science.gov (United States)

    Beasley, Maya A.; Fischer, Mary J.

    2012-01-01

    This paper examines the effects of group performance anxiety on the attrition of women and minorities from science, math, and engineering majors. While past research has relied primarily on the academic deficits and lower socioeconomic status of women and minorities to explain their absence from these fields, we focus on the impact of stereotype…

  16. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    Science.gov (United States)

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The role of self-math overlap in understanding math anxiety and the relation between math anxiety and performance

    OpenAIRE

    Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.

    2015-01-01

    Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individual...

  18. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  19. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Annual report, September 1, 1992--August 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include developing a model laboratory/classroom for teacher education, providing financial incentives for students with technical majors to complete the program, and emphasizing issues of equity and minority participation in mathematics, science and technology education through recruitment procedures and in course content.

  20. MathSci

    OpenAIRE

    De Robbio, Antonella

    1997-01-01

    This paper shows the prestigious mathematics database MathSci, produced by American Mathematical Society (AMS). It is an indexing resource that deals with the whole literature about mathematics. The subject involved in referred to mathematical sciences and others relating such as Statistics, Information science, Operative research and Mathematics Physics. Moreover it indexes sciences related to applied mathematics such as Astronomy, Astrophysics, Biology, Compartmental Sciences, Thermodyn...

  1. Integrating Multiple Intelligences and Learning Styles on Solving Problems, Achievement in, and Attitudes towards Math in Six Graders with Learning Disabilities in Cooperative Groups

    Science.gov (United States)

    Eissa, Mourad Ali; Mostafa, Amaal Ahmed

    2013-01-01

    This study investigated the effect of using differentiated instruction by integrating multiple intelligences and learning styles on solving problems, achievement in, and attitudes towards math in six graders with learning disabilities in cooperative groups. A total of 60 students identified with LD were invited to participate. The sample was…

  2. LRN, ERN:, & BERN @ Wireless Integrating the Sciences (WITS) Theatre

    Science.gov (United States)

    Hilliard, L.; Campbell, B.; Foody, M.; Klitsner, D.

    2010-01-01

    In order to develop a call to action for a learning tool that would work to best teach Science Technology Engineering and Math (STEM), the NASA Goddard team will partner with the inventor of Bop It!, an interactive game of verbs and following instructions; and Global Imagination, the developers of Magic Planet. In this paper Decision-making Orbital Health! (DOH!) will be described as a game derived from the basic functions necessary for Bop lt!, a familiar game. that will ask the educational audience to respond to changing commands to Bop It!, Twist It!, and Squeeze It! The success of the new version of the game, will be that the Earth will be making these commands from Dynamic Planet, and the crowd assembled can play wirelessly. Wireless Integrating The Sciences (WITS) Theatre : A balanced approach will describe how the communities local to Goddard and perhaps San Francisco will develop curriculum that helps kids teach kids with an engaging game and a STEM message. The performing arts will be employed to make it entertaining and appropriate to the size of the gathering, and the students educational level.

  3. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  4. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  5. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  6. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  7. Modern maths

    CERN Multimedia

    Thom,R

    1974-01-01

    Le Prof. R. Thom expose ses vues sur l'enseignement des mathématiques modernes et des mathémathiques de toujours. Il est un grand mathématicien et était professeur à Strasbourg; maintenant il est professeur de hautes études scientifiques et était invité par le Prof. Piaget à Genève

  8. Opening a Can of Worms: The Schools/ Math/Science/ 2-4 year Colleges and the Job Market - Are We just 'Fishing' for Solutions?

    Directory of Open Access Journals (Sweden)

    Christine M. Yukech

    2012-10-01

    Full Text Available The content of this paper confronts some of the biggest problems educators face in the teaching of math and science. The article focuses on a grass roots method called the Algebra project. The Algebra project has improved algebra skills among groups of students who are either steered away from upper level math or who may not ever have the chance to take an advanced math course. According to the data by the department of labor and statistics many jobs are going unfilled. This paper discusses where the jobs are, the courses that are the gateway to employment and the skill sets students need to fill the jobs. Math and science courses need to be used as a tool for liberation of such a problem. We have to ask ourselves why we have a society where only a small group of students are prepared for their future. We need to determine where the knowledge gap is and provide courses that prepare students for the job market and transfer credit from the 2 year to 4 year colleges. This paper also looks at factors that effect change, who the change agents are and what mind set implement solutions.

  9. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  10. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3–6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. PMID:26086660

  11. Network maps of student work with physics, other sciences, and math in an integrated science course

    DEFF Research Database (Denmark)

    Bruun, Jesper; Andersen, Ida Viola Kalmark

    2017-01-01

    I 2004 introducerede Danmark et obligatorisk integreret naturvidenskabelige kursus det mest populære gymnasium. Et af landsdækkende kursusmål er, at eleverne skal "opnå viden om nogle af de centrale videnskabelige spørgsmål og deres sociale, etiske og historiske perspektiver". Dette skal ske genn...

  12. Students' Achievement in Math and Science: How Grit and Attitudes Influence?

    Science.gov (United States)

    Al-Mutawah, Masooma Ali; Fateel, Moosa Jaafar

    2018-01-01

    Many recent studies in the field of mathematics and science education have been studying the effect of non-cognitive factors in students' achievement such as emotions, attitudes, values, beliefs, motivation, anxiety and grit. For example, attitude has been an important area in science education, and there have been many attempts to measure…

  13. National Youth Sports Program: Math/Science. Final report, [June 1, 1992--November 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    NYSP, a partnership of NCAA, HHS, and colleges and universities, is aimed at sports instruction and physical activity for disadvantaged youth. In 1992, DOE joined in to add a mathematics/science component. Federal funds were used to conduct mathematics and science education components on a limited pilot basis at 16 sites. Recommendations for future improvements are given.

  14. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  15. What Math Teachers Need Most

    Science.gov (United States)

    Nelson, Barbara Scott; Sassi, Annette

    2007-01-01

    The combination of new instructional methods and new accountability pressures puts many in a quandary in evaluating math instruction. There is much for principals to learn about how and under what conditions new instructional methods work in math classrooms, how to support teachers as they develop new instructional skills, and how to integrate a…

  16. STEAMakers- a global initiative to connect STEM career professionals with the public to inspire the next generation and nurture a creative approach to science, technology, maths & engineering

    Science.gov (United States)

    Shaw, Niamh; Sorkhabi, Elburz; Gasquez, Oriol; Yajima, Saho

    2016-04-01

    STEAMakers is a global initiative founded by Niamh Shaw, Elburz Sorkhabi, Oriol Gasquez & Saho Yajima, four alumni of The International Space University's Space Studies Programme 2015 who each shared a vision to inspire the next generation to embrace science, technology, engineering & maths (STEM) in new ways, by embedding the Arts within STEM, putting the 'A' in STEAM. STEAMakers invited STEM professionals around the world to join their community, providing training and a suite of STEAM events, specially designed to encourage students to perceive science, technology, engineering & maths as a set of tools with which to create, design, troubleshoot, innovate, and imagine. The ultimate goal of STEAMakers is to grow this community and create a global culture of non-linear learning among the next generation, to nurture within them a new multidisciplinary mindset and incubate new forms of innovation and thought leadership required for the future through the power of inspiration and creativity.

  17. The characteristics of effective secondary math and science instructional facilitators and the necessary support structures as perceived by practitioners and principals

    Science.gov (United States)

    Mahagan, Vikki Lynn

    Instructional facilitators are known by a variety of titles depending on the school district in which they are employed. They are sometimes called instructional coaches, teacher leaders, lead teachers, and instructional specialist (Denton & Hasbrouck, 2009). Throughout this study, the title instructional facilitator was used and will refer to secondary math or science instructional facilitators who are housed at least one day per week on a campus. This study is a mixed-methods descriptive study which has identified character traits, specials skill, and talents possessed by effective secondary math and science instructional facilitators as perceived by practicing facilitators and principals and assistant principals who work along side instructional facilitators. Specific job training to help ensure the success of a facilitator was identified as viewed by both facilitators and principals. Additionally, this study compared the perceptions of practicing facilitators and principals to determine if significant differences exist with respect to perceptions of staff development opportunities, support structures, and resources available for instructional facilitators.

  18. The School for Science and Math at Vanderbilt: An Innovative Research-Based Program for High School Students.

    Science.gov (United States)

    Eeds, Angela; Vanags, Chris; Creamer, Jonathan; Loveless, Mary; Dixon, Amanda; Sperling, Harvey; McCombs, Glenn; Robinson, Doug; Shepherd, Virginia L

    2014-01-01

    The School for Science and Math at Vanderbilt (SSMV) is an innovative partnership program between a Research I private university and a large urban public school system. The SSMV was started in 2007 and currently has 101 students enrolled in the program, with a total of 60 students who have completed the 4-yr sequential program. Students attend the SSMV for one full day per week during the school year and 3-6 wk in the summers following their ninth- to 11th-grade years, with each grade of 26 students coming to the Vanderbilt campus on a separate day. The research-based curriculum focuses on guiding students through the process of learning to develop questions and hypotheses, designing projects and performing analyses, and communicating results of these projects. The SSMV program has elevated the learning outcomes of students as evidenced by increased achievement scores relative to a comparison group of students; has provided a rigorous research-based science, technology, engineering, and mathematics elective curriculum that culminates in a Summer research internship; has produced 27 Intel and Siemens semifinalists and regional finalists over the past 4 yr; and has supported the development of writing and communication skills resulting in regional and national oral presentations and publications in scientific journals. © 2014 A. Eeds et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Where's the Math?

    Science.gov (United States)

    Texas Child Care, 2003

    2003-01-01

    Offers examples of materials and activities that promote and guide math-learning opportunities in all areas of the classroom. Materials and activities relate to: (1) art center; (2) science and discovery center; (3) blocks; (4) library and writing centers; (5) music and movement; (6) manipulatives; (7) dramatic play; (8) outdoor play; and (9)…

  20. Development of Case Stories by Interviewing Students about their Critical Moments in Science, Math, and Engineering Classes

    Directory of Open Access Journals (Sweden)

    Rachel Esselstein

    2008-01-01

    Full Text Available Dartmouth’s Critical Moments project is designed to promote discussions among faculty and graduate students about the retention of students, particularly women and minorities, in science, math, and engineering (SME disciplines. The first phase of the ongoing project has been the development of four case stories, which are fictionalized composites drawn from surveys and interviews of real Dartmouth students. The surveyed population was 125 students in general chemistry. Of the 77 who agreed to be interviewed, 61 reported having experienced a critical moment – i.e., a positive or negative event or time that had a significant impact on the student’s academic life. Leading critical moments were a poor grade on an exam; challenge from group work; excitement from an internship; and falling in love with a non-SME discipline from other coursework. Interviews of 13 students who had negative critical moments led to the development of case stories for: Antoinetta ’09, who had a disappointing group experience; Dalila ’08, who was poorly prepared; Greg ’09, who got in over his head in his first year; and Michelle ’08, who was shocked by her result in the first exam. The case stories are being discussed by graduate students, TA and faculty in various workshops at the Dartmouth Center for the Advancement of Learning.

  1. The Potential Role of Science, Technology, Engineering, and Math Programs in Reducing Teen Dating Violence and Intimate Partner Violence.

    Science.gov (United States)

    D'Inverno, Ashley Schappell; Kearns, Megan C; Reidy, Dennis E

    2016-12-01

    Science, technology, engineering, and math (STEM) are growing fields that provide job stability, financial security, and health prosperity for professionals in these fields. Unfortunately, females are underrepresented in STEM, which is potentially both a consequence and precipitant of gender inequity in the United States. In addition to the financial and health benefits, increasing the number of girls and women in STEM fields may also indirectly prevent and/or reduce teen dating violence and intimate partner violence by: (1) increasing women's financial independence, thereby reducing dependence on potentially abusive partners; (2) decreasing household poverty and financial stress, which may lead to reductions in relationship discord; and (3) increasing attitudes and beliefs about women as equals, thereby increasing gender equity. In this commentary, we discuss the potential role of primary and secondary school STEM programs in reducing violence against women. We review the literature on existing evaluations of STEM programs for educational outcomes, discuss the limitations of these evaluations, and offer suggestions for future research.

  2. Math Stuff

    CERN Document Server

    Pappas, Theoni

    2002-01-01

    Whether it's stuff in your kitchen or garden, stuff that powers your car or your body, stuff that helps you work, communicate or play, or stuff that you've never heard of you can bet that mathematics is there. MATH STUFF brings it all in the open in the Pappas style. Not many people think of mathematics as fascinating, exciting and invaluable. Yet Pappas writes about math ideas in such a way that conveys its often overlooked fascination, excitement, and worth. MATH STUFF deals with 38 topics in an non-threatening way that piques our curiosities. Open the book at random, and learn about such to

  3. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  4. An Analysis of Teachers' Perceptions through Metaphors: Prospective Turkish Teachers of Science, Math and Social Science in Secondary Education

    Science.gov (United States)

    Akçay, Süleyman

    2016-01-01

    In this study, teachers' perceptions of prospective Turkish teachers (that is, those who have completed their undergraduate studies) in the fields of Science, Mathematics and Social Sciences are investigated through teacher metaphors. These perceptions were classified in accordance with their answers to two open-ended questions within a metaphoric…

  5. Early Childhood Educators' Self-Efficacy in Science, Math, and Literacy Instruction and Science Practice in the Classroom

    Science.gov (United States)

    Gerde, Hope K.; Pierce, Steven J.; Lee, Kyungsook; Van Egeren, Laurie A.

    2018-01-01

    Research Findings: Quality early science education is important for addressing the low science achievement, compared to international peers, of elementary students in the United States. Teachers' beliefs about their skills in a content area, that is, their content self-efficacy is important because it has implications for teaching practice and…

  6. Talk of U.S. Crisis in Math, Science Is Largely Misplaced, Skeptics Say

    Science.gov (United States)

    Viadero, Debra

    2006-01-01

    Back in 1983, the National Commission on Excellence on Education issued a dire warning: The United States' "once unchallenged, pre-eminence in commerce, industry, science, and technological innovation is being overtaken by competitors throughout the world." Policy observers say such calls have been a leitmotif in the national discourse on…

  7. Opening the Classroom Door: Professional Learning Communities in the Math and Science Partnership Program

    Science.gov (United States)

    Hamos, James E.; Bergin, Kathleen B.; Maki, Daniel P.; Perez, Lance C.; Prival, Joan T.; Rainey, Daphne Y.; Rowell, Ginger H.; VanderPutten, Elizabeth

    2009-01-01

    This article looks at how professional learning communities (PLCs) have become an operational approach for professional development with potential to de-isolate the teaching experience in the fields of science, technology, engineering, and mathematics (STEM). The authors offer a short synopsis of the intellectual origins of PLCs, provide multiple…

  8. Advanced Placement Math and Science Courses: Influential Factors and Predictors for Success in College STEM Majors

    Science.gov (United States)

    Hoepner, Cynthia Colon

    2010-01-01

    President Obama has recently raised awareness on the need for our nation to grow a larger pool of students with knowledge in science mathematics, engineering, and technology (STEM). Currently, while the number of women pursuing college degrees continues to rise, there remains an under-representation of women in STEM majors across the country.…

  9. A Review of Mindfulness Research Related to Alleviating Math and Science Anxiety

    Science.gov (United States)

    Ahmed, Khalique; Trager, Bradley; Rodwell, Megan; Foinding, Linda; Lopez, Cori

    2017-01-01

    Defined as nonjudgmentally paying attention to the present moment (Kabat-Zinn, 1994), modern-day mindfulness has gained considerable attention in various science fields. However, despite this growth, many uses of mindfulness remain unexplored. In this paper, we focus on the application of mindfulness programs in educational settings, specifically…

  10. Nurturing At-Risk Youth in Math and Science: Curriculum and Teaching Considerations.

    Science.gov (United States)

    Tobias, Randolf

    The social environment of today has necessitated revision in educators' beliefs about what students are considered to be at risk of failing to complete their education with adequate levels of skills. This book addresses this issue in the areas of mathematics and science and is intended as a curriculum and teacher training accompaniment that can…

  11. Science, Technology, Engineering, Math (STEM) in Higher Education from the Perspective of Female Students: An Institutional Ethnography

    Science.gov (United States)

    Parson, Laura J.

    A persistent disadvantage for females is systemically embedded in Science, Technology, Engineering, and Math (STEM) education in postsecondary institutions. As a result, undergraduate women majoring in STEM fields face a uniquely difficult path; yet, for the most part, recommendations made and supported in the literature have focused on recruitment of women to STEM fields or on ways to make women more successful and comfortable in their STEM major. These recommendations have so far proved to be insufficient to remedy a gender gap and serve to replicate the existing male hierarchy. In order to truly make the STEM classroom one in which women are welcome and comfortable and to challenge the existing social and scientific systems, it is necessary to explore and understand the social and political implications embedded within teaching and learning choices. This institutional ethnography addresses that gap. The purpose of this study was to uncover and describe the institutional practices of STEM education at a Midwest research university (MRU) from the standpoint of female undergraduate students. Using the framework of feminist standpoint theory, this study explored the everyday "work" of female undergraduate STEM students to provide a unique perspective on the STEM education teaching and learning environment. Data collection began with in-depth interviews with female undergraduate math and physics students. As the institutional processes shaping undergraduate participant experiences were identified, subsequent data collection included classroom observations, additional interviews with students and faculty, and analysis of the texts that mediate these processes (e.g., syllabi and student handbooks). Data analysis followed Carspecken's process of ethnographic data analysis that began with low-level coding, followed by high-level coding, and concluded by pulling codes together through the creation of themes. Analysis of data led to three key findings. First, undergraduate

  12. The Relationship between Student's Quantitative Skills, Application of Math, Science Courses, and Science Marks at Single-Sex Independent High Schools

    Science.gov (United States)

    Cambridge, David

    2012-01-01

    For independent secondary schools who offer rigorous curriculum to attract students, integration of quantitative skills in the science courses has become an important definition of rigor. However, there is little research examining students' quantitative skills in relation to high school science performance within the single-sex independent school…

  13. Interdisciplinary Lessons in Musical Acoustics: The Science-Math-Music Connection

    Science.gov (United States)

    Rogers, George L.

    2004-01-01

    The National Standards for Arts Education encourages teachers to help students make connections between music and other disciplines. Many state curriculum guides likewise encourage educators to integrate curricula and find common ground between different subjects. Music--particularly vocal music--offers ample opportunities to find relationships…

  14. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  15. Variables that Affect Math Teacher Candidates' Intentions to Integrate Computer-Assisted Mathematics Education (CAME)

    Science.gov (United States)

    Erdogan, Ahmet

    2010-01-01

    Based on Social Cognitive Carier Theory (SCCT) (Lent, Brown, & Hackett, 1994, 2002), this study tested the effects of mathematics teacher candidates' self-efficacy in, outcome expectations from, and interest in CAME on their intentions to integrate Computer-Assisted Mathematics Education (CAME). While mathematics teacher candidates' outcome…

  16. How Teachers Integrate a Math Computer Game: Professional Development Use, Teaching Practices, and Student Achievement

    Science.gov (United States)

    Callaghan, M. N.; Long, J. J.; van Es, E. A.; Reich, S. M.; Rutherford, T.

    2018-01-01

    As more attention is placed on designing digital educational games to align with schools' academic aims (e.g., Common Core), questions arise regarding how professional development (PD) may support teachers' using games for instruction and how such integration might impact students' achievement. This study seeks to (a) understand how teachers use…

  17. Longitudinal Study of Career Cluster Persistence from 8th Grade to 12th Grade with a Focus on the Science, Technology, Engineering, & Math Career Cluster

    Science.gov (United States)

    Wagner, Judson

    Today's technology driven global economy has put pressure on the American education system to produce more students who are prepared for careers in Science, Technology, Engineering, and Math (STEM). Adding to this pressure is the demand for a more diverse workforce that can stimulate the development of new ideas and innovation. This in turn requires more female and under represented minority groups to pursue future careers in STEM. Though STEM careers include many of the highest paid professionals, school systems are dealing with exceptionally high numbers of students, especially female and under represented minorities, who begin but do not persist to STEM degree completion. Using the Expectancy-Value Theory (EVT) framework that attributes student motivation to a combination of intrinsic, utility, and attainment values, this study analyzed readily available survey data to gauge students' career related values. These values were indirectly investigated through a longitudinal approach, spanning five years, on the predictive nature of 8 th grade survey-derived recommendations for students to pursue a future in a particular career cluster. Using logistic regression analysis, it was determined that this 8 th grade data, particularly in STEM, provides significantly high probabilities of a 12th grader's average grade, SAT-Math score, the math and science elective courses they take, and most importantly, interest in the same career cluster.

  18. The Impact of MOVE IT Math(TM) and Traditional Textbook Instruction on Math Achievement Scores

    Science.gov (United States)

    Bennett, Angela Stephens

    2010-01-01

    One recommendation of government, education, and business leaders is an increased emphasis on math and science instruction in public schools. The purpose of this quantitative study using a posttest, quasi-experimental design was to determine if the Math Opportunities, Valuable Experiences, and Innovative Teaching (MOVE IT Math(TM)) program…

  19. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  20. Culture and math.

    Science.gov (United States)

    Tcheang, Lili

    2014-01-01

    Cultural differences have been shown across a number of different cognitive domains from vision, language, and music. Mathematical cognition is another domain that is an integral part of modern society and because there are a fixed number of ways in which many math operations can be performed, it is also an apposite tool for cultural comparisons. This discussion examines the literature on mathematical processing in accordance with culture, summarizing the brain regions involved across various mathematical tasks. In doing so, we provide a clear picture of the anatomical similarities and differences between cultures when performing different math tasks. This information is useful to explore the possibility of enhancement of mathematical skills, where different strategies may be applicable in accordance with culture. It also contributes to the evolutionary development of different math skills and the growing theory that anatomical and behavioral studies must account for the cultural identity of their sample.

  1. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  2. The Consequences of the National Math and Science Performance Environment for Gender Differences in STEM Aspiration

    Directory of Open Access Journals (Sweden)

    Allison Mann

    2016-07-01

    Full Text Available Using the lens of expectation states theory, which we formalize in Bayesian terms, this article examines the influences of national performance and self-assessment contexts on gender differences in the rate of aspiring to science, technology, engineering, and mathematics (STEM occupations. We demonstrate that girls hold themselves to a higher performance standard than do boys before forming STEM orientations, and this gender "standards gap" grows with the strength of a country’s performance environment. We also demonstrate that a repeatedly observed paradox in this literature—namely, that the STEM gender gap increases with a more strongly gender-egalitarian national culture—vanishes when the national performance culture is taken into account. Whereas other research has proposed theories to explain the apparent paradox as an empirical reality, we demonstrate that the empirical relationship is as expected; net of the performance environment, countries with a more gender-egalitarian culture have a smaller gender gap in STEM orientations. We also find, consistent with our theory, that the proportion of high-performing girls among STEM aspirants grows with the strength of the national performance environment even as the overall gender gap in STEM orientations grows because of offsetting behavior by students at the lower end of the performance distribution.

  3. Using an Intelligent Tutor and Math Fluency Training to Improve Math Performance

    Science.gov (United States)

    Arroyo, Ivon; Royer, James M.; Woolf, Beverly P.

    2011-01-01

    This article integrates research in intelligent tutors with psychology studies of memory and math fluency (the speed to retrieve or calculate answers to basic math operations). It describes the impact of computer software designed to improve either strategic behavior or math fluency. Both competencies are key to improved performance and both…

  4. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  5. The early evolution of southwestern Pennsylvania's regional math/science collaborative from the leadership perspective

    Science.gov (United States)

    Bunt, Nancy R.

    Designed as a regional approach to the coordination of efforts and focusing of resources in fragmented southwestern Pennsylvania, the Collaborative's story is narrated by its founding director. Drawing from office archives, including letters of invitation, meeting notes, and participant evaluations of each event, the study describes the genesis of the Collaborative. It begins with identification of the problem and the resulting charge by a founding congress. It details the building of an organizational framework, the creation of a shared vision, the development of a blueprint for action, and the decision-making involved in determining how to strengthen mathematics and science education in the region. The study notes several influences on the Collaborative's leadership. Considering the role of other collaboratives, the study notes that knowledge of the Los Angeles Educational Partnership's LA SMART jump-started the Collaborative's initial planning process. Knowledge of San Francisco's SEABA influenced the size and naming of the Collaborative's Journal. Fred Newmann's definition of authentic instruction, learning and assessment are reflected in the shared vision and belief statements of the Collaborative. The five disciplines of Peter Senge influenced the nature of the organizational framework as well as the day-to-day operations of the Collaborative. The study also notes that the five organizational tensions identified in Ann Lieberman's work on "intentional learning communities" were present in every aspect of the evolution of the Collaborative. The study suggests that leaders of evolving collaboratives: (1) engage all relevant stakeholders in assessing the current situation and defining a desired future state, (2) take advantage of the lessons learned by others and the resources available at the state and national levels to design strategies and build action plans, (3) model the practices to be inspired in the learning community, (4) constantly gather feedback on

  6. The Anthropology of Science Education Reform: An Alabama Model for Building an Integrated Stakeholder Systems Approach

    Science.gov (United States)

    Denson, R. L.; Cox, G. N.

    2004-12-01

    Anthropologists are concerned with every aspect of the culture they are investigating. One of the five main branches of anthropology, socio-cultural anthropology, concerns itself with studying the relationship between behavior and culture. This paper explores the concept that changing the behavior of our culture - its beliefs and values - towards science is at the heart of science education reform. There are five institutions that socio-cultural anthropologists use to study the social organization of cultures: the educational system is only one of them. Its function - across all cultures - is to serve as a mechanism for implementing change in cultural beliefs and values. As leaders of science education reform, the Alabama model contends that we must stop the struggle with our purpose and get on with the business of leading culture change through an integrated stakeholder systems approach. This model stresses the need for the interaction of agencies other than education - including government, industry, the media and our health communities to operate in an integrated and systemic fashion to address the issues of living among a technically literate society. Twenty-five years of science education reform needs being voiced and programs being developed has not produced the desired results from within the educational system. This is too limited a focus to affect any real cultural change. It is when we acknowledge that students spend only an average of 12 percent of their life time in schools, that we can begin to ask ourselves what are our students learning the other 88 percent of their time - from their peers, their parents and the media - and what should we be doing to address this cultural crisis in these other arenas in addition to the educational system? The Alabama Math, Science and Technology Education Coalition (AMSTEC) is a non-profit 501c(3) organization operating in the state of Alabama to provide leadership in improving mathematics, science, and technology

  7. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  8. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  9. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  10. Talking Maths

    Science.gov (United States)

    Murray, Jenny

    2006-01-01

    Discussion in maths lessons has always been something encouraged by ATM but can be difficult to initiate for non-specialist and inexperienced teachers who may feel they need material in books to get them going. In this article, the author describes resources aimed at encouraging discussion among primary mathematicians. These resources include: (1)…

  11. Penguin Math

    Science.gov (United States)

    Green, Daniel; Kearney, Thomas

    2015-01-01

    Emperor penguins, the largest of all the penguin species, attain heights of nearly four feet and weigh up to 99 pounds. Many students are not motivated to learn mathematics when textbook examples contain largely nonexistent contexts or when the math is not used to solve significant problems found in real life. This article's project explores how…

  12. Tangible Math

    Science.gov (United States)

    Scarlatos, Lori L.

    2006-01-01

    Educators recognize that group work and physical involvement with learning materials can greatly enhance the understanding and retention of difficult concepts. As a result, math manipulatives--such as pattern blocks and number lines--have increasingly been making their way into classrooms and children's museums. Yet without the constant guidance…

  13. Math Problem

    Science.gov (United States)

    Oguntoyinbo, Lekan

    2012-01-01

    Many experts give the nation's schools a poor grade for their approach to teaching mathematics and for their preparation of mathematics teachers. While many policymakers make much of data that suggest children in the United States lag behind many other advanced countries in math, many experts call for a change in mathematics education,…

  14. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  15. Elementary teachers past experiences: A narrative study of the past personal and professional experiences of elementary teachers who use science to teach math and reading

    Science.gov (United States)

    Acre, Andrea M.

    This qualitative study investigated the experiences of four elementary teachers who have elected to use science to teach math and reading/language arts in an attempt to identify what motivates them to do so. Identifying what experiences have motivated these teachers to go against the gain and teach elementary science in this current era of high-stakes tests is of the upmost importance given that science is being eliminated from the elementary curriculum and it is during the elementary years that students' nurture and develop their interest in science. Additionally, the United States is failing to produce enough college graduates in STEM areas to fill the thousands of STEM jobs each year. Through a review of the literature, the past trends and current trends of elementary science education were explored as well as teacher training. Furthermore, the literature reviewed inquiry teaching which is considered to be the most effective teaching method when teaching science at any level. Using John Dewey's Interest and Effort Relationship Theory and the Self-Determination Motivation Theory to guide this study, there were five prominent themes which emerged from the reconstructed stories of the four teachers: positive experiences with science, neutral/negative experiences with science, seeks meaningful professional development, influence and support from others, and regret/wants to do more.

  16. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  17. All you need in Maths!

    NARCIS (Netherlands)

    van de Craats, J.; Bosch, R.

    2014-01-01

    All You Need in Maths! covers the basic mathematics you need to successfully embark on a university or college career in technology, natural sciences, computer and information science, economics, business and management studies, and related disciplines. By basic mathematics we mean elementary

  18. Briefing paper for universities on Core Maths

    OpenAIRE

    Glaister, Paul

    2015-01-01

    This briefing paper outlines the rationale for and development of the new Core Maths qualifications, the characteristics of Core Maths, and why Core Maths is important for higher education. It is part of a communication to university vice-chancellors from the Department for Business, Innovation and Skills (BIS) comprising this paper and a joint Ministerial letter from Jo Johnson, Minister of State for Universities and Science in BIS, and Nick Gibb, Minister of State for Schools in the Departm...

  19. Working memory, math performance, and math anxiety.

    Science.gov (United States)

    Ashcraft, Mark H; Krause, Jeremy A

    2007-04-01

    The cognitive literature now shows how critically math performance depends on working memory, for any form of arithmetic and math that involves processes beyond simple memory retrieval. The psychometric literature is also very clear on the global consequences of mathematics anxiety. People who are highly math anxious avoid math: They avoid elective coursework in math, both in high school and college, they avoid college majors that emphasize math, and they avoid career paths that involve math. We go beyond these psychometric relationships to examine the cognitive consequences of math anxiety. We show how performance on a standardized math achievement test varies as a function of math anxiety, and that math anxiety compromises the functioning of working memory. High math anxiety works much like a dual task setting: Preoccupation with one's math fears and anxieties functions like a resource-demanding secondary task. We comment on developmental and educational factors related to math and working memory, and on factors that may contribute to the development of math anxiety.

  20. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  1. Initiating New Science Partnerships in Rural Education (INSPIRE) Brining STEM Research to 7th-12th Grade Science and Math Classrooms

    Science.gov (United States)

    Radencic, S.; McNeal, K. S.; Pierce, D.

    2012-12-01

    The Initiating New Science Partnerships in Rural Education (INSPIRE) program at Mississippi State University (MSU), funded by the NSF Graduate STEM Fellows in K-12 Education (GK12) program, focuses on the advancement of Earth and Space science education in K-12 classrooms. INSPIRE currently in its third year of partnering ten graduate students each year from the STEM fields of Geosciences, Engineering, Physics and Chemistry at MSU with five teachers from local, rural school districts. The five year project serves to enhance graduate student's communication skills as they create interactive lessons linking their STEM research focus to the state and national standards covered in science and math classrooms for grades 7-12 through inquiry experiences. Each graduate student is responsible for the development of two lessons each month of the school year that include an aspect of their STEM research, including the technologies that they may utilize to conduct their STEM research. The plans are then published on the INSPIRE project webpage, www.gk12.msstate.edu, where they are a free resource for any K-12 classroom teacher seeking innovative activities for their classrooms and total over 300 lesson activities to date. Many of the participating teachers and graduate students share activities developed with non-participating teachers, expanding INSPIRE's outreach of incorporating STEM research into activities for K-12 students throughout the local community. Examples of STEM research connections to classroom topics related to earth and ocean science include activities using GPS with GIS for triangulation and measurement of area in geometry; biogeochemical response to oil spills compared to organism digestive system; hydrogeology water quality monitoring and GIS images used as a determinant for habitat suitability in area water; interactions of acids and bases in the Earth's environments and surfaces; and the importance of electrical circuitry in an electrode used in

  2. Using a Non-Equivalent Groups Quasi Experimental Design to Reduce Internal Validity Threats to Claims Made by Math and Science K-12 Teacher Recruitment Programs

    Science.gov (United States)

    Moin, Laura

    2009-10-01

    The American Recovery and Reinvestment Act national policy established in 2009 calls for ``meaningful data'' that demonstrate educational improvements, including the recruitment of high-quality teachers. The scant data available and the low credibility of many K-12 math/science teacher recruitment program evaluations remain the major barriers for the identification of effective recruitment strategies. Our study presents a methodology to better evaluate the impact of recruitment programs on increasing participants' interest in teaching careers. The research capitalizes on the use of several control groups and presents a non-equivalent groups quasi-experimental evaluation design that produces program effect claims with higher internal validity than claims generated by current program evaluations. With this method that compares responses to a teaching career interest question from undergraduates all along a continuum from just attending an information session to participating (or not) in the recruitment program, we were able to compare the effect of the program in increasing participants' interest in teaching careers versus the evolution of the same interest but in the absence of the program. We were also able to make suggestions for program improvement and further research. While our findings may not apply to other K-12 math/science teacher recruitment programs, we believe that our evaluation methodology does and will contribute to conduct stronger program evaluations. In so doing, our evaluation procedure may inform recruitment program designers and policy makers.

  3. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  4. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  5. Perceptions of preparedness of LBS I teachers in the state of Illinois and graduates of Illinois State University's LBS I program to collaborate in teaching grade 7--12 math, science, and social science

    Science.gov (United States)

    Caldwell, Janet E.

    The expectations for no child to be left behind are leading to increased emphasis on teaching math, science, and social science effectively to students with disabilities. This study utilized information collected from online surveys to examine how current LBS I teachers and individuals graduating from the Illinois State University teacher certification program in LBS I perceive their preparedness to teach these subjects. Participants provided information about coursework and life experiences, and they made suggestions about teacher preparation and professional development programs. Six key items forming the composite variable focused on level of preparation in (a) best practices, (b) selecting materials, (c) selecting objectives, (d) adapting instructional strategies, (e) planning lessons, and (f) and evaluating outcomes. Only 30 LBS I teachers of the 282 contacted by e-mail completed surveys. Of 115 graduates contacted, 71 participated in the original survey and 23 participated in a follow-up survey. Data were analyzed to learn more about the teachers' self-perceptions regarding preparedness to teach math, science, or social science. There was a correlation between perceived level of knowledge and the composite preparation variable for all subjects, but no correlation with length of teaching. Both groups indicated high school content courses were important in preparation to teach. Teachers also indicated collaboration and graduates indicated grade school learning. The most frequent recommendation for both teacher preparation and professional development was additional methods courses. A survey distributed to math, science, and social science teachers of Grades 7--12 asked about their perceptions of the preparedness of LBS I teachers to teach their area of content. Few surveys were completed for each subject so they were examined qualitatively. There was variability among participants, but generally the content area teachers rated themselves as more prepared than

  6. Fatou, Julia, Montel le grand prix des sciences mathématiques de 1918, et après

    CERN Document Server

    Audin, Michèle

    2009-01-01

    Comment Fatou et Julia ont inventA(c) ce que la (TM)on appelle aujourda (TM)hui les ensembles de Julia, avant, pendant et aprA]s la premiA]re guerre mondiale? La (TM)histoire est racontA(c)e, avec ses mathA(c)matiques, ses conflits, ses personnalitA(c)s. Elle est traitA(c)e A partir de sources nouvelles, et avec rigueur. On pourra sa (TM)y initier A la (TM)itA(c)ration des fractions rationnelles et A la dynamique complexe (ensembles de Julia, de Mandelbrot, ensembles-limites). Qui A(c)taient Pierre Fatou, Gaston Julia, Paul Montel? On y trouvera en particulier des informations sur un mathA(c)m

  7. Advancing Alternative Analysis: Integration of Decision Science

    DEFF Research Database (Denmark)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina

    2016-01-01

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate......, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect......) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts....

  8. Integrating the Learning of Mathematics and Science Using Interactive Teaching and Learning Strategies

    Science.gov (United States)

    Holmes, Mark H.

    2006-10-01

    To help students grasp the intimate connections that exist between mathematics and its applications in other disciplines a library of interactive learning modules was developed. This library covers the mathematical areas normally studied by undergraduate students and is used in science courses at all levels. Moreover, the library is designed not just to provide critical connections across disciplines but to also provide longitudinal subject reinforcement as students progress in their studies. In the process of developing the modules a complete editing and publishing system was constructed that is optimized for automated maintenance and upgradeability of materials. The result is a single integrated production system for web-based educational materials. Included in this is a rigorous assessment program, involving both internal and external evaluations of each module. As will be seen, the formative evaluation obtained during the development of the library resulted in the modules successfully bridging multiple disciplines and breaking down the disciplinary barriers commonly found in their math and non-math courses.

  9. Counseling the Math Anxious

    Science.gov (United States)

    Tobias, Sheila; Donady, Bonnie

    1977-01-01

    Describes the rationale and mode of operations for a Math Clinic at Wellesley University and Wesleyan College where counselors and math specialists work together to combat "math anxiety," particularly in female students. (HMV)

  10. Integrated Modelling in CRUCIAL Science Education

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Mukhamedzhanova, Elena; Nerobelov, Georgiy; Sedeeva, Margarita; Suhodskiy, Alexander; Mostamandy, Suleiman; Smyshlyaev, Sergey

    2017-04-01

    The NordForsk CRUCIAL project (2016-2017) "Critical steps in understanding land surface - atmosphere interactions: from improved knowledge to socioeconomic solutions" as a part of the Pan-Eurasian EXperiment (PEEX; https://www.atm.helsinki.fi/peex) programme activities, is looking for a deeper collaboration between Nordic-Russian science communities. In particular, following collaboration between Danish and Russian partners, several topics were selected for joint research and are focused on evaluation of: (1) urbanization processes impact on changes in urban weather and climate on urban-subregional-regional scales and at contribution to assessment studies for population and environment; (2) effects of various feedback mechanisms on aerosol and cloud formation and radiative forcing on urban-regional scales for better predicting extreme weather events and at contribution to early warning systems, (3) environmental contamination from continues emissions and industrial accidents for better assessment and decision making for sustainable social and economic development, and (4) climatology of atmospheric boundary layer in northern latitudes to improve understanding of processes, revising parameterizations, and better weather forecasting. These research topics are realized employing the online integrated Enviro-HIRLAM (Environment - High Resolution Limited Area Model) model within students' research projects: (1) "Online integrated high-resolution modelling of Saint-Petersburg metropolitan area influence on weather and air pollution forecasting"; (2) "Modeling of aerosol impact on regional-urban scales: case study of Saint-Petersburg metropolitan area"; (3) "Regional modeling and GIS evaluation of environmental pollution from Kola Peninsula sources"; and (4) "Climatology of the High-Latitude Planetary Boundary Layer". The students' projects achieved results and planned young scientists research training on online integrated modelling (Jun 2017) will be presented and

  11. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  12. Integration of Media Design Processes in Science, Technology, Engineering, and Mathematics (STEM) Education

    Science.gov (United States)

    Karahan, Engin; Canbazoglu Bilici, Sedef; Unal, Aycin

    2015-01-01

    Problem Statement: Science, technology, engineering and mathematics (STEM) education aims at improving students' knowledge and skills in science and math, and thus their attitudes and career choices in these areas. The ultimate goal in STEM education is to create scientifically literate individuals who can survive in the global economy. The…

  13. Can Financial Aid Help to Address the Growing Need for STEM Education? The Effects of Need-Based Grants on the Completion of Science, Technology, Engineering, and Math Courses and Degrees

    Science.gov (United States)

    Castleman, Benjamin L.; Long, Bridget Terry; Mabel, Zachary

    2018-01-01

    Although workers in science, technology, engineering, and math (STEM) fields earn above-average wages, the number of college graduates prepared for STEM jobs lags behind employer demand. A key question is how to recruit and retain college students in STEM majors. We offer new evidence on the role of financial aid in supporting STEM attainment.…

  14. "Space on Earth:" A Learning Community Integrating English, Math, and Science

    Science.gov (United States)

    Fortna, Joanna; Sullivan, Jim

    2010-01-01

    Imagine a mathematics instructor and English instructor sharing an office; scribbled equations litter one desk, snatches of poetry the other. Our learning community, "Space on Earth," grew from conversations in just such an office where we bridged our own disciplinary gap and discovered a shared passion for helping students apply the concepts and…

  15. Taking Math Anxiety out of Math Instruction

    Science.gov (United States)

    Shields, Darla J.

    2007-01-01

    To take math anxiety out of math instruction, teachers need to first know how to easily diagnose it in their students and second, how to analyze causes. Results of a recent study revealed that while students believed that their math anxiety was largely related to a lack of mathematical understanding, they often blamed their teachers for causing…

  16. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  17. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  18. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  19. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  20. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  1. Mathematizing: An Emergent Math Curriculum Approach for Young Children

    Science.gov (United States)

    Rosales, Allen C.

    2015-01-01

    Based on years of research with early childhood teachers, author Allen Rosales provides an approach to create an emergent math curriculum that integrates children's interests with math concepts. The mathematizing approach is different from traditional math curriculums, as it immerses children in a process that is designed to develop their…

  2. Impact of Math Snacks Games on Students' Conceptual Understanding

    Science.gov (United States)

    Winburg, Karin; Chamberlain, Barbara; Valdez, Alfred; Trujillo, Karen; Stanford, Theodore B.

    2016-01-01

    This "Math Snacks" intervention measured 741 fifth grade students' gains in conceptual understanding of core math concepts after game-based learning activities. Teachers integrated four "Math Snacks" games and related activities into instruction on ratios, coordinate plane, number systems, fractions and decimals. Using a…

  3. Teaching Math to the Talented

    Science.gov (United States)

    Hanushek, Eric A.; Peterson, Paul E.; Woessmann, Ludger

    2011-01-01

    Maintaining America's productivity as a nation depends importantly on developing a highly qualified cadre of scientists, engineers, entrepreneurs, and other professionals. To realize that objective requires a system of schooling that produces students with advanced math and science skills. To see how well schools in the United States do at…

  4. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  5. 78 FR 18326 - Agency Information Collection Activities; Comment Request; Upward Bound and Upward Bound Math...

    Science.gov (United States)

    2013-03-26

    ...; Comment Request; Upward Bound and Upward Bound Math Science Annual Performance Report AGENCY: The Office... considered public records. Title of Collection: Upward Bound and Upward Bound Math Science Annual Performance...) and Upward Bound Math and Science (UBMS) Programs. The Department is requesting a new APR because of...

  6. Math at home adds up to achievement in school.

    Science.gov (United States)

    Berkowitz, Talia; Schaeffer, Marjorie W; Maloney, Erin A; Peterson, Lori; Gregor, Courtney; Levine, Susan C; Beilock, Sian L

    2015-10-09

    With a randomized field experiment of 587 first-graders, we tested an educational intervention designed to promote interactions between children and parents relating to math. We predicted that increasing math activities at home would increase children's math achievement at school. We tested this prediction by having children engage in math story time with their parents. The intervention, short numerical story problems delivered through an iPad app, significantly increased children's math achievement across the school year compared to a reading (control) group, especially for children whose parents are habitually anxious about math. Brief, high-quality parent-child interactions about math at home help break the intergenerational cycle of low math achievement. Copyright © 2015, American Association for the Advancement of Science.

  7. Math and Movement: Practical Ways to Incorporate Math into Physical Education

    Science.gov (United States)

    Wade, Marcia

    2016-01-01

    Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…

  8. Gender Compatibility, Math-Gender Stereotypes, and Self-Concepts in Math and Physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-01-01

    Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and…

  9. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  10. Stable measures of number sense accuracy in math learning disability: Is it time to proceed from basic science to clinical application?

    Science.gov (United States)

    Júlio-Costa, Annelise; Starling-Alves, Isabella; Lopes-Silva, Júlia Beatriz; Wood, Guilherme; Haase, Vitor Geraldi

    2015-12-01

    Math learning disability (MLD) or developmental dyscalculia is a highly prevalent and persistent difficulty in learning arithmetic that may be explained by different cognitive mechanisms. The accuracy of the number sense has been implicated by some evidence as a core deficit in MLD. However, research on this topic has been mainly conducted in demographically selected samples, using arbitrary cut-off scores to characterize MLD. The clinical relevance of the association between number sense and MLD remains to be investigated. In this study, we aimed at assessing the stability of a number sense accuracy measure (w) across five experimental sessions, in two clinically defined cases of MLD. Stable measures of number sense accuracy estimate are required to clinically characterize subtypes of MLD and to make theoretical inferences regarding the underlying cognitive mechanisms. G. A. was a 10-year-old boy with MLD in the context of dyslexia and phonological processing impairment and his performance remained steadily in the typical scores range. The performance of H. V., a 9-year-old girl with MLD associated with number sense inaccuracy, remained consistently impaired across measurements, with a nonsignificant tendency to worsen. Qualitatively, H. V.'s performance was also characterized by greater variability across sessions. Concomitant clinical observations suggested that H. V.'s difficulties could be aggravated by developing symptoms of mathematics anxiety. Results in these two cases are in line with the hypotheses that at least two reliable patterns of cognitive impairment may underlie math learning difficulties in MLD, one related to number sense inaccuracy and the other to phonological processing impairment. Additionally, it indicates the need for more translational research in order to examine the usefulness and validity of theoretical advances in numerical cognition to the clinical neuropsychological practice with MLD. © 2015 The Institute of Psychology, Chinese

  11. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  12. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  13. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  14. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  15. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  16. Food-Based Science Curriculum Increases 4th Graders Multidisciplinary Science Knowledge

    Science.gov (United States)

    Hovland, Jana A.; Carraway-Stage, Virginia G.; Cela, Artenida; Collins, Caitlin; Díaz, Sebastián R.; Collins, Angelo; Duffrin, Melani W.

    2013-01-01

    Health professionals and policymakers are asking educators to place more emphasis on food and nutrition education. Integrating these topics into science curricula using hand-on, food-based activities may strengthen students' understanding of science concepts. The Food, Math, and Science Teaching Enhancement Resource (FoodMASTER) Initiative is a…

  17. Water. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 3.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of water in students' daily lives; (2) the need to purify drinking…

  18. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  19. Enhancing Mathematical Communication for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-06-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams of people to discuss math and to work collaboratively on math problems or explore interesting mathematical micro-worlds together. The VMT Project studies the online math discourse that takes place during sessions of virtual math teams working on open-ended problem-solving tasks. In particular, it investigates methods of group cognition that are employed by teams in this setting. The VMT environment currently integrates social networking, synchronous text chat, a shared whiteboard for drawing, web browsers and an asynchronous wiki for exchanging findings within the larger community. A simple version of MathML is supported in the whiteboard, chat and wiki for displaying mathematical expressions. The VMT Project is currently integrating the dynamic mathematics application, GeoGebra, into its collaboration environment. This will create a multi-user version of GeoGebra, which can be used in concert with the chat, web browsers, curricular topics and wiki repository.

  20. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  1. A Study of the Experience of Female African-American Seventh Graders in a Science, Technology, Engineering, and Math (STEM) Afterschool Program

    Science.gov (United States)

    Hinds, Beverley Fiona

    The purpose of this qualitative study was to determine what inspires or leads seventh-grade African-American girls toward an interest in STEM, to characterize and describe the context of an out-of-school STEM learning environment, explore the impact on the seventh- grade African-American girls who participated in the program as it relates to individual STEM identity, and identify personal and academic experiences of seventh-grade African- American girls that contribute to the discouragement or pursuit of science and math-related academic pathways and careers. Notable findings in this study included the following: 1. Participants were interested in STEM and able to identify both external and internal influences that supported their involvement and interest in STEM activities. External influences expanded and elevated exposure to STEM experiences. 2. The MJS program provided an opportunity for participants to overcome challenges related to science and math knowledge and skills in school. 3. The MJS program increased levels of interest in STEM for the participants. 4. All participants increased their capacity to demonstrate increased knowledge in STEM content as a result of the learning experiences within the MJS program, and participants transferred this knowledge to experiences outside of the program including school. 5. The STEM learning environment provided multiple opportunities for participants to meet high expectation and access to engaging activities within a supportive, well-managed setting. 6. The MJS program participants demonstrated behaviors related to building a STEM identity through the components described by Carlone and Johnson (2007), including recognition-internal and external acknowledgement of being a STEM person; competence-demonstrating an understanding of STEM content; and performance-publically exhibiting STEM knowledge and skills. The findings in this study suggested that African-American seventh-grade girls interested in STEM are inspired

  2. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  3. Against integration - Why evolution cannot unify the social sciences

    NARCIS (Netherlands)

    Derksen, M

    A lack of integration is often identified as a fundamental problem in psychology and the social sciences. It is thought that only through increased cooperation among the various disciplines and subdisciplines, and integration of their different theoretical approaches, can psychology and the social

  4. Integrating Social Science and Ecosystem Management: A National Challenge

    Science.gov (United States)

    Cordell; H. Ken; Linda Caldwell

    1995-01-01

    These proceedings contain the contributed papers and panel presentations, as well as a paper presented at the National Workshop, of the Conference on Integrating Social Sciences and Ecosystem Management, which was held at Unicoi Lodge and Conference Center, Helen, GA, December 12-14, 1995. The overall purpose of this Conference was to improve understanding, integration...

  5. Short-cut math

    CERN Document Server

    Kelly, Gerard W

    1984-01-01

    Clear, concise compendium of about 150 time-saving math short-cuts features faster, easier ways to add, subtract, multiply, and divide. Each problem includes an explanation of the method. No special math ability needed.

  6. Geography and Geographical Information Science: Interdisciplinary Integrators

    Science.gov (United States)

    Ellul, Claire

    2015-01-01

    To understand how Geography and Geographical Information Science (GIS) can contribute to Interdisciplinary Research (IDR), it is relevant to articulate the differences between the different types of such research. "Multidisciplinary" researchers work in a "parallel play" mode, completing work in their disciplinary work streams…

  7. Integration of Geospatial Science in Teacher Education

    Science.gov (United States)

    Hauselt, Peggy; Helzer, Jennifer

    2012-01-01

    One of the primary missions of our university is to train future primary and secondary teachers. Geospatial sciences, including GIS, have long been excluded from teacher education curriculum. This article explains the curriculum revisions undertaken to increase the geospatial technology education of future teachers. A general education class…

  8. Water Integration Project Science Strategies White Paper

    International Nuclear Information System (INIS)

    Alan K. Yonk

    2003-01-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document

  9. Water Integration Project Science Strategies White Paper

    Energy Technology Data Exchange (ETDEWEB)

    Alan K. Yonk

    2003-09-01

    This white paper has been prepared to document the approach to develop strategies to address Idaho National Engineering and Environmental Laboratory (INEEL) science and technology needs/uncertainties to support completion of INEEL Idaho Completion Project (Environmental Management [EM]) projects against the 2012 plan. Important Idaho Completion Project remediation and clean-up projects include the 2008 OU 10-08 Record of Decision, completion of EM by 2012, Idaho Nuclear Technology and Engineering Center Tanks, INEEL CERCLA Disposal Facility, and the Radioactive Waste Management Complex. The objective of this effort was to develop prioritized operational needs and uncertainties that would assist Operations in remediation and clean-up efforts at the INEEL and develop a proposed path forward for the development of science strategies to address these prioritized needs. Fifteen needs/uncertainties were selected to develop an initial approach to science strategies. For each of the 15 needs/uncertainties, a detailed definition was developed. This included extracting information from the past interviews with Operations personnel to provide a detailed description of the need/uncertainty. For each of the 15 prioritized research and development needs, a search was performed to identify the state of the associated knowledge. The knowledge search was performed primarily evaluating ongoing research. The ongoing research reviewed included Environmental Systems Research Analysis, Environmental Management Science Program, Laboratory Directed Research and Development, Inland Northwest Research Alliance, United States Geological Survey, and ongoing Operations supported projects. Results of the knowledge search are documented as part of this document.

  10. Integrating systems approaches into pharmaceutical sciences.

    NARCIS (Netherlands)

    Westerhoff, H.V.; Mosekilde, E.; Noe, C.; Clemensen, A.M.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose

  11. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  12. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    OpenAIRE

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math de...

  13. Advanced Math Equals Career Readiness. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    The equation is simple: No matter their background, students who take challenging math courses in high school get better jobs and earn more money throughout their entire lives. This paper stresses that: (1) Higher-level math opens doors for any and all postsecondary programs and keeps it open for advancement beyond entry-level jobs; and (2)…

  14. What Types of Instructional Shifts Do Students Experience? Investigating Active Learning in Science, Technology, Engineering, and Math Classes across Key Transition Points from Middle School to the University Level

    OpenAIRE

    Kenneth Akiha; Kenneth Akiha; Emilie Brigham; Emilie Brigham; Brian A. Couch; Justin Lewin; Justin Lewin; Marilyne Stains; MacKenzie R. Stetzer; MacKenzie R. Stetzer; Erin L. Vinson; Erin L. Vinson; Michelle K. Smith; Michelle K. Smith

    2018-01-01

    Despite the need for a strong Science, Technology, Engineering, and Math (STEM) workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon m...

  15. Teaching Math Their Way.

    Science.gov (United States)

    Tankersley, Karen

    1993-01-01

    Teachers at a K-8 urban school in Phoenix, Arizona, worked to develop an effective math program that generated student interest and positive self-esteem. They eventually set aside classroom and large enclosed porch area to house math manipulative lab, where children could learn new concepts at concrete level. Results are excitement about math and…

  16. Solving America's Math Problem

    Science.gov (United States)

    Vigdor, Jacob

    2013-01-01

    Concern about students' math achievement is nothing new, and debates about the mathematical training of the nation's youth date back a century or more. In the early 20th century, American high-school students were starkly divided, with rigorous math courses restricted to a college-bound elite. At midcentury, the "new math" movement sought,…

  17. Gender compatibility, math-gender stereotypes, and self-concepts in math and physics

    Science.gov (United States)

    Koul, Ravinder; Lerdpornkulrat, Thanita; Poondej, Chanut

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Positive self-assessment of ability in the quantitative domains is considered critical for student participation in science, technology, engineering, and mathematics field studies. The present study investigated associations of gender compatibility (gender typicality and contentedness) and math-gender stereotypes with self-concepts in math and physics. Statistical analysis of survey data was based on a sample of 170 male and female high school science students matched on propensity scores based on age and past GPA scores in math. Results of MANCOVA analyses indicated that the combination of high personal gender compatibility with low endorsement of math-gender stereotypes was associated with low gender differentials in math and physics self-concepts whereas the combination of high personal gender compatibility with high endorsement of math-gender stereotypes was associated with high gender differentials in math and physics self-concepts. These results contribute to the recent theoretical and empirical work on antecedents to the math and physics identities critical to achieving gender equity in STEM fields.

  18. Integrating technology into radiologic science education.

    Science.gov (United States)

    Wertz, Christopher Ira; Hobbs, Dan L; Mickelsen, Wendy

    2014-01-01

    To review the existing literature pertaining to the current learning technologies available in radiologic science education and how to implement those technologies. Only articles from peer-reviewed journals and scholarly reports were used in the research for this review. The material was further restricted to those articles that emphasized using new learning technologies in education, with a focus on radiologic science education. Teaching in higher education is shifting from a traditional classroom-based lecture format to one that incorporates new technologies that allow for more varied and diverse educational models. Radiologic technology educators must adapt traditional education delivery methods to incorporate current technologies. Doing so will help engage the modern student in education in ways in which they are already familiar. As students' learning methods change, so must the methods of educational delivery. The use of new technologies has profound implications for education. If implemented properly, these technologies can be effective tools to help educators.

  19. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    Science.gov (United States)

    This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The references considered for inclusion in or cited in the external review draft ISA are available at https://hero.epa.gov/hero/sulfur-oxides. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes an assessment of scientific research from atmospheric sciences, exposure sciences, dosimetry, mode of action, animal and human toxicology, and epidemiology. Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for sulfur oxides (SOx) are included; Annexes provide additional details supporting the ISA. Together, the ISA and Annexes serve to update and revise the last SOx ISA which was published in 2008.

  20. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  1. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  2. Work preferences, life values, and personal views of top math/science graduate students and the profoundly gifted: Developmental changes and gender differences during emerging adulthood and parenthood.

    Science.gov (United States)

    Ferriman, Kimberley; Lubinski, David; Benbow, Camilla P

    2009-09-01

    Work preferences, life values, and personal views of top math/science graduate students (275 men, 255 women) were assessed at ages 25 and 35 years. In Study 1, analyses of work preferences revealed developmental changes and gender differences in priorities: Some gender differences increased over time and increased more among parents than among childless participants, seemingly because the mothers' priorities changed. In Study 2, gender differences in the graduate students' life values and personal views at age 35 were compared with those of profoundly gifted participants (top 1 in 10,000, identified by age 13 and tracked for 20 years: 265 men, 84 women). Again, gender differences were larger among parents. Across both cohorts, men appeared to assume a more agentic, career-focused perspective than women did, placing more importance on creating high-impact products, receiving compensation, taking risks, and gaining recognition as the best in their fields. Women appeared to favor a more communal, holistic perspective, emphasizing community, family, friendships, and less time devoted to career. Gender differences in life priorities, which intensify during parenthood, anticipated differential male-female representation in high-level and time-intensive careers, even among talented men and women with similar profiles of abilities, vocational interests, and educational experiences. (c) 2009 APA, all rights reserved).

  3. Maths in Prison

    Directory of Open Access Journals (Sweden)

    Catherine Patricia Byrne

    2015-08-01

    Full Text Available I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT. This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a prison maths teacher.

  4. Beneath the Numbers: A Review of Gender Disparities in Undergraduate Education across Science, Technology, Engineering, and Math Disciplines

    Science.gov (United States)

    Eddy, Sarah L.; Brownell, Sara E.

    2016-01-01

    This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college…

  5. Preserving Food by Drying. A Math/Science Teaching Manual. Appropriate Technologies for Development. Manual No. M-10.

    Science.gov (United States)

    Fahy, Cynthia; And Others

    This manual presents a design for teaching science principles and mathematics concepts through a sequence of activities concentrating on weather, solar food dryers, and nutrition. Part I focuses on the effect of solar energy on air and water, examining the concepts of evaporation, condensation, radiation, conduction, and convection. These concepts…

  6. The Role of Teacher Morale and Motivation on Students' Science and Math Achievement: Findings from Singapore, Japan, Finland and Turkey

    Science.gov (United States)

    Abazaoglu, Ilkay; Aztekin, Serdar

    2016-01-01

    Teacher motivation is one of the factors that affect the realization of the teaching objectives, motivation and academic achievement of student. This study aimed to answer to the question "How is the relation between the students' academic (sciences and mathematics) achievement and teachers' morale/motivation in Singapore, Japan, Finland and…

  7. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-01-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and…

  8. Exploring Counseling Services and Their Impact on Female, Underrepresented Minority Community College Students in Science, Technology, Engineering, and Math: A Qualitative Study

    Science.gov (United States)

    Strother, Elizabeth

    The economic future of the United States depends on developing a workforce of professionals in science, technology, engineering and mathematics (Adkins, 2012; Mokter Hossain & Robinson, 2012). In California, the college population is increasingly female and underrepresented minority, a population that has historically chosen to study majors other than STEM. In California, community colleges provide a major inroad for students seeking to further their education in one of the many universities in the state. The recent passage of Senate Bill 1456 and the Student Success and Support Program mandate increased counseling services for all California community college students (California Community College Chancellors Office, 2014). This dissertation is designed to explore the perceptions of female, underrepresented minority college students who are majoring in an area of science, technology, engineering and math, as they relate to community college counseling services. Specifically, it aims to understand what counseling services are most effective, and what community college counselors can do to increase the level of interest in STEM careers in this population. This is a qualitative study. Eight participants were interviewed for the case study, all of whom are current or former community college students who have declared a major in a STEM discipline. The semi-structured interviews were designed to help understand what community college counselors can do to better serve this population, and to encourage more students to pursue STEM majors and careers. Through the interviews, themes emerged to explain what counseling services are the most helpful. Successful STEM students benefited from counselors who showed empathy and support. Counselors who understood the intricacies of educational planning for STEM majors were considered the most efficacious. Counselors who could connect students with enrichment activities, such as internships, were highly valued, as were counseling

  9. Teacher Identity and Self-efficacy Development in an Alternative Licensure Program for Middle and High School Math and Science Teachers

    Science.gov (United States)

    West, Robert J.

    This mixed-method case study focused on the phenomenon of the transition from student to teacher. The educational system in the United States is constantly shifting to provide the correct number of teachers for our nations' schools. There is no simple formula for this process and occasionally an area of need arises that is not being met. Recently, the demand for science and math teachers in the K-12 system has outpaced the supply of new teachers (Business-Higher Education Forum, 2011). To complicate the problem further, teachers are leaving the field in record numbers both through retirement and attrition (National Commission on Teaching and America's Future, 2007). Particularly hard hit are poor rural schools with low-performing students, such as the schools of Appalachia (Barley, 2009; Goodpaster, Adedokun, & Weaver, 2012). Out of this need, alternative licensure programs for teachers have developed. The alternative teacher-training program studied in this research is the Woodrow Wilson Teaching Fellowship (WWTF) website, "The Woodrow Wilson Ohio Teaching Fellowship seeks to attract talented, committed individuals with backgrounds in the STEM fields---science, technology, engineering, and mathematics---into teaching in high-need Ohio secondary schools" (para. 2) . The researcher was interested in the formation of teacher identity and self-efficacy as these constructs have been shown to manifest in highly effective teachers that are likely to remain in the field of teaching (Beaucamp & Thomas 2009; Klassen, Tze, Betts, & Gordon, 2010). The research method included in-depth interviews, mixed with pretest/posttest administrations of the Teacher Sense of Efficacy Scale (TSES) (Tschannen-Moran & Woolfolk Hoy 2001) given during the teacher-training period and again following the first year of professional teaching. Results from both the TSES and the interviews indicate that the participants had a successful transition into teaching. They both felt and demonstrated that

  10. MathWorks Simulink and C++ integration with the new VLT PLC-based standard development platform for instrument control systems

    Science.gov (United States)

    Kiekebusch, Mario J.; Di Lieto, Nicola; Sandrock, Stefan; Popovic, Dan; Chiozzi, Gianluca

    2014-07-01

    ESO is in the process of implementing a new development platform, based on PLCs, for upcoming VLT control systems (new instruments and refurbishing of existing systems to manage obsolescence issues). In this context, we have evaluated the integration and reuse of existing C++ libraries and Simulink models into the real-time environment of BECKHOFF Embedded PCs using the capabilities of the latest version of TwinCAT software and MathWorks Embedded Coder. While doing so the aim was to minimize the impact of the new platform by adopting fully tested solutions implemented in C++. This allows us to reuse the in house expertise, as well as extending the normal capabilities of the traditional PLC programming environments. We present the progress of this work and its application in two concrete cases: 1) field rotation compensation for instrument tracking devices like derotators, 2) the ESO standard axis controller (ESTAC), a generic model-based controller implemented in Simulink and used for the control of telescope main axes.

  11. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  12. La maison des mathématiques

    CERN Document Server

    Villani, Cédric; Moncorgé, Vincent

    2014-01-01

    Comment travaillent les mathématiciens ? C'est peut-être en se promenant dans les couloirs de la première des " maisons des mathématiques " de France, l'institut Henri Poincaré, que l'on trouvera quelques réponses. Le mathématicien Cédric Villani et le physicien Jean-Philippe Uzan nous invitent à découvrir cette discipline et ses acteurs. Au fil des pages on suit, à travers de superbes images signées du photographe Vincent Moncorgé, la façon dont se fabrique cette science qui reste souvent mystérieuse. Toutes les dimensions, scientifique, esthétique et poétique, des mathématiques sont convoquées grâce à des regards croisés : la diversité des inspirations des chercheurs, la source de leur créativité, l'imaginaire littéraire et artistique des mathématiques, la drôle de tribu des mathématiciens. Un voyage au cœur de cette " auberge espagnole " des mathématiques, campus " à la française " accueillant des centaines de chercheurs du monde entier, devenu un lieu d'émulation et d'éc...

  13. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  14. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  15. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  16. College Math Assessment: SAT Scores vs. College Math Placement Scores

    Science.gov (United States)

    Foley-Peres, Kathleen; Poirier, Dawn

    2008-01-01

    Many colleges and university's use SAT math scores or math placement tests to place students in the appropriate math course. This study compares the use of math placement scores and SAT scores for 188 freshman students. The student's grades and faculty observations were analyzed to determine if the SAT scores and/or college math assessment scores…

  17. Classroom Learning Environment and Gender: Do They Explain Math Self-Efficacy, Math Outcome Expectations, and Math Interest during Early Adolescence?

    Science.gov (United States)

    Deacon, Mary M.

    2011-01-01

    Despite initiatives to increase and broaden participation in science, technology, engineering, and mathematics (STEM) fields, women remain underrepresented in STEM. While U.S. girls and women perform as well as, if not better, than boys and men in math, research results indicate that there are significant declines in girls' math self-efficacy,…

  18. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  19. 77 FR 21089 - Notice of Submission for OMB Review; Application for Grants Under the Upward Bound Math and...

    Science.gov (United States)

    2012-04-09

    ... Upward Bound Math and Science Program AGENCY: Office of Postsecondary Education, Department of Education. SUMMARY: The Upward Bound Math and Science (UBMS) program provides grants to institutions of higher... for success in a program of postsecondary education that lead to careers in math and science. DATES...

  20. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  1. An Informed Approach to Improving Quantitative Literacy and Mitigating Math Anxiety in Undergraduates Through Introductory Science Courses

    Science.gov (United States)

    Follette, K.; McCarthy, D.

    2012-08-01

    Current trends in the teaching of high school and college science avoid numerical engagement because nearly all students lack basic arithmetic skills and experience anxiety when encountering numbers. Nevertheless, such skills are essential to science and vital to becoming savvy consumers, citizens capable of recognizing pseudoscience, and discerning interpreters of statistics in ever-present polls, studies, and surveys in which our society is awash. Can a general-education collegiate course motivate students to value numeracy and to improve their quantitative skills in what may well be their final opportunity in formal education? We present a tool to assess whether skills in numeracy/quantitative literacy can be fostered and improved in college students through the vehicle of non-major introductory courses in astronomy. Initial classroom applications define the magnitude of this problem and indicate that significant improvements are possible. Based on these initial results we offer this tool online and hope to collaborate with other educators, both formal and informal, to develop effective mechanisms for encouraging all students to value and improve their skills in basic numeracy.

  2. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  3. Female teachers' math anxiety affects girls' math achievement.

    Science.gov (United States)

    Beilock, Sian L; Gunderson, Elizabeth A; Ramirez, Gerardo; Levine, Susan C

    2010-02-02

    People's fear and anxiety about doing math--over and above actual math ability--can be an impediment to their math achievement. We show that when the math-anxious individuals are female elementary school teachers, their math anxiety carries negative consequences for the math achievement of their female students. Early elementary school teachers in the United States are almost exclusively female (>90%), and we provide evidence that these female teachers' anxieties relate to girls' math achievement via girls' beliefs about who is good at math. First- and second-grade female teachers completed measures of math anxiety. The math achievement of the students in these teachers' classrooms was also assessed. There was no relation between a teacher's math anxiety and her students' math achievement at the beginning of the school year. By the school year's end, however, the more anxious teachers were about math, the more likely girls (but not boys) were to endorse the commonly held stereotype that "boys are good at math, and girls are good at reading" and the lower these girls' math achievement. Indeed, by the end of the school year, girls who endorsed this stereotype had significantly worse math achievement than girls who did not and than boys overall. In early elementary school, where the teachers are almost all female, teachers' math anxiety carries consequences for girls' math achievement by influencing girls' beliefs about who is good at math.

  4. Benefiting Female Students in Science, Math, and Engineering: The Nuts and Bolts of Establishing a WISE (Women in Science and Engineering) Learning Community

    Science.gov (United States)

    Pace, Diana; Witucki, Laurie; Blumreich, Kathleen

    2008-01-01

    This paper describes the rationale and the step by step process for setting up a WISE (Women in Science and Engineering) learning community at one institution. Background information on challenges for women in science and engineering and the benefits of a learning community for female students in these major areas are described. Authors discuss…

  5. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  6. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  7. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  8. On Solid Ground: Science, Technology, and Integrated Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Commission's Panel on Integrated Land Management was convened to explore how science and technology could contribute to the overall discussion of land management as part of the review by the Commission on Sustainable Development of the follow-up to the 1992 United Nations Conference on Environment and ...

  9. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  10. Site Index | About IASc | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    History · Memorandum of Association · Role of the Academy · Statutes ... Proceedings – Mathematical Sciences · Resonance – Journal of Science Education · Sadhana ... Math Art and Design: MAD about Math, Math Education and Outreach.

  11. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  12. Can We Integrate Qualitative and Quantitative Research in Science Education?

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this paper is to emphasize the importance of integrating qualitative and quantitative research methodologies in science education. It is argued that the Kuhnian in commensurability thesis (a major source of inspiration for qualitative researchers) represents an obstacle for this integration. A major thesis of the paper is that qualitative researchers have interpreted the increased popularity of their paradigm (research programme) as a revolutionary break through in the Kuhnian sense. A review of the literature in areas relevant to science education shows that researchers are far from advocating qualitative research as the only methodology. It is concluded that competition between divergent approaches to research in science education (cf. Lakatos, 1970) would provide a better forum for a productive sharing of research experiences.

  13. Maths in Prison

    OpenAIRE

    Catherine Patricia Byrne

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a ...

  14. Maths in Prison

    OpenAIRE

    Byrne, Catherine; Carr, Michael

    2015-01-01

    I teach maths to all levels in an adult male remand prison in Ireland and am also studying for a PhD in maths in prison education in Dublin Institute of Technology (DIT). This paper describes recent initiatives piloted by maths teachers and school management to increase attendance, engagement and certification in maths. It assesses the effects of the initiatives and looks at future potential in this setting and in others. To set the paper in context, I begin by describing a typical day as a p...

  15. Getting Manipulative about Math.

    Science.gov (United States)

    Scheer, Janet K.; And Others

    1984-01-01

    Math manipulatives that are made from inexpensive, common items help students understand basic mathematics concepts. Learning activities using Cheerios, jellybeans, and clay as teaching materials are suggested. (DF)

  16. GRE math tests

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Twenty-three GRE Math Tests! The GRE math section is not easy. There is no quick fix that will allow you to ""beat"" the section. But GRE math is very learnable. If you study hard and master the techniques in this book, your math score will improve--significantly! The GRE cannot be ""beaten."" But it can be mastered--through hard work, analytical thought, and by training yourself to think like a test writer. Many of the problems in this book are designed to prompt you to think like a test writer. For example, you will find ""Duals."" These are pairs of similar problems in which only one prop

  17. Beneath the numbers: A review of gender disparities in undergraduate education across science, technology, engineering, and math disciplines

    Science.gov (United States)

    Eddy, Sarah L.; Brownell, Sara E.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] This focused collection explores inequalities in the experiences of women in physics. Yet, it is important for researchers to also be aware of and draw insights from common patterns in the experiences of women across science, technology, engineering and mathematics (STEM) disciplines. Here, we review studies on gender disparities across college STEM on measures that have been correlated with retention. These include disparities in academic performance, engagement, self-efficacy, belonging, and identity. We argue that observable factors such as persistence, performance, and engagement can inform researchers about what populations are disadvantaged in a STEM classroom or program, but we need to measure underlying mechanisms to understand how these inequalities arise. We present a framework that helps connect larger sociocultural factors, including stereotypes and gendered socialization, to student affect and observable behaviors in STEM contexts. We highlight four mechanisms that demonstrate how sociocultural factors could impact women in STEM classrooms and majors. We end with a set of recommendations for how we can more holistically evaluate the experiences of women in STEM to help mitigate the underlying inequities instead of applying a quick fix.

  18. Dr Math at your service

    CSIR Research Space (South Africa)

    Butgereit, L

    2012-10-01

    Full Text Available In this presentation the author explains how the Dr Math service works; how tutors are recruited to act as Dr Math; and how school pupils can reach Dr Math for help with their mathematics homework....

  19. Impact of University Lecturers' Intervention in School MathTeaching

    Indian Academy of Sciences (India)

    Some schools in the neighbourhood of Sefako MakgathoHealth Sciences University (SMU) in South Africa persistentlyyielded poor mathematics results in the past years. Thiswas of concern since maths is the main subject for manyopportunities, including admissiontoSMUstudy programmes.Some SMU maths lecturers ...

  20. Mobilizing the Forgotten Army: Improving Undergraduate Math and Science Education through Professional Development of Graduate Teaching Assistants

    Science.gov (United States)

    Gerton, Jordan

    Evidence-based best practices for improving undergraduate STEM education abound. Unfortunately, these practices have not been widely adopted, in part because typical dissemination efforts are mediated in a top-down fashion and fail to obtain critical buy-in from key local stakeholders. Here, we present a novel framework to increase nationwide uptake of STEM-education best practices through grassroots propagation of Professional Development programs for Graduate Teaching Assistants (GTA-PD). Our model pays special attention to overcoming resistance to change by soliciting, from the very start, critical buy-in from departmental chairs, faculty, and GTAs who have direct control over and responsibility for instruction. A key component of our approach involves an annual National GTA Workshop where faculty-GTA leadership teams from many different Physics and Chemistry departments come together to develop best-practices-based GTA-PD improvement plans for their own departments while guided by a core group of nationally recognized expert practitioners in GTA-PD and STEM education. As a pre-condition for participation, each department chair must pledge to facilitate implementation of their leadership team's plan; additional and ongoing support is provided by the core group of experts, together with other teams from the workshop cohort. Our initial pilot efforts point to success via enthusiastic buy-in within each STEM department due to the potential for immediate positive impacts on both undergraduate instruction and the long term research productivity of GTAs. In the future, longitudinal data on the progress of the GTA-PD programs will be gathered and analyzed to provide guidance for improving the success of future GTA-PD programs. Financial support provided by the Research Corporation for Science Advancement and the American Chemical Society.

  1. New fellows | Announcements | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... of Medical Sciences, New Delhi; S K Bhowmik, Indian Institute of Technology, ... Souvik Mahapatra, Indian Institute of Technology, Mumbai; Prabal K Maiti, Indian ... Math Art and Design: MAD about Math, Math Education and Outreach.

  2. Promotive and Corrosive Factors in African American Students' Math Beliefs and Achievement.

    Science.gov (United States)

    Diemer, Matthew A; Marchand, Aixa D; McKellar, Sarah E; Malanchuk, Oksana

    2016-06-01

    Framed by expectancy-value theory (which posits that beliefs about and the subjective valuation of a domain predict achievement and decision-making in that domain), this study examined the relationships among teacher differential treatment and relevant math instruction on African American students' self-concept of math ability, math task value, and math achievement. These questions were examined by applying structural equation modeling to 618 African American youth (45.6 % female) followed from 7th to 11th grade in the Maryland Adolescent Development in Context Study. While controlling for gender and prior math achievement, relevant math instruction promoted and teacher differential treatment corroded students' math beliefs and achievement over time. Further, teacher discrimination undermined students' perceptions of their teachers, a mediating process under-examined in previous inquiry. These findings suggest policy and practice levers to narrow opportunity gaps, as well as foster math achievement and science, technology, engineering and math success.

  3. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  4. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes

    Science.gov (United States)

    Casad, Bettina J.; Hale, Patricia; Wachs, Faye L.

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms. PMID:26579000

  5. Parent-Child Math Anxiety and Math-Gender Stereotypes Predict Adolescents’ Math Education Outcomes

    Directory of Open Access Journals (Sweden)

    Bettina J Casad

    2015-11-01

    Full Text Available Two studies examined social determinants of adolescents’ math anxiety including parents’ own math anxiety and children’s endorsement of math-gender stereotypes. In study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent’s math anxiety interacts with daughters’ and sons’ anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children’s math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa for performance beliefs and outcomes (self-efficacy and GPA. Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and for boys, and for boys with GPA. These findings address gaps in the literature on the role of parents’ math anxiety in the effects of children’s math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents’ math anxiety and dispelling gender stereotypes in math classrooms.

  6. Parent-child math anxiety and math-gender stereotypes predict adolescents' math education outcomes.

    Science.gov (United States)

    Casad, Bettina J; Hale, Patricia; Wachs, Faye L

    2015-01-01

    Two studies examined social determinants of adolescents' math anxiety including parents' own math anxiety and children's endorsement of math-gender stereotypes. In Study 1, parent-child dyads were surveyed and the interaction between parent and child math anxiety was examined, with an eye to same- and other-gender dyads. Results indicate that parent's math anxiety interacts with daughters' and sons' anxiety to predict math self-efficacy, GPA, behavioral intentions, math attitudes, and math devaluing. Parents with lower math anxiety showed a positive relationship to children's math outcomes when children also had lower anxiety. The strongest relationships were found with same-gender dyads, particularly Mother-Daughter dyads. Study 2 showed that endorsement of math-gender stereotypes predicts math anxiety (and not vice versa) for performance beliefs and outcomes (self-efficacy and GPA). Further, math anxiety fully mediated the relationship between gender stereotypes and math self-efficacy for girls and boys, and for boys with GPA. These findings address gaps in the literature on the role of parents' math anxiety in the effects of children's math anxiety and math anxiety as a mechanism affecting performance. Results have implications for interventions on parents' math anxiety and dispelling gender stereotypes in math classrooms.

  7. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  8. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  9. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  10. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  11. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Integrating Quantitative Reasoning into STEM Courses Using an Energy and Environment Context

    Science.gov (United States)

    Myers, J. D.; Lyford, M. E.; Mayes, R. L.

    2010-12-01

    Many secondary and post-secondary science classes do not integrate math into their curriculum, while math classes commonly teach concepts without meaningful context. Consequently, students lack basic quantitative skills and the ability to apply them in real-world contexts. For the past three years, a Wyoming Department of Education funded Math Science Partnership at the University of Wyoming (UW) has brought together middle and high school science and math teachers to model how math and science can be taught together in a meaningful way. The UW QR-STEM project emphasizes the importance of Quantitative Reasoning (QR) to student success in Science, Technology, Engineering and Mathematics (STEM). To provide a social context, QR-STEM has focused on energy and the environment. In particular, the project has examined how QR and STEM concepts play critical roles in many of the current global challenges of energy and environment. During four 3-day workshops each summer and over several virtual and short face-to-face meetings during the academic year, UW and community college science and math faculty work with math and science teachers from middle and high schools across the state to improve QR instruction in math and science classes. During the summer workshops, faculty from chemistry, physics, earth sciences, biology and math lead sessions to: 1) improve the basic science content knowledge of teachers; 2) improve teacher understanding of math and statistical concepts, 3) model how QR can be taught by engaging teachers in sessions that integrate math and science in an energy and environment context; and 4) focus curricula using Understanding by Design to identify enduring understandings on which to center instructional strategies and assessment. In addition to presenting content, faculty work with teachers as they develop classroom lessons and larger units to be implemented during the school year. Teachers form interdisciplinary groups which often consist of math and

  13. The influence of experiencing success in math on math anxiety, perceived math competence, and math performance

    NARCIS (Netherlands)

    Jansen, B.R.J.; Louwerse, J.; Straatemeier, M.; van der Ven, S.H.G.; Klinkenberg, S.; van der Maas, H.L.J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a

  14. Barron's SAT math workbook

    CERN Document Server

    Leff MS, Lawrence S

    2016-01-01

    This completely revised edition reflects all of the new questions and question types that will appear on the new SAT, scheduled to be administered in Spring 2016. Includes hundreds of revised math questions and answer explanations, math strategies, test-taking tips, and much more.

  15. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  16. The Influence of Experiencing Success in Math on Math Anxiety, Perceived Math Competence, and Math Performance

    Science.gov (United States)

    Jansen, Brenda R. J.; Louwerse, Jolien; Straatemeier, Marthe; Van der Ven, Sanne H. G.; Klinkenberg, Sharon; Van der Maas, Han L. J.

    2013-01-01

    It was investigated whether children would experience less math anxiety and feel more competent when they, independent of ability level, experienced high success rates in math. Comparable success rates were achieved by adapting problem difficulty to individuals' ability levels with a computer-adaptive program. A total of 207 children (grades 3-6)…

  17. GRE math workbook

    CERN Document Server

    Madore, Blair

    2015-01-01

    Reflective of the current GRE, this third edition includes a description of the General Math Exam explaining structure, questions types, and scoring, strategies for problem solving, two full-length math sample sections structured to reflect the actual exam, answers thoroughly explained, and more.

  18. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  19. Promoting children's health through physically active math classes: a pilot study.

    Science.gov (United States)

    Erwin, Heather E; Abel, Mark G; Beighle, Aaron; Beets, Michael W

    2011-03-01

    School-based interventions are encouraged to support youth physical activity (PA). Classroom-based PA has been incorporated as one component of school wellness policies. The purpose of this pilot study is to examine the effects of integrating PA with mathematics content on math class and school day PA levels of elementary students. Participants include four teachers and 75 students. Five math classes are taught without PA integration (i.e., baseline) followed by 13 math classes that integrate PA. Students wear pedometers and accelerometers to track PA during math class and throughout the school day. Students perform significantly more PA on school days and in math classes during the intervention. In addition, students perform higher intensity (step min(-1)) PA during PA integration math classes compared with baseline math classes. Integrating PA into the classroom is an effective alternative approach to improving PA levels among youth and is an important component of school-based wellness policies.

  20. Brazilian Science and Research Integrity: Where are We? What Next?

    Directory of Open Access Journals (Sweden)

    Sonia M.R. Vasconcelos

    2015-06-01

    Full Text Available Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  1. Brazilian Science and Research Integrity: Where are We? What Next?

    Science.gov (United States)

    Vasconcelos, Sonia M R; Sorenson, Martha M; Watanabe, Edson H; Foguel, Debora; Palácios, Marisa

    2015-01-01

    Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  2. Productive failure in learning math.

    Science.gov (United States)

    Kapur, Manu

    2014-06-01

    When learning a new math concept, should learners be first taught the concept and its associated procedures and then solve problems, or solve problems first even if it leads to failure and then be taught the concept and the procedures? Two randomized-controlled studies found that both methods lead to high levels of procedural knowledge. However, students who engaged in problem solving before being taught demonstrated significantly greater conceptual understanding and ability to transfer to novel problems than those who were taught first. The second study further showed that when given an opportunity to learn from the failed problem-solving attempts of their peers, students outperformed those who were taught first, but not those who engaged in problem solving first. Process findings showed that the number of student-generated solutions significantly predicted learning outcomes. These results challenge the conventional practice of direct instruction to teach new math concepts and procedures, and propose the possibility of learning from one's own failed problem-solving attempts or those of others before receiving instruction as alternatives for better math learning. © 2014 Cognitive Science Society, Inc.

  3. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  4. Flight Software Math Library

    Science.gov (United States)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  5. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  6. A New Approach to A Science Magnet School - Classroom and Museum Integration

    Science.gov (United States)

    Franklin, Samuel

    2009-03-01

    The Pittsburgh Science & Technology Academy is a place where any student with an interest in science, technology, engineering or math can develop skills for a career in life sciences, environmental sciences, computing, or engineering. The Academy isn't just a new school. It's a new way to think about school. The curriculum is tailored to students who have a passion for science, technology, engineering or math. The environment is one of extraordinary support for students, parents, and faculty. And the Academy exists to provide opportunities, every day, for students to Dream. Discover. Design. That is, Academy students set goals and generate ideas, research and discover answers, and design real solutions for the kinds of real-world problems that they'll face after graduation. The Academy prepares students for their future, whether they go on to higher education or immediate employment. This talk will explain the unique features of the Pittsburgh Science & Technology Academy, lessons learned from its two-year design process, and the role that the Carnegie Museums have played and will continue to play as the school grows.

  7. USGS Integration of New Science and Technology, Appendix A

    Science.gov (United States)

    Brey, Marybeth; Knights, Brent C.; Cupp, Aaron R.; Amberg, Jon J.; Chapman, Duane C.; Calfee, Robin D.; Duncker, James J.

    2017-01-01

    This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

  8. Journal of Mind and Medical Sciences: translational and integrative mission

    OpenAIRE

    David L. Rowland; Ion G. Motofei

    2017-01-01

    Initiated four years ago, Journal of Mind and Medical Sciences (J Mind Med Sci.) established the mission to publish papers on mental and medical topics in distinct but closely interrelated domains. The editorial policy especially encourages interdisciplinary and integrative perspectives, being equally focused on basic research and clinical investigations and short reports. The journal adheres to the philosophy that high quality, original ideas and information should be readily accessibl...

  9. Agroecology as a Science of Integration for Sustainability in Agriculture

    Directory of Open Access Journals (Sweden)

    Fabio Caporali

    2007-06-01

    Full Text Available A knowledge contribution is provided in order to understand agroecology as both a scientific discipline and a philosophical paradigm for promoting sustainability in agriculture. The peculiar character of agroecology as an applied science based on the systems paradigm is explored in the fields of research and tuition. As an organisational capability of connecting different hierarchical levels in accordance with the goal of sustainability, integration is shown as an emergent property of the evolution of agriculture as a human activity system.

  10. Math and Economics: Implementing Authentic Instruction in Grades K-5

    Science.gov (United States)

    Althauser, Krista; Harter, Cynthia

    2016-01-01

    The purpose of this study is to outline a partnership program that involved a local elementary school district, an institution of higher education, the local business community, and a state economic education advocacy group to integrate economics into math in grades K-5. The "Economics: Math in Real Life" program was provided in…

  11. Motivation and Math Anxiety for Ability Grouped College Math Students

    Science.gov (United States)

    Helming, Luralyn

    2013-01-01

    The author studied how math anxiety, motivation, and ability group interact to affect performance in college math courses. This clarified the effects of math anxiety and ability grouping on performance. It clarified the interrelationships between math anxiety, motivation, and ability grouping by considering them in a single analysis. It introduces…

  12. Underrepresented Racial/Ethnic Minority Graduate Students in Science, Technology, Engineering, and Math (STEM) Disciplines: A Cross Institutional Analysis of their Experiences

    Science.gov (United States)

    Figueroa, Tanya

    Considering the importance of a diverse science, technology, engineering, and math (STEM) research workforce for our country's future, it is troubling that many underrepresented racial minority (URM) students start graduate STEM programs, but do not finish. However, some institutional contexts better position students for degree completion than others. The purpose of this study was to uncover the academic and social experiences, power dynamics, and programmatic/institutional structures URM students face within their graduate STEM programs that hinder or support degree progression. Using a critical socialization framework applied in a cross-comparative qualitative study, I focused on how issues of race, ethnicity, and underrepresentation within the educational contexts shape students' experiences. Data was collected from focus group interviews involving 53 URM graduate students pursuing STEM disciplines across three institution types -- a Predominately White Institution, a Hispanic-Serving Institution, and a Historically Black University. Results demonstrate that when students' relationships with faculty advisors were characterized by benign neglect, students felt lost, wasted time and energy making avoidable mistakes, had less positive views of their experiences, and had more difficulty progressing through classes or research, which could cause them to delay time to degree completion or to leave with a master's degree. Conversely, faculty empowered students when they helped them navigate difficult processes/milestones with regular check-ins, but also allowed students room to make decisions and solve problems independently. Further, faculty set the tone for the overall interactional culture and helping behavior in the classroom and lab contexts; where faculty modeled collaboration and concern for students, peers were likely to do the same. International peers sometimes excluded domestic students both socially and academically, which had a negative affect on

  13. Why and How Do Parents Decide to Send Their Children to the Interdistrict School Choice Program at the Magnet Program for Math and Science

    Science.gov (United States)

    Doyle, Kevin S.

    The New Jersey Interdistrict School Choice Program allows parents to send their students to schools outside of their local school district. Determining why parents send their students to choice schools is important to school leaders who are trying to attract new students, as well as those who are trying to retain their current students. This study examined the reasons why parents decided to send their students to the Magnet Program for Math and Science (MP4M&S), a school choice program in a suburban school district in northwest New Jersey, during the 2015- 2016 school year. A large volume of research has focused on school choice programs in urban and poor communities. This study addressed the gap in the research by focusing on an affluent suburban school district. This mixed methods study focused on three areas, why parents choose to send their students to the MP4M&S, what criteria they used to make their decision, and where they got their information. Research shows that these three areas of focus can be influenced by parental level of education, socioeconomic status, geographic location, academic rigor, school quality, and school environment. Parents from different groups, based upon their out-of-district status, were interviewed. The information from the interviews was used to focus a survey that was given to the families of all 137 students in the MP4M&S during the 2015-2016 school year. The results of this study show that parents found the academic focus, academic rigor, the school environment, the original research project, the activity offerings, and the economics involved in attending the program to be important attractors. The study also found that the Information Nights, the school website, and interactions with members of the MP4M&S community to be important sources of information. Finally, the study found that there were few differences between in and out-of-district parents when assigning importance to both the attractors and the sources in the study

  14. Examination of Science and Math Course Achievements of Vocational High School Students in the Scope of Self-Efficacy and Anxiety

    Science.gov (United States)

    Yüksel, Mehmet; Geban, Ömer

    2016-01-01

    This study attempted to predict physics, chemistry, and biology and math course achievements of vocational high school students according to the variables of student self-efficacy, academic self-efficacy, state anxiety and trait anxiety. Study data were collected using a questionnaire administered to the students of a vocational high school…

  15. Comment on: Path integral solution of the Schroedinger equation in curvilinear coordinates: A straightforward procedure [J. Math. Phys. 37, 4310 endash 4319 (1996)

    International Nuclear Information System (INIS)

    Wurm, A.; LaChapelle, J.

    1997-01-01

    The authors comment on the paper by J. LaChapelle, J. Math. Phys. 37, 4310 (1996), and give explicit expressions for the parametrization, its solution, and the Lie derivatives of the Schroedinger equation for the case of n-dimensional spherical coordinates

  16. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  17. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  18. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  19. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  20. The Effects of Math Anxiety

    Science.gov (United States)

    Andrews, Amanda; Brown, Jennifer

    2015-01-01

    Math anxiety is a reoccurring problem for many students, and the effects of this anxiety on college students are increasing. The purpose of this study was to examine the association between pre-enrollment math anxiety, standardized test scores, math placement scores, and academic success during freshman math coursework (i.e., pre-algebra, college…

  1. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  2. Pre-Service Teachers' Beliefs about Knowledge, Mathematics, and Science

    Science.gov (United States)

    Cady, Jo Ann; Rearden, Kristin

    2007-01-01

    This study examines the beliefs of K-8 preservice teachers during a content methods course. The goals of this course included exposing the preservice teachers to student-centered instructional methods for math and science and encouraging the development of lessons that would integrate mathematics and science. Prior research suggested that one must…

  3. SAT math prep course

    CERN Document Server

    Kolby, Jeff

    2011-01-01

    Comprehensive Prep for SAT Math Every year, students pay 1,000 and more to test prep companies to prepare for the math section of the new SAT. Now you can get the same preparation in a book. Features: * Comprehensive Review: Twenty-three chapters provide complete review of SAT math. * Practice: Includes 164 examples and more than 500 exercises! Arranged from easy to medium to hard to very hard. * Diagnostic Test: The diagnostic test measures your strengths and weaknesses and directs you to areas you need to study more. * Performance: If your target is a 700+ score, this is the book!

  4. More math into Latex

    CERN Document Server

    Grätzer, George

    2007-01-01

    For close to two decades, Math into Latex has been the standard introduction and complete reference for writing articles and books containing mathematical formulas. In this fourth edition, the reader is provided with important updates on articles and books. An important new topic is discussed: transparencies (computer projections). Key features of More Math into Latex, 4th edition: Installation instructions for PC and Mac users; An example-based, visual approach and a gentle introduction with the Short Course; A detailed exposition of multiline math formulas with a Visual Guide; A unified appr

  5. Principals in Partnership with Math Coaches

    Science.gov (United States)

    Grant, Catherine Miles; Davenport, Linda Ruiz

    2009-01-01

    One of the most promising developments in math education is the fact that many districts are hiring math coaches--also called math resource teachers, math facilitators, math lead teachers, or math specialists--to assist elementary-level teachers with math instruction. What must not be lost, however, is that principals play an essential role in…

  6. A Study of Perceptions of Math Mindset, Math Anxiety, and View of Math by Young Adults

    Science.gov (United States)

    Hocker, Tami

    2017-01-01

    This study's purpose was to determine whether instruction in growth math mindset led to change in perceptions of 18-22-year-old at-risk students in math mindset, math anxiety, and view of math. The experimental curriculum was created by the researcher with the guidance of experts in mathematics and education and focused on the impact of brain…

  7. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  8. Linkage of reproductive sciences: from 'quick fix' to 'integrated' conservation.

    Science.gov (United States)

    Wildt, D E; Ellis, S; Howard, J G

    2001-01-01

    Our laboratory has experienced four phases in understanding how the reproductive sciences contribute to genuine conservation of biodiversity. The first is the 'quick fix phase' in which the erroneous assumption is made that extant knowledge and techniques are readily adaptable to an unstudied wild animal to produce offspring rapidly. The second is the 'species-specificity phase' in which it is recognized that every species has evolved unique reproductive mechanisms that must be mastered before propagation can be enhanced. The third is the 'applicability phase' in which one grasps that all the new knowledge and technology are of minimal relevance without the cooperation of wildlife managers. The final phase is 'integration', the realization that reproduction is only one component in an abundantly complex conservation puzzle that requires interweaving many scientific disciplines with elaborate biopolitical, economic and habitat variables. These phases are illustrated using 20 years of experience with wildlife species, including the cheetah, black-footed ferret and giant panda. We conclude that the foremost value of the reproductive sciences for conserving endangered species is the discipline's powerful laboratory tools for understanding species-specific reproductive mechanisms. Such scholarly information, when applied holistically, can be used to improve management by natural or, occasionally, assisted breeding. Genuine conservation is achieved only when the reproductive knowledge and technologies are integrated into multidisciplinary programmes that preserve species integrity ex situ and preferably in situ.

  9. Art-science integration: Portrait of a residency

    Science.gov (United States)

    Feldman, Rhoda Lynn

    This dissertation is based on a year-long study of an arts integration residency at Hampton, a public elementary school in the Midwest. The study examined residency curriculum and pedagogies, factors facilitating and constraining the integration, and the perception of the artist, teachers, and students of the program and arts integration within it. The Hampton residency, "Art and Science: A Shared Evolution," represented a historical approach to the linking of the two disciplines within the framework of a survey extending from the origins of the universe to relativity theory, from cave paintings to Picasso. Findings indicate that integration encompassed more than issues of curriculum and pedagogy---that it was closely linked to the nature and extent of artist-teacher collaboration (importance of the interpersonal element); that multiple factors seemed to militate against integration and collaboration, including differing expectations of teachers and artist for the residency and integration, the lack of sustained professional development to support the integration of disciplines and collaboration of participants, and the pressure upon teachers of high stakes testing; that a common prep period was a necessary but not sufficient condition for collaboration to occur; and that the pedagogy of the artist while at Hampton was different than while at another school with similar demographics. The experience at Hampton seems to support conceiving of integration as a partnership capitalizing on the strengths of each partner, including teachers in the planning and development of curriculum, establishing structures to support teachers and artists in integrating curriculum and building/sustaining collaborative relationships, and insuring alignment of residency units with subject-area teaching. The study revealed that while integration in theory can offer an antidote for fragmentation of the school curriculum, in practice it is difficult to execute in a way that is meaningful to

  10. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  11. Next Generation Space Telescope Integrated Science Module Data System

    Science.gov (United States)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  12. Integrated assessment, water resources, and science-policy communication

    International Nuclear Information System (INIS)

    Davies, E.G.R.; Akhtar, M.K.; McBean, G.A.; Simonovic, S.P.

    2009-01-01

    Traditional climate change modeling neglects the role of feedbacks between different components of society-biosphere-climate system. Yet, such interconnections are critical. This paper describes an alternative, Integrated Assessment (IA) model that focuses on feedbacks not only within individual elements of the society-biosphere-climate system, but also on their interconnections. The model replicates the relevant dynamics of nine components of the society-biosphere- climate system at the sectoral, or single-component, level: climate, carbon cycle, hydrological cycle, water demand, water quality, population, land use, energy and economy. The paper discusses the role of the model in science-policy dialogue. (author)

  13. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  14. CILogon: An Integrated Identity and Access Management Platform for Science

    Science.gov (United States)

    Basney, J.

    2016-12-01

    When scientists work together, they use web sites and other software to share their ideas and data. To ensure the integrity of their work, these systems require the scientists to log in and verify that they are part of the team working on a particular science problem. Too often, the identity and access verification process is a stumbling block for the scientists. Scientific research projects are forced to invest time and effort into developing and supporting Identity and Access Management (IAM) services, distracting them from the core goals of their research collaboration. CILogon provides an IAM platform that enables scientists to work together to meet their IAM needs more effectively so they can allocate more time and effort to their core mission of scientific research. The CILogon platform enables federated identity management and collaborative organization management. Federated identity management enables researchers to use their home organization identities to access cyberinfrastructure, rather than requiring yet another username and password to log on. Collaborative organization management enables research projects to define user groups for authorization to collaboration platforms (e.g., wikis, mailing lists, and domain applications). CILogon's IAM platform serves the unique needs of research collaborations, namely the need to dynamically form collaboration groups across organizations and countries, sharing access to data, instruments, compute clusters, and other resources to enable scientific discovery. CILogon provides a software-as-a-service platform to ease integration with cyberinfrastructure, while making all software components publicly available under open source licenses to enable re-use. Figure 1 illustrates the components and interfaces of this platform. CILogon has been operational since 2010 and has been used by over 7,000 researchers from more than 170 identity providers to access cyberinfrastructure including Globus, LIGO, Open Science Grid

  15. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  16. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  17. Psychology as an Evolving, Interdisciplinary Science: Integrating Science in Sensation and Perception from Fourier to Fluid Dynamics

    Science.gov (United States)

    Ebersole, Tela M.; Kelty-Stephen, Damian G.

    2017-01-01

    This article outlines the theoretical rationale and process for an integrated-science approach to teaching sensation and perception (S&P) to undergraduate psychology students that may also serve as an integrated-science curriculum. The course aimed to introduce the interdisciplinary evolution of this psychological field irrespective of any…

  18. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  19. Collaborative Action Research on Technology Integration for Science Learning

    Science.gov (United States)

    Wang, Chien-Hsing; Ke, Yi-Ting; Wu, Jin-Tong; Hsu, Wen-Hua

    2012-02-01

    This paper briefly reports the outcomes of an action research inquiry on the use of blogs, MS PowerPoint [PPT], and the Internet as learning tools with a science class of sixth graders for project-based learning. Multiple sources of data were essential to triangulate the key findings articulated in this paper. Corresponding to previous studies, the incorporation of technology and project-based learning could motivate students in self-directed exploration. The students were excited about the autonomy over what to learn and the use of PPT to express what they learned. Differing from previous studies, the findings pointed to the lack information literacy among students. The students lacked information evaluation skills, note-taking and information synthesis. All these findings imply the importance of teaching students about information literacy and visual literacy when introducing information technology into the classroom. The authors suggest that further research should focus on how to break the culture of "copy-and-paste" by teaching the skills of note-taking and synthesis through inquiry projects for science learning. Also, further research on teacher professional development should focus on using collaboration action research as a framework for re-designing graduate courses for science teachers in order to enhance classroom technology integration.

  20. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2010-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported evaluation of mathematics, and math anxiety in 140 primary school children between the end of first grade and the middle of third grade. Structural equation modeling revealed a strong influence of calculation ability and math anxiety on the evaluation of mathematics but no effect of math anxiety on calculation ability or vice versa—contrasting with the frequent clinical reports of math anxiety even in very young MLD children. To summarize, our study is a first step toward a better understanding of the link between math anxiety and math performance in early primary school years performance during typical and atypical courses of development. PMID:20401159

  1. Rocking Your Writing Program: Integration of Visual Art, Language Arts, & Science

    Science.gov (United States)

    Poldberg, Monique M.,; Trainin, Guy; Andrzejczak, Nancy

    2013-01-01

    This paper explores the integration of art, literacy and science in a second grade classroom, showing how an integrative approach has a positive and lasting influence on student achievement in art, literacy, and science. Ways in which art, science, language arts, and cognition intersect are reviewed. Sample artifacts are presented along with their…

  2. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  3. MATH77 - A LIBRARY OF MATHEMATICAL SUBPROGRAMS FOR FORTRAN 77, RELEASE 4.0

    Science.gov (United States)

    Lawson, C. L.

    1994-01-01

    MATH77 is a high quality library of ANSI FORTRAN 77 subprograms implementing contemporary algorithms for the basic computational processes of science and engineering. The portability of MATH77 meets the needs of present-day scientists and engineers who typically use a variety of computing environments. Release 4.0 of MATH77 contains 454 user-callable and 136 lower-level subprograms. Usage of the user-callable subprograms is described in 69 sections of the 416 page users' manual. The topics covered by MATH77 are indicated by the following list of chapter titles in the users' manual: Mathematical Functions, Pseudo-random Number Generation, Linear Systems of Equations and Linear Least Squares, Matrix Eigenvalues and Eigenvectors, Matrix Vector Utilities, Nonlinear Equation Solving, Curve Fitting, Table Look-Up and Interpolation, Definite Integrals (Quadrature), Ordinary Differential Equations, Minimization, Polynomial Rootfinding, Finite Fourier Transforms, Special Arithmetic , Sorting, Library Utilities, Character-based Graphics, and Statistics. Besides subprograms that are adaptations of public domain software, MATH77 contains a number of unique packages developed by the authors of MATH77. Instances of the latter type include (1) adaptive quadrature, allowing for exceptional generality in multidimensional cases, (2) the ordinary differential equations solver used in spacecraft trajectory computation for JPL missions, (3) univariate and multivariate table look-up and interpolation, allowing for "ragged" tables, and providing error estimates, and (4) univariate and multivariate derivative-propagation arithmetic. MATH77 release 4.0 is a subroutine library which has been carefully designed to be usable on any computer system that supports the full ANSI standard FORTRAN 77 language. It has been successfully implemented on a CRAY Y/MP computer running UNICOS, a UNISYS 1100 computer running EXEC 8, a DEC VAX series computer running VMS, a Sun4 series computer running Sun

  4. Teacher Education that Works: Preparing Secondary-Level Math and Science Teachers for Success with English Language Learners Through Content-Based Instruction

    Directory of Open Access Journals (Sweden)

    Margo Elisabeth DelliCarpini

    2014-11-01

    Full Text Available Little research exists on effective ways to prepare secondary mathematics and science teachers to work with English language learners (ELLs in mainstream mathematics and science (subsequently referred to as STEM classrooms. Given the achievement gap that exists between ELLs and their native-speaking counterparts in STEM subjects, as well as the growing numbers of ELLs in US schools, this becomes a critical issue, as academic success for these students depends on the effectiveness of instruction they receive not only in English as a second language classes (ESL, but in mainstream classrooms as well. This article reports on the effects of a program restructuring that implemented coursework specifically designed to prepare pre-service and in-service mathematics, science, and ESL teachers to work with ELLs in their content and ESL classrooms through collaboration between mainstream STEM and ESL teachers, as well as effective content and language integration. We present findings on teachers’ attitudes and current practices related to the inclusion of ELLs in the secondary-level content classroom and their current level of knowledge and skills in collaborative practice. We further describe the rationale behind the development of the course, provide a description of the course and its requirements as they changed throughout its implementation during two semesters, and present findings from the participants enrolled. Additionally, we discuss the lessons learned; researchers’ innovative approaches to implementation of content-based instruction (CBI and teacher collaboration, which we term two-way CBI (DelliCarpini & Alonso, 2013; and implications for teacher education programs.

  5. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  6. An Indigenous Framework for Science, Technology, Engineering and Mathematics

    Science.gov (United States)

    Monette, G.

    2003-12-01

    The American Indian Higher Education Consortium, composed of 35 American Indian tribally-controlled Colleges and Universities in the U.S. and Canada, is leading a comprehensive effort to improve American Indian student achievement in STEM. A key component of this effort is the synthesis of indigenous ways of knowing and western education systems. This presentation will provide an overview of culturally responsive, place-based teaching, learning, and research and will discuss potential opportunities and strategies for helping to ensure that education systems and research programs reflect our diversity and respect our cultures. One example to be discussed is the NSF-funded "Tribal College Rural Systemic Initiative." Founded on the belief that all students can learn and should be given the opportunity to reach their full potential, Tribal Colleges are leading this effort to achieve successful and sustainable improvement of science, math, and technology education at the K-14 level in rural, economically disadvantaged, geographically challenged areas. Working with parents, tribal governments, schools and the private sector, the colleges are helping to implement math and science standards-based curriculum for students and standards-based assessment for schools; provide math and science standards-based professional development for teachers, administrators, and community leaders; and integrate local Native culture into math and science standards-based curriculum. The close working relationship between the Tribal Colleges and K-12 is paying off. According to the National Science Foundation, successful systemic reform has resulted in enhanced student achievement and participation in science and math; reductions in the achievement disparities among students that can be attributed to socioeconomic status, race, ethnicity, gender, or learning styles; implementation of a comprehensive, standards-based curriculum aligned with instructions and assessment; development of a coherent

  7. Questions de mathématiques élémentaires à l'usage des candidats aux écoles du Gouvernement, des aspirants au baccalauréat ès sciences et des élèves des établissements d'enseignement secondaire

    CERN Document Server

    Vuibert, Henry

    1879-01-01

    Questions de mathématiques élémentaires à l'usage des candidats aux écoles du Gouvernement, des aspirants au baccalauréat ès sciences et des élèves des établissements d'enseignement secondaire

  8. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    Science.gov (United States)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  9. An Annotated Math Lab Inventory.

    Science.gov (United States)

    Schussheim, Joan Yares

    1980-01-01

    A listing of mathematics laboratory material is organized as follows: learning kits, tape programs, manipulative learning materials, publications, math games, math lab library, and an alphabetized listing of publishers and/or companies offering materials. (MP)

  10. Business math for dummies

    CERN Document Server

    Sterling, Mary Jane

    2008-01-01

    Now, it is easier than ever before to understand complex mathematical concepts and formulas and how they relate to real-world business situations. All you have to do it apply the handy information you will find in Business Math For Dummies. Featuring practical practice problems to help you expand your skills, this book covers topics like using percents to calculate increases and decreases, applying basic algebra to solve proportions, and working with basic statistics to analyze raw data. Find solutions for finance and payroll applications, including reading financial statements, calculating wages and commissions, and strategic salary planning. Navigate fractions, decimals, and percents in business and real estate transactions, and take fancy math skills to work. You'll be able to read graphs and tables and apply statistics and data analysis. You'll discover ways you can use math in finance and payroll investments, banking and payroll, goods and services, and business facilities and operations. You'll learn ho...

  11. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Directory of Open Access Journals (Sweden)

    Ian M Lyons

    Full Text Available Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs, math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula. Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  12. When Math Hurts: Math Anxiety Predicts Pain Network Activation in Anticipation of Doing Math

    Science.gov (United States)

    Lyons, Ian M.; Beilock, Sian L.

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs’ feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation – such as pain – about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one’s math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths. PMID:23118929

  13. When math hurts: math anxiety predicts pain network activation in anticipation of doing math.

    Science.gov (United States)

    Lyons, Ian M; Beilock, Sian L

    2012-01-01

    Math can be difficult, and for those with high levels of mathematics-anxiety (HMAs), math is associated with tension, apprehension, and fear. But what underlies the feelings of dread effected by math anxiety? Are HMAs' feelings about math merely psychological epiphenomena, or is their anxiety grounded in simulation of a concrete, visceral sensation - such as pain - about which they have every right to feel anxious? We show that, when anticipating an upcoming math-task, the higher one's math anxiety, the more one increases activity in regions associated with visceral threat detection, and often the experience of pain itself (bilateral dorso-posterior insula). Interestingly, this relation was not seen during math performance, suggesting that it is not that math itself hurts; rather, the anticipation of math is painful. Our data suggest that pain network activation underlies the intuition that simply anticipating a dreaded event can feel painful. These results may also provide a potential neural mechanism to explain why HMAs tend to avoid math and math-related situations, which in turn can bias HMAs away from taking math classes or even entire math-related career paths.

  14. Implicit Social Cognitions Predict Sex Differences in Math Engagement and Achievement

    Science.gov (United States)

    Nosek, Brian A.; Smyth, Frederick L.

    2011-01-01

    Gender stereotypes about math and science do not need to be endorsed, or even available to conscious introspection, to contribute to the sex gap in engagement and achievement in science, technology, engineering, and mathematics (STEM). The authors examined implicit math attitudes and stereotypes among a heterogeneous sample of 5,139 participants.…

  15. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  16. ICAT: Integrating data infrastructure for facilities based science

    International Nuclear Information System (INIS)

    Flannery, Damian; Matthews, Brian; Griffin, Tom; Bicarregui, Juan; Gleaves, Michael; Lerusse, Laurent; Downing, Roger; Ashton, Alun; Sufi, Shoaib; Drinkwater, Glen; Kleese van Dam, Kerstin

    2009-01-01

    ICAT: Integrating data infrastructure for facilities based science Damian Flannery, Brian Matthews, Tom Griffin, Juan Bicarregui, Michael Gleaves, Laurent Lerusse, Roger Downing, Alun Ashton, Shoaib Sufi, Glen Drinkwater, Kerstin Kleese Abstract Scientific facilities, in particular large-scale photon and neutron sources, have demanding requirements to manage the increasing quantities of experimental data they generate in a systematic and secure way. In this paper, we describe the ICAT infrastructure for cataloguing facility generated experimental data which has been in development within STFC and DLS for several years. We consider the factors which have influenced its design and describe its architecture and metadata model, a key tool in the management of data. We go on to give an outline of its current implementation and use, with plans for its future development.

  17. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  18. Integrated Science Assessment (ISA) of Ozone and Related Photochemical Oxidants (Second External Review Draft, Sep 2011)

    Science.gov (United States)

    EPA has released the Integrated Science Assessment of Ozone and Related Photochemical Oxidants (Second External Review Draft) for independent peer review and public review. This draft document represents a concise synthesis and evaluation of the most policy-relevant scienc...

  19. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  20. Group Activities for Math Enthusiasts

    Science.gov (United States)

    Holdener, J.; Milnikel, R.

    2016-01-01

    In this article we present three group activities designed for math students: a balloon-twisting workshop, a group proof of the irrationality of p, and a game of Math Bingo. These activities have been particularly successful in building enthusiasm for mathematics and camaraderie among math faculty and students at Kenyon College.

  1. Integrating Free and Open Source Solutions into Geospatial Science Education

    Directory of Open Access Journals (Sweden)

    Vaclav Petras

    2015-06-01

    Full Text Available While free and open source software becomes increasingly important in geospatial research and industry, open science perspectives are generally less reflected in universities’ educational programs. We present an example of how free and open source software can be incorporated into geospatial education to promote open and reproducible science. Since 2008 graduate students at North Carolina State University have the opportunity to take a course on geospatial modeling and analysis that is taught with both proprietary and free and open source software. In this course, students perform geospatial tasks simultaneously in the proprietary package ArcGIS and the free and open source package GRASS GIS. By ensuring that students learn to distinguish between geospatial concepts and software specifics, students become more flexible and stronger spatial thinkers when choosing solutions for their independent work in the future. We also discuss ways to continually update and improve our publicly available teaching materials for reuse by teachers, self-learners and other members of the GIS community. Only when free and open source software is fully integrated into geospatial education, we will be able to encourage a culture of openness and, thus, enable greater reproducibility in research and development applications.

  2. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  3. Rural Alaska Science and Mathematics Network

    National Research Council Canada - National Science Library

    Brunk, Blanche R

    2005-01-01

    ... and progress in math and science education. The goal of this project was to develop and deliver, both on-site and through distance learning, a comprehensive program of developmental and college preparatory math and science courses at minority...

  4. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  5. Is Math Anxiety Always Bad for Math Learning? The Role of Math Motivation.

    Science.gov (United States)

    Wang, Zhe; Lukowski, Sarah L; Hart, Sara A; Lyons, Ian M; Thompson, Lee A; Kovas, Yulia; Mazzocco, Michèle M M; Plomin, Robert; Petrill, Stephen A

    2015-12-01

    The linear relations between math anxiety and math cognition have been frequently studied. However, the relations between anxiety and performance on complex cognitive tasks have been repeatedly demonstrated to follow a curvilinear fashion. In the current studies, we aimed to address the lack of attention given to the possibility of such complex interplay between emotion and cognition in the math-learning literature by exploring the relations among math anxiety, math motivation, and math cognition. In two samples-young adolescent twins and adult college students-results showed inverted-U relations between math anxiety and math performance in participants with high intrinsic math motivation and modest negative associations between math anxiety and math performance in participants with low intrinsic math motivation. However, this pattern was not observed in tasks assessing participants' nonsymbolic and symbolic number-estimation ability. These findings may help advance the understanding of mathematics-learning processes and provide important insights for treatment programs that target improving mathematics-learning experiences and mathematical skills. © The Author(s) 2015.

  6. Business Math without Tears.

    Science.gov (United States)

    Merchant, Ronald

    1980-01-01

    Describes a new course at Spokane Falls Community College which builds on and reviews basic business math and electronic calculator skills. Material is self-paced and includes work with metrics. Discusses student evaluation of the course and type of equipment used. (CT)

  7. Think Scientifically: The NASA Solar Dynamics Observatory's Elementary Science Literacy Program

    Science.gov (United States)

    Van Norden, Wendy M.

    2013-07-01

    The pressure to focus on math and reading at the elementary level has increased in recent years. As a result, science education has taken a back seat in elementary classrooms. The Think Scientifically book series provides a way for science to easily integrate with existing math and reading curriculum. This story-based science literature program integrates a classic storybook format with solar science concepts, to make an educational product that meets state literacy standards. Each story is accompanied by hands-on labs and activities that teachers can easily conduct in their classrooms with minimal training and materials, as well as math and language arts extensions. These books are being distributed through teacher workshops and conferences, and are available free at http://sdo.gsfc.nasa.gov/epo/educators/thinkscientifically.php.

  8. MATH: A Scientific Tool for Numerical Methods Calculation and Visualization

    Directory of Open Access Journals (Sweden)

    Henrich Glaser-Opitz

    2016-02-01

    Full Text Available MATH is an easy to use application for various numerical methods calculations with graphical user interface and integrated plotting tool written in Qt with extensive use of Qwt library for plotting options and use of Gsl and MuParser libraries as a numerical and parser helping libraries. It can be found at http://sourceforge.net/projects/nummath. MATH is a convenient tool for use in education process because of its capability of showing every important step in solution process to better understand how it is done. MATH also enables fast comparison of similar method speed and precision.

  9. The Community for Data Integration (CDI): Building Knowledge, Networks, and Integrated Science Capacity

    Science.gov (United States)

    Hsu, L.

    2017-12-01

    In 2009, the U.S. Geological Survey determined that a focused effort on data integration was necessary to capture the full scientific potential of its topically and geographically diverse data assets. The Community for Data Integration was established to fill this role, and an emphasis emerged on grassroots learning and solving of shared data integration and management challenges. Now, eight years later, the CDI has grown to over 700 members and runs monthly presentations, working groups, special training events, and an annual USGS-wide grants program. With a diverse membership of scientists, technologists, data managers, program managers, and others, there are a wide range of motivations and interests competing to drive the direction of the community. Therefore, an important role of the community coordinators is to prioritize member interests while valuing and considering many different viewpoints. To do this, new tools and mechanisms are frequently introduced to circulate information and obtain community input and feedback. The coordinators then match community interests with opportunities to address USGS priorities. As a result, the community has facilitated the implementation of USGS-wide data policies and data management procedures, produced guidelines and lessons learned for technologies like mobile applications and use of semantic web technologies, and developed technical recommendations to enable integrated science capacity for USGS leadership.

  10. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    History · Memorandum of Association · Role of the Academy · Statutes · Council · Raman Chair ... Elected: 1999 Section: Mathematical Sciences. Misra ... Address: Department of Mathematics, Indian Institute of Science, Bengaluru 560 012, Karnataka ... Math Art and Design: MAD about Math, Math Education and Outreach.

  11. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    History · Memorandum of Association · Role of the Academy · Statutes · Council · Raman Chair ... Elected: 2006 Section: Animal Sciences ... Address: Professor, National Centre for Biological Sciences, GKVK Campus, Bengaluru 560 065, Karnataka ... Math Art and Design: MAD about Math, Math Education and Outreach.

  12. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    History · Memorandum of Association · Role of the Academy · Statutes · Council · Raman Chair · Jubilee ... Elected: 1988 Section: Mathematical Sciences ... Address: Professor, Department of Mathematics and Computer Science, Emory University, 400 ... Math Art and Design: MAD about Math, Math Education and Outreach.

  13. Encouraging Competence in Basic Mathematics in Hydrology using The Math You Need

    Science.gov (United States)

    Fredrick, K. C.

    2011-12-01

    tool in higher-level courses. For our Hydrology course, we employ a strategy to integrate TMYN assessments throughout the course, to continually encourage students to practice math skills and introduce others that might be unfamiliar. The course begins with a pass/fail pre-assessment to gauge math competencies across the class, to prepare students for the rigors of the course, and to make sure they are technically able to access the website. Beginning the first week, and continuing through the first twelve weeks of the semester, additional assessments are assigned and graded on a pass/fail basis. The assessments include a guided module, followed by a brief quiz. The modules are aligned with the course materials as much as possible. At the end of the course, a post-assessment is assigned to measure student improvement. Most of the students will continue on to courses within Geology or Meteorology, depending on major, for which Hydrology is a pre-requisite. For the students, TMYN will serve to lay the groundwork for improved math competencies throughout their college career. For the faculty, this model allows for more class time to concentrate on science content, lab activities, and data analysis.

  14. Ventures in science status report, Summer 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The Ventures in Science summer program is directed towards students who are from underrepresented minority groups in mathematics and science professions. The target group of 40 was drawn from eligible students who will be entering high school freshman in the fall of 1992. 450 students applied. The theme for the summer is Chicago as an Ecosystem. The students are instructed in integrated math and science (2 hours), English/ESL (1 1/2 hrs.), counseling (1 hr.) and, physical education (1 hr.) each day four days a week. Integrated math and science are team taught. Parents are invited to participate in two workshops that will be presented based on their input. Parents may also visit the program at any time and participate in any field trip.

  15. Coupling Immersive Experiences with the Use of Mission Data to Encourage Students' Interest in Science, Technology, Engineering, and Math: Examples from the Mars Exploration Program

    Science.gov (United States)

    Klug, S. L.; Valderrama, P.; Viotti, M. A.; Watt, K.; Wurman, G.

    2004-12-01

    The Mars Exploration Program, in partnership with the Arizona State University Mars Education Program has created and successfully tested innovative pathways and programs that introduce, develop, and reinforce science, technology, engineering, and mathematics - STEM subjects into pre-college curriculum. With launches scheduled every 26 months, Mars has the unique opportunity and ability to have a long-term, systemic influence on science education. Also, because of the high level of interest in Mars, as exemplified by the10 billion Internet hits during the Mars Exploration Rover mission, it is a great vehicle for the infusion of current science into today's classrooms. These Mars education programs have linked current mission science and engineering with the National Education Standards, integrating them in a teacher-friendly and student-friendly format. These linkages are especially synergistic when combined with long-term partnerships between educators, Mars scientists and engineers, as they exemplify real-world collaborations and teamwork. To accommodate many different audience needs, an array of programs and a variety of approaches to these programs have been developed. High tech, low tech and no tech options can be implemented to help insure that as many students can be accommodated and impacted by these programs as possible. These programs are scaled to match the National Education Standards in the grade levels in which students need to become proficient in these subjects. The Mars Student Imaging Project - MSIP allows teams of students from the fifth grade through community college to be immersed in a hands-on program and experience the scientific process firsthand by using the Thermal Emission Imaging System - THEMIS camera to target their own image of Mars using an educational version of the real flight software used to target THEMIS images. The student teams then analyze their image and report their findings to the MSIP website. This project has been in

  16. Are Psychology Students Getting Worse at Math?: Trends in the Math Skills of Psychology Statistics Students across 21 Years

    Science.gov (United States)

    Carpenter, Thomas P.; Kirk, Roger E.

    2017-01-01

    Statistics is an important subject in psychology and social science education. However, inadequate mathematical skills can pose a barrier to learning statistics. Some educators have suggested that students' math skills are declining. The present research examined trends in the math skills of psychology undergraduates across 21 years. Students…

  17. On art and science: an epistemic framework for integrating social science and clinical medicine.

    Science.gov (United States)

    Wasserman, Jason Adam

    2014-06-01

    Calls for incorporating social science into patient care typically have accounted for neither the logistic constraints of medical training nor the methodological fallacies of utilizing aggregate "social facts" in clinical practice. By elucidating the different epistemic approaches of artistic and scientific practices, this paper illustrates an integrative artistic pedagogy that allows clinical practitioners to generate social scientific insights from actual patient encounters. Although there is no shortage of calls to bring social science into medicine, the more fundamental processes of thinking by which art and science proceed have not been addressed to this end. As such, the art of medical practice is conceptualized as an innate gift, and thus little is done to cultivate it. Yet doing so is more important than ever because uncertainty in diagnosing and treating chronic illnesses, the most significant contemporary mortality risks, suggests a re-expanding role for clinical judgment. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  19. Tutoring math platform accessible for visually impaired people.

    Science.gov (United States)

    Maćkowski, Michał Sebastian; Brzoza, Piotr Franciszek; Spinczyk, Dominik Roland

    2018-04-01

    There are many problems with teaching and assessing impaired students in higher education, especially in technical science, where the knowledge is represented mostly by structural information like: math formulae, charts, graphs, etc. Developing e-learning platform for distance education solves this problem only partially due to the lack of accessibility for the blind. The proposed method is based on the decomposition of the typical mathematical exercise into a sequence of elementary sub-exercises. This allows for interactive resolving of math exercises and assessment of the correctness of exercise solutions at every stage. The presented methods were prepared and evaluated by visually impaired people and students. The article presents the accessible interactive tutoring platform for math teaching and assessment, and experience in exploring it. The results of conducted research confirm good understanding of math formulae described according to elaborated rules. Regardless of the level of complexity of the math formulae the level of math formulae understanding is higher for alternative structural description. The proposed solution enables alternative descriptions of math formulae. Based on the research results, the tool for computer-aided interactive learning of mathematics adapted to the needs of the blind has been designed, implemented and deployed as a platform for on-site and online and distance learning. The designed solution can be very helpful in overcoming many barriers that occur while teaching impaired students. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Journal of Mind and Medical Sciences: translational and integrative mission

    Directory of Open Access Journals (Sweden)

    David L. Rowland

    2017-04-01

    Full Text Available Initiated four years ago, Journal of Mind and Medical Sciences (J Mind Med Sci. established the mission to publish papers on mental and medical topics in distinct but closely interrelated domains. The editorial policy especially encourages interdisciplinary and integrative perspectives, being equally focused on basic research and clinical investigations and short reports. The journal adheres to the philosophy that high quality, original ideas and information should be readily accessible and freely shared within and amongst the scientific community. Accordingly, J Mind Med Sci. is an online, open access, non-for-profit journal which, because of individual/ private support, has levied no charges for submission, review, and publication of articles. All published articles may be freely downloaded and used by anyone from anywhere for scientific purposes. Journal of Mind and Medical Sciences is published by ValpoScholar/ Valparaiso University using the leading institutional repository platform of Digital Commons (powered by Bepress and under the local management of Jon Bull, Library Services, Valparaiso University, which combines submission management, editorial, and peer-review tools into a unique and flexible publishing software system. These editorial and publishing norms have facilitated the journal’s evolution, now indexed and abstracted in several international respected databases. Journal visibility is wide among international academic institutions and readers, as documented by the number of downloaded articles cited in respected journals, some indexed by Thomson Reuters and having high impact factors. In addition, published authors in J Mind Med Sci. periodically receive a statistical report about views / downloads of their articles. It is a pleasure and honor to thank all those who have thus far supported the journal activity (authors, reviewers, editorial board and assistance, publishing support, and to further invite and encourage

  1. Multi-User GeoGebra for Virtual Math Teams

    Directory of Open Access Journals (Sweden)

    Gerry Stahl

    2010-05-01

    Full Text Available The Math Forum is an online resource center for pre-algebra, algebra, geometry and pre-calculus. Its Virtual Math Teams (VMT service provides an integrated web-based environment for small teams to discuss mathematics. The VMT collaboration environment now includes the dynamic mathematics application, GeoGebra. It offers a multi-user version of GeoGebra, which can be used in concert with VMT’s chat, web browsers, curricula and wiki repository.

  2. Automatic Integration Testbeds validation on Open Science Grid

    Science.gov (United States)

    Caballero, J.; Thapa, S.; Gardner, R.; Potekhin, M.

    2011-12-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit "VO-like" jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  3. Automatic Integration Testbeds validation on Open Science Grid

    International Nuclear Information System (INIS)

    Caballero, J; Potekhin, M; Thapa, S; Gardner, R

    2011-01-01

    A recurring challenge in deploying high quality production middleware is the extent to which realistic testing occurs before release of the software into the production environment. We describe here an automated system for validating releases of the Open Science Grid software stack that leverages the (pilot-based) PanDA job management system developed and used by the ATLAS experiment. The system was motivated by a desire to subject the OSG Integration Testbed to more realistic validation tests. In particular those which resemble to every extent possible actual job workflows used by the experiments thus utilizing job scheduling at the compute element (CE), use of the worker node execution environment, transfer of data to/from the local storage element (SE), etc. The context is that candidate releases of OSG compute and storage elements can be tested by injecting large numbers of synthetic jobs varying in complexity and coverage of services tested. The native capabilities of the PanDA system can thus be used to define jobs, monitor their execution, and archive the resulting run statistics including success and failure modes. A repository of generic workflows and job types to measure various metrics of interest has been created. A command-line toolset has been developed so that testbed managers can quickly submit 'VO-like' jobs into the system when newly deployed services are ready for testing. A system for automatic submission has been crafted to send jobs to integration testbed sites, collecting the results in a central service and generating regular reports for performance and reliability.

  4. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  5. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  6. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  7. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  8. Fundamental awareness: A framework for integrating science, philosophy and metaphysics.

    Science.gov (United States)

    Theise, Neil D; Kafatos, Menas C

    2016-01-01

    The ontologic framework of Fundamental Awareness proposed here assumes that non-dual Awareness is foundational to the universe, not arising from the interactions or structures of higher level phenomena. The framework allows comparison and integration of views from the three investigative domains concerned with understanding the nature of consciousness: science, philosophy, and metaphysics. In this framework, Awareness is the underlying reality, not reducible to anything else. Awareness and existence are the same. As such, the universe is non-material, self-organizing throughout, a holarchy of complementary, process driven, recursive interactions. The universe is both its own first observer and subject. Considering the world to be non-material and comprised, a priori, of Awareness is to privilege information over materiality, action over agency and to understand that qualia are not a "hard problem," but the foundational elements of all existence. These views fully reflect main stream Western philosophical traditions, insights from culturally diverse contemplative and mystical traditions, and are in keeping with current scientific thinking, expressible mathematically.

  9. Redefining neuromarketing as an integrated science of influence

    Science.gov (United States)

    Breiter, Hans C.; Block, Martin; Blood, Anne J.; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J.; Raman, Kalyan; Schultz, Don; Stern, Daniel B.; Viswanathan, Vijay; Zhang, Fengqing (Zoe)

    2015-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as “neuromarketing”. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make “choices”, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or “influenced”, which can occur at multiple “scales” of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats. PMID:25709573

  10. Redefining Neuromarketing as an Integrated Science of Influence

    Directory of Open Access Journals (Sweden)

    Hans C. Breiter

    2015-02-01

    Full Text Available Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging, or to look at large aggregations of decisions (i.e., big data. There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as ‘neuromarketing’. There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make ‘choices’, and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or ‘influenced’, which can occur at multiple ‘scales’ of behavior (e.g., individual, group, or market/society. Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

  11. Redefining neuromarketing as an integrated science of influence.

    Science.gov (United States)

    Breiter, Hans C; Block, Martin; Blood, Anne J; Calder, Bobby; Chamberlain, Laura; Lee, Nick; Livengood, Sherri; Mulhern, Frank J; Raman, Kalyan; Schultz, Don; Stern, Daniel B; Viswanathan, Vijay; Zhang, Fengqing Zoe

    2014-01-01

    Multiple transformative forces target marketing, many of which derive from new technologies that allow us to sample thinking in real time (i.e., brain imaging), or to look at large aggregations of decisions (i.e., big data). There has been an inclination to refer to the intersection of these technologies with the general topic of marketing as "neuromarketing". There has not been a serious effort to frame neuromarketing, which is the goal of this paper. Neuromarketing can be compared to neuroeconomics, wherein neuroeconomics is generally focused on how individuals make "choices", and represent distributions of choices. Neuromarketing, in contrast, focuses on how a distribution of choices can be shifted or "influenced", which can occur at multiple "scales" of behavior (e.g., individual, group, or market/society). Given influence can affect choice through many cognitive modalities, and not just that of valuation of choice options, a science of influence also implies a need to develop a model of cognitive function integrating attention, memory, and reward/aversion function. The paper concludes with a brief description of three domains of neuromarketing application for studying influence, and their caveats.

  12. Attentional Bias in Math Anxiety

    Directory of Open Access Journals (Sweden)

    Orly eRubinsten

    2015-10-01

    Full Text Available Cognitive theory from the field of general anxiety suggests that the tendency to display attentional bias toward negative information results in anxiety. Accordingly, the current study aims to investigate whether attentional bias is involved in math anxiety as well (i.e., a persistent negative reaction to math. Twenty seven participants (14 with high levels of math anxiety and 13 with low levels of math anxiety were presented with a novel computerized numerical version of the well established dot probe task. One of 6 types of prime stimuli, either math related or typically neutral, were presented on one side of a computer screen. The prime was preceded by a probe (either one or two asterisks that appeared in either the prime or the opposite location. Participants had to discriminate probe identity (one or two asterisks. Math anxious individuals reacted faster when the probe was at the location of the numerical related stimuli. This suggests the existence of attentional bias in math anxiety. That is, for math anxious individuals, the cognitive system selectively favored the processing of emotionally negative information (i.e., math related words. These findings suggest that attentional bias is linked to unduly intense math anxiety symptoms.

  13. Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.

    Science.gov (United States)

    Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey

    2018-03-01

    People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.

  14. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  15. The Information Book Genre: Its Role in Integrated Science Literacy Research and Practice

    Science.gov (United States)

    Pappas, Christine C.

    2006-01-01

    There has been a call for approaches that connect science learning with literacy, yet the use of, and research on, children's literature information books in science instruction has been quite limited. Because the discipline of science involves distinctive generic linguistic registers, what information books should be integrated in science…

  16. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  17. Linking Science and Language Arts: A Review of the Literature Which Compares Integrated versus Non-Integrated Approaches

    Science.gov (United States)

    Bradbury, Leslie U.

    2014-01-01

    The purpose of this paper is to review the literature published during the last 20 years that investigates the impact of approaches that describe themselves as integrating science and language arts on student learning and/or attitude at the elementary level. The majority of papers report that integrated approaches led to greater student…

  18. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  19. String-math 2012

    CERN Document Server

    Katz, Sheldon; Klemm, Albrecht; Morrison, David R

    2015-01-01

    This volume contains the proceedings of the conference String-Math 2012, which was held July 16-21, 2012, at the Hausdorff Center for Mathematics, Universitat Bonn. This was the second in a series of annual large meetings devoted to the interface of mathematics and string theory. These meetings have rapidly become the flagship conferences in the field. Topics include super Riemann surfaces and their super moduli, generalized moonshine and K3 surfaces, the latest developments in supersymmetric and topological field theory, localization techniques, applications to knot theory, and many more. The contributors include many leaders in the field, such as Sergio Cecotti, Matthias Gaberdiel, Rahul Pandharipande, Albert Schwarz, Anne Taormina, Johannes Walcher, Katrin Wendland, and Edward Witten. This book will be essential reading for researchers and students in this area and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.

  20. Technical Math For Dummies

    CERN Document Server

    Schoenborn, Barry

    2010-01-01

    Technical Math For Dummies is your one-stop, hands-on guide to acing the math courses you’ll encounter as you work toward getting your degree, certifacation, or�license in the skilled trades. You’ll get easy-to-follow, plain-English guidance on mathematical formulas and methods that professionals use every day in the automotive, health, construction, licensed trades, maintenance, and other trades. You’ll learn how to apply concepts of algebra, geometry, and trigonometry and their formulas related to occupational areas of study. Plus, you’ll find out how to perform basic arithmetic

  1. Contact dynamics math model

    Science.gov (United States)

    Glaese, John R.; Tobbe, Patrick A.

    1986-01-01

    The Space Station Mechanism Test Bed consists of a hydraulically driven, computer controlled six degree of freedom (DOF) motion system with which docking, berthing, and other mechanisms can be evaluated. Measured contact forces and moments are provided to the simulation host computer to enable representation of orbital contact dynamics. This report describes the development of a generalized math model which represents the relative motion between two rigid orbiting vehicles. The model allows motion in six DOF for each body, with no vehicle size limitation. The rotational and translational equations of motion are derived. The method used to transform the forces and moments from the sensor location to the vehicles' centers of mass is also explained. Two math models of docking mechanisms, a simple translational spring and the Remote Manipulator System end effector, are presented along with simulation results. The translational spring model is used in an attempt to verify the simulation with compensated hardware in the loop results.

  2. Food-Based Science Curriculum Yields Gains in Nutrition Knowledge

    Science.gov (United States)

    Carraway-Stage, Virginia; Hovland, Jana; Showers, Carissa; Díaz, Sebastián; Duffrin, Melani W.

    2015-01-01

    Background: Students may be receiving less than an average of 4?hours of nutrition instruction per year. Integrating nutrition with other subject areas such as science may increase exposure to nutrition education, while supporting existing academics. Methods: During the 2009-2010 school year, researchers implemented the Food, Math, and Science…

  3. Integrated STEM: A New Primer for Teaching Technology Education

    Science.gov (United States)

    Asunda, Paul A.; Mativo, John

    2017-01-01

    Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…

  4. All Students Need Advanced Mathematics. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    This fact sheet explains that to thrive in today's world, all students will need to graduate with very strong math skills. That can only mean one thing: advanced math courses are now essential math courses. Highlights of this paper include: (1) Advanced math equals college success; (2) Advanced math equals career opportunity; and (3) Advanced math…

  5. Perceptions of Critical Thinking, Task Value, Autonomy and Science Lab Self-Efficacy: A Longitudinal Examination of Students' CASE Experience

    Science.gov (United States)

    Velez, Jonathan J.; Lambert, Misty D.; Elliott, Kristopher M.

    2015-01-01

    The purpose of this study was to begin examining the impact of the Curriculum for Agricultural Science Education (CASE). Under development since 2008, the curriculum is intended to integrate core academics and Science, Technology, Engineering, and Math (STEM) into agricultural education programs. This longitudinal descriptive correlational study…

  6. Financial Statement Math

    OpenAIRE

    2007-01-01

    game tool Game Tool Interactive Media Element The purpose of this interactive exercise is to help you understand the math in the income statement and balance sheet., Give the proper mathematical computations in order to correctly prepare the income statement and the balance sheet.The exercise is divided into 3 parts: The income Statement, The Balance Sheet - Assets, The Balance Sheet - Liabilities, GB3050 Financial Reporting and Analysis

  7. Energy Decision Science and Informatics | Integrated Energy Solutions |

    Science.gov (United States)

    NREL Decision Science and Informatics Energy Decision Science and Informatics NREL utilizes and advances state-of-the-art decision science and informatics to help partners make well-informed energy decisions backed by credible, objective data analysis and insights to maximize the impact of energy

  8. Math Description Engine Software Development Kit

    Science.gov (United States)

    Shelton, Robert O.; Smith, Stephanie L.; Dexter, Dan E.; Hodgson, Terry R.

    2010-01-01

    The Math Description Engine Software Development Kit (MDE SDK) can be used by software developers to make computer-rendered graphs more accessible to blind and visually-impaired users. The MDE SDK generates alternative graph descriptions in two forms: textual descriptions and non-verbal sound renderings, or sonification. It also enables display of an animated trace of a graph sonification on a visual graph component, with color and line-thickness options for users having low vision or color-related impairments. A set of accessible graphical user interface widgets is provided for operation by end users and for control of accessible graph displays. Version 1.0 of the MDE SDK generates text descriptions for 2D graphs commonly seen in math and science curriculum (and practice). The mathematically rich text descriptions can also serve as a virtual math and science assistant for blind and sighted users, making graphs more accessible for everyone. The MDE SDK has a simple application programming interface (API) that makes it easy for programmers and Web-site developers to make graphs accessible with just a few lines of code. The source code is written in Java for cross-platform compatibility and to take advantage of Java s built-in support for building accessible software application interfaces. Compiled-library and NASA Open Source versions are available with API documentation and Programmer s Guide at http:/ / prim e.jsc.n asa. gov.

  9. PNAUM: integrated approach to Pharmaceutical Services, Science, Technology and Innovation.

    Science.gov (United States)

    Gadelha, Carlos Augusto Grabois; Costa, Karen Sarmento; Nascimento, José Miguel do; Soeiro, Orlando Mário; Mengue, Sotero Serrate; Motta, Márcia Luz da; Carvalho, Antônio Carlos Campos de

    2016-12-01

    This paper describes the development process of the Pesquisa Nacional sobre Acesso, Utilização e Promoção do Uso Racional de Medicamentos (PNAUM - National Survey on Access, Use and Promotion of Rational Use of Medicines) based on an integrated approach to pharmaceutical services, science, technology and innovation. It starts by contextualizing health and development in Brazil and features elements of the National Policy for Science, Technology and Innovation in Health in Brazil and the National Policy for Pharmaceutical Services. On presenting pharmaceutical policy guidelines, it stresses the lack of nationwide data. This survey, commissioned by the Brazilian Ministry of Health, has two components: household survey and evaluation of pharmaceutical services in primary care. The findings point to perspectives that represent, besides the enhancement of public policy for pharmaceutical services and public health, results of government action aimed at developing the economic and industrial health care complex to improve the health conditions of the Brazilian population. RESUMO O artigo apresenta o processo de construção da Pesquisa Nacional sobre Acesso, Utilização e Promoção do Uso Racional de Medicamento a partir de uma concepção integradora da Assistência Farmacêutica, Ciência, Tecnologia e Inovação. Inicia-se contextualizando a saúde e o desenvolvimento no País e apresenta elementos da Política Nacional de Ciência Tecnologia e Inovação em Saúde no Brasil e da Política Nacional de Assistência Farmacêutica. Ao apresentar as diretrizes das Políticas Farmacêuticas, destaca-se a carência de dados de abrangência nacional. A presente pesquisa, encomendada pelo Ministério da Saúde, foi estruturada em dois componentes: inquérito domiciliar e avaliação dos serviços de assistência farmacêutica na atenção básica. As perspectivas dos resultados representam, além do incremento das políticas públicas farmacêuticas e de saúde p

  10. Career-Oriented Performance Tasks in Chemistry: Effects on Students Integrated Science Process Skills

    OpenAIRE

    Allen A. Espinosa; Sheryl Lyn C. Monterola; Amelia E. Punzalan

    2013-01-01

    The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students’ integrated science process skills. Specifically, it sought to find out if students exposed to COPT have higher integrated science process skills than those students exposed to the traditional teaching approach (TTA). Career-Oriented Performance Task (COPT) approach aims to integrate career-oriented examples and inquiry-b...

  11. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  12. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  13. A natural user interface to integrate citizen science and physical exercise

    OpenAIRE

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed envir...

  14. Promoting Science and Technology in Primary Education: A Review of Integrated Curricula

    NARCIS (Netherlands)

    Drs Rens Gresnigt; Koeno Gravemeijer; Hanno Keulen, van; Liesbeth Baartman; Ruurd Taconis

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  15. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  16. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Hanno van Keulen; Rens Gresnigt; Liesbeth Baartman; Ruurd Taconis; Koeno Gravemeijer

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  17. A Network for Integrated Science and Mathematics Teaching and Learning. NCSTL Monograph Series, #2.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    This monograph presents a summary of the results of the Wingspread Conference in April, 1991 concerning the viability and future of the concept of integration of mathematics and science teaching and learning. The conference focused on three critical issues: (1) development of definitions of integration and a rationale for integrated teaching and…

  18. Effects of 6 weeks motor-enrichment-intervention to improve math performance in preadolescent children

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Beck, Mikkel Malling; Lind, Rune Rasmussen

    al., 2015). We conducted a six-week cluster-randomized intervention study of motor-enriched mathematics for Danish schoolchildren (n= 148, age= 7.5 ± 0.02). We investigated whether low intensity motor activity congruently integrated during solving of math problems could enhance math performance....... Three groups were included: 1) Control group with normal math teaching, CON (used pencil, paper but refrained from additional motor activity). 2) Fine-motor-enriched-group, FM (motor-manipulating LEGO bricks integrated in the lessons). 3) Gross-motor-enriched-group, GM (full-body movements integrated...... in the lessons). In FM and GM, all math classes (six lessons pr. week) had motor activity integrated in the math lessons and the teachers of all groups followed a detailed description for the conduction of the lessons. This aimed at ensuring homogeneity between groups concerning the taught themes. The children...

  19. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  20. Advanced Math: Closing the Equity Gap. Math Works

    Science.gov (United States)

    Achieve, Inc., 2013

    2013-01-01

    Minority and low-income students are less likely to have access to, enroll in and succeed in higher-level math courses in high school than their more advantaged peers. Under these circumstances, higher-level math courses function not as the intellectual and practical boost they should be, but as a filter that screens students out of the pathway to…

  1. Early Math Interest and the Development of Math Skills

    Science.gov (United States)

    Fisher, Paige H.; Dobbs-Oates, Jennifer; Doctoroff, Greta L.; Arnold, David H.

    2012-01-01

    Prior models suggest that math attitudes and ability might strengthen each other over time in a reciprocal fashion (Ma, 1997). The current study investigated the relationship between math interest and skill both concurrently and over time in a preschool sample. Analyses of concurrent relationships indicated that high levels of interest were…

  2. Math Anxiety and Math Ability in Early Primary School Years

    Science.gov (United States)

    Krinzinger, Helga; Kaufmann, Liane; Willmes, Klaus

    2009-01-01

    Mathematical learning disabilities (MLDs) are often associated with math anxiety, yet until now, very little is known about the causal relations between calculation ability and math anxiety during early primary school years. The main aim of this study was to longitudinally investigate the relationship between calculation ability, self-reported…

  3. Integrating Statistical Visualization Research into the Political Science Classroom

    Science.gov (United States)

    Draper, Geoffrey M.; Liu, Baodong; Riesenfeld, Richard F.

    2011-01-01

    The use of computer software to facilitate learning in political science courses is well established. However, the statistical software packages used in many political science courses can be difficult to use and counter-intuitive. We describe the results of a preliminary user study suggesting that visually-oriented analysis software can help…

  4. Partners in Crime: Integrating Forensic Science and Writing

    Science.gov (United States)

    Hein, Erik

    2006-01-01

    Forensic science lends itself to many academic areas. Aside from the science itself, writing plays a major role in the investigation process as well as in the courtroom. It is paramount that students learn how to write proficiently when recording results or writing evaluations and reports, just as forensic scientists do. This can also be done…

  5. Integrating Quaternary science research in land management, restoration, and conservation

    Science.gov (United States)

    C.I. Millar; W.B. Woolfenden

    2001-01-01

    Most of us have come to expect that the general public will ignore the primary message of Quaternary science that change happens. A flurry, however, of recent media attention to 20th-century global warming and its anomalies from climates of the last millennium has brought climate science at least momentarily into popular focus. Similarly, public land-managing agencies...

  6. Teachers and Counselors: Building Math Confidence in Schools

    Directory of Open Access Journals (Sweden)

    Joseph M. Furner

    2017-08-01

    Full Text Available Mathematics teachers need to take on the role of counselors in addressing the math anxious in today's math classrooms. This paper looks at the impact math anxiety has on the future of young adults in our high-tech society. Teachers and professional school counselors are encouraged to work together to prevent and reduce math anxiety. It is important that all students feel confident in their ability to do mathematics in an age that relies so heavily on problem solving, technology, science, and mathematics. It really is a school's obligation to see that their students value and feel confident in their ability to do math, because ultimately a child's life: all decisions they will make and careers choices may be determined based on their disposition toward mathematics. This paper raises some interesting questions and provides some strategies (See Appendix A for teachers and counselors for addressing the issue of math anxiety while discussing the importance of developing mathematically confident young people for a high-tech world of STEM.

  7. Math primer for engineers

    CERN Document Server

    Cryer, CW

    2014-01-01

    Mathematics and engineering are inevitably interrelated, and this interaction will steadily increase as the use of mathematical modelling grows. Although mathematicians and engineers often misunderstand one another, their basic approach is quite similar, as is the historical development of their respective disciplines. The purpose of this Math Primer is to provide a brief introduction to those parts of mathematics which are, or could be, useful in engineering, especially bioengineering. The aim is to summarize the ideas covered in each subject area without going into exhaustive detail. Formula

  8. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  9. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  10. Math Education at a Crossroads

    DEFF Research Database (Denmark)

    Markvorsen, Steen

    With an enrollment of 550 students once a year the first year course Math1 at the Technical University of Denmark is one of the largest courses at university level in Denmark. Since its re-formation 6 years ago a number of interesting valuable assets concerning undergraduate math education...

  11. Math Learning Begins at Home

    Science.gov (United States)

    Eason, Sarah H.; Levine, Susan C.

    2017-01-01

    Children demonstrate gaps in the math knowledge that they possess by the time they begin school, and these gaps have been found to predict long-term outcomes not only in math but also in reading. Consequently, it is important to identify what accounts for these early differences and how they can be addressed to ensure that all children enter…

  12. From Mxit to Dr Math

    CSIR Research Space (South Africa)

    Botha, Adèle

    2013-02-01

    Full Text Available In 2007, Laurie Butgereit, a researcher at the CSIR Meraka Institute, started to use Mxit as a communication channel to tutor her son in mathematics. Her son and a number of his friends logged in, and Dr Math was born. At the inception of Dr Math...

  13. "Math Anxiety" Explored in Studies

    Science.gov (United States)

    Sparks, Sarah D.

    2011-01-01

    Math problems make more than a few students--and even teachers--sweat, but new brain research is providing insights into the earliest causes of the anxiety so often associated with mathematics. Experts argue that "math anxiety" can bring about widespread, intergenerational discomfort with the subject, which could lead to anything from fewer…

  14. Math Fact Strategies Research Project

    Science.gov (United States)

    Boso, Annie

    2011-01-01

    An action research project was conducted in order to determine effective math fact strategies for first graders. The traditional way of teaching math facts included using timed tests and flashcards, with most students counting on their fingers or a number line. Six new research-based strategies were taught and analyzed to decide which methods…

  15. Math remediation for the college bound how teachers can close the gap, from the basics through algebra

    CERN Document Server

    Khatri, Daryao

    2011-01-01

    Algebra is the language that must be mastered for any course that uses math because it is the gateway for entry into any science, technology, engineering, and mathematics (STEM) discipline. This book fosters mastery of critical math and algebraic concepts and skills essential to all of the STEM disciplines and some of the social sciences.

  16. It is not known the impact or implications of a study skills class and its effect on high school students in relation to performance on math and science Georgia High School Graduation Test

    Science.gov (United States)

    Smith, Mary E.

    The Georgia State Board of Education has put in place requirements that high school students must meet in order to advance to a higher grade level and to achieve credits for graduation. Georgia requires all ninth, tenth, eleventh, and twelfth graders to take an end-of-course test after completing class time for academic core subjects. The student's final grade in the end-of-course test course will be calculated using the course grade as 85% and the end-of-course test score as 15%. The student must have a final course grade of 70 or above to pass the course and to earn credit toward graduation. Students in Georgia are required to take the Georgia High School Graduation Test. The tests consist of five parts, writing, math, science, social studies and language arts. Students must make a minimum score of 500 which indicates the student was proficient in mastering the objectives for that particular section of the test. Not all students finish high school in four years due to obstacles that occur. Tutorial sessions are provided for those that wish to participate. High schools may offer study skills classes for students that need extra help in focusing their attention on academic courses. Study skill courses provide the student with techniques that he or she may find useful in organizing thoughts and procedures that direct the student towards success.

  17. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  18. Mind the Gap: Integrating Science and Policy Cultures and Practices

    Science.gov (United States)

    Lev, S. M.; Simon, I.

    2015-12-01

    A 2014 survey conducted by the Pew Research Center asked members of the American Association for the Advancement of Science about their support for active engagement in public policy debates. The survey found that 87% of the respondents supported scientists taking an active role in public policy debates about science and technology (S&T), but most believed that regulations related to areas like land use and clean air and water are not guided by the best science. Despite the demand for actionable scientific information by policy makers, these survey results underscore the gap that exists between the scientific and the public policy communities. There are fundamental differences that exist between the perspectives of these two groups, even within Federal S&T agencies that are required to balance the perspectives of the science and policy communities in order to fulfill their agency mission. In support of an ongoing agency effort to strengthen communication and interaction among staff, we led a Federal S&T agency office through an examination and comparison of goals, processes, external drivers, decision making, and timelines within their organization. This workshop activity provided an opportunity to identify the interdependence of science and policy, as well as the challenges to developing effective science-based policy solutions. The workshop featured strategies for achieving balanced science policy outcomes using examples from a range of Federal S&T agencies. The examples presented during the workshop illustrated best practices for more effective communication and interaction to resolve complex science policy issues. The workshop culminated with a group activity designed to give participants the opportunity to identify the challenges and apply best practices to real world science policy problems. Workshop examples and outcomes will be presented along with lessons learned from this agency engagement activity.

  19. Journals | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more. ... Posted on 21 December 2017. ASTROPHYSICS: An Observational View of the Universe. Math Art and Design: MAD about Math, Math Education and Outreach.

  20. Associateship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Theory Of Evolution. Posted on 23 January 2018. Joint Statement by the Three Science Academies of India on the teaching of the theory of evolution more. ... Posted on 21 December 2017. ASTROPHYSICS: An Observational View of the Universe. Math Art and Design: MAD about Math, Math Education and Outreach.