WorldWideScience

Sample records for integrates grass roots

  1. Grass Rooting the System

    Science.gov (United States)

    Perlman, Janice E.

    1976-01-01

    Suggests a taxonomy of the grass roots movement and gives a general descriptive over view of the 60 groups studied with respect to origin, constituency, size, funding, issues, and ideology. (Author/AM)

  2. Molecular Physiology of Root System Architecture in Model Grasses

    Science.gov (United States)

    Hixson, K.; Ahkami, A. H.; Anderton, C.; Veličković, D.; Myers, G. L.; Chrisler, W.; Lindenmaier, R.; Fang, Y.; Yabusaki, S.; Rosnow, J. J.; Farris, Y.; Khan, N. E.; Bernstein, H. C.; Jansson, C.

    2017-12-01

    Unraveling the molecular and physiological mechanisms involved in responses of Root System Architecture (RSA) to abiotic stresses and shifts in microbiome structure is critical to understand and engineer plant-microbe-soil interactions in the rhizosphere. In this study, accessions of Brachypodium distachyon Bd21 (C3 model grass) and Setaria viridis A10.1 (C4 model grass) were grown in phytotron chambers under current and elevated CO2 levels. Detailed growth stage-based phenotypic analysis revealed different above- and below-ground morphological and physiological responses in C3 and C4 grasses to enhanced CO2 levels. Based on our preliminary results and by screening values of total biomass, water use efficiency, root to shoot ratio, RSA parameters and net assimilation rates, we postulated a three-phase physiological mechanism, i.e. RootPlus, BiomassPlus and YieldPlus phases, for grass growth under elevated CO2 conditions. Moreover, this comprehensive set of morphological and process-based observations are currently in use to develop, test, and calibrate biophysical whole-plant models and in particular to simulate leaf-level photosynthesis at various developmental stages of C3 and C4 using the model BioCro. To further link the observed phenotypic traits at the organismal level to tissue and molecular levels, and to spatially resolve the origin and fate of key metabolites involved in primary carbohydrate metabolism in different root sections, we complement root phenotypic observations with spatial metabolomics data using mass spectrometry imaging (MSI) methods. Focusing on plant-microbe interactions in the rhizosphere, six bacterial strains with plant growth promoting features are currently in use in both gel-based and soil systems to screen root growth and development in Brachypodium. Using confocal microscopy, GFP-tagged bacterial systems are utilized to study the initiation of different root types of RSA, including primary root (PR), coleoptile node axile root (CNR

  3. Interaction between Vetiver Grass Roots and Completely Decomposed Volcanic Tuff under Rainfall Infiltration Conditions

    Directory of Open Access Journals (Sweden)

    Ling Xu

    2018-01-01

    Full Text Available The important role of vetiver grass roots in preventing water erosion and mass movement has been well recognized, though the detailed influence of the grass roots on soil has not been addressed. Through planting vetiver grass at the Kadoorie Farm in Hong Kong and leaving it to grow without artificial maintenance, the paper studies the influence of vetiver grass roots on soil properties and slope stability. Under the natural conditions of Hong Kong, growth of the vetiver grass roots can reach 1.1 m depth after one and a half year from planting. The percentage of grain size which is less than 0.075 mm in rooted soil is more than that of the nonrooted soil. Vetiver grass roots can reduce soil erosion by locking the finer grain. The rooted soil of high finer grain content has a relatively small permeability. As a result, the increase in water content is therefore smaller than that of nonrooted soil in the same rainfall conditions. Shear box test reveals that the vetiver grass roots significantly increased the peak cohesion of the soil from 9.3 kPa to 18.9 kPa. The combined effects of grass roots on hydrological responses and shearing strength significantly stabilize the slope in local rainfall condition.

  4. Assessment of grass root effects on soil piping in sandy soils using the pinhole test

    Science.gov (United States)

    Bernatek-Jakiel, Anita; Vannoppen, Wouter; Poesen, Jean

    2017-10-01

    Soil piping is an important land degradation process that occurs in a wide range of environments. Despite an increasing number of studies on this type of subsurface erosion, the impact of vegetation on piping erosion is still unclear. It can be hypothesized that vegetation, and in particular plant roots, may reduce piping susceptibility of soils because roots of vegetation also control concentrated flow erosion rates or shallow mass movements. Therefore, this paper aims to assess the impact of grass roots on piping erosion susceptibility of a sandy soil. The pinhole test was used as it provides quantitative data on pipeflow discharge, sediment concentration and sediment discharge. Tests were conducted at different hydraulic heads (i.e., 50 mm, 180 mm, 380 mm and 1020 mm). Results showed that the hydraulic head was positively correlated with pipeflow discharge, sediment concentration and sediment discharge, while the presence of grass roots (expressed as root density) was negatively correlated with these pipeflow characteristics. Smaller sediment concentrations and sediment discharges were observed in root-permeated samples compared to root-free samples. When root density exceeds 0.5 kg m- 3, piping erosion rates decreased by 50% compared to root-free soil samples. Moreover, if grass roots are present, the positive correlation between hydraulic head and both sediment discharge and sediment concentration is less pronounced, demonstrating that grass roots become more effective in reducing piping erosion rates at larger hydraulic heads. Overall, this study demonstrates that grass roots are quite efficient in reducing piping erosion rates in sandy soils, even at high hydraulic head (> 1 m). As such, grass roots may therefore be used to efficiently control piping erosion rates in topsoils.

  5. Rooting depth varies differentially in trees and grasses as a function of mean annual rainfall in an African savanna.

    Science.gov (United States)

    Holdo, Ricardo M; Nippert, Jesse B; Mack, Michelle C

    2018-01-01

    A significant fraction of the terrestrial biosphere comprises biomes containing tree-grass mixtures. Forecasting vegetation dynamics in these environments requires a thorough understanding of how trees and grasses use and compete for key belowground resources. There is disagreement about the extent to which tree-grass vertical root separation occurs in these ecosystems, how this overlap varies across large-scale environmental gradients, and what these rooting differences imply for water resource availability and tree-grass competition and coexistence. To assess the extent of tree-grass rooting overlap and how tree and grass rooting patterns vary across resource gradients, we examined landscape-level patterns of tree and grass functional rooting depth along a mean annual precipitation (MAP) gradient extending from ~ 450 to ~ 750 mm year -1 in Kruger National Park, South Africa. We used stable isotopes from soil and stem water to make inferences about relative differences in rooting depth between these two functional groups. We found clear differences in rooting depth between grasses and trees across the MAP gradient, with grasses generally exhibiting shallower rooting profiles than trees. We also found that trees tended to become more shallow-rooted as a function of MAP, to the point that trees and grasses largely overlapped in terms of rooting depth at the wettest sites. Our results reconcile previously conflicting evidence for rooting overlap in this system, and have important implications for understanding tree-grass dynamics under altered precipitation scenarios.

  6. Grass-roots approach: developing qualified nuclear personnel

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Nuclear power plants experiencing personnel recruitment problems are trying a grass-roots approach to increase the manpower pool. The Philadelphia Electric Co. and the Toledo Edison Co. are working with local educational institutions to offer nuclear-technology training specific to the needs of nuclear plants. The utilities' investment covers much of the cost of instruction as well as continued training for employees

  7. Forage tree legumes. II. Investigation of nitrogen transfer to an associated grass using a split-root technique

    International Nuclear Information System (INIS)

    Catchpoole, D.W.; Blair, G.J.

    1990-01-01

    The glasshouse study reported, employed a split-root technique, whereby trees of leucaena and gliricidia were grown in boxes with 15 N fed to one half of the root system and the transfer of N to the other half of the box was measured by sampling tree and planted grass. Detection of 15 N in the grass tops and roots from the unlabelled half of the box was used to indicate N transfer from the tree roots to the grass. Transfer of labelled N to the grass amounted to 4.1% in the first 6 week period when 15 N was being injected in the tree root zone. A harvest of the tree and grass was made at 6 weeks and both allowed to regrow for a further 6 weeks with no further addition of 15 N. Over the entire 12 week experimental period 7.6% of the labelled N from the tree was transferred to the grass. The low proportion of N transferred from tree legume to the grass in this experiment, where herbage was cut and removed, is similar to the findings in the earlier field experiment and indicates that, in such a system, little direct beneficial effect of N fixation would be expected in an understorey grass or food crop. 24 refs., 4 tabs

  8. Long-term decomposition of grass roots as affected by elevated atmospheric carbon dioxide

    NARCIS (Netherlands)

    Ginkel, van J.H.; Gorissen, A.; Veen, van J.A.

    1996-01-01

    Carbon input into the soil and decomposition processes under elevated CO2 are highly relevant for C sequestering in the soil. Plant growth and decomposition of root material under ambient and elevated atmospheric CO2 concentrations were monitored in wind tunnels. Grass roots (Lolium perenne L.) were

  9. Arbuscular mycorrhizal assemblages in native plant roots change in the presence of invasive exotic grasses

    Science.gov (United States)

    Hawkes, C.V.; Belnap, J.; D'Antonio, C.; Firestone, M.K.

    2006-01-01

    Plant invasions have the potential to significantly alter soil microbial communities, given their often considerable aboveground effects. We examined how plant invasions altered the arbuscular mycorrhizal fungi of native plant roots in a grassland site in California and one in Utah. In the California site, we used experimentally created plant communities composed of exotic (Avena barbata, Bromus hordeaceus) and native (Nassella pulchra, Lupinus bicolor) monocultures and mixtures. In the Utah semi-arid grassland, we took advantage of invasion by Bromus tectorum into long-term plots dominated by either of two native grasses, Hilaria jamesii or Stipa hymenoides. Arbuscular mycorrhizal fungi colonizing roots were characterized with PCR amplification of the ITS region, cloning, and sequencing. We saw a significant effect of the presence of exotic grasses on the diversity of mycorrhizal fungi colonizing native plant roots. In the three native grasses, richness of mycorrhizal fungi decreased; in the native forb at the California site, the number of fungal RFLP patterns increased in the presence of exotics. The exotic grasses also caused the composition of the mycorrhizal community in native roots to shift dramatically both in California, with turnover of Glomus spp., and Utah, with replacement of Glomus spp. by apparently non-mycorrhizal fungi. Invading plants may be able to influence the network of mycorrhizal fungi in soil that is available to natives through either earlier root activity or differential carbon provision compared to natives. Alteration of the soil microbial community by plant invasion can provide a mechanism for both successful invasion and the resulting effects of invaders on the ecosystem. ?? Springer 2006.

  10. Earthworm activity and decomposition of 14C-labelled grass root systems

    NARCIS (Netherlands)

    Uyl, A.; Didden, W.A.M.; Marinussen, J.

    2002-01-01

    Decomposition of 14C-labelled root systems of the grass species Holcus lanatus and Festuca ovina, representative of mesotrophic and oligotrophic situations, respectively, was monitored during 14 months under field conditions in the presence or absence of earthworms (Lumbricus rubellus). During the

  11. E-learning for grass-roots emergency public health personnel: Preliminary lessons from a national program in China.

    Science.gov (United States)

    Xu, Wangquan; Jiang, Qicheng; Qin, Xia; Fang, Guixia; Hu, Zhi

    2016-07-19

    In China, grass-roots emergency public health personnel have relatively limited emergency response capabilities and they are constantly required to update their professional knowledge and skills due to recurring and new public health emergencies. However, professional training, a principal solution to this problem, is inadequate because of limitations in manpower and financial resources at grass-roots public health agencies. In order to provide a cost-effective and easily expandable way for grass-roots personnel to acquire knowledge and skills, the National Health Planning Commission of China developed an emergency response information platform and provided trial access to this platform in Anhui and Heilongjiang provinces in China. E-learning was one of the modules of the platform and this paper has focused on an e-learning pilot program. Results indicated that e-learning had satisfactorily improved the knowledge and ability of grass-roots emergency public health personnel, and the program provided an opportunity to gain experience in e-course design and implementing e-learning. Issues such as the lack of personalized e-courses and the difficulty of evaluating the effectiveness of e-learning are topics for further study.

  12. Exogenous hydrogen peroxide reversibly inhibits root gravitropism and induces horizontal curvature of primary root during grass pea germination.

    Science.gov (United States)

    Jiang, Jinglong; Su, Miao; Wang, Liyan; Jiao, Chengjin; Sun, Zhengxi; Cheng, Wei; Li, Fengmin; Wang, Chongying

    2012-04-01

    During germination in distilled water (dH(2)O) on a horizontally positioned Petri dish, emerging primary roots of grass pea (Lathyrus sativus L.) grew perpendicular to the bottom of the Petri dish, due to gravitropism. However, when germinated in exogenous hydrogen peroxide (H(2)O(2)), the primary roots grew parallel to the bottom of the Petri dish and asymmetrically, forming a horizontal curvature. Time-course experiments showed that the effect was strongest when H(2)O(2) was applied prior to the emergence of the primary root. H(2)O(2) failed to induce root curvature when applied post-germination. Dosage studies revealed that the frequency of primary root curvature was significantly enhanced with increased H(2)O(2) concentrations. This curvature could be directly counteracted by dimethylthiourea (DMTU), a scavenger of H(2)O(2), but not by diphenylene iodonium (DPI) and pyridine, inhibitors of H(2)O(2) production. Exogenous H(2)O(2) treatment caused both an increase in the activities of H(2)O(2)-scavenging enzymes [including ascorbate peroxidase (APX: EC 1.11.1.11), catalase (CAT: EC 1.11.1.6) and peroxidase (POD: EC 1.11.1.7)] and a reduction in endogenous H(2)O(2) levels and root vitality. Although grass pea seeds absorbed exogenous H(2)O(2) during seed germination, DAB staining of paraffin sections revealed that exogenous H(2)O(2) only entered the root epidermis and not inner tissues. These data indicated that exogenously applied H(2)O(2) could lead to a reversible loss of the root gravitropic response and a horizontal curvature in primary roots during radicle emergence of the seedling. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Toxic effects of Cu2+ on growth, nutrition, root morphology, and distribution of Cu in roots of Sabi grass

    International Nuclear Information System (INIS)

    Kopittke, P.M.; Asher, C.J.; Blamey, F.P.C.; Menzies, N.W.

    2009-01-01

    Sabi grass (Urochloa mosambicensis (Hack.) Dandy) (a C4 species of Poaceae) is commonly used to revegetate disturbed sites in low-rainfall environments, but comparatively little is known regarding copper (Cu) toxicity in this species. A dilute nutrient solution culture experiment was conducted for 10 d to examine the effects of elevated Cu 2+ activities ({Cu 2+ }) on the growth of Sabi grass. Growth was inhibited by high Cu in solution, with a 50% reduction in the relative fresh mass occurring at 1.0 μM {Cu 2+ } for the roots and 1.2 μM {Cu 2+ } for the shoots. In solutions containing 1.2-1.9 μM {Cu 2+ }, many of the roots ruptured due to the tearing and separation of the rhizodermis and outer cortex from the underlying tissues. Transmission electron microscopy revealed that Cu-rich deposits were found to accumulate predominantly within vacuoles. Due to limited translocation of Cu from the roots to the shoots, phytotoxicity is likely to be more of a problem in remediation of Cu-toxic sites than is Cu toxicity of fauna consuming the above-ground biomass.

  14. Improvement of workíng environment - from a grass-root strategy to institutionalized professionalism

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    2002-01-01

    Improvement of working environment as a tool to promote sustainable development - from a grass-root strategy to institutionalized professionalism. It is now more than 25 years since substitution of organic solvents started to be considered as a meaningful way in Denmark to reduce harmful effects...... on workers. During that period different groups of actors have been involved, new institutions to improve working environment have emerged, and legislation has been changed. The paper will describe the development from a grass-root strategy to improve working environment to a much more complex situation...... where working environment professionals play an important role, and where the concept of ‘cleaner technology’ is generally accepted as a tool to promote sustainable development in the Danish society. The paper will also discuss the necessity of incorporation of working environment considerations...

  15. Some observation on the root growth of young apple trees and their uptake of nutrients when grown in herbicided strips in grassed orchards

    International Nuclear Information System (INIS)

    Atkinson, D.

    1977-01-01

    Root laboratory observations of the root growth of 4-year-old trees of Cox/M.26 planted in a herbicided strip in grass indicated that during the year 70% of the new growth occurred in the strip. Growth appeared to begin earlier during the year under bare soil than under grass. Nitrogen absorption from the strip and the grassed alley was assessed by measuring 15 N uptake; at 10 cm depth uptake was almost entirely from the strip. An experiment using 2-year-old trees of Cox/M.106 and 15 N placements at 7.5 and 15 cm depths in the strip and 15 cm in the grassed alley gave similar results. With 32 P as a tracer and similar trees a small amount of uptake from 25 cm depth under grass was detected. The experiments indicate that young trees produce most of their new roots in the herbicide strips where most of their nutrient uptake occurs and little or none from the grassed alleys. The absorption of nitrogen into the leaves was greater in early summer than autumn

  16. Theory and Practice of Sustainable Development: Path to Managing Rural Grass-roots Party Organization from the Perspective of Impetus

    Science.gov (United States)

    Zhong, Xianzhe

    2018-02-01

    Impetus is the most fundamental guarantee for the survival and progress of organization. The rural grass-roots party organization should serve as a battle fortress of party helping realize the purpose of party in the village. Therefore, to strengthen the management of rural party branches, it is imperative to optimize their impetus, stepping on the basic paths: developing and utilizing material force, and digging and stimulating spiritual force for rural grass-roots party organization construction; adhering to the dialectical view on impetus to highlight both material and spiritual motivations.

  17. Root proliferation in native perennial grasses of arid Patagonia, Argentina

    Institute of Scientific and Technical Information of China (English)

    Yanina A. TORRES; Mara M. MUJICA; Sandra S. BAIONI; Jos ENTO; Mara N. FIORETTI; Guillermo TUCAT; Carlos A. BUSSO; Oscar A. MONTENEGRO; Leticia ITHURRART; Hugo D. GIORGETTI; Gustavo RODRGUEZ; Diego BENTIVEGNA; Roberto E. BREVEDAN; Osvaldo A. FERNNDEZ

    2014-01-01

    Pappophorum vaginatum is the most abundant C4 perennial grass desirable to livestock in rangelands of northeastern Patagonia, Argentina. We hypothesized that (1) defoliation reduce net primary productivity, and root length density and weight in the native species, and (2) root net primary productivity, and root length density and weight, are greater in P. vaginatum than in the other, less desirable, native species (i.e., Aristida spegazzinii, A. subulata and Sporobolus cryptandrus). Plants of all species were either exposed or not to a severe defoliation twice a year during two growing seasons. Root proliferation was measured using the cylinder method. Cylindrical, iron structures, wrapped up using nylon mesh, were buried diagonally from the periphery to the center on individual plants. These structures, initially filled with soil without any organic residue, were dug up from the soil on 25 April 2008, after two successive defoliations in mid-spring 2007. During the second growing season (2008-2009), cylinders were destructively harvested on 4 April 2009, after one or two defoliations in mid-and/or late-spring, respectively. Roots grown into the cylinders were obtained after washing the soil manually. Defoliation during two successive years did reduce the study variables only after plants of all species were defoliated twice, which supported the first hypothesis. The greater root net primary productivity, root length den-sity and weight in P. vaginatum than in the other native species, in support of the second hypothesis, could help to explain its greater abundance in rangelands of Argentina.

  18. Water use, root activity and deep drainage within a perennial legume-grass pasture: A case study in southern inland Queensland, Australia

    Directory of Open Access Journals (Sweden)

    A. Nahuel A. Pachas

    2016-09-01

    Full Text Available Water use and depth of water extraction of leucaena (Leucaena leucocephala and Rhodes grass (Chloris gayana pasture, irrigated with desalinated coal seam water (a by-product of the coal seam gas industry, were monitored to provide background information on root activity, spatial and temporal water use and deep drainage over a 757-day period from August 2011 to August 2013. Methodology comprised measurement of soil water from surface to 4 m depth using 8 EnviroSCAN probes connected to dataloggers positioned within leucaena twin rows and within the Rhodes grass inter-row. Just over 581,000 individual moisture measurements were collated and are reported here. Water extraction (and by inference root activity of leucaena and Rhodes grass showed marked seasonal fluctuation with deepest and highest water extraction occurring during the first growing season; water extraction was greatly diminished during the following drier and cooler seasons due to the negative influences of lower soil moisture contents, lower temperatures and increased defoliation on pasture growth. The highest values of deep drainage below 4 m depth occurred when high rainfall events corresponded with high soil water storage in the entire profile (0–4 m depth. Given that water usage by both leucaena and Rhodes grass was greatest in the upper layers of soil (<1.5 m, future research should focus on how the level of competitive interaction might be managed by choice of row spacing and frequency of irrigation. Further studies are needed, including: (a physical sampling to determine the depth of active roots; (b how defoliation affects rooting behaviours and water use of leucaena; and (c modelling of the water and salt balances of leucaena and grass inter-row systems using data from this study, with various levels of irrigation, to investigate the risks of deep drainage over an extended climate sequence.Keywords: Active rooting depth, agroforestry, Chloris gayana, Leucaena leucocephala

  19. Tele-periodontics - Oral health care at a grass root level.

    Science.gov (United States)

    Avula, Haritha

    2015-01-01

    A new concept of tele-periodontics, which merges the innovative technology of telecommunications and the field of periodontics, is proposed. This new field of tele-periodontics will have an infinite potential where access to a specialist will be provided at a grass root level, enhancing effective delivery of therapy and information to the rural and under privileged areas. It would allow the specialist and the patient to interact either by video conferencing (real time) or through supportive information (store and forward) over geographic distances. Different probabilities of tele-periodontics such as tele consultation, tele training, tele education and tele support are also discussed in this paper.

  20. Making it in a 'saturated' market. How the Spence Center wins women's hearts with grass-roots marketing.

    Science.gov (United States)

    Moore, P L

    1997-01-01

    The Spence Centers, full-service, independent clinics for women, depend on grass-roots outreach to cultivate customers and build brand equity. The Centers have garnered national and international press coverage and made enough friends to open a fourth operation.

  1. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites.

    Science.gov (United States)

    Moreira, Fátima M S; Lange, Anderson; Klauberg-Filho, Osmar; Siqueira, José O; Nóbrega, Rafaela S A; Lima, Adriana S

    2008-12-01

    This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles) and genotypically (16S rDNA sequencing), as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22), some (1R, S34 and S22) were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L(-1) NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.

  2. 26 CFR 1.501(h)-3 - Lobbying or grass roots expenditures normally in excess of ceiling amount.

    Science.gov (United States)

    2010-04-01

    ... excess of ceiling amount. 1.501(h)-3 Section 1.501(h)-3 Internal Revenue INTERNAL REVENUE SERVICE... § 1.501(h)-3 Lobbying or grass roots expenditures normally in excess of ceiling amount. (a) Scope. This section provides rules under section 501(h) for determining whether an organization that has...

  3. Changes in the spore numbers of AM fungi and in AM colonisation of roots of clovers and grasses on a peat-muck soil with respect to mineral fertilization

    International Nuclear Information System (INIS)

    Kowalska, T. K.; Kwiatkowaska, E.

    2016-01-01

    A 4-year plot experiment was conducted to determine the dynamics of changes in the spore density of arbuscular mycorrhizal fungi (AMF) and of the degree of endomycorrhizal colonisation of roots of clovers and meadow grasses on an organic peat-muck soil in a post-marshy habitat, taking into account the effect of mineral fertilisation (NPK). The experimental object comprised four plots that represented the fertilisation treatments, sown with white clover (Trifolium repens L.), red clover (Trifolium pratense L.), smooth meadow-grass (Poa pratensis L.), and a mix of grasses composed of perennial ryegrass (Lolium perenne L.), meadow fescue (Festuca pratensis Huds.), smooth meadow-grass (Poa pratensis L.), and cocksfoot (Dactylis glomerata L.). Analogous sowing was performed on control (non-fertilised) plots. It was found that spores of AMF occurred in 100 percent of the samples of the soil studied, and the average total number of AMF spores isolated from soil under the particular plant combinations was high and amounted to 1858 spores (range from 1392 to 2443) in 100 g of air-dried soil. The percentage share of the clover and grass roots colonised by indigenous endomycorrhizal fungi was very low and varied from 0 to 46 (average from 4.1 percent to 12.2 percent). No correlation was found between the spore numbers of AMF in the soil and the degree of mycorrhized roots of the clovers and grasses. Mineral fertilisation stimulated the sporulation of AM fungi but had no effect on root colonisation by these fungi. (author)

  4. Quantification of root associated nitrogen fixation in kallar grass as estimated by sup/15/nitrogen isotope dilution

    International Nuclear Information System (INIS)

    Malik, K.A.; Zafar, Y.

    1985-01-01

    Present investigations were made by using sup/15/N isotope dilution technique to quantitatively estimate BNF in Kallar grass when grown under controlled conditions in nutrient solution and inoculated with N sub/2/-fixing bacteria. Azospirillum brasilense and two isolates from the rhizosphere of kallar grass were used as inoculant. After harvest acetylen reduction of roots, total yield, total N and sup/15/ N analysis were made. Total-N in inoculated treatments was 2-3 times higher than in control and so were the fresh and dry weight yields. The estimates based on isotopic dilution indicated that 50-70 percent N in the plant was derived from BNF in case of inoculated treatment. The results based on N balance gave relatively lower values of 40-60 percent of total N derived from fixation. The data revealed that in Kallar grass a substantial amount of plant N is derived from BNF. (orig./A.B.)

  5. Performance of Vetiver Grass (Vetiveria zizanioides for Phytoremediation of Contaminated Water

    Directory of Open Access Journals (Sweden)

    Syed Hasan Sharifah Nur Munirah

    2017-01-01

    Full Text Available In tolerance towards metal uptake, there is a need to evaluate the performance of vetiver grass for metal removal to reduce water impurity. This study was aimed to evaluate contaminant removal by vetiver grass at varying root length and plant density and determine the metal uptake in vetiver plant biomass. Pollutant uptake of vetiver grass was conducted in laboratory experiment and heavy metal analysis was done using acid digestion and Atomic Absorption Spectrometry. Findings indicated that the removal of heavy metal was decreased in seven days of the experiment where iron shows the highest percentage (96%; 0.42 ppm of removal due to iron is highly required for growth of vetiver grass. Removal rate of heavy metals in water by vetiver grass is ranked in the order of Fe>Zn>Pb>Mn>Cu. Results also demonstrated greater removal of heavy metals (Cu, Fe, Mn, Pb, Zn at greater root length and higher density of vetiver grass because it increased the surface area for metal absorption by plant root into vetiver plant from contaminated water. However, findings indicated that accumulation of heavy metals in plant biomass was higher in vetiver shoot than in root due to metal translocation from root to the shoot. Therefore, the findings have shown effective performance of vetiver grass for metal removal in the phytoremediation of contaminated water.

  6. The grass-roots conservative against gender equality : The case study of antifeminism local movement in Japan

    OpenAIRE

    Suzuki, Ayaka

    2017-01-01

    Conservative movements are intensifying advertisement in fierce conflict with progressive social movements in the contemporary Japanese society. In particular, the Japanese Society for History Textbook Reform has taken action in terms of revisionism since late 1990s. Conservative groups have held protest movements against gender equality since early 2000, which resulted in drastic impact on the government. These conservative movements have received attention as new grass-roots conservative mo...

  7. Physiological Ecology of Clostridium glycolicum RD-1, an Aerotolerant Acetogen Isolated from Sea Grass Roots

    OpenAIRE

    Küsel, Kirsten; Karnholz, Arno; Trinkwalter, Tanja; Devereux, Richard; Acker, Georg; Drake, Harold L.

    2001-01-01

    An anaerobic, H2-utilizing bacterium, strain RD-1, was isolated from the highest growth-positive dilution series of a root homogenate prepared from the sea grass Halodule wrightii. Cells of RD-1 were gram-positive, spore-forming, motile rods that were linked by connecting filaments. Acetate was produced in stoichiometries indicative of an acetyl coenzyme A (acetyl-CoA) pathway-dependent metabolism when RD-1 utilized H2-CO2, formate, lactate, or pyruvate. Growth on sugars or ethylene glycol yi...

  8. Pesticide-contaminated feeds in integrated grass carp aquaculture: toxicology and bioaccumulation.

    Science.gov (United States)

    Pucher, J; Gut, T; Mayrhofer, R; El-Matbouli, M; Viet, P H; Ngoc, N T; Lamers, M; Streck, T; Focken, U

    2014-02-19

    Effects of dissolved pesticides on fish are widely described, but little is known about effects of pesticide-contaminated feeds taken up orally by fish. In integrated farms, pesticides used on crops may affect grass carp that feed on plants from these fields. In northern Vietnam, grass carp suffer seasonal mass mortalities which may be caused by pesticide-contaminated plants. To test effects of pesticide-contaminated feeds on health and bioaccumulation in grass carp, a net-cage trial was conducted with 5 differently contaminated grasses. Grass was spiked with 2 levels of trichlorfon/fenitrothion and fenobucarb. Unspiked grass was used as a control. Fish were fed at a daily rate of 20% of body mass for 10 d. The concentrations of fenitrothion and fenobucarb in pond water increased over time. Effects on fish mortality were not found. Fenobucarb in feed showed the strongest effects on fish by lowering feed uptake, deforming the liver, increasing blood glucose and reducing cholinesterase activity in blood serum, depending on feed uptake. Fenobucarb showed increased levels in flesh in all treatments, suggesting bio-concentration. Trichlorfon and fenitrothion did not significantly affect feed uptake but showed concentration-dependent reduction of cholinesterase activity and liver changes. Fenitrothion showed bioaccumulation in flesh which was dependant on feed uptake, whereas trichlorfon was only detected in very low concentrations in all treatments. Pesticide levels were all detected below the maximum residue levels in food. The pesticide-contaminated feeds tested did not cause mortality in grass carp but were associated with negative physiological responses and may increase susceptibility to diseases.

  9. Root development during soil genesis: effects of root-root interactions, mycorrhizae, and substrate

    Science.gov (United States)

    Salinas, A.; Zaharescu, D. G.

    2015-12-01

    A major driver of soil formation is the colonization and transformation of rock by plants and associated microbiota. In turn, substrate chemical composition can also influence the capacity for plant colonization and development. In order to better define these relationships, a mesocosm study was set up to analyze the effect mycorrhizal fungi, plant density and rock have on root development, and to determine the effect of root morphology on weathering and soil formation. We hypothesized that plant-plant and plant-fungi interactions have a stronger influence on root architecture and rock weathering than the substrate composition alone. Buffalo grass (Bouteloua dactyloides) was grown in a controlled environment in columns filled with either granular granite, schist, rhyolite or basalt. Each substrate was given two different treatments, including grass-microbes and grass-microbes-mycorrhizae and incubated for 120, 240, and 480 days. Columns were then extracted and analyzed for root morphology, fine fraction, and pore water major element content. Preliminary results showed that plants produced more biomass in rhyolite, followed by schist, basalt, and granite, indicating that substrate composition is an important driver of root development. In support of our hypothesis, mycorrhizae was a strong driver of root development by stimulating length growth, biomass production, and branching. However, average root length and branching also appeared to decrease in response to high plant density, though this trend was only present among roots with mycorrhizal fungi. Interestingly, fine fraction production was negatively correlated with average root thickness and volume. There is also slight evidence indicating that fine fraction production is more related to substrate composition than root morphology, though this data needs to be further analyzed. Our hope is that the results of this study can one day be applied to agricultural research in order to promote the production of crops

  10. [Mechanisms of grass in slope erosion control in Loess sandy soil region of Northwest China].

    Science.gov (United States)

    Zhao, Chun-Hong; Gao, Jian-En; Xu, Zhen

    2013-01-01

    By adopting the method of simulated precipitation and from the viewpoint of slope hydrodynamics, in combining with the analysis of soil resistance to erosion, a quantitative study was made on the mechanisms of grass in controlling the slope erosion in the cross area of wind-water erosion in Loess Plateau of Northwest China under different combinations of rainfall intensity and slope gradient, aimed to provide basis to reveal the mechanisms of vegetation in controlling soil erosion and to select appropriate vegetation for the soil and water conservation in Loess Plateau. The grass Astragalus adsurgens with the coverage about 40% could effectively control the slope erosion. This grass had an efficiency of more than 70% in reducing sediment, and the grass root had a greater effect than grass canopy. On bare slope and on the slopes with the grass plant or only the grass root playing effect, there existed a functional relation between the flow velocity on the slopes and the rainfall intensity and slope gradient (V = DJ(0.33 i 0.5), where V is flow velocity, D is the comprehensive coefficient which varies with different underlying surfaces, i is rainfall intensity, and J is slope gradient). Both the grass root and the grass canopy could markedly decrease the flow velocity on the slopes, and increase the slope resistance, but the effect of grass root in decreasing flow velocity was greater while the effect in increasing resistance was smaller than that of grass canopy. The effect of grass root in increasing slope resistance was mainly achieved by increasing the sediment grain resistance, while the effect of canopy was mainly achieved by increasing the slope form resistance and wave resistance. The evaluation of the soil resistance to erosion by using a conceptual model of sediment generation by overland flow indicated that the critical shear stress value of bare slope and of the slopes with the grass plant or only the grass root playing effect was 0.533, 1.672 and 0

  11. Coping with low nutrient availability and inundation: root growth responses of three halophytic grass species from different elevations along a flooding gradient

    NARCIS (Netherlands)

    Bouma, T.J.; Koutstaal, B.P.; Van Dongen, M.; Nielsen, K.F.

    2001-01-01

    We describe the responses of three halophytic grass species that dominate the low (Spartina anglica), middle (Puccinellia maritima) and high (Elymus pycnanthus) parts of a salt marsh, to soil conditions that are believed to favour contrasting root-growth strategies. Our hypotheses were: (1)

  12. Grass-on-grass competition along a catenal gradient in mesic ...

    African Journals Online (AJOL)

    Three aboveground treatments (full light competition, no light competition and clipping to simulate grazing), and two belowground treatments (full belowground competition and belowground competition excluded by a root tube), were used. On all soil depths the three grass species differed in mean mass, with E. racemosa ...

  13. Review of the integrated process for the production of grass biomethane.

    Science.gov (United States)

    Nizami, Abdul-Sattar; Korres, Nicholas E; Murphy, Jerry D

    2009-11-15

    Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.

  14. MACRO NUTRIENTS UPTAKE OF FORAGE GRASSES AT DIFFERENT SALINITY STRESSES

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The high concentration of sodium chloride (NaCl in saline soils has negative effects on the growth ofmost plants. The experiment was designed to evaluate macro nutrient uptake (Nitrogen, Phosphorus andPotassium of forage grasses at different NaCl concentrations in growth media. The experiment wasconducted in a greenhouse at Forage Crops Laboratory of Animal Agriculture Faculty, Diponegoro University.Split plot design was used to arrange the experiment. The main plot was forage grasses (Elephant grass(Pennisetum purpureum and King grass (Pennisetum hybrida. The sub plot was NaCl concentrationin growth media (0, 150, and 300 mM. The nitrogen (N, phosphorus (P and potassium (K uptake in shootand root of plant were measured. The result indicated increasing NaCl concentration in growth mediasignificantly decreased the N, P and K uptake in root and shoot of the elephant grass and king grass. Thepercentage reduction percentage of N, P and K uptake at 150 mM and 300 mM were high in elephant grassand king grass. It can be concluded that based on nitrogen, phosphorus and potassium uptake, elephantgrass and king grass are not tolerant to strong and very strong saline soil.

  15. Rooting depths of plants on low-level waste disposal sites

    International Nuclear Information System (INIS)

    Foxx, T.S.; Tierney, G.D.; Williams, J.M.

    1984-11-01

    In 1981-1982 an extensive bibliographic study was done to reference rooting depths of native plants in the United States. The data base presently contains 1034 different rooting citations with approximately 12,000 data elements. For this report, data were analyzed for rooting depths related to species found on low-level waste (LLW) sites at Los Alamos National Laboratory. Average rooting depth and rooting frequencies were determined and related to present LLW maintenance. The data base was searched for information on rooting depths of 53 species found on LLW sites at Los Alamos National Laboratory. The study indicates 12 out of 13 grasses found on LLW sites root below 91 cm. June grass [Koeleria cristata (L.) Pers.] (76 cm) was the shallowest rooting grass and side-oats grama [Bouteloua curtipendula (Michx.) Torr.] was the deepest rooting grass (396 cm). Forbs were more variable in rooting depths. Indian paintbrush (Castelleja spp.) (30 cm) was the shallowest rooting forb and alfalfa (Medicago sativa L.) was the deepest (>3900 cm). Trees and shrubs commonly rooted below 457 cm. The shallowest rooting tree was elm (Ulmus pumila L.) (127 cm) and the deepest was one-seed juniper [Juniperus monosperma (Engelm) Sarg.] (>6000 cm). Apache plume [Fallugia paradoxa (D. Don) Endl.] rooted to 140 cm, whereas fourwing saltbush [Atriplex canecens (Pursh) Nutt.] rooted to 762 cm

  16. Invasive Andropogon gayanus (gamba grass) is an ecosystem transformer of nitrogen relations in Australian savanna.

    Science.gov (United States)

    Rossiter-Rachor, N A; Setterfield, S A; Douglas, M M; Hutley, L B; Cook, G D; Schmidt, S

    2009-09-01

    Invasion by the African grass Andropogon gayanus is drastically altering the understory structure of oligotrophic savannas in tropical Australia. We compared nitrogen (N) relations and phenology of A. gayanus and native grasses to examine the impact of invasion on N cycling and to determine possible reasons for invasiveness of A. gayanus. Andropogon gayanus produced up to 10 and four times more shoot phytomass and root biomass, with up to seven and 2.5 times greater shoot and root N pools than native grass understory. These pronounced differences in phytomass and N pools between A. gayanus and native grasses were associated with an altered N cycle. Most growth occurs in the wet season when, compared with native grasses, dominance of A. gayanus was associated with significantly lower total soil N pools, lower nitrification rates, up to three times lower soil nitrate availability, and up to three times higher soil ammonium availability. Uptake kinetics for different N sources were studied with excised roots of three grass species ex situ. Excised roots of A. gayanus had an over six times higher-uptake rate of ammonium than roots of native grasses, while native grass Eriachne triseta had a three times higher uptake rate of nitrate than A. gayanus. We hypothesize that A. gayanus stimulates ammonification but inhibits nitrification, as was shown to occur in its native range in Africa, and that this modification of the soil N cycle is linked to the species' preference for ammonium as an N source. This mechanism could result in altered soil N relations and could enhance the competitive superiority and persistence of A. gayanus in Australian savannas.

  17. Crop-associated virus reduces the rooting depth of non-crop perennial native grass more than non-crop-associated virus with known viral suppressor of RNA silencing (VSR).

    Science.gov (United States)

    Malmstrom, Carolyn M; Bigelow, Patrick; Trębicki, Piotr; Busch, Anna K; Friel, Colleen; Cole, Ellen; Abdel-Azim, Heba; Phillippo, Colin; Alexander, Helen M

    2017-09-15

    stunted annual Avena sativa L. (oats). These findings suggest that some of the diversity in grass-infecting Luteoviridae reflects viral capacity to modulate defenses in different host types. Intriguingly, while all virus treatments also reduced root production in both host species, only crop-associated BYDV-PAV (or co-infection) reduced rooting depths. Such root effects may increase host susceptibility to drought, and indicate that BYDV-PAV pathogenicity is determined by something other than a P0 VSR. These findings contribute to growing evidence that pathogenic crop-associated viruses may harm native species as well as crops. Critical next questions include the extent to which crop-associated selection pressures drive viral pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Poverty as an Abuse of Human Rights in Ghana. : A grass roots perspective on poverty and human rights.

    OpenAIRE

    Armah, Collins

    2009-01-01

    The study aimed at getting a grass root opinion on poverty and why Ghana is still poor after 50 years of independence in spite of her richness in natural resources, second largest producer of cocoa in the word and appreciable stable political environment. The opinions of the ordinary people in the Bia district and their observed living conditions was analysed in line with theoretical basis of the study and previous studies to justify the stance that poverty should be considered as an abuse of...

  19. All hazardous waste politics is local: Grass-roots advocacy and public participation in siting and cleanup decisions

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, R.C.

    1998-12-31

    The combined effects of federalism and interest group pluralism pose particularly difficult problems for hazardous waste siting and cleanup decisions. Most national environmental groups have only limited involvement in local hazardous waste politics, while local grass-roots advocates have very different interests and sometimes are pitted against one another. Both the Environmental protection Agency and the Department of energy recently have begun to use site-specific citizen advisory boards at cleanup sites. This approach appears to improve communications at some sites, but does not address the issues of ``not in my back yard`` politics and alleged inequitable exposure to hazardous wastes.

  20. Root growth and N dynamics in response to multi-year experimental warming, summer drought and elevated CO2 in a mixed heathland-grass ecosystem

    DEFF Research Database (Denmark)

    Arndal, M. F.; Schmidt, I. K.; Kongstad, J.

    2013-01-01

    growth would be matched by an increase in root nutrient uptake of NH4+-N and NO3- -N. Root growth was significantly increased by elevated CO2. The roots, however, did not fully compensate for the higher growth with a similar increase in nitrogen uptake per unit of root mass. Hence the nitrogen...... concentration in roots was decreased in elevated CO2, whereas the biomass N pool was unchanged or even increased. The higher net root production in elevated CO2 might be a strategy for the plants to cope with increased nutrient demand leading to a long-term increase in N uptake on a whole-plant basis. Drought...... reduced grass root biomass and N uptake, especially when combined with warming, but CO2 was the most pronounced main factor effect. Several significant interactions of the treatments were found, which indicates that the responses were nonadditive and that changes to multiple environmental changes cannot...

  1. Responses of three grass species to creosote during phytoremediation

    International Nuclear Information System (INIS)

    Huang Xiaodong; El-Alawi, Yousef; Penrose, Donna M.; Glick, Bernard R.; Greenberg, Bruce M.

    2004-01-01

    Phytoremediation of creosote-contaminated soil was monitored in the presence of Tall fescue, Kentucky blue grass, or Wild rye. For all three grass species, plant growth promoting rhizobacteria (PGPR) were evaluated for plant growth promotion and protection of plants from contaminant toxicity. A number of parameters were monitored including plant tissue water content, root growth, plant chlorophyll content and the chlorophyll a/b ratio. The observed physiological data indicate that some plants mitigated the toxic effects of contaminants. In addition, in agreement with our previous experiments reported in the accompanying paper (Huang, X.-D., El-Alawi, Y., Penrose, D.M., Glick, B.R., Greenberg, B.M., 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. Environ. Poll. doi: 10.1016/j.envpol.2003.09.031), PGPR were able to greatly enhance phytoremediation. PGPR accelerated plant growth, especially roots, in heavily contaminated soils, diminishing the toxic effects of contaminants to plants. Thus, the increased root biomass in PGPR-treated plants led to more effective remediation. - Plant growth promoting rhizobacteria enhanced growth and remediation of three grass species

  2. Revisiting the two-layer hypothesis: coexistence of alternative functional rooting strategies in savannas.

    Science.gov (United States)

    Holdo, Ricardo M

    2013-01-01

    The two-layer hypothesis of tree-grass coexistence posits that trees and grasses differ in rooting depth, with grasses exploiting soil moisture in shallow layers while trees have exclusive access to deep water. The lack of clear differences in maximum rooting depth between these two functional groups, however, has caused this model to fall out of favor. The alternative model, the demographic bottleneck hypothesis, suggests that trees and grasses occupy overlapping rooting niches, and that stochastic events such as fires and droughts result in episodic tree mortality at various life stages, thus preventing trees from otherwise displacing grasses, at least in mesic savannas. Two potential problems with this view are: 1) we lack data on functional rooting profiles in trees and grasses, and these profiles are not necessarily reflected by differences in maximum or physical rooting depth, and 2) subtle, difficult-to-detect differences in rooting profiles between the two functional groups may be sufficient to result in coexistence in many situations. To tackle this question, I coupled a plant uptake model with a soil moisture dynamics model to explore the environmental conditions under which functional rooting profiles with equal rooting depth but different depth distributions (i.e., shapes) can coexist when competing for water. I show that, as long as rainfall inputs are stochastic, coexistence based on rooting differences is viable under a wide range of conditions, even when these differences are subtle. The results also indicate that coexistence mechanisms based on rooting niche differentiation are more viable under some climatic and edaphic conditions than others. This suggests that the two-layer model is both viable and stochastic in nature, and that a full understanding of tree-grass coexistence and dynamics may require incorporating fine-scale rooting differences between these functional groups and realistic stochastic climate drivers into future models.

  3. Comparison of phytoremediation potential of three grass species in soil contaminated with cadmium

    Directory of Open Access Journals (Sweden)

    Gołda Sylwia

    2016-03-01

    Full Text Available The aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF and translocation factor (TF. All three tested species of grasses had TF 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.

  4. Nowcasting daily minimum air and grass temperature

    Science.gov (United States)

    Savage, M. J.

    2016-02-01

    Site-specific and accurate prediction of daily minimum air and grass temperatures, made available online several hours before their occurrence, would be of significant benefit to several economic sectors and for planning human activities. Site-specific and reasonably accurate nowcasts of daily minimum temperature several hours before its occurrence, using measured sub-hourly temperatures hours earlier in the morning as model inputs, was investigated. Various temperature models were tested for their ability to accurately nowcast daily minimum temperatures 2 or 4 h before sunrise. Temperature datasets used for the model nowcasts included sub-hourly grass and grass-surface (infrared) temperatures from one location in South Africa and air temperature from four subtropical sites varying in altitude (USA and South Africa) and from one site in central sub-Saharan Africa. Nowcast models used employed either exponential or square root functions to describe the rate of nighttime temperature decrease but inverted so as to determine the minimum temperature. The models were also applied in near real-time using an open web-based system to display the nowcasts. Extrapolation algorithms for the site-specific nowcasts were also implemented in a datalogger in an innovative and mathematically consistent manner. Comparison of model 1 (exponential) nowcasts vs measured daily minima air temperatures yielded root mean square errors (RMSEs) <1 °C for the 2-h ahead nowcasts. Model 2 (also exponential), for which a constant model coefficient ( b = 2.2) was used, was usually slightly less accurate but still with RMSEs <1 °C. Use of model 3 (square root) yielded increased RMSEs for the 2-h ahead comparisons between nowcasted and measured daily minima air temperature, increasing to 1.4 °C for some sites. For all sites for all models, the comparisons for the 4-h ahead air temperature nowcasts generally yielded increased RMSEs, <2.1 °C. Comparisons for all model nowcasts of the daily grass

  5. Production of tropical forage grasses under different shading levels

    Directory of Open Access Journals (Sweden)

    Francisco Eduardo Torres

    2017-12-01

    Full Text Available This study aimed to evaluate the forage production of three tropical forage grasses under different shading levels. The experiment was conducted in a greenhouse at Universidade Estadual de Mato Grosso do Sul, University Unit of Aquidauana (UEMS/UUA, in a soil classified as Ultisol sandy loam texture. The treatments consisted of three grasses species combinations (B. brizantha cv. Marandu, B. decumbens cv. Basilisck and Panicum maximum cv. Tanzania, submitted to four shading levels (0, 30, 50 and 75%, arranged in a completely randomized blocks design in a factorial 3 x 4, with eight replications. After harvest, the plants were separated into shoot and roots for determination of shoot fresh mass (SFM, shoot dry mass (SDM and roots dry mass production. After analysis of variance, the qualitative factor was subjected to comparison of averages by Tukey’s test, and the quantitative factor to analysis of polynomial regression, being interactions appropriately unfolded. It was verified that B. decumbens, by its linearly increasing production of forage and less decrease of root formation, is the most recommended for shading conditions compared to grasses Tanzania and Marandu.

  6. VAM populations in relation to grass invasion associated with forest decline.

    Science.gov (United States)

    Vosatka, M; Cudlin, P; Mejstrik, V

    1991-01-01

    Spruce stands in Northern Bohemia forests, damaged to various degrees by industrial pollution, have shown establishment of grass cover following tree defoliation. Populations of vesicular-arbuscular mycorrhizal (VAM) fungi were studied under this grass cover in four permanent plots with spruce under different levels of pollution stress. Soil and root samples were collected in April and June within each plot as follows: (1) sites without grass, (2) sites with initial stages of grass invasion, and (3) sites with fully developed grass cover. In all plots, the highest number of propagules were recovered from samples taken from sites having full grass cover. Mycorrhizal infection of grass was highest in the plot with the severest pollution damage and lowest in the least damaged plot. The development of grass cover and VAM infection of grass increased with tree defoliation caused by air pollution.

  7. Waste management and pollution at grass-root level in Malaysia: the vision 2020 perspective

    International Nuclear Information System (INIS)

    Abdul Fatah Yussif; Abdul Rashid Mohamed Shariff

    2001-01-01

    Malaysia can gain enormously by embracing the global environmental awareness campaign by he United nations Environmental Protection Agency. In order to reap these benefits, a substantial amount of the national budget has to be allocated to oversee waste management and pollution control. However, if certain constrains are not properly addressed, it will lead to waste management and pollution control problem at both urban and municipal levels. The major constrains as identified in a study entitled The implementation constrains in waste management in Malaysia (Law Hieng Ding, 1992), include, lack of proper education of the masses, negligence and discriminate acts, lack of law enforcement by the relevant local authorities and probably discrepancy in the degree of coordination and planning among government agencies. This presentation will address these constraints and suggest a mechanism to better enhance efficient control and management of waste and pollution at grass root level. (Author)

  8. Coupling carbon allocation with leaf and root phenology predicts tree-grass partitioning along a savanna rainfall gradient

    Science.gov (United States)

    Haverd, V.; Smith, B.; Raupach, M.; Briggs, P.; Nieradzik, L.; Beringer, J.; Hutley, L.; Trudinger, C. M.; Cleverly, J.

    2016-02-01

    The relative complexity of the mechanisms underlying savanna ecosystem dynamics, in comparison to other biomes such as temperate and tropical forests, challenges the representation of such dynamics in ecosystem and Earth system models. A realistic representation of processes governing carbon allocation and phenology for the two defining elements of savanna vegetation (namely trees and grasses) may be a key to understanding variations in tree-grass partitioning in time and space across the savanna biome worldwide. Here we present a new approach for modelling coupled phenology and carbon allocation, applied to competing tree and grass plant functional types. The approach accounts for a temporal shift between assimilation and growth, mediated by a labile carbohydrate store. This is combined with a method to maximize long-term net primary production (NPP) by optimally partitioning plant growth between fine roots and (leaves + stem). The computational efficiency of the analytic method used here allows it to be uniquely and readily applied at regional scale, as required, for example, within the framework of a global biogeochemical model.We demonstrate the approach by encoding it in a new simple carbon-water cycle model that we call HAVANA (Hydrology and Vegetation-dynamics Algorithm for Northern Australia), coupled to the existing POP (Population Orders Physiology) model for tree demography and disturbance-mediated heterogeneity. HAVANA-POP is calibrated using monthly remotely sensed fraction of absorbed photosynthetically active radiation (fPAR) and eddy-covariance-based estimates of carbon and water fluxes at five tower sites along the North Australian Tropical Transect (NATT), which is characterized by large gradients in rainfall and wildfire disturbance. The calibrated model replicates observed gradients of fPAR, tree leaf area index, basal area, and foliage projective cover along the NATT. The model behaviour emerges from complex feedbacks between the plant

  9. 238U, and its decay products, in grasses from an abandoned uranium mine

    Science.gov (United States)

    Childs, Edgar; Maskall, John; Millward, Geoffrey

    2016-04-01

    Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as

  10. Weed species diversity in organic and integrated farming systems

    Directory of Open Access Journals (Sweden)

    Magdalena Jastrzębska

    2013-10-01

    Full Text Available Phytosociological data were collected in 1994–1996 in plots (relevés at the Research Station for Organic Farming and Conservation Breeding of the Polish Academy of Sciences in Popielno included in a large-area experiment conducted according to the concept and method proposed by Prof. S. Nawrocki. In a four-field crop rotation (root crops – spring barley undersown with red clover and grasses – red clover/grass mixture – winter triticale, each field was divided into two management units, organic and integrated. Data were collected in relevés by the Braun-Blanquet method, each year at the peak of the growing season. Weed abundance (% cover in cultivated fields and the number of weed species (species richness in crops were determined, which provided a basis for calculating the Shannon-Wiener indices of species diversity and evenness, and the Rényi profiles. The qualitative (species and quantitative structure of weed communities was compared using the Sørensen index. A total of 115 weed taxa (species, subspecies and varieties were identified in the examined agro-phytocenoses. Echinochloa crus-galli, Chenopodium album, Matricaria maritima subsp. inodora, Capsella bursa-pastoris, Thlaspi arvense and Stellaria media were the most abundant. Weed infestation was slightly higher in the organic farming system than in the integrated system. Organic farming contributed to higher weed species diversity in root crops, red clover/grass mixtures and winter triticale. Weed species richness was reduced in red clover/grass stands, while root crops and – to a lesser degree – spring barley undersown with red clover and grasses decreased weed species diversity. The species composition and in particular the quantitative structure of weeds were affected by crop species and cultivation regime rather than by the farming system. Weed communities of crops grown under organic and integrated farming systems were more similar with regard to species composition

  11. The relative importance of different grass components in controlling runoff and erosion on a hillslope under simulated rainfall

    Science.gov (United States)

    Li, Changjia; Pan, Chengzhong

    2018-03-01

    The effects of vegetation cover on overland flow and erosion processes on hillslopes vary with vegetation type and spatial distribution and the different vegetation components, including the above- and below-ground biomass. However, few attempts have been made to quantify how these factors affect erosion processes. Field experimental plots (5 m × 2 m) with a slope of approximately 25° were constructed and simulated rainfall (60 mm hr-1) (Rainfall) and simulated rainfall combined with upslope overland flow (20 L min-1) (Rainfall + Flow) were applied. Three grass species were planted, specifically Astragalus adsurgens (A. adsurgens), Medicago sativa (M. sativa) and Cosmos bipinnatus (C. bipinnatus). To isolate and quantify the relative contributions of the above-ground grass parts (stems, litter cover and leaves) and the roots to reducing surface runoff and erosion, each of the three grass species was subjected to three treatments: intact grass control (IG), no litter or leaves (only the grass stems and roots were reserved) (NLL), and only roots remaining (OR). The results showed that planting grass significantly reduced overland flow rate and velocity and sediment yield, and the mean reductions were 21.8%, 29.1% and 67.1%, respectively. M. sativa performed the best in controlling water and soil losses due to its thick canopy and dense, fine roots. Grasses reduced soil erosion mainly during the early stage of overland flow generation. The above-ground grass parts primarily contributed to reducing overland flow rate and velocity, with mean relative contributions of 64% and 86%, respectively. The roots played a predominant role in reducing soil erosion, with mean contribution of 84%. Due to the impact of upslope inflow, overland flow rate and velocity and sediment yield increased under the Rainfall + Flow conditions. The results suggest that grass species on downslope parts of semi-arid hillslopes performed better in reducing water and soil losses. This study is

  12. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    Science.gov (United States)

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be

  13. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    Science.gov (United States)

    Weiersbye, I. M.; Straker, C. J.; Przybylowicz, W. J.

    1999-10-01

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host.

  14. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Weiersbye, I.M. E-mail: isabel@gecko.biol.wits.ac.za; Straker, C.J.; Przybylowicz, W.J

    1999-09-02

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host.

  15. Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings

    International Nuclear Information System (INIS)

    Weiersbye, I.M.; Straker, C.J.; Przybylowicz, W.J.

    1999-01-01

    A combination of PIXE, proton back-scattering (BS) spectrometry and confocal laser scanning microscopy (CLSM) was used to determine in situ elemental concentrations in arbuscular mycorrhizal (AM) grass roots and AM fungal spores from gold and uranium mine tailings in South Africa. AM regions of roots were characterised by locally elevated P and vesicles were defined by distinctive transition metal and radionuclide distributions. Vesicles (AM structures responsible for nutrient storage), accumulated Mn, Cu, Ni and U, whereas Fe and Zn were present at lower levels than in host tissue. AM spores from mine tailings accumulated Ca, Cr, Fe, Ni, Cu, Br, Y, Th and U, but were deficient in P and K. The sequestration of excess metals and radionuclides in vesicles may limit metal availability, and thus toxicity, to the host

  16. Development Policy in Thailand: From Top-down to Grass Roots.

    Science.gov (United States)

    Kelly, Matthew; Yutthaphonphinit, Phattaraphon; Seubsman, Sam-Ang; Sleigh, Adrian

    2012-11-01

    Top-down industrial development strategies initially dominated the developing world after the second World War but were eventually found to produce inequitable economic growth. For a decade or more, governments and international development agencies have embraced the idea of participatory grass roots development as a potential solution. Here we review Thailand's experience with development strategies and we examine the current focus on participatory approaches. Thai government planning agencies have adopted "people centred development" and a "sufficiency economy", particularly emphasised since the disruptions caused by the 1997 Asian financial crisis. They aim to address the inequitable sharing of the benefits of decades of rapid growth that was particularly unfair for the rural poor. Thai policies aim to decentralise power to the local level, allowing civil society and Non-Governmental Organisations (NGOs) more of a voice in national decision making and promoting sustainable farming practices aimed at enriching rural communities. An example of this change in Thai government policy is the Community Worker Accreditation Scheme which is aiming to develop human resources at the local level by training community based leaders and supporting networks of community organisations. This enables autonomous local development projects led by trained and accredited individuals and groups. The political tensions notable in Thailand at present are part of this modern transition driven by conflicting models of top-down (industrial) development and the bottom-up (participatory) development ideals described above. Once resolved, Thailand will have few obstacles to moving to a new economic level.

  17. Root Differentiation of Agricultural Plant Cultivars and Proveniences Using FTIR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nicole Legner

    2018-06-01

    Full Text Available The differentiation of roots of agricultural species is desired for a deeper understanding of the belowground root interaction which helps to understand the complex interaction in intercropping and crop-weed systems. The roots can be reliably differentiated via Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR. In two replicated greenhouse experiments, six pea cultivars, five oat cultivars as well as seven maize cultivars and five barnyard grass proveniences (n = 10 plants/cultivar or provenience were grown under controlled conditions. One root of each plant was harvested and five different root segments of each root were separated, dried and measured with FTIR-ATR spectroscopy. The results showed that, firstly, the root spectra of single pea and single oat cultivars as well as single maize and single barnyard grass cultivars/proveniences separated species-specific in cluster analyses. In the majority of cases the species separation was correct, but in a few cases, the spectra of the root tips had to be omitted to ensure the precise separation between the species. Therefore, species differentiation is possible regardless of the cultivar or provenience. Consequently, all tested cultivars of pea and oat spectra were analyzed together and separated within a cluster analysis according to their affiliated species. The same result was found in a cluster analysis with maize and barnyard grass spectra. Secondly, a cluster analysis with all species (pea, oat, maize and barnyard grass was performed. The species split up species-specific and formed a dicotyledonous pea cluster and a monocotyledonous cluster subdivided in oat, maize and barnyard grass subclusters. Thirdly, cultivar or provenience differentiations within one species were possible in one of the two replicated experiments. But these separations were less resilient.

  18. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii†

    Science.gov (United States)

    Küsel, Kirsten; Pinkart, Holly C.; Drake, Harold L.; Devereux, Richard

    1999-01-01

    Recent declines in sea grass distribution underscore the importance of understanding microbial community structure-function relationships in sea grass rhizospheres that might affect the viability of these plants. Phospholipid fatty acid analyses showed that sulfate-reducing bacteria and clostridia were enriched in sediments colonized by the sea grasses Halodule wrightii and Thalassia testudinum compared to an adjacent unvegetated sediment. Most-probable-number analyses found that in contrast to butyrate-producing clostridia, acetogens and acetate-utilizing sulfate reducers were enriched by an order of magnitude in rhizosphere sediments. Although sea grass roots are oxygenated in the daytime, colorimetric root incubation studies demonstrated that acetogenic O-demethylation and sulfidogenic iron precipitation activities were tightly associated with washed, sediment-free H. wrightii roots. This suggests that the associated anaerobes are able to tolerate exposure to oxygen. To localize and quantify the anaerobic microbial colonization, root thin sections were hybridized with newly developed 33P-labeled probes that targeted (i) low-G+C-content gram-positive bacteria, (ii) cluster I species of clostridia, (iii) species of Acetobacterium, and (iv) species of Desulfovibrio. Microautoradiography revealed intercellular colonization of the roots by Acetobacterium and Desulfovibrio species. Acetogenic bacteria occurred mostly in the rhizoplane and outermost cortex cell layers, and high numbers of sulfate reducers were detected on all epidermal cells and inward, colonizing some 60% of the deepest cortex cells. Approximately 30% of epidermal cells were colonized by bacteria that hybridized with an archaeal probe, strongly suggesting the presence of methanogens. Obligate anaerobes within the roots might contribute to the vitality of sea grasses and other aquatic plants and to the biogeochemistry of the surrounding sediment. PMID:10543830

  19. Roots Air Management System with Integrated Expander

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, Dale [Eaton Corporation, Menomonee Falls, WI (United States); Wright, Brad [Eaton Corporation, Menomonee Falls, WI (United States); Fortini, Matt [Eaton Corporation, Menomonee Falls, WI (United States); Fink, Neal [Ballard Power Systems, Burnaby, BC (Canada); Ramadan, Bassem [Kettering Univ., Flint, MI (United States); Eybergen, William [Eaton Corporation, Menomonee Falls, WI (United States)

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.

  20. Genotypic Diversity for Biomass Accumulation and Shoot-Root Allometry in the Grass Brachypodium distachyon

    Science.gov (United States)

    Jansson, C.; Handakumbura, P. P.; Fortin, D.; Stanfill, B.; Rivas-Ubach, A.

    2017-12-01

    Predicting carbon uptake, assimilation and allocation for current and future biogeographical environments, including climate, is critical for our ability to select and/or design plant genotypes to meet increasing demand for plant biomass going into food, feed and energy production, while at the same time maintain or increase soil organic matter (SOM for soil fertility and carbon storage, and reduce emission of greenhouse gasses. As has been demonstrated for several plant species allometric relationships may differ between plant genotypes. Exploring plant genotypic diversity for biomass accumulation and allometry will potentially enable selection of genotypes with high CO2 assimilation and favorable allocation of recent photosynthate into above-ground and below-ground biomass. We are investigating genotypic diversity for PFTs in natural accessions of the annual C3 grass Brachypodium distachyon under current and future climate scenarios and how genotypic diversity correlates with metabolite profiles in aboveground and below-ground biomass. In the current study, we compare effects from non-stressed and drought conditions on biomass accumulation and shoot-root allometry.

  1. Rehabilitation experiment by phytoremediation using lawn grass

    International Nuclear Information System (INIS)

    2012-08-01

    Measures against environmental contamination by radioactive materials originated from the Fukushima Nuclear Accident (May, 2011), are being conducted in Fukushima and surrounding prefectures. Regarding to the measures, a phytoremediation experiment with several types of lawn grasses in a field scale have been carried out. Lawn grasses are generally characterized by shallow rhizosphere, high density and root mat formation. Decontamination effectiveness of radioactive cesium by plant uptake and by sod removing was investigated. As a result, the range of decontamination factors by plant uptake was below than 1% because of low transfer rate form soil to plant. On the other hand, maximum decontamination factor by sod removing reached about 100%. Decontamination activities with various methods will be implemented according to the national decontamination policy and related plans in each municipality. The phytoremediation method with lawn grass would be applicable in limited circumstances. (author)

  2. Integrated management of root-knot nematode (Meloidogyne ...

    African Journals Online (AJOL)

    Integrated management of root-knot nematode (Meloidogyne incognita) for tomato production and productivity. Bayuh Belay1* ... important food and cash crop of the farmers and is ...... some part of the research budget without any reservation.

  3. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect.

    Science.gov (United States)

    Rostás, Michael; Cripps, Michael G; Silcock, Patrick

    2015-02-01

    Plants emit specific blends of volatile organic compounds (VOCs) that serve as multitrophic, multifunctional signals. Fungi colonizing aboveground (AG) or belowground (BG) plant structures can modify VOC patterns, thereby altering the information content for AG insects. Whether AG microbes affect the emission of root volatiles and thus influence soil insect behaviour is unknown. The endophytic fungus Neotyphodium uncinatum colonizes the aerial parts of the grass hybrid Festuca pratensis × Lolium perenne and is responsible for the presence of insect-toxic loline alkaloids in shoots and roots. We investigated whether endophyte symbiosis had an effect on the volatile emission of grass roots and if the root herbivore Costelytra zealandica was able to recognize endophyte-infected plants by olfaction. In BG olfactometer assays, larvae of C. zealandica were more strongly attracted to roots of uninfected than endophyte-harbouring grasses. Combined gas chromatography-mass spectrometry and proton transfer reaction-mass spectrometry revealed that endophyte-infected roots emitted less VOCs and more CO2. Our results demonstrate that symbiotic fungi in plants may influence soil insect distribution by changing their behaviour towards root volatiles. The well-known defensive mutualism between grasses and Neotyphodium endophytes could thus go beyond bioactive alkaloids and also confer protection by being chemically less apparent for soil herbivores.

  4. N resource of grasses and N2-fixation of alfalfa in mono-culture and mixture

    International Nuclear Information System (INIS)

    Zhu Shuxiu

    1992-01-01

    The N behavior in alfalfa and gramineous forage grasses, tall fescue, siberian wild rye, wheat grass and awnless brome were studied in potting and pasture experiments in 1986-1988 by using 15 N isotope dilution technique. Comparison was made between the mixed culture and mono-culture. The % Ndff and %Ndfs of grasses were decreased by 14.19% and 20.76% respectively, while %Ndfa of alfalfa was increased by 20.22% in mixed culture as compared with mono-culture. The 15 N and soil N uptake data revealed that this enhancement was largely due to a lower competitive ability for soil N by alfalfa than by grass in mixed stands, causing the alfalfa to depend more on atmospheric N 2 fixation. 20.62%of N of grasses in mixed culture was from the N 2 -fixation by alfalfa, causing N level in root-sphere of alfalfa decreasing, which was considered to be one of the reasons that %Ndfa increased in mixed culture. N transfer may be carried out by the decomposition of roots and nodules of alfalfa plants

  5. Effect of Tylenchorhynchus robustoides on Growth of Buffalo Grass and Western Wheatgrass.

    Science.gov (United States)

    Smolik, J D

    1982-10-01

    Tylenchorhynchus robustoides reduced (P = 0.05) growth of Agropyron smithii (western wheatgrass) at soil temperatures of 20, 25, 30, and 35 C. Growth reduction increased with increasing soil temperatures. Highest populations of T. robustoides were recovered at 25 and 30 C. Clipping weights of Buchloe dactyloides (buffalo grass) were reduced at 25 and 30 C; however, root/crown weights were reduced at 15, 20, 30, and 35 C in nematode infested vs. noninfested soil. Reproduction of T. robustoides was greater at 25, 30, and 35 C than at 20 C on B. dactyloides. In a greenhouse study, T. robustoides reduced clipping and root/crown weights of both grasses 24-64%.

  6. Common mycelial networks impact competition in an invasive grass.

    Science.gov (United States)

    Workman, Rachael E; Cruzan, Mitchell B

    2016-06-01

    Mycorrhizal hyphal complexes can connect multiple host plants to form common mycelial networks (CMNs) that may affect plant competitive outcomes and community composition through differential resource allocation. The impacts of CMN interactions on invasive plants are not well understood and could be crucial to the understanding of invasive plant establishment and success. We grew the invasive grass Brachypodium sylvaticum in intra- and interspecific pairings with native grass Bromus vulgaris in a greenhouse and controlled for the effects of CMN and root interactions by manipulating the belowground separation between competitors. Comparison of plant growth in pots that allowed CMN interactions and excluded root competition and vice versa, or both, allowed us to delineate the effects of network formation and root competition on invasive plant establishment and performance. Brachypodium sylvaticum grown in pots allowing for only hyphal interactions, but no root competition, displayed superior growth compared with conspecifics in other treatments. Invasive performance was poorest when pairs were not separated by a barrier. Shoot nitrogen content in B. sylvaticum was higher in mycorrhizal plants only when connections were allowed between competitors. Our results indicate that the presence of CMN networks can have positive effects on B. sylvaticum establishment and nutrient status, which may affect plant competition and invasion success. © 2016 Botanical Society of America.

  7. Effect of a Bacterial Grass Culture on the Plant Growth and Disease Control in Tomato

    Directory of Open Access Journals (Sweden)

    Yong Seong Lee

    2017-12-01

    Full Text Available This study aimed to investigate the plant growth-promoting and biocontrol potential of a grass culture with Paenibacillus ehimensis KWN8 on tomato. For this experiment, treatments of a chemical fertilizer (F, a bacterial grass culture (G, a 1/3 volume of G plus 2/3 F (GF, and F plus a synthetic fungicide (FSf were applied to tomato leaves and roots. The result showed that the severity of Alternariasolani and Botrytiscinerea symptoms were significantly reduced after the application of the bacterial grass culture (G and GF and FSf. In addition, root mortality in G and GF was lower compared to F. Tomato plants treated with G or GF had better vegetative growth and yield compared to F. Application of G affected the fungal and bacterial populations in the soil. In conclusion, treatment with a bacterial grass culture decreased disease severity and increased tomato growth parameters. However, there were no statistically significant correlations between disease occurrence and tomato yields. This experiment presents the possibility to manage diseases of tomato in an environmentally friendly manner and to also increase the yield of tomato by using a grass culture broth containing P. ehimensis KWN38.

  8. Trace metals bioaccumulation potentials of three indigenous grasses grown on polluted soils collected around mining areas in Pretoria, South Africa

    International Nuclear Information System (INIS)

    Lion, G. N.; Olowoyo, J. O.; Modise, T. A.

    2016-01-01

    The rapid increase in the number of industries may have increased the levels of trace metals in the soil. Phyto remediation of these polluted soils using indigenous grasses is now considered an alternative method in re mediating these polluted soils. The present study investigated and compared the ability of three indigenous grasses as bioaccumulators of trace metals from polluted soils. Seeds of these grasses were introduced into pots containing polluted soil samples after the addition of organic manure. The seeds of the grasses were allowed to germinate and grow to maturity before harvesting. The harvested grasses were later separated into shoots and roots and the trace metal contents were determined using ICP –MS. From all the grasses, the concentrations of trace metals in the roots were more than those recorded in the shoot with a significant difference (P Themeda trianda > Cynodon dactylon. The study concluded that the three grasses used were all able to bioaccumulate trace metals in a similar proportion from the polluted soils. However, since livestock feed on these grasses, they should not be allowed to feed on the grasses used in this study especially when harvested from a polluted soil due to their bioaccumulative potentials. (au)

  9. An integral projection model with YY-males and application to evaluating grass carp control

    Science.gov (United States)

    Erickson, Richard A.; Eager, Eric A.; Brey, Marybeth; Hansen, Michael J.; Kocovsky, Patrick

    2017-01-01

    Invasive fish species disrupt ecosystems and cause economic damage. Several methods have been discussed to control populations of invasive fish including the release of YY-males. YY-males are fish that have 2 male chromosomes compared to a XY-male. When YY-males mate, they only produce male (XY) offspring. This decreases the female proportion of the population and can, in theory, eradicate local populations by biasing the sex-ratio. YY-males have been used as a population control tool for brook trout in montane streams and lakes in Idaho, USA. The YY-male control method has been discussed for grass carp in Lake Erie, North America. We developed and presented an integral projection model for grass carp to model the use of YY-males as a control method for populations in this lake. Using only the YY-male control method, we found that high levels of YY-males would need to be release annually to control the species. Specifically, these levels were the same order of magnitude as the baseline adult population (e.g., 1000 YY-males needed to be released annual for 20 years to control a baseline adult population of 2500 grass carp). These levels may not be reasonable or obtainable for fisheries managers given the impacts of YY-males on aquatic vegetation and other constraints of natural resource management.

  10. Presence of Trifolium repens promotes complementarity of water use and N facilitation in diverse grass mixtures

    Directory of Open Access Journals (Sweden)

    Pauline eHernandez

    2016-04-01

    Full Text Available Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-month mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures and functional diversity (presence of the legume Trifolium repens on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency and deep root growth were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs tall and deep. Thus, vertical complementarity for soil resources uptake in mixtures

  11. Presence of Trifolium repens Promotes Complementarity of Water Use and N Facilitation in Diverse Grass Mixtures.

    Science.gov (United States)

    Hernandez, Pauline; Picon-Cochard, Catherine

    2016-01-01

    Legume species promote productivity and increase the digestibility of herbage in grasslands. Considerable experimental data also indicate that communities with legumes produce more above-ground biomass than is expected from monocultures. While it has been attributed to N facilitation, evidence to identify the mechanisms involved is still lacking and the role of complementarity in soil water acquisition by vertical root differentiation remains unclear. We used a 20-months mesocosm experiment to investigate the effects of species richness (single species, two- and five-species mixtures) and functional diversity (presence of the legume Trifolium repens) on a set of traits related to light, N and water use and measured at community level. We found a positive effect of Trifolium presence and abundance on biomass production and complementarity effects in the two-species mixtures from the second year. In addition the community traits related to water and N acquisition and use (leaf area, N, water-use efficiency, and deep root growth) were higher in the presence of Trifolium. With a multiple regression approach, we showed that the traits related to water acquisition and use were with N the main determinants of biomass production and complementarity effects in diverse mixtures. At shallow soil layers, lower root mass of Trifolium and higher soil moisture should increase soil water availability for the associated grass species. Conversely at deep soil layer, higher root growth and lower soil moisture mirror soil resource use increase of mixtures. Altogether, these results highlight N facilitation but almost soil vertical differentiation and thus complementarity for water acquisition and use in mixtures with Trifolium. Contrary to grass-Trifolium mixtures, no significant over-yielding was measured for grass mixtures even those having complementary traits (short and shallow vs. tall and deep). Thus, vertical complementarity for soil resources uptake in mixtures was not only

  12. Dynamic model for the transfer of CS-137 through the soil-grass-lamb foodchain

    DEFF Research Database (Denmark)

    Nielsen, S.P.

    1994-01-01

    A dynamic radioecological model for the transfer of radiocaesium through the soil-grass-lamb foodchain was constructed on the basis of field data collected in 1990–1993 from the Nordic countries: Denmark, Faroe Islands, Finland, Iceland, Norway and Sweden. The model assumes an initial soil...... contamination of one kilobecquerel of 137Cs per square metre and simulates the transfer to grass through root uptake in addition to direct contamination from resuspended activity. The model covers two different soil types: clay-loam and organic, with significantly different transfers of radiocaesium to grass...

  13. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Chul Min Kim

    2016-08-01

    Full Text Available Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6 Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.

  14. The incidence of Pyrenochaeta terrestris in root of different plant species in Serbia

    Directory of Open Access Journals (Sweden)

    Lević Jelena T.

    2013-01-01

    Full Text Available Root samples of cereals (oats, wheat, barley, maize and sorghum, vegetables (garlic, onion, pepper, cucumber, pumpkin, carrot and tomato, industrial plant (soya bean and weeds (Johnson grass, barnyard grass and green bristle-grass collected in different agroecological conditions in Serbia were analysed for the presence of Pyrenochaeta terrestris. The fungus was found in 42 out of 51 samples (82.4%, while the incidence varied from 2.5 to 72.5%. The highest incidence was detected in cereals (average 30.3%, and then in weeds of the Poaceae family (average 14.2%. Considering single species, maize (up to 72.5% in root and Johnson grass (up to 37.5% were mostly attacked by this fungus. The lowest incidence of the fungus was determined in vegetable crops (average 6.7%. Red to reddish discoloration of root was correlated with the incidence of the fungus. Obtained data indicate that P. terrestris is widespread in Serbia and conditions for its development are favourable. [Projekat Ministarstva nauke Republike Srbije, br. TR-31023

  15. Comparing soil organic carbon dynamics in perennial grasses and shrubs in a saline-alkaline arid region, northwestern China.

    Science.gov (United States)

    Zhou, Yong; Pei, Zhiqin; Su, Jiaqi; Zhang, Jingli; Zheng, Yuanrun; Ni, Jian; Xiao, Chunwang; Wang, Renzhong

    2012-01-01

    Although semi-arid and arid regions account for about 40% of terrestrial surface of the Earth and contain approximately 10% of the global soil organic carbon stock, our understanding of soil organic carbon dynamics in these regions is limited. A field experiment was conducted to compare soil organic carbon dynamics between a perennial grass community dominated by Cleistogenes squarrosa and an adjacent shrub community co-dominated by Reaumuria soongorica and Haloxylon ammodendron, two typical plant life forms in arid ecosystems of saline-alkaline arid regions in northwestern China during the growing season 2010. We found that both fine root biomass and necromass in two life forms varied greatly during the growing season. Annual fine root production in the perennial grasses was 45.6% significantly higher than in the shrubs, and fine root turnover rates were 2.52 and 2.17 yr(-1) for the perennial grasses and the shrubs, respectively. Floor mass was significantly higher in the perennial grasses than in the shrubs due to the decomposition rate of leaf litter in the perennial grasses was 61.8% lower than in the shrubs even though no significance was detected in litterfall production. Soil microbial biomass and activity demonstrated a strong seasonal variation with larger values in May and September and minimum values in the dry month of July. Observed higher soil organic carbon stocks in the perennial grasses (1.32 Kg C m(-2)) than in the shrubs (1.12 Kg C m(-2)) might be attributed to both greater inputs of poor quality litter that is relatively resistant to decay and the lower ability of microorganism to decompose these organic matter. Our results suggest that the perennial grasses might accumulate more soil organic carbon with time than the shrubs because of larger amounts of inputs from litter and slower return of carbon through decomposition.

  16. Genetic differences in root mass of Lolium perenne varieties under field conditions

    NARCIS (Netherlands)

    Deru, J.G.C.; Schilder, H.; Schoot, van der J.R.; Eekeren, van N.J.M.

    2014-01-01

    Although grasses have dense rooting systems, nutrient uptake and productivity can be increased, and N-leaching reduced, if rooting is further improved. The variation in root mass of 16 varieties of Lolium perenne was studied under field conditions in two experiments on sandy soil in The Netherlands.

  17. Interaction between a fungal endophyte and root herbivores of Ammophila arenaria

    NARCIS (Netherlands)

    Hol, W.H.G.; de la Peña, E.; Moens, M.; Cook, R.

    2007-01-01

    The effect of an endophytic fungus (Acremonium strictum) on plant-growth related parameters of marram grass (Ammophila arenaria), and its potential as a protective agent against root herbivores (Pratylenchus dunensis and Pratylenchus penetrans, root-lesion nematodes) was investigated in two

  18. Grass-Shrub Associations over a Precipitation Gradient and Their Implications for Restoration in the Great Basin, USA.

    Directory of Open Access Journals (Sweden)

    Maike F Holthuijzen

    Full Text Available As environmental stress increases positive (facilitative plant interactions often predominate. Plant-plant associations (or lack thereof can indicate whether certain plant species favor particular types of microsites (e.g., shrub canopies or plant-free interspaces and can provide valuable insights into whether "nurse plants" will contribute to seeding or planting success during ecological restoration. It can be difficult, however, to anticipate how relationships between nurse plants and plants used for restoration may change over large-ranging, regional stress gradients. We investigated associations between the shrub, Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis, and three common native grasses (Poa secunda, Elymus elymoides, and Pseudoroegneria spicata, representing short-, medium-, and deep-rooted growth forms, respectively, across an annual rainfall gradient (220-350 mm in the Great Basin, USA. We hypothesized that positive shrub-grass relationships would become more frequent at lower rainfall levels, as indicated by greater cover of grasses in shrub canopies than vegetation-free interspaces. We sampled aerial cover, density, height, basal width, grazing status, and reproductive status of perennial grasses in canopies and interspaces of 25-33 sagebrush individuals at 32 sites along a rainfall gradient. We found that aerial cover of the shallow rooted grass, P. secunda, was higher in sagebrush canopy than interspace microsites at lower levels of rainfall. Cover and density of the medium-rooted grass, E. elymoides were higher in sagebrush canopies than interspaces at all but the highest rainfall levels. Neither annual rainfall nor sagebrush canopy microsite significantly affected P. spicata cover. E. elymoides and P. spicata plants were taller, narrower, and less likely to be grazed in shrub canopy microsites than interspaces. Our results suggest that exploring sagebrush canopy microsites for restoration of native perennial

  19. Associative diazotrophic bacteria in grass roots and soils from heavy metal contaminated sites

    Directory of Open Access Journals (Sweden)

    Fátima M.S. Moreira

    2008-12-01

    Full Text Available This work aimed to evaluate density of associative diazotrophic bacteria populations in soil and grass root samples from heavy metal contaminated sites, and to characterize isolates from these populations, both, phenotypically (Zinc, Cadmium and NaCl tolerance in vitro, and protein profiles and genotypically (16S rDNA sequencing, as compared to type strains of known diazotrophic species. Densities were evaluated by using NFb, Fam and JNFb media, commonly used for enrichment cultures of diazotrophic bacteria. Bacterial densities found in soil and grass root samples from contaminated sites were similar to those reported for agricultural soils. Azospirillum spp. isolates from contaminated sites and type strains from non-contaminated sites varied substantially in their in vitro tolerance to Zn+2 and Cd+2, being Cd+2 more toxic than Zn+2. Among the most tolerant isolates (UFLA 1S, 1R, S181, S34 and S22, some (1R, S34 and S22 were more tolerant to heavy metals than rhizobia from tropical and temperate soils. The majority of the isolates tolerant to heavy metals were also tolerant to salt stress as indicated by their ability to grow in solid medium supplemented with 30 g L-1 NaCl. Five isolates exhibited high dissimilarity in protein profiles, and the 16S rDNA sequence analysis of two of them revealed new sequences for Azospirillum.Objetivou-se avaliar a densidade de populações de bactérias diazotróficas associativas em amostras de solos e de raízes de gramíneas oriundas de sítios contaminados com metais pesados, e caracterizar isolados destas populações através da análise fenotípica (tolerância aos metais pesados zinco e cádmio e à NaCl in vitro, perfis protéicos, e genotípica (seqüenciamento de 16S rDNA, comparados às estirpes tipo das mesmas espécies. As densidades foram avaliadas nos meios NFb, Fam e LGI, comumente utilizados para culturas de enriquecimento de populações de bactérias diazotróficas associativas. As densidades

  20. Management techniques for the control of Melinis minutiflora P. Beauv. (molasses grass: ten years of research on an invasive grass species in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Carlos Romero Martins

    2017-09-01

    Full Text Available ABSTRACT The invasion of exotic species is considered to be a major threat to the preservation of biodiversity. In the Parque Nacional de Brasília (National Park of Brasília, the invasive Melinis minutiflora (molasses grass occupies more than 10 % of the area of the park. The present, long-term, study compared two treatments of exposure to molasses grass: 1 fire and 2 integrated management (fire + herbicide sprays + manual removal. The aerial biomass of molasses grass in the experimental area initially represented ca. 55 % of the total aerial biomass, a percentage that apparently did not influence native plant species richness at this site. Fire alone was not sufficient to control molasses grass, which attained its pre-treatment biomass values after two years. Integrated management reduced, and maintained, biomass to less than 1 % of its original value after ten years, and maintained this level throughout the study, demonstrating that it is a promising strategy for the recovery of areas invaded by molasses grass in the Cerrado. However, because of the recolonization by molasses grass, long-term monitoring efforts are targeting outbreaks, which would require immediate intervention in order to maintain the native biological diversity of the region.

  1. Linking root hydraulic properties to carbon allocation patterns in annual plant

    Science.gov (United States)

    Hosseini, A.; Ewers, B. E.; Adjesiwor, A. T.; Kniss, A. R.

    2017-12-01

    Incorporation of root structure and function into biophysical models is an important tool to predict plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils. Most of the models describing root water uptake (RWU) are based on semi-empirical (i.e. built on physiological hypotheses, but still combined with empirical functions) approaches and hydraulic parameters involved are hardly available. Root conductance is essential to define the interaction between soil-to-root and canopy-to-atmosphere. Also root hydraulic limitations to water flow can impact gas exchange rates and plant biomass partitioning. In this study, sugar beet (B. vulgaris) seeds under two treatments, grass (Kentucky bluegrass) and no grass (control), were planted in 19 L plastic buckets in June 2016. Photosynthetic characteristics (e.g. gas exchange and chlorophyll fluorescence), leaf morphology and anatomy, root morphology and above and below ground biomass of the plants was monitored at 15, 30, 50, 70 and 90 days after planting (DAP). Further emphasis was placed on the limits to water flow by coupling of hydraulic conductance (k) whole root-system with water relation parameters and gas exchange rates in fully established plants.

  2. A study of the wet deposit and foliar uptake of iodine and strontium on rye-grass and clover

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio; Commission of the European Communities, Ispra

    1977-12-01

    Foliar uptake of iodine and strontium by rye-grass and clover was studied as a function of aspersion intensities. At the same time, the contribution of root sorption to foliar uptake was measured. The effective half-lives of radionuclides of standing and harvested grass were also determined together with their uptake under the action of demineralized water aspersion [fr

  3. Phytostabilisation potential of lemon grass (Cymbopogon flexuosus (Nees ex Stend) Wats) on iron ore tailings.

    Science.gov (United States)

    Mohanty, M; Dhal, N K; Patra, P; Das, B; Reddy, P S R

    2012-01-01

    The present pot culture study was carried out for the potential phytostabilisation of iron ore tailings using lemon grass (Cymbopogon flexuosus) a drought tolerant, perennial, aromatic grass. Experiments have been conducted by varying the composition of garden soil (control) with iron ore tailings. The various parameters, viz. growth of plants, number of tillers, biomass and oil content of lemon grass are evaluated. The studies have indicated that growth parameters of lemon grass in 1:1 composition of garden soil and iron ore tailings are significantly more (-5% increase) compared to plants grown in control soil. However, the oil content of lemon grass in both the cases more or less remained same. The results also infer that at higher proportion of tailings the yield of biomass decreases. The studies indicate that lemongrass with its fibrous root system is proved to be an efficient soil binder by preventing soil erosion.

  4. Uptake of C14-atrazine by prairie grasses in a phytoremediation setting.

    Science.gov (United States)

    Khrunyk, Yuliya; Schiewer, Silke; Carstens, Keri L; Hu, Dingfei; Coats, Joel R

    2017-02-01

    Agrochemicals significantly contribute to environmental pollution. In the USA, atrazine is a widely used pesticide and commonly found in rivers, water systems, and rural wells. Phytoremediation can be a cost-effective means of removing pesticides from soil. The objective of this project was to investigate the ability of prairie grasses to remove atrazine. 14 C-labeled atrazine was added to sterilized sand and water/nutrient cultures, and the analysis was performed after 21 days. Switchgrass and big bluestem were promising species for phytoremediation, taking up about 40% of the applied [ 14 C] in liquid hydroponic cultures, and between 20% and 33% in sand cultures. Yellow Indiangrass showed low resistance to atrazine toxicity and low uptake of [ 14 C] atrazine in liquid hydroponic cultures. Atrazine degradation increased progressively from sand to roots and leaves. Most atrazine taken up by prairie grasses from sand culture was degraded to metabolites, which accounted for 60-80% of [ 14 C] detected in leaves. Deisopropylatrazine (DIA) was the main metabolite detected in sand and roots, whereas in leaves further metabolism took place, forming increased amounts of didealkylatrazine (DDA) and an unidentified metabolite. In conclusion, prairie grasses achieved high atrazine removal and degradation, showing a high potential for phytoremediation.

  5. Plant responsiveness to root-root communication of stress cues.

    Science.gov (United States)

    Falik, Omer; Mordoch, Yonat; Ben-Natan, Daniel; Vanunu, Miriam; Goldstein, Oron; Novoplansky, Ariel

    2012-07-01

    Phenotypic plasticity is based on the organism's ability to perceive, integrate and respond to multiple signals and cues informative of environmental opportunities and perils. A growing body of evidence demonstrates that plants are able to adapt to imminent threats by perceiving cues emitted from their damaged neighbours. Here, the hypothesis was tested that unstressed plants are able to perceive and respond to stress cues emitted from their drought- and osmotically stressed neighbours and to induce stress responses in additional unstressed plants. Split-root Pisum sativum, Cynodon dactylon, Digitaria sanguinalis and Stenotaphrum secundatum plants were subjected to osmotic stress or drought while sharing one of their rooting volumes with an unstressed neighbour, which in turn shared its other rooting volume with additional unstressed neighbours. Following the kinetics of stomatal aperture allowed testing for stress responses in both the stressed plants and their unstressed neighbours. In both P. sativum plants and the three wild clonal grasses, infliction of osmotic stress or drought caused stomatal closure in both the stressed plants and in their unstressed neighbours. While both continuous osmotic stress and drought induced prolonged stomatal closure and limited acclimation in stressed plants, their unstressed neighbours habituated to the stress cues and opened their stomata 3-24 h after the beginning of stress induction. The results demonstrate a novel type of plant communication, by which plants might be able to increase their readiness to probable future osmotic and drought stresses. Further work is underway to decipher the identity and mode of operation of the involved communication vectors and to assess the potential ecological costs and benefits of emitting and perceiving drought and osmotic stress cues under various ecological scenarios.

  6. Effects of urban grass coverage on rainfall-induced runoff in Xi'an loess region in China

    Directory of Open Access Journals (Sweden)

    Jing Li

    2017-10-01

    Full Text Available In this study, laboratory rainfall simulation experiments were conducted to investigate the regulatory effects of grass coverage on rainfall-runoff processes. A total of 80 grass blocks planted with well-grown manilagrass, together with their root systems, were sampled from an eastern suburban area of Xi'an City in the northwest arid area of China and sent to a laboratory for rainfall simulation experiments. The runoff and infiltration processes of a slope with different grass coverage ratios and vegetation patterns were analyzed. The results show that the runoff coefficient decreases with the increase of the grass coverage ratio, and the influence of grass coverage on the reduction of runoff shows a high degree of spatial variation. At a constant grass coverage ratio, as the area of grass coverage moves downward, the runoff coefficient, total runoff, and flood peak discharge gradually decrease, and the flood peak occurs later. With the increase of the grass coverage ratio, the flood peak discharge gradually decreases, and the flood peak occurs later as well. In conclusion, a high grass coverage ratio with the area of grass coverage located at the lower part of the slope will lead to satisfactory regulatory effects on rainfall-induced runoff.

  7. Designing hybrid grass genomes to control runoff generation

    Science.gov (United States)

    MacLeod, C.; Binley, A.; Humphreys, M.; King, I. P.; O'Donovan, S.; Papadopoulos, A.; Turner, L. B.; Watts, C.; Whalley, W. R.; Haygarth, P.

    2010-12-01

    Sustainable management of water in landscapes requires balancing demands of agricultural production whilst moderating downstream effects like flooding. Pasture comprises 69% of global agricultural areas and is essential for producing food and fibre alongside environmental goods and services. Thus there is a need to breed forage grasses that deliver multiple benefits through increased levels of productivity whilst moderating fluxes of water. Here we show that a novel grass hybrid that combines the entire genomes of perennial ryegrass (Lolium perenne - the grass of choice for Europe’s forage agriculture) and meadow fescue (Festuca pratensis) has a significant role in flood prevention. Field plot experiments established differences in runoff generation with the hybrid cultivar reducing runoff by 50% compared to perennial ryegrass cultivar, and by 35% compared to a meadow fescue cultivar (34 events over two years, replicated randomized-block design, statistically significant differences). This important research outcome was the result of a project that combined plant genetics, soil physics and plot scale hydrology to identify novel grass genotypes that can reduce runoff from grassland systems. Through a coordinated series of experiments examining effects from the gene to plot scale, we have identified that the rapid growth and then turnover of roots in the L. perenne x F. pratensis hybrid is likely to be a key mechanism in reducing runoff generation. More broadly this is an exciting first step to realizing the potential to design grass genomes to achieve both food production, and to deliver flood control, a key ecosystem service.

  8. resistance of napier grass clones to napier grass stunt disease

    African Journals Online (AJOL)

    ACSS

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease. (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  9. Resistance of Napier grass clones to Napier grass Stunt Disease ...

    African Journals Online (AJOL)

    Napier grass (Pennisetum purpureum Schumach) is the major livestock fodder under intensive and semi-intensive systems in East Africa. However, the productivity of the grass is constrained by Napier grass Stunt Disease (NSD). The purpose of this study was to identify Napier grass clones with resistance to NSD.

  10. Root Characteristics of Perennial Warm-Season Grasslands Managed for Grazing and Biomass Production

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2013-07-01

    Full Text Available Minirhizotrons were used to study root growth characteristics in recently established fields dominated by perennial C4-grasses that were managed either for cattle grazing or biomass production for bioenergy in Virginia, USA. Measurements over a 13-month period showed that grazing resulted in smaller total root volumes and root diameters. Under biomass management, root volume was 40% higher (49 vs. 35 mm3 and diameters were 20% larger (0.29 vs. 0.24 mm compared to grazing. While total root length did not differ between grazed and biomass treatments, root distribution was shallower under grazed areas, with 50% of total root length in the top 7 cm of soil, compared to 41% in ungrazed exclosures. These changes (i.e., longer roots and greater root volume in the top 10 cm of soil under grazing but the reverse at 17–28 cm soil depths were likely caused by a shift in plant species composition as grazing reduced C4 grass biomass and allowed invasion of annual unsown species. The data suggest that management of perennial C4 grasslands for either grazing or biomass production can affect root growth in different ways and this, in turn, may have implications for the subsequent carbon sequestration potential of these grasslands.

  11. Productive and morphogenetic responses of buffel grass at different air temperatures and CO2 concentrations

    Directory of Open Access Journals (Sweden)

    Roberta Machado Santos

    2014-08-01

    Full Text Available The objective of the present trial was to evaluate the productive and morphogenetic characteristics of buffel grass subjected to different air temperatures and CO2 concentrations. Three cultivars of buffel grass (Biloela, Aridus and West Australian were compared. Cultivars were grown in growth chambers at three temperatures (day/night: 26/20, 29/23, and 32/26 °C, combined with two concentrations of CO2: 370 and 550 µmol mol-1. The experimental design was completely randomized, in a 3 × 3 × 2 factorial arrangement with three replications. There were interactions between buffel grass cultivars and air temperatures on leaf elongation rate (LER, leaf appearance rate (LAR, leaf lifespan (LL and senescence rate (SR, whereas cultivars vs. carbon dioxide concentration affected forage mass (FM, root mass (RM, shoot/root ratio, LL and SR. Leaf elongation rate and SR were higher as the air temperature was raised. Increasing air temperature also promoted an increase in LAR, except for West Australian. High CO2 concentration provided greater SR of plants, except for Biloela. Cultivar West Australian had higher FM in relation to Biloela and Aridus when the CO2 concentration was increased to 550 µmol mol-1. West Australian was the only cultivar that responded with more forage mass when it was exposed to higher carbon dioxide concentrations, whereas Aridus had depression in forage mass. The increase in air temperatures affects morphogenetic responses of buffel grass, accelerating its vegetative development without increasing forage mass. Elevated carbon dioxide concentration changes productive responses of buffel grass.

  12. The impact of solarisation integrated with plant bio-fermentation on root knot nematodes

    International Nuclear Information System (INIS)

    Ibrahim, S. K.; Traboulsi, A. F.

    2009-01-01

    The impact of different freshly/dried chopped medicinal or aromatic plant materials as an organic amendment in pot cultures, as well as integrated with solarisation under greenhouse conditions on the root knot nematodes population was evaluated. Results indicated that application of solarisation alone gave good control (72%) but when integrated with different plant materials, the control level increased to 95% with Allium sativum and 90% with Mentha microphylla and slightly less with other plant materials which ranged from75 to 80%. The results of pot experiments revealed that the most significant effect on the number of nematodes was achieved with Tagetes patula followed by Pimpinella anisum, Melia azadirach and Origanium syriacum reaching 0.0, 1.2, 1.2 and 2.5/g of roots, respectively. Total control was obtained with Allium sativum. Origanium syriacum contained the highest amount of essential oil (6%). Results obtained indicated that integrated approach using solarisation combined with plant materials could be the best alternative control for the root-knot nematodes. (author)

  13. The uptake of uranium from soil to vetiver grass (vetiver zizanioides (L.) nash)

    International Nuclear Information System (INIS)

    Luu Viet Hung; Bui Duy Cam; Dang Duc Nhan

    2012-01-01

    Uranium uptake of vetiver grass (Vetiveria zizanioides (L.) Nash) from Eutric Fluvisols (AK), Albic Acrisols (LP), Dystric Fluvisols (TT) and Ferralic Acrisols (TC) in northern Vietnam is assessed. The soils were mixed with aqueous solution of uranyl nitrate to make soils be contaminated with uranium at 0, 50, 100, 250 mg per kg before planting the grass. The efficiency of uranium uptake by the grass was assessed based on the soil-to-plant transfer factor (TF U , kg kg -1 ). It was found that the TF U values are dependent upon the soil properties. CEC facilitates the uptake and the increase soil pH could reduce the uptake and translocation of uranium in the plant. Organic matter content as well as ferrous and potassium inhibit the uranium uptake of the grass. It was revealed that the lower fertile soil the higher uranium uptake. The grass could tolerate to the high extent (up to 77%) of uranium in soils and could survive and grow well without fertilization. The translocation of uranium in root for all the soil types studies almost higher than that in its shoot. It seem that vetiver grass potentially be use for the purpose of phytoremediation of soils contaminated with uranium. (author)

  14. Root profile in Multi-layered Dehesas: an approach to plant-to-plant Interaction

    Science.gov (United States)

    Rolo, V.; Moreno, G.

    2009-04-01

    Assessing plant-to-plant relationship is a key issue in agroforestry systems. Due to the sessile feature of plants most of these interactions take place within a restricted space, so characterizing the zone where the plant alters its environment is important to find overlapping areas where the facilitation or competition could occur. Main part of plan-to-plant interactions in the dehesa are located at belowground level, thus the main limited resources in Mediterranean ecosystems are soil nutrient and water. Hence a better knowledge of rooting plant profile can be useful to understand the functioning of the dehesa. The Iberian dehesa has always been considered as a silvopastoral system where, at least, two strata of vegetation coexist: native grasses and trees. However the dehesa is also a diverse system where cropland and encroached territories have been systematically combined, more or less periodically, with native pasture in order to obtain agricultural, pastoral and forestry outputs. These multipurpose mosaic-type systems generate several scenarios where the plant influence zone may be overlapped and the interaction, competition or facilitation, between plants can play an important role in the ecosystem functioning in terms of productivity and stability. In the present study our aim was to characterize the rooting profile of multi-layered dehesas in order to understand the competitive, and/or facilitative, relationships within the different plant strata. The root profile of Quercus ilex subsp. ballota, Cistus ladanifer, Retama spaherocarpa and natural grasses was studied. So 48 trenches, up to 2 meters deep, were excavated in 4 different environments: (i) grass; (ii) tree-grass; (iii) tree-shrub and (iv) tree-shrub-grass (12 trenches in each environment). The study was carried out in 4 dehesas, 2 encroached with C. ladanifer and 2 with R. spaherocarpa. In every trench soil samples were taken each 20 cm. Subsequently, all samples were sieved using different mesh

  15. Operational Assessment of ICDS Scheme at Grass Root Level in a Rural Area of Eastern India: Time to Introspect

    Science.gov (United States)

    Sahoo, Jyotiranjan; Mahajan, Preetam B; Bhatia, Vikas; Patra, Abhinash K; Hembram, Dilip Kumar

    2016-01-01

    Introduction Integrated Child Development Service (ICDS), a flagship program of Government of India (GoI) for early childhood development hasn’t delivered the desired results since its inception four decades ago. This could be due to infrastructural problems, lack of awareness and proper utilization by the local people, inadequate program monitoring and corruption in food supplies, etc. This study is an audit of 36 Anganwadi centres at Khordha district, Odisha, to evaluate the implementation of the ICDS. Aim To assess operational aspects of ICDS program in a rural area of Odisha, in Eastern India. Materials and Methods A total of 36 out of 50 Anganwadi Centres (AWCs) were included in the study. We interviewed the Anganwadi Workers (AWW) and carried out observations on the AWCs using a checklist. We gathered information under three domains manpower resource, material resource and functional aspects of the AWC. Results Most of the AWCs were adequately staffed. Most of the AWWs were well educated. However, more than 85% of the AWCs did not have designated building for daily functioning which resulted in issues related to implementation of program. Water, toilet and electricity facilities were almost non-existent. Indoor air pollution posed a serious threat to the health of the children. Lack of play materials; lack of health assessment tools for promoting, monitoring physical and mental development; and multiple de-motivating factors within the work environment, eventually translated into lack of faith among the beneficiaries in the rural community. Conclusion Inadequate infrastructure and logistic supply were the most prominent issues found, which resulted in poor implementation of ICDS program. Strengthening of grass root level facilities based on need assessment, effective monitoring and supervision will definitely help in revamping the ICDS program in rural areas. PMID:28208890

  16. Enhanced precipitation variability decreases grass- and increases shrub-productivity

    Science.gov (United States)

    Gherardi, Laureano A.; Sala, Osvaldo E.

    2015-01-01

    Although projections of precipitation change indicate increases in variability, most studies of impacts of climate change on ecosystems focused on effects of changes in amount of precipitation, overlooking precipitation variability effects, especially at the interannual scale. Here, we present results from a 6-y field experiment, where we applied sequences of wet and dry years, increasing interannual precipitation coefficient of variation while maintaining a precipitation amount constant. Increased precipitation variability significantly reduced ecosystem primary production. Dominant plant-functional types showed opposite responses: perennial-grass productivity decreased by 81%, whereas shrub productivity increased by 67%. This pattern was explained by different nonlinear responses to precipitation. Grass productivity presented a saturating response to precipitation where dry years had a larger negative effect than the positive effects of wet years. In contrast, shrubs showed an increasing response to precipitation that resulted in an increase in average productivity with increasing precipitation variability. In addition, the effects of precipitation variation increased through time. We argue that the differential responses of grasses and shrubs to precipitation variability and the amplification of this phenomenon through time result from contrasting root distributions of grasses and shrubs and competitive interactions among plant types, confirmed by structural equation analysis. Under drought conditions, grasses reduce their abundance and their ability to absorb water that then is transferred to deep soil layers that are exclusively explored by shrubs. Our work addresses an understudied dimension of climate change that might lead to widespread shrub encroachment reducing the provisioning of ecosystem services to society. PMID:26417095

  17. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry

    International Nuclear Information System (INIS)

    Andra, Syam S.; Datta, Rupali; Sarkar, Dibyendu; Saminathan, Sumathi K.M.; Mullens, Conor P.; Bach, Stephan B.H.

    2009-01-01

    Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PC n , metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg -1 dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PC n , and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg -1 EDTA, vetiver accumulated 4460 and 480 mg Pb kg -1 dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC 1 ) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC 1 -Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass. - Chelated lead in conjunction with phytochelatins synthesis and complexation reduces stress in the lead tolerant vetiver grass.

  18. Integration of root phenes revealed by intensive phenotyping of root system architecture, anatomy, and physiology in cereals

    Science.gov (United States)

    York, Larry

    2015-04-01

    Food insecurity is among the greatest challenges humanity will face in the 21st century. Agricultural production in much of the world is constrained by the natural infertility of soil which restrains crops from reaching their yield potential. In developed nations, fertilizer inputs pollute air and water and contribute to climate change and environmental degradation. In poor nations low soil fertility is a primary constraint to food security and economic development. Water is almost always limiting crop growth in any system. Increasing the acquisition efficiency of soil resources is one method by which crop yields could be increased without the use of more fertilizers or irrigation. Cereals are the most widely grown crops, both in terms of land area and in yield, so optimizing uptake efficiency of cereals is an important goal. Roots are the primary interface between plant and soil and are responsible for the uptake of soil resources. The deployment of roots in space and time comprises root system architecture (RSA). Cereal RSA is a complex phenotype that aggregates many elemental phenes (elemental units of phenotype). Integration of root phenes will be determined by interactions through their effects on soil foraging and plant metabolism. Many architectural, metabolic, and physiological root phenes have been identified in maize, including: nodal root number, nodal root growth angle, lateral root density, lateral root length, aerenchyma, cortical cell size and number, and nitrate uptake kinetics. The utility of these phenes needs confirmation in maize and in other cereals. The maize root system is composed of an embryonic root system and nodal roots that emerge in successive whorls as the plant develops, and is similar to other cereals. Current phenotyping platforms often ignore the inner whorls and instead focus on the most visible outer whorls after excavating a maize root crown from soil. Here, an intensive phenotyping platform evaluating phenes of all nodal root

  19. Cell wall composition throughout development for the model grass Brachypodium distanchyon

    Directory of Open Access Journals (Sweden)

    David eRancour

    2012-12-01

    Full Text Available Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distanchyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corroborate genetic predictions, we determined the chemical composition profiles of organ-specific cell walls throughout the development of two common diploid accessions of Brachypodium distanchyon, Bd21-3 and Bd21. Chemical analysis was performed on cell walls isolated from distinct organs (i.e. leaves, sheaths, stems and roots at three developmental stages of 1 12-day seedling, 2 vegetative-to-reproductive transition, and 3 mature seed-fill. In addition, we have included cell wall analysis of embryonic callus used for genetic transformations. Composition of cell walls based on components lignin, hydroxycinnamates, uronosyls, neutral sugars, and protein suggests that Brachypodium distanchyon is similar chemically to agriculturally important forage grasses. There were modest compositional differences in hydroxycinnamate profiles between accessions Bd21-3 and Bd21. In addition, when compared to agronomical important C3 grasses, more mature Brachypodium stem cell walls have a relative increase in glucose of 48% and a decrease in lignin of 36%. Though differences exists between Brachypodium and agronomical important C3 grasses, Brachypodium distanchyon should be still a useful model system for genetic manipulation of cell wall composition to determine the impact upon functional characteristics such as rumen digestibility or energy conversion efficiency for bioenergy production.

  20. Cell wall composition throughout development for the model grass Brachypodium distachyon

    Science.gov (United States)

    Rancour, David M.; Marita, Jane M.; Hatfield, Ronald D.

    2012-01-01

    Temperate perennial grasses are important worldwide as a livestock nutritive energy source and a potential feedstock for lignocellulosic biofuel production. The annual temperate grass Brachypodium distachyon has been championed as a useful model system to facilitate biological research in agriculturally important temperate forage grasses based on phylogenetic relationships. To physically corroborate genetic predictions, we determined the chemical composition profiles of organ-specific cell walls throughout the development of two common diploid accessions of Brachypodium distachyon, Bd21-3 and Bd21. Chemical analysis was performed on cell walls isolated from distinct organs (i.e., leaves, sheaths, stems, and roots) at three developmental stages of (1) 12-day seedling, (2) vegetative-to-reproductive transition, and (3) mature seed fill. In addition, we have included cell wall analysis of embryonic callus used for genetic transformations. Composition of cell walls based on components lignin, hydroxycinnamates, uronosyls, neutral sugars, and protein suggests that Brachypodium distachyon is similar chemically to agriculturally important forage grasses. There were modest compositional differences in hydroxycinnamate profiles between accessions Bd21-3 and Bd21. In addition, when compared to agronomical important C3 grasses, more mature Brachypodium stem cell walls have a relative increase in glucose of 48% and a decrease in lignin of 36%. Though differences exist between Brachypodium and agronomical important C3 grasses, Brachypodium distachyon should be still a useful model system for genetic manipulation of cell wall composition to determine the impact upon functional characteristics such as rumen digestibility or energy conversion efficiency for bioenergy production. PMID:23227028

  1. Measurement of unsaturated flow below the root zone at an arid site

    International Nuclear Information System (INIS)

    Kirkham, R.R.; Gee, G.W.

    1983-12-01

    We measured moisture content changes below the root zone of a grass-covered area at the Hanford Site in Washington State and determined that drainage exceeded 5 cm or 20% of the total precipitation for November 1982 through October 1983. Although the average annual rainfall at the Hanford Site is 16 cm, the test year precipitation exceeded 24 cm with nearly 75% of the precipitation occurring during November through April. The moisture content at all depths in the soil reached a maximum and the monthly average potential evapotranspiration reached a minimum during this period of time. Moisture content profiles were measured at depth on biweekly intervals from January through October; these data were used to estimate drainage from the profile. Grass roots were not found below 1 m, hence moisture changes below 1 m were assumed to be entirely due to drainage. Upward capillary flow was considered to be negligible since the soil was a coars sand and the water table was below 10 m. The large amount of drainage from this arid site is attributed to rainfall distribution pattern, shallow root-zone, and soil drainage characteristics. Unsaturated flow model simulations predicted about 5-cm drainage from the grass site using daily climatic data, estimated soil hydraulic properties, and estimated transpiration parameters for cheatgrass at the Hanford Site. Improvements in the comparisons between measured and predicted drainage are anticipated with field-measured hydraulic properties and more realistic estimates of grass cover transpiration. However, both measurements and model predictions support the conclusion that under conditions where the majority of the rainfall occurs during periods of low potential evaporation and where soils are coarse textured, significant drainage can occur from the root zone of vegetated areas at Hanford or similar arid zone sites

  2. The Evaluation of Alkali Grass (Puccinellia ciliata Bor Populations in Aydin Province of Turkey

    Directory of Open Access Journals (Sweden)

    İlkay Yavaş

    2017-08-01

    Full Text Available Alkali grass grows in waterlogged, saline and alaline soils. The main problem in these soils is minerals at toxic level. The toxic ions are chloride, sodium and boron. A number of techniques have been investigated for removing toxic metals from the soil. Today, the cost-effective and environmentally technique is phytoremediation, using hyperaccumulator plants. Alkali grass (Puccinellia ciliata Bor is suggested as a hyperaccumulator plant by the combination of more favourable characteristics with salt and waterlogging tolerance, high biomass value and convincing nutritive value for adverse environmental conditions. For this reason, we collected alkali grass and soil samples from five different locations in Aydın-Muğla highway, Turanlar and Sınırteke villages in Germencik-Aydın. In the soil analysis, we observed that K accumulation varies between root, shoot and panicle at least whereas Na and B shows more variation on whole plant portions among locations. Intense aerenchyma development on the root tips of Puccinellia plant was observed and it is determined as radial lysogenic aerenchyma formation. Average plant height and dry matter values were between 47.2-74.4 cm and 15.61-80.85 g/plant according to locations. The highest plant height value was obtained from the first location whereas the highest dry matter yield was detected in the fifth location. In conclusion, plants from fifth location can be regarded as fodder plants in these areas. Our results indicated that alkali grass can be effective for phytoextraction of sodium and boron from contaminated sites.

  3. Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp.

    Science.gov (United States)

    Liang, Jing-Han; Fu, Yao-Wu; Zhang, Qi-Zhong; Xu, De-Hai; Wang, Bin; Lin, De-Jie

    2015-02-11

    Ichthyophthirius multifiliis (Ich) is an important ciliate that parasitizes gills and skin of freshwater fish and causes massive fish mortality. In this study, two flavonoids (kuwanons G and O) with anti-Ich activity were isolated by bioassay-guided fractionation from the root bark of Morus alba, an important plant for sericulture. The chemical structures of kuwanons G and O were elucidated by spectroscopic analyses. Kuwanons G and O caused 100% mortality of I. multifiliis theronts at the concentration of 2 mg/L and possessed a median effective concentration (EC50) of 0.8 ± 0.04 mg/L against the theronts. In addition, kuwanons G and O significantly reduced the infectivity of I. multifiliis theronts at concentrations of 0.125, 0.25, 0.5, and 1 mg/L. The median lethal concentrations (LC50) of kuwanons G and O to grass carp were 38.0 ± 0.82 and 26.9 ± 0.51 mg/L, which were approximately 50 and 35 times the EC50 for killing theronts. The results indicate that kuwanons G and O have the potential to become safe and effective drugs to control ichthyophthiriasis.

  4. Plastome Sequence Determination and Comparative Analysis for Members of the Lolium-Festuca Grass Species Complex

    Science.gov (United States)

    Hand, Melanie L.; Spangenberg, German C.; Forster, John W.; Cogan, Noel O. I.

    2013-01-01

    Chloroplast genome sequences are of broad significance in plant biology, due to frequent use in molecular phylogenetics, comparative genomics, population genetics, and genetic modification studies. The present study used a second-generation sequencing approach to determine and assemble the plastid genomes (plastomes) of four representatives from the agriculturally important Lolium-Festuca species complex of pasture grasses (Lolium multiflorum, Festuca pratensis, Festuca altissima, and Festuca ovina). Total cellular DNA was extracted from either roots or leaves, was sequenced, and the output was filtered for plastome-related reads. A comparison between sources revealed fewer plastome-related reads from root-derived template but an increase in incidental bacterium-derived sequences. Plastome assembly and annotation indicated high levels of sequence identity and a conserved organization and gene content between species. However, frequent deletions within the F. ovina plastome appeared to contribute to a smaller plastid genome size. Comparative analysis with complete plastome sequences from other members of the Poaceae confirmed conservation of most grass-specific features. Detailed analysis of the rbcL–psaI intergenic region, however, revealed a “hot-spot” of variation characterized by independent deletion events. The evolutionary implications of this observation are discussed. The complete plastome sequences are anticipated to provide the basis for potential organelle-specific genetic modification of pasture grasses. PMID:23550121

  5. First report of the root-knot nematode Meloidogyne minor on turfgrass in Belgium

    NARCIS (Netherlands)

    Viaene, N.; Wiseborn, D.B.; Karssen, G.

    2007-01-01

    The root-knot nematode, Meloidogyne minor, was described during 2004 after it was found on potato roots in a field in the Netherlands and in golf courses in England, Wales, and Ireland (2). Since it is associated with yellow patch disease in turf grass and causes deformation of potato tubers (2), it

  6. Designing a New Raster Sub-System for GRASS-7

    Directory of Open Access Journals (Sweden)

    Martin Hruby

    2012-03-01

    Full Text Available The paper deals with a design of a new raster sub-system intended for modern GIS systems open for client and server operation, database connection and strong application interface (API. Motivation for such a design comes from the current state of API working in GRASS 6. If found attractive, the here presented design and its implementation (referred as RG7 may be integrated to the future new generation of the GRASS Geographical Information System version 7-8. The paper describes in details the concept of raster tiling, computer storage of rasters and basic raster access procedures. Finally, the paper gives a simple benchmarking experiment of random read access to raster files imported from the Spearfish dataset. The experiment compares the early implementation of RG7 with the current implementation of rasters in GRASS 6. As the result, the experiment shows the RG7 to be significantly faster than GRASS in random read access to large raster files.

  7. Gene Expression Profiling of Grass Carp (Ctenopharyngodon idellus and Crisp Grass Carp

    Directory of Open Access Journals (Sweden)

    Ermeng Yu

    2014-01-01

    Full Text Available Grass carp (Ctenopharyngodon idellus is one of the most important freshwater fish that is native to China, and crisp grass carp is a kind of high value-added fishes which have higher muscle firmness. To investigate biological functions and possible signal transduction pathways that address muscle firmness increase of crisp grass carp, microarray analysis of 14,900 transcripts was performed. Compared with grass carp, 127 genes were upregulated and 114 genes were downregulated in crisp grass carp. Gene ontology (GO analysis revealed 30 GOs of differentially expressed genes in crisp grass carp. And strong correlation with muscle firmness increase of crisp grass carp was found for these genes from differentiation of muscle fibers and deposition of ECM, and also glycolysis/gluconeogenesis pathway and calcium metabolism may contribute to muscle firmness increase. In addition, a number of genes with unknown functions may be related to muscle firmness, and these genes are still further explored. Overall, these results had been demonstrated to play important roles in clarifying the molecular mechanism of muscle firmness increase in crisp grass carp.

  8. Relationship between the Al resistance of grasses and their adaptation to an infertile habitat.

    Science.gov (United States)

    Poozesh, Vahid; Cruz, Pablo; Choler, Philippe; Bertoni, Georges

    2007-05-01

    Original data on Al resistance, relative growth rate and leaf traits of five European grasses as well as literature data on Al resistance, habitat preference and traits of grasses were considered to determine whether (a) Al resistance is correlated to a growth conservative strategy and (b) species occurrence could be useful to assess Al toxicity in meadows on acid soils. The Al resistance of 15 species was represented by the Al activity in nutrient solution that resulted in a 50 % decrease in root length, [Al(3+)](50), or, for published values, in root or plant biomass. The correlations between Al resistance and acidity or nitrogen indices and the correlation between Al resistance and selected traits (relative growth rate, leaf dry matter content, specific leaf area and leaf thickness) were calculated. Principal component analysis was used for the characterization of the relationships between Al resistance and measured traits. The [Al(3+)](50) values of the resistant species Molinia caerulea and Sieglingia decumbens were 13 and 26 microm [Al(3+)](50), respectively. The known Al resistance of 15 species that were mainly of the intermediate strategy competitor-stress tolerator-ruderal (C-S-R) type and of the S type was correlated with Ellenberg's nitrogen and acidity indices. For the whole set of species, the correlation between Al resistance and traits was not significant. The Al resistance of the C-S-R species was variable and independent of their traits. S-type species, adapted to acid soils and with traits of conservative strategy, displayed Al resistance. The large difference in Al resistance between grasses may help assess Al soil toxicity by using the abundance of grasses.

  9. Adaptation and detoxification mechanisms of Vetiver grass (Chrysopogon zizanioides) growing on gold mine tailings.

    Science.gov (United States)

    Melato, F A; Mokgalaka, N S; McCrindle, R I

    2016-01-01

    Vetiver grass (Chrysopogon zizanioides) was investigated for its potential use in the rehabilitation of gold mine tailings, its ability to extract and accumulate toxic metals from the tailings and its metal tolerant strategies. Vetiver grass was grown on gold mine tailings soil, in a hothouse, and monitored for sixteen weeks. The mine tailings were highly acidic and had high electrical conductivity. Vetiver grass was able to grow and adapt well on gold mine tailings. The results showed that Vetiver grass accumulated large amounts of metals in the roots and restricted their translocation to the shoots. This was confirmed by the bioconcentration factor of Zn, Cu, and Ni of >1 and the translocation factor of <1 for all the metals. This study revealed the defense mechanisms employed by Vetiver grass against metal stress that include: chelation of toxic metals by phenolics, glutathione S-tranferase, and low molecular weight thiols; sequestration and accumulation of metals within the cell wall that was revealed by the scanning electron microscopy that showed closure of stomata and thickened cell wall and was confirmed by high content of cell wall bound phenolics. Metal induced reactive oxygen species are reduced or eliminated by catalase, superoxide dismutase and peroxidase dismutase.

  10. Transfer of radiocaesium to barley, rye grass and pea

    International Nuclear Information System (INIS)

    Oehlenschlaeger, M.; Gissel-Nielsen, G.

    1989-11-01

    In areas with intensive farming, as in Denmark, it is of great interest to identify possible countermeasures to be taken in order to reduce the longterm effects of radioactive contamination of arable land. The most important longer-lived radionuclides from the Chernobyl were 137 Cs and 134 Cs. The aim of the present project was to identify crops with relatively low or high root uptake of these two isotopes. Although such differences may be small, a shift in varieties might be a cost-effective way to reduce collective doses. The experiment was carried out at Risoe National Laboratory in the summer of 1988. The species used were: spring barley (Hordeum vulgare L) varieties: Golf, Apex, Anker, Sila; Perennial rye grass (Lolium perenne L.) varieties: Darbo (early) and Patoro (late); Italian rye-grass (Lolium multiflorum) variety: Prego; and pea (Pisum arvense L.) variety: Bodil. Each crop was grown in two types of soil, a clay-loam and an organic soil. 137 Cs was added to the clay-loam. The organic soil, which was contaminated with 137 Cs from the Chernobyl accident, was supplied with 134 Cs. Sila barley and Italian rye-grass were identified among the species tested as plants with a relative high uptake of radio-caesium. (author)

  11. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2017-05-01

    Full Text Available Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.

  12. Treatment with grass allergen peptides improves symptoms of grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Ellis, Anne K; Frankish, Charles W; O'Hehir, Robyn E; Armstrong, Kristen; Steacy, Lisa; Larché, Mark; Hafner, Roderick P

    2017-08-01

    Synthetic peptide immunoregulatory epitopes are a new class of immunotherapy to treat allergic rhinoconjunctivitis (ARC). Grass allergen peptides, comprising 7 synthetic T-cell epitopes derived from Cyn d 1, Lol p 5, Dac g 5, Hol l 5, and Phl p 5, is investigated for treatment of grass pollen-induced ARC. We sought to evaluate the efficacy, safety, and tolerability of intradermally administered grass allergen peptides. A multicenter, randomized, double-blind, placebo-controlled study evaluated 3 regimens of grass allergen peptides versus placebo in patients with grass pollen-induced allergy (18-65 years). After a 4-day baseline challenge to rye grass in the environmental exposure unit (EEU), subjects were randomized to receive grass allergen peptides at 6 nmol at 2-week intervals for a total of 8 doses (8x6Q2W), grass allergen peptides at 12 nmol at 4-week intervals for a total of 4 doses (4x12Q4W), or grass allergen peptides at 12 nmol at 2-week intervals for a total of 8 doses (8x12Q2W) or placebo and treated before the grass pollen season. The primary efficacy end point was change from baseline in total rhinoconjunctivitis symptom score across days 2 to 4 of a 4-day posttreatment challenge (PTC) in the EEU after the grass pollen season. Secondary efficacy end points and safety were also assessed. Two hundred eighty-two subjects were randomized. Significantly greater improvement (reduction of total rhinoconjunctivitis symptom score from baseline to PTC) occurred across days 2 to 4 with grass allergen peptide 8x6Q2W versus placebo (-5.4 vs -3.8, respectively; P = .0346). Greater improvement at PTC also occurred for grass allergen peptide 8x6Q2W versus placebo (P = .0403) in patients with more symptomatic ARC. No safety signals were detected. Grass allergen peptide 8x6Q2W significantly improved ARC symptoms after rye grass allergen challenge in an EEU with an acceptable safety profile. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  13. Dynamic modeling of the cesium, strontium, and ruthenium transfer to grass and vegetables

    International Nuclear Information System (INIS)

    Renaud, P.; Real, J.; Maubert, H.; Roussel-Debet, S.

    1999-01-01

    From 1988 to 1993, the Nuclear Safety and Protection Institute (Institut de Protection et de Surete Nucleaire -- IPSN) conducted experimental programs focused on transfers to vegetation following accidental localized deposits of radioactive aerosols. In relation to vegetable crops (fruit, leaves, and root vegetables) and meadow grass these experiments have enabled a determination of the factors involved in the transfer of cesium, strontium, and ruthenium at successive harvests, or cuttings, in respect of various time lags after contamination. The dynamic modeling given by these results allows an evaluation of changes in the mass activity of vegetables and grass during the months following deposit. It constitutes part of the ASTRAL post-accident radioecology model

  14. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Andra, Syam S., E-mail: syam.andra@gmail.co [Environmental Geochemistry Laboratory, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX (United States); Datta, Rupali [Biological Sciences, Michigan Technological University, Houghton, MI (United States); Sarkar, Dibyendu [Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ (United States); Saminathan, Sumathi K.M. [Environmental Geochemistry Laboratory, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX (United States); Mullens, Conor P.; Bach, Stephan B.H. [Department of Chemistry, University of Texas at San Antonio, San Antonio, TX (United States)

    2009-07-15

    Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PC{sub n}, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms. In a previous study, we showed that vetiver grass (Vetiveria zizanioides L.) can accumulate up to 19,800 and 3350 mg Pb kg{sup -1} dry weight in root and shoot tissues, respectively; in a hydroponics set-up. Following the basic incubation study, a greenhouse experiment was conducted to elucidate the efficiency of vetiver grass (with or without EDTA) in remediating Pb-contaminated soils from actual residential sites where Pb-based paints were used. The levels of total thiols, PC{sub n}, and catalase (an antioxidant enzyme) were measured in vetiver root and shoot following chelant-assisted phytostabilization. In the presence of 15 mM kg {sup -1} EDTA, vetiver accumulated 4460 and 480 mg Pb kg{sup -1} dry root and shoot tissue, respectively; that are 15- and 24-fold higher compared to those in untreated controls. Despite higher Pb concentrations in the plant tissues, the amount of total thiols and catalase activity in EDTA treated vetiver tissues was comparable to chelant unamended controls, indicating lowered Pb toxicity by chelation with EDTA. The identification of glutathione (referred as PC{sub 1}) (m/z 308.2), along with chelated complexes like Pb-EDTA (m/z 498.8) and PC{sub 1}-Pb-EDTA (m/z 805.3) in vetiver root tissue using electrospray tandem mass spectrometry (ES-MS) highlights the possible role of such species towards Pb tolerance in vetiver grass. - Chelated lead in conjunction with phytochelatins synthesis and complexation reduces stress in the lead tolerant vetiver grass.

  15. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    International Nuclear Information System (INIS)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  16. Effect of two phyto hormone producer rhizobacteria on the bermuda grass growth response and tolerance to phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Zuniga, A.; Rojas-Contreras, A.; Rodriguez-Dorantes, A.; Montes-Villafan, S.

    2009-07-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria that have the ability to relieve environmental stress in plants, increasing the plant growth potential. Of importance to phytoremediation, PGPR stimulate plant root development and enhance root growth.This study evaluated the growth response and the tolerance to phenanthrene of Bermuda grass: Cynodon dactylon inoculated with two phytohormone producer rhizobacteria: strains II and III, isolated from a contaminated soil with petroleum hydrocarbons. (Author)

  17. Integrating environmental and in situ hyperspectral remote sensing variables for grass nitrogen estimation in savannah ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2011-04-01

    Full Text Available Information about the distribution of grass nitrogen (N) concentration is crucial in understanding rangeland vitality and facilitates effective management of wildlife and livestock. A challenge in estimating grass N concentration using remote...

  18. Shoot and root biomass allocation and competitive hierarchies of ...

    African Journals Online (AJOL)

    Shoot and root biomass allocation and competitive hierarchies of four South African grass species on light, soil resources and cutting gradients. ... Aristida junciformis, produced nearly double the biomass of taller species such as Hyparrhenia hirta and Eragrostis curvula in the low-nutrient treatments, with the reverse being ...

  19. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation.

    Science.gov (United States)

    Sultana, Razia; Kobayashi, Katsuichiro; Kim, Ki-Hyun

    2015-01-01

    In this research, the relative performance in arsenic (As) remediation was evaluated among some barnyard grass and rice species under hydroponic conditions. To this end, four barnyard grass varieties and two rice species were selected and tested for their remediation potential of arsenic. The plants were grown for 2 weeks in As-rich solutions up to 10 mg As L(-1) to measure their tolerance to As and their uptake capabilities. Among the varieties of plants tested in all treatment types, BR-29 rice absorbed the highest amount of As in the root, while Nipponbare translocated the maximum amount of As in the shoot. Himetainubie barnyard grass produced the highest biomass, irrespective of the quantity of As in the solution. In all As-treated solutions, the maximum uptake of As was found in BR-29 followed by Choto shama and Himetainubie. In contrast, while the bioaccumulation factor was found to be the highest in Nipponbare followed by BR-29 and Himetainubie. The results suggest that both Choto shama and Himetainubie barnyard grass varieties should exhibit a great potential for As removal, while BR-29 and Nipponbare rice species are the best option for arsenic phytoremediation.

  20. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Energy Technology Data Exchange (ETDEWEB)

    Koteen, Laura E; Harte, John [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 94720 (United States); Baldocchi, Dennis D, E-mail: lkoteen@berkeley.edu [Department of Environmental Science, Policy and Management, 137 Mulford Hall, University of California, Berkeley, CA 94720 (United States)

    2011-10-15

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  1. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    International Nuclear Information System (INIS)

    Koteen, Laura E; Harte, John; Baldocchi, Dennis D

    2011-01-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  2. Invasion of non-native grasses causes a drop in soil carbon storage in California grasslands

    Science.gov (United States)

    Koteen, Laura E.; Baldocchi, Dennis D.; Harte, John

    2011-10-01

    Vegetation change can affect the magnitude and direction of global climate change via its effect on carbon cycling among plants, the soil and the atmosphere. The invasion of non-native plants is a major cause of land cover change, of biodiversity loss, and of other changes in ecosystem structure and function. In California, annual grasses from Mediterranean Europe have nearly displaced native perennial grasses across the coastal hillsides and terraces of the state. Our study examines the impact of this invasion on carbon cycling and storage at two sites in northern coastal California. The results suggest that annual grass invasion has caused an average drop in soil carbon storage of 40 Mg/ha in the top half meter of soil, although additional mechanisms may also contribute to soil carbon losses. We attribute the reduction in soil carbon storage to low rates of net primary production in non-native annuals relative to perennial grasses, a shift in rooting depth and water use to primarily shallow sources, and soil respiratory losses in non-native grass soils that exceed production rates. These results indicate that even seemingly subtle land cover changes can significantly impact ecosystem functions in general, and carbon storage in particular.

  3. GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems

    Science.gov (United States)

    Rellán-Álvarez, Rubén; Lobet, Guillaume; Lindner, Heike; Pradier, Pierre-Luc; Sebastian, Jose; Yee, Muh-Ching; Geng, Yu; Trontin, Charlotte; LaRue, Therese; Schrager-Lavelle, Amanda; Haney, Cara H; Nieu, Rita; Maloof, Julin; Vogel, John P; Dinneny, José R

    2015-01-01

    Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes. DOI: http://dx.doi.org/10.7554/eLife.07597.001 PMID:26287479

  4. Marandu palisade grass intercropped with densely spaced teak in silvopastoral system

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Avelino Cabral

    2017-08-01

    Full Text Available This study was conducted to evaluate two systems of production: integration between teak and forage (silvopastoral system and forage only (monoculture. The forage species used was Marandu palisade grass (Urochloa brizantha cv. Marandu. In January 2009, part of the pasture was desiccated and the teak (Tectona grandis was implemented in a 3 × 4 m spacing arrangement, and at every five rows, a space between rows of 6 m was established, providing a population of 750 trees per hectare. Alongside the development of the trees, the Marandu palisade grass pasture was reestablished. In February 2015, the animals were removed from the experimental area and, in March, the pasture degradation, the density and the mass of tillers was assessed. The following variables were evaluated: sward height; forage mass, percentage of leaf blade, stem+sheath and senescent material; leaf blade:stem+sheath ratio; and live:dead material ratio. The experimental design was completely randomized, with 12 replicates. Treatments consisted of two systems (silvopastoral and monoculture. The total forage accumulation was higher in the monoculture system. The sward height and the percentage of stem+sheath were higher in the integrated system, while the percentage of leaf blade and the leaf blade:stem+sheath ratio were higher in the system exclusively with forage. In conclusion, Marandu palisade grass tolerates shading in a high density spacing silvopastoral system, but the degradation process is more intense compared to grass in monoculture, and the use of Marandu palisade grass in silvopastoral systems changes the forage mass and the structure of the produced forage.

  5. T-DNA transfer and T-DNA integration efficiencies upon Arabidopsis thaliana root explant cocultivation and floral dip transformation.

    Science.gov (United States)

    Ghedira, Rim; De Buck, Sylvie; Van Ex, Frédéric; Angenon, Geert; Depicker, Ann

    2013-12-01

    T-DNA transfer and integration frequencies during Agrobacterium-mediated root explant cocultivation and floral dip transformations of Arabidopsis thaliana were analyzed with and without selection for transformation-competent cells. Based on the presence or absence of CRE recombinase activity without or with the CRE T-DNA being integrated, transient expression versus stable transformation was differentiated. During root explant cocultivation, continuous light enhanced the number of plant cells competent for interaction with Agrobacterium and thus the number of transient gene expression events. However, in transformation competent plant cells, continuous light did not further enhance cotransfer or cointegration frequencies. Upon selection for root transformants expressing a first T-DNA, 43-69 % of these transformants showed cotransfer of another non-selected T-DNA in two different light regimes. However, integration of the non-selected cotransferred T-DNA occurred only in 19-46 % of these transformants, indicating that T-DNA integration in regenerating root cells limits the transformation frequencies. After floral dip transformation, transient T-DNA expression without integration could not be detected, while stable T-DNA transformation occurred in 0.5-1.3 % of the T1 seedlings. Upon selection for floral dip transformants with a first T-DNA, 8-34 % of the transformants showed cotransfer of the other non-selected T-DNA and in 93-100 % of them, the T-DNA was also integrated. Therefore, a productive interaction between the agrobacteria and the female gametophyte, rather than the T-DNA integration process, restricts the floral dip transformation frequencies.

  6. Morphogenetic, structural and productive traits of buffel grass under different irrigation regimes

    Directory of Open Access Journals (Sweden)

    Maria Janiele Ferreira Coutinho

    2015-06-01

    Full Text Available The water restriction conditions in the Brazilian semiarid region are one of the most limiting factors to the establishment and yield of forage grasses. This study aimed to evaluate the effect of different irrigation regimes on morphogenetic, structural and productive traits of buffel grass. Arandomized blocks design, with five treatments and six replications, was used. Treatments consisted of five irrigation regimes, corresponding to the intervals of 2, 4, 6, 8 and 10 days. The traits analyzed were: leaf emergence rate, phyllochron, leaf and stem elongation rate, leaf senescence rate, final leaf length, number of green leaves per tiller, number of tillers, stem height, leaf/stem ratio, leaf area index, dry mass of green leaf and stem, dry mass of green, dead and total forage, root dry mass, dry mass and green dry mass/dead dry mass ratio. The final leaf length and dead forage dry mass were not affected by the irrigation regimes. The leaf/stem ratio followed a quadratic model, maintaining the value of 0.51 up to the irrigation regime of four days. The other morphological, structural and productive traits decreased linearly with increasing irrigation frequencies. The irrigation intervals promoted reductions in the morphological, structural and productive parameters of buffel grass, when grown under greenhouse conditions. The irrigation regime of 2 days stands out as the least restrictive to the development of buffel grass.

  7. Mechanics of integrating root causes into PRAs

    International Nuclear Information System (INIS)

    Bruske, S.Z.; Cadwallader, L.C.; Stepina, P.L.; Vesely, W.E.

    1985-01-01

    This paper presents a derivation of root cause importance, root cause data for selected components of a pressurized water reactor auxiliary feedwater system, an Accident Sequence Evaluation Program (ASEP) auxiliary feedwater system model, and the results of root cause importance calculations. The methodology shown herein is straightforward and is easily applied to existing probabilistic risk assessments. Root cause importance can greatly benefit the areas of design, maintenance, and inspection. Root cause importance for various components and circumstances can be evaluated

  8. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance.

    Science.gov (United States)

    Xu, Lijuan; Wang, Hao; Yang, Xianle; Lu, Liqun

    2013-06-25

    Antibiotic resistance has become a serious global problem and is steadily increasing worldwide in almost every bacterial species treated with antibiotics. In aquaculture, the therapeutic options for the treatment of A. hydrophila infection were only limited to several antibiotics, which contributed for the fast-speed emergence of drug tolerance. Accordingly, the aim of this study was to establish a medication regimen to prevent drug resistant bacteria. To determine a rational therapeutic guideline, integrated pharmacodynamics and pharmacokinetics parameters were based to predict dose and dosage interval of enrofloxacin in grass carp Ctenopharyngodon idella infected by a field-isolated A. hydrophila strain. The pathogenic A. hydrophila strain (AH10) in grass carp was identified and found to be sensitive to enrofloxacin. The mutant selection window (MSW) of enrofloxacin on isolate AH10 was determined to be 0.5-3 μg/mL based on the mutant prevention concentration (MPC) and minimum inhibitory concentration (MIC) value. By using high-performance liquid chromatography (HPLC) system, the Pharmacokinetic (PK) parameters of enrofloxacin and its metabolite ciprofloxacin in grass carp were monitored after a single oral gavage of 10, 20, 30 μg enrofloxacin per g body weight. Dosing of 30 μg/g resulted in serum maximum concentration (Cmax) of 7.151 μg/mL, and concentration in serum was above MPC till 24 h post the single dose. Once-daily dosing of 30 μg/g was determined to be the rational choice for controlling AH10 infection and preventing mutant selection in grass carp. Data of mean residue time (MRT) and body clearance (CLz) indicated that both enrofloxacin and its metabolite ciprofloxacin present similar eliminating rate and pattern in serum, muscle and liver. A withdraw time of more than 32 d was suggested based on the drug eliminating rate and pharmacokinetic model described by a polyexponential equation. Based on integrated PK/PD parameters (AUC/MIC, Cmax/MIC, and T

  9. Effects of processing phases on the quality of massai grass seeds

    Directory of Open Access Journals (Sweden)

    Lilian Faria de Melo

    Full Text Available ABSTRACT Massai grass is an important tropical forage grass. The harvested seeds upon being received by the company, are found to be contaminated with impurities which are removable by processing machines. This procedure is necessary to produce seeds of a quality level within standards established for commercialization and sowing purposes. The objective of this project was to evaluate the effects of processing phases on the physical and physiological quality of massai grass (Panicum maximum x P. infestum, cv. Massai seeds for commercialization purposes. Seeds were sampled before processing and after leaving the air and screen machine (upper and intermediary screens and bottom; first gravity table (drift, upper and intermediate spouts; treating machine; and second gravity table (upper, intermediate, and lower spouts. Seeds were evaluated as to water content, physical (purity and 1,000 seeds weight and physiological quality (germination, first count of germination, seedling vigor classification, accelerated aging, seedling emergence in the field, speed of emergence index, and primary root length, shoot length. Massai grass seeds had their physical and physiological qualities improved when they were processed by an air and screen machine and a gravity table. Seeds from the intermediate discharge spout of the first gravity table, after going through the air and screen machine, are those of with highest physiological potential. The seeds of this species do not need to be processed to fit the germination and purity standards when the national market is the goal.

  10. In vitro antioxidant activity of Vetiveria zizanioides root extract ...

    African Journals Online (AJOL)

    Vetiveria zizanioides belonging to the family Gramineae, is a densely tufted grass which is widely used as a traditional plant for aromatherapy, to relieve stress, anxiety, nervous tension and insomnia. In this regard, the roots of V. zizanioides was extracted with ethanol and used for the evaluation of various in vitro antioxidant ...

  11. Integration and Improvement of Geophysical Root Biomass Measurements for Determining Carbon Credits

    Science.gov (United States)

    Boitet, J. I.

    2013-12-01

    Carbon trading schemes fundamentally rely on accurate subsurface carbon quantification in order for governing bodies to grant carbon credits inclusive of root biomass (What is Carbon Credit. 2013). Root biomass makes up a large chunk of the subsurface carbon and is difficult, labor intensive, and costly to measure. This paper stitches together the latest geophysical root measurement techniques into site-dependent recommendations for technique combinations and modifications that maximize large-scale root biomass measurement accuracy and efficiency. "Accuracy" is maximized when actual root biomass is closest to measured root biomass. "Efficiency" is maximized when time, labor, and cost of measurement is minimized. Several combinations have emerged which satisfy both criteria under different site conditions. Use of ground penetrating radar (GPR) and/or electrical resistivity tomography (ERT) allow for large tracts of land to be surveyed under appropriate conditions. Among other characteristics, GPR does best with detecting coarse roots in dry soil. ERT does best in detecting roots in moist soils, but is especially limited by electrode configuration (Mancuso, S. 2012). Integration of these two technologies into a baseline protocol based on site-specific characteristics, especially soil moisture and plants species heterogeneity, will drastically theoretically increase efficiency and accuracy of root biomass measurements. Modifications of current measurement protocols using these existing techniques will also theoretically lead to drastic improvements in both accuracy and efficiency. These modifications, such as efficient 3D imaging by adding an identical electrode array perpendicular to the first array used in the Pulled Array Continuous Electrical Profiling (PACEP) technique for ERT, should allow for more widespread application of these techniques for understanding root biomass. Where whole-site measurement is not feasible either due to financial, equipment, or

  12. Selective logging and fire as drivers of alien grass invasion in a Bolivian tropical dry forest

    NARCIS (Netherlands)

    Veldman, J.W.; Mostacedo, B.; Peña-Claros, M.; Putz, F.E.

    2009-01-01

    Logging is an integral component of most conceptual models that relate human land-use and climate change to tropical deforestation via positive-feedbacks involving fire. Given that grass invasions can substantially alter fire regimes, we studied grass distributions in a tropical dry forest 1-5 yr

  13. SQ grass sublingual allergy immunotherapy tablet for disease-modifying treatment of grass pollen allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Dahl, Ronald; Roberts, Graham; de Blic, Jacques

    2016-01-01

    BACKGROUND: Allergy immunotherapy is a treatment option for allergic rhinoconjunctivitis (ARC). It is unique compared with pharmacotherapy in that it modifies the immunologic pathways that elicit an allergic response. The SQ Timothy grass sublingual immunotherapy (SLIT) tablet is approved in North...... America and throughout Europe for the treatment of adults and children (≥5 years old) with grass pollen-induced ARC. OBJECTIVE: The clinical evidence for the use of SQ grass SLIT-tablet as a disease-modifying treatment for grass pollen ARC is discussed in this review. METHODS: The review included...... the suitability of SQ grass SLIT-tablet for patients with clinically relevant symptoms to multiple Pooideae grass species, single-season efficacy, safety, adherence, coseasonal initiation, and cost-effectiveness. The data from the long-term SQ grass SLIT-tablet clinical trial that evaluated a clinical effect 2...

  14. Effect of Trinexapac-Ethyl and Traffic Stress on Physiological and Morphological Characteristics of Wheat Grass(Agropyron desertorum

    Directory of Open Access Journals (Sweden)

    M. H. Sheikh Mohamadi

    2015-06-01

    Full Text Available In order to evaluate the effect of trinexapac ethyl concentrations (0, 250 and 500 g/h and traffic stress (traffic and non traffic treatments on wheat grass physiological and morphological traits, an experiment was conducted on research farm of Isfahan University of Technology in 2011 - 2012 as factorial in completely randomized designs with three replications. The studied traits involved plant height and plant density, shoot dry weight and fresh weights, tillering, chlorophyll level, roots and shoot dissolved carbohydrates. Results showed that Trinexapac ethyl reduced plant height, fresh weight and dry weight of cut parts significantly. Application of 250 and 500 g/h Trinexapac ethyl decreased plant height by 21.23 percent and 31.85 percent respectively. Application of Trinexapac ethyl improved plant height, tillering and chlorophyll level. In contrast, chlorophyll level was decreased substantially under traffic treatment and this treatment did not affect wheat grass density and tillering significantly. Under 500 g/h Trinexapac ethyl treatment, tillering was increased by 36 percent compared with under control condition one. Results showed that Trinexapac ethyl application and traffic increased dissolved carbohydrates of root and shoot significantly. As a result, it was found that wheat grass is a traffic resistant plant and it seems that the use of Trinexapac ethyl increases plant resistance to traffic stress

  15. GUI development for GRASS GIS

    Directory of Open Access Journals (Sweden)

    Martin Landa

    2007-12-01

    Full Text Available This article discusses GUI development for GRASS GIS. Sophisticated native GUI for GRASS is one of the key points (besides the new 2D/3D raster library, vector architecture improvements, etc. for the future development of GRASS. In 2006 the GRASS development team decided to start working on the new generation of GUI instead of improving the current GUI based on Tcl/Tk.

  16. Effect of Tylenchorhynchus robustoides on Growth of Buffalo Grass and Western Wheatgrass

    OpenAIRE

    Smolik, J. D.

    1982-01-01

    Tylenchorhynchus robustoides reduced (P = 0.05) growth of Agropyron smithii (western wheatgrass) at soil temperatures of 20, 25, 30, and 35 C. Growth reduction increased with increasing soil temperatures. Highest populations of T. robustoides were recovered at 25 and 30 C. Clipping weights of Buchloe dactyloides (buffalo grass) were reduced at 25 and 30 C; however, root/crown weights were reduced at 15, 20, 30, and 35 C in nematode infested vs. noninfested soil. Reproduction of T. robustoides...

  17. Effects of Infection by Belonolaimus longicaudatus on Rooting Dynamics among St. Augustinegrass and Bermudagrass Genotypes.

    Science.gov (United States)

    Aryal, Sudarshan K; Crow, William T; McSorley, Robert; Giblin-Davis, Robin M; Rowland, Diane L; Poudel, Bishow; Kenworthy, Kevin E

    2015-12-01

    Understanding rooting dynamics using the minirhizotron technique is useful for cultivar selection and to quantify nematode damage to roots. A 2-yr microplot study including five bermudagrass ('Tifway', Belonolaimus longicaudatus susceptible; two commercial cultivars [TifSport and Celebration] and two genotypes ['BA132' and 'PI 291590'], which have been reported to be tolerant to B. longicaudatus) and two St. Augustinegrass ('FX 313', susceptible, and 'Floratam' that was reported as tolerant to B. longicaudatus) genotypes in a 5 x 2 and 2 x 2 factorial design with four replications, respectively, was initiated in 2012. Two treatments included were uninoculated and B. longicaudatus inoculated. In situ root images were captured each month using a minirhizotron camera system from April to September of 2013 and 2014. Mixed models analysis and comparison of least squares means indicated significant differences in root parameters studied across the genotypes and soil depths of both grass species. 'Celebration', 'TifSport' and 'PI 291590' bermudagrass, and 'Floratam' St. Augustinegrass had significantly different root parameters compared to the corresponding susceptible genotypes (P ≤ 0.05). Only 'TifSport' had no significant root loss when infested with B. longicaudatus compared to non-infested. 'Celebration' and 'PI 291590' had significant root loss but retained significantly greater root densities than 'Tifway' in B. longicaudatus-infested conditions (P ≤ 0.05). Root lengths were greater at the 0 to 5 cm depth followed by 5 to 10 and 10 to 15 cm of vertical soil depth for both grass species (P ≤ 0.05). 'Celebration', 'TifSport', and 'PI 291590' had better root vigor against B. longicaudatus compared to Tifway.

  18. Genome sequence analysis of the model grass Brachypodium distachyon: insights into grass genome evolution

    Energy Technology Data Exchange (ETDEWEB)

    Schulman, Al

    2009-08-09

    Three subfamilies of grasses, the Erhardtoideae (rice), the Panicoideae (maize, sorghum, sugar cane and millet), and the Pooideae (wheat, barley and cool season forage grasses) provide the basis of human nutrition and are poised to become major sources of renewable energy. Here we describe the complete genome sequence of the wild grass Brachypodium distachyon (Brachypodium), the first member of the Pooideae subfamily to be completely sequenced. Comparison of the Brachypodium, rice and sorghum genomes reveals a precise sequence- based history of genome evolution across a broad diversity of the grass family and identifies nested insertions of whole chromosomes into centromeric regions as a predominant mechanism driving chromosome evolution in the grasses. The relatively compact genome of Brachypodium is maintained by a balance of retroelement replication and loss. The complete genome sequence of Brachypodium, coupled to its exceptional promise as a model system for grass research, will support the development of new energy and food crops

  19. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    Science.gov (United States)

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    International Nuclear Information System (INIS)

    Sipilae, K.

    1998-01-01

    The target of the project was to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non-economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In fluid bed combustion 10-30 % addition of rape seed straw and reed canary grass, which have high ash melting point, seems to be less problematic compared to other straw species, which are used for example in Denmark. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agro fibre from flax, reed canary grass and wheat straw. The laboratory results show that a good quality pulp can be produced to be mixed with conventional wood fibres, the quality of flax pulp is even better compared to conventional pulp. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion. (orig.)

  1. Selective pressures on C4 photosynthesis evolution in grasses through the lens of optimality

    OpenAIRE

    Akcay, Erol; Zhou, Haoran; Helliker, Brent

    2016-01-01

    CO2, temperature, water availability and light intensity were potential selective pressures to propel the initial evolution and global expansion of C4 photosynthesis in grasses. To tease apart the primary selective pressures along the evolutionary trajectory, we coupled photosynthesis and hydraulics models and optimized photosynthesis over stomatal resistance and leaf/fine-root allocation. We also examined the importance of nitrogen reallocation from the dark to the light reactions. Our resul...

  2. Role of grass-legume communities in revegetation of a subalpine mine site in British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, K

    1982-01-01

    This study describes an investigation of the potential for pioneer grass-legume communities to stabilize and ameliorate geologically-fresh soil leading to the establishment of a self-sustaining, progressive plant succession on a surface-mined subalpine site. The study area is located 2000 m above sea level in the Canadian Rocky Mountains. Field studies revealed chronological trends in grass-legume communities at four sites revegetated during 1974-1978 including: species composition, legumes (Trifolium repens L., T. hybridum L. and Medicago sativa L.) performing increasingly poorly on the older sites; biomass changes, a shoot to root ratio (S/R) decreasing from 2.3 to 0.2 as the communities aged; and litter accumulation which continued even on the oldest site. Fertilizer (13-16-10) operationally applied at 150-391 kg/ha enhanced the growth of Dactylis gomerata L. and litter degradation, and acidified the soil. Nitrogen fertilization was also associated with two clear inverse relationships identified between D. glomerata and Festuca rubra L. biomass, and between soil pH and phosphorus levels. In greenhouse tests grasses were revealed to be more efficient soil nitrogen consumers than were legumes and nitrogen fixation decreased significantly (P < 0.01) and linearly with increasing grass seeding rates.

  3. Morphology, gas exchange, and chlorophyll content of longleaf pine seedlings in response to rooting volume, copper root pruning, and nitrogen supply in a container nursery

    Science.gov (United States)

    R. Kasten Dumroese; Shi-Jean Susana Sung; Jeremiah R. Pinto; Amy Ross-Davis; D. Andrew Scott

    2013-01-01

    Few pine species develop a seedling grass stage; this growth phase, characterized by strong, carrot-like taproots and a stem-less nature, poses unique challenges during nursery production. Fertilization levels beyond optimum could result in excessive diameter growth that reduces seedling quality as measured by the root bound index (RBI). We grew longleaf pine (Pinus...

  4. Synergy between root hydrotropic response and root biomass in maize (Zea mays L.) enhances drought avoidance.

    Science.gov (United States)

    Eapen, Delfeena; Martínez-Guadarrama, Jesús; Hernández-Bruno, Oralia; Flores, Leonardo; Nieto-Sotelo, Jorge; Cassab, Gladys I

    2017-12-01

    Roots of higher plants change their growth direction in response to moisture, avoiding drought and gaining maximum advantage for development. This response is termed hydrotropism. There have been few studies of root hydrotropism in grasses, particularly in maize. Our goal was to test whether an enhanced hydrotropic response of maize roots correlates with a better adaptation to drought and partial/lateral irrigation in field studies. We developed a laboratory bioassay for testing hydrotropic response in primary roots of 47 maize elite DTMA (Drought Tolerant Maize for Africa) hybrids. After phenotyping these hybrids in the laboratory, selected lines were tested in the field. Three robust and three weak hybrids were evaluated employing three irrigation procedures: normal irrigation, partial lateral irrigation and drought. Hybrids with a robust hydrotropic response showed growth and developmental patterns, under drought and partial lateral irrigation, that differed from weak hydrotropic responders. A correlation between root crown biomass and grain yield in hybrids with robust hydrotropic response was detected. Hybrids with robust hydrotropic response showed earlier female flowering whereas several root system traits, such as projected root area, median width, maximum width, skeleton width, skeleton nodes, average tip diameter, rooting depth skeleton, thinner aboveground crown roots, as well as stem diameter, were considerably higher than in weak hydrotropic responders in the three irrigation procedures utilized. These results demonstrate the benefit of intensive phenotyping of hydrotropism in primary roots since maize plants that display a robust hydrotropic response grew better under drought and partial lateral irrigation, indicating that a selection for robust hydrotropism might be a promising breeding strategy to improve drought avoidance in maize. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dynamic modelling of energy demand: A guided tour through the jungle of unit roots and co-integration

    Energy Technology Data Exchange (ETDEWEB)

    Engsted, T; Bentzen, J

    1997-04-01

    This paper provides a detailed survey of the recent literature on unit roots and co-integration, and relates the concepts to the estimation of energy demand relationships. The special features and properties of non-stationary time-series are discussed, including the relevant asymptotic theory. The most often used tests for unit roots and co-integration - and various techniques for estimating co-integration relationships - are described, and the connection between co-integration and error-correction models is explored. Further, we revisit the autoregressive distributed lag (ADL) model, which is very often used in energy demand studies, and state under which conditions this model provides a valid framework for estimating income- and price- elasticities, when time-series are non-stationary. Throughout, tests and estimation techniques are illustrated using data on Danish energy consumption, prices, income, and temperature. (au) 71 refs.

  6. Study of Feasibility Integrated Agroindustry Development Unit Black Grass Jelly Powder (Mesona palustris in Province of East Java

    Directory of Open Access Journals (Sweden)

    Irvan Adhin Cholilie

    2017-01-01

    Full Text Available Potential of black grass jelly plant in Indonesia is very prospective. These plants grow in areas such as Malang East Java, Pacitan, Magetan and Ponorogo. In 2010 the production of dried black grass jelly of 568 tons with a total productivity of 8.6 tons / year.  Location selection of the plant with a score weighting method produces the highest value of 4,16 for the city of Surabaya, so the establishment of the plant will be held in Surabaya. Therefore, it is necessary the application of a suitable drying models for this factory that is tunnel dryer based on the results of research and with the highest value is 4,281. To ensure the availability of black grass jelly dried leaves as raw materials of black grass jelly powder it is necessary to establish a partnership between farmers and companies. The partnership pattern that works best for black grass jelly powder factory is a partnership “inti plasma”. It is based on research with the results of the assessment and weighting by using pairwise comparison and rating scale, the value of the highest weight in the “inti plasma” partnership with a value of 4,893. By implementing this partnership will allow the factory to obtain raw materials easily and is more economical and can always be available throughout the year for partnering with farmers.    Keywords: black grass jelly powder, drying method, financial feasibility analysis, partnership patterns

  7. Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies

    Science.gov (United States)

    van der Kamp, G.; Hayashi, M.; Gallén, D.

    2003-02-01

    At the St Denis National Wildlife Area in the prairie region of southern Saskatchewan, Canada, water levels in wetlands have been monitored since 1968. In 1980 and 1983 a total of about one-third of the 4 km2 area was converted from cultivation to an undisturbed cover of brome grass. A few years after this conversion all the wetlands within the area of grass dried out; they have remained dry since, whereas wetlands in adjacent cultivated lands have held water as before. Field measurements show that introduction of undisturbed grass reduces water input to the wetlands mainly through a combination of efficient snow trapping and enhanced infiltration into frozen soil. In winter, the tall brome grass traps most of the snowfall, whereas in the cultivated fields more wind transport of snow occurs, especially for short stubble and fallow fields. Single-ring infiltration tests were conducted during snowmelt, while the soil was still frozen, and again in summer. The infiltrability of the frozen soil in the grassland is high enough to absorb most or all of the snowmelt, whereas in the cultivated fields the infiltration into the frozen soil is limited and significant runoff occurs. In summer, the infiltrability increases for the cultivated fields, but the grassland retains a much higher infiltrability than the cultivated land. The development of enhanced infiltrability takes several years after the conversion from cultivation to grass, and is likely due to the gradual development of macropores, such as root holes, desiccation cracks, and animal burrows.

  8. Vitamin E deficiency depressed fish growth, disease resistance, and the immunity and structural integrity of immune organs in grass carp (Ctenopharyngodon idella): Referring to NF-κB, TOR and Nrf2 signaling.

    Science.gov (United States)

    Pan, Jia-Hong; Feng, Lin; Jiang, Wei-Dan; Wu, Pei; Kuang, Sheng-Yao; Tang, Ling; Zhang, Yong-An; Zhou, Xiao-Qiu; Liu, Yang

    2017-01-01

    This study investigated the effects of dietary vitamin E on growth, disease resistance and the immunity and structural integrity of head kidney, spleen and skin in grass carp (Ctenopharyngodon idella). The fish were fed six diets containing graded levels of vitamin E (0, 45, 90, 135, 180 and 225 mg/kg diet) for 10 weeks. Subsequently, a challenge test was conducted by injection of Aeromonas hydrophila. The results showed that compared with optimal vitamin E supplementation, vitamin E deficiency caused depressed growth, poor survival rates and increased skin lesion morbidity in grass carp. Meanwhile, vitamin E deficiency decreased lysozyme and acid phosphatase activities, complement component 3 and complement component 4 contents in the head kidney, spleen and skin of grass carp (P vitamin E deficiency down-regulated antimicrobial peptides (Hepcidin, liver-expressed antimicrobial peptide-2A, -2B, β-defensin), IL-10, TGFβ1, IκBα, TOR and S6K1 mRNA levels (P vitamin E deficiency caused oxidative damage, decreased superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione reductase (GR) activities, and down-regulated the mRNA levels of antioxidant enzymes and signaling molecules Nrf2 (P Vitamin E deficiency also induced apoptosis by up-regulating capase-2, -3, -7, and -8 mRNA levels in the head kidney, spleen and skin of grass carp. In conclusion, this study indicated that dietary vitamin E deficiency depressed fish growth, impaired the immune function and disturbed the structural integrity of the head kidney, spleen and skin in grass carp, but optimal vitamin E supplementation can reverse those negative effects in fish. The optimal vitamin E requirements for young grass carp (266.39-1026.63 g) to achieve optimal growth performance and disease resistance based on the percent weight gain (PWG) and skin lesion morbidity were estimated to be 116.2 and 130.9 mg/kg diet, respectively. Meanwhile, based on immune indicator (LA activity

  9. Root strength of tropical plants - An investigation in the Western Ghats of Kerala, India

    Science.gov (United States)

    Lukose Kuriakose, S.; van Beek, L. P. H.; van Westen, C. J.

    2009-04-01

    Earlier research on debris flows in the Tikovil River basin of the Western Ghats concluded that root cohesion is significant in maintaining the overall stability of the region. In this paper we present the most recent results (December 2008) of root tensile strength tests conducted on nine species of plants that are commonly found in the region. They are 1) Rubber (Hevea Brasiliensis), 2) Coconut Palm (Cocos nucifera), 3) Jackfruit trees (Artocarpus heterophyllus), 4) Teak (Tectona grandis), 5) Mango trees (Mangifera indica), 6) Lemon grass (Cymbopogon citratus), 7) A variety of Tamarind (Garcinia gummigutta), 8) Coffee (Coffea Arabica) and Tea (Camellia sinensis). About 1500 samples were collected of which only 380 could be tested (in the laboratory) due to breakage of roots during the tests. In the successful tests roots failed in tension. Roots having diameters between 2 mm and 12 mm were tested. Each sample tested has a length of 15 cm. Results indicate that the roots of Coffee, Tamarind, Lemon grass and Jackfruit are the strongest of the nine plant types tested whereas Tea and Teak plants had the most fragile roots. Coconut roots behaved atypical to the others, as the bark of the roots was crushed and slipped from the clamp when tested whereas its internal fiber was the strongest of all tested. Root tensile strength decreases with increasing diameters, Rubber showing more ductile behaviour than Coffee and Tamarind that behaved more brittle, root tensile strength increasing exponentially for finer roots. Teak and Tea showed almost a constant root tensile strength over the range of diameters tested and little variability. Jack fruit and mango trees showed the largest variability, which may be explained by the presence of root nodules, preventing the derivation of an unequivocal relationship between root diameters and tensile strength. This results in uncertainty of root strength estimates that are applicable. These results provide important information to

  10. Parasiticidal effects of Morus alba root bark extracts against Ichthyophthirius multifiliis infecting grass carp

    Science.gov (United States)

    Ichthyophthirius multifiliis (Ich) is an important fish parasite that can result in significant losses in aquaculture. In order to find efficacious drugs to control Ich, the root bark of Morus alba, a traditional Chinese medicine, was evaluated for its antiprotozoal activity. The M. alba root bark w...

  11. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of an energy crop, king grass (Pennisetum americanum × P. purpureum)

    International Nuclear Information System (INIS)

    Zhang, Xingfeng; Zhang, Xuehong; Gao, Bo; Li, Zhian; Xia, Hanping; Li, Haifang; Li, Jian

    2014-01-01

    An experiment was conducted to evaluate the effect of cadmium (Cd) on growth, photosynthesis, mineral nutrition and Cd accumulation of an energy crop, king grass (Pennisetum purpureum K. Schumach × P. thyphoideum Rich). Leaf shape was more sensitive to Cd than biomass and root length. Leaves had no visual toxic symptoms under 8–100 mg kg −1 Cd. High Cd pollution significantly increased the chlorophyll content of young leaves but showed no effect on mature leaves. Cd enhanced the maximum net photosynthetic rate (Amax), light compensation point (LCP) and light saturation point (LSP). For roots, Cd had a positive relationship with Zn, Mg and Ca. For stems, Cd had a positive relationship with Zn, Cu, Mg and Ca, while had a negative relationship with Mn. For leaves, Cd had a positive relationship with Zn, Mg and K, while had a negative relationship with Mn and Ca. Plant tissues accumulated 98, 21 and 26 mg kg −1 Cd in roots, stems and leaves, respectively, and extracted 477 and 515 μg Cd in roots and shoots for a single plant at 30 mg kg −1 Cd, respectively. King grass would require 23–290 years to remediate contaminated soil with 8–100 mg kg −1 Cd. It could extract 0.94–1.31 kg ha −1 Cd and produce 216–375 t ha −1 of fresh biomass and 28–79 t ha −1 of dry biomass each year. In summary, king grass had high biomass production and phytoremediation potential. - Highlights: • The effect of Cd on growth, photosynthesis, mineral nutrition and Cd accumulation of energy crop, king grass was investigated. • Plant leaves had no visual toxic symptoms under 8–100 mg kg −1 soil Cd. • Plant could extract 0.94–1.31 kg ha −1 Cd and produce 28–79 t ha −1 of dry biomass each year under 8–100 mg kg −1 soil Cd

  12. Exudation of fluorescent beta-carbolines from Oxalis tuberosa L roots.

    Science.gov (United States)

    Bais, Harsh Pal; Park, Sang-Wook; Stermitz, Frank R; Halligan, Kathleen M; Vivanco, Jorge M

    2002-11-01

    Root fluorescence is a phenomenon in which roots of seedlings fluoresce when irradiated with ultraviolet (UV) light. Soybean (Glycine max) and rye grass (Elymus glaucus) are the only plant species that have been reported to exhibit this occurrence in germinating seedling roots. The trait has been useful as a marker in genetic, tissue culture and diversity studies, and has facilitated selection of plants for breeding purposes. However, the biological significance of this occurrence in plants and other organisms is unknown. Here we report that the Andean tuber crop species Oxalis tuberosa, known as oca in the highlands of South America, secretes a fluorescent compound as part of its root exudates. The main fluorescent compounds were characterized as harmine (7-methoxy-1-methyl-beta-carboline) and harmaline (3, 4-dihydroharmine). We also detected endogenous root fluorescence in other plant species, including Arabidopsis thaliana and Phytolacca americana, a possible indication that this phenomenon is widespread within the plant kingdom.

  13. Responses of Szarvasi-1 energy grass to sewage sludge treatments in hydroponics.

    Science.gov (United States)

    Rév, Ambrus; Tóth, Brigitta; Solti, Ádám; Sipos, Gyula; Fodor, Ferenc

    2017-09-01

    Sewage sludge (SS) originating from communal wastewater is a hazardous material but have a potentially great nutritive value. Its disposal after treatment in agricultural lands can be a very economical and safe way of utilization once fast growing, high biomass, perennial plants of renewable energy production are cultivated. Szarvasi-1 energy grass (Elymus elongatus subsp. ponticus cv. Szarvasi-1), a good candidate for this application, was grown in hydroponics in order to assess its metal accumulation and tolerance under increasing SS amendments. The applied SS had a composition characteristic to SS from communal wastes and did not contain any toxic heavy metal contamination from industrial sludge in high concentration. Toxic effects was assessed in quarter strength Hoagland nutrient solution and only the two highest doses (12.5-18.75 g dm -3 ) caused decreases in root growth, shoot water content and length and stomatal conductance whereas shoot growth, root water content, chlorophyll concentration and the maximal quantum efficiency of photosystem II was unaffected. Shoot K, Ca, Mg, Mn, Zn and Cu content decreased but Na and Ni increased in the shoot compared to the unamended control. The nutritive effect was tested in 1/40 strength Hoagland solution and only the highest dose (12.5 g dm -3 ) decreased root growth and stomatal conductance significantly while lower doses (1.25-6.25 g dm -3 ) had a stimulative effect. Shoot K, Na, Fe and Ni increased and Ca, Mg, Mn, Zn and Cu decreased in this treatment. It was concluded that SS with low heavy metal content can be a potentially good fertilizer for high biomass non-food crops such as Szarvasi-1 energy grass. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Integrated Emergy and Economic Evaluation of Lotus-Root ...

    Science.gov (United States)

    Lotus (Neumbo nucifera, Gaertn) is the most important aquatic vegetable in China, with a cultivation history of over 3000 years. The emergy, energy, material, and money flows of three lotus root cultivation modes in Wanqingsha, Nansha District, Guangzhou, China were examined using Energy Systems Language models and emergy evaluation to better understand their ecological and economic characteristics on multiple spatial and temporal scales. The natural resource foundations, economic characteristics and sustainability of these modes were evaluated and compared. The results showed that although all three modes were highly dependent on purchased emergy inputs, their potential impacts as measured by the local (ELRL) and global (ELRW) environmental loading ratios were less than 1.2 and 0.7, respectively. The lotus-fish mode was the most sustainable with its emergy index of sustainable development (EISD) 2.09 and 2.13 times that of the pure lotus and lotus-shrimp modes, respectively. All three lotus-root production modes had superior economic viability, since their Output/Input ratio ranged from 2.56 to 4.95. The results indicated that agricultural systems may have different environmental impacts and sustainability characteristics at different spatial and temporal scales, and that these impacts and characteristics can be simultaneously explored using integrated emergy and economic evaluations. This study provides some major new insights about agriculture and its potenti

  15. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel

    International Nuclear Information System (INIS)

    Sipilae, K.

    1995-01-01

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  16. The dehydration stress of couch grass is associated with its lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA.

    Science.gov (United States)

    Janská, Anna; Svoboda, Pavel; Spiwok, Vojtěch; Kučera, Ladislav; Ovesná, Jaroslava

    2018-05-02

    The wild relatives of crop species represent a potentially valuable source of novel genetic variation, particularly in the context of improving the crop's level of tolerance to abiotic stress. The mechanistic basis of these tolerances remains largely unexplored. Here, the focus was to characterize the transcriptomic response of the nodes (meristematic tissue) of couch grass (a relative of barley) to dehydration stress, and to compare it to that of the barley crown formed by both a drought tolerant and a drought sensitive barley cultivar. Many of the genes up-regulated in the nodes by the stress were homologs of genes known to be mediated by abscisic acid during the response to drought, or were linked to either development or lipid metabolism. Transporters also featured prominently, as did genes acting on root architecture. The resilience of the couch grass node arise from both their capacity to develop an altered, more effective root architecture, but also from their formation of a lipid barrier on their outer surface and their ability to modify both their lipid metabolism and transporter activity when challenged by dehydration stress. Our analysis revealed the nature of dehydration stress response in couch grass. We suggested the tolerance is associated with lipid metabolism, the induction of transporters and the re-programming of development coordinated by ABA. We also proved the applicability of barley microarray for couch grass stress-response analysis.

  17. Potential of vetiver (vetiveria zizanioides l.) grass in removing selected pahs from diesel contaminated soil

    International Nuclear Information System (INIS)

    Nisa, W.U.; Rashid, A.

    2015-01-01

    Phytoremediation has been renowned as an encouraging technology for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils, little is known about how plant species behave during the process of PAH phytoremediation. Therefore, the aim of this study was to investigate the effectiveness of vetiver (Vetiveria zizanioides L.) plant in PAH phytoremediation and extraction potential of Vetiveria zizanioides for selected PAHs from the diesel contaminated soil. The field soil samples were spiked with varying concentrations (0.5% and 1%) of diesel and used for pot experiment which was conducted in greenhouse. Vetiver grass was used as experimental plant. Physico-chemical analysis of soil was performed before and after the experiment. Concentration of selected PAHs i.e. phenanthrene, pyrene and benzo(a)pyrene in soil was determined using HPLC. Plant parameters such as root/shoot length and dry mass were compared after harvest. Concentrations of PAHs were also determined in plant material and in soils after harvesting. Result showed that initial concentration of phenanthrene was significantly different from final concentration in treatments in which soil was spiked with diesel. Initial and final concentration of pyrene in soil was also significantly different from each other in two treatments in which soil was spiked with 1% diesel. Pyrene concentration was significantly different in roots and shoots of plants while benzo(a)pyrene concentration in treatments in which soil was spiked with diesel was also significantly different from roots and shoots. Phenanthrene was less extracted by the plant in all the treatments and it was present in higher concentration in soil as compared to plant. Our results indicate that vetiver grass has effectively removed PAHs from soil consequently a significantly higher root and shoot uptake of PAHs was observed than control treatments. Study concludes Vetiveria zizanioides as potentially promising plant specie for the removal

  18. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.

    Science.gov (United States)

    Fatima, Kaneez; Afzal, Muhammad; Imran, Asma; Khan, Qaiser M

    2015-03-01

    Different grasses and trees were tested for their growth in a crude oil contaminated soil. Three grasses, Lolium perenne, Leptochloa fusca, Brachiaria mutica, and two trees, Lecucaena leucocephala and Acacia ampliceps, were selected to investigate the diversity of hydrocarbon-degrading rhizospheric and endophytic bacteria. We found a higher number of hydrocarbon degrading bacteria associated with grasses than trees and that the endophytic bacteria were taxonomically different from rhizosphere associated bacteria showing their spatial distribution with reference to plant compartment as well as genotype. The rhizospheric soil yielded 22 (59.45 %), root interior yielded 9 (24.32 %) and shoot interior yielded 6 (16.21 %) hydrocarbon-degrading bacteria. These bacteria possessed genes encoding alkane hydroxylase and showed multiple plant growth-promoting activities. Bacillus (48.64 %) and Acinetobacter (18.91 %) were dominant genera found in this study. At 2 % crude oil concentration, all bacterial isolates exhibited 25 %-78 % oil degradation and Acinetobacter sp. strain BRSI56 degraded maximum. Our study suggests that for practical application, support of potential bacteria combined with the grasses is more effective approach than trees to remediate oil contaminated soils.

  19. Integrated production of warm season grasses and agroforestry for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Samson, R.; Omielan, J. [Resource Efficient Agricultural Production-Canada, Ste, Anne de Bellevue, Quebec (Canada); Girouard, P.; Henning, J. [McGill Univ., Ste. Anne de Bellevue, Quebec (Canada)

    1993-12-31

    Increased research on C{sub 3} and C{sub 4} perennial biomass crops is generating a significant amount of information on the potential of these crops to produce large quantities of low cost biomass. In many parts of North America it appears that both C{sub 3} and C{sub 4} species are limited by water availability particularly on marginal soils. In much of North America, rainfall is exceeded by evaporation. High transpiration rates by fast growing trees and rainfall interception by the canopy appear to indicate that this can further exacerbate the problem of water availability. C{sub 4} perennial grasses appear to have distinct advantages over C{sub 3} species planted in monoculture systems particularly on marginal soils. C{sub 4} grasses historically predominated over much of the land that is now available for biomass production because of their adaptation to low humidity environments and periods of low soil moisture. The planting of short rotation forestry (SRF) species in an energy agroforestry system is proposed as an alternative production strategy which could potentially alleviate many of the problems associated with SRF monocultures. Energy agroforestry would be complementary to both production of conventional farm crops and C{sub 4} perennial biomass crops because of beneficial microclimatic effects.

  20. Analysis of the soil food web structure under grass and grass clover

    NARCIS (Netherlands)

    Eekeren, van N.J.M.; Smeding, F.W.; Vries, de F.T.; Bloem, J.

    2006-01-01

    The below ground biodiversity of soil organisms plays an important role in the functioning of the the soil ecosystem, and consequently the above ground plant production. The objective of this study is to investigate the effect of grass or grass-clover in combination with fertilisation on the soil

  1. Accuracy of two root canal length measurement devices integrated into rotary endodontic motors when removing gutta-percha from root-filled teeth.

    Science.gov (United States)

    Uzun, O; Topuz, O; Tinaz, C; Nekoofar, M H; Dummer, P M H

    2008-09-01

    To evaluate ex vivo the accuracy of the integrated electronic root canal length measurement devices within TCM Endo V and Tri Auto ZX motors whilst removing gutta-percha and sealer from filled root canals. Forty freshly extracted maxillary and mandibular incisor teeth with mature apices were selected. Following access cavity preparation, the length of the root canals were measured visually 0.5 mm short of the major foramen (TL). The canals were prepared using the HERO 642 system and then filled with gutta-percha and AH26 sealer using a lateral compaction technique. After 7 days the coronal temporary filling was removed and the roots mounted in an alginate experimental model. The roots were then randomly divided in two groups. The access cavities were filled with chloroform to soften the gutta-percha and allow its penetration using the Tri Auto ZX and the TCM Endo V devices in groups 1 and 2, respectively. The 'automatic apical reverse function' (ARL) of both devices was set to start at the 0.5 setting and the rotary instrument inserted inside the root canal until a beeping sound was heard and the rotation of the file stopped automatically. Once the auto reverse function had been initiated, the foot pedal of the motor was inactivated and the rubber stop placed against the reference point. The distance between the file tip and rubber stop was measured using a digital calliper to 0.01 mm accuracy (ARL). Then, a size 20, 0.02 taper instrument was attached to each device and inserted into the root canals without rotary motion until the integrated ERCLMDs positioned the instrument tips at the 0.5 setting as suggested by the devices. This length was again measured using a digital calliper (EL). The Mann-Whitney U-test was used to investigate statistical differences between the true canal length and those indicated by the two devices when used in 'automatic ARL and when inserted passively (EL). In the presence of gutta-percha, sealer and chloroform, the auto

  2. Modelling the transfer of 14C from the atmosphere to grass: A case study in a grass field near AREVA-NC La Hague

    International Nuclear Information System (INIS)

    Aulagnier, C.; Le Dizès, S.; Maro, D.; Hébert, D.; Lardy, R.; Martin, R.; Gonze, M.-A.

    2012-01-01

    Radioactive 14 C is formed as a by-product of nuclear power generation and from operation of nuclear fuel reprocessing plants like AREVA-NC La Hague (North France), which releases about 15 TBq per year of 14 C into the atmosphere. Since the autumn of 2006, 14 C activity concentrations in samples from the terrestrial environment (air, grass and soil) have been monitored monthly on grassland 2 km downwind of the reprocessing plant. The monitoring data provides an opportunity to validate radioecology models used to assess 14 C transfer to grassland ecosystems. This article compares and discusses the ability of two different models to reproduce the observed temporal variability in grass 14 C activity in the vicinity of AREVA-NC La Hague. These two models are the TOCATTA model which is specifically designed for modelling transfer of 14 C and tritium in the terrestrial environment, and PaSim, a pasture model for simulating grassland carbon and nitrogen cycling. Both TOCATTA and PaSim tend to under-estimate the magnitude of observed peaks in grass 14 C activity, although they reproduce the general trends. PaSim simulates 14 C activities in substrate and structural pools of the plant. We define a mean turn-over time for 14 C within the plant, which is based on both experimental data and the frequency of cuts. An adapted PaSim result is presented using the 15 and 20 day moving average results for the 14 C activity in the substrate pool, which shows a good match to the observations. This model reduces the Root Mean Square Error (RMSE) by nearly 40% in comparison to TOCATTA. - Highlights: ► We model 14 C transfer from the atmosphere to grass near AREVA-NC reprocessing plant. ► Both models considered under-estimate the observed variability and highest peaks. ► A model based solely on the sap 14 C activity and mean turn-over time is considered. ► It performs well and could be applied to case studies around nuclear facilities.

  3. Establishment, Growth and Biomass yield of three Grass species on a degraded Ultisol and their effect on soil loss.

    Directory of Open Access Journals (Sweden)

    2016-11-01

    Full Text Available Erosion is a cause for concern; this is because of its effects on the soil used for both agricultural and non-agricultural purposes. Experiments were carried out to check the establishment, growth and biomass field of 3 tropical plants and their effects on soil loss during 2007 planting season. The treatments comprised 3 grasses viz. Azonopus compressus. Panicum maximum and Andropogon gayanus. The grasses were laid our in the field using a randomized complete block design replicated 4 times. Bare soil was used as the control. The parameters tested were plant height, leaf area index, root density, root establishment and the amount of soil loss using erosion pins. The result showed that Andropogon gayanus has an edge over Panicum maximum and Axonopus compressus with reference to plant height, root establishment, root density and leaf area index. Andropogon gayanus had a higher plant height from 3,6,9 and 12WAP with plant heights of 3.30cm, 3.63cm,3.93cm and 4.30cm representing 15.7%, 19.3% and 28.8% respectively. It was followed by P. maximum while A. compressus maintained the lowest plant height from 3,6,9 and 12 WAP with plant height of 2.83cm, 3.05cm, 3.20cm and 3.45cm respectively. In terms of root density, A. compressus did not have much root density which was 0.02t/ha, also at 12WAP, P. maximum did not have much root density which was 0.06t/ha though it was higher than A. compressus. The trend was the same for A. gayanus whose root density was 0.75t/ha. In terms of leaf area index (LAI, it was shown that at 3WAP and 6WAP, A. compressus had the lowest leaf area index of 58.25 and 65.75 respectively. Also at 9WAP and 12WAP A. compressus had 72.28 and 75.08t/ha respectively. At 3WAP and 6WAP P.maximum had a high leaf area index of 66.60 and 77.25 respectively. A. gayanus at 3WAP and 6WAP had 87.73 gayanus at 3WAP and 6WAP had 87.73 and 90.80 for 9WAP and 12WAP respectively. A. compressus protected the soil, reducing soil loss as a total of 9

  4. Meadow-grass gall midge

    DEFF Research Database (Denmark)

    Hansen, Lars Monrad

    The area with meadow-grass (Poa pratensis, L.) grown for seed production in Den-mark is a significant proportion of the entire seed production. The meadow-grass gall midge (Mayetiola schoberi, Barnes 1958) is of considerable economic importance since powerful attacks can reduce the yield...

  5. The linear accumulation of atmospheric mercury by vegetable and grass leaves: Potential biomonitors for atmospheric mercury pollution.

    Science.gov (United States)

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Sen; Ci, Zhijia; Kong, Xiangrui; Wang, Zhangwei

    2013-09-01

    One question in the use of plants as biomonitors for atmospheric mercury (Hg) is to confirm the linear relationships of Hg concentrations between air and leaves. To explore the origin of Hg in the vegetable and grass leaves, open top chambers (OTCs) experiment was conducted to study the relationships of Hg concentrations between air and leaves of lettuce (Lactuca sativa L.), radish (Raphanus sativus L.), alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.). The influence of Hg in soil on Hg accumulation in leaves was studied simultaneously by soil Hg-enriched experiment. Hg concentrations in grass and vegetable leaves and roots were measured in both experiments. Results from OTCs experiment showed that Hg concentrations in leaves of the four species were significantly positively correlated with those in air during the growth time (p  0.05). Thus, Hg in grass leaves is mainly originated from the atmosphere, and grass leaves are more suitable as potential biomonitors for atmospheric Hg pollution. The effect detection limits (EDLs) for the leaves of alfalfa and ryegrass were 15.1 and 22.2 ng g(-1), respectively, and the biological detection limit (BDL) for alfalfa and ryegrass was 3.4 ng m(-3).

  6. Tests of a system to exclude roots from buried radioactive waste in a warm, humid climate

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.; Corey, J.C.; Adriano, D.C.; Decker, O.D.; Griggs, R.D.

    1989-01-01

    Vegetation is commonly used to stabilize the ground covering buried waste sites. However, constituents of buried waste can be brought to the surface if the waste is penetrated by plant roots. An ideal waste burial system would allow the use of vegetation to stabilize the soil above the buried waste but would exclude roots from the waste. One system that shows considerable promise is a slow release encapsulation of a root growth inhibitor (Trifluralin). Projected lifetimes of the capsule are in the order of 100 years. The capsule is bonded to a geotextile, which provides an easy means of distributing the capsule evenly over the area to be protected. Vegetation grown in the soil above the barrier has provided good ground cover, although some decrease in growth has been found in some species. Of the species tested the sensitivity to the biobarrier, as measured by the distance root growth stops near the barrier, is bamboo> bahia grass> bermuda grass> soybean. Potential uses for the biobarrier at the Savannah River Site (SRS) include the protection of clay caps over buried, low-level saltstone and protection of gravel drains and clay caps over decommissioned seepage basins. Trails of the biobarrier as part of waste site caps are scheduled to begin during the next 12 months

  7. Potential of grasses and rhizosphere bacteria for bioremediation of diesel-contaminated soils

    Directory of Open Access Journals (Sweden)

    Melissa Paola Mezzari

    2011-12-01

    Full Text Available The techniques available for the remediation of environmental accidents involving petroleum hydrocarbons are generally high-cost solutions. A cheaper, practical and ecologically relevant alternative is the association of plants with microorganisms that contribute to the degradation and removal of hydrocarbons from the soil. The growth of three tropical grass species (Brachiaria brizantha, Brachiaria decumbens and Paspalum notatum and the survival of root-associated bacterial communities was evaluated at different diesel oil concentrations. Seeds of three grass species were germinated in greenhouse and at different doses of diesel (0, 2.5, 5 and 10 g kg-1 soil. Plants were grown for 10 weeks with periodic assessment of germination, growth (fresh and dry weight, height, and number of bacteria in the soil (pots with or without plants. Growth and biomass of B. decumbens and P. notatum declined significantly when planted in diesel-oil contaminated soils. The presence of diesel fuel did not affect the growth of B. brizantha, which was highly tolerant to this pollutant. Bacterial growth was significant (p < 0.05 and the increase was directly proportional to the diesel dose. Bacteria growth in diesel-contaminated soils was stimulated up to 5-fold by the presence of grasses, demonstrating the positive interactions between rhizosphere and hydrocarbon-degrading bacteria in the remediation of diesel-contaminated soils.

  8. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2013-06-01

    Full Text Available in situ hyperspectral and environmental variables yielded the highest grass N and P estimation accuracy (R2 = 0.81, root mean square error (RMSE) = 0.08, and R2 = 0.80, RMSE = 0.03, respectively) as compared to using remote sensing variables only...

  9. Roots affect the response of heterotrophic soil respiration to temperature in tussock grass microcosms.

    Science.gov (United States)

    Graham, Scott L; Millard, Peter; Hunt, John E; Rogers, Graeme N D; Whitehead, David

    2012-07-01

    While the temperature response of soil respiration (R(S)) has been well studied, the partitioning of heterotrophic respiration (R(H)) by soil microbes from autotrophic respiration (R(A)) by roots, known to have distinct temperature sensitivities, has been problematic. Further complexity stems from the presence of roots affecting R(H), the rhizosphere priming effect. In this study the short-term temperature responses of R(A) and R(H) in relation to rhizosphere priming are investigated. Temperature responses of R(A), R(H) and rhizosphere priming were assessed in microcosms of Poa cita using a natural abundance δ(13)C discrimination approach. The temperature response of R(S) was found to be regulated primarily by R(A), which accounted for 70 % of total soil respiration. Heterotrophic respiration was less sensitive to temperature in the presence of plant roots, resulting in negative priming effects with increasing temperature. The results emphasize the importance of roots in regulating the temperature response of R(S), and a framework is presented for further investigation into temperature effects on heterotrophic respiration and rhizosphere priming, which could be applied to other soil and vegetation types to improve models of soil carbon turnover.

  10. Diet Switching by Mammalian Herbivores in Response to Exotic Grass Invasion.

    Directory of Open Access Journals (Sweden)

    Carolina Bremm

    Full Text Available Invasion by exotic grasses is a severe threat to the integrity of grassland ecosystems all over the world. Because grasslands are typically grazed by livestock and wildlife, the invasion is a community process modulated by herbivory. We hypothesized that the invasion of native South American grasslands by Eragrostis plana Nees, an exotic tussock-forming grass from Africa, could be deterred by grazing if grazers switched dietary preferences and included the invasive grass as a large proportion of their diets. Bos taurus (heifers and Ovis aries (ewes grazed plots with varying degrees of invasion by E. plana in a replicated manipulative experiment. Animal positions and species grazed were observed every minute in 45-min grazing session. Proportion of bites and steps in and out of E. plana tussocks were measured and used to calculate several indices of selectivity. Both heifers and ewes exhibited increasing probability of grazing E. plana as the proportion of area covered by tussocks increased, but they behaved differently. In agreement with expectations based on the allometry of dietary preferences and morphology, ewes consumed a low proportion of E. plana, except in areas that had more than 90% E. plana cover. Heifers consumed proportionally more E. plana than ewes. Contrary to our hypothesis, herbivores did not exhibit dietary switching towards the invasive grass. Moreover, they exhibited avoidance of the invasive grass and preference for short-statured native species, both of which should tend to enhance invasion. Unless invasive plants are highly palatable to livestock, the effect of grazing to deter the invasion is limited, due to the inherent avoidance of the invasive grass by the main grazers in the ecosystem, particularly sheep.

  11. RootJS: Node.js Bindings for ROOT 6

    Science.gov (United States)

    Beffart, Theo; Früh, Maximilian; Haas, Christoph; Rajgopal, Sachin; Schwabe, Jonas; Wolff, Christoph; Szuba, Marek

    2017-10-01

    We present rootJS, an interface making it possible to seamlessly integrate ROOT 6 into applications written for Node.js, the JavaScript runtime platform increasingly commonly used to create high-performance Web applications. ROOT features can be called both directly from Node.js code and by JIT-compiling C++ macros. All rootJS methods are invoked asynchronously and support callback functions, allowing non-blocking operation of Node.js applications using them. Last but not least, our bindings have been designed to platform-independent and should therefore work on all systems supporting both ROOT 6 and Node.js. Thanks to rootJS it is now possible to create ROOT-aware Web applications taking full advantage of the high performance and extensive capabilities of Node.js. Examples include platforms for the quality assurance of acquired, reconstructed or simulated data, book-keeping and e-log systems, and even Web browser-based data visualisation and analysis.

  12. Nutritional value of cabbage and kikuyu grass as food for grass carp ...

    African Journals Online (AJOL)

    and digestibility coefficients were obtained for the protein, fibre, ash and fat contents of both ... Cabbage is a superior feed compared to grass for raising grass carp and a suitable low-cost alternative ... Materials and Methods ... from jumping out and was fitted with an air lift under- .... In: Aquatic weeds in South East Asia.

  13. Estimating grass and grass silage degradation characteristics by in situ and in vitro gas production methods

    Directory of Open Access Journals (Sweden)

    Danijel Karolyi

    2010-01-01

    Full Text Available Fermentation characteristics of grass and grass silage at different maturities were studied using in situ and in vitro gas production methods. In situ data determined difference between grass and silage. Degradable fraction decreased as grass matured while the undegradable fraction increased. Rate of degradation (kd was slower for silage than fresh grass. Gas production method (GP data showed that fermentation of degradable fraction was different between stage of maturity in both grass and silage. Other data did not show any difference with the exception for the rate of GP of soluble and undegradable fraction. The in situ degradation characteristics were estimated from GP characteristics. The degradable and undegradable fractions could be estimated by multiple relationships. Using the three-phases model for gas production kd and fermentable organic matter could be estimated from the same parameters. The only in situ parameter that could not be estimated with GP parameters was the soluble fraction. The GP method and the three phases model provided to be an alternative to the in situ method for animal feed evaluations.

  14. High green fodder yielding new grass varieties

    OpenAIRE

    C. Babu, K. Iyanar and A. Kalamani

    2014-01-01

    Two high biomass yielding forage grass varieties one each in Cumbu Napier hybrid and Guinea grass have been evolved at the Department of Forage Crops, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore and identified for release at national (All India) level as Cumbu Napier hybrid grass CO (BN) 5 and Guinea grass CO (GG) 3 during 2012 and 2013 respectively. Cumbu Napier hybrid grass CO (BN) 5 secured first rank at all national level with reference to green ...

  15. 浅谈图书馆基础竞合层策略%On the Strategy of Grass-Root Competition and Cooperation Based on the Library

    Institute of Scientific and Technical Information of China (English)

    吕春晖

    2011-01-01

    The competition is based on the library cooperation within competition.This grass-roots cooperation and competition exists in every business process within the work areas.Modern Library's management should change their ideas,based on reality,the development of the strategic objectives for their own development,in order to improve their market competitiveness. This paper analyzes the level of the library-based competition and cooperation of several key strategies.%图书馆竞争的基础是内部的合作竞争。这种基层合作与竞争存在于内部的每一个业务流程、工作环节。现代图书馆的管理应该转变观念,立足实际,制定适合自身发展的战略目标,才能提高自身的市场竞争力。本文分析了图书馆基础竞争合作层面的几个主要策略。

  16. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. [Argonne National Lab., IL (United States); Gerdes, D.; Youngs, D. [Army Construction Engineering Research Lab., Champaign, IL (United States)

    1992-07-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  17. Enhancing GRASS data communication with videographic technology

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.G. (Argonne National Lab., IL (United States)); Gerdes, D.; Youngs, D. (Army Construction Engineering Research Lab., Champaign, IL (United States))

    1992-01-01

    Research at Argonne National Laboratory and the US Army Construction Engineering Research Laboratory has shown that computer videographic technology can be used to assist visualization and communication of GIS-generated geographic information. Videographic tools can be used to make results of GRASS analyses clear to decision-makers and to public interest groups, as well as to help GRASS users visualize geographic data more easily. Useful videographic visualization tools include graphic overlay of GRASS layers onto panchromatic images, allowing landscape features to be associated with GIS classifications; draping of GIS layers onto terrain models to create shaded relief maps; and incorporation of photographic imagery into GIS graphics. Useful videographic communications capabilities include convenient, direct interface to video formats, allowing incorporation of live video into GRASS graphics and output of GRASS graphics to video; convenient output of high-quality slides and prints; and enhanced labeling and editing of GRASS images. Conversion of GRASS imagery to standard videographic file formats also facilitates incorporation of GRASS images into other software programs, such as database and work-processing packages.

  18. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field.

    Science.gov (United States)

    Attinti, Ramesh; Barrett, Kirk R; Datta, Rupali; Sarkar, Dibyendu

    2017-06-01

    Phytoextraction is a green remediation technology for cleaning contaminated soils. Application of chelating agents increases metal solubility and enhances phytoextraction. Following a successful greenhouse experiment, a panel study under field weather elucidated the efficiency of the chelating agent ethylenediaminedisuccinic acid (EDDS) on phytoextraction of lead (Pb) by vetiver grass, a hyperaccumulator of Pb, and a nonaccumulator fescue grass from residential soils contaminated with Pb-based paint from Baltimore, MD and San Antonio, TX. Three soils from each city with Pb content between 1000 and 2400 mg kg -1 were chosen for the panel study. Sequential extraction revealed that Fe-Mn oxide (60-63%) and carbonate (25-33%) fractions of Pb dominated in Baltimore soils, whereas in San Antonio soils, Pb was primarily bound to the organic fraction (64-70%) because organic content was greater and, secondarily, to the Fe-Mn oxide (15-20%) fraction. Vetiver and fescue grasses were transplanted and grown on wood panels in the field with EDDS applied after 3 months and 13 months. Soil and leachate results indicated that EDDS applications increased Pb solubility in soils. Plant tissues results indicated enhanced the uptake of Pb by vetiver and showed that EDDS application promoted translocation of Pb from root to shoot. Average Pb concentration increased by 53% and 203% in shoots and by 73% and 84% in roots of vetiver after the first and second applications of EDDS, respectively. Concentrations in roots and shoots increased in all tested soils, regardless of soil pH or clay content. After the second application, average Pb concentrations in vetiver were higher than those in fescue by 3.6x in shoots and 8.3x in roots. Visual phytotoxic symptoms from increased bioavailable Pb from EDSS applications were observed in fescue but not in vetiver. This study demonstrated the potential of a chemically-catalyzed phytoremediation system as a cleanup method for lead-contaminated soils

  19. Different techniques to study rumen fermentation characteristics of maturing grass and grass silage

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Soliman, I.A.; Visser, de H.; Vuuren, van A.M.

    1999-01-01

    Grass samples were harvested during the 1993 growing season after a precut on April 27, 1993 and were stored frozen or left to ensile in 30-L buckets. Effects on chemical composition and fermentation kinetics of the maturation of the grass and of ensiling were investigated. Chemical composition and

  20. Mass spectrometric analysis of electrophoretically separated allergens and proteases in grass pollen diffusates

    Directory of Open Access Journals (Sweden)

    Geczy Carolyn L

    2003-09-01

    Full Text Available Abstract Background Pollens are important triggers for allergic asthma and seasonal rhinitis, and proteases released by major allergenic pollens can injure airway epithelial cells in vitro. Disruption of mucosal epithelial integrity by proteases released by inhaled pollens could promote allergic sensitisation. Methods Pollen diffusates from Kentucky blue grass (Poa pratensis, rye grass (Lolium perenne and Bermuda grass (Cynodon dactylon were assessed for peptidase activity using a fluorogenic substrate, as well as by gelatin zymography. Following one- or two-dimensional gel electrophoresis, Coomassie-stained individual bands/spots were excised, subjected to tryptic digestion and analysed by mass spectrometry, either MALDI reflectron TOF or microcapillary liquid chromatography MS-MS. Database searches were used to identify allergens and other plant proteins in pollen diffusates. Results All pollen diffusates tested exhibited peptidase activity. Gelatin zymography revealed high Mr proteolytic activity at ~ 95,000 in all diffusates and additional proteolytic bands in rye and Bermuda grass diffusates, which appeared to be serine proteases on the basis of inhibition studies. A proteolytic band at Mr ~ 35,000 in Bermuda grass diffusate, which corresponded to an intense band detected by Western blotting using a monoclonal antibody to the timothy grass (Phleum pratense group 1 allergen Phl p 1, was identified by mass spectrometric analysis as the group 1 allergen Cyn d 1. Two-dimensional analysis similarly demonstrated proteolytic activity corresponding to protein spots identified as Cyn d 1. Conclusion One- and two-dimensional electrophoretic separation, combined with analysis by mass spectrometry, is useful for rapid determination of the identities of pollen proteins. A component of the proteolytic activity in Bermuda grass diffusate is likely to be related to the allergen Cyn d 1.

  1. Breeding for Grass Seed Yield

    DEFF Research Database (Denmark)

    Boelt, Birte; Studer, Bruno

    2010-01-01

    Seed yield is a trait of major interest for many fodder and amenity grass species and has received increasing attention since seed multiplication is economically relevant for novel grass cultivars to compete in the commercial market. Although seed yield is a complex trait and affected...... by agricultural practices as well as environmental factors, traits related to seed production reveal considerable genetic variation, prerequisite for improvement by direct or indirect selection. This chapter first reports on the biological and physiological basics of the grass reproduction system, then highlights...... important aspects and components affecting the seed yield potential and the agronomic and environmental aspects affecting the utilization and realization of the seed yield potential. Finally, it discusses the potential of plant breeding to sustainably improve total seed yield in fodder and amenity grasses....

  2. Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere1

    Science.gov (United States)

    Hill, Kristine; Porco, Silvana; Lobet, Guillaume; Zappala, Susan; Mooney, Sacha; Draye, Xavier; Bennett, Malcolm J.

    2013-01-01

    Genetic and genomic approaches in model organisms have advanced our understanding of root biology over the last decade. Recently, however, systems biology and modeling have emerged as important approaches, as our understanding of root regulatory pathways has become more complex and interpreting pathway outputs has become less intuitive. To relate root genotype to phenotype, we must move beyond the examination of interactions at the genetic network scale and employ multiscale modeling approaches to predict emergent properties at the tissue, organ, organism, and rhizosphere scales. Understanding the underlying biological mechanisms and the complex interplay between systems at these different scales requires an integrative approach. Here, we describe examples of such approaches and discuss the merits of developing models to span multiple scales, from network to population levels, and to address dynamic interactions between plants and their environment. PMID:24143806

  3. Post-ruminal digestibility of crude protein from grass and grass silages in cows

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2006-01-01

    Grass samples were grown on a clay or sandy soil, fertilised with 150 or 300 kg N/ha per year, and harvested on different days during two consecutive growing seasons. The grass samples were stored frozen or ensiled after wilting to approximately 250 or 450 g DM/kg. The recoveries of crude protein

  4. Soil amendment effects on the exotic annual grass Bromus tectorum L. and facilitation of its growth by the native perennial grass Hilaria jamesii (Torr.) Benth

    Science.gov (United States)

    Belnap, J.; Sherrod, S.K.

    2009-01-01

    Greenhouse experiments were undertaken to identify soil factors that curtail growth of the exotic annual grass Bromus tectorum L. (cheatgrass) without significantly inhibiting growth of native perennial grasses (here represented by Hilaria jamesii [Torr.] Benth). We grew B. tectorum and H. jamesii alone (monoculture pots) and together (combination pots) in soil treatments that manipulated levels of soil phosphorus, potassium, and sodium. Hilaria jamesii showed no decline when its aboveground biomass in any of the applied treatments was compared to the control in either the monoculture or combination pots. Monoculture pots of B. tectorum showed a decline in aboveground biomass with the addition of Na2HPO4 and K2HPO4. Interestingly, in pots where H. jamesii was present, the negative effect of these treatments was ameliorated. Whereas the presence of B. tectorum generally decreased the aboveground biomass of H. jamesii (comparing aboveground biomass in monoculture versus combination pots), the presence of H. jamesii resulted in an enhancement of B. tectorum aboveground biomass by up to 900%. We hypothesize that B. tectorum was able to obtain resources from H. jamesii, an action that benefited B. tectorum while generally harming H. jamesii. Possible ways resources may be gained by B. tectorum from native perennial grasses include (1) B. tectorum is protected from salt stress by native plants or associated soil biota; (2) when B. tectorum is grown with H. jamesii, the native soil biota is altered in a way that favors B. tectorum growth, including B. tectorum tapping into the mycorrhizal network of native plants and obtaining resources from them; (3) B. tectorum can take advantage of root exudates from native plants, including water and nutrients released by natives via hydraulic redistribution; and (4) B. tectorum is able to utilize some combination of the above mechanisms. In summary, land managers may find adding soil treatments can temporarily suppress B. tectorum

  5. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    Science.gov (United States)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    arsenic (0, 45, 225 and 450 mgAs/kg soil). Vetiver plants were grown for a period of 4 months, harvested at two time periods (2 months and 4 months). Plant biomass, shoot and root lengths, arsenic accumulation in roots and shoots were measured. Total and exchangeable arsenic was correlated with phyto-extracted arsenic. In addition, 3 important antioxidant enzyme activities were measured in root and shoot tissues, viz., Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GPx) to evaluate the effect of arsenic stress on vetiver plants. This study will provide information on the capability of vetiver grass to remediate sites contaminated with arsenic as a function of soil physico- chemical properties.

  6. Effect of Vetiver Grass on Reduction of Soil Salinity and Some Minerals

    Directory of Open Access Journals (Sweden)

    Masoud Noshadi

    2017-02-01

    Full Text Available Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation. Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant on the control of soil salinity and soil reclamation.The experimental design was randomized complete block design. Irrigation water salinities were 0.68(blank, 2, 4, 6, 8 and 10 dS/m, respectively, which artificially were constructed using sodium chloride and calcium chloride. At first, vetiver was transplanted and then moved to the farm. The amount of soil moisture was measured by the neutron probe. Irrigation depth was applied to refill soil water deficit up to field capacity. To evaluate the soil salinity in above salinity treatments, soil was sampled in each plot from 0-30, 30-60 and 60-90 cm depths and for each layer, electrical conductivity of saturated extract (ECe, sodium, potassium and chloride concentrations was measured .To measure the sodium, potassium and chloride concentrations in the leaves and roots of vetiver plant, samples were dried in oven. The dried samples were powdered and passed through the sieve (No. 200 and they were reduced to ash in 250 ◦C. 5 ml HCl was added to one gram of the ash, and after passing through filter paper, the volume of sample was brought to 50 ml by boiled distilled water. After preparing plant samples, the sodium, potassium and chloride concentrations were measured by Flame Photometer. Reults and discussion: The results showed that the vetiver grass was able to decrease soil salinity at different salinity levels except highest water salinity (10 dS/m and prevented salt accumulation in the soil. However, in the

  7. Transfer of plutonium and americium to grass vegetation as a function of radionuclide solid - solution portioning in soil

    International Nuclear Information System (INIS)

    Sokolik, G.; Ovsiannikova, S.; Ivanova, T.; Leinova, S.; Kimlenka, I.; Zakharenkov, V.; Zakharenkova, N.

    2004-01-01

    The aim of investigation is to determine the main parameters influencing the plutonium and americium migration in the soil plant system including concentration factor Cf and distribution coefficient K d . The C f factor characterising the ratio of radionuclide activity concentration in the plant specie (A p , Bq/kg) and root-inhabited layer of soil (A s , Bq/kg) has been used as a measure of biological availability of TUE. The K d coefficient estimating the ratio between radionuclide activity concentration in the equilibrium solid phase (A s.ph. ) and pore solution (A sol. , Bq/l) is considered as a measure of sorption ability of soil in respect to the radionuclide. The biological availability of 239,240 Pu and 241 Am for different grass species in various mineral and organic soils of natural and agrarian systems has been studied. The soils and grass vegetation were sampled in 1994 - 2001 in Bragin, Narovla, Khoiniki districts of Belarus (12 - 53 km from ChNPP). Since plant uptake depends primarily on radionuclide portion in the pore soil solution the proper solutions were separated from the soil samples of root-inhabited layer with the method of high-speed centrifugation. 239,240 Pu and 241 Am in the samples were determined radiochemically using alpha-spectrometer ALPHA-KING 676 A. Influence of composition of soil solution on the radionuclide soil plant transfer has been analysed. The interrelationships between the concentration factor (C f ), portion of radionuclide in the soil solution and coefficient K d have been considered. The results of investigations clearly demonstrated the dependence of TUE concentration factors for meadow sedge-herbaceous association of soil sorbing complex. As a rule, C f of americium is higher than that of plutonium. Differentiating of soils according to the C f value and the forecast of grass vegetation contamination by TUE in the different periods after catastrophe has been done. The levels of various soils contamination to receive

  8. Grass pollen immunotherapy induces highly cross-reactive IgG antibodies to group V allergen from different grass species

    NARCIS (Netherlands)

    van Ree, R.; Brewczyński, P. Z.; Tan, K. Y.; Mulder-Willems, H. J.; Widjaja, P.; Stapel, S. O.; Aalberse, R. C.; Kroon, A. M.

    1995-01-01

    Sera from two groups of patients receiving grass pollen immunotherapy were tested on IgG reactivity with group V allergen from six different grass species. One group of patients was treated with a mixture of 10 grass species, and the other with a mixture of five. Only Lolium perenne, Dactylis

  9. Spatiotemporal Variation in the Environmental Controls of C4-Grass Origin and Ecology: Insights from Grass-Pollen δ13C Data

    Science.gov (United States)

    Nelson, D. M.; Urban, M.; Hu, F.

    2014-12-01

    Understanding the environmental factors controlling the origin and shifting abundance of C4 grasses in Earth's history is useful for projecting the response of C4-grass dominated grasslands to future environmental change. Unfortunately, grass pollen is typically morphologically indistinct, making palynological analysis a blunt tool for studying C4-grasses in the paleorecord. δ13C of individual grass-pollen grains using a spooling wire microcombustion device interfaced with an isotope ratio mass spectrometer (Single Pollen Isotope Ratio AnaLysis, SPIRAL) overcomes this challenge and the potential biases of δ13C data from other substrates (e.g. leaf waxes). To assess the presence and relative abundance of C3- and C4-grass pollen in samples of unknown composition, we developed a hierarchical Bayesian model, trained with ~1,900 δ13C values from pollen grains of 31 grass species. Surface-sediment data from Africa, Australia, and North America demonstrate the reliability of this technique for quantifying C4-grass abundance on the landscape. To investigate the timing and control of the origin of C4-grasses we analyzed samples from the Oligocene-Miocene from Europe and from the Eocene from North America. Results indicate that C4 grasses appeared on the landscape of southwest Europe no later than the early Oligocene, implying that low atmospheric pCO2 may not have been the main driver and/or precondition for the development of C4 photosynthesis in the grass family. In contrast, we found no evidence for C4 grasses in the southeast United States before pCO2 fell. In application of SPIRAL to the late Quaternary, we found that shifts in pCO2 and moisture balance exerted key controls on the relative abundance of C3 and C4 grasses in Africa and Australia. Overall, our results imply that as in the past, future changes in the C3/C4 composition of grass-dominated ecosystems will likely exhibit striking spatiotemporal variability as a result of differing combinations of

  10. Grass leaves as potential hominin dietary resources.

    Science.gov (United States)

    Paine, Oliver C C; Koppa, Abigale; Henry, Amanda G; Leichliter, Jennifer N; Codron, Daryl; Codron, Jacqueline; Lambert, Joanna E; Sponheimer, Matt

    2018-04-01

    Discussions about early hominin diets have generally excluded grass leaves as a staple food resource, despite their ubiquity in most early hominin habitats. In particular, stable carbon isotope studies have shown a prevalent C 4 component in the diets of most taxa, and grass leaves are the single most abundant C 4 resource in African savannas. Grass leaves are typically portrayed as having little nutritional value (e.g., low in protein and high in fiber) for hominins lacking specialized digestive systems. It has also been argued that they present mechanical challenges (i.e., high toughness) for hominins with bunodont dentition. Here, we compare the nutritional and mechanical properties of grass leaves with the plants growing alongside them in African savanna habitats. We also compare grass leaves to the leaves consumed by other hominoids and demonstrate that many, though by no means all, compare favorably with the nutritional and mechanical properties of known primate foods. Our data reveal that grass leaves exhibit tremendous variation and suggest that future reconstructions of hominin dietary ecology take a more nuanced approach when considering grass leaves as a potential hominin dietary resource. Copyright © 2017. Published by Elsevier Ltd.

  11. Lack of adaptation from standing genetic variation despite the presence of putatively adaptive alleles in introduced sweet vernal grass (Anthoxanthum odoratum).

    Science.gov (United States)

    Gould, B; Geber, M

    2016-01-01

    Population genetic theory predicts that the availability of appropriate standing genetic variation should facilitate rapid evolution when species are introduced to new environments. However, few tests of rapid evolution have been paired with empirical surveys for the presence of previously identified adaptive genetic variants in natural populations. In this study, we examined local adaptation to soil Al toxicity in the introduced range of sweet vernal grass (Anthoxanthum odoratum), and we genotyped populations for the presence of Al tolerance alleles previously identified at the long-term ecological Park Grass Experiment (PGE, Harpenden, UK) in the species native range. We found that markers associated with Al tolerance at the PGE were present at appreciable frequency in introduced populations. Despite this, there was no strong evidence of local adaptation to soil Al toxicity among populations. Populations demonstrated significantly different intrinsic root growth rates in the absence of Al. This suggests that selection on correlated root growth traits may constrain the ability of populations to evolve significantly different root growth responses to Al. Our results demonstrate that genotype-phenotype associations may differ substantially between the native and introduced parts of a species range and that adaptive alleles from a native species range may not necessarily promote phenotypic differentiation in the introduced range. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  12. EFFECT OF DROUGHT STRESS AND ADDITION OF ARBUSCULA MYCORRHIZAL FUNGI (AMF ON GROWTH AND PRODUCTIVITY OF TROPICAL GRASSES (Chloris gayana, Paspalum dilatatum, and Paspalum notatum

    Directory of Open Access Journals (Sweden)

    Pebriansyah A

    2014-06-01

    Full Text Available Grasses productivity is affected by soil water availability. Arbuscular Mycorrhizal Fungi (AMF was innoculated to support plant to overcome drought stress during its growth. The aim of this study was to understand the role of  Arbuscular Mycorrhizal Fungi (AMF to support growth and the production of grasses in drought stress condition. Three species of tropical grasses : Chloris    gayana,    Paspalum    notatum,    and  Paspalum dilatatum were used. The research used completely randomized design with 4 treatments consisting of M0S0 = without AMF and daily watering, M0S1 = without AMF and without watering; M1S0 = with mycorrhiza and daily watering; M1S1 = with AMF and without watering. and 5 replications. The four treatments research were as follows; Each type of grasses were obsereved in a separate study. The result showed that AMF played significant role in improving growth and root dry weight biomass of Chloris    gayana in drought condition. Paspalum notatum is the most adaptive grass in the drought condition. Chloris gayana has the growth and a better production than Paspalum dilatatum.

  13. Phytotoxic grass residues reduce germination and initial root growth of ponderosa pine

    Science.gov (United States)

    W. J. Rietveld

    1975-01-01

    Extracts of green foliage of Arizona fescue and mountain muhly significantly reduced germination of ponderosa pine seeds, and retarded speed of elongation and mean radicle length. Three possible routes of release of the inhibitor were investigated: (1) leaching from live foliage, (2) root exudation, and (3) overwinter leaching from dead residues. The principal route...

  14. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment.

    Directory of Open Access Journals (Sweden)

    Billie Gould

    Full Text Available Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE, cell wall modification (OsSTAR1, and internal Al detoxification (OsNRAT1 in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.

  15. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment.

    Science.gov (United States)

    Gould, Billie; McCouch, Susan; Geber, Monica

    2015-01-01

    Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.

  16. Analysis of Leaf and Root Transcriptome of Soil Grown Avena barbata Plants

    Energy Technology Data Exchange (ETDEWEB)

    Swarbreck, Sté; phanie,; Lindquist, Erika; Ackerly, David; Andersen, Gary

    2011-02-01

    Slender wild oat (Avena barbata) is an annual grass dominant in many grassland ecosystems in Mediterranean climate. This species has been the subject of ecological studies that aim at understanding the effect of global climate change on grassland ecosystems and the genetic basis for adaptation under varying environmental conditions. We present the sequencing and analysis of cDNA libraries constructed from leaf and root samples collected from A. barbata grown on natural soil and under varying rainfall patterns. More than one million expressed sequence tags (ESTs) were generated using both GS 454-FLX pyrosequencing and Sanger sequencing, and these tags were assembled into consensus sequences. We identified numerous candidate polymorphic markers in the dataset, providing possibilities for linking the genomic and the existing genetic information for A. barbata. Using the digital northern method, we showed that genes involved in photosynthesis were down regulated under high rainfall while stress- related genes were up regulated. We also identified a number of genes unique to the root library with unknown function. Real-time RT-PCR was used to confirm the root specificity of some of these transcripts such as two genes encoding O-methyl transferase. Also we showed differential expression under three water levels. Through a combination of Sanger and 454-based sequencing technologies, we were able to generate a large set of transcribed sequences for A. barbata. This dataset provides a platform for further studies of this important wild grass species

  17. EFFECT OF MULCH AND MIXED CROPPING GRASS - LEGUME AT SALINE SOIL ON GROWTH, FORAGE YIELD AND NUTRITIONAL QUALITY OF GUINEA GRASS

    Directory of Open Access Journals (Sweden)

    F. Kusmiyati

    2014-10-01

    Full Text Available The research was conducted to evaluate the effect of mulch and mixed cropping grass – legume atsaline soil on growth, forage yield and nutritional quality of guinea grass. Saline soil used in thisresearch was classified into strongly saline soil with low soil fertility. The research was arrranged inrandomized complete block design with 3 blocks. The treatments were : M1 = guinea grassmonoculture, without mulch; M2 = guinea grass monoculture, 3 ton/ha mulch; M3 = guinea grassmonoculture, 6 ton/ha mulch, M4 = mixed cropping grass with Sesbania grandiflora, without mulch;M5 = mixed cropping grass with Sesbania grandiflora, 3 ton/ha mulch; M6 = mixed cropping grass withSesbania grandiflora, 6 ton/ha mulch. Data were analyzed using analysis of variance, then followed byDuncan's Multiple Range Test. The highest soil moisture content was achieved at mixed cropping grasslegumewith 6 ton/ha of mulch. The effect of mulch at saline soil significantly increased plant growth,forage yield and nutritional quality of guinea grass. Application of 3 ton/ha mulch increased plantgrowth, forage yield and nutritional quality of guinea grass. Plant growth, forage yield and nutritionalquality of guinea grass were not affected by monoculture or mixed cropping with Sesbania at saline soil.

  18. Extending professional education to health workers at grass root level: An experience from All India Institute of Medical Sciences, New Delhi

    Directory of Open Access Journals (Sweden)

    K K Deepak

    2014-01-01

    Full Text Available Background: In India, the opportunities for professional education of the grass root level health workers are grossly inadequate. Capacity building of all categories of health workers is needed for enhancing health outcomes. Objectives: To plan and implement a professional development training program for all categories of allied health workers and to assess its outcomes in terms of knowledge and skills Materials and Method: We planned and organized a ′one week′(15 h training program for 10 categories of allied health workers (1260 working in our hospital. The program included nine generic skills/topics: the prestige of AIIMS, sterilization & infection control, universal precaution, biomedical waste management, public health, life style & healthy nutrition, fire safety, communication skills and office procedure besides subject specific skills. Trainers were drawn from 12 departments. Training methodology included interactive lectures, narratives, demonstrations, videos, PPT slides, and informal discussions with participants. The effectiveness of the program was judged on the basis of participants′ feedback, feedback from the supervisors, and our own observations post training. Results: Feedback from the participants and their supervisors after training was encouraging. The participants described training as a "life time experience". The supervisors reported improvement in confidence, communication skills, and awareness of workers. Conclusion: The success of the program was due to the use of interactive methods, involvement of multidisciplinary team, and commitment from leadership. We recommend that professional education should be linked with career advancement. Academic institutions can play a key role in taking such initiatives.

  19. Designing Resilient and Productive Grasses with Plasticity to Extreme Weather Events

    Science.gov (United States)

    Loka, D.; Humphreys, M.; Gwyn Jones, D.; Scullion, J.; Doonan, J.; Gasior, D.; Harper, J.; Farrell, M.; Kingston-Smith, A.; Dodd, R.; Chadwick, D.; Hill, P.; Robinson, D.; Jones, D.

    2016-12-01

    Grasslands occupy more than 70% of the world's agricultural land and are major providers of healthy feed for livestock and for ecosystem services. Global warming is projected to increase the intensity and frequency of extreme weather events such as drought and flooding and will reduce persistency of currently productive but stress sensitive forage grass varieties, thereby challenging global food security and compromising on their existing ecosystem functionality. New perennial grass varieties, tolerant to the onsets of more than one abiotic stresses, are required in order to achieve sustainable grassland production and function over years under adverse environmental conditions. Identifying and selecting reliable morphological and physiological traits associated with increased resistance to multiple stress conditions is a prerequisite to ensure future grasslands resilience. The objectives of our study were to select from diverse and novel Festulolium (ryegrass spp. x fescue spp. hybrids) grass populations capable of providing optimal combinations of good forage production together with resilience to multiple stresses and to monitor morphological and physiological responses under multiple stress conditions. The grasses were: Festulolium variety Prior (L. perenne x F. pratensis), shown to alter soil structure and hydrology to mitigate run-off and flooding; two advanced breeding populations of diploid L. perenne with genes for drought tolerance derived from the Mediterranean fescue species F. arundinacea and F. glaucescens; two tetraploid hybrid populations involving L. perenne in combination with F. glaucescens and F. mairei (from North Africa), respectively. As controls, Festulolium variety AberNiche and L. perenne variety AberWolf varieties, were used. Treatments consisted of: A) Control; plants maintained at optimum conditions, B) Flood; plants were flooded for 6 weeks followed by a 4-week recovery, C) Drought; plants received limited quantity of water for 12 weeks

  20. Evaluating grasses as a long-term energy resource

    Energy Technology Data Exchange (ETDEWEB)

    Christian, D.G.; Riche, A.B.

    2001-07-01

    The work reported here is part of an ongoing project that aims to evaluate the yields of three perennial rhizomatous grasses and determine their suitability as bio-energy crops. The work began in 1993, and the grasses have been monitored continuously since that time. This report covers the period 1999/2000, and includes: the performance of plots of the energy grasses Miscanthus grass, switchgrass and reed canary grass seven years after they were planted; assessment of the yield of 15 genotypes of Miscanthus planted in 1997; monitoring all the species throughout the growing period for the presence of pests, weeds and diseases; measurement of the amount of nitrate leached from below Miscanthus grass; investigating the occurrence of lodging in switchgrass. (Author)

  1. Simulating the partitioning of biomass and nitrogen between roots and shoot in crop and grass plants

    NARCIS (Netherlands)

    Yin, X.; Schapendonk, A.H.C.M.

    2004-01-01

    Quantification of the assimilate partitioning between roots and shoot has been one of the components that need improvement in crop growth models. In this study we derived two equations for root-shoot partitioning of biomass and nitrogen (N) that hold for crops grown under steady-state conditions.

  2. Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza.

    Science.gov (United States)

    Haselwandter, K; Read, D J

    1980-04-01

    Types of root infection were analysed in healthy dominant and sub-dominant plants of zonal and azonal vegetation above the timberline in the Central and Northern Calcareous Alps of Austria. In the open nival zone vegetation, infection by fungi of the Rhizoctonia type was predominant, vesicular-arbuscular mycorrhizal infection, which was mostly of the fine endophyte (Glomus tenuis) type, being light and mainly restricted to grasses in closed vegetation patches. More extensive Glomus tenuis infection was found in the alpine grass heath, but in Carex, Rhizoctonia was again the most important fungus. The ericaceous plants of the dwarf shrub heath have typical ericoid infection, but quantitative analysis reveals a decrease of infection intensity with increase of altitude. The possible function of the various types of root infection are discussed, and the status of Rhizoctonia as a possible mycorrhizal fungus is considered.

  3. Accelerated development in Johnsongrass seedlings (Sorghum halepense suppresses the growth of native grasses through size-asymmetric competition.

    Directory of Open Access Journals (Sweden)

    Susanne Schwinning

    Full Text Available Invasive plant species often dominate native species in competition, augmenting other potential advantages such as release from natural enemies. Resource pre-emption may be a particularly important mechanism for establishing dominance over competitors of the same functional type. We hypothesized that competitive success of an exotic grass against native grasses is mediated by establishing an early size advantage. We tested this prediction among four perennial C4 warm-season grasses: the exotic weed Johnsongrass (Sorghum halepense, big bluestem (Andropogon gerardii, little bluestem (Schizachyrium scoparius and switchgrass (Panicum virgatum. We predicted that a the competitive effect of Johnsongrass on target species would be proportional to their initial biomass difference, b competitive effect and response would be negatively correlated and c soil fertility would have little effect on competitive relationships. In a greenhouse, plants of the four species were grown from seed either alone or with one Johnsongrass neighbor at two fertilizer levels and periodically harvested. The first two hypotheses were supported: The seedling biomass of single plants at first harvest (50 days after seeding ranked the same way as the competitive effect of Johnsongrass on target species: Johnsongrass < big bluestem < little bluestem/switchgrass, while Johnsongrass responded more strongly to competition from Johnsongrass than from native species. At final harvest, native plants growing with Johnsongrass attained between 2-5% of their single-plant non-root biomass, while Johnsongrass growing with native species attained 89% of single-plant non-root biomass. Fertilization enhanced Johnsongrass' competitive effects on native species, but added little to the already severe competitive suppression. Accelerated early growth of Johnsongrass seedlings relative to native seedlings appeared to enable subsequent resource pre-emption. Size-asymmetric competition and resource

  4. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    International Nuclear Information System (INIS)

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-01-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO 4 , chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO 3 . In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better

  5. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  6. UAVs and Machine Learning Revolutionising Invasive Grass and Vegetation Surveys in Remote Arid Lands

    Directory of Open Access Journals (Sweden)

    Juan Sandino

    2018-02-01

    Full Text Available The monitoring of invasive grasses and vegetation in remote areas is challenging, costly, and on the ground sometimes dangerous. Satellite and manned aircraft surveys can assist but their use may be limited due to the ground sampling resolution or cloud cover. Straightforward and accurate surveillance methods are needed to quantify rates of grass invasion, offer appropriate vegetation tracking reports, and apply optimal control methods. This paper presents a pipeline process to detect and generate a pixel-wise segmentation of invasive grasses, using buffel grass (Cenchrus ciliaris and spinifex (Triodia sp. as examples. The process integrates unmanned aerial vehicles (UAVs also commonly known as drones, high-resolution red, green, blue colour model (RGB cameras, and a data processing approach based on machine learning algorithms. The methods are illustrated with data acquired in Cape Range National Park, Western Australia (WA, Australia, orthorectified in Agisoft Photoscan Pro, and processed in Python programming language, scikit-learn, and eXtreme Gradient Boosting (XGBoost libraries. In total, 342,626 samples were extracted from the obtained data set and labelled into six classes. Segmentation results provided an individual detection rate of 97% for buffel grass and 96% for spinifex, with a global multiclass pixel-wise detection rate of 97%. Obtained results were robust against illumination changes, object rotation, occlusion, background cluttering, and floral density variation.

  7. Genetic compatibility determines endophyte-grass combinations.

    Directory of Open Access Journals (Sweden)

    Kari Saikkonen

    Full Text Available Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1 and F(2 generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1 genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2 these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars.

  8. Physiological integration enhanced the tolerance of Cynodon dactylon to flooding.

    Science.gov (United States)

    Li, Z J; Fan, D Y; Chen, F Q; Yuan, Q Y; Chow, W S; Xie, Z Q

    2015-03-01

    Many flooding-tolerant species are clonal plants; however, the effects of physiological integration on plant responses to flooding have received limited attention. We hypothesise that flooding can trigger changes in metabolism of carbohydrates and ROS (reactive oxygen species) in clonal plants, and that physiological integration can ameliorate the adverse effects of stress, subsequently restoring the growth of flooded ramets. In the present study, we conducted a factorial experiment combining flooding to apical ramets and stolon severing (preventing physiological integration) between apical and basal ramets of Cynodon dactylon, which is a stoloniferous perennial grass with considerable flooding tolerance. Flooding-induced responses including decreased root biomass, accumulation of soluble sugar and starch, as well as increased activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in apical ramets. Physiological integration relieved growth inhibition, carbohydrate accumulation and induction of antioxidant enzyme activity in stressed ramets, as expected, without any observable cost in unstressed ramets. We speculate that relief of flooding stress in clonal plants may rely on oxidising power and electron acceptors transferred between ramets through physiological integration. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Belowground ecology of scarabs feeding on grass roots: current knowledge and future directions for management in Australasia

    Directory of Open Access Journals (Sweden)

    Adam eFrew

    2016-03-01

    Full Text Available Many scarab beetles spend the majority of their lives belowground as larvae, feeding on grass roots. Many of these larvae are significant pests, causing damage to crops and grasslands. Damage by larvae of the greyback cane beetle (Dermolepida albohirtum, for example, can cause financial losses of up to AU$40 million annually to the Australian sugarcane industry. We review the ecology of some scarab larvae in Australasia, focusing on three subfamilies; Dynastinae, Rutelinae and Melolonthinae, containing key pest species. Although considerable research on the control of some scarab pests has been carried out in Australasia, for some species, the basic biology and ecology remains largely unexplored. We synthesize what is known about these scarab larvae and outline key knowledge gaps to highlights future research directions with a view to improve pest management. We do this by presenting an overview of the scarab larval host plants and feeding behavior; the impacts of abiotic (temperature, moisture and fertilization and biotic (pathogens, natural enemies and microbial symbionts factors on scarab larvae and conclude with how abiotic and biotic factors can be applied in agriculture for improved pest management, suggesting future research directions.Several host plant microbial symbionts, such as arbuscular mycorrhizal fungi and endophytes, can improve plant tolerance to scarabs and reduce larval performance, which have shown promise for use in pest management. In addition to this, several microbial scarab pathogens have been isolated for commercial use in pest management with particularly promising results. The entomopathogenic fungus Metarhizium anisopliae caused a 50% reduction in cane beetle larvae while natural enemies such as entomopathogenic nematodes have also shown potential as a biocontrol. Continued research should focus on filling the gaps in the knowledge of the basic ecology and feeding behavior of scarab larval species within Australasia

  10. The Physiological, Morphological and Bio-Chemical Comparison of the Current Grass Shiraz City’s Green Space withTall Fescue (Festuca arundinacea Schreb

    Directory of Open Access Journals (Sweden)

    M. Zadehbagheri

    2016-02-01

    Full Text Available One of the main problems of Shiraz city’s green space is the change of color and visual quality of turf during cold months. Therefore, we aimed to evaluate tall fescue in order to find if it is suitable for replacement. This experiment was in the form of complete random blocks and it was done during two consecutive years. Each treatment had 4 repetitions. Data were analyzed using SPSS software, version 16.0, and the means were compared using t or LSD tests at a significance level of 5%. The results showed that tall fescue was superior to normal sport grass in cold months with respect to its chlorophyll, catalase, protein, prolin, and soluble sugar content, as well as its visual quality and root depth. Prolin fluctuations in tall fescue were very high which showed that these types of grass can increase the plant’s prolin content under stress. Therefore, there is a fivefold increase in the prolin content of the grass in cold months (cold tension compared to the beginning of spring (best condition for growth. However, this change does not exist in sport grass. Based on the obtained results we can conclude that tall fescue can resist environmental tension, especially coldness, using different mechanisms, and is a good substitute for normal sport grass.

  11. Preliminary Results of Clover and Grass Coverage and Total Dry Matter Estimation in Clover-Grass Crops Using Image Analysis

    Directory of Open Access Journals (Sweden)

    Anders K. Mortensen

    2017-12-01

    Full Text Available The clover-grass ratio is an important factor in composing feed ratios for livestock. Cameras in the field allow the user to estimate the clover-grass ratio using image analysis; however, current methods assume the total dry matter is known. This paper presents the preliminary results of an image analysis method for non-destructively estimating the total dry matter of clover-grass. The presented method includes three steps: (1 classification of image illumination using a histogram of the difference in excess green and excess red; (2 segmentation of clover and grass using edge detection and morphology; and (3 estimation of total dry matter using grass coverage derived from the segmentation and climate parameters. The method was developed and evaluated on images captured in a clover-grass plot experiment during the spring growing season. The preliminary results are promising and show a high correlation between the image-based total dry matter estimate and the harvested dry matter ( R 2 = 0.93 with an RMSE of 210 kg ha − 1 .

  12. OpenSimRoot: widening the scope and application of root architectural models.

    Science.gov (United States)

    Postma, Johannes A; Kuppe, Christian; Owen, Markus R; Mellor, Nathan; Griffiths, Marcus; Bennett, Malcolm J; Lynch, Jonathan P; Watt, Michelle

    2017-08-01

    OpenSimRoot is an open-source, functional-structural plant model and mathematical description of root growth and function. We describe OpenSimRoot and its functionality to broaden the benefits of root modeling to the plant science community. OpenSimRoot is an extended version of SimRoot, established to simulate root system architecture, nutrient acquisition and plant growth. OpenSimRoot has a plugin, modular infrastructure, coupling single plant and crop stands to soil nutrient and water transport models. It estimates the value of root traits for water and nutrient acquisition in environments and plant species. The flexible OpenSimRoot design allows upscaling from root anatomy to plant community to estimate the following: resource costs of developmental and anatomical traits; trait synergisms; and (interspecies) root competition. OpenSimRoot can model three-dimensional images from magnetic resonance imaging (MRI) and X-ray computed tomography (CT) of roots in soil. New modules include: soil water-dependent water uptake and xylem flow; tiller formation; evapotranspiration; simultaneous simulation of mobile solutes; mesh refinement; and root growth plasticity. OpenSimRoot integrates plant phenotypic data with environmental metadata to support experimental designs and to gain a mechanistic understanding at system scales. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  13. Influence of soil fertility on waterlogging tolerance of two Brachiaria grasses

    Directory of Open Access Journals (Sweden)

    Juan de la Cruz Jiménez

    2015-04-01

    Full Text Available As a consequence of global warming, rainfall is expected to increase in several regions around the world. This, together with poor soil drainage, will result in waterlogged soil conditions. Brachiaria grasses are widely sown in the tropics and, these grasses confront seasonal waterlogged conditions. Several studies have indicated that an increase in nutrient availability could reduce the negative impact of waterlogging. Therefore, an outdoor study was conducted to evaluate the responses of two Brachiaria sp. grasses with contrasting tolerances to waterlogging, B. ruziziensis (sensitive and B. humidicola (tolerant, with two soil fertility levels. The genotypes were grown with two different soil fertilization levels (high and low and under well-drained or waterlogged soil conditions for 15 days. The biomass production, chlorophyll content, photosynthetic efficiency, and macro- (N, P, K, Ca, Mg and S and micronutrient (Fe, Mn, Cu, Zn and B contents in the shoot tissue were determined. Significant differences in the nutrient content of the genotypes and treatments were found. An increase of redoximorphic elements (Fe and Mn in the soil solution occurred with the waterlogging. The greater tolerance of B. humidicola to waterlogged conditions might be due to an efficient root system that is able to acquire nutrients (N, P, K and potentially exclude phytotoxic elements (Fe and Mn under waterlogged conditions. A high nutrient availability in the waterlogged soils did not result in an improved tolerance for B. ruziziensis. The greater growth impairment seen in the B. ruziziensis with high soil fertility and waterlogging (as opposed to low soil fertility and waterlogging was possibly due to an increased concentration of redoximorphic elements under these conditions.

  14. Germination timing and rate of locally collected western wheatgrass and smooth brome grass: the role of collection site and light sensitivity along a riparian corridor

    Science.gov (United States)

    The ecological integrity of riparian areas is reduced by biological plant invaders like smooth brome grass (Bromus inermis). Smooth brome actively invades recently disturbed riparian zones by its high seed production and fast seedling establishment. Restoring native perennial grasses to these regio...

  15. Drought and host selection influence microbial community dynamics in the grass root microbiome

    Science.gov (United States)

    Through 16S rRNA gene profiling across two distinct watering regimes and two developmental time points, we demonstrate that there is a strong correlation between host phylogenetic distance and the microbiome dissimilarity within root tissues, and that drought weakens this correlation by inducing con...

  16. Straw decomposition of nitrogen-fertilized grasses intercropped with irrigated maize in an integrated crop-livestock system

    Directory of Open Access Journals (Sweden)

    Cristiano Magalhães Pariz

    2011-12-01

    Full Text Available The greatest limitation to the sustainability of no-till systems in Cerrado environments is the low quantity and rapid decomposition of straw left on the soil surface between fall and spring, due to water deficit and high temperatures. In the 2008/2009 growing season, in an area under center pivot irrigation in Selvíria, State of Mato Grosso do Sul, Brazil, this study evaluated the lignin/total N ratio of grass dry matter , and N, P and K deposition on the soil surface and decomposition of straw of Panicum maximum cv. Tanzânia, P. maximum cv. Mombaça, Brachiaria. brizantha cv. Marandu and B. ruziziensis, and the influence of N fertilization in winter/spring grown intercropped with maize, on a dystroferric Red Latosol (Oxisol. The experiment was arranged in a randomized block design in split-plots; the plots were represented by eight maize intercropping systems with grasses (sown together with maize or at the time of N side dressing. Subplots consisted of N rates (0, 200, 400 and 800 kg ha-1 year-1 sidedressed as urea (rates split in four applications at harvests in winter/spring, as well as evaluation of the straw decomposition time by the litter bag method (15, 30, 60, 90, 120, and 180 days after straw chopping. Nitrogen fertilization in winter/spring of P. maximum cv. Tanzânia, P. maximum cv. Mombaça, B. brizantha cv. Marandu and B. ruziziensis after intercropping with irrigated maize in an integrated crop-livestock system under no-tillage proved to be a technically feasible alternative to increase the input of straw and N, P and K left on the soil surface, required for the sustainability of the system, since the low lignin/N ratio of straw combined with high temperatures accelerated straw decomposition, reaching approximately 30 % of the initial amount, 90 days after straw chopping.

  17. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    have advanced the role of grassland as a renewable source of energy in grass biomethane production with various environmental and socio-economic benefits. It is underlined that the essential question whether the gaseous biofuel meets the EU sustainability criteria of 60% greenhouse gas emission savings...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  18. Population dynamics of host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Stoel, C.D.; Duyts, H.; Putten, van der W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  19. Determining the regional potential for a grass biomethane industry

    International Nuclear Information System (INIS)

    Smyth, Beatrice M.; Smyth, Henry; Murphy, Jerry D.

    2011-01-01

    Research highlights: → We identified assessment criteria for determining the regional potential for grass biomethane. → Grass biomethane is distributed via the natural gas grid. → The criteria include: land use; grass yields; gas grid coverage; availability of co-substrates. → The county with the highest potential can fuel 50% of cars or supply 130% of domestic gas consumption. - Abstract: Grass biogas/biomethane has been put forward as a renewable energy solution and it has been shown to perform well in terms of energy balance, greenhouse gas emissions and policy constraints. Biofuel and energy crop solutions are country-specific and grass biomethane has strong potential in countries with temperate climates and a high proportion of grassland, such as Ireland. For a grass biomethane industry to develop in a country, suitable regions (i.e. those with the highest potential) must be identified. In this paper, factors specifically related to the assessment of the potential of a grass biogas/biomethane industry are identified and analysed. The potential for grass biogas and grass biomethane is determined on a county-by-county basis using multi-criteria decision analysis. Values are assigned to each county and ratings and weightings applied to determine the overall county potential. The potential for grass biomethane with co-digestion of slaughter waste (belly grass) is also determined. The county with the highest potential (Limerick) is analysed in detail and is shown to have ready potential for production of gaseous biofuel to meet either 50% of the vehicle fleet or 130% of the domestic natural gas demand, through 25 facilities at a scale of ca. 30 kt yr -1 of feedstock. The assessment factors developed in this paper can be used in other resource studies into grass biomethane or other energy crops.

  20. Uptake of 2,4,6-Trinitrotoluene (TNT) by Vetiver grass (Vetiviera ziznoides L.) -- Preliminary results from a hydroponic study

    Science.gov (United States)

    Shakya, K. M.; Sarkar, D.; Datta, R.; Makris, K.; Pachanoor, D.

    2006-05-01

    2,4,6-Trinitrotoluene(TNT) is a potent mutagen and a Group C human carcinogen that has been widely used to produce munitions and explosives. As a result, vast areas that have been previously used as military ranges, munition burning and open detonation sites have been heavily contaminated with TNT. Conventional remedial activities in such contaminated sites commonly rely on methods such as incineration, land filling and soil composting. Phytoremediation offers a cost-effective solution, utilizing plants to phytoextract TNT from the contaminated soil. We propose the use of vetiver grass (Vetiveria zizanoides) to remove TNT from such contaminated soils. Vetiver is a fast-growing and adaptive grass, enabling its use in TNT-contaminated sites in a wide variety of soil types and climate. We also hypothesized that TNT removal by vetiver grass will be enhanced by utilizing a chaotropic agent (urea) to alter rhizosphere/root hair chemical environment. The objectives of this preliminary hydroponic study were: i) to investigate the effectiveness of vetiver grass in removing TNT from solution, and ii) to evaluate the use of a common agrochemical (urea) in enhancing TNT removal by vetiver grass. Vetiver plants were grown in a hydroponic system with five different TNT concentrations (0, 5, 10, 25, and 50 mg TNT L-1) and three urea concentrations (0, 0.01 and 0.1%). A plant density of 10 g L-1 and three replicate vessels per treatment were used. Aliquots were collected at several time intervals up to 192 hour, and were analyzed for TNT with HPLC. Results showed that vetiver was able to remove TNT from hydroponic solutions. The overall magnitude and kinetics of TNT removal by vetiver grass was enhanced in the presence of urea. TNT removal kinetics depended on TNT and urea initial concentrations, suggestive of second-order kinetic reactions. Preliminary results are encouraging, but in need for verification using more detailed studies involving TNT-contaminated soils. Ongoing

  1. Integrating invasive grasses into carbon cycle projections: Cogongrass spread in southern pine forests

    Science.gov (United States)

    McCabe, T. D.; Flory, S. L.; Wiesner, S.; Dietze, M.

    2017-12-01

    Forested ecosystems are currently being disrupted by invasive species. One example is the invasive grass Imperata cylindrica (cogongrass), which is widespread in southeastern US pine forests. Pines forests dominate the forest cover of the southeast, and contribute to making the Southeast the United States' largest carbon sink. Cogongrass decreases the colonization of loblolly pine fine roots. If cogongrass continues to invade,this sink could be jeopardized. However, the effects of cogongrass invasion on carbon sequestration are largely unknown. We have projected the effects of elevated CO2 and changing climate on future cogongrass invasion. To test how pine stands are affected by cogongrass, cogongrass invasions were modeled using the Ecosystem Demography 2 (ED2) model, and parameterized using the Predictive Ecosystem Analyzer (PEcAn). ED2 takes into account local meteorological data, stand populations and succession, disturbance, and geochemical pools. PEcAn is a workflow that uses Bayesian sensitivity analyses and variance decomposition to quantify the uncertainty that each parameter contributes to overall model uncertainty. ED2 was run for four NEON and Ameriflux sites in the Southeast from the earliest available census of the site into 2010. These model results were compared to site measures to test for model accuracy and bias. To project the effect of elevated CO2 on cogongrass invasions, ED was run from 2006-2100 at four sites under four separate scenarios: 1) RPC4.5 CO2 and climate, 2) RPC4.5 climate only, with constant CO2 concentrations, 3) RPC4.5 Elevated CO2 only, with climate randomly selected from 2006-2026, 4) Present Day, made from randomly selected measures of CO2 and radiation from 2006-2026. Each scenario was run three times; once with cogongrass absent, once with a low cogongrass abundance, and once with a high cogongrass abundance. Model results suggest that many relevant parameters have high uncertainty due to lack of measurement. Further field

  2. Traditional Roots of Sri Aurobindo’s Integral Yoga

    Directory of Open Access Journals (Sweden)

    Debashish Banerji

    2013-09-01

    Full Text Available Sri Aurobindo’s teachings on Integral Yoga are couched in a universal and impersonal language, and could be considered an early input to contemporary transpersonal psychology. Yet, while he was writing his principal works in English, he was also keeping a diary of his experiences and understandings in a personal patois that hybridized English and Sanskrit. A hermeneutic perusal of this text, The Record of Yoga, published by the Sri Aurobindo Ashram, uncovers the semiotics of Indian yoga traditions, showing how Sri Aurobindo utilizes and furthers their discourse, and where he introduces new elements which may be considered “modern.” This essay takes a psycho-biographical approach to the life of Sri Aurobindo (1872-1950, tracing his encounters with texts and situated traditions of Indian yoga from the period of his return to India from England (1893 till his settlement in Pondicherry (1910, to excavate the traditional roots and modern ruptures of his own yoga practice, which goes to inform his non-sectarian yoga teachings.

  3. Post-treatment efficacy of discontinuous treatment with 300IR 5-grass pollen sublingual tablet in adults with grass pollen-induced allergic rhinoconjunctivitis

    DEFF Research Database (Denmark)

    Didier, A; Malling, H-J; Worm, Marcel

    2013-01-01

    Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis.......Sustained efficacy over three pollen seasons of pre- and co-seasonal treatment with 300IR 5-grass pollen sublingual tablet has been demonstrated in adults with moderate-severe grass pollen-associated allergic rhinoconjunctivitis....

  4. Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland.

    Science.gov (United States)

    Throop, Heather L; Reichmann, Lara G; Sala, Osvaldo E; Archer, Steven R

    2012-06-01

    Increases in woody vegetation and declines in grasses in arid and semi-arid ecosystems have occurred globally since the 1800s, but the mechanisms driving this major land-cover change remain uncertain and controversial. Working in a shrub-encroached grassland in the northern Chihuahuan Desert where grasses and shrubs typically differ in leaf-level nitrogen allocation, photosynthetic pathway, and root distribution, we asked if differences in leaf-level ecophysiology could help explain shrub proliferation. We predicted that the relative performance of grasses and shrubs would vary with soil moisture due to the different morphological and physiological characteristics of the two life-forms. In a 2-year experiment with ambient, reduced, and enhanced precipitation during the monsoon season, respectively, the encroaching C(3) shrub (honey mesquite Prosopis glandulosa) consistently and substantially outperformed the historically dominant C(4) grass (black grama Bouteloua eriopoda) in terms of photosynthetic rates while also maintaining a more favorable leaf water status. These differences persisted across a wide range of soil moisture conditions, across which mesquite photosynthesis was decoupled from leaf water status and moisture in the upper 50 cm of the soil profile. Mesquite's ability to maintain physiologically active leaves for a greater fraction of the growing season than black grama potentially amplifies and extends the importance of physiological differences. These physiological and phenological differences may help account for grass displacement by shrubs in drylands. Furthermore, the greater sensitivity of the grass to low soil moisture suggests that grasslands may be increasingly susceptible to shrub encroachment in the face of the predicted increases in drought intensity and frequency in the desert of the southwestern USA.

  5. Grasses for energy production: hydrological guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, R.L.

    2003-07-01

    This report provides hydrological guidelines for growers, land and water resource managers, environmental groups and other parties interested in utilising grasses for energy production. The aim of the report is to help interested parties decide if a location is suitable for planting energy grasses by considering whether potential hydrological impacts will have an adverse effect on crop productivity and yield. The guidelines consider: the water use of energy grasses compared with other crops; the factors governing water use; the water requirements for a productive crop; and the likely impacts on the availability and quantity of water. The report points out that there are still gaps in our knowledge of the processes controlling the water use and growth of energy grasses and notes that, in some situations, there will be considerable uncertainty in predictions of water use and the magnitude of the associated hydrological impacts.

  6. Arbuscular mycorrhizal association enhances drought tolerance potential of promising bioenergy grass (Saccharum arundinaceum retz.).

    Science.gov (United States)

    Mirshad, P P; Puthur, Jos T

    2016-07-01

    The influence of arbuscular mycorrhizal fungi (AMF) (Glomus spp.) on some physiological and biochemical characteristics of bioenergy grass Saccharum arundinaceum subjected to drought stress was studied. The symbiotic association of Glomus spp. was established with S. arundinaceum, a potential bioenergy grass as evident from the increase in percentage of root infection and distribution frequency of vesicles when compared with non-arbuscular mycorrhizal plants. AMF-treated plants exhibited an enhanced accumulation of osmolytes such as sugars and proline and also increased protein content under drought. AMF association significantly increased the accumulation of non-enzymatic antioxidants like phenols, ascorbate and glutathione as well as enhanced the activities of antioxidant enzymes such as SOD (superoxide dismutase), APX (ascorbate peroxidase) and GPX (guaiacol peroxidase) resulting in reduced lipid peroxidation in S. arundinaceum. AMF symbiosis also ameliorated the drought-induced reduction of total chlorophyll content and activities of photosystem I and II. The maximum quantum efficiency of PS II (F v/F m) and potential photochemical efficiency (F v/F o) were higher in AMF plants as compared to non-AMF plants under drought stress. These results indicate that AMF association alleviate drought stress in S. arundinaceum by the accumulation of osmolytes and non-enzymatic antioxidants and enhanced activities of antioxidant enzymes, and hence, the photosynthetic efficiency is improved resulting in increased biomass production. AMF association with energy grasses also improves the acclimatization of S. arundinaceum for growing in marginal lands of drought-affected soils.

  7. Fagopyrum esculentum Alters Its Root Exudation after Amaranthus retroflexus Recognition and Suppresses Weed Growth.

    Science.gov (United States)

    Gfeller, Aurélie; Glauser, Gaétan; Etter, Clément; Signarbieux, Constant; Wirth, Judith

    2018-01-01

    Weed control by crops through growth suppressive root exudates is a promising alternative to herbicides. Buckwheat ( Fagopyrum esculentum ) is known for its weed suppression and redroot pigweed ( Amaranthus retroflexus ) control is probably partly due to allelopathic root exudates. This work studies whether other weeds are also suppressed by buckwheat and if the presence of weeds is necessary to induce growth repression. Buckwheat and different weeds were co-cultivated in soil, separating roots by a mesh allowing to study effects due to diffusion. Buckwheat suppressed growth of pigweed, goosefoot and barnyard grass by 53, 42, and 77% respectively without physical root interactions, probably through allelopathic compounds. Root exudates were obtained from sand cultures of buckwheat (BK), pigweed (P), and a buckwheat/pigweed mixed culture (BK-P). BK-P root exudates inhibited pigweed root growth by 49%. Characterization of root exudates by UHPLC-HRMS and principal component analysis revealed that BK and BK-P had a different metabolic profile suggesting that buckwheat changes its root exudation in the presence of pigweed indicating heterospecific recognition. Among the 15 different markers, which were more abundant in BK-P, tryptophan was identified and four others were tentatively identified. Our findings might contribute to the selection of crops with weed suppressive effects.

  8. Formação e estabilização de agregados pelo sistema radicular de braquiária em um Nitossolo Vermelho Formation and stabilization of aggregates by the grass root system in an Oxisol

    Directory of Open Access Journals (Sweden)

    Eliane Duarte Brandão

    2012-07-01

    Full Text Available As gramíneas atuam de maneira direta na formação e na estabilização de agregados do solo, devido à maior densidade de raízes e à liberação de exsudatos orgânicos no solo. O objetivo do trabalho foi avaliar os efeitos do sistema radicular da Brachiaria ruziziensis Germain et Evrard na formação e na estabilização de agregados de um Nitossolo Vermelho. O experimento foi conduzido em abrigo telado, utilizando-se solo coletado na camada de 0-20cm de profundidade. O solo foi destorroado manualmente e passado em peneira de 2,00mm de abertura de malha e, posteriormente, separadas por classes de diâmetro de agregados de 2,00-1,00, 1,00-0,50 e 0,50-0,25mm com auxílio de peneiras de malhas específicas. O delineamento utilizado foi o inteiramente casualizado, em esquema fatorial 3x2x2x4, correspondendo a três classes de diâmetro de agregados (2,00-1,00, 1,00-0,50 e 0,50-0,25mm, duas condições de cultivo (com e sem gramínea, dois conteúdos de umidade (100% e 60% de água disponível e quatro épocas de avaliação (90, 180, 270 e 360 dias após o plantio da gramínea, com quatro repetições. As amostras de agregados foram acondicionadas em vasos de polietileno com capacidade para 10kg. O conteúdo de umidade foi equilibrado através de irrigações a cada dois dias. As amostragens foram realizadas a cada três meses, determinando-se o diâmetro médio ponderado de agregados secos ao ar (DMPAs, o diâmetro médio ponderado de agregado estáveis em água (DMPAu e o índice de estabilidade dos agregados (IEA = DMPAu/DMPAs. Verificaram-se maiores valores de DMPAu e de IEA para o tratamento com gramínea, indicando que o sistema radicular da Brachiaria ruziziensis favoreceu maior formação e estabilização dos agregados no solo.Grasses take direct action in the formation and stabilization of soil aggregates due to the density of roots and the release of organic exudates in soil. The objective of this study was to evaluate the effects of

  9. Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2

    NARCIS (Netherlands)

    Groenigen, van C.J.; Gorissen, A.; Six, J.; Harris, D.; Kuikman, P.J.; Groenigen, van J.W.; Kessel, van C.

    2005-01-01

    The net flux of soil C is determined by the balance between soil C input and microbial decomposition, both of which might be altered under prolonged elevated atmospheric CO2. In this study, we determined the effect of elevated CO2 on decomposition of grass root material (Lolium perenne L.).

  10. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    International Nuclear Information System (INIS)

    Deram, Annabelle; Denayer, Franck-Olivier; Petit, Daniel; Van Haluwyn, Chantal

    2006-01-01

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 μg g -1 . Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass

  11. Seasonal variations of cadmium and zinc in Arrhenatherum elatius, a perennial grass species from highly contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Deram, Annabelle [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France)]. E-mail: aderam@ilis.univ-lille2.fr; Denayer, Franck-Olivier [Institut Lillois d' Ingenierie de la Sante, Universite Droit et Sante de Lille, EA 2690, 42 rue Ambroise Pare, 59120 Loos (France); Petit, Daniel [Laboratoire de Genetique et Evolution des Populations Vegetales, UPRESA-CNRS 8016, Bat SN2, Universite des Sciences et Techniques de Lille, 59655 Villeneuve d' Ascq, F59655 France (France); Van Haluwyn, Chantal [Faculte des Sciences Pharmaceutiques et Biologiques, Departement de Botanique, Universite Droit et Sante de Lille, EA 2690, B.P. 83, 59006 Lille Cedex (France)

    2006-03-15

    There is interest in studying bioaccumulation in plants because they form the base of the food chain as well as their potential use in phytoextraction. From this viewpoint, our study deals with the seasonal variation, from January to July, of Cd and Zn bioaccumulation in three metallicolous populations of Arrhenatherum elatius, a perennial grass with a high biomass production. In heavily polluted soils, while Zn bioaccumulation is weak, A. elatius accumulates more Cd than reported gramineous plants, with concentration of up to 100 {mu}g g{sup -1}. Our results also showed seasonal variations of bioaccumulation, underlying the necessity for in situ studies to specify the date of sampling and also the phenology of the collected plant sample. In our experimental conditions, accumulation is lower in June, leading us to the hypothesis of restriction in heavy metals translocation from roots to aerial parts during seed production. - Cd and Zn bioaccumulation varies seasonally in a perennial grass.

  12. Removal of root filling materials.

    LENUS (Irish Health Repository)

    Duncan, H.F. Chong, B.S.

    2011-05-01

    Safe, successful and effective removal of root filling materials is an integral component of non-surgical root canal re-treatment. Access to the root canal system must be achieved in order to negotiate to the canal terminus so that deficiencies in the original treatment can be rectified. Since a range of materials have been advocated for filling root canals, different techniques are required for their removal. The management of commonly encountered root filling materials during non-surgical re-treatment, including the clinical procedures necessary for removal and the associated risks, are reviewed. As gutta-percha is the most widely used and accepted root filling material, there is a greater emphasis on its removal in this review.

  13. Grass survey of the Itremo Massif records endemic central highland ...

    African Journals Online (AJOL)

    Twenty species are endemic to the central highlands, and a further 1 4 species are restricted to Madagascar. Five ecological groups of grasses were identified in the Itremo Massif: shade species in gallery forests, open wet area species, fire grasses, anthropogenic disturbance associated grasses and rock-dwelling grasses.

  14. Competition for phosphorus: differential uptake from dual-isotope-labeled soil interspaces between shrub and grass

    International Nuclear Information System (INIS)

    Caldwell, M.M.; Eissenstat, D.M.; Richards, J.H.; Allen, M.F.

    1985-01-01

    Two species of Agropyron grass differed strikingly in their capacity to compete for phosphate in soil interspaces shared with a common competitor, the sagebrush Artemisia tridentata. Of the total phosphorus-32 and -33 absorbed by Artemisia, 86% was from the interspace shared with Agropyron spicatum and only 14% from that shared with Agropyron desertorum. Actively absorbing mycorrhizal roots of Agropyron and Artemisia were present in both interspaces, where competition for the labeled phosphate occurred. The results have important implications about the way in which plants compete for resources below ground in both natural plant communities and agricultural intercropping systems

  15. Rumen escape protein in grass and grass silage deterimened with a nylon bag and an enzymatic technique

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Mathijssen-Kamman, A.A.; Hindle, V.A.

    2004-01-01

    Rumen escape protein (REP) was determined for six grasses and 16 grass silages using a nylon bag technique and an in vitro technique using a proteolytic enzyme preparation of Streptomyces griseus. In vitro, the samples were incubated for 0, 1, 6 and 24 h. The highest correlation observed between

  16. EroGRASS : Failure of grass cover layers at seaward and shoreward dike slopes. design, construction and performance

    NARCIS (Netherlands)

    Verhagen, H.J.; Verheij, H.J.; Cao, T.M.; Dassanayake, D.; Roelvink, D.; Piontkowitz, T.

    2009-01-01

    A large number of the dikes in the North Sea and Baltic Sea regions are covered with grass that is exposed to hydraulic loading from waves and currents during storm surges. During previous storm surges the grass cover layers often showed large strength and remained undamaged. A clear physical

  17. A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Sanjiangyuan Area

    International Nuclear Information System (INIS)

    Song, Weize; Jia, Haifeng; Liang, Shidong; Wang, Zheng; Liu, Shujie; Hao, Lizhuang; Chai, Shatuo

    2014-01-01

    Estimating forage biomass yield remotely from space is still challenging nowadays. Field experiments were conducted and ground measurements correlated to remote sensing data to estimate the forage biomass yield of Alpine-cold meadow grassland during the grass and grass-withering period in Sanjiangyuan area in Yushu county. Both Shapiro-Wilk and Kolmogorov-Smirnov two-tailed tests showed that the field training samples are normally distributed, the Spearman coefficient indicated that the parametric correlation analysis had significant differences. The optimal regression models were developed based on the Landsat Thematic Mapper Normalized Difference Vegetation Index (TM-NDVI) and the forage biomass field data during the grass and the grass-withering periods, respectively. Then an integration model was used to predict forage biomass yield of alpine-cold meadow in the grass-withering period. The model showed good prediction accuracy and reliability. It was found that this approach can not only estimate forage yield in large scale efficiently but also overcome the seasonal limitation of remote sensing inversion. This technique can provides valuable guidance to animal husbandry to resource more efficiently in winter

  18. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions.

    Science.gov (United States)

    Xu, Bingcheng; Xu, Weizhou; Wang, Zhi; Chen, Zhifei; Palta, Jairo A; Chen, Yinglong

    2018-01-01

    Water and fertilizers affect the nitrogen (N) and phosphorus (P) acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root) and plant level of Lespedeza davurica (C 3 legume), were examined when intercropped with Bothriochloa ischaemum (C 4 grass). The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC), -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica , but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1-17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica . The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering rehabilitating

  19. Accumulation of N and P in the Legume Lespedeza davurica in Controlled Mixtures with the Grass Bothriochloa ischaemum under Varying Water and Fertilization Conditions

    Directory of Open Access Journals (Sweden)

    Bingcheng Xu

    2018-02-01

    Full Text Available Water and fertilizers affect the nitrogen (N and phosphorus (P acquisition and allocation among organs in dominant species in natural vegetation on the semiarid Loess Plateau. This study aimed to clarify the N and P accumulation and N:P ratio at organ and plant level of a local legume species mixed with a grass species under varying water and fertilizer supplies, and thus to fully understand the requirements and balance of nutrient elements in response to growth conditions change of native species. The N and P concentration in the organ (leaf, stem, and root and plant level of Lespedeza davurica (C3 legume, were examined when intercropped with Bothriochloa ischaemum (C4 grass. The two species were grown outdoors in pots under 80, 60, and 40% of soil water field capacity (FC, -NP, +N, +P, and +NP supply and the grass:legume mixture ratios of 2:10, 4:8, 6:6, 8:4, 10:2, and 12:0. The three set of treatments were under a randomized complete block design. Intercropping with B. ischaemum did not affect N concentrations in leaf, stem and root of L. davurica, but reduced P concentration in each organ under P fertilization. Only leaf N concentration in L. davurica showed decreasing trend as soil water content decreased under all fertilization and mixture proportion treatments. Stems had the lowest, while roots had the highest N and P concentration. As the mixture proportion of L. davurica decreased under P fertilization, P concentration in leaf and root also decreased. The N concentration in L. davurica at the whole plant level was 11.1–17.2%. P fertilization improved P concentration, while decreased N:P ratio in L. davurica. The N:P ratios were less than 14.0 under +P and +NP treatments. Our results implied that exogenous N and P fertilizer application may change the N:P stoichiometry and influence the balance between nutrients and organs of native dominant species in natural grassland, and P element should be paid more attention when considering

  20. Investigation of Desso GrassMaster® as application in hydraulic engineering

    NARCIS (Netherlands)

    Steeg, van der P.; Paulissen, M.P.C.P.; Roex, E.; Mommer, L.

    2015-01-01

    Dessa GrassMaster® is a reinforced grass system which is applied successfully on sports fields and enables to use a sports field more intensively than a normal grass field. In this report the possibility of an application of Dessa GrassMaster®in hydraulic conditions, with a focus on grass dikes, is

  1. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  2. Integrated non-food concept of rape seed, reed canary grass and flax processing for fiber, fuel oil and solid fuel; Energiarypsi - peltojen non-food vaihtoehtoja

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K [VTT Energy, Espoo (Finland). Energy Production Technologies

    1996-12-31

    The target of this project is to investigate if rape seed based fuel oil and diesel fuel component, agrofiber and solid fuel from other annual crops could be produced effectively as an alternative to existing non economical biodiesel-RME and ethanol production. Without heavy tax incentives the biodiesel and grain ethanol can not compete with conventional liquid fuels, the present EU fuel tax legislation will not permit any permanent tax incentives for commercial scale operations. Based on several studies by VTT the rape seed oil will be 30 % cheaper than RME and the utilization as a component 10-30 % blended to heating oil or diesel fuel might the most flexible solution. Neste Oy has carried out the combustion tests with 20 kW boiler and VTT the diesel engine tests with 20 % unprocessed rape seed oil mixtures, the oil was delivered by Mildola Oy. For the co-utilization of annual crops and straw, several laboratory scale combustion and flash pyrolysis tests have been carried out by VTT with straw, reed canary grass etc. In a flash pyrolysis process, the alkalies will remain in the char and a low alkali level bio oils can be produced. As a final step in order to reach the zero subsidy target, an extensive laboratory work is carried out to produce agrofibre from flax, reed canary grass and wheat straw. During the next months an overall economic calculations will be carried out in Finnish, Danish and Italian conditions as an EU-Apas project in order to see the competitiveness of such integrated concepts to conventional RME and reed canary grass combustion

  3. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability

    Science.gov (United States)

    Christopher M. McGlone; Carolyn Hull Sieg; Thomas E. Kolb; Ty Nietupsky

    2012-01-01

    Competition and resource availability influence invasions into native perennial grasslands by nonnative annual grasses such as Bromus tectorum. In two greenhouse experiments we examined the influence of competition, water availability, and elevated nitrogen (N) and phosphorus (P) availability on growth and reproduction of the invasive annual grass B. tectorum and two...

  4. Germination of Themeda triandra (Kangaroo grass) as affected by ...

    African Journals Online (AJOL)

    Low rainfall in range areas restricts germination, growth and development of majority of range grasses. However, germination and establishment potential of forage grasses vary and depends on environmental conditions. Themeda triandra is an excellent known grass to grow under different environmental conditions.

  5. Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass

    NARCIS (Netherlands)

    Van der Stoel, C.D.; Duyts, H.; Van der Putten, W.H.

    2006-01-01

    Recent studies have suggested that root-feeding nematodes influence plant community dynamics, but few studies have investigated the population dynamics of the nematodes. In coastal foredunes, feeding-specialist cyst nematodes (Heterodera spp.) are dominant in the soil nematode community and

  6. The importance of cross-reactivity in grass pollen allergy

    Directory of Open Access Journals (Sweden)

    Aleksić Ivana

    2014-01-01

    Full Text Available According to the data obtained from in vivo and in vitro testing in Serbia, a significant number of patients have allergic symptoms caused by grass pollen. We examined the protein composition of grass pollens (Dactylis glomerata, Lolium perenne and Phleum pratense and cross-reactivity in patients allergic to grass pollen from our region. The grass pollen allergen extract was characterized by SDS-PAGE, while cross-reactivity of single grass pollens was revealed by immunoblot analysis. A high degree of cross-reactivity was demonstrated for all three single pollens in the sera of allergic patients compared to the grass pollen extract mixture. Confirmation of the existence of cross-reactivity between different antigenic sources facilitates the use of monovalent vaccines, which are easier to standardize and at the same time prevent further sensitization of patients and reduces adverse reactions. [Projekat Ministarstva nauke Republike Srbije, br. 172049 i br. 172024

  7. Botanical aspects of the ecological integrity of a radioactive waste disposal site

    International Nuclear Information System (INIS)

    Hall, A.V.

    1986-01-01

    Botanical factors play a key role in maintaining the long term integrity of ecosystems. The results of botanical research at the Vaalputs radioactive waste disposal site in Bushmanland, South Africa, are outlined. Vaalputs is in an arid region and its vegetation is a patchy mosaic of low shrub and grass communities. Soil variation from site to site is the main determinant of community structure and erratic precipitation is a major stochastic forcing factor. Management measures to conserve taxa, ecosystems and local genetic biogeography are discussed in relation to natural and artificial disturbances which may occur over long time-scales. Restoration of vegetation over the burial trenches should as far as possible be to the site's former ecotypes except that deep-rooted species should be excluded. Precautions should be taken against the accidental establishment of exotic plant invaders at Vaalputs especially if they are deep-rooted. More is now known about plant ecology at Vaalputs than any other part of Bushmanland. It would be valuable to develop such studies further and establish Vaalputs as a permanent reserve for arid-zone biological research

  8. Thermogravimetric analysis of forest understory grasses

    Science.gov (United States)

    Thomas Elder; John S. Kush; Sharon M. Hermann

    2011-01-01

    Forest understory grasses are of significance in the initiation, establishment and maintenance of fire, whether used as a management tool or when occurring as wildfire. The fundamental thermal properties of such grasses are critical to their behavior in fire situations and have been investigated in the current work by the application of thermogravimetric analysis (TGA...

  9. Integrated options for the management of black root rot of strawberry caused by Rhizoctonia solani Kuhn.

    Science.gov (United States)

    Asad-Uz-Zaman, Md; Bhuiyan, Mohammad Rejwan; Khan, Mohammad Ashik Iqbal; Alam Bhuiyan, Md Khurshed; Latif, Mohammad Abdul

    2015-02-01

    An investigation was made to manage strawberry black root rot caused by Rhizoctonia solani (R. solani) through the integration of Trichoderma harzianum (T. harzianum) isolate STA7, mustard oil cake and Provax 200. A series of preliminary experiments were conducted to select a virulent isolate of R. solani, an effective isolate of T. harzianum, a suitable organic amendment, and a suitable fungicide before setting the experiment for integration. The pathogenicity of the selected four isolates of R. solani was evaluated against strawberry and isolate SR1 was selected as the test pathogen due to its highest virulent (95.47% mortality) characteristics. Among the 20 isolates of T. harzianum, isolate STA7 showed maximum inhibition (71.97%) against the test pathogen (R. solani). Among the fungicides, Provax-200 was found to be more effective at lowest concentration (100 ppm) and highly compatible with Trichoderma isolates STA7. In the case of organic amendments, maximum inhibition (59.66%) of R. solani was obtained through mustard oil cake at the highest concentration (3%), which was significantly superior to other amendments. Minimum percentages of diseased roots were obtained with pathogen (R. solani)+Trichoderma+mustard oil cake+Provax-200 treatment, while the highest was observed with healthy seedlings with a pathogen-inoculated soil. In the case of leaf and fruit rot diseases, significantly lowest infected leaves as well as fruit rot were observed with a pathogen+Trichoderma+mustard oil cake+Provax-200 treatment in comparison with the control. A similar trend of high effectiveness was observed by the integration of Trichoderma, fungicide and organic amendments in controlling root rot and fruit diseases of strawberry. Single application of Trichoderma isolate STA7, Provax 200 or mustard oil cake did not show satisfactory performance in terms of disease-free plants, but when they were applied in combination, the number of healthy plants increased significantly. The

  10. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    Science.gov (United States)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  11. Names of Southern African grasses: Name changes and additional ...

    African Journals Online (AJOL)

    The main reasons for changes in botanical names are briefly reviewed, with examples from the lists. At this time, about 1040 grass species and subspecific taxa are recognized in the subcontinent. Keywords: botanical research; botanical research institute; botany; grass; grasses; identification; name change; nomenclature; ...

  12. Recovery of 15N-urea in soil-plant system of tanzania grass pasture

    International Nuclear Information System (INIS)

    Martha Junior, Geraldo Bueno; Vilela, Lourival; Corsi, Moacyr; Trivelin, Paulo Cesar Ocheuze

    2009-01-01

    The economic attractiveness and negative environmental impact of nitrogen (N) fertilization in pastures depend on the N use efficiency in the soil-plant system. However, the recovery of urea- 15 N by Panicum maximum cv. Tanzania pastures, one of the most widely used forage species in intensified pastoral systems, is still unknown. This experiment was conducted in a randomized complete block design with four treatments (0, 40, 80 and 120 kg ha-1 of N-urea) and three replications, to determine the recovery of 15 N urea by Tanzania grass. Forage production, total N content and N yield were not affected by fertilization (p > 0.05), reflecting the high losses of applied N under the experimental conditions. The recovery of 15 N urea (% of applied N) in forage and roots was not affected by fertilization levels (p > 0.05), but decreased exponentially in the soil and soil-plant system (p 15 N (kg ha -1 ) in forage and roots (15 to 30 cm) increased with increasing urea doses (p < 0.05). (author)

  13. Bud-bank and tiller dynamics of co-occurring C3 caespitose grasses in mixed-grass prairie.

    Science.gov (United States)

    Ott, Jacqueline P; Hartnett, David C

    2015-09-01

    Tiller recruitment from the belowground bud bank of caespitose grasses influences their ability to monopolize local resources and, hence, their genet fitness. Differences in bud production and outgrowth among tiller types within a genet and among species may explain co-occurrence of caespitose grasses. This study aimed to characterize genet bud-bank and tiller production and dynamics in two co-occurring species and compare their vegetative reproductive strategies. Bud-bank and tiller dynamics of Hesperostipa comata and Nassella viridula, dominant C3 caespitose grasses in the northern mixed-grass prairie of North America, were assessed throughout an annual cycle. The two species showed similar strategies, maintaining polycyclic tillers and thus creating mixed-age genet bud banks comprising multiple bud cohorts produced in different years. Vegetative tillers produced the majority of buds, whereas flowering tillers contributed little to the bud bank. Buds lived for at least 2 yr and were maintained in multiple developmental stages throughout the year. Because bud longevity rarely exceeded tiller longevity, tiller longevity drove turnover within the bud bank. Tiller population dynamics, more than bud production per tiller, determined the differential contribution of tiller types to the bud bank. Nassella viridula had higher bud production per tiller, a consistent annual tiller recruitment density, and greater longevity of buds on senesced and flowering tillers than H. comata. Co-occurring C3 caespitose grasses had similar bud-bank and tiller dynamics contributing to genet persistence but differed in bud characteristics that could affect genet longevity and species coexistence. © 2015 Botanical Society of America.

  14. Production and nutrition rates of piatã grass and hybrid sorghum at different cutting ages - doi: 10.4025/actascianimsci.v35i3.18016

    Directory of Open Access Journals (Sweden)

    Luciano da Silva Cabral

    2013-07-01

    Full Text Available The influence of cutting age on yield and nutrition rates of piatã grass (Brachiaria brizantha cv. BRS Piatã and hybrid sorghum (Sorghum spp. cv. BRS 801 under an integrated crop-livestock system was evaluated. The trial was carried out at the Embrapa Beef Cattle (20°27¢ S; 54°37¢ W in Campo Grande, Mato Grosso do Sul State, Brazil, between April and October 2009. Experimental design consisted of randomized blocks with four replicates. Treatments were distributed across a split-plot design, which included three production systems (single piatã grass; single hybrid sorghum; mixed cultivation of sorghum and piatã grass. Half-plots consisted of three forage ages at harvest (with 70, 90 and 110 days after seeding. Variables included agronomical characteristics, productivity and nutrition value. Regardless of the evaluated systems, cutting age affected agronomical characteristics and in vitro digestibility of organic matter (IVDOM. Production was highest (4,048 kg ha-1 within the integrated system. Regardless of cutting age, monoculture sorghum had the highest crude protein level. Results showed that integrated sorghum and piatã grasses were an asset for forage productivity. Forages had higher rates in crude protein and in in vitro digestibility of organic matter on the 70th day after seeding.   

  15. Microbial diversity and metagenomic analysis of the rhizosphere of para grass (Urochloa mutica) growing under saline conditions

    International Nuclear Information System (INIS)

    Mukhtar, S.; Awan, H. A.; Maqbool, A.; Mehnaz, S.; Malik, K. A.

    2016-01-01

    Para grass is a salt tolerant plant, grown on salt affected soils of Punjab, Pakistan. The aim of this study was to investigate the distribution of culturable and non-culturable bacteria in the rhizosphere, rhizoplane and histoplane of para grass, growing under saline conditions. A total of seventy four, bacterial strains were isolated and characterized. Among these, thirty two from rhizosphere, twenty two from rhizoplane and twenty were from the histoplane. Cultureable bacteria were characterized by biochemical tests and 16S rRNA gene sequence analysis. Non-culturable bacteria were identified by PCR amplification of 16S rRNA gene, using metagenomic approach. Seventy seven percent bacterial isolates from rhizosphere and rhizoplane fractions were identified as member of Proteobacteria. Twenty five percent isolates of histoplane fraction were members of firmicutes while 68.75 percent were of Proteobacteria. Of total isolates, 50 percent could grow in nitrogen free medium and 21.67 percent on halophilic medium. Nitrogen fixers and halophilic bacteria were more abundant in the rhizosphere as compared to roots. 16S rRNA gene clone library analysis showed that out of 48 clones, 14 were uncultured, classified; eighteen un-cultured un-classified, while others related to 16 different known cultured groups of bacteria. Results for cultured and uncultured bacteria revealed a wide diversity of bacterial population present in the rhizosphere of para grass. (author)

  16. Globes from global data: Charting international research networks with the GRASS GIS r.out.polycones add-on module.

    Science.gov (United States)

    Löwe, Peter

    2015-04-01

    Many Free and Open Source Software (FOSS) tools have been created for the various application fields within geoscience. While FOSS allows re-implementation of functionalities in new environments by access to the original codebase, the easiest approach to build new software solutions for new problems is the combination or merging of existing software tools. Such mash-ups are implemented by embedding and encapsulating FOSS tools within each another, effectively focusing the use of the embedded software to the specific role it needs to perform in the given scenario, while ignoring all its other capabilities. GRASS GIS is a powerful and established FOSS GIS for raster, vector and volume data processing while the Generic Mapping Tools (GMT) are a suite of powerful Open Source mapping tools, which exceed the mapping capabilities of GRASS GIS. This poster reports on the new GRASS GIS add-on module r.out.polycones. It enables users to utilize non-continuous projections for map production within the GRASS production environment. This is implemented on the software level by encapsulating a subset of GMT mapping capabilities into a GRASS GIS (Version 6.x) add-on module. The module was developed at the German National Library of Science and Technology (TIB) to provide custom global maps of scientific collaboration networks, such as the DataCite consortium, the registration agency for Digital Object Identifiers (DOI) for research data. The GRASS GIS add-on module can be used for global mapping of raster data into a variety of non continuous sinosoidal projections, allowing the creation of printable biangles (gores) to be used for globe making. Due to the well structured modular nature of GRASS modules, technical follow-up work will focus on API-level Python-based integration in GRASS 7 [1]. Based on this, GMT based mapping capabilities in GRASS will be extended beyond non-continuous sinosoidal maps and advanced from raster-layers to content GRASS display monitors. References

  17. Dose-response relationship of a new Timothy grass pollen allergoid in comparison with a 6-grass pollen allergoid.

    Science.gov (United States)

    Pfaar, O; Hohlfeld, J M; Al-Kadah, B; Hauswald, B; Homey, B; Hunzelmann, N; Schliemann, S; Velling, P; Worm, M; Klimek, L

    2017-11-01

    Subcutaneous allergen immunotherapy with grass pollen allergoids has been proven to be effective and safe in the treatment of patients with allergic rhinoconjunctivitis. Based on the extensive cross-reactivity among Pooideae species, it has been suggested that grass pollen extracts could be prepared from a single species, rather than from a multiple species mixture. To find the optimal dose of a Phleum pratense (P. pratense) allergoid preparation and compare its efficacy and safety to a 6-grass pollen allergoid preparation. In this double-blind, placebo-controlled study (EudraCT: 2011-000674-58), three doses of P. pratense allergoid (1800 therapeutic units (TU), standard-dose 6000 TU and 18 000 TU) were compared with placebo and the marketed 6-grass pollen allergoid (6000 TU). In a pre-seasonal dosing regimen, 102 patients were randomized to five treatment groups and received nine subcutaneous injections. The primary efficacy endpoint was the change in weal size (late-phase reaction [LPR]) in response to the intracutaneous testing (ICT) before and after treatment, comparing the active allergoids to placebo. Secondary outcomes were the change in Total Nasal Symptom Score (TNSS) assessed in the allergen exposure chamber (AEC), the changes in P. pratense-serum-specific IgG 4 and the incidence of adverse events (AEs). All three doses of the P. pratense and the 6-grass pollen allergoid preparations were significantly superior to placebo for the primary outcome, whereas there were no significant differences in the change in TNSS. Compared to the standard-dose, the high-dose of P. pratense did not produce any additional significant benefit, but showed a slight increase in AEs. Yet this increase in AEs was lower than for the 6-grass pollen preparation. The standard-dose of the new P. pratense allergoid was comparable to the marketed 6-grass pollen preparation at equal dose for the parameters measured. © 2017 The Authors. Clinical & Experimental Allergy Published by John

  18. GRASS GIS: The first Open Source Temporal GIS

    Science.gov (United States)

    Gebbert, Sören; Leppelt, Thomas

    2015-04-01

    GRASS GIS is a full featured, general purpose Open Source geographic information system (GIS) with raster, 3D raster and vector processing support[1]. Recently, time was introduced as a new dimension that transformed GRASS GIS into the first Open Source temporal GIS with comprehensive spatio-temporal analysis, processing and visualization capabilities[2]. New spatio-temporal data types were introduced in GRASS GIS version 7, to manage raster, 3D raster and vector time series. These new data types are called space time datasets. They are designed to efficiently handle hundreds of thousands of time stamped raster, 3D raster and vector map layers of any size. Time stamps can be defined as time intervals or time instances in Gregorian calendar time or relative time. Space time datasets are simplifying the processing and analysis of large time series in GRASS GIS, since these new data types are used as input and output parameter in temporal modules. The handling of space time datasets is therefore equal to the handling of raster, 3D raster and vector map layers in GRASS GIS. A new dedicated Python library, the GRASS GIS Temporal Framework, was designed to implement the spatio-temporal data types and their management. The framework provides the functionality to efficiently handle hundreds of thousands of time stamped map layers and their spatio-temporal topological relations. The framework supports reasoning based on the temporal granularity of space time datasets as well as their temporal topology. It was designed in conjunction with the PyGRASS [3] library to support parallel processing of large datasets, that has a long tradition in GRASS GIS [4,5]. We will present a subset of more than 40 temporal modules that were implemented based on the GRASS GIS Temporal Framework, PyGRASS and the GRASS GIS Python scripting library. These modules provide a comprehensive temporal GIS tool set. The functionality range from space time dataset and time stamped map layer management

  19. Grasses as invasive plants in South Africa revisited: Patterns, pathways and management

    Directory of Open Access Journals (Sweden)

    Vernon Visser

    2017-03-01

    Full Text Available Background: In many countries around the world, the most damaging invasive plant species are grasses. However, the status of grass invasions in South Africa has not been documented recently. Objectives: To update Sue Milton’s 2004 review of grasses as invasive alien plants in South Africa, provide the first detailed species level inventory of alien grasses in South Africa and assess the invasion dynamics and management of the group. Method: We compiled the most comprehensive inventory of alien grasses in South Africa to date using recorded occurrences of alien grasses in the country from various literature and database sources. Using historical literature, we reviewed past efforts to introduce alien grasses into South Africa. We sourced information on the origins, uses, distributions and minimum residence times to investigate pathways and patterns of spatial extent. We identified alien grasses in South Africa that are having environmental and economic impacts and determined whether management options have been identified, and legislation created, for these species. Results: There are at least 256 alien grass species in the country, 37 of which have become invasive. Alien grass species richness increased most dramatically from the late 1800s to about 1940. Alien grass species that are not naturalised or invasive have much shorter residence times than those that have naturalised or become invasive. Most grasses were probably introduced for forage purposes, and a large number of alien grass species were trialled at pasture research stations. A large number of alien grass species in South Africa are of Eurasian origin, although more recent introductions include species from elsewhere in Africa and from Australasia. Alien grasses are most prevalent in the south-west of the country, and the Fynbos Biome has the most alien grasses and the most widespread species. We identified 11 species that have recorded environmental and economic impacts in the

  20. Early root overproduction not triggered by nutrients decisive for competitive success belowground.

    Directory of Open Access Journals (Sweden)

    Francisco M Padilla

    Full Text Available Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available.In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high.Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.

  1. Root morphology of Ni-treated plants

    International Nuclear Information System (INIS)

    Leskova, A.; Fargasova, A.; Giehl, R. F. H.; Wiren, N. von

    2015-01-01

    Plant roots are very important organs in terms of nutrient and water acquisition but they also serve as anchorages for the aboveground parts of the plants. The roots display extraordinary plasticity towards stress conditions as a result of integration of environmental cues into the developmental processes of the roots. Our aim was to investigate the root morphology of Arabidopsis thaliana plants exposed to a particular stress condition, excess Ni supply. We aimed to find out which cellular processes - cell division, elongation and differentiation are affected by Ni, thereby explaining the seen root phenotype. Our results reveal that a distinct sensitivity exists between roots of different order and interference with various cellular processes is responsible for the effects of Ni on roots. We also show that Ni-treated roots have several auxin-related phenotypes. (authors)

  2. Lessons learned in managing alfalfa-grass mixtures

    Science.gov (United States)

    Grass-alfalfa mixtures have a number of benefits that make them attractive to producers. However, they can be problematic to establish and maintain. Research programs have made progress in understanding the benefits and challenges of alfalfa-grass mixtures. Mixtures may have greater winter survival ...

  3. Variation in important pasture grasses: I. Morphological and ...

    African Journals Online (AJOL)

    Variation in important pasture grasses: I. Morphological and geographical variation. ... Seven species are important pasture grasses throughout the western Transvaal, Orange Free State, northern Cape and Natal. ... Language: English.

  4. Endophytes diversity of bacteria associated with roots of colosuana (bothriochloa pertusa) pasture in three locations of Sucre Department, Colombia

    International Nuclear Information System (INIS)

    Perez C, Alexander; Rojas S, Johanna; Fuentes C, Justo

    2010-01-01

    The objective of this study was to isolate endophytes diversity of culturable bacteria associated with grass roots colosuana Bothriochloa pertusa (L) a. camus in three localities of the department of Sucre, Colombia. endophytes bacterial diversity was performed by isolation of colonies on media culture. The population density was estimated by direct counting of colonies on plate and cultural characteristics of each morphotype were obtained by observation of each colony made. We determined the correlation diversity, population density and locations, using ANOVA and principal component analysis or simple correspondence, using the statistical program R, 2009 (4.5). 20 farms livestock were sampled by locality; it was observed the presence of various bacterial morphotypes endophytes. We found significant differences between diversity (morphotypes), population density (UFC.raiz -1 ) and locations. The diversity of bacterial endophytes represents only a small fraction of the total diversity present in nature; being little information we have of the presence of these microorganisms in specific agro-ecosystems, which is why this work becomes the first evidence of association between bacteria and roots of grass endophytes colosuana in Colombia.

  5. Soil-roots Strength Performance of Extensive Green Roof by Using Axonopus Compressus

    Science.gov (United States)

    Yusoff, N. A.; Ramli, M. N.; Chik, T. N. T.; Ahmad, H.; Abdullah, M. F.; Kasmin, H.; Embong, Z.

    2016-07-01

    Green roof technology has been proven to provide potential environmental benefits including improved building thermal performance, removal of air pollution and reduced storm water runoff. Installation of green roof also involved soil element usage as a plant growth medium which creates several interactions between both strands. This study was carried out to investigate the soil-roots strength performance of green roof at different construction period up to 4 months. Axonopus compressus (pearl grass) was planted in a ExE test plot with a designated suitable soil medium. Direct shear test was conducted for each plot to determine the soil shear strength according to different construction period. In addition, some basic geotechnical testing also been carried out. The results showed that the shear strength of soil sample increased over different construction period of 1st, 2nd, 3rd and 4th month with average result 3.81 kPa, 5.55 kPa, 6.05 kPa and 6.48 kPa respectively. Shear strength of rooted soil samples was higher than the soil samples without roots (control sample). In conclusion, increment of soil-roots shear strength was due to root growth over the time. The soil-roots shear strength development of Axonopus compressus can be expressed in a linear equation as: y = 0.851x + 3.345, where y = shear stress and x = time.

  6. Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

    Directory of Open Access Journals (Sweden)

    Sandra Pritzkow

    2015-05-01

    Full Text Available Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrPSc to plants. Small quantities of PrPSc contained in diluted brain homogenate or in excretory materials (urine and feces can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrPSc for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves. These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.

  7. Genome-Wide Analysis of Syntenic Gene Deletion in the Grasses

    Science.gov (United States)

    Schnable, James C.; Freeling, Michael; Lyons, Eric

    2012-01-01

    The grasses, Poaceae, are one of the largest and most successful angiosperm families. Like many radiations of flowering plants, the divergence of the major grass lineages was preceded by a whole-genome duplication (WGD), although these events are not rare for flowering plants. By combining identification of syntenic gene blocks with measures of gene pair divergence and different frequencies of ancient gene loss, we have separated the two subgenomes present in modern grasses. Reciprocal loss of duplicated genes or genomic regions has been hypothesized to reproductively isolate populations and, thus, speciation. However, in contrast to previous studies in yeast and teleost fishes, we found very little evidence of reciprocal loss of homeologous genes between the grasses, suggesting that post-WGD gene loss may not be the cause of the grass radiation. The sets of homeologous and orthologous genes and predicted locations of deleted genes identified in this study, as well as links to the CoGe comparative genomics web platform for analyzing pan-grass syntenic regions, are provided along with this paper as a resource for the grass genetics community. PMID:22275519

  8. Division algebras with integral elements

    International Nuclear Information System (INIS)

    Koca, M.; Ozdes, N.

    1988-06-01

    Pairing two elements of a given division algebra furnished with a multiplication rule leads to an algebra of higher dimension restricted by 8. This fact is used to obtain the roots of SO(4) and SP(2) from the roots ±1 of SU(2) and the weights ±1/2 of its spinor representation. The root lattice of SO(8) described by 24 integral quaternions are obtained by pairing two sets of roots of SP(2). The root system of F 4 is constructed in terms of 24 integral and 24 ''half-integral'' quaternions. The root lattice of E 8 expressed as 240 integral octonions are obtained by pairing two sets of roots of F 4 . 24 integral quaternions of SO(8) forming a discrete subgroup of SU(2) is shown to be the automorphism group of the root lattices of SO(8), F 4 and E 8 . The roots of maximal subgroups SO(16), E 7 XSU(2), E 6 XSU(3), SU(9) and SU(5)XSU(5) of E 8 are identified with a simple method. Subsets of the discrete subgroup of SU(2) leaving maximal subgroups of E 8 are obtained. Constructions of E 8 root lattice with integral octonions in 7 distinct ways are made. Magic square of integral lattices of Goddard, Nahm, Olive, Ruegg and Schwimmer are derived. Possible physical applications are suggested. (author). 16 refs, 6 figs, 5 tabs

  9. Relationships between the integrity and function of lumbar nerve roots as assessed by diffusion tensor imaging and neurophysiology

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, S.Y.; Strutton, P.H. [Imperial College London, The Nick Davey Laboratory, Division of Surgery, Human Performance Group, Department of Surgery and Cancer, Faculty of Medicine, London (United Kingdom); Hellyer, P.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Sharp, D.J. [Imperial College London, Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, London (United Kingdom); Newbould, R.D. [Imanova, Ltd, London (United Kingdom); Patel, M.C. [Charing Cross Hospital, Imaging Department, Imperial College Healthcare NHS Trust, London (United Kingdom)

    2017-09-15

    Diffusion tensor imaging (DTI) has shown promise in the measurement of peripheral nerve integrity, although the optimal way to apply the technique for the study of lumbar spinal nerves is unclear. The aims of this study are to use an improved DTI acquisition to investigate lumbar nerve root integrity and correlate this with functional measures using neurophysiology. Twenty healthy volunteers underwent 3 T DTI of the L5/S1 area. Regions of interest were applied to L5 and S1 nerve roots, and DTI metrics (fractional anisotropy, mean, axial and radial diffusivity) were derived. Neurophysiological measures were obtained from muscles innervated by L5/S1 nerves; these included the slope of motor-evoked potential input-output curves, F-wave latency, maximal motor response, and central and peripheral motor conduction times. DTI metrics were similar between the left and right sides and between vertebral levels. Conversely, significant differences in DTI measures were seen along the course of the nerves. Regression analyses revealed that DTI metrics of the L5 nerve correlated with neurophysiological measures from the muscle innervated by it. The current findings suggest that DTI has the potential to be used for assessing lumbar spinal nerve integrity and that parameters derived from DTI provide quantitative information which reflects their function. (orig.)

  10. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy.

    Science.gov (United States)

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa; Laursen, Mette K; Andersen, Jens S; Sørensen, Helle F; Klink, Rabih

    2018-02-01

    Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet compared with placebo on the risk of developing asthma. A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial, comprising 3 years of treatment and 2 years of follow-up. There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet significantly reduced the risk of experiencing asthma symptoms or using asthma medication at the end of trial (odds ratio = 0.66, P year posttreatment follow-up, and during the entire 5-year trial period. Also, grass allergic rhinoconjunctivitis symptoms were 22% to 30% reduced (P years). At the end of the trial, the use of allergic rhinoconjunctivitis pharmacotherapy was significantly less (27% relative difference to placebo, P < .001). Total IgE, grass pollen-specific IgE, and skin prick test reactivity to grass pollen were all reduced compared to placebo. Treatment with the SQ grass sublingual immunotherapy tablet reduced the risk of experiencing asthma symptoms and using asthma medication, and had a positive, long-term clinical effect on rhinoconjunctivitis symptoms and medication use but did not show an effect on the time to onset of asthma. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS

    Directory of Open Access Journals (Sweden)

    V. Petras

    2016-06-01

    Full Text Available Today’s methods of acquiring Earth surface data, namely lidar and unmanned aerial vehicle (UAV imagery, non-selectively collect or generate large amounts of points. Point clouds from different sources vary in their properties such as number of returns, density, or quality. We present a set of tools with applications for different types of points clouds obtained by a lidar scanner, structure from motion technique (SfM, and a low-cost 3D scanner. To take advantage of the vertical structure of multiple return lidar point clouds, we demonstrate tools to process them using 3D raster techniques which allow, for example, the development of custom vegetation classification methods. Dense point clouds obtained from UAV imagery, often containing redundant points, can be decimated using various techniques before further processing. We implemented and compared several decimation techniques in regard to their performance and the final digital surface model (DSM. Finally, we will describe the processing of a point cloud from a low-cost 3D scanner, namely Microsoft Kinect, and its application for interaction with physical models. All the presented tools are open source and integrated in GRASS GIS, a multi-purpose open source GIS with remote sensing capabilities. The tools integrate with other open source projects, specifically Point Data Abstraction Library (PDAL, Point Cloud Library (PCL, and OpenKinect libfreenect2 library to benefit from the open source point cloud ecosystem. The implementation in GRASS GIS ensures long term maintenance and reproducibility by the scientific community but also by the original authors themselves.

  12. RNA-seq transcriptional profiling of Herbaspirillum seropedicae colonizing wheat (Triticum aestivum) roots.

    Science.gov (United States)

    Pankievicz, V C S; Camilios-Neto, D; Bonato, P; Balsanelli, E; Tadra-Sfeir, M Z; Faoro, H; Chubatsu, L S; Donatti, L; Wajnberg, G; Passetti, F; Monteiro, R A; Pedrosa, F O; Souza, E M

    2016-04-01

    Herbaspirillum seropedicae is a diazotrophic and endophytic bacterium that associates with economically important grasses promoting plant growth and increasing productivity. To identify genes related to bacterial ability to colonize plants, wheat seedlings growing hydroponically in Hoagland's medium were inoculated with H. seropedicae and incubated for 3 days. Total mRNA from the bacteria present in the root surface and in the plant medium were purified, depleted from rRNA and used for RNA-seq profiling. RT-qPCR analyses were conducted to confirm regulation of selected genes. Comparison of RNA profile of root attached and planktonic bacteria revealed extensive metabolic adaptations to the epiphytic life style. These adaptations include expression of specific adhesins and cell wall re-modeling to attach to the root. Additionally, the metabolism was adapted to the microxic environment and nitrogen-fixation genes were expressed. Polyhydroxybutyrate (PHB) synthesis was activated, and PHB granules were stored as observed by microscopy. Genes related to plant growth promotion, such as auxin production were expressed. Many ABC transporter genes were regulated in the bacteria attached to the roots. The results provide new insights into the adaptation of H. seropedicae to the interaction with the plant.

  13. Convex relationships in ecosystems containing mixtures of trees and grass

    CSIR Research Space (South Africa)

    Scholes, RJ

    2003-12-01

    Full Text Available The relationship between grass production and the quantity of trees in mixed tree-grass ecosystems (savannas) is convex for all or most of its range. In other words, the grass production declines more steeply per unit increase in tree quantity...

  14. Establishing native warm season grasses on Eastern Kentucky strip mines

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Forestry

    1998-12-31

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat.

  15. Establishing native warm season grasses on Eastern Kentucky strip mines

    International Nuclear Information System (INIS)

    Barnes, T.G.; Larkin, J.L.; Arnett, M.B.

    1998-01-01

    The authors evaluated various methods of establishing native warm season grasses on two reclaimed Eastern Kentucky mines from 1994--1997. Most current reclamation practices incorporate the use of tall fescue (Festuca arundinacea) and other cool-season grasses/legumes that provide little wildlife habitats. The use of native warm season grasses will likely improve wildlife habitat on reclaimed strip mines. Objectives of this study were to compare the feasibility of establishing these grasses during fall, winter, or spring using a native rangeland seeder or hydroseeding; a fertilizer application at planting; or cold-moist stratification prior to hydroseeding. Vegetative cover, bare ground, species richness, and biomass samples were collected at the end of each growing season. Native warm season grass plantings had higher plant species richness compared to cool-season reclamation mixtures. There was no difference in establishment of native warm season grasses as a result of fertilization or seeding technique. Winter native warm season grass plantings were failures and cold-moist stratification did not increase plant establishment during any season. As a result of a drought during 1997, both cool-season and warm season plantings were failures. Cool-season reclamation mixtures had significantly more vegetative cover and biomass compared to native warm season grass mixtures and the native warm season grass plantings did not meet vegetative cover requirements for bond release. Forbs and legumes that established well included pale purple coneflower (Echinacea pallida), lance-leaf coreopsis (Coreopsis lanceolata), round-headed lespedeza (Lespedeza capitata), partridge pea (Cassia fasiculata), black-eyed susan (Rudbeckia hirta), butterfly milkweed (Asclepias tuberosa), and bergamot (Monarda fistulosa). Results from two demonstration plots next to research plots indicate it is possible to establish native warm season grasses on Eastern Kentucky strip mines for wildlife habitat

  16. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp.

    Science.gov (United States)

    Ayub, J. Juri; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.; Velasco, R. H.

    2008-08-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs+ (and K+) using electrophysiological techniques. Although the 137Cs soil inventory ranged between 328-730 Bq m-2 in this region, no 137Cs activity was detected in these plants. However, all the species, submitted previously to K+ starvation, showed the uptake of both Cs+ and K+ when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. KM values were smaller for K+ than for Cs+, indicating a higher affinity for the first cation. The presence of increasing K+ concentrations in the assay medium inhibited Cs+ uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs+ is smaller than K+ concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors.

  17. Kinetics of caesium and potassium absorption by roots of three grass pastures and competitive effects of potassium on caesium uptake in Cynodon sp

    International Nuclear Information System (INIS)

    Ayub, J. Juri; Velasco, R. H.; Valverde, L. Rubio; Garcia-Sanchez, M. J.; Fernandez, J. A.

    2008-01-01

    Caesium uptake by plant roots has been normally associated with the uptake of potassium as the potassium transport systems present in plants have also the capacity to transport caesium. Three grass species (Eragrostis curvula, Cynodon sp and Distichlis spicata) growing in seminatural grassland of central Argentina were selected to study their capability to incorporate Cs + (and K + ) using electrophysiological techniques. Although the 137 Cs soil inventory ranged between 328-730 Bq m -2 in this region, no 137 Cs activity was detected in these plants. However, all the species, submitted previously to K + starvation, showed the uptake of both Cs + and K + when micromolar concentrations of these cations were present in the medium. The uptake showed saturation kinetics for both cations that could be fitted to the Michelis-Menten model. K M values were smaller for K + than for Cs + , indicating a higher affinity for the first cation. The presence of increasing K + concentrations in the assay medium inhibited Cs + uptake in Cynodon sp., as expected if both cations are transported by the same transport systems. This effect is due to the competition of both ions for the union sites of the high affinity potassium transporters. In field situation, where soil concentration of Cs + is smaller than K + concentration, is then expectable that caesium activity in plants is not detectable. Nevertheless, the studied plants would have the capacity to incorporate caesium if its availability in soil solution increases. In addition, studies of Cs/K interaction can help us to understand the variability in transfer factors

  18. Herbicide spring treatments for the control of brome grasses (Bromus spp. in winter cereals

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2014-02-01

    Full Text Available The efficacy of different ALS-inhibiting herbicides for the control of brome species (Bromus spp. was tested in three field trials in the year 2010 – 2012 in the region of North-West-Bavaria Franken. As a result of the trials the standard herbicide Attribut (Propoxycarbazone was confirmed for the control of brome. In case of infestation with brome and black grass the herbicide Broadway (Pyroxsulam offers a certain control of both problematic grass weeds. This illustrates the high dependency of sufficient brome control in winter cereals on the effectiveness of specific ALS-Inhibitor herbicides. Because of the high risk of herbicide resistance to ACCaseand ALS-inhibiting herbicides in brome, integrated weed management is essential for the sustainable control of brome in winter cereals, respectively winter wheat.

  19. Quantification of fructan concentration in grasses using NIR spectroscopy and PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, Rene

    2011-01-01

    Near-infrared reflectance (NIR) spectroscopy combined with chemometrics was used to quantify fructan concentration in samples from seven grass species. Savitzky-Golay first derivative with filter width 7 and polynomial order 2 with mean centering was applied as a spectral pre-treatment method...... to remove unimportant baseline signals. In order to model the NIR spectroscopy data the partial least squares regression (PLSR) approach was used on the full spectra. Variable selection based on PLSR by jack-knifing within a cross-model validation (CMV) framework was applied in order to remove non...... quantification of fructans by NIR spectroscopy is possible and that jack-knifing PLSR within a CMV framework is an effective way to eliminate the wavelengths of no interest. Jack-knifing PLSR did not improve the predictive ability because the root mean square error of prediction (RMSEP) increased (1.37) compared...

  20. Estimating grass-clover ratio variations caused by traffic intensities using image analysis

    DEFF Research Database (Denmark)

    Jørgensen, Rasmus Nyholm; Sørensen, Claus Grøn; Green, Ole

    Grass and especially clover have a negative yield response as a function of  traffic intensity.  Conventional grass-clover production for silage have high traffic intensity due to fertilizing with slurry, cutting the grass, rolling the grass into swaths, and collecting and chopping the grass...... to fulfill the aim [1]http://www.ruralni.gov.uk/index/publications/press_articles/dairy-2/role-of-clover.htm...

  1. Ecological Vulnerability Assessment Integrating the Spatial Analysis Technology with Algorithms: A Case of the Wood-Grass Ecotone of Northeast China

    Directory of Open Access Journals (Sweden)

    Zhi Qiao

    2013-01-01

    Full Text Available This study evaluates ecological vulnerability of the wood-grass ecotone of northeast China integrating the spatial analysis technology with algorithms. An assessment model of ecological vulnerability is developed applying the Analytical Hierarchy Process. The composite evaluation index system is established on the basis of the analysis of contemporary status and potential problems in the study area. By the application of the evaluation model, ecological vulnerability index is calculated between 1990 and 2005. The results show that ecological vulnerability was mostly at a medium level in the study area, however the ecological quality was deteriorating. Through the standard deviational ellipse, the variation of ecological vulnerability can be spatially explicated. It is extremely significative for the prediction of the regions that will easily deteriorate. The deterioration zone was concentrating in the area of Da Hinggan Ling Mountain, including Xingan League, Chifeng, Tongliao, and Chengde, whereas the improvement zone was distributing in the north-central of Hulunbeier.

  2. Root reinforcement and its implications in shallow landsliding susceptibility on a small alpine catchment

    Science.gov (United States)

    Morandi, M. C.; Farabegoli, E.; Onorevoli, G.

    2012-04-01

    Roots shear resistance offers a considerable contribution to hill-slope stability on vegetated terrains. Through the pseudo-cohesion of shrubs, trees and turf's roots, the geomechanical properties of soils can be drastically increased, exerting a positive influence on the hillslope stability. We analysed the shallow landsliding susceptibility of a small alpine catchment (Duron valley, Central Dolomites, Italy) that we consider representative of a wide altitude belt of the Dolomites (1800 - 2400 m a.s.l). The catchment is mostly mantled by grass (Nardetum strictae s.l.), with clustered shrubs (Rhododendron hirsutum and Juniperus nana), and trees (Pinus cembra, Larix decidua and Picea abies). The soil depth, investigated with direct and indirect methods, ranges from 0 to 180 cm, with its peak at the hollow axes. Locally, the bedrock, made of Triassic volcanic rocks, is deeply incised by the Holocene drainage network. Intensive grazing of cows and horses pervades the catchment area and cattle-trails occupy ca 20% of the grass cover. We used laboratory and field tests to characterize the geotechnical properties of these alpine soils; moreover we designed and tested an experimental device that measures, in situ, the shear strengths of the grass mantle. In the study area we mapped 18 shallow landslides, mostly related to road cuts and periodically reactivated as retrogressive landslides. The triggering mechanisms of these shallow landslides were qualitatively analysed at large scale and modelled at smaller scale. We used SHALSTAB to model the shallow landsliding susceptibility of the catchment at the basin scale and SLIDE (RocScience) to compute the Safety Factor at the versant scale. Qualitative management solutions are provided, in order to reduce the shallow landsliding susceptibility risk in this alpine context.

  3. Controlling grass weeds on hard surfaces

    DEFF Research Database (Denmark)

    Rask, Anne Merete; Kristoffersen, Palle; Andreasen, Christian

    2012-01-01

    An experiment was conducted on a specially designed hard surface to study the impact of time interval between flaming treatments on the regrowth and flower production of two grass weeds. The goal of this experiment was to optimize the control of annual bluegrass and perennial ryegrass, both species...... that are very difficult to control without herbicides. Aboveground biomass from 72 plants per treatment was harvested and dry weights were recorded at regular intervals to investigate how the plants responded to flaming. Regrowth of the grasses was measured by harvesting aboveground biomass 2 wk after......, as they did not increase the reduction of aboveground biomass compared with the 7-d treatment interval. Knowledge on the regrowth of grass weeds after flaming treatments provided by this study can help improve recommendations given to road keepers and park managers for management on these weeds. Nomenclature...

  4. Microbial protein synthesis, digestion and lactation responses of cows to grass or grass-red clover silage diet supplemented with barley or oats

    Directory of Open Access Journals (Sweden)

    A. VANHATALO

    2008-12-01

    Full Text Available The study was conducted to evaluate effects of silage type (grass-red clover vs. pure grass and grain supplement (oats vs. barley on rumen fermentation, post-ruminal nutrient flows, diet digestion and milk production. Four primiparous Finnish Ayrshire cows fitted with cannulae in the rumen and duodenum were used in a 4 × 4 Latin square experiment with four 28-d experimental periods and 2 × 2 factorial arrangements of treatments. Using red clover-containing (40% silage rather than pure grass silage had minor effects on rumen fermentation or diet digestion but increased non-ammonia nitrogen (N flow in terms of increased flows of microbial and dietary N entering to the small intestine. This was reflected as a reduced ruminal N degradability on grass-red clover diets. Furthermore, grass-red clover diets in comparison to grass silage diets increased milk lactose concentration and yields of milk, protein and lactose. Feeding oats in replacement for barley had minor effects on rumen fermentation or post-ruminal non-ammonia N flows but reduced digestibility of organic matter and neutral detergent fibre in the diet. Using oats rather than barley increased yields of milk and lactose but reduced milk protein concentration. Oats also increased proportions of C18:0 and C18:1 in milk fat and reduced those of C10:0 to C16:0. It is concluded that inclusion of red clover and replacement of barley with oats in grass silage based diets have beneficial effects in dairy cow production.;

  5. Potential of Electric Power Production from Microbial Fuel Cell (MFC) in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Science.gov (United States)

    Zaman, Badrus; Wardhana, Irawan Wisnu

    2018-02-01

    Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media). Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day) operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  6. Estimating the energy requirements and CO{sub 2} emissions from production of the perennial grasses miscanthus, switchgrass and reed canary grass

    Energy Technology Data Exchange (ETDEWEB)

    Bullard, M.; Metcalfe, P.

    2001-07-01

    The perennial grasses miscanthus, reed canary and swithchgrass have attractions as energy crops in the United Kingdom: all have low demand for fertilizer and pesticide, and are harvested annually. Research on energy ratios and carbon ratios of the grasses is reported. A Microsoft Excel-based model was developed (from an ADAS database) and the input calculations and assumptions are explained. The study demonstrated the attractions of theses grasses as a source of fuel. The results agreed with those from a model developed for the SRC.

  7. Root system markup language: toward a unified root architecture description language.

    Science.gov (United States)

    Lobet, Guillaume; Pound, Michael P; Diener, Julien; Pradal, Christophe; Draye, Xavier; Godin, Christophe; Javaux, Mathieu; Leitner, Daniel; Meunier, Félicien; Nacry, Philippe; Pridmore, Tony P; Schnepf, Andrea

    2015-03-01

    The number of image analysis tools supporting the extraction of architectural features of root systems has increased in recent years. These tools offer a handy set of complementary facilities, yet it is widely accepted that none of these software tools is able to extract in an efficient way the growing array of static and dynamic features for different types of images and species. We describe the Root System Markup Language (RSML), which has been designed to overcome two major challenges: (1) to enable portability of root architecture data between different software tools in an easy and interoperable manner, allowing seamless collaborative work; and (2) to provide a standard format upon which to base central repositories that will soon arise following the expanding worldwide root phenotyping effort. RSML follows the XML standard to store two- or three-dimensional image metadata, plant and root properties and geometries, continuous functions along individual root paths, and a suite of annotations at the image, plant, or root scale at one or several time points. Plant ontologies are used to describe botanical entities that are relevant at the scale of root system architecture. An XML schema describes the features and constraints of RSML, and open-source packages have been developed in several languages (R, Excel, Java, Python, and C#) to enable researchers to integrate RSML files into popular research workflow. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. The effects of energy grass plantations on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Semere, T; Slater, F

    2005-07-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI.

  9. The effects of energy grass plantations on biodiversity

    International Nuclear Information System (INIS)

    Semere, T.; Slater, F.

    2005-01-01

    The ecological impact on local wildlife of biomass plantations of three different species of grasses has been monitored in the years 2002 to 2004 inclusive at farms in Herefordshire UK. Two of the grasses were not native to Britain. Wildlife monitored included ground flora, beetles, insects, birds, small mammals, butterflies, bees and hoverflies. The results provide a baseline of biodiversity data from biomass farms in England, although due to poor crop growth, the data from the switch-grass plantation was incomplete. The surveys were carried out by Cardiff University supported financially by the DTI

  10. Use of dried cassava root to replace corn in supplementation of Holstein cows grazing and consuming spontaneously, apparent digestibility and energy metabolism

    Directory of Open Access Journals (Sweden)

    Ádler Carvalho da Silva

    2015-07-01

    Full Text Available The development of this experiment intended to evaluate the effect of replacing ground corn for dried and ground cassava roots with the levels of 0%, 25%, 50%, 75% and 100% in the experimental supplements for lactating cows kept on tropical irrigated and fertilized pastures. Ten Holstein cows were divided into two 5x5 Latin squares, with an initial lactation average of 150 days, 22 kg/day of average milk production of lactation and approximate initial average body eight of 603 kg. The animals were kept in pasture constituted by elephant grass (Pennisetum purpureum, SCHUM cv Pioneer, associated with Tifton 85 grass (Cynodon nlemfuensis, irrigated and fertilized with 600 kg of nitrogen per hectare/year. No significant effects on the substitution of ground corn for dried and ground cassava roots in the concentrate (P>0.05 over the spontaneous consumption of the total diet, with estimated average of 20.61 kg/DM/animal/day, apparent digestibility of DM with estimated average of 59.60% and energy balance with estimated average of +6.36 Mcal day-1. The results of this study demonstrate that the cassava root can be used as an energy source of high nutritional value for supplementation of lactating cows grazing on tropical pastures, similar to corn results.

  11. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.

    Science.gov (United States)

    Datta, Rupali; Quispe, Mario A; Sarkar, Dibyendu

    2011-01-01

    The purpose of this greenhouse study was to assess the capacity of vetiver grass to accumulate arsenic from pesticide-contaminated soils of varying physico-chemical properties. Results indicate that vetiver is capable of tolerating moderate levels of arsenic up to 225 mg/kg. Plant growth and arsenic removal efficiency was strongly influenced by soil properties. Arsenic removal was highest (10.6%) in Millhopper soil contaminated with 45 mg/kg arsenic, which decreased to 4.5 and 0.6% at 225 and 450 mg/kg, respectively. High biomass, widespread root system and environmental tolerance make this plant an attractive choice for the remediation of soils contaminated with moderate levels of arsenic.

  12. Functional immunoglobulin E cross-reactivity between Pas n 1 of Bahia grass pollen and other group 1 grass pollen allergens.

    Science.gov (United States)

    Davies, J M; Dang, T D; Voskamp, A; Drew, A C; Biondo, M; Phung, M; Upham, J W; Rolland, J M; O'Hehir, R E

    2011-02-01

    Grass pollens are major triggers of allergic rhinitis and asthma, but the immunological relationships between pollen allergens of the subtropical Bahia grass, Paspalum notatum, and temperate grasses are unresolved. To assess serum IgE cross-reactivity between subtropical P. notatum and temperate Lolium perenne (Ryegrass) pollen allergens. Serum IgE reactivities of grass pollen-allergic patients with P. notatum, L. perenne and Cynodon dactylon (Bermuda grass) pollen extracts and their respective purified group 1 allergens, Pas n 1, Lol p 1 and Cyn d 1, were compared by immunoblotting, ELISA and basophil activation. In a cohort of 51 patients from a temperate region, a high frequency of IgE reactivity with each grass pollen was detected, but reactivity with L. perenne pollen was substantially greater than with P. notatum and C. dactylon pollen. Similarly, serum IgE reactivity with Lol p 1 was greater than with Pas n 1 or Cyn d 1. For seven of eight sera studied in detail, asymmetric serum IgE cross-reactivity was observed; L. perenne pollen inhibited IgE reactivity with P. notatum pollen but not the converse, and IgE reactivity with Pas n 1 was inhibited by Lol p 1 but IgE reactivity with Lol p 1 was not inhibited by Pas n 1 or Cyn d 1. Importantly, P. notatum pollen and Pas n 1 activated basophils in grass pollen-allergic patients from a temperate region, although stimulation was greater by pollen of L. perenne than P. notatum or C. dactylon, and by Lol p 1 than Pas n 1 or Cyn d 1. In contrast, a cohort of 47 patients from a subtropical region showed similar IgE reactivity with P. notatum and L. perenne pollen, and reciprocal cross-inhibition of IgE reactivity between L. perenne and P. notatum. Pollen allergens of the subtropical P. notatum, including Pas n 1, show clinically relevant IgE cross-reactivity with pollen allergens of L. perenne but also species-specific IgE reactivity. © 2011 Blackwell Publishing Ltd.

  13. Agronomic performance of tifton 85 (cynodon spp grass cultivated in constructed wetlands used in milk processing wastewater treatment

    Directory of Open Access Journals (Sweden)

    Odilon Gomes Pereira

    2008-04-01

    Full Text Available The present work was carried out in order to study the performance of the tifton 85 (Cynodon spp grass cultivated in wetlands (SACs and submitted to different organic load application rates (TCOs of milk processing wastewater (ARL, in the climatic conditions of Viçosa - MG. The experimental structure was constituted by five SACs with horizontal subsuperficial flow, using tanks of 0.40 x 0.75 x 3.00 m (depth, width and length filled with 0.33 m depth of fine stones. The ARL was applied in average flow of 60 L.day-1, hydraulic time residence of 4.8 days and TCOs of 66, 130, 190, 320 and 570 kg.ha-1.day-1 of DBO. The tifton 85 grass adapted well to SACs, presenting good rooting, high yield and capacity of nutrients (N, P and K and sodium removal of the ARL, whose values were, respectively, between 216 - 544, 24 - 61, 115 - 204 and 4.3 – 10.9 kg.ha-1.

  14. High-biomass C4 grasses-Filling the yield gap.

    Science.gov (United States)

    Mullet, John E

    2017-08-01

    A significant increase in agricultural productivity will be required by 2050 to meet the needs of an expanding and rapidly developing world population, without allocating more land and water resources to agriculture, and despite slowing rates of grain yield improvement. This review examines the proposition that high-biomass C 4 grasses could help fill the yield gap. High-biomass C 4 grasses exhibit high yield due to C 4 photosynthesis, long growth duration, and efficient capture and utilization of light, water, and nutrients. These C 4 grasses exhibit high levels of drought tolerance during their long vegetative growth phase ideal for crops grown in water-limited regions of agricultural production. The stems of some high-biomass C 4 grasses can accumulate high levels of non-structural carbohydrates that could be engineered to enhance biomass yield and utility as feedstocks for animals and biofuels production. The regulatory pathway that delays flowering of high-biomass C 4 grasses in long days has been elucidated enabling production and deployment of hybrids. Crop and landscape-scale modeling predict that utilization of high-biomass C 4 grass crops on land and in regions where water resources limit grain crop yield could increase agricultural productivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. GRASS GIS: a peer-reviewed scientific platform and future research repository

    Science.gov (United States)

    Chemin, Yann; Petras, Vaclav; Petrasova, Anna; Landa, Martin; Gebbert, Sören; Zambelli, Pietro; Neteler, Markus; Löwe, Peter; Di Leo, Margherita

    2015-04-01

    Geographical Information System (GIS) is known for its capacity to spatially enhance the management of natural resources. While being often used as an analytical tool, it also represents a collaborative scientific platform to develop new algorithms. Thus, it is critical that GIS software as well as the algorithms are open and accessible to anybody [18]. We present how GRASS GIS, a free and open source GIS, is used by many scientists to implement and perform geoprocessing tasks. We will show how integrating scientific algorithms into GRASS GIS helps to preserve reproducibility of scientific results over time [15]. Moreover, subsequent improvements are tracked in the source code version control system and are immediately available to the public. GRASS GIS therefore acts as a repository of scientific peer-reviewed code, algorithm library, and knowledge hub for future generation of scientists. In the field of hydrology, with the various types of actual evapotranspiration (ET) models being developed in the last 20 years, it becomes necessary to inter-compare methods. Most of already published ETa models comparisons address few number of models, and small to medium areas [3, 6, 7, 22, 23]. With the large amount of remote sensing data covering the Earth, and the daily information available for the past ten years (i.e. Aqua/Terra-MODIS) for each pixel location, it becomes paramount to have a more complete comparison, in space and time. To address this new experimental requirement, a distributed computing framework was designed, and created [3, 4]. The design architecture was built from original satellite datasets to various levels of processing until reaching the requirement of various ETa models input dataset. Each input product is computed once and reused in all ETa models requiring such input. This permits standardization of inputs as much as possible to zero-in variations of models to the models internals/specificities. All of the ET models are available in the new

  16. The Effect of Soil Type and Moisture Content on Head Impacts on Natural Grass Athletic Fields

    Directory of Open Access Journals (Sweden)

    Kyley Dickson

    2018-02-01

    Full Text Available Studies are warranted to evaluate head injury criterion (HIC on athletic fields to determine baseline numbers and compare those findings to current critical thresholds for impact attenuation. A two year (2016 and 2017 study was conducted on University of Tennessee athletic fields (Knoxville, TN, USA to determine the effect of soil type (cohesive soil, United States Golf Association sand specifications and grass species (Poa pratensis and Cynodon dactylon × C. transvaalensis on HIC. Additionally soil moisture conditions monitored were: dry (0.06–0.16 m3/m3, acceptable (0.17–0.29 m3/m3, and wet (0.30–0.40 m3/m3. A linear relationship (r = 0.91 was identified between drop height (0.5–2.9 M and HIC value (35-1423 HIC on granular root zones of both grass types. However, HIC on cohesive soil is a function of soil water content in addition to drop height. These results demonstrate to aid in head injury prevention on cohesive soil athletic fields the HIC can be lowered by managing soil water content.

  17. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina).

    Science.gov (United States)

    Cenzano, Ana M; Masciarelli, O; Luna, M Virginia

    2014-10-01

    The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Integration of ROOT Notebooks as an ATLAS analysis web-based tool in outreach and public data release

    CERN Document Server

    Sanchez, Arturo; The ATLAS collaboration

    2016-01-01

    The integration of the ROOT data analysis framework with the Jupyter Notebook technology presents an incredible potential in the enhance and expansion of educational and training programs: starting from university students in their early years, passing to new ATLAS PhD students and post doctoral researchers, to those senior analysers and professors that want to restart their contact with the analysis of data or to include a more friendly but yet very powerful open source tool in the classroom. Such tools have been already tested in several environments and a fully web-based integration together with Open Access Data repositories brings the possibility to go a step forward in the search of ATLAS for integration between several CERN projects in the field of the education and training, developing new computing solutions on the way.

  19. Hilly grasses and leaves: a promising unconventional feed resource for livestock.

    OpenAIRE

    Hossain M.E.; Karim M.H.; Ahmed M.I.; Sultana S.A.

    2016-01-01

    The study was undertaken to find out the chemical composition of different hilly grasses and leaves available in Bandarban areas of Bangladesh. Total 10 different hilly grasses and leaves such as Bottle gourd leaf (Lagenaria siceraria), Castor bean leaf (Ricinus communis), Cogon grass (Imperata cylindrica), Dhol kolmi (Ipomoea carnea), Giant reed leaf (Arundo donax), Hilly grass (Cynodon dactylon), Pithraj leaf (Aphanamixis polystachya), Sal leaf (Shorea robusta), Shegun leaf (Tectona grandis...

  20. Effect of machinery wheel load on grass yield

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    2010-01-01

    Effect of machinery wheel load on grass   Ole Green1, Rasmus N. Jørgensen2, Kristian Kristensen3, René Gislum3, Dionysis Bochtis1, & Claus G. Sørensen1   1University of Aarhus, Dept. of Agricultural Engineering 2University of Southern Denmark, Inst. of Chemical Eng., Biotechnology and Environmental...... 3University of Aarhus, Dept. of Genetics and Biotechnology   Corresponding author: Ole Green Address & e-mail: Research Centre Foulum, Blichers Allé 20, 8830 Tjele. Ole.Green@agrsci.dk     Abstract   Different traffic intensities have been shown to have a negative influence on the yield of grass...... and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16 different traffic intensities with 35 replicates and 1 traffic free treatment with 245 replicates, totalling 17...

  1. Alley cropping of legumes with grasses as forages : Effect of different grass species and row spacing of gliricidia on the growth and biomass production of forages

    Directory of Open Access Journals (Sweden)

    Siti Yuhaeni

    1998-12-01

    Full Text Available A study to evaluate the effect of different grass species and row spacing of gliricidia (Gliricidia sepium on the growth and biomass production of forages in an alley cropping system was conducted in two different agroclimatical zones i.e. Bogor, located at 500 m a .s .l . with an average annual rainfall of 3,112 nun/year and Sukabumi located at 900 m a .s .l . with an average annual rainfall of 1,402 mm/year . Both locations have low N, P, and K content and the soil is classified as acidic. The experimental design used was a split plot design with 3 replicates . The main plots were different grass species i.e. king grass (Pennisetum purpureum x P. typhoides and elephant grass (P. purpureum. The sub plots were the row spacing of gliricidia at 2, 3, 4, 6 m (1 hedgerows and 4 m (2 hedgerows. The results indicated that the growth and biomass production of grasses were significantly affected (P<0 .05 by the treatments in Bogor. The highest biomass productions was obtained from the 2 m row spacing which gave the highest dry matter production of grasses (1 .65 kg/hill and gliricidia (0 .086 kg/tree . In Sukabumi the growth and biomass production of grasses and gliricidia were also significantly affected by the treatments . The highest dry matter production was obtained with 2 m row spacing (dry matter of grasses and gliricidia were 1 .12 kg/hill and 0 .026 kg/tree, respectively . The result further indicated that biomass production of forages increased with the increase in gliricidia population. The alley cropping system wich is suitable for Bogor was the 2 m row spacing of gliricidia intercropped with either king or elephant grass and for Sukabumi 2 and 4 m (2 rows of gliricidia row spacing intercropped with king or elephant grass .

  2. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass.

    Directory of Open Access Journals (Sweden)

    Jessica A Finch

    Full Text Available The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds. on wheat (Triticum aestivum L. roots was tested, since a low density of this species (25 plants m-2 can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass. A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture.

  3. Wheat root length and not branching is altered in the presence of neighbours, including blackgrass

    Science.gov (United States)

    Finch, Jessica A.; Guillaume, Gaëtan; French, Stephanie A.; Colaço, Renato D. D. R.; Davies, Julia M.

    2017-01-01

    The effect of neighbouring plants on crop root system architecture may directly interfere with water and nutrient acquisition, yet this important and interesting aspect of competition remains poorly understood. Here, the effect of the weed blackgrass (Alopecurus myosuroides Huds.) on wheat (Triticum aestivum L.) roots was tested, since a low density of this species (25 plants m-2) can lead to a 10% decrease in wheat yield and herbicide resistance is problematic. We used a simplified growth system based on gelled medium, to grow wheat alongside a neighbour, either another wheat plant, a blackgrass or Brachypodium dystachion individual (a model grass). A detailed analysis of wheat seminal root system architecture showed that the presence of a neighbour principally affected the root length, rather than number or diameter under a high nutrient regime. In particular, the length of first order lateral roots decreased significantly in the presence of blackgrass and Brachypodium. However, this effect was not noted when wheat plants were grown in low nutrient conditions. This suggests that wheat may be less sensitive to the presence of blackgrass when grown in low nutrient conditions. In addition, nutrient availability to the neighbour did not modulate the neighbour effect on wheat root architecture. PMID:28542446

  4. BIMLR: a method for constructing rooted phylogenetic networks from rooted phylogenetic trees.

    Science.gov (United States)

    Wang, Juan; Guo, Maozu; Xing, Linlin; Che, Kai; Liu, Xiaoyan; Wang, Chunyu

    2013-09-15

    Rooted phylogenetic trees constructed from different datasets (e.g. from different genes) are often conflicting with one another, i.e. they cannot be integrated into a single phylogenetic tree. Phylogenetic networks have become an important tool in molecular evolution, and rooted phylogenetic networks are able to represent conflicting rooted phylogenetic trees. Hence, the development of appropriate methods to compute rooted phylogenetic networks from rooted phylogenetic trees has attracted considerable research interest of late. The CASS algorithm proposed by van Iersel et al. is able to construct much simpler networks than other available methods, but it is extremely slow, and the networks it constructs are dependent on the order of the input data. Here, we introduce an improved CASS algorithm, BIMLR. We show that BIMLR is faster than CASS and less dependent on the input data order. Moreover, BIMLR is able to construct much simpler networks than almost all other methods. BIMLR is available at http://nclab.hit.edu.cn/wangjuan/BIMLR/. © 2013 Elsevier B.V. All rights reserved.

  5. Energy evaluation of fresh grass in the diets of lactating dairy cows

    NARCIS (Netherlands)

    Bruinenberg, M.H.; Zom, R.L.G.; Valk, H.

    2002-01-01

    The discrepancy between the estimated feeding value of fresh grass and the output per kg grass in terms of milk and maintenance was studied by evaluating 12 experiments with grass-fed dairy cows. The percentage grass in the diets varied between 40 and 90. Intake and milk production were recorded

  6. Ecophysiological responses of native and invasive grasses to simulated warming and drought

    Science.gov (United States)

    Ravi, S.; Law, D. J.; Wiede, A.; Barron-Gafford, G. A.; Breshears, D. D.; Dontsova, K.; Huxman, T. E.

    2011-12-01

    Climate models predict that many arid regions around the world - including the North American deserts - may become affected more frequently by recurrent droughts. At the same time, these regions are experiencing rapid vegetation transformations such as invasion by exotic grasses. Thus, understanding the ecophysiological processes accompanying exotic grass invasion in the context of rising temperatures and recurrent droughts is fundamental to global change research. Under ambient and warmer (+ 4° C) conditions inside the Biosphere 2 facility, we compared the ecophysiological responses (e.g. photosynthesis, stomatal conductance, pre-dawn leaf water potential, light & CO2 response functions, biomass) of a native grass - Heteropogan contortus (Tangle head) and an invasive grass - Pennisetum ciliare (Buffel grass) growing in single and mixed communities. Further, we monitored the physiological responses and mortality of these plant communities under moisture stress conditions, simulating a global change-type-drought. The results indicate that the predicted warming scenarios may enhance the invasibility of desert landscapes by exotic grasses. In this study, buffel grass assimilated more CO2 per unit leaf area and out-competed native grasses more efficiently in a warmer environment. However, scenarios involving a combination of drought and warming proved disastrous to both the native and invasive grasses, with drought-induced grass mortality occurring at much shorter time scales under warmer conditions.

  7. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  8. The Potential of Cellulosic Ethanol Production from Grasses in Thailand

    Directory of Open Access Journals (Sweden)

    Jinaporn Wongwatanapaiboon

    2012-01-01

    Full Text Available The grasses in Thailand were analyzed for the potentiality as the alternative energy crops for cellulosic ethanol production by biological process. The average percentage composition of cellulose, hemicellulose, and lignin in the samples of 18 types of grasses from various provinces was determined as 31.85–38.51, 31.13–42.61, and 3.10–5.64, respectively. The samples were initially pretreated with alkaline peroxide followed by enzymatic hydrolysis to investigate the enzymatic saccharification. The total reducing sugars in most grasses ranging from 500–600 mg/g grasses (70–80% yield were obtained. Subsequently, 11 types of grasses were selected as feedstocks for the ethanol production by simultaneous saccharification and cofermentation (SSCF. The enzymes, cellulase and xylanase, were utilized for hydrolysis and the yeasts, Saccharomyces cerevisiae and Pichia stipitis, were applied for cofermentation at 35°C for 7 days. From the results, the highest yield of ethanol, 1.14 g/L or 0.14 g/g substrate equivalent to 32.72% of the theoretical values was obtained from Sri Lanka ecotype vetiver grass. When the yields of dry matter were included in the calculations, Sri Lanka ecotype vetiver grass gave the yield of ethanol at 1,091.84 L/ha/year, whereas the leaves of dwarf napier grass showed the maximum yield of 2,720.55 L/ha/year (0.98 g/L or 0.12 g/g substrate equivalent to 30.60% of the theoretical values.

  9. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy.

    Science.gov (United States)

    Ji, Ying; Sarret, Géraldine; Schulin, Rainer; Tandy, Susan

    2017-12-01

    Antimony (Sb) is a contaminant of increased prevalence in the environment, but there is little knowledge about the mechanisms of its uptake and translocation within plants. Here, we applied for the synchrotron based X-ray absorption near-edge structure (XANES) spectroscopy to analyze the speciation of Sb in roots and shoots of rye grass (Lolium perenne L. Calibra). Seedlings were grown in nutrient solutions to which either antimonite (Sb(III)), antimonate (Sb(V)) or trimethyl-Sb(V) (TMSb) were added. While exposure to Sb(III) led to around 100 times higher Sb accumulation in the roots than the other two treatments, there was no difference in total Sb in the shoots. Antimony taken up in the Sb(III) treatment was mainly found as Sb-thiol complexes (roots: >76% and shoots: 60%), suggesting detoxification reactions with compounds such as glutathione and phytochelatins. No reduction of accumulated Sb(V) was found in the roots, but half of the translocated Sb was reduced to Sb(III) in the Sb(V) treatment. Antimony accumulated in the TMSb treatment remained in the methylated form in the roots. By synchrotron based XANES spectroscopy, we were able to distinguish the major Sb compounds in plant tissue under different Sb treatments. The results help to understand the translocation and transformation of different Sb species in plants after uptake and provide information for risk assessment of plant growth in Sb contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis)

    Science.gov (United States)

    White, James F.; Kingsley, Katheryn I; Kowalski, Kurt P.; Irizarry, Ivelisse; Micci, April; Soares, Marcos Antonio; Bergen, Marshall S.

    2018-01-01

    Background and aimsNon-native Phragmites australis (haplotype M) is an invasive grass that decreases biodiversity and produces dense stands. We hypothesized that seeds of Phragmites carry microbes that improve seedling growth, defend against pathogens and maximize capacity of seedlings to compete with other plants.MethodsWe isolated bacteria from seeds of Phragmites, then evaluated representatives for their capacities to become intracellular in root cells, and their effects on: 1.) germination rates and seedling growth, 2.) susceptibility to damping-off disease, and 3.) mortality and growth of competitor plant seedlings (dandelion (Taraxacum officionale F. H. Wigg) and curly dock (Rumex crispus L.)).ResultsTen strains (of 23 total) were identified and characterized; seven were identified as Pseudomonas spp. Strains Sandy LB4 (Pseudomonas fluorescens) and West 9 (Pseudomonas sp.) entered root meristems and became intracellular. These bacteria improved seed germination in Phragmites and increased seedling root branching in Poa annua. They increased plant growth and protected plants from damping off disease. Sandy LB4 increased mortality and reduced growth rates in seedlings of dandelion and curly dock.ConclusionsPhragmites plants associate with endophytes to increase growth and disease resistance, and release bacteria into the soil to create an environment that is favorable to their seedlings and less favorable to competitor plants.

  11. Modern parameters of caesium-137 root uptake in natural and agricultural grass ecosystems of contaminated post-Chernobyl landscape, Russia

    Directory of Open Access Journals (Sweden)

    Tatiana Paramonova

    2015-01-01

    Full Text Available The estimation of modern parameters of 137Cs root uptake was conducted in natural meadow and agricultural ecosystems of post-Chernobyl landscapes of Tula region. The agrosystems with main crops of field rotation (barley, potatoes, rape, maize occupying watersheds and slopes with arable chernozems are contaminated at a level 460-670 Bq/kg (4.7-6.0 Ci/km2; natural meadow ecosystems occupying lower parts of slopes and floodplains are contaminated at a level 620-710 Bq/kg (5.8-7.6 Ci/km2. In the arable soils 137Cs uniformly distributed to a depth of Ap horizon (20-30 cm of thickness, while in meadow soils 70-80% of the radionuclide is concentrated within the top Ad horizon (9-13 cm of thickness. These topsoil layer accords with rhizosphere zone, where >80-90% of plant roots are concentrated, and from which 137Cs is mostly consumed by vegetation. Total amount of 137Cs root uptake depends on the level of soil radioactive contamination (correlation coefficient 0.61. So 137Cs activity in meadow vegetation (103-160 Bq/kg is generally more than one in agricultural vegetation (9-92 Bq/kg. The values of 137Cs transfer factor in the studied ecosystems vary from 0.01 (rape to 0.20 (wet meadow, that confirms the discrimination of the radionuclide’s root uptake. The larger are the volume of roots and their absorbing surface, the higher are the values of transfer factor from soil to plant (correlation coefficients 0.71 and 0.64 respectively. 137Cs translocation from roots to shoots is also determined by biological features of plants. At the same level of soil contamination above-ground parts of meadow herbs accumulate more 137Cs than Gramineae species, and in agrosystems above-ground parts of weeds concentrate more 137Cs than cultivated cereals. Thus, the level of soil radioactive pollution and biological features of plants are determinants in the process of 137Cs root uptake and translocation and should be considered in land use policy.

  12. The microtubule cytoskeleton does not integrate auxin transport and gravitropism in maize roots

    Science.gov (United States)

    Hasenstein, K. H.; Blancaflor, E. B.; Lee, J. S.

    1999-01-01

    The Cholodny-Went hypothesis of gravitropism suggests that the graviresponse is controlled by the distribution of auxin. However, the mechanism of auxin transport during the graviresponse of roots is still unresolved. To determine whether the microtubule (MT) cytoskeleton is participating in auxin transport, the cytoskeleton was examined and the movement of 3H-IAA measured in intact and excised taxol, oryzalin, and naphthylphthalamic acid (NPA)-treated roots of Zea mays cv. Merit. Taxol and oryzalin did not inhibit the graviresponse of roots but the auxin transport inhibitor NPA greatly inhibited both auxin transport and graviresponse. NPA had no effect on MT organization in vertical roots, but caused MT reorientation in horizontally placed roots. Regardless of treatment, the organization of MTs in intact roots differed from that in root segments. The MT inhibitors, taxol and oryzalin had opposite effects on the MTs, namely, depolymerization (oryzalin) and stabilization and thickening (taxol), but both treatments caused swelling of the roots. The data indicate that the MT cytoskeleton does not directly interfere with auxin transport or auxin-mediated growth responses in maize roots.

  13. Perennial Grass Bioenergy Cropping on Wet Marginal Land

    NARCIS (Netherlands)

    Das, Srabani; Teuffer, Karin; Stoof, Cathelijne R.; Walter, Michael F.; Walter, M.T.; Steenhuis, Tammo S.; Richards, Brian K.

    2018-01-01

    The control of soil moisture, vegetation type, and prior land use on soil health parameters of perennial grass cropping systems on marginal lands is not well known. A fallow wetness-prone marginal site in New York (USA) was converted to perennial grass bioenergy feedstock production. Quadruplicate

  14. Development of NIR calibration models to assess year-to-year variation in total non-structural carbohydrates in grasses using PLSR

    DEFF Research Database (Denmark)

    Shetty, Nisha; Gislum, René; Jensen, Anne Mette Dahl

    2012-01-01

    Near-infrared (NIR) spectroscopy was used in combination with chemometrics to quantify total nonstructural carbohydrates (TNC) in grass samples in order to overcome year-to-year variation. A total of 1103 above-ground plant and root samples were collected from different field and pot experiments...... and with various experimental designs in the period from 2001 to 2005. A calibration model was developed using partial least squares regression (PLSR). The calibration model on a large data set spanning five years demonstrated that quantification of TNC using NIR spectroscopy was possible with an acceptable low...

  15. Tensile fracture properties of seven tropical grasses at different phenological stages

    NARCIS (Netherlands)

    Jacobs, A.A.A.; Scheper, J.A.; Benvenutti, M.A.; Gordon, I.J.; Poppi, D.P.; Elgersma, A.

    2011-01-01

    The intake of forage grasses by grazing ruminants is closely related to the mechanical fracture properties of grasses. The relationship between the tensile fracture properties of grasses and foraging behaviour is of particular importance in tropical reproductive swards composed of both stems and

  16. How much gas can we get from grass?

    International Nuclear Information System (INIS)

    Nizami, A.S.; Orozco, A.; Groom, E.; Dieterich, B.; Murphy, J.D.

    2012-01-01

    Highlights: ► We highlight the various results for biomethane potential that may be obtained from the same grass silage. ► The results indicated that methane potential varied from 350 to 493 L CH 4 kg −1 VS added for three different BMP procedures. ► We compare two distinct digestion systems using the same grass. ► A two stage wet system achieved 451 L CH 4 kg −1 VS added over a 50 day retention period. ► A two phase system achieved 341 L CH 4 kg −1 VS added at a 30 day retention time. -- Abstract: Grass biomethane has been shown to be a sustainable gaseous transport biofuel, with a good energy balance, and significant potential for economic viability. Of issue for the designer is the variation in characteristics of the grass depending on location of source, time of cut and species. Further confusion arises from the biomethane potential tests (BMP) which have a tendency to give varying results. This paper has dual ambitions. One of these is to highlight the various results for biomethane potential that may be obtained from the same grass silage. The results indicated that methane potential from the same grass silage varied from 350 to 493 L CH 4 kg −1 VS added for three different BMP procedures. The second ambition is to attempt to compare two distinct digestion systems again using the same grass: a two stage continuously stirred tank reactor (CSTR); and a sequentially fed leach bed reactor connected to an upflow anaerobic sludge blanket (SLBR–UASB). The two engineered systems were designed, fabricated, commissioned and operated at small pilot scale until stable optimal operating conditions were reached. The CSTR system achieved 451 L CH 4 kg −1 VS added over a 50 day retention period. The SLBR–UASB achieved 341 L CH 4 kg −1 VS added at a 30 day retention time.

  17. Effects of rye grass coverage on soil loss from loess slopes

    Directory of Open Access Journals (Sweden)

    Yuequn Dong

    2015-09-01

    Full Text Available Vegetative coverage is commonly used to reduce urban slope soil erosion. Laboratory experimental study on soil erosion under grass covered slopes is conventionally time and space consuming. In this study, a new method is suggested to study the influences of vegetation coverage on soil erosion from a sloped loess surface under three slope gradients of 5°, 15°, and 25°; four rye grass coverages of 0%, 25%, 50%, and 75%; and three rainfall intensities of 60, 90, and 120 mm/h with a silt-loamy loess soil. Rye grasses were planted in the field with the studied soil before being transplanted into a laboratory flume. Grass was allowed to resume growth for a period before the rain simulation experiment. Results showed that the grass cover reduced soil erosion by 63.90% to 92.75% and sediment transport rate by 80.59% to 96.17% under different slope gradients and rainfall intensities. The sediment concentration/sediment transport rate from bare slope was significantly higher than from a grass-covered slope. The sediment concentration/transport rate from grass-covered slopes decreased linearly with grass coverage and increased with rainfall intensity. The sediment concentration/transport rate from the bare slope increased as a power function of slope and reached the maximum value at the gradient of about 25°, whereas that from grass-covered slope increased linearly and at much lower levels. The results of this study can be used to estimate the effect of vegetation on soil erosion from loess slopes.

  18. Seasonal variation in diurnal atmospheric grass pollen concentration profiles

    DEFF Research Database (Denmark)

    Peel, Robert George; Ørby, Pia Viuf; Skjøth, Carsten Ambelas

    2014-01-01

    the time of day when peak concentrations are most likely to occur using seasonally averaged diurnal profiles. Atmospheric pollen loads are highly dependent upon emissions, and different species of grass are known to flower and emit pollen at different times of the day and during different periods......In this study, the diurnal atmospheric grass pollen concentration profile within the Danish city of Aarhus was shown to change in a systematic manner as the pollen season progressed. Although diurnal grass pollen profiles can differ greatly from day-to-day, it is common practice to establish...... of the pollen season. Pollen concentrations are also influenced by meteorological factors - directly through those parameters that govern pollen dispersion and transport, and indirectly through the weather-driven flowering process. We found that three different profiles dominated the grass pollen season...

  19. Response of itchgrass and johnson grass to asulam/dalapon combinations

    International Nuclear Information System (INIS)

    Hook, B.J.

    1986-01-01

    Activities of asumlam [methyl[(4-aminophenyl)sulfonyl]carbamate], dalapon (2,2-dichloropropionic acid) and asulam/dalapon combinations on itchgrass (Rottboellia exaltata L.f.) and johnson grass [Sorghum halepense (L.) Pers.] were examined. When metabolism of 14 C-asulam was monitored, seven days after application, 97-100% of recovered 14 C co-chromatographed with 14 C-asulam. Itchgrass exhibited rapid uptake of 14 C-asulam within 8 hr after application. Asumlam concentrations remained constant in the plant between 8 and 72 hr. Johnson grass plants showed a differential response to asulam and asulam/dalapon treatments. Asulam-treated johnson grass absorbed 26-34% 14 C within 2 hr with no future significant increase in absorption in absorption through 72 hr. Treatment of johnson grass with asulam/dalapon enhanced 14 C absorption with time. At 24 and 72 hr 14 C levels were double that absorbed from treatment of asulam alone. Movement of 14 C-asulam in the apoplast and symplast of both itchgrass and johnson grass was noted. The highest radiolabel accumulated in the lower leaves of itchgrass and remained in the treated leaf of johnson grass

  20. Native Grass Community Management Plan for the Oak Ridge Reservation

    Energy Technology Data Exchange (ETDEWEB)

    Ryon, Michael G [ORNL; Parr, Patricia Dreyer [ORNL; Cohen, Kari [ORNL

    2007-06-01

    Land managers at the Department of Energy's Oak Ridge National Laboratory in East Tennessee are restoring native warm-season grasses and wildflowers to various sites across the Oak Ridge Reservation (ORR). Some of the numerous benefits to planting native grasses and forbs include improved habitat quality for wildlife, improved aesthetic values, lower long-term maintenance costs, and compliance with Executive Order 13112 (Clinton 1999). Challenges to restoring native plants on the ORR include the need to gain experience in establishing and maintaining these communities and the potentially greater up-front costs of getting native grasses established. The goals of the native grass program are generally outlined on a fiscal-year basis. An overview of some of the issues associated with the successful and cost-effective establishment and maintenance of native grass and wildflower stands on the ORR is presented in this report.

  1. Reversing land degradation through grasses: a systematic meta-analysis in the Indian tropics

    Science.gov (United States)

    Mandal, Debashis; Srivastava, Pankaj; Giri, Nishita; Kaushal, Rajesh; Cerda, Artemi; Meherul Alam, Nurnabi

    2017-02-01

    Although intensive agriculture is necessary to sustain the world's growing population, accelerated soil erosion contributes to a decrease in the environmental health of ecosystems at local, regional and global scales. Reversing the process of land degradation using vegetative measures is of utmost importance in such ecosystems. The present study critically analyzes the effect of grasses in reversing the process of land degradation using a systematic review. The collected information was segregated under three different land use and land management situations. Meta-analysis was applied to test the hypothesis that the use of grasses reduces runoff and soil erosion. The effect of grasses was deduced for grass strip and in combination with physical structures. Similarly, the effects of grasses were analyzed in degraded pasture lands. The overall result of the meta-analysis showed that infiltration capacity increased approximately 2-fold after planting grasses across the slopes in agricultural fields. Grazing land management through a cut-and-carry system increased conservation efficiencies by 42 and 63 % with respect to reduction in runoff and erosion, respectively. Considering the comprehensive performance index (CPI), it has been observed that hybrid Napier (Pennisetum purpureum) and sambuta (Saccharum munja) grass seem to posses the most desirable attributes as an effective grass barrier for the western Himalayas and Eastern Ghats, while natural grass (Dichanthium annulatum) and broom grass (Thysanolaena maxima) are found to be most promising grass species for the Konkan region of the Western Ghats and the northeastern Himalayan region, respectively. In addition to these benefits, it was also observed that soil carbon loss can be reduced by 83 % with the use of grasses. Overall, efficacy for erosion control of various grasses was more than 60 %; hence, their selection should be based on the production potential of these grasses under given edaphic and agro

  2. Grass genomes

    OpenAIRE

    Bennetzen, Jeffrey L.; SanMiguel, Phillip; Chen, Mingsheng; Tikhonov, Alexander; Francki, Michael; Avramova, Zoya

    1998-01-01

    For the most part, studies of grass genome structure have been limited to the generation of whole-genome genetic maps or the fine structure and sequence analysis of single genes or gene clusters. We have investigated large contiguous segments of the genomes of maize, sorghum, and rice, primarily focusing on intergenic spaces. Our data indicate that much (>50%) of the maize genome is composed of interspersed repetitive DNAs, primarily nested retrotransposons that in...

  3. Anaerobic co-digestion of sewage sludge with shredded grass from public green spaces.

    Science.gov (United States)

    Hidaka, Taira; Arai, Sayuri; Okamoto, Seiichiro; Uchida, Tsutomu

    2013-02-01

    Adding greenery from public spaces to the co-digestion process with sewage sludge was evaluated by shredding experiments and laboratory-scale batch and continuous mesophilic anaerobic fermentation experiments. The ratio of the shredded grass with 20mm or less in length by a commercially available shredder was 93%. The methane production was around 0.2NL/gVS-grass in the batch experiment. The continuous experiment fed with sewage sludge and shredded grass was stably operated for 81days. The average methane production was 0.09NL/gVS-grass when the TS ratio of the sewage sludge and the grass was 10:1. This value was smaller than those of other reports using grass silage, but the grass species in this study were not managed, and the collected grass was just shredded and not ensiled before feeding to the reactor for simple operation. The addition of grass to a digester can improve the carbon/nitrogen ratio, methane production and dewaterability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Potential of Electric Power Production from Microbial Fuel Cell (MFC in Evapotranspiration Reactor for Leachate Treatment Using Alocasia macrorrhiza Plant and Eleusine indica Grass

    Directory of Open Access Journals (Sweden)

    Zaman Badrus

    2018-01-01

    Full Text Available Microbial fuel cell is one of attractive electric power generator from nature bacterial activity. While, Evapotranspiration is one of the waste water treatment system which developed to eliminate biological weakness that utilize the natural evaporation process and bacterial activity on plant roots and plant media. This study aims to determine the potential of electrical energy from leachate treatment using evapotranspiration reactor. The study was conducted using local plant, namely Alocasia macrorrhiza and local grass, namely Eleusine Indica. The system was using horizontal MFC by placing the cathodes and anodes at different chamber (i.e. in the leachate reactor and reactor with plant media. Carbon plates was used for chatode-anodes material with size of 40 cm x 10 cm x1 cm. Electrical power production was measure by a digital multimeter for 30 days reactor operation. The result shows electric power production was fluctuated during reactor operation from all reactors. The electric power generated from each reactor was fluctuated, but from the reactor using Alocasia macrorrhiza plant reach to 70 μwatt average. From the reactor using Eleusine Indica grass was reached 60 μwatt average. Electric power production fluctuation is related to the bacterial growth pattern in the soil media and on the plant roots which undergo the adaptation process until the middle of the operational period and then in stable growth condition until the end of the reactor operation. The results indicate that the evapotranspiration reactor using Alocasia macrorrhiza plant was 60-95% higher electric power potential than using Eleusine Indica grass in short-term (30-day operation. Although, MFC system in evapotranspiration reactor system was one of potential system for renewable electric power generation.

  5. Evaluation of the grass mixture (Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp.) as Sb phyto-stabilizer in tailings and Sb-rich soils.

    Science.gov (United States)

    Aurora Armienta, M.; Beltrán-Villavicencio, Margarita; Ruiz-Villalobos, Carlos E.; Labastida, Israel; Ceniceros, Nora; Cruz, Olivia; Aguayo, Alejandra

    2017-04-01

    Green house experiments were carried out to evaluate the growth and Sb assimilation of a grass assemblage: Faestuca Rubra, Cynodon Dactylon, Lolium Multiflorum and Pennisetum sp, in tailings and Sb-rich soils. Tailings and soil samples were obtained at the Mexican historical mining zone of Zimapán, Central México. More than 6 tailings impoundments are located at the town outskirts and constitute a contamination source from windblown and waterborne deposit on soils, besides acid mine drainage. Four substrates were used in the experiments: 100% tailings, 20% tailings + 80% soil, 50% tailings + 50% soil , and a soil sample far from tailings as a background. Concentrations of Sb ranged from 310 mg/kg to 413 mg/kg in tailings. A pH of 7.43, 1.27% organic matter, and high concentrations of N, K and P indicated adequate conditions for plant growth. The grass assemblage was raised during 21 days as indicated by OECD (Organisation for Economic Co-operation and Development) Guideline 208 Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. The highest Sb concentrations were measured in plants grown on tailings with 139 mg/kg in the aerial part and 883 mg/kg in roots. Concentrations of Sb decreased as the proportion of tailings diminished with 22.1 mg/kg in the aerial part and 10 mg/kg in roots corresponding to the plants grown in the 20 % tailings + 80% soil . Bioaccumulation (BAC) and bioconcentration factors (BF) of plants grown on tailings (BAC= 0.42, BCF=3.93) indicated their suitability as a phyto-stabilization option. The grass mixture may be thus applied to control windblown particulate tailings taking advantage to their tolerance to high Sb levels.

  6. Grass plants bind, retain, uptake, and transport infectious prions.

    Science.gov (United States)

    Pritzkow, Sandra; Morales, Rodrigo; Moda, Fabio; Khan, Uffaf; Telling, Glenn C; Hoover, Edward; Soto, Claudio

    2015-05-26

    Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Assessment of some macromineral concentration of a grass/ legume ...

    African Journals Online (AJOL)

    Assessment of some macromineral concentration of a grass/ legume sward in ... Bulletin of Animal Health and Production in Africa ... The study aimed to determine the concentration of some macromineral elements in the grass/legume pasture ...

  8. Production of N2O in grass-clover pastures

    International Nuclear Information System (INIS)

    Carter, M.S.

    2005-09-01

    Agricultural soils are known to be a considerable source of the strong greenhouse gas nitrous oxide (N 2 O), and in soil N 2 O is mainly produced by nitrifying and denitrifying bacteria. In Denmark, grass-clover pastures are an important component of the cropping system in organic as well as conventional dairy farming, and on a European scale grass-clover mixtures represent a large part of the grazed grasslands. Biological dinitrogen (N 2 ) fixation in clover provides a major N input to these systems, but knowledge is sparse regarding the amount of fixed N 2 lost from the grasslands as N2O. Furthermore, urine patches deposited by grazing cattle are known to be hot-spots of N 2 O emission, but the mechanisms involved in the N 2 O production in urine-affected soil are very complex and not well understood. The aim of this Ph.D. project was to increase the knowledge of the biological and physical-chemical mechanisms, which control the production of N2O in grazed grass-clover pastures. Three experimental studies were conducted with the objectives of: 1: assessing the contribution of recently fixed N 2 as a source of N 2 O. 2: examining the link between N 2 O emission and carbon mineralization in urine patches. 3: investigating the effect of urine on the rates and N 2 O loss ratios of nitrification and denitrification, and evaluating the impact of the chemical conditions that arise in urine affected soil. The results revealed that only 3.2 ± 0.5 ppm of the recently fixed N 2 was emitted as N2O on a daily basis. Thus, recently fixed N released via easily degradable clover residues appears to be a minor source of N2O. Furthermore, increased N 2 O emission following urine application at rates up to 5.5 g N m -2 was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots. Finally, the increase of soil pH and ammonium following urine application led to raised nitrification rate, which appeared to be the most important factor

  9. Environmental performance assessment of Napier grass for bioenergy production

    DEFF Research Database (Denmark)

    Nimmanterdwong, Prathana; Chalermsinsuwan, Benjapon; Østergård, Hanne

    2017-01-01

    equivalence. This idea provides the quantitative indicators involving the resource use and the percent renewability of the systems. For the proposed biorefinery model, Napier grass (Pennisetum purpureum) grown in Thailand was used as lignocellulosic feedstock. An emergy assessment was performed in two parts...... cultivation and biorefinery stages. For Napier grass cultivation, most of the emergy support came from local resources in term of evapotranspiration of Napier grass (33%) and the diesel consumption during the cultivation process (21%). The emergy sustainability indicator of the cultivation was 0...

  10. Small mammal use of native warm-season and non-native cool-season grass forage fields

    Science.gov (United States)

    Ryan L Klimstra,; Christopher E Moorman,; Converse, Sarah J.; Royle, J. Andrew; Craig A Harper,

    2015-01-01

    Recent emphasis has been put on establishing native warm-season grasses for forage production because it is thought native warm-season grasses provide higher quality wildlife habitat than do non-native cool-season grasses. However, it is not clear whether native warm-season grass fields provide better resources for small mammals than currently are available in non-native cool-season grass forage production fields. We developed a hierarchical spatially explicit capture-recapture model to compare abundance of hispid cotton rats (Sigmodon hispidus), white-footed mice (Peromyscus leucopus), and house mice (Mus musculus) among 4 hayed non-native cool-season grass fields, 4 hayed native warm-season grass fields, and 4 native warm-season grass-forb ("wildlife") fields managed for wildlife during 2 summer trapping periods in 2009 and 2010 of the western piedmont of North Carolina, USA. Cotton rat abundance estimates were greater in wildlife fields than in native warm-season grass and non-native cool-season grass fields and greater in native warm-season grass fields than in non-native cool-season grass fields. Abundances of white-footed mouse and house mouse populations were lower in wildlife fields than in native warm-season grass and non-native cool-season grass fields, but the abundances were not different between the native warm-season grass and non-native cool-season grass fields. Lack of cover following haying in non-native cool-season grass and native warm-season grass fields likely was the key factor limiting small mammal abundance, especially cotton rats, in forage fields. Retention of vegetation structure in managed forage production systems, either by alternately resting cool-season and warm-season grass forage fields or by leaving unharvested field borders, should provide refugia for small mammals during haying events.

  11. Lateral root organogenesis - from cell to organ.

    Science.gov (United States)

    Benková, Eva; Bielach, Agnieszka

    2010-12-01

    Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Effect of competition and soil quality on root topology of the perennial grass Molinia caerulea

    Czech Academy of Sciences Publication Activity Database

    Janeček, Štěpán; Janečková, P.; Lepš, Jan

    2007-01-01

    Roč. 79, č. 1 (2007), s. 23-32 ISSN 0032-7786 R&D Projects: GA ČR GD206/03/H034 Institutional research plan: CEZ:AV0Z60050516; CEZ:AV0Z50070508 Keywords : Carex hartmanii * Holcus lanatus * Molinia caerulea * root Subject RIV: EF - Botanics Impact factor: 2.064, year: 2007

  13. Linking phenology and biomass productivity in South Dakota mixed-grass prairie

    Science.gov (United States)

    Rigge, Matthew; Smart, Alexander; Wylie, Bruce; Gilmanov, Tagir; Johnson, Patricia

    2013-01-01

    Assessing the health of rangeland ecosystems based solely on annual biomass production does not fully describe plant community condition; the phenology of production can provide inferences on species composition, successional stage, and grazing impacts. We evaluate the productivity and phenology of western South Dakota mixed-grass prairie using 2000 to 2008 Moderate Resolution Imaging Spectrometer (MODIS) normalized difference vegetation index (NDVI) satellite imagery at 250 m spatial resolution. Growing season NDVI images were integrated weekly to produce time-integrated NDVI (TIN), a proxy of total annual biomass production, and integrated seasonally to represent annual production by cool (C3) and warm (C4) season species. Additionally, a variety of phenological indicators including cool season percentage of TIN were derived from the seasonal profiles of NDVI. Cool season percentage and TIN were combined to generate vegetation classes, which served as proxies of plant community condition. TIN decreased with precipitation from east to west across the study area. Alternatively, cool season percentage increased from east to west, following patterns related to the reliability (interannual coefficient of variation [CV]) and quantity of mid-summer precipitation. Cool season TIN averaged 76.8% of total. Seasonal accumulation of TIN corresponded closely (R2 > 0.90) to that of gross photosynthesis data from a carbon flux tower. Field-collected biomass and community composition data were strongly related to the TIN and cool season percentage products. The patterns of vegetation classes were responsive to topographic, edaphic, and land management influences on plant communities. Accurate maps of biomass production, cool/warm season composition, and vegetation classes can improve the efficiency of land management by adjusting stocking rates and season of use to maximize rangeland productivity and achieve conservation objectives. Further, our results clarify the spatial and

  14. Agricultural field reclamation utilizing native grass crop production

    Science.gov (United States)

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  15. Phosphorus effect on the uptake, translocation and accumulation of the 14C-urea in orchard grass (Dactylis glomerata L.)

    International Nuclear Information System (INIS)

    Panak, H.; Nowak, G.; Nowak, J.; Akademia Rolniczo-Technicza, Olsztyn

    1981-01-01

    The effect of different phosphorus supplies on the uptake, translocation and accumulation of 14 C-urea by orchard grass was investigated. Phosphorus starvation inhibits the uptake, translocation and accumulation of the carbon of urea similarly to the nitrogen of urea. As compared with the uptake process the reduction of the accumulation is much more effected by the inhibition of the carbon translocation from roots to the aboveground parts. Lack of phosphorus also decreases the incorporation of the 14 C of urea into high-molecular compounds. The effect of phosphorus deficit on the accumulation of 14 C-urea increases with time of starvation. (orig.)

  16. On the new situation to descend a basic level technology library information service work

    International Nuclear Information System (INIS)

    Sun Haiyan

    2010-01-01

    With information technology fast developing. library can give readers modernization service. The results of information technology revolution can be used in library. Information materials can be supplied by acoustic image and researching in internet. In this document, we analysis the characteristics, present situations and developments of grass-roots libraries. Discuss the questions in grass-roots science-technology library in nuclear industry, improving the grass-roots equipments, developing various data library, and how to improve the quality of information service in grass-roots library. (author)

  17. Impact on Clover-Grass Yield from Wheel Load and Tyre Pressure

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Sørensen, Claus Aage Grøn

    2009-01-01

    Traffic intensities have been shown to have a negative influence on the yield of grass and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16 different traffi...

  18. Identification of grazed grasses using epidermal characters | R ...

    African Journals Online (AJOL)

    The use of anatomical features of the abaxial epidermis of grasses is discussed for the identification of fragments of epidermis present in samples of rumen. The reliability of this technique, and the variation of the epidermal characters in two widely distributed species of grass, is given. A "Key" to identity certain genera of ...

  19. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa.

    Directory of Open Access Journals (Sweden)

    Yan-Hong Yan

    Full Text Available In order to find a way to induce rooting on cuttings of Hemarthria compressa cv. Ya'an under controlled conditions, a project was carried out to study the effect of naphthalene acetic acid (NAA on rooting in stem cuttings and related physiological changes during the rooting process of Hemarthria compressa. The cuttings were treated with five concentrations of NAA (0, 100, 200 300, 400 mg/l at three soaking durations (10, 20, 30 minutes, and cuttings without treatment were considered as control. Samples were planted immediately into pots after treatment. IAA-oxidase (IAAO activity, peroxidase (POD activity and polyphenol oxidase (PPO activity were determined after planting. Results showed that NAA had positive effect on rooting at the concentration of 200 mg/l compared to other concentrations at 30 days after planting (DAP. Among the three soaking durations, 20 minutes (min of 200 mg/l NAA resulted in higher percentages of rooting, larger numbers of adventitious roots and heavier root dry weight per cutting. The lowest IAAO activity was obtained when soaked at 200 mg/l NAA for 20 min soaking duration. This was consistent with the best rooting ability, indicating that the lower IAAO activity, the higher POD activity and PPO activity could be used as an indicator of better rooting ability for whip grass cuttings and might serve as a good marker for rooting ability in cuttings.

  20. An In-Situ Root-Imaging System in the Context of Surface Detection of CO2

    Science.gov (United States)

    Apple, M. E.; Prince, J. B.; Bradley, A. R.; Zhou, X.; Lakkaraju, V. R.; Male, E. J.; Pickles, W.; Thordsen, J. J.; Dobeck, L.; Cunningham, A.; Spangler, L.

    2009-12-01

    Carbon sequestration is a valuable method of spatially confining CO2 belowground. The Zero Emissions Research Technology, (ZERT), site is an experimental facility in a former agricultural field on the Montana State University campus in Bozeman, Montana, where CO2 was experimentally released at a rate of 200kg/day in 2009 into a 100 meter underground injection well running parallel to the ground surface. This injection well, or pipe, has deliberate leaks at intervals, and CO2 travels from these leaks upward to the surface of the ground. The ZERT site is a model system designed with the purpose of testing methods of surface detection of CO2. One important aspect of surface detection is the determination of the effects of CO2 on the above and belowground portions of plants growing above sequestration fields. At ZERT, these plants consist of a pre-existing mixture of herbaceous species present at the agricultural field. Species growing at the ZERT site include several grasses, Dactylis glomerata (Orchard Grass), Poa pratensis (Kentucky Bluegrass), and Bromus japonicus (Japanese Brome); the nitrogen-fixing legumes Medicago sativa, (Alfalfa), and Lotus corniculatus, (Birdsfoot trefoil); and an abundance of Taraxacum officinale, (Dandelion). Although the aboveground parts of the plants at high CO2 are stressed, as indicated by changes in hyperspectral plant signatures, leaf fluorescence and leaf chlorophyll content, we are interested in determining whether the roots are also stressed. To do so, we are combining measurements of soil conductivity and soil moisture with root imaging. We are using an in-situ root-imaging system manufactured by CID, Inc. (Camas, WA), along with image analysis software (Image-J) to analyze morphometric parameters in the images and to determine what effects, if any, the presence of leaking and subsequently upwelling CO2 has on the phenology of root growth, growth and turnover of individual fine and coarse roots, branching patterns, and root

  1. The effects of arbuscular mycorrhizal fungi and root interaction on the competition between Trifolium repens and Lolium perenne.

    Science.gov (United States)

    Ren, Haiyan; Gao, Tao; Hu, Jian; Yang, Gaowen

    2017-01-01

    Understanding the factors that alter competitive interactions and coexistence between plants is a key issue in ecological research. A pot experiment was conducted to test the effects of root interaction and arbuscular mycorrhizal fungi (AMF) inoculation on the interspecies competition between Trifolium repens and Lolium perenne under different proportions of mixed sowing by the combination treatment of two levels of AMF inoculation (inoculation and non-inoculation) and two levels of root interaction (root interaction and non-root interaction). Overall, the aboveground and belowground biomass of T. repens and L. perenne were not altered by AMF inoculation across planting ratios, probably because the fertile soil reduced the positive effect of AMF on plant growth. Both inter- and intraspecies root interaction significantly decreased the aboveground biomass of T. repens , but tended to increase the aboveground biomass of L. perenne across planting ratios, and thus peaked at the 4:4 polyculture. These results showed that T. repens competed poorly with L. perenne because of inter and intraspecies root interaction. Our results indicate that interspecies root interaction regulates the competitive ability of grass L. perenne and legume T. repens in mixtures and further makes great contribution for overyielding. Furthermore, AMF may not be involved in plant-plant interaction in fertile condition.

  2. The effects of arbuscular mycorrhizal fungi and root interaction on the competition between Trifolium repens and Lolium perenne

    Directory of Open Access Journals (Sweden)

    Haiyan Ren

    2017-12-01

    Full Text Available Understanding the factors that alter competitive interactions and coexistence between plants is a key issue in ecological research. A pot experiment was conducted to test the effects of root interaction and arbuscular mycorrhizal fungi (AMF inoculation on the interspecies competition between Trifolium repens and Lolium perenne under different proportions of mixed sowing by the combination treatment of two levels of AMF inoculation (inoculation and non-inoculation and two levels of root interaction (root interaction and non-root interaction. Overall, the aboveground and belowground biomass of T. repens and L. perenne were not altered by AMF inoculation across planting ratios, probably because the fertile soil reduced the positive effect of AMF on plant growth. Both inter- and intraspecies root interaction significantly decreased the aboveground biomass of T. repens, but tended to increase the aboveground biomass of L. perenne across planting ratios, and thus peaked at the 4:4 polyculture. These results showed that T. repens competed poorly with L. perenne because of inter and intraspecies root interaction. Our results indicate that interspecies root interaction regulates the competitive ability of grass L. perenne and legume T. repens in mixtures and further makes great contribution for overyielding. Furthermore, AMF may not be involved in plant–plant interaction in fertile condition.

  3. Turbulent transfer characteristics of radioiodine effluents from air to grass

    Energy Technology Data Exchange (ETDEWEB)

    Markee, E. H. [ARFRO, Environmental Science Services Administration, Idaho Falls, Idaho (United States)

    1967-07-01

    A total of 20 controlled field releases of radioiodine have been performed at the National Reactor Testing Station in Idaho as a portion of a program to study the transmission of gaseous radioiodine through the air-vegetation-cow-milk-human chain. Most of the releases were conducted over typical pasture grasses during different wind and stability conditions. Radioiodine adherence to grass and carbon plates was measured during most of the tests. Vertical air concentration profiles and turbulence parameters were measured to determine flux characteristics. Analysis of the data reveals the complex interdisciplinary nature of transfer of radioiodine from air to a natural surface. The data are in reasonable agreement with the deposition models of Sheppard and Chamberlain when corrections for the physical and biological receptiveness of the grass and grass density are made. The average ratios of momentum to mass flux were found to be 0.9 in stable conditions and 1.4 in unstable conditions. These ratios demonstrate the effect on mass flux in the lowest 4m by a surface that acts as a partial sink for gaseous effluents. This series of releases indicates the need for further research on the biological receptiveness of grass and turbulent transfer within a grass canopy. (author)

  4. Sources of N2O in organic grass-clover pastures

    OpenAIRE

    Ambus, P.

    2002-01-01

    Organic farming practises, and in particular dairy production systems based on grass-clover pastures are becoming increasingly abundant within Danish agriculture. Grass-clover pastures may provide a mitigation option to reduce grassland nitrous oxide (N2O) emissions (Velthof et al. 1998). The objectives of this work was to examine the relationship between N2O emissions and transformations of inorganic N in organically managed grass-clover pastures of different ages. Results from the projec...

  5. Associations of Pseudomonas species and forage grasses enhance degradation of chlorinated benzoic acids in soil

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, S. D.

    1998-12-01

    Using chlorinated benzoic acid (CBA) as a model compound, this study attempted to show that microorganisms and plants can be used as bioremediation agents to clean up contaminated soil sites in a cost effective and environmentally friendly manner. CBA was used because it is present in soils contaminated with polychlorinated biphenyls (PCBs), or chlorinated pesticides. Sixteen forage grasses were screened in combination with 12 bacterial inoculants for their ability to promote the degradation of CBA in soil. Five associations of plants and bacteria were found to degrade CBA to a greater extent than plants without bacterial inoculants. Bacterial inoculants were shown to stimulate CBA degradation by altering the microbial community present on the root surface and thereby increasing the ability of this community to degrade CBA.

  6. Metabolic reconstruction of Setaria italica: a systems biology approach for integrating tissue-specific omics and pathway analysis of bioenergy grasses

    Directory of Open Access Journals (Sweden)

    Cristiana Gomes De Oliveira Dal'molin

    2016-08-01

    Full Text Available The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica, as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S.italica. mRNA, protein and metabolite abundances, were measured in mature and immature stem/leaf phytomers and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME. Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study

  7. Metabolic Reconstruction of Setaria italica: A Systems Biology Approach for Integrating Tissue-Specific Omics and Pathway Analysis of Bioenergy Grasses.

    Science.gov (United States)

    de Oliveira Dal'Molin, Cristiana G; Orellana, Camila; Gebbie, Leigh; Steen, Jennifer; Hodson, Mark P; Chrysanthopoulos, Panagiotis; Plan, Manuel R; McQualter, Richard; Palfreyman, Robin W; Nielsen, Lars K

    2016-01-01

    The urgent need for major gains in industrial crops productivity and in biofuel production from bioenergy grasses have reinforced attention on understanding C4 photosynthesis. Systems biology studies of C4 model plants may reveal important features of C4 metabolism. Here we chose foxtail millet (Setaria italica), as a C4 model plant and developed protocols to perform systems biology studies. As part of the systems approach, we have developed and used a genome-scale metabolic reconstruction in combination with the use of multi-omics technologies to gain more insights into the metabolism of S. italica. mRNA, protein, and metabolite abundances, were measured in mature and immature stem/leaf phytomers, and the multi-omics data were integrated into the metabolic reconstruction framework to capture key metabolic features in different developmental stages of the plant. RNA-Seq reads were mapped to the S. italica resulting for 83% coverage of the protein coding genes of S. italica. Besides revealing similarities and differences in central metabolism of mature and immature tissues, transcriptome analysis indicates significant gene expression of two malic enzyme isoforms (NADP- ME and NAD-ME). Although much greater expression levels of NADP-ME genes are observed and confirmed by the correspondent protein abundances in the samples, the expression of multiple genes combined to the significant abundance of metabolites that participates in C4 metabolism of NAD-ME and NADP-ME subtypes suggest that S. italica may use mixed decarboxylation modes of C4 photosynthetic pathways under different plant developmental stages. The overall analysis also indicates different levels of regulation in mature and immature tissues in carbon fixation, glycolysis, TCA cycle, amino acids, fatty acids, lignin, and cellulose syntheses. Altogether, the multi-omics analysis reveals different biological entities and their interrelation and regulation over plant development. With this study, we demonstrated

  8. Symbiosis in the Context of an Invasive, Non-Native Grass: Fungal Biodiversity and Student Engagement

    Science.gov (United States)

    Lehr, Gavin

    Grasslands in the western United States face severe environmental threats including those brought about by climate change, such as changes in precipitation regimes and altered fire cycles; land-use conversion and development; and the introduction, establishment, and spread of non-native species. Lehmann's lovegrass (Eragrostis lehmanniana) was introduced to the southwestern United States in the early 1900s. Since its introduction, it has become the dominant grass in the mid-elevation grasslands of southern Arizona, including the Santa Rita Experimental Range (SRER), where it has displaced native grasses including Arizona cottontop, three awns, and gramas. Like all plants in terrestrial ecosystems, this grass harbors fungal symbionts that can be important for its establishment and persistence. This thesis focuses on fungal symbionts of Lehmann's lovegrass and has two components. First, the diversity and distributions of endophytes in Lehmann's lovegrass are evaluated in the context of biotic and abiotic factors in the SRER. Culturing from roots and shoots of Lehmann's lovegrass at points beneath and outside the canopy of native mesquites, which are encroaching on grasslands over time, provides insight into how a single plant species can exhibit local variation in the composition of its symbionts. Second, the thesis is used as the basis for engagement of students in science, technology, engineering, and mathematics (STEM) through the development and implementation of classroom- and field activities centered on endophytes, which help high school students address core learning aims while also gaining real research experience. Engaging students in important questions relevant to their local environment can catalyze interest in science and help students cross the threshold into research. The contributions of such approaches with respect to learning not only fulfills key next-generation science standards and common core objectives, but provides students with a meaningful

  9. Effects of conventional and grass-feeding systems on the nutrient composition of beef.

    Science.gov (United States)

    Leheska, J M; Thompson, L D; Howe, J C; Hentges, E; Boyce, J; Brooks, J C; Shriver, B; Hoover, L; Miller, M F

    2008-12-01

    The objectives of this study were to determine the nutrient composition of grass-fed beef in the United States for inclusion in the USDA National Nutrient Database for Standard Reference, and to compare the fatty acid composition of grass-fed and conventionally fed (control) beef. Ground beef (GB) and strip steaks (SS) were collected on 3 separate occasions from 15 grass-fed beef producers that represented 13 different states, whereas control beef samples were collected from 3 regions (Ohio, South Dakota, and Texas) of the United States on 3 separate occasions. Concentrations of minerals, choline, vitamin B(12), and thiamine were determined for grass-fed beef samples. Grass-fed GB samples had less Mg, P, and K (P < 0.05), and more Na, Zn, and vitamin B(12) (P < 0.05) than SS samples. Fat color, marbling, and pH were assessed for grass-fed and control SS. Subjective evaluation of the SS indicated that grass-fed beef had fat that was more yellow in color than control beef. Percentages of total fat, total cholesterol, and fatty acids along with trans fatty acids and CLA were determined for grass-fed and control SS and GB. Grass-fed SS had less total fat than control SS (P = 0.001), but both grass-fed and control SS were considered lean, because their total fat content was 4.3% or less. For both GB and SS, grass-fed beef had significantly less (P = 0.001 and P = 0.023, respectively) content of MUFA and a greater content of SFA, n-3 fatty acids, CLA, and trans-vaccenic acid than did the control samples. Concentrations of PUFA, trans fatty acids, n-6 fatty acids, and cholesterol did not differ between grass-fed and control ground beef. Trans-vaccenic acid (trans-11 18:1) made up the greatest concentration of the total trans fats in grass-fed beef, whereas CLA accounted for approximately 15% of the total trans fats. Although the fatty acid composition of grass-fed and conventionally fed beef was different, conclusions on the possible effects of these differences on human

  10. Biogas and Methane Yield from Rye Grass

    Directory of Open Access Journals (Sweden)

    Tomáš Vítěz

    2015-01-01

    Full Text Available Biogas production in the Czech Republic has expanded substantially, including marginal regions for maize cultivation. Therefore, there are increasingly sought materials that could partially replace maize silage, as a basic feedstock, while secure both biogas production and its quality.Two samples of rye grass (Lolium multiflorum var. westerwoldicum silage with different solids content 21% and 15% were measured for biogas and methane yield. Rye grass silage with solid content of 15% reached an average specific biogas yield 0.431 m3·kg−1 of organic dry matter and an average specific methane yield 0.249 m3·kg−1 of organic dry matter. Rye grass silage with solid content 21% reached an average specific biogas yield 0.654 m3·kg−1 of organic dry matter and an average specific methane yield 0.399 m3·kg−1 of organic dry matter.

  11. Effects of feeding dairy cows different legume-grass silages on milk phytoestrogen concentration

    DEFF Research Database (Denmark)

    Höjer, A; Adler, S; Purup, Stig

    2012-01-01

    interval of legume-grass silage on phytoestrogen intake and milk phytoestrogen concentrations. In one experiment, 15 Swedish Red dairy cows were fed 2- or 3-cut red clover-grass silage, or 2-cut birdsfoot trefoil-grass silage. In a second experiment, 16 Norwegian Red dairy cows were fed short-term ley...... red clover-grass silage diet (1,494μg/kg of milk). Because of the metabolism of biochanin A, genistein, and prunetin, their concentrations in milk and the apparent recovery were low. Coumestrol was detected in only short-term and long-term ley silage mixtures, and its milk concentration was low....... Concentrations of secoisolariciresinol and matairesinol were higher in 2-cut birdsfoot trefoil-grass and long-term ley silage mixtures, those with legume species other than red clover, and the highest grass proportions. The 2-cut birdsfoot trefoil-grass silage diet also resulted in higher enterolactone...

  12. Results from the 5-year SQ grass sublingual immunotherapy tablet asthma prevention (GAP) trial in children with grass pollen allergy

    DEFF Research Database (Denmark)

    Valovirta, Erkka; Petersen, Thomas H; Piotrowska, Teresa

    2018-01-01

    BACKGROUND: Allergy immunotherapy targets the immunological cause of allergic rhinoconjunctivitis and allergic asthma and has the potential to alter the natural course of allergic disease. OBJECTIVE: The primary objective was to investigate the effect of the SQ grass sublingual immunotherapy tablet...... compared with placebo on the risk of developing asthma. METHODS: A total of 812 children (5-12 years), with a clinically relevant history of grass pollen allergic rhinoconjunctivitis and no medical history or signs of asthma, were included in the randomized, double-blind, placebo-controlled trial......, comprising 3 years of treatment and 2 years of follow-up. RESULTS: There was no difference in time to onset of asthma, defined by prespecified asthma criteria relying on documented reversible impairment of lung function (primary endpoint). Treatment with the SQ grass sublingual immunotherapy tablet...

  13. A novel method to characterize silica bodies in grasses.

    Science.gov (United States)

    Dabney, Clemon; Ostergaard, Jason; Watkins, Eric; Chen, Changbin

    2016-01-01

    The deposition of silicon into epidermal cells of grass species is thought to be an important mechanism that plants use as a defense against pests and environmental stresses. There are a number of techniques available to study the size, density and distribution pattern of silica bodies in grass leaves. However, none of those techniques can provide a high-throughput analysis, especially for a great number of samples. We developed a method utilizing the autofluorescence of silica bodies to investigate their size and distribution, along with the number of carbon inclusions within the silica bodies of perennial grass species Koeleria macrantha. Fluorescence images were analyzed by image software Adobe Photoshop CS5 or ImageJ that remarkably facilitated the quantification of silica bodies in the dry ash. We observed three types of silica bodies or silica body related mineral structures. Silica bodies were detected on both abaxial and adaxial epidermis of K. macrantha leaves, although their sizes, density, and distribution patterns were different. No auto-fluorescence was detected from carbon inclusions. The combination of fluorescence microscopy and image processing software displayed efficient utilization in the identification and quantification of silica bodies in K. macrantha leaf tissues, which should applicable to biological, ecological and geological studies of grasses including forage, turf grasses and cereal crops.

  14. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Estimation of grass to cow's milk transfer coefficients for emergency situations

    International Nuclear Information System (INIS)

    Ujwal, P.; Karunakara, N.; Yashodhara, I.; Rao, Chetan; Kumara, Sudeep; Dileep, B.N.; Ravi, P.M.

    2012-01-01

    Several studies have been reported on soil to grass equilibrium transfer factors and grass to cow's milk transfer coefficients for 137 Cs for the environs of different nuclear power plants of both India and other parts of the world. In such studies, the activity concentration of 137 Cs is measured in grass collected from different places. Cow's milk samples are collected from nearby localities or from milk dairies and analyzed for 137 Cs and the grass to cow's milk transfer coefficient is estimated. In situation where 137 Cs is not present in measurable activity concentrations, its stable counterpart (Cs) is measured for the estimation of transfer coefficients. These transfer coefficient values are generally used in theoretical models to estimate the dose to the population for hypothetical situation of emergency. It should be noted that the transfer coefficients obtained for equilibrium conditions may not be totally applicable for emergency situation. However, studies aimed at evaluating transfer coefficients for emergency situations are sparse because nuclear power plants do not release 137 Cs during normal operating situations and therefore simulating situation of emergency release is not possible. Hence, the only method to estimate the grass to milk transfer coefficient for emergency situation is to spike the grass with small quantity of stable Cs. This paper reports the results of grass to milk transfer coefficients for stable isotope of Cesium (Cs) for emergency situation

  16. Grass Roots Design for the Ocean Science of Tomorrow

    Science.gov (United States)

    Jul, S.; Peach, C. L.; Kilb, D. L.; Schofield, O.; Fisher, C.; Quintana, C.; Keen, C. S.

    2010-12-01

    Current technologies offer the opportunity for ocean science to expand its traditional expeditionary base by embracing e-science methods of continuous interactive real-time research. The Ocean Observatories Initiative Cyberinfrastructure (OOI CI) is an NSF-funded effort to develop a national cyberinfrastructure that will allow researchers, educators and others to share in this new type of oceanography. The OOI is an environmental observatory spanning coastal waters to the deep ocean, enabled by the CI to offer scientists continuous interactive access to instruments in the ocean, and allow them to search, subscribe to and access real-time or archival data streams. It will also supply interactive analysis and visualization tools, and a virtual social environment for discovering and realizing collaborative opportunities. Most importantly, it provides an extensible open-access cyberinfrastructure that supports integration of new technologies and observatories, and which will allow adoption of its tools elsewhere, such as by the Integrated Ocean Observing System (IOOS). The eventual success of such a large and flexible system requires the input of a large number of people, and user-centered design has been a driving philosophy of the OOI CI from its beginning. Support for users’ real needs cannot be designed as an add-on or casual afterthought, but must be deeply embedded in all aspects of a project, from inception through architecture, implementation, and deployment. The OOI CI strategy is to employ the skills and knowledge of a small number of user experience professionals to channel and guide a very large collective effort to deliver tools, interfaces and interactions that are intellectually stimulating, scientifically productive, and conducive to innovation. Participation from all parts of the user community early in the design process is vital to meeting these goals. The OOI user experience team will be on hand to meet members of the Earth and ocean sciences

  17. Soil nitrogen mineralization not affected by grass species traits

    Science.gov (United States)

    Maged Ikram Nosshi; Jack Butler; M. J. Trlica

    2007-01-01

    Species N use traits was evaluated as a mechanism whereby Bromus inermis (Bromus), an established invasive, might alter soil N supply in a Northern mixed-grass prairie. We compared soils under stands of Bromus with those from three representative native grasses of different litter C/N: Andropogon...

  18. Factors affecting palatability of four submerged macrophytes for grass carp Ctenopharyngodon idella.

    Science.gov (United States)

    Sun, Jian; Wang, Long; Ma, Lin; Min, Fenli; Huang, Tao; Zhang, Yi; Wu, Zhenbin; He, Feng

    2017-12-01

    Grass carp can weaken the growth and reproductive capacity of submerged macrophytes by consuming valuable tissues, but factors affecting palatability of submerged macrophytes for grass carp rarely are considered. In this study, relative consumption rate of grass carp with regard to submerged macrophytes was in the following order: Hydrilla verticillata > Vallisneria natans > Ceratophyllum demersum > Myriophyllum spicatum. Firmness of macrophytes was in the following order: M. spicatum > C. demersum > H. verticillata = V. natans, whereas shear force was M. spicatum > C. demersum > H. verticillata > V. natans. After crude extracts of M. spicatum were combined with H. verticillata, grass carp fed on fewer macrophyte pellets that contained more plant secondary metabolites (PSMs). This indicated that structure and PSMs affected palatability of macrophytes.PSMs do not contribute to reduction in palatability through inhibition of intestinal proteinases activity, but they can cause a decrease in the abundance of Exiguobacterium, Acinetobacter-yielding proteases, lipases, and cellulose activity, which in turn can weaken the metabolic capacity of grass carp and adversely affect their growth. Thus, the disadvantages to the growth and development of grass carp caused by PSMs may drive grass carp to feed on palatable submerged macrophytes with lower PSMs.

  19. The design and development of GRASS file reservation system

    International Nuclear Information System (INIS)

    Huang Qiulan; Zhu Suijiang; Cheng Yaodong; Chen Gang

    2010-01-01

    GFRS (GRASS File Reservation System) is designed to improve the file access performance of GRASS (Grid-enabled Advanced Storage System) which is a Hierarchical Storage Management (HSM) system developed at Computing Center, Institute of High Energy Physics. GRASS can provide massive storage management and data migration, but the data migration policy is simply based factors such as pool water level, the intervals for migration and so on, so it is short of precise control over files. As for that, we design GFRS to implement user-based file reservation which is to reserve and keep the required files on disks for High Energy physicists. CFRS can improve file access speed for users by avoiding migrating frequently accessed files to tapes. In this paper we first give a brief introduction of GRASS system and then detailed architecture and implementation of GFRS. Experiments results from GFRS have shown good performance and a simple analysis is made based on it. (authors)

  20. Comparative growth analysis of cool- and warm-season grasses in a cool-temperate environment

    International Nuclear Information System (INIS)

    Belesky, D.P.; Fedders, J.M.

    1995-01-01

    Using both cool-season (C3) and warm-season (C4) species is a viable means of optimizing herbage productivity over varying climatic conditions in temperate environments. Despite well-documented differences in water, N, and radiation use, no consistent evidence demonstrates productivity differences among C3 and C4 perennial grass species under identical management. A field study was conducted to determine relative growth rates (RGR), nitrogen productivity (NP), and mean radiation productivity (RP) (dry matter production as a function of incident radiation) of cool- and warm-season grasses managed identically. Results were used to identify management practices thd could lead to optimal productivity in combinations or mixtures of cool- and warm-season grasses. Dry matter yields of warm-season grasses equaled or surpassed those of cool-season grasses, despite a 40% shorter growth interval. Certain cool- and warm-season grasses appear to be suitable for use in mixtures, based on distribution of herbage production; however, actual compatibility may be altered by defoliation management. Relative growth rates varied among years and were about 40% lower for canopies clipped to a 10-cm residue height each time 20-cm of growth accumulated compared with other treatments. The RGR of warm-season grasses was twice that of cool-season grasses Nitrogen productivity (g DM g-1 N d -1) and mean radiation productivity (g DM MJ-1) for warm-season grasses was also more than twice that of cool-season grasses. Radiation productivity of cool-season grasses was dependent on N, while this was not always the case for warm-season grasses. The superior production capability of certain warm-season compared with cool-season grasses in a cool-temperate environment can be sustained under a range of defoliation treatments and demonstrates suitability for use in frequently defoliated situations

  1. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    CAMERA (Community Cyber-infrastructure for Advanced Mi- crobial Ecology .... Acidobacteria known to metabolize a variety of car- bon sources .... [7] J Nesme et al., Back to the future of soil metagenomics, Frontiers in Microbi- ology, Vol.7 ...

  2. Metagenomics at Grass Roots

    Indian Academy of Sciences (India)

    Metagenomics is a robust, interdisciplinary approach for studyingmicrobial community composition, function, and dynamics.It typically involves a core of molecular biology, microbiology,ecology, statistics, and computational biology. Excitingoutcomes anticipated from these studies include unravelingof complex interactions ...

  3. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-01-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites

  4. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    French, Sean B.; Christensen, Candace; Jennings, Terry L.; Jaros, Christopher L.; Wykoff, David S.; Crowell, Kelly J.; Shuman, Rob

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited on the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and subsequent

  5. EBIPM | Finding the Tools to Manage Invasive Annual Grasses

    Science.gov (United States)

    management decisions for a given landscape based on ecological principles. Take a look at our video " Grass Management How much could prevention save you? Guidelines to Implement EBIPM Weed Prevention Areas Grass Facts/ID The EBIPM Model Crooked River Weed Management Area Guide Tools for Educators EBIPM High

  6. Resource Availability Alters Biodiversity Effects in Experimental Grass-Forb Mixtures.

    Directory of Open Access Journals (Sweden)

    Alrun Siebenkäs

    Full Text Available Numerous experiments, mostly performed in particular environments, have shown positive diversity-productivity relationships. Although the complementary use of resources is discussed as an important mechanism explaining diversity effects, less is known about how resource availability controls the strength of diversity effects and how this response depends on the functional composition of plant communities. We studied aboveground biomass production in experimental monocultures, two- and four-species mixtures assembled from two independent pools of four perennial grassland species, each representing two functional groups (grasses, forbs and two growth statures (small, tall, and exposed to different combinations of light and nutrient availability. On average, shade led to a decrease in aboveground biomass production of 24% while fertilization increased biomass production by 36%. Mixtures were on average more productive than expected from their monocultures (relative yield total, RYT>1 and showed positive net diversity effects (NE: +34% biomass increase; mixture minus mean monoculture biomass. Both trait-independent complementarity effects (TICE: +21% and dominance effects (DE: +12% positively contributed to net diversity effects, while trait-dependent complementarity effects were minor (TDCE: +1%. Shading did not alter diversity effects and overyielding. Fertilization decreased RYT and the proportion of biomass gain through TICE and TDCE, while DE increased. Diversity effects did not increase with species richness and were independent of functional group or growth stature composition. Trait-based analyses showed that the dominance of species with root and leaf traits related to resource conservation increased TICE. Traits indicating the tolerance of shade showed positive relationships with TDCE. Large DE were associated with the dominance of species with tall growth and low diversity in leaf nitrogen concentrations. Our field experiment shows that

  7. DESIGN OF GRASS BRIQUETTE MACHINE

    African Journals Online (AJOL)

    user

    E-mail addresses: 1 mike.ajieh@gmail.com, 2 dracigboanugo@yahoo.com, ... machine design was considered for processing biomass of grass origin. The machine operations include pulverization, compaction and extrusion of the briquettes.

  8. Grass and weed killer poisoning

    Science.gov (United States)

    ... medlineplus.gov/ency/article/002838.htm Grass and weed killer poisoning To use the sharing features on this page, please enable JavaScript. Many weed killers contain dangerous chemicals that are harmful if ...

  9. Role of carbohydrate metabolism in grass tetany

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Hansard, S.L.

    1977-01-01

    Clinical hypomagnesemia is confined primarily to beef cattle in the United States but also occurs in dairy cattle in other countries, probably due to different management practices. During periods when grass tetany is likely, early vegetative temperate zone grasses are usually low in total readily available carbohydrates and magnesium but high in potassium and nitrogen. The tetany syndrome may include hypoglycemia and ketosis, suggesting an imbalance in intermediary energy metabolism. Many enzyme systems critical to cellular metabolism, including those which hydrolyze and transfer phosphate groups, are activated by Mg. Thus, by inference, Mg is required for normal glucose utilization, fat, protein, nucleic acid and coenzyme synthesis, muscle contraction, methyl group transfer, and sulfate, acetate, and formate activation. Numerous clinical and experimental studies suggest an intimate relationship between metabolism of Mg and that of carbohydrate, glucagon, and insulin. The objective is to review this literature and suggest ways in which these relationships might contribute to a chain of events leading to grass tetany.

  10. IgE-binding capacity of recombinant timothy grass (Phleum pratense) pollen allergens

    NARCIS (Netherlands)

    Laffer, S.; Vrtala, S.; Duchêne, M.; van Ree, R.; Kraft, D.; Scheiner, O.; Valenta, R.

    1994-01-01

    A panel of 60 cDNA clones coding for IgE-binding proteins from timothy grass pollen was immunocharacterized with sera from 30 patients allergic to grass pollen and antibodies raised against natural grass pollen allergens. In the cases of five representative patients in whom the IgE reactivity

  11. Status of exotic grasses and grass-like vegetation and potential impacts on wildlife in New England

    Science.gov (United States)

    DeStefano, Stephen

    2013-01-01

    The Northeastern section of the United States, known as New England, has seen vast changes in land cover and human population over the past 3 centuries. Much of the region is forested; grasslands and other open-land cover types are less common, but provide habitat for many species that are currently declining in abundance and distribution. New England also consists of some of the most densely populated and developed states in the country. The origin, distribution, and spread of exotic species are highly correlated with human development. As such, exotics are common throughout much of New England, including several species of graminoids (grasses and grass-like plants such as sedges and rushes). Several of the more invasive grass species can form expansive dense mats that exclude native plants, alter ecosystem structure and functions, and are perceived to provide little-to-no value as wildlife food or cover. Although little research has been conducted on direct impacts of exotic graminoids on wildlife populations in New England, several studies on the common reed (Phragmites australis) in salt marshes have shown this species to have variable effects as cover for birds and other wildlife, depending on the distribution of the plant (e.g., patches and borders of reeds are used more by wildlife than expansive densely growing stands). Direct impacts of other grasses on wildlife populations are largely unknown. However, many of the invasive graminoid species that are present in New England have the capability of outcompeting native plants and thereby potentially affecting associated fauna. Preservation, protection, and restoration of grassland and open-land cover types are complex but necessary challenges in the region to maintain biological and genetic diversity of grassland, wetland, and other open-land obligate species.

  12. Biological reclamation of coal mine spoils without topsoil: an amendment study with domestic raw sewage and grass-legume mixture

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, S.K.; Saxena, N.C. [Indian School of Mines, Dhanbad (India). Centre of Mining Environment

    1997-12-31

    A range of tree species were successfully established and grown on spoil site irrigated with domestic raw sewage in India. The heavy metals content in leaves, stem wood, stem bark root wood and root bark differ between species. In general, heavy metals like Fe, Zn, Mn, Cu, and Pb were accumulated more in Eucalyptus then Melia, however only Co accumulated maximum in Acacia. Increase trend was reported in respect of Na, K, Fe, Zn, Cu in grass and vegetables which were grown at a sewage fed farm. However, in all the cases micronutrients and heavy metals contents did not reach the critical limits to produce any phytotoxic effect. Irrigation with raw sewage had no adverse effect on chemical properties of spoil over the 3 year period. This study shows that raising vegetation on spoil material in mining areas irrigated with raw sewage is feasible. However, irrigation by raw sewage caused the accumulation of heavy metals in different plant parts. These plants are not of the fodder type and thus are not entering directly into ecological food chains, hence they can act as heavy metals sinks. On the basis of the Grass-legume experimental study, it may be concluded that N accumulation of coal mine spoil related with nature of spoil, prevailing climate and legume used. In a tropical climate N accumulation rate was found higher than in a temperate one. Addition of phosphorus fertilizer is essential for the reclamation of many mine spoils because even after three years available P level can remain deficient. Available K was found to be sufficient after three years.

  13. Growth and nutritional evaluation of napier grass hybrids as forage for ruminants

    Directory of Open Access Journals (Sweden)

    Brian Turano

    2016-09-01

    Full Text Available Napier grass is a perennial, tropical C-4 grass that can produce large amounts of forage. However, low temperatures and drought stress limit its productivity and nutritive value as a forage. To overcome these limitations, pearl millet × napier grass hybrids (PMN were developed. It was hypothesized that PMN hybrids were more drought-tolerant, produced higher yields, and had higher nutritive value than napier grass varieties. The yield and nutritive value of 4 napier grass varieties (Bana grass, Mott, MB4 and N51 and 4 PMN hybrids (PMN2, PMN3, 5344 and 4604 were determined with or without irrigation in a strip plot design in Hawaii. Hybrid PMN3 outperformed napier grass varieties and the other hybrids for yield, while 5344 showed higher nutritional content and digestibility than most other grasses. Dry matter yields during the 110-day study period ranged from 10.3 to 32.1 t/ha without irrigation and 19.6 to 55.8 t/ha with irrigation, indicating that moisture stress was limiting performance in raingrown pastures. Only hybrids PMN3 and PMN2 and variety MB4 showed significant growth responses to irrigation. Further work is needed to evaluate the hybrids in a range of environments over much longer periods to determine if these preliminary results can be reproduced over the long term. Similarly, feeding studies with animals are needed to determine if the in vitro data for digestibility are reflected in superior performance for the promising hybrids.Keywords: Biomass, cattle, in vitro digestion, nutrient content, Pennisetum, tropical grasses.DOI: 10.17138/TGFT(4168-178

  14. Evaluation of molecular basis of cross reactivity between rye and Bermuda grass pollen allergens.

    Science.gov (United States)

    Tiwari, Ruby; Bhalla, Prem L; Singh, Mohan B

    2009-12-01

    Allergenic cross reactivity between the members of the Pooids (Lolium perenne, Phleum pratense, and Poa pratensis) and Chloridoids (Cynodon dactylon and Paspalum notatum) is well established. Studies using crude extracts in the past have demonstrated limited cross reactivity between the Pooids and the Chloridoids suggesting separate diagnosis and therapy. However, little is known regarding the molecular basis for the limited cross reactivity observed between the 2 groups of grasses. The present study was undertaken to gain insights into the molecular basis of cross allergenicity between the major allergens from rye and Bermuda grass pollens. Immunoblot inhibition tests were carried out to determine the specificity of the proteins involved in cross reactivity. Crude pollen extract and bacterially expressed and purified recombinant Lol p 1and Lol p 5 from rye grass were subjected to cross inhibition experiments with crude and purified recombinant Cyn d 1 from Bermuda grass using sera from patients allergic to rye grass pollen. The immunoblot inhibition studies revealed a high degree of cross inhibition between the group 1 allergens. In contrast, a complete lack of inhibition was observed between Bermuda grass group 1 allergen rCyn d 1, and rye grass group 5 allergen rLol p 5. Crude rye grass extract strongly inhibited IgE reactivity to Bermuda grass, whereas crude Bermuda grass pollen extract showed a weaker inhibition. Our data suggests that a possible explanation for the limited cross reactivity between the Pooids and Chloridoids may, in part, be due to the absence of group 5 allergen from Chloridoid grasses. This approach of using purified proteins may be applied to better characterize the cross allergenicity patterns between different grass pollen allergens.

  15. Grass defoliation affecting survival and growth of seedlings of ...

    African Journals Online (AJOL)

    Two experiments were conducted, one in the field and the other in the greenhouse, to investigate the effects of the intensity and frequency of grass defoliation on the survival and growth of Acacia karroo seedlings. In the greenhouse, seedlings growing with heavily clipped grasses had higher biomass production than those ...

  16. Analysis of Some Heavy Metals in Grass ( Paspalum Orbiculare ...

    African Journals Online (AJOL)

    The increased deposition of trace metals from vehicle exhausts on plants has raised concerns about the risks of the quality of food consumed by humans since the heavy metals emitted through the exhaust by vehicles can enter food chain through deposition on grass grazed by animals. Grass (Paspalum Orbiculare) and ...

  17. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota; Julkowska, Magdalena; Montero Sommerfeld, Hector; Horst, Anneliek ter; Haring, Michel A; Testerink, Christa

    2016-01-01

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  18. Phosphate-dependent root system architecture responses to salt stress

    KAUST Repository

    Kawa, Dorota

    2016-05-20

    Nutrient availability and salinity of the soil affect growth and development of plant roots. Here, we describe how phosphate availability affects root system architecture (RSA) of Arabidopsis and how phosphate levels modulate responses of the root to salt stress. Phosphate (Pi) starvation reduced main root length and increased the number of lateral roots of Arabidopsis Col-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75mM) on all measured RSA components. At higher NaCl concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid (ABA) signaling compared to the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By Genome Wide Association Mapping (GWAS) 13 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.

  19. Analysis of integrated multiple 'omics' datasets reveals the mechanisms of initiation and determination in the formation of tuberous roots in Rehmannia glutinosa.

    Science.gov (United States)

    Li, Mingjie; Yang, Yanhui; Li, Xinyu; Gu, Li; Wang, Fengji; Feng, Fajie; Tian, Yunhe; Wang, Fengqing; Wang, Xiaoran; Lin, Wenxiong; Chen, Xinjian; Zhang, Zhongyi

    2015-09-01

    All tuberous roots in Rehmannia glutinosa originate from the expansion of fibrous roots (FRs), but not all FRs can successfully transform into tuberous roots. This study identified differentially expressed genes and proteins associated with the expansion of FRs, by comparing the tuberous root at expansion stages (initiated tuberous root, ITRs) and FRs at the seedling stage (initiated FRs, IFRs). The role of miRNAs in the expansion of FRs was also explored using the sRNA transcriptome and degradome to identify miRNAs and their target genes that were differentially expressed between ITRs and FRs at the mature stage (unexpanded FRs, UFRs, which are unable to expand into ITRs). A total of 6032 genes and 450 proteins were differentially expressed between ITRs and IFRs. Integrated analyses of these data revealed several genes and proteins involved in light signalling, hormone response, and signal transduction that might participate in the induction of tuberous root formation. Several genes related to cell division and cell wall metabolism were involved in initiating the expansion of IFRs. Of 135 miRNAs differentially expressed between ITRs and UFRs, there were 27 miRNAs whose targets were specifically identified in the degradome. Analysis of target genes showed that several miRNAs specifically expressed in UFRs were involved in the degradation of key genes required for the formation of tuberous roots. As far as could be ascertained, this is the first time that the miRNAs that control the transition of FRs to tuberous roots in R. glutinosa have been identified. This comprehensive analysis of 'omics' data sheds new light on the mechanisms involved in the regulation of tuberous roots formation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Whole rice bran for beef heifers raised on alexander grass pasture

    Directory of Open Access Journals (Sweden)

    P. R. Salvador

    2016-09-01

    Full Text Available The objective of this study was to evaluate the development of beef heifers exclusively fed alexander grass (Urochloa plantaginea (Link Hitch or alexander grass and whole rice meal as supplement offered from Monday to Friday. The experimental design was completely randomized, with repeated measures over time, and consisted of two treatments and three replications of area. Heifers receiving whole rice meal exhibited higher average daily gain after day 42 of pasture use and a 21% higher body weight at the end of the grazing period. The stocking rate, weight gain per area, hip height, weight-height ratio, and body condition score were similar for heifers exclusively fed alexander grass and alexander grass plus rice bran. Beef heifers raised exclusively on alexander grass from 15 to 18 months of age reached adequate body development, reproductive tract score (4.22 points and pelvic area (206.3 cm² to be bred at 18-20 months of age.

  1. Absorption and translocation of 32P through root feeding by root (Wilt) affected coconut palms

    International Nuclear Information System (INIS)

    Beena George, S.; Moossa, P.P.; Sureshkumar, P.

    2017-01-01

    An investigation was carried out during 2015-16 to study the absorption and translocation of 32 P by root (wilt) affected coconut palms through root feeding in the Department of Soil Science and Agricultural Chemistry, College of Horticulture, Vellanikkara. Root (wilt) is one of the major diseases affecting coconut production in India. Etiology of the disease has been examined from several angles and it was found that nutrition imbalance in association with root (wilt) and it remains so even if integrated nutrient management practices are applied to diseased palms. Absorption and translocation of nutrients in three different types of coconut palms (healthy, apparently healthy and diseased palms) were studied using radioactive phosphorusin laterite soil. Ten morphologically uniform palms of same age were selected from each type of palms. Four active young roots were excavated from each palm and 32 P was applied by root feeding and index leaves were radio assayed for 32 P count at 24 hours, 15 and 30 days after application. The results revealed that healthy palms recorded significantly higher count rate(581 to 25158.66 cpm g -1 ) with root feeding compared to diseased palms(263 to 1068.38 cpm g - 1 ). From the present study it was clear that root (wilt) disease cannot be managed by soil application of nutrients because roots of the diseased palms are not able to translocate these nutrients. Since nutrient imbalance was one of the major problems noticed in root (wilt) affected palms, further study is required to find out proper method of nutrient application. (author)

  2. Searching for microbial biological control candidates for invasive grasses: coupling expanded field research with strides in biotechnology and grassland restoration

    Science.gov (United States)

    Highly invasive grasses (e.g. Bromus spp., Pennisetum ciliare, Taeniatherum caput-medusae) are largely unabated in much of the arid Western U.S., despite more than 70 years of control attempts with a wide array of tools and management practices. The development and sustained integration of new appro...

  3. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Science.gov (United States)

    Talukder, Shyamal K.; Saha, Malay C.

    2017-01-01

    Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder. PMID:28798766

  4. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses

    Directory of Open Access Journals (Sweden)

    Shyamal K. Talukder

    2017-07-01

    Full Text Available Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs. Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.

  5. Modelling of excess noise attnuation by grass and forest | Onuu ...

    African Journals Online (AJOL)

    , guinea grass (panicum maximum) and forest which comprises iroko (milicia ezcelea) and white afara (terminalia superba) trees in the ratio of 2:1 approximately. Excess noise attenuation spectra have been plotted for the grass and forest for ...

  6. Effect of grass species on NDF ruminal degradability and ...

    African Journals Online (AJOL)

    uzivatel

    Abstract. The objective of this study was to compare the ruminal degradability of neutral detergent fibre (NDF) .... Felina were evaluated in the present study. The grass was harvested from the primary growth of monocultured grasses on 19 and 26 May of 2004 and 27 May and 10 ...... Nutritional Ecology of the Ruminant.

  7. Defoliation effects of perennial grasses – continuing confusion | DL ...

    African Journals Online (AJOL)

    Although an adequate knowledge of growth patterns and defoliation effects in perennial grasses is a prerequisite for the rational use of veld and pastures for animal production, our knowledge of this subject is far from adequate. The results of various physiological and clipping studies on tropical and sub-tropical grasses are ...

  8. Seed production and establishment of western Oregon native grasses

    Science.gov (United States)

    Dale C. Darris

    2005-01-01

    It is well understood that native grasses are ecologically important and provide numerous benefits. However, unfavorable economics, low seed yields for some species, genetic issues, and a lack of experience behind the production and establishment of most western Oregon native grasses remain significant impediments for their expanded use. By necessity, adaptation of...

  9. Grass as a C booster for manure-biogas in Estonia

    DEFF Research Database (Denmark)

    Pehme, Sirli; Hamelin, Lorie; Veromann, Eve

    2014-01-01

    The aim of this study was to assess the environmental consequences of using grass (from both unused and cultivated boreal grasslands) as a co-substrate to dairy cow manure for biogas production. Environmental impact categories assessed were global warming, acidification and nutrient enrichment...... (distinguishing between N and P). Scenarios studied were: traditional management of dairy cow manure, monodigestion of manure, manure co-digestion with reed canary grass and manure co-digestion with residual grass from semi-natural grasslands. The latter scenario showed the best environmental performance...... for the global warming category, for other categories it did not show clear benefits. Using reed canary grass specially produced for biogas purpose resulted in a climate change impact just as big as the reference manure management, mainly as a result of indirect land use changes. Increased impacts also occurred...

  10. Reduction in clover-grass yield caused by different traffic intensities

    DEFF Research Database (Denmark)

    Green, Ole; Jørgensen, Rasmus Nyholm; Kristensen, Kristian

    Different traffic intensities have been shown to have a negative influence on the yield of grass and clover. A full scale grass-clover field trial was established to estimate the effect on clover-grass yields as a function of different wheel loads and tire pressures. The trial comprised 16...... close to the north, south and east border of the field. No significant interactions were found between the timing of crop and soil damage as affected by wheel load and tire pressure. However, at specific times, there was a significant effect of wheel load and secondary by the tire pressure. At all...... measurement times, the yield was lower using a wheel load of 4745 kg than for a wheel load of 2865 kg.     Key words (for Electronic Reference Library) Traffic intensities, tire load/pressure, clover/grass, yield loss, ...

  11. Napier Grass and Legume Silage for Smallholder Farmers in Coastal Kenya

    International Nuclear Information System (INIS)

    Muinga, R.W.; Mambo, L.C.; Bimbuzi, S.

    1999-01-01

    Inadequate feed during the dry season is a major cause of low dairy productivity in Kenya. Napier grass is grown by smallholder dairy farmers due to its high biomass yield especially during the rainy season when it can be ensiled to ensure feed available in the dry season.The objective of the study was to determine the silage quality of mixtures of Napier grass and Legume forages. Maize bran was used as the main source of readily available carbohydrates replacing molasses. The mixtures were compared to the conventional Napier grass/legume has higher nutritive value than silage made from Napier grass only and that maize bran could replace molasses as a source of readily available carbohydrates

  12. Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7

    Science.gov (United States)

    Petras, Vaclav; Petrasova, Anna; Chemin, Yann; Zambelli, Pietro; Landa, Martin; Gebbert, Sören; Neteler, Markus; Löwe, Peter

    2015-04-01

    GRASS GIS 7 is a free and open source GIS software developed and used by many scientists (Neteler et al., 2012). While some users of GRASS GIS prefer its graphical user interface, significant part of the scientific community takes advantage of various scripting and programing interfaces offered by GRASS GIS to develop new models and algorithms. Here we will present different interfaces added to GRASS GIS 7 and available in Python, a popular programming language and environment in geosciences. These Python interfaces are designed to satisfy the needs of scientists and programmers under various circumstances. PyGRASS (Zambelli et al., 2013) is a new object-oriented interface to GRASS GIS modules and libraries. The GRASS GIS libraries are implemented in C to ensure maximum performance and the PyGRASS interface provides an intuitive, pythonic access to their functionality. GRASS GIS Python scripting library is another way of accessing GRASS GIS modules. It combines the simplicity of Bash and the efficiency of the Python syntax. When full access to all low-level and advanced functions and structures from GRASS GIS library is required, Python programmers can use an interface based on the Python ctypes package. Ctypes interface provides complete, direct access to all functionality as it would be available to C programmers. GRASS GIS provides specialized Python library for managing and analyzing spatio-temporal data (Gebbert and Pebesma, 2014). The temporal library introduces space time datasets representing time series of raster, 3D raster or vector maps and allows users to combine various spatio-temporal operations including queries, aggregation, sampling or the analysis of spatio-temporal topology. We will also discuss the advantages of implementing scientific algorithm as a GRASS GIS module and we will show how to write such module in Python. To facilitate the development of the module, GRASS GIS provides a Python library for testing (Petras and Gebbert, 2014) which

  13. Study of the spatial distribution of mercury in roots of vetiver grass (Chrysopogon zizanioides) by micro-pixe spectrometry.

    Science.gov (United States)

    Lomonte, Cristina; Wang, Yaodong; Doronila, Augustine; Gregory, David; Baker, Alan J M; Siegele, Rainer; Kolev, Spas D

    2014-01-01

    Localization of Hg in root tissues of vetivergrass (Chrysopogon zizanioides) was investigated by micro-Proton Induced X-ray Emission (PIXE) spectrometry to gain a better understanding of Hg uptake and its translocation to the aerial plant parts. Tillers of C. zizanioides were grown in a hydroponic culture for 3 weeks under controlled conditions and then exposed to Hg for 10 days with or without the addition of the chelators (NH(4))(2)S(2)O(3) or KI. These treatments were used to study the effects of these chelators on localization of Hg in the root tissues to allow better understanding of Hg uptake during its assisted-phytoextraction. Qualitative elemental micro-PIXE analysis revealed that Hg was mainly localized in the root epidermis and exodermis, tissues containing suberin in all Hg treatments. Hg at trace levels was localized in the vascular bundle when plants were treated with a mercury solution only. However, higher Hg concentrations were found when the solution also contained (NH(4))(2)S(2)O(3) or KI. This finding is consistent with the observed increase in Hg translocation to the aerial parts of the plants in the case of chemically induced Hg phytoextraction.

  14. Edaphic history over seedling characters predicts integration and plasticity of integration across geologically variable populations of Arabidopsis thaliana.

    Science.gov (United States)

    Cousins, Elsa A; Murren, Courtney J

    2017-12-01

    Studies on phenotypic plasticity and plasticity of integration have uncovered functionally linked modules of aboveground traits and seedlings of Arabidopsis thaliana , but we lack details about belowground variation in adult plants. Functional modules can be comprised of additional suites of traits that respond to environmental variation. We assessed whether shoot and root responses to nutrient environments in adult A. thaliana were predictable from seedling traits or population-specific geologic soil characteristics at the site of origin. We compared 17 natural accessions from across the native range of A. thaliana using 14-day-old seedlings grown on agar or sand and plants grown to maturity across nutrient treatments in sand. We measured aboveground size, reproduction, timing traits, root length, and root diameter. Edaphic characteristics were obtained from a global-scale dataset and related to field data. We detected significant among-population variation in root traits of seedlings and adults and in plasticity in aboveground and belowground traits of adult plants. Phenotypic integration of roots and shoots varied by population and environment. Relative integration was greater in roots than in shoots, and integration was predicted by edaphic soil history, particularly organic carbon content, whereas seedling traits did not predict later ontogenetic stages. Soil environment of origin has significant effects on phenotypic plasticity in response to nutrients, and on phenotypic integration of root modules and shoot modules. Root traits varied among populations in reproductively mature individuals, indicating potential for adaptive and integrated functional responses of root systems in annuals. © 2017 Botanical Society of America.

  15. Biotechnological application of sustainable biogas production through dry anaerobic digestion of Napier grass.

    Science.gov (United States)

    Dussadee, Natthawud; Ramaraj, Rameshprabu; Cheunbarn, Tapana

    2017-05-01

    Napier grass (Pennisetum purpureum), represents an interesting substrate for biogas production. The research project evaluated biogas potential production from dry anaerobic digestion of Napier grass using batch experiment. To enhance the biogas production from ensiled Napier grass, thermal and alkaline pre-treatments were performed in batch mode. Alkali hydrolysis of Napier grass was performed prior to batch dry anaerobic digestion at three different mild concentrations of sodium hydroxide (NaOH). The study results confirmed that NaOH pretreated sample produced high yield of biogas than untreated (raw) and hot water pretreated samples. Napier grass was used as the mono-substrate. The biogas composition of carbon dioxide (30.10%), methane (63.50%) and 5 ppm of H 2 S was estimated from the biogas. Therefore, fast-growing, high-yielding and organic matter-enriched of Napier grass was promising energy crop for biogas production.

  16. Effect of short-duration overnight cattle kraaling on grass production ...

    African Journals Online (AJOL)

    ... grass species, such as Urochloa mosambicensis and Panicum maximum, were more abundant in abandoned kraal sites than the surrounding vegetation. We conclude that shortduration overnight cattle kraaling improves grass quality and biomass. Keywords: biomass, crude protein, diversity, fibre, nutrient hotspots ...

  17. Conceptual model for reinforced grass on inner dike slopes

    NARCIS (Netherlands)

    Verhagen, H.J.; ComCoast

    2005-01-01

    A desk study has been carried out in order to develop a conceptual model for the erosion of inner dike slopes with reinforced grass cover. Based on the results the following can be concluded: The presence of a geosynthetic in a grass slope can be taken into account in the EPM method by increasing

  18. Microbiological Quality of Panicum maximum Grass Silage with Addition of Lactobacillus sp. as Starter

    Science.gov (United States)

    Sumarsih, S.; Sulistiyanto, B.; Utama, C. S.

    2018-02-01

    The aim of the research was to evaluate microbiological quality of Panicum maximum grass silage with addition Lactobacillus sp as starter. The completely randomized design was been used on this research with 4 treaments and 3 replications. The treatments were P0 ( Panicum maximum grass silage without addition Lactobacillus sp ), P1 ( Panicum maximum grass silage with 2% addition Lactobacillus sp), P2 (Panicum maximum grass silage with 4% addition Lactobacillus sp) and P3 (Panicum maximum grass silage with 6% addition Lactobacillus sp).The parameters were microbial populations of Panicum maximum grass silage (total lactic acid bacteria, total bacteria, total fungi, and Coliform bacteria. The data obtained were analyzed variance (ANOVA) and further tests performed Duncan’s Multiple Areas. The population of lactic acid bacteria was higher (PMicrobiological quality of Panicum maximum grass silage with addition Lactobacillus sp was better than no addition Lactobacillus sp.

  19. Cosmogenic Be-7 in grass of Maamora site

    International Nuclear Information System (INIS)

    El-khoukhi, T.; Fidah, M.; Oublaid, B.

    1994-01-01

    Be-7 is one of the radionuclides produced by the nuclear reactions of protons and alpha particulates of galactic and solar cosmic rays as well as the secondary neutrons produced during those reactions. it is submitted, as soon as it is produced, to the physical and chemical laws of the environment, such as air motions or the fixing to the atmospheric aerosols. In the framework of environmental radioactivity monitoring programme of Maamora site (Morocco), samples of grass were collected, prepared and analyzed using gamma spectrometry. The preparation consists of drying and ashing the grass. The detector used is coaxial Ge HP with 20% efficiency. Samples were counted for more than 50000 s. The activity of Be-7 calculated for samples collected in 10 km around Maamora site varies between 4 and 20 Bq/g of ashed grass. 3 refs. (author)

  20. The Root Transition Zone: A Hot Spot for Signal Crosstalk.

    Science.gov (United States)

    Kong, Xiangpei; Liu, Guangchao; Liu, Jiajia; Ding, Zhaojun

    2018-05-01

    The root transition zone (TZ), located between the apical meristem and basal elongation region, has a unique role in root growth and development. The root TZ is not only the active site for hormone crosstalk, but also the perception site for various environmental cues, such as aluminum (Al) stress and low phosphate (Pi) stress. We propose that the root TZ is a hot spot for the integration of diverse inputs from endogenous (hormonal) and exogenous (sensorial) stimuli to control root growth. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. aqueous root extract on spermatogenesis

    African Journals Online (AJOL)

    Four groups were gavaged with the whole plant or root aqueous extract in low or high doses. The male ... motility and morphology as well as chromatin integrity were evaluated. Results: Serum ... Treatment of disease began long ago with the.

  2. The combined effect of fertiliser nitrogen and phosphorus on herbage yield and change in soil nutrients of a grass/clover and grass-only sward

    NARCIS (Netherlands)

    Schils, R.L.M.; Snijders, P.J.M.

    2004-01-01

    The combined effect of reduced nitrogen ( N ) and phosphorus ( P ) application on the production of grass- only and grass/ clover swards was studied in a five- year cutting experiment on a marine clay soil, established on newly sown swards. Furthermore, changes in soil N, P and carbon ( C ) were

  3. A capillary pumping device utilizing super-hydrophobic silicon grass

    International Nuclear Information System (INIS)

    Kung, Chun-Fei; Chang, Chien-Cheng; Chu, Chin-Chou

    2011-01-01

    In this study, we show that a compact silicon grass surface can be generated by utilizing the induced coupled plasma method with suitably chosen fabrication parameters. This super-hydrophobic structure suspends deionized water on top of the grass and keeps the contact angle at around 153°. The silicon grass is used to improve the driving efficiency of a capillary pumping micro-duct (without sidewalls), which is completely defined by a bottom hydrophilic stripe (adjacent to a Teflon substrate) and a fully top-covered hydrophobic Teflon surface which is coated on a glass substrate. The channel has a height of 3 µm and a width of 100 µm. In this work, the Teflon substrate is replaced with the silicon grass surface. When the fluid is flowing through the micro-duct on the stripe, the interface between the silicon grass and the hydrophilic stripe forms a stable air cushion barrier to the fluid, thus effectively reducing the frictional force. By changing only the interface with this replacement, we demonstrate that the average measured velocities of the new design show improvements of 21% and 17% in the driving efficiency over the original design for transporting deionized water and human blood, respectively. It is also shown that the measured data of the present design are closer to the values predicted by a theoretical analysis which relates the flow velocity to the contact angles, surface tension and fluid viscosity

  4. Tree-grass interactions in savannas

    CSIR Research Space (South Africa)

    Scholes, RJ

    1997-01-01

    Full Text Available Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign...

  5. Virtue Ethics, Applied Ethics and Rationality twenty-three years after ...

    African Journals Online (AJOL)

    Instead, their meanings are perceived as being de rived from the contingencies that define our particular existences. Thus ongoing grass roots moral ... social embeddedness of human activities. In order to illustrate the virtue ethical approach I will discuss two key concepts in our moral vocabulary: responsibility and integrity.

  6. Remote sensing of St. Augustine Decline (SAD) disease. [spectral reflectance of healthy and diseased grass

    Science.gov (United States)

    Odle, W. C.

    1976-01-01

    Laboratory and field spectral reflectance measurements of healthy and infected St. Augustine grass were made using several different instruments. Spectral differences between healthy and infected grass occured in the visible and near infrared regions. Multiband and color infrared photographs were taken of healthy and diseased turf from ground-based platforms and low altitude aircraft. Qualitative (density slicing) and quantitative (transmission densitometry) analyses revealed distinct tonal differences between healthy and St. Augustine disease (SAD) infected grass. Similar experiments are described for determining if healthy and diseased grass can be distinguished from waterstressed grass and grass deficient in either nitrogen or iron.

  7. Diet Affects Muscle Quality and Growth Traits of Grass Carp (Ctenopharyngodon idellus): A Comparison Between Grass and Artificial Feed.

    Science.gov (United States)

    Zhao, Honghao; Xia, Jianguo; Zhang, Xi; He, Xugang; Li, Li; Tang, Rong; Chi, Wei; Li, Dapeng

    2018-01-01

    Fish muscle, the main edible parts with high protein level and low fat level, is consumed worldwide. Diet contributes greatly to fish growth performance and muscle quality. In order to elucidate the correlation between diet and muscle quality, the same batch of juvenile grass carp ( Ctenopharyngodon idellus ) were divided into two groups and fed with either grass ( Lolium perenne, Euphrasia pectinata and Sorghum sudanense ) or artificial feed, respectively. However, the different two diets didn't result in significant differences in all the detected water quality parameters (e.g., Tm, pH, DO, NH 3 /[Formula: see text]-N, [Formula: see text]-N, [Formula: see text], TN, TP, and TOC) between the two experimental groups. After a 4-month culture period, various indexes and expression of myogenic regulatory factor (MRFs) and their related genes were tested. The weight gain of the fish fed with artificial feed (AFG) was nearly 40% higher than the fish fed with grass (GFG). Significantly higher alkaline phosphatase, total cholestrol, high density cholestrol and total protein were detected in GFG as compared to AFG. GFG also showed increased hardness, resilience and shear force in texture profile analysis, with significantly bigger and compact muscle fibers in histologic slices. The fat accumulation was most serious in the abdomen muscle of AFG. Additionally, the expression levels of MyoG, MyoD, IGF - 1 , and MSTNs were higher, whereas Myf - 5, MRF4 , and IGF -2 were lower in most positional muscles of GFG as compared to AFG. Overall, these results suggested that feeding grass could promote muscle growth and development by stimulating muscle fiber hypertrophy, as well as significantly enhance the expression of CoL1A s. Feeding C. idellus with grass could also improve flesh quality by improving muscle characteristics, enhancing the production of collagen, meanthile, reducing fat accumulation and moisture in muscle, but at the cost of a slower growth.

  8. Diet Affects Muscle Quality and Growth Traits of Grass Carp (Ctenopharyngodon idellus: A Comparison Between Grass and Artificial Feed

    Directory of Open Access Journals (Sweden)

    Honghao Zhao

    2018-03-01

    Full Text Available Fish muscle, the main edible parts with high protein level and low fat level, is consumed worldwide. Diet contributes greatly to fish growth performance and muscle quality. In order to elucidate the correlation between diet and muscle quality, the same batch of juvenile grass carp (Ctenopharyngodon idellus were divided into two groups and fed with either grass (Lolium perenne, Euphrasia pectinata and Sorghum sudanense or artificial feed, respectively. However, the different two diets didn't result in significant differences in all the detected water quality parameters (e.g., Tm, pH, DO, NH3/NH4+-N, NO3--N, NO2-, TN, TP, and TOC between the two experimental groups. After a 4-month culture period, various indexes and expression of myogenic regulatory factor (MRFs and their related genes were tested. The weight gain of the fish fed with artificial feed (AFG was nearly 40% higher than the fish fed with grass (GFG. Significantly higher alkaline phosphatase, total cholestrol, high density cholestrol and total protein were detected in GFG as compared to AFG. GFG also showed increased hardness, resilience and shear force in texture profile analysis, with significantly bigger and compact muscle fibers in histologic slices. The fat accumulation was most serious in the abdomen muscle of AFG. Additionally, the expression levels of MyoG, MyoD, IGF-1, and MSTNs were higher, whereas Myf-5, MRF4, and IGF-2 were lower in most positional muscles of GFG as compared to AFG. Overall, these results suggested that feeding grass could promote muscle growth and development by stimulating muscle fiber hypertrophy, as well as significantly enhance the expression of CoL1As. Feeding C. idellus with grass could also improve flesh quality by improving muscle characteristics, enhancing the production of collagen, meanthile, reducing fat accumulation and moisture in muscle, but at the cost of a slower growth.

  9. Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots

    KAUST Repository

    Garcias Bonet, Neus

    2016-03-09

    Biological nitrogen fixation by diazotrophic bacteria in seagrass rhizosphere and leaf epiphytic community is an important source of nitrogen required for plant growth. However, the presence of endophytic diazotrophs remains unclear in seagrass tissues. Here, we assess the presence, diversity and taxonomy of nitrogen-fixing bacteria within surface-sterilized roots of Posidonia oceanica. Moreover, we analyze the nitrogen isotopic signature of seagrass tissues in order to notice atmospheric nitrogen fixation. We detected nitrogen-fixing bacteria by nifH gene amplification in 13 out of the 78 roots sampled, corresponding to 9 locations out of 26 meadows. We detected two different types of bacterial nifH sequences associated with P. oceanica roots, which were closely related to sequences previously isolated from the rhizosphere of a salt marsh cord grass and a putative anaerobe. Nitrogen content of seagrass tissues showed low isotopic signatures in all the sampled meadows, pointing out the atmospheric origin of the assimilated nitrogen by seagrasses. However, this was not related with the presence of endophytic nitrogen fixers, suggesting the nitrogen fixation occurring in rhizosphere and in the epiphytic community could be an important source of nitrogen for P. oceanica. The low diversity of nitrogen-fixing bacteria reported here suggests species-specific relationships between diazotrophs and P. oceanica, revealing possible symbiotic interactions that could play a major role in nitrogen acquisition by seagrasses in oligotrophic environments where they form lush meadows.

  10. Insects traversing grass-like vertical compliant beams

    Science.gov (United States)

    Li, Chen; Fearing, Ronald; Full, Robert

    2014-03-01

    Small running animals encounter many challenging terrains. These terrains can be filled with 3D, multi-component obstacles. Here, we study cockroaches (Blaberus discoidalis) moving through grass-like vertical compliant beams during escape. We created an apparatus to control and vary geometric parameters and mechanical properties of model grass including height, width, thickness, lateral and fore-aft spacings, angle, number of layers, stiffness, and damping. We observed a suite of novel locomotor behaviors not previously described on simpler 2D ground. When model grass height was >2 × body length and lateral spacing was test our hypothesis, we modified body shape by adding either a rectangular or an oval plate onto its dorsal surface, and found that P dropped by an order of magnitude and t more than doubled. Upon removal of either plate, both P and t recovered. Locomotor kinematics and geometry effectively coupled to terrain properties enables negotiation of 3D, multi-component obstacles, and provides inspiration for small robots to navigate such terrain with minimal sensing and control.

  11. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses.

    Science.gov (United States)

    Weremijewicz, Joanna; da Silveira Lobo O'Reilly Sternberg, Leonel; Janos, David P

    2018-01-01

    Arbuscular mycorrhizal fungi form extensive common mycorrhizal networks (CMNs) that may interconnect neighboring root systems of the same or different plant species, thereby potentially influencing the distribution of limiting mineral nutrients among plants. We examined how CMNs affected intra- and interspecific interactions within and between populations of Andropogon gerardii, a highly mycorrhiza dependent, dominant prairie grass and Elymus canadensis, a moderately dependent, subordinate prairie species. We grew A. gerardii and E. canadensis alone and intermixed in microcosms, with individual root systems isolated, but either interconnected by CMNs or with CMNs severed weekly. CMNs, which provided access to a large soil volume, improved survival of both A. gerardii and E. canadensis, but intensified intraspecific competition for A. gerardii. When mixed with E. canadensis, A. gerardii overyielded aboveground biomass in the presence of intact CMNs but not when CMNs were severed, suggesting that A. gerardii with intact CMNs most benefitted from weaker interspecific than intraspecific interactions across CMNs. CMNs improved manganese uptake by both species, with the largest plants receiving the most manganese. Enhanced growth in consequence of improved mineral nutrition led to large E. canadensis in intact CMNs experiencing water-stress, as indicated by 13 C isotope abundance. Our findings suggest that in prairie plant communities, CMNs may influence mineral nutrient distribution, water relations, within-species size hierarchies, and between-species interactions.

  12. Hand-arm vibration disorder among grass-cutter workers in Malaysia.

    Science.gov (United States)

    Azmir, Nor Azali; Ghazali, Mohd Imran; Yahya, Musli Nizam; Ali, Mohamad Hanafi

    2016-09-01

    Prolonged exposure to hand-transmitted vibration from grass-cutting machines has been associated with increasing occurrences of symptoms and signs of occupational diseases related to hand-arm vibration syndrome (HAVS). A cross-sectional study was carried out using an adopted HAVS questionnaire on hand-arm vibration exposure and symptoms distributed to 168 male workers from the grass and turf maintenance industry who use hand-held grass-cutting machines as part of their work. The prevalence ratio and symptom correlation to HAVS between high and low-moderate exposure risk groups were evaluated. There were positive HAVS symptoms relationships between the low-moderate exposure group and the high exposure group among hand-held grass-cutting workers. The prevalence ratio was considered high because there were indicators that fingers turned white and felt numb, 3.63, 95% CI [1.41, 9.39] and 4.24, 95% CI [2.18, 8.27], respectively. Less than 14.3% of workers stated that they were aware of the occupational hand-arm vibration, and it seemed to be related to the finger blanching and numbness. The results suggest that HAVS is under-diagnosed in Malaysia, especially in the agricultural sectors. More information related to safety and health awareness programmes for HAVS exposure is required among hand-held grass-cutting workers.

  13. Role of ammonia and biogenic amines in intake of grass silage by ruminants

    NARCIS (Netherlands)

    Os, van M.

    1997-01-01

    In Northern- and Western-Europe, grass silage is a major component in winter feeding rations for ruminants. The intake of ensiled grass is often lower than the intake of hay or the fresh grass of similar digestibility. This intake depression is attributed to the fermentation products

  14. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  15. Optimized Whole-Mount In Situ Immunolocalization for Arabidopsis thaliana Root Meristems and Lateral Root Primordia.

    Science.gov (United States)

    Karampelias, Michael; Tejos, Ricardo; Friml, Jiří; Vanneste, Steffen

    2018-01-01

    Immunolocalization is a valuable tool for cell biology research that allows to rapidly determine the localization and expression levels of endogenous proteins. In plants, whole-mount in situ immunolocalization remains a challenging method, especially in tissues protected by waxy layers and complex cell wall carbohydrates. Here, we present a robust method for whole-mount in situ immunolocalization in primary root meristems and lateral root primordia in Arabidopsis thaliana. For good epitope preservation, fixation is done in an alkaline paraformaldehyde/glutaraldehyde mixture. This fixative is suitable for detecting a wide range of proteins, including integral transmembrane proteins and proteins peripherally attached to the plasma membrane. From initiation until emergence from the primary root, lateral root primordia are surrounded by several layers of differentiated tissues with a complex cell wall composition that interferes with the efficient penetration of all buffers. Therefore, immunolocalization in early lateral root primordia requires a modified method, including a strong solvent treatment for removal of hydrophobic barriers and a specific cocktail of cell wall-degrading enzymes. The presented method allows for easy, reliable, and high-quality in situ detection of the subcellular localization of endogenous proteins in primary and lateral root meristems without the need of time-consuming crosses or making translational fusions to fluorescent proteins.

  16. Postharvest residues from grass seed crops for bioenergy

    OpenAIRE

    Simić, Aleksandar; Čolić, Vladislava; Vučković, Savo; Dželetović, Željko; Bijelić, Zorica; Mandić, Violeta

    2016-01-01

    During grass seed production, a large amount of low forage quality biomass has been produced. Tall growing perennial grasses such as tall fescue (Festuca arundinacea L.) and Italian ryegrass (Lolium multiflorum Lam.) can be used as an alternative source for bioenergy production as they can be grown in less cultivated areas, their residues in seed production could be valuable energy source and can be potentially used as a dual purpose crop (bioenergy and forage). In this research, potentials o...

  17. Analysis of Fusarium causing dermal toxicosis in marram grass planters

    NARCIS (Netherlands)

    Snijders, CHA; Samson, RA; Hoekstra, ES; Ouellet, T; Miller, JD; deRooijvanderGoes, PCEM; Baar, AJM; Dubois, AEJ; Kauffman, HF

    1996-01-01

    In the European coastal dunes, marram grass (Ammophila arenaria) is planted in order to control sand erosion. In the years 1986 to 1991, workers on the Wadden islands in the Netherlands planting marram grass showed lesions of skin and mucous membranes, suggesting a toxic reaction. Fusarium culmorum

  18. Grass fields as reservoirs for polyphagous predators (Arthropoda) of aphids (Homopt., Aphididae)

    DEFF Research Database (Denmark)

    Gravesen, Eigil Vestergaard; Toft, Søren

    1987-01-01

    In a 4 ha grass field in Denmark three separate plots of 15 times 25 m were cultivated with barley. In each plot a central area of 5 times 5 m were fenced off by a plastic barrier. Thus, each plot consisted of an unfenced area, accessible for predators immigrating from the grass field, and an una......In a 4 ha grass field in Denmark three separate plots of 15 times 25 m were cultivated with barley. In each plot a central area of 5 times 5 m were fenced off by a plastic barrier. Thus, each plot consisted of an unfenced area, accessible for predators immigrating from the grass field...

  19. Hyperspectral remote sensing techniques for grass nutrient estimations in savannah ecosystems

    CSIR Research Space (South Africa)

    Ramoelo, Abel

    2010-03-01

    Full Text Available Information on the distribution of grass quality (nutrient concentration) is crucial in understanding rangeland vitality and facilitates effective management of wildlife and livestock. The spatial distribution of grass nutrient concentration occurs...

  20. Bioenergy production from roadside grass

    DEFF Research Database (Denmark)

    Meyer, Ane Katharina Paarup; Ehimen, Ehiazesebhor Augustine; Holm-Nielsen, Jens Bo

    2014-01-01

    This paper presents a study of the feasibility of utilising roadside vegetation for biogas production in Denmark. The potential biomass yield, methane yields, and the energy balances of using roadside grass for biogas production was investigated based on spatial analysis. The results show...

  1. Preemergence herbicides on weed control in elephant grass pasture

    Directory of Open Access Journals (Sweden)

    Alexandre Magno Brighenti

    Full Text Available ABSTRACT Elephant grass (Pennisetum purpureum Schum. is an important forage crop that has been proposed as a potential feedstock for bioenergy production. However, weed interference is a major factor limiting elephant grass production. Field experiments were conducted in 2014 and 2015 to evaluate preemergence herbicides for selective weed control in an elephant grass pasture. Herbicide treatments included atrazine + S-metolachlor, atrazine + simazine, ametryn, ethoxysulfuron, S-metolachlor, diuron + hexazinone, sulfentrazone, imazethapyr, and atrazine at label use rates. Weedy and weed-free treatments were included. Atrazine + S-metolachlor, atrazine + simazine, ametryn, ethoxysulfuron, S-metolachlor, sulfentrazone, and atrazine did not cause phytotoxicity on elephantgrass 35 days after treatment (DAT. However, diuron + hexazinone and imazethapyr were the most phytotoxic on elephantgrass, resulting in 81 and 70% phytotoxicity in 2014, and 7 and 6% phytotoxicity in 2015 respectively 35 DAT. All treatments provided effective weed control (>81% with the exception of ethoxysulfuron (0 and 11% in 2014 and 2015, respectively, and atrazine (59% in 2014. These results show that atrazine + S-metolachlor, atrazine + simazine, ametryn, ethoxysulfuron, S-metolachlor, sulfentrazone, and atrazine were selectives when applied in preemergence in elephant grass pasture.

  2. Pampas Grass - Orange Co. [ds351

    Data.gov (United States)

    California Natural Resource Agency — This dataset provides the known distribution of pampas grass (Cortaderia selloana) in southern Orange County. The surveys were conducted from May to June, 2007 and...

  3. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery

    Directory of Open Access Journals (Sweden)

    Stuart E. Marsh

    2011-10-01

    Full Text Available Invasive species’ phenologies often contrast with those of native species, representing opportunities for detection of invasive species with multi-temporal remote sensing. Detection is especially critical for ecosystem-transforming species that facilitate changes in disturbance regimes. The African C4 grass, Pennisetum ciliare, is transforming ecosystems on three continents and a number of neotropical islands by introducing a grass-fire cycle. However, previous attempts at discriminating P. ciliare in North America using multi-spectral imagery have been unsuccessful. In this paper, we integrate field measurements of hyperspectral plant species signatures and canopy cover with multi-temporal spectral analysis to identify opportunities for detection using moderate-resolution multi-spectral imagery. By applying these results to Landsat TM imagery, we show that multi-spectral discrimination of P. ciliare in heterogeneous mixed desert scrub is feasible, but only at high abundance levels that may have limited value to land managers seeking to control invasion. Much higher discriminability is possible with hyperspectral shortwave infrared imagery because of differences in non-photosynthetic vegetation in uninvaded and invaded landscapes during dormant seasons but these spectra are unavailable in multispectral sensors. Therefore, we recommend hyperspectral imagery for distinguishing invasive grass-dominated landscapes from uninvaded desert scrub.

  4. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  5. Urban Rights-of-Way as Reservoirs for Tall-Grass Prairie Plants and Butterflies.

    Science.gov (United States)

    Leston, Lionel; Koper, Nicola

    2016-03-01

    Urban rights-of-way may be potential reservoirs of tall-grass prairie plants and butterflies. To determine if this is true, in 2007-2008, we conducted vegetation surveys of species richness and cover, and butterfly surveys of species richness and abundance, along 52 transmission lines and four remnant prairies in Winnipeg, Manitoba. We detected many prairie plants and butterflies within transmission lines. Some unmowed and infrequently managed transmission lines had native plant species richness and total percent cover of native plants comparable to that of similar-sized remnant tall-grass prairies in the region. Although we did not find significant differences in overall native butterfly numbers or species richness between rights-of-way and remnant prairies, we found lower numbers of some prairie butterflies along frequently mowed rights-of-way than within remnant tall-grass prairies. We also observed higher butterfly species richness along sites with more native plant species. By reducing mowing and spraying and reintroducing tall-grass prairie plants, urban rights-of-way could serve as extensive reservoirs for tall-grass prairie plants and butterflies in urban landscapes. Eventually, managing urban rights-of-way as reservoirs for tall-grass prairie plants and animals could contribute to the restoration of tall-grass prairie in the North American Midwest.

  6. Buffel grass morphoagronomic characterization from cenchrus germplasm active bank.

    OpenAIRE

    BRUNO, L. R. G. P.; ANTONIO, R. P.; ASSIS, J. G. de A.; MOREIRA, J. N.; LIRA, I. C. de S. A.

    2017-01-01

    his study aimed to characterize buffel grass accessions of the Cenchrus Germplasm Active Bank (CGAB) from Embrapa Semi - Arid in a morphoagronomic way, checking the descriptors variability and efficiency in accessions on two consecutive cuts. Twenty - five accessions and five buffel grass cultivars were used in randomized complete block design with three replications. Evaluations were conducted after two consecutive cuts, each evaluation performed 90 days after each ...

  7. A molecular identification system for grasses: a novel technology for forensic botany.

    Science.gov (United States)

    Ward, J; Peakall, R; Gilmore, S R; Robertson, J

    2005-09-10

    Our present inability to rapidly, accurately and cost-effectively identify trace botanical evidence remains the major impediment to the routine application of forensic botany. Grasses are amongst the most likely plant species encountered as forensic trace evidence and have the potential to provide links between crime scenes and individuals or other vital crime scene information. We are designing a molecular DNA-based identification system for grasses consisting of several PCR assays that, like a traditional morphological taxonomic key, provide criteria that progressively identify an unknown grass sample to a given taxonomic rank. In a prior study of DNA sequences across 20 phylogenetically representative grass species, we identified a series of potentially informative indels in the grass mitochondrial genome. In this study we designed and tested five PCR assays spanning these indels and assessed the feasibility of these assays to aid identification of unknown grass samples. We confirmed that for our control set of 20 samples, on which the design of the PCR assays was based, the five primer combinations produced the expected results. Using these PCR assays in a 'blind test', we were able to identify 25 unknown grass samples with some restrictions. Species belonging to genera represented in our control set were all correctly identified to genus with one exception. Similarly, genera belonging to tribes in the control set were correctly identified to the tribal level. Finally, for those samples for which neither the tribal or genus specific PCR assays were designed, we could confidently exclude these samples from belonging to certain tribes and genera. The results confirmed the utility of the PCR assays and the feasibility of developing a robust full-scale usable grass identification system for forensic purposes.

  8. Automated Root Tracking with "Root System Analyzer"

    Science.gov (United States)

    Schnepf, Andrea; Jin, Meina; Ockert, Charlotte; Bol, Roland; Leitner, Daniel

    2015-04-01

    Crucial factors for plant development are water and nutrient availability in soils. Thus, root architecture is a main aspect of plant productivity and needs to be accurately considered when describing root processes. Images of root architecture contain a huge amount of information, and image analysis helps to recover parameters describing certain root architectural and morphological traits. The majority of imaging systems for root systems are designed for two-dimensional images, such as RootReader2, GiA Roots, SmartRoot, EZ-Rhizo, and Growscreen, but most of them are semi-automated and involve mouse-clicks in each root by the user. "Root System Analyzer" is a new, fully automated approach for recovering root architectural parameters from two-dimensional images of root systems. Individual roots can still be corrected manually in a user interface if required. The algorithm starts with a sequence of segmented two-dimensional images showing the dynamic development of a root system. For each image, morphological operators are used for skeletonization. Based on this, a graph representation of the root system is created. A dynamic root architecture model helps to determine which edges of the graph belong to an individual root. The algorithm elongates each root at the root tip and simulates growth confined within the already existing graph representation. The increment of root elongation is calculated assuming constant growth. For each root, the algorithm finds all possible paths and elongates the root in the direction of the optimal path. In this way, each edge of the graph is assigned to one or more coherent roots. Image sequences of root systems are handled in such a way that the previous image is used as a starting point for the current image. The algorithm is implemented in a set of Matlab m-files. Output of Root System Analyzer is a data structure that includes for each root an identification number, the branching order, the time of emergence, the parent

  9. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  10. Integration of ROOT notebook as an ATLAS analysis web-based tool in outreach and public data release projects

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00237353; The ATLAS collaboration

    2017-01-01

    Integration of the ROOT data analysis framework with the Jupyter Notebook technology presents the potential of enhancement and expansion of educational and training programs. It can be beneficial for university students in their early years, new PhD students and post-doctoral researchers, as well as for senior researchers and teachers who want to refresh their data analysis skills or to introduce a more friendly and yet very powerful open source tool in the classroom. Such tools have been already tested in several environments. A fully web-based integration of the tools and the Open Access Data repositories brings the possibility to go a step forward in the ATLAS quest of making use of several CERN projects in the field of the education and training, developing new computing solutions on the way.

  11. Improving the energy balance of grass-based anaerobic digestion through harvesting optimization

    DEFF Research Database (Denmark)

    Tsapekos, Panagiotis; Kougias, Panagiotis; Egelund, H.

    with a number of coarse barbs) to simultaneously mow and mechanically pretreat two different lignocellulosic substrates. Thus, ensiled meadow grass was initially examined at the first experimental set up. Regarding the second field test, an area sowed with regularly cultivated grass was harvested. In order......) protocol. The findings showed that methane production can efficiently be enhanced by mechanical pretreatment applied at the harvesting step. More specifically, the most effective treatment yielded more than 10% increase in the bioenergy production from both examined grass silages. Our study demonstrates...... that the appropriate harvester can improve the energy output by approximately 2.4 GJ/ha under optimal conditions and subsequently, the overall sustainability of grass-based AD....

  12. Swine wastewater treatment using vertical subsurface flow constructed wetland planted with Napier grass

    Directory of Open Access Journals (Sweden)

    Pantip Klomjek

    2016-09-01

    Full Text Available This research aims to investigate the pollutant removal efficiencies in swine wastewater using a vertical subsurface flow constructed wetland (VSF CW planted with two species of Napier grass. The grass productivities were also cultivated and compared in order to provide information for species selection. Twelve treatment units were set up with the VSF CWs planted with Giant Napier grass (Pennisetum purpureum cv. King grass and Dwarf Napier grass (Pennisetum purpureum cv. Mott. with 2 and 5 cm d−1 of hydraulic loading rates (HLR. Comparisons of removal efficiency and grass productivity were analyzed using Duncan's Multiple Range Test and t-test at the significant level 0.05. Both species of Napier grass performed more than 70% of removal efficiency of BOD and TKN. The VSF CW planted with Giant Napier grass at 5 cm d−1 HLR performed the highest BOD removal efficiency of 94 ± 1%, while the 2 cm d−1 HLR removed COD with efficiency of 64 ± 6%. The results also showed the effluent from all treatment units contained averages of BOD, COD, TSS, TKN and pH that followed Thailand's swine wastewater quality standard. Average fresh yields and dry yields were between 4.6 ± 0.4 to 15.2 ± 1.2 and 0.5 ± 0.1 to 2.2 ± 0.1 kg m−2, respectively. The dry yields obtained from four cutting cycles in five months of CW system operation were higher than the ones planted with a traditional method, but declined continuously after each cutting cycle. Both species of Napier grass indicated their suitability to be used in the VSF CW for swine wastewater treatment.

  13. Modelling nutrient concentration to determine the environmental factors influencing grass quality

    CSIR Research Space (South Africa)

    Dudeni-Tlhone, N

    2010-10-01

    Full Text Available This paper uses the spatial and the least squares (Analysis of Covariance-ANCOVA) regression methods to evaluate the important environmental factors in estimating quality grass for grazing (based on the nitrogen (N) content in grass...

  14. Nutritive value of Tanzania grass for dairy cows under rotational grazing

    Directory of Open Access Journals (Sweden)

    Alberto Magno Fernandes

    2014-08-01

    Full Text Available A nutritional analysis of Tanzania grass (Megathyrsus maximus Jacquin cv. Tanzânia was conducted. Pasture was managed in a rotational grazing system with a 30-day resting period, three days of paddock occupation and two grazing cycles. Ten Holstein × Zebu crossbred cows were kept within a 2-ha area divided into 11 paddocks ha-1. Cows were fed 2 kg of corn meal daily and performance was evaluated by weighing the animals every 14 days and by recording milk production twice a day. Nutritional composition of the Tanzania grass was determined from forage (extrusa samples collected by esophageal fistulae from two animals. The nutritive value of Tanzania grass was estimated according to a modification of the CNCPS evaluation model. Tanzania grass supplemented with 2 kg of corn meal supplied 33.2% more net energy for lactation than required by the animals to produce 13.7 kg of milk day-1. Nevertheless, the amount of metabolizable protein met the daily protein requirement of the animals. Although the model used in the study requires adjustments, Tanzania grass has the potential to produce milk in a rotational grazing system.

  15. The conditions for use of reed canary grass briquettes and chopped reed canary grass in small heating plants; Foerutsaettningar foer anvaendning av roerflensbriketter och hackad roerflen i mindre vaermecentraler

    Energy Technology Data Exchange (ETDEWEB)

    Paulrud, Susanne; Davidsson, Kent; Holmgren, Magnus A. (Swedish National Testing and Research Inst., Boraas (Sweden)); Hedman, Henry; Oehman, Rikard; Leffler, Joel (ETC, Piteaa (Sweden))

    2010-09-15

    The aim of this study was to test fuel blends of briquettes and chopped reed canary grass in three existing heating plants (50 kW - 500 kW) and elucidate the requirements for good performance and low emissions. In addition, the study investigated production of reed canary grass briquettes using a Polish screw press developed for straw. Some tests with a bale shredder were also undertaken. The screw press technique is of interest for reed canary grass because it is a simple technique, easy to handle, developed for small scale production, and for straw. The test with reed canary grass in this study showed that the technique worked well but that further adjustments and a longer test period are needed in order to achieve higher bulk density and mechanical strength. The test with chopped reed canary grass shows that a system with a forage harvester is slightly more effective than baling and cutting in a bale shredder. The study concluded that few existing heating plants of size 50 kW-1 MW that currently use wood fuels will be able to use reed canary grass without adjustment, conversion or replacement of the combustion equipment. Reed canary grass has 15-20 times higher ash content than wood briquettes and 2-3 times higher ash content than forest residue; the combustion equipment must be able to handle these properties. The boiler must be equipped with a continuously operating ashing system and it must be possible to move the ash bed mechanically. There is a risk of high content of unburned matter if the residence time in the boiler is too short, due to the structure and low bulk density of the reed canary grass ash. Using a blend of wood briquettes and reed canary briquettes results in lower ash content, but also affects the ash chemistry and tends to lower the initial ash fusion temperature compared to using 100 % reed canary grass. Blending chopped reed canary grass and wood chips in an existing small scale heating plant also requires measures to achieve an even fuel

  16. Complementary DNA cloning of the major allergen Phl p I from timothy grass (Phleum pratense); recombinant Phl p I inhibits IgE binding to group I allergens from eight different grass species

    NARCIS (Netherlands)

    Laffer, S.; Valenta, R.; Vrtala, S.; Susani, M.; van Ree, R.; Kraft, D.; Scheiner, O.; Duchêne, M.

    1994-01-01

    BACKGROUND: Grass pollens, such as pollen from timothy grass (Phleum pratense), represent a major cause of type I allergy. OBJECTIVE: In this report we attempted to determine how cross-reactive allergenic components of grass pollens from different species can be represented by a minimum number of

  17. Transport assessment - arid: measurement and prediction of water movement below the root zone

    International Nuclear Information System (INIS)

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    The amount of water transported below the root-zone and available for drainage (recharge) must be known in order to quantify the potential for leaching at low-level waste sites. Under arid site conditions, we quantified drainage by using weighing lysimeters containing sandy soil and measured 6 and 11 cm of drainage for a 1-yr period (June 1983-May 1984) from grass-covered and bare-soil surfaces, respectively. Precipitation during this period at our test site near Richland, Washington, was 25 cm. Similar drainage values were estimated from neutron probe measurements of water content profile changes in an adjacent grass-covered site. These data suggest that significant amounts of drainage can occur at arid sites when soils are coarse textured and precipitation occurs during fall and winter months. Model simulations predicted drainage values comparable to those measured with our weighing lysimeters. Long-term, 500- to 1000-yr predictions of leaching are possible with our model simulations. However, additional studies are needed to evaluate the effect of soil variability and stochastic rainfall inputs on drainage estimates, particularly for arid sites. 15 references, 9 figures, 1 table

  18. N transfer in three species grass-clover mixtures with chicory, ribwort plantain or caraway

    DEFF Research Database (Denmark)

    Dhamala, Nawa Raj; Rasmussen, Jim; Carlsson, Georg

    2017-01-01

    Background and aimsThere is substantial evidence that legume-derived Nitrogen (N) is transferred to neighboring non-legumes in grassland mixtures. However, there is sparse information about how deep rooted non-legume forage herbs (forbs) influence N transfer in multi-species grasslands. Methodology......Red clover (Trifolium pretense L.) was grown together with perennial ryegrass (Lolium perenne L.) and one of three forb species: chicory (Cichorium intybus L.), ribwort plantain (Plantago lanceolata L.) or caraway (Carum carvi L.) in a field experiment. During the first year after the establishment, red...... clover leaves were labeled with 15N-urea to determine the N transfer from red clover to companion ryegrass and forbs. ResultsOn an annual basis, up to 15 % of red clover N was transferred to the companion ryegrass and forbs, but predominantly to the grass. The forb species did not differ in their ability...

  19. Distribution, Diversity, and Long-Term Retention of Grass Short Interspersed Nuclear Elements (SINEs).

    Science.gov (United States)

    Mao, Hongliang; Wang, Hao

    2017-08-01

    Instances of highly conserved plant short interspersed nuclear element (SINE) families and their enrichment near genes have been well documented, but little is known about the general patterns of such conservation and enrichment and underlying mechanisms. Here, we perform a comprehensive investigation of the structure, distribution, and evolution of SINEs in the grass family by analyzing 14 grass and 5 other flowering plant genomes using comparative genomics methods. We identify 61 SINE families composed of 29,572 copies, in which 46 families are first described. We find that comparing with other grass TEs, grass SINEs show much higher level of conservation in terms of genomic retention: The origin of at least 26% families can be traced to early grass diversification and these families are among most abundant SINE families in 86% species. We find that these families show much higher level of enrichment near protein coding genes than families of relatively recent origin (51%:28%), and that 40% of all grass SINEs are near gene and the percentage is higher than other types of grass TEs. The pattern of enrichment suggests that differential removal of SINE copies in gene-poor regions plays an important role in shaping the genomic distribution of these elements. We also identify a sequence motif located at 3' SINE end which is shared in 17 families. In short, this study provides insights into structure and evolution of SINEs in the grass family. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. Uptake of Radium by Grass and Shrubs Grown on Mineral Heaps: A Preliminary Study

    International Nuclear Information System (INIS)

    Laili, Z.; Omar, M.; Yusof, M.A. Wahab; Ibrahim, M.Z.

    2015-01-01

    A preliminary study of the uptake of 226 Ra and 228 Ra by grass and shrubs grown on mineral heaps was carried out. Activity concentrations of 226 Ra and 228 Ra in grass and shrubs were measured using gamma spectrometry. The result showed that grass and shrubs grown on mineral heaps contained elevated levels of radium compared to grass and shrubs grown on normal soils. Thus, these plants might be used for phytoremediation of radium contaminated soil. (author)

  1. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  2. Botanical Composition, Grass Production, and Carrying Capacity of Pasture in Timor Tengah Selatan District

    Directory of Open Access Journals (Sweden)

    V. E. Se’u

    2015-12-01

    Full Text Available This study was conducted to analyze the botanical composition, grass production, carrying capacity, and potential production of nutrients in pasture located in Timor Tengah Selatan Regency. The experiment was conducted from February to July 2013, using field survey method. The botanical composition, grass production and carrying capacity on real condition were analyzed descriptively, while the grass production and carrying capacity based of cutting arrangement were analyzed by using randomized block factorial design with 3 altitude locations (Sub District of Mollo Utara with altitude of 1007 m above sea level; Sub District of Noebeba, 500 m ASL, and Sub District of Amanuban Selatan, 65 m ASL x 2 cutting intervals (1 and 2 month and 5 replications. The results showed that the grass type dominated the pasture in the Sub District of Mollo Utara, while legum type was more dominant in the pasture in the Sub Districts of Noebeba and Amanuban Selatan. The potential production of dry matter grass in Timor Tengah Selatan Regency based on real condition was 150 to 390 kg/ha/yr, this could accommodate 0.24 to 0.63 AU/ha/yr. The arrangement of cutting interval by 1 month in Mollo Utara and 2 months in Noebeba and Amanuban Selatan could increase (P<0.05 grass production and carrying capacity. The potential productions of grass nutrients were higher in Sub District of Mollo Utara, while potential production of grass dry matter was higher in Sub Districts of Noebeba and Amanuban Selatan. It was concluded that grass dry matter potential production and carrying capacity in Timor Tengah Selatan Regency were low. The arrangement of cutting interval could increase grass dry matter potential production, carrying capacity, nutrition production, and quality of nutrition.

  3. Thermally treated grass fibers as colonizable substrate for beneficial bacterial inoculum

    NARCIS (Netherlands)

    Trifonova, R.D.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2008-01-01

    This study investigates how thermally treated (i.e., torrefied) grass, a new prospective ingredient of potting soils, is colonized by microorganisms. Torrefied grass fibers (TGF) represent a specific colonizable niche, which is potentially useful to establish a beneficial microbial community that

  4. Persistence of Overseeded Cool-Season Grasses in Bermudagrass Turf

    OpenAIRE

    Thomas Serensits; Matthew Cutulle; Jeffrey F. Derr

    2011-01-01

    Cool-season grass species are commonly overseeded into bermudagrass turf for winter color. When the overseeded grass persists beyond the spring; however, it becomes a weed. The ability of perennial ryegrass, Italian (annual) ryegrass, intermediate ryegrass, and hybrid bluegrass to persist in bermudagrass one year after seeding was determined. Perennial ryegrass, intermediate ryegrass, and Italian ryegrass produced acceptable ground cover in the spring after fall seeding. Hybrid bluegrass di...

  5. BUFFEL GRASS MORPHOAGRONOMIC CHARACTERIZATION FROM Cenchrus GERMPLASM ACTIVE BANK

    OpenAIRE

    BRUNO, LEILA REGINA GOMES PASSOS; ANTONIO, RAFAELA PRISCILA; ASSIS, JOSÉ GERALDO DE AQUINO; MOREIRA, JOSÉ NILTON; LIRA, IRLANE CRISTINE DE SOUZA ANDRADE

    2017-01-01

    ABSTRACT This study aimed to characterize buffel grass accessions of the Cenchrus Germplasm Active Bank (CGAB) from Embrapa Semi-Arid in a morphoagronomic way, checking the descriptors variability and efficiency in accessions on two consecutive cuts. Twenty-five accessions and five buffel grass cultivars were used in randomized complete block design with three replications. Evaluations were conducted after two consecutive cuts, each evaluation performed 90 days after each cut. Characterizatio...

  6. Nutritional composition and in vitro digestibility of grass and legume winter (cover) crops.

    Science.gov (United States)

    Brown, A N; Ferreira, G; Teets, C L; Thomason, W E; Teutsch, C D

    2018-03-01

    In dairy farming systems, growing winter crops for forage is frequently limited to annual grasses grown in monoculture. The objectives of this study were to determine how cropping grasses alone or in mixtures with legumes affects the yield, nutritional composition, and in vitro digestibility of fresh and ensiled winter crops and the yield, nutritional composition, and in vitro digestibility of the subsequent summer crops. Experimental plots were planted with 15 different winter crops at 3 locations in Virginia. At each site, 4 plots of each treatment were planted in a randomized complete block design. The 15 treatments included 5 winter annual grasses [barley (BA), ryegrass (RG), rye (RY), triticale (TR), and wheat (WT)] in monoculture [i.e., no legumes (NO)] or with 1 of 2 winter annual legumes [crimson clover (CC) and hairy vetch (HV)]. After harvesting the winter crops, corn and forage sorghum were planted within the same plots perpendicular to the winter crop plantings. The nutritional composition and the in vitro digestibility of winter and summer crops were determined for fresh and ensiled samples. Growing grasses in mixtures with CC increased forage dry matter (DM) yield (2.84 Mg/ha), but the yield of mixtures with HV (2.47 Mg/ha) was similar to that of grasses grown in monoculture (2.40 Mg/ha). Growing grasses in mixtures with legumes increased the crude protein concentration of the fresh forage from 13.0% to 15.5% for CC and to 17.3% for HV. For neutral detergent fiber (NDF) concentrations, the interaction between grasses and legumes was significant for both fresh and ensiled forages. Growing BA, RY, and TR in mixtures with legumes decreased NDF concentrations, whereas growing RG and WT with legumes did not affect the NDF concentrations of either the fresh or the ensiled forages. Growing grasses in mixtures with legumes decreased the concentration of sugars of fresh forages relative to grasses grown in monoculture. Primarily, this decrease can be

  7. A proteomic style approach to characterize a grass mix product reveals potential immunotherapeutic benefit.

    Science.gov (United States)

    Bullimore, Alan; Swan, Nicola; Alawode, Wemimo; Skinner, Murray

    2011-09-01

    Grass allergy immunotherapies often consist of a mix of different grass extracts, each containing several proteins of different physiochemical properties; however, the subtle contributions of each protein are difficult to elucidate. This study aimed to identify and characterize the group 1 and 5 allergens in a 13 grass extract and to standardize the extraction method. The grass pollens were extracted in isolation and pooled and also in combination and analyzed using a variety of techniques including enzyme-linked immunosorbent assay, liquid chromatog-raphy-mass spectrometry, and sodium dodecyl sulfate-polyacrylam-ide gel electrophoresis. Gold-staining and IgE immunoblotting revealed a high degree of homology of protein bands between the 13 species and the presence of a densely stained doublet at 25-35 kD along with protein bands at approximately 12.5, 17, and 50 kD. The doublet from each grass species demonstrated a high level of group 1 and 5 interspecies homology. However, there were a number of bands unique to specific grasses consistent with evolutionary change and indicative that a grass mix immunotherapeutic could be considered broad spectrum. Sodium dodecyl sulfate-polyacrylamide gel electro-phoresis and IgE immunoblotting showed all 13 grasses share a high degree of homology, particularly in terms of group 1 and 5 allergens. IgE and IgG enzyme-linked immunosorbent assay potencies were shown to be independent of extraction method.

  8. Production of N{sub 2}O in grass-clover pastures

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.S.

    2005-09-01

    Agricultural soils are known to be a considerable source of the strong greenhouse gas nitrous oxide (N{sub 2}O), and in soil N{sub 2}O is mainly produced by nitrifying and denitrifying bacteria. In Denmark, grass-clover pastures are an important component of the cropping system in organic as well as conventional dairy farming, and on a European scale grass-clover mixtures represent a large part of the grazed grasslands. Biological dinitrogen (N{sub 2}) fixation in clover provides a major N input to these systems, but knowledge is sparse regarding the amount of fixed N{sub 2} lost from the grasslands as N2O. Furthermore, urine patches deposited by grazing cattle are known to be hot-spots of N{sub 2}O emission, but the mechanisms involved in the N{sub 2}O production in urine-affected soil are very complex and not well understood. The aim of this Ph.D. project was to increase the knowledge of the biological and physical-chemical mechanisms, which control the production of N2O in grazed grass-clover pastures. Three experimental studies were conducted with the objectives of: 1: assessing the contribution of recently fixed N{sub 2} as a source of N{sub 2}O. 2: examining the link between N{sub 2}O emission and carbon mineralization in urine patches. 3: investigating the effect of urine on the rates and N{sub 2}O loss ratios of nitrification and denitrification, and evaluating the impact of the chemical conditions that arise in urine affected soil. The results revealed that only 3.2 {+-} 0.5 ppm of the recently fixed N{sub 2} was emitted as N2O on a daily basis. Thus, recently fixed N released via easily degradable clover residues appears to be a minor source of N2O. Furthermore, increased N{sub 2}O emission following urine application at rates up to 5.5 g N m{sup -2} was not caused by enhanced denitrification stimulated by labile compounds released from scorched plant roots. Finally, the increase of soil pH and ammonium following urine application led to raised

  9. The role of ecotypic variation and the environment on biomass and nitrogen in a dominant prairie grass.

    Science.gov (United States)

    Mendola, Meredith L; Baer, Sara G; Johnson, Loretta C; Maricle, Brian R

    2015-09-01

    Knowledge of the relative strength of evolution and the environment on a phenotype is required to predict species responses to environmental change and decide where to source plant material for ecological restoration. This information is critically needed for dominant species that largely determine the productivity of the central U.S. grassland. We established a reciprocal common garden experiment across a longitudinal gradient to test whether ecotypic variation interacts with the environment to affect growth and nitrogen (N) storage in a dominant grass. We predicted plant growth would increase from west to east, corresponding with increasing precipitation, but differentially among ecotypes due to local adaptation in all ecotypes and a greater range of growth response in ecotypes originating from west to east. We quantified aboveground biomass, root biomass, belowground net primary production (BNPP), root C:N ratio, and N storage in roots of three ecotypes of Andropogon gerardii collected from and reciprocally planted in central Kansas, eastern Kansas, and s6uthern Illinois. Only the ecotype from the most mesic region (southern Illinois) exhibited more growth from west to east. There was evidence for local adaptation in the southern Illinois ecotype by means of the local vs. foreign contrast within a site and the home vs. away contrast when growth in southern Illinois was compared to the most distant 'site in central Kansas. Root biomass of the eastern Kansas ecotype was higher at home than at either away site. The ecotype from the driest region, central Kansas, exhibited the least response across the environmental gradient, resulting in a positive relationship between the range of biomass response and precipitation in ecotype region of origin. Across all sites, ecotypes varied in root C:N ratio (highest in the driest-origin ecotype) and N storage in roots (highest in the most mesic-origin ecotype). The low and limited range of biomass, higher C:N ratio of roots

  10. Integral octonions and E8

    International Nuclear Information System (INIS)

    Koca, M.

    1986-08-01

    240 non-zero roots of E 8 are constructed a la Dickson and Coxeter by defining simple roots in terms of octonionic units. They close under subtraction and multiplication. It is noted that the integral octonions of norms 1, 2,...,13 which constitute the dominant weights of unit multiplicity of certain representations of E 8 define Gosset's polytope in 8 dimensions. Similar features of integral quaternions forming the SO(8) root lattice are briefly mentioned. (author)

  11. The Integration of Electrical Signals Originating in the Root of Vascular Plants

    Directory of Open Access Journals (Sweden)

    Javier Canales

    2018-01-01

    Full Text Available Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.

  12. Invasive grasses change landscape structure and fire behavior in Hawaii

    Science.gov (United States)

    Lisa M. Ellsworth; Creighton M. Litton; Alexander P. Dale; Tomoaki Miura

    2014-01-01

    How does potential fire behavior differ in grass-invaded non-native forests vs open grasslands? How has land cover changed from 1950–2011 along two grassland/forest ecotones in Hawaii with repeated fires? A study on non-native forest with invasive grass understory and invasive grassland (Megathyrsus maximus) ecosystems on Oahu, Hawaii, USA was...

  13. Ensiling as pretreatment of grass for lignocellulosic biomass conversion

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten

    for subsequent enzymatic saccharification of cellulose and hemicellulose, by using the temperate grass Festulolium Hykor. The method was additionally combined with hydrothermal treatment, in order to decrease the required severity of an industrial applied pretreatment method. The first part of the project...... conditions providing the best possible pretreatment effect. The parameters were biomass composition, varied by ensiling of four seasonal cuts of grass, different dry matter (DM) content at ensiling, and an addition of different lactic acid bacteria species. First of all, the study confirmed that ensiling can...... act as a method of pretreatment and improve the enzymatic cellulose convertibility of grass. Furthermore, low DM ensiling was found to improve the effects of pretreatment due to a higher production of organic acids in the silage. The effect of applied lactic acid bacteria species was, however...

  14. First evidence of grass carp recruitment in the Great Lakes Basin

    Science.gov (United States)

    Chapman, Duane C.; Davis, J. Jeremiah; Jenkins, Jill A.; Kocovsky, Patrick M.; Miner, Jeffrey G.; Farver, John; Jackson, P. Ryan

    2013-01-01

    We use aging techniques, ploidy analysis, and otolith microchemistry to assess whether four grass carp Ctenopharyngodon idella captured from the Sandusky River, Ohio were the result of natural reproduction within the Lake Erie Basin. All four fish were of age 1 +. Multiple lines of evidence indicate that these fish were not aquaculture-reared and that they were most likely the result of successful reproduction in the Sandusky River. First, at least two of the fish were diploid; diploid grass carp cannot legally be released in the Great Lakes Basin. Second, strontium:calcium (Sr:Ca) ratios were elevated in all four grass carp from the Sandusky River, with elevated Sr:Ca ratios throughout the otolith transect, compared to grass carp from Missouri and Arkansas ponds. This reflects the high Sr:Ca ratio of the Sandusky River, and indicates that these fish lived in a high-strontium environment throughout their entire lives. Third, Sandusky River fish were higher in Sr:Ca ratio variability than fish from ponds, reflecting the high but spatially and temporally variable strontium concentrations of southwestern Lake Erie tributaries, and not the stable environment of pond aquaculture. Fourth, Sr:Ca ratios in the grass carp from the Sandusky River were lower in their 2011 growth increment (a high water year) than the 2012 growth increment (a low water year), reflecting the observed inverse relationship between discharge and strontium concentration in these rivers. We conclude that these four grass carp captured from the Sandusky River are most likely the result of natural reproduction within the Lake Erie Basin.

  15. Hygrothermal Properties and Performance of Sea Grass Insulation

    DEFF Research Database (Denmark)

    Eriksen, Marlene Stenberg Hagen; Laursen, Theresa Back; Rode, Carsten

    2008-01-01

    In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate the hygro......In the attempt to obtain knowledge of the hygrothermal properties of sea grass as thermal insulation, experiments have been carried out in the laboratory to determine the thermal conductivity, sorption properties and the water vapour permeability of the material. In order to investigate...

  16. Determination of 90Sr in grass and soil

    International Nuclear Information System (INIS)

    Bajo, S.; Keil, R.

    1994-10-01

    A radiochemical method for the determination of 90 Sr in non-contaminated grass and soil is presented. The method is based on the leaching of 90 Sr from the mineralized samples followed by liquid-liquid extraction of 90 Y, its short lived daughter, by tributylphosphate and precipitation of Y-oxalate, which is counted in a low-level proportional counter. Based on dried samples of 30 g of soil and 100 g of grass the limit of detection is about 0.1 Bq/kg for both materials. (author) figs., tabs., 43 refs

  17. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.

    Science.gov (United States)

    Mullet, John; Morishige, Daryl; McCormick, Ryan; Truong, Sandra; Hilley, Josie; McKinley, Brian; Anderson, Robert; Olson, Sara N; Rooney, William

    2014-07-01

    Sorghum is emerging as an excellent genetic model for the design of C4 grass bioenergy crops. Annual energy Sorghum hybrids also serve as a source of biomass for bioenergy production. Elucidation of Sorghum's flowering time gene regulatory network, and identification of complementary alleles for photoperiod sensitivity, enabled large-scale generation of energy Sorghum hybrids for testing and commercial use. Energy Sorghum hybrids with long vegetative growth phases were found to accumulate more than twice as much biomass as grain Sorghum, owing to extended growing seasons, greater light interception, and higher radiation use efficiency. High biomass yield, efficient nitrogen recycling, and preferential accumulation of stem biomass with low nitrogen content contributed to energy Sorghum's elevated nitrogen use efficiency. Sorghum's integrated genetics-genomics-breeding platform, diverse germplasm, and the opportunity for annual testing of new genetic designs in controlled environments and in multiple field locations is aiding fundamental discovery, and accelerating the improvement of biomass yield and optimization of composition for biofuels production. Recent advances in wide hybridization between Sorghum and other C4 grasses could allow the deployment of improved genetic designs of annual energy Sorghums in the form of wide-hybrid perennial crops. The current trajectory of energy Sorghum genetic improvement indicates that it will be possible to sustainably produce biofuels from C4 grass bioenergy crops that are cost competitive with petroleum-based transportation fuels. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2018-04-01

    Full Text Available Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140–150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.

  19. Endophytic Epichloë species and their grass hosts: from evolution to applications.

    Science.gov (United States)

    Saikkonen, Kari; Young, Carolyn A; Helander, Marjo; Schardl, Christopher L

    2016-04-01

    The closely linked fitness of the Epichloë symbiont and the host grass is presumed to align the coevolution of the species towards specialization and mutually beneficial cooperation. Ecological observations demonstrating that Epichloë-grass symbioses can modulate grassland ecosystems via both above- and belowground ecosystem processes support this. In many cases the detected ecological importance of Epichloë species is directly or indirectly linked to defensive mutualism attributable to alkaloids of fungal-origin. Now, modern genetic and molecular techniques enable the precise studies on evolutionary origin of endophytic Epichloë species, their coevolution with host grasses and identification the genetic variation that explains phenotypic diversity in ecologically relevant characteristics of Epichloë-grass associations. Here we briefly review the most recent findings in these areas of research using the present knowledge of the genetic variation that explains the biosynthetic pathways driving the diversity of alkaloids produced by the endophyte. These findings underscore the importance of genetic interplay between the fungus and the host in shaping their coevolution and ecological role in both natural grass ecosystems, and in the agricultural arena.

  20. Effects of form of nitrogen fertilization on the accumulation of Pb, As, Sc Ge and U in shoots of reed canary grass (Phalaris arundinacea L.)

    Science.gov (United States)

    Wiche, Oliver; Székely, Balázs; Moschner, Christin; Heilmeier, Hermann

    2015-04-01

    the rhizosphere due to a release of protons in the rhizosphere by roots of reed canary grass as affected by the uptake of N, predominantly NH4+In other words plants taking up an excess of cations (NH4+) over anions exuded H+ from their roots and thus this might have increased bioavailability of trace metals in the root zone and therefore enhanced uptake by reed canary grass. However, in this preliminary study we did not analyze rhizosphere soil, and thus, further research on this topic is needed. These studies have been carried out in the framework of the PhytoGerm project, financed by the Federal Ministry of Education and Research, Germany. BS contributed as an Alexander von Humboldt Research Fellow. The authors are grateful to students and laboratory assistants contributing in the field work and sample preparation.

  1. Aggressiveness of loose kernel smut isolate from Johnson grass on sorghum line BTx643

    Science.gov (United States)

    An isolate of loose kernel smut obtained from Johnson grass was inoculated unto six BTx643 sorghum plants in the greenhouse to determine its aggressiveness. All the BTx643 sorghum plants inoculated with the Johnson grass isolate were infected. Mean size of the teliospores from the Johnson grass, i...

  2. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis.

    Science.gov (United States)

    Pfaar, O; Lang, S; Pieper-Fürst, U; Astvatsatourov, A; Gerich, F; Klimek, L; Kramer, M F; Reydelet, Y; Shah-Hosseini, K; Mösges, R

    2018-01-01

    A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL ® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, Pallergoids containing the adjuvant MPL ® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC. © 2017 The Authors. Allergy Published by John Wiley & Sons Ltd.

  3. A statistical approach to root system classification.

    Directory of Open Access Journals (Sweden)

    Gernot eBodner

    2013-08-01

    Full Text Available Plant root systems have a key role in ecology and agronomy. In spite of fast increase in root studies, still there is no classification that allows distinguishing among distinctive characteristics within the diversity of rooting strategies. Our hypothesis is that a multivariate approach for plant functional type identification in ecology can be applied to the classification of root systems. We demonstrate that combining principal component and cluster analysis yields a meaningful classification of rooting types based on morphological traits. The classification method presented is based on a data-defined statistical procedure without a priori decision on the classifiers. Biplot inspection is used to determine key traits and to ensure stability in cluster based grouping. The classification method is exemplified with simulated root architectures and morphological field data. Simulated root architectures showed that morphological attributes with spatial distribution parameters capture most distinctive features within root system diversity. While developmental type (tap vs. shoot-borne systems is a strong, but coarse classifier, topological traits provide the most detailed differentiation among distinctive groups. Adequacy of commonly available morphologic traits for classification is supported by field data. Three rooting types emerged from measured data, distinguished by diameter/weight, density and spatial distribution respectively. Similarity of root systems within distinctive groups was the joint result of phylogenetic relation and environmental as well as human selection pressure. We concluded that the data-define classification is appropriate for integration of knowledge obtained with different root measurement methods and at various scales. Currently root morphology is the most promising basis for classification due to widely used common measurement protocols. To capture details of root diversity efforts in architectural measurement

  4. Phytophagous insect fauna tracks host plant responses to exotic grass invasion.

    Science.gov (United States)

    Almeida-Neto, Mário; Prado, Paulo I; Lewinsohn, Thomas M

    2011-04-01

    The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.

  5. Group 5 allergens of timothy grass (Phl p 5) bear cross-reacting T cell epitopes with group 1 allergens of rye grass (Lol p 1).

    Science.gov (United States)

    Müller, W D; Karamfilov, T; Bufe, A; Fahlbush, B; Wolf, I; Jäger, L

    1996-04-01

    Selected human T cell clones reactive with group 5 allergens of timothy grass (Phl p 5) were cross-stimulated in specific proliferation assays with group 1 allergens of rye grass (Lol p 1). Such interspecies cross-reactivities result obviously from structural motifs presented on defined Phl p 5 fragments as shown with recombinant Phl p 5 products.

  6. Perennial Grass and Native Wildflowers: A Synergistic Approach to Habitat Management

    Directory of Open Access Journals (Sweden)

    Shereen S. Xavier

    2017-09-01

    Full Text Available Marginal agricultural land provides opportunities to diversify landscapes by producing biomass for biofuel, and through floral provisioning that enhances arthropod-mediated ecosystem service delivery. We examined the effects of local spatial context (adjacent to woodland or agriculture and irrigation (irrigation or no irrigation on wildflower bloom and visitation by arthropods in a biofeedstocks-wildflower habitat buffer design. Twenty habitat buffer plots were established containing a subplot of Napier grass (Pennisetum perpureum Schumach for biofeedstock, three commercial wildflower mix subplots, and a control subplot containing spontaneous weeds. Arthropods and flowers were visually observed in quadrats throughout the season. At the end of the season we measured soil nutrients and harvested Napier biomass. We found irrespective of buffer location or irrigation, pollinators were observed more frequently early in the season and on experimental plots with wildflowers than on weeds in the control plots. Natural enemies showed a tendency for being more common on plots adjacent to a wooded border, and were also more commonly observed early in the season. Herbivore visits were infrequent and not significantly influenced by experimental treatments. Napier grass yields were high and typical of first-year yields reported regionally, and were not affected by location context or irrigation. Our results suggest habitat management designs integrating bioenergy crop and floral resources provide marketable biomass and habitat for beneficial arthropods.

  7. Phenology largely explains taller grass at successful nests in greater sage-grouse.

    Science.gov (United States)

    Smith, Joseph T; Tack, Jason D; Doherty, Kevin E; Allred, Brady W; Maestas, Jeremy D; Berkeley, Lorelle I; Dettenmaier, Seth J; Messmer, Terry A; Naugle, David E

    2018-01-01

    Much interest lies in the identification of manageable habitat variables that affect key vital rates for species of concern. For ground-nesting birds, vegetation surrounding the nest may play an important role in mediating nest success by providing concealment from predators. Height of grasses surrounding the nest is thought to be a driver of nest survival in greater sage-grouse ( Centrocercus urophasianus ; sage-grouse), a species that has experienced widespread population declines throughout their range. However, a growing body of the literature has found that widely used field methods can produce misleading inference on the relationship between grass height and nest success. Specifically, it has been demonstrated that measuring concealment following nest fate (failure or hatch) introduces a temporal bias whereby successful nests are measured later in the season, on average, than failed nests. This sampling bias can produce inference suggesting a positive effect of grass height on nest survival, though the relationship arises due to the confounding effect of plant phenology, not an effect on predation risk. To test the generality of this finding for sage-grouse, we reanalyzed existing datasets comprising >800 sage-grouse nests from three independent studies across the range where there was a positive relationship found between grass height and nest survival, including two using methods now known to be biased. Correcting for phenology produced equivocal relationships between grass height and sage-grouse nest survival. Viewed in total, evidence for a ubiquitous biological effect of grass height on sage-grouse nest success across time and space is lacking. In light of these findings, a reevaluation of land management guidelines emphasizing specific grass height targets to promote nest success may be merited.

  8. Biomass accumulation and chemical composition of Massai grass intercropped with forage legumes on an integrated crop-livestock-forest system

    Directory of Open Access Journals (Sweden)

    Tatiana da Costa Moreno Gama

    2014-06-01

    Full Text Available The objective was to evaluate the use of woody legumes (Albizia lebbeck, Cratylia argentea, Dipteryx Allata (Baru, a Leucaena hybrid (L. leucocephala + L. diversifolia, and Leucaena leucocephalacv. Cunningham and herbaceous legumes (Arachis pintoi intercropped with Panicum maximum cv. Massai, simultaneously implanted in a maize crop. The study made use of a randomized block experimental design with four replications. Assessments of biomass accumulation and forage nutritional value were made after the maize harvest, between June 2008 and October 2010. It was found that the residues of maize provided better growing conditions for Massai grass during the dry season. L. leucocephala cv. Cunningham and the Leucaena hybrid had the highest accumulation of all forage legumes evaluated, and provided the best nutritional value of all the arrangements tested. Of all woody legumes tested in this system, Leucaena was considered feasible for intercropping with Massai grass. The intercrop of perennial woody Baru with maize is not recommended. Albizia lebbeck and Cratylia argentea require further study, especially the yield assessment at different cutting intervals and cutting heights. Arachis pintoi had a low participation in the intercropping, showing greater performance over time, indicating slow thriving in this experimental condition.

  9. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Science.gov (United States)

    2012-01-01

    Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP) pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility) of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses exhibiting a diversity of

  10. Structural characterization of alkaline hydrogen peroxide pretreated grasses exhibiting diverse lignin phenotypes

    Directory of Open Access Journals (Sweden)

    Li Muyang

    2012-06-01

    Full Text Available Abstract Background For cellulosic biofuels processes, suitable characterization of the lignin remaining within the cell wall and correlation of quantified properties of lignin to cell wall polysaccharide enzymatic deconstruction is underrepresented in the literature. This is particularly true for grasses which represent a number of promising bioenergy feedstocks where quantification of grass lignins is particularly problematic due to the high fraction of p-hydroxycinnamates. The main focus of this work is to use grasses with a diverse range of lignin properties, and applying multiple lignin characterization platforms, attempt to correlate the differences in these lignin properties to the susceptibility to alkaline hydrogen peroxide (AHP pretreatment and subsequent enzymatic deconstruction. Results We were able to determine that the enzymatic hydrolysis of cellulose to to glucose (i.e. digestibility of four grasses with relatively diverse lignin phenotypes could be correlated to total lignin content and the content of p-hydroxycinnamates, while S/G ratios did not appear to contribute to the enzymatic digestibility or delignification. The lignins of the brown midrib corn stovers tested were significantly more condensed than a typical commercial corn stover and a significant finding was that pretreatment with alkaline hydrogen peroxide increases the fraction of lignins involved in condensed linkages from 88–95% to ~99% for all the corn stovers tested, which is much more than has been reported in the literature for other pretreatments. This indicates significant scission of β-O-4 bonds by pretreatment and/or induction of lignin condensation reactions. The S/G ratios in grasses determined by analytical pyrolysis are significantly lower than values obtained using either thioacidolysis or 2DHSQC NMR due to presumed interference by ferulates. Conclusions It was found that grass cell wall polysaccharide hydrolysis by cellulolytic enzymes for grasses

  11. Explaining grass-nutrient patterns in a savanna rangeland of southern Africa

    NARCIS (Netherlands)

    Mutanga, O.; Prins, H.H.T.; Skidmore, A.K.; Wieren, van S.E.; Huizing, H.; Grant, R.; Peel, M.J.S.; Biggs, H.

    2004-01-01

    Aim The search for possible factors influencing the spatial variation of grass quality is an important step towards understanding the distribution of herbivores, as well as a step towards identifying crucial areas for conservation and restoration. A number of studies have shown that grass quality at

  12. Acute toxic effects of endosulfan sulfate on three life stages of grass shrimp, Palaemonetes pugio.

    Science.gov (United States)

    Key, Peter B; Chung, Katy W; Venturella, John J; Shaddrick, Brian; Fulton, Michael H

    2010-01-01

    In this study, the toxicity of endosulfan sulfate, the primary degradation product of the insecticide endosulfan, was determined in three life stages of the grass shrimp (Palaemonetes pugio). After 96 h exposure to endosulfan sulfate, the grass shrimp adult LC50 was 0.86 microg/L (95% CI 0.56-1.31), the grass shrimp larvae LC50 was 1.64 microg/L (95% CI 1.09-2.47) and the grass shrimp embryo LC50 was 45.85 microg/L (95% CI 23.72-88.61 microg/L). This was compared to the previously published grass shrimp 96-h LC50s for endosulfan. The toxicity of the two compounds was similar for the grass shrimp life stages with adults more sensitive than larvae and embryos. The presence of sediment in 24h endosulfan sulfate-exposures raised LC50s for both adult and larval grass shrimp but not significantly. The USEPA expected environmental concentrations (EEC) for total endosulfan and endosulfan sulfate and the calculations of risk quotients (RQ) based on the more sensitive adult grass shrimp 96-h LC50 clearly show that environmental concentrations equal to acute EECs would prove detrimental to grass shrimp or other similarly sensitive aquatic organisms. These results indicate that given the persistence and toxicity of endosulfan sulfate, future risk assessments should consider the toxicity potential of the parent compound as well as this degradation product.

  13. Identification of brome grass infestations in southwest Oklahoma using multi-temporal Landsat imagery

    Science.gov (United States)

    Yan, D.; de Beurs, K.

    2013-12-01

    The extensive infestation of brome grasses (Cheatgrass, Rye brome and Japanese brome) in southwest Oklahoma imposes negative impacts on local economy and ecosystem in terms of decreasing crop and forage production and increasing fire risk. Previously proposed methodologies on brome grass detection are found ill-suitable for southwest Oklahoma as a result of similar responses of background vegetation to inter-annual variability of rainfall. In this study, we aim to identify brome grass infestations by detecting senescent brome grasses using the 2011 Cultivated Land Cover Data Sets and the difference Normalized Difference Infrared Index (NDII) derived from multi-temporal Landsat imagery. Landsat imageries acquired on May 18th and June 10th 2013 by Operational Land Imager and Enhanced Thematic Mapper plus were used. The imagery acquisition dates correspond to the peak growth and senescent time of brome grasses, respectively. The difference NDII was calculated by subtracting the NDII image acquired in May from the June NDII image. Our hypotheses is that senescent brome grasses and crop/pasture fields harvested between the two image acquisition dates can be distinguished from background land cover classes because of their increases in NDII due to decreased water absorption by senescent vegetation in the shortwave infrared region. The Cultivated Land Cover Data Sets were used to further separate senescent brome grass patches from newly harvested crop/pasture fields. Ground truth data collected during field trips in June, July and August of 2013 were used to validate the detection results.

  14. No positive feedback between fire and a nonnative perennial grass

    Science.gov (United States)

    Erika L. Geiger; Guy R. McPherson

    2005-01-01

    Semi-desert grasslands flank the “Sky Island” mountains in southern Arizona and Northern Mexico. Many of these grasslands are dominated by nonnative grasses, which potentially alter native biotic communities. One specific concern is the potential for a predicted feedback between nonnative grasses and fire. In a large-scale experiment in southern Arizona we investigated...

  15. Herbaceous Legume Encroachment Reduces Grass Productivity and Density in Arid Rangelands.

    Directory of Open Access Journals (Sweden)

    Thomas C Wagner

    Full Text Available Worldwide savannas and arid grasslands are mainly used for livestock grazing, providing livelihood to over a billion people. While normally dominated by perennial C4 grasses, these rangelands are increasingly affected by the massive spread of native, mainly woody legumes. The consequences are often a repression of grass cover and productivity, leading to a reduced carrying capacity. While such encroachment by woody plants has been extensively researched, studies on similar processes involving herbaceous species are rare. We studied the impact of a sustained and massive spread of the native herbaceous legume Crotalaria podocarpa in Namibia's escarpment region on the locally dominant fodder grasses Stipagrostis ciliata and Stipagrostis uniplumis. We measured tussock densities, biomass production of individual tussocks and tussock dormancy state of Stipagrostis on ten 10 m x 10 m plots affected and ten similarly-sized plots unaffected by C. podocarpa over eight consecutive years and under different seasonal rainfalls and estimated the potential relative productivity of the land. We found the percentage of active Stipagrostis tussocks and the biomass production of individual tussocks to increase asymptotically with higher seasonal rainfall reaching a maximum around 300 mm while the land's relative productivity under average local rainfall conditions reached only 40% of its potential. Crotalaria podocarpa encroachment had no effect on the proportion of productive grass tussocks, but reduced he productivity of individual Stipagrostis tussocks by a third. This effect of C. podocarpa on grass productivity was immediate and direct and was not compensated for by above-average rainfall. Besides this immediate effect, over time, the density of grass tussocks declined by more than 50% in areas encroached by C. podocarpa further and lastingly reducing the lands carrying capacity. The effects of C. podocarpa on grass productivity hereby resemble those of woody

  16. RNA-seq for gene identification and transcript profiling in relation to root growth of bermudagrass (Cynodon dactylon) under salinity stress.

    Science.gov (United States)

    Hu, Longxing; Li, Huiying; Chen, Liang; Lou, Yanhong; Amombo, Erick; Fu, Jinmin

    2015-08-04

    Soil salinity is one of the most significant abiotic stresses affecting plant shoots and roots growth. The adjustment of root architecture to spatio-temporal heterogeneity in salinity is particularly critical for plant growth and survival. Bermudagrass (Cynodon dactylon) is a widely used turf and forage perennial grass with a high degree of salinity tolerance. Salinity appears to stimulate the growth of roots and decrease their mortality in tolerant bermudagrass. To estimate a broad spectrum of genes related to root elongation affected by salt stress and the molecular mechanisms that control the positive response of root architecture to salinity, we analyzed the transcriptome of bermudagrass root tips in response to salinity. RNA-sequencing was performed in root tips of two bermudagrass genotypes contrasting in salt tolerance. A total of 237,850,130 high quality clean reads were generated and 250,359 transcripts were assembled with an average length of 1115 bp. Totally, 103,324 unigenes obtained with 53,765 unigenes (52 %) successfully annotated in databases. Bioinformatics analysis indicated that major transcription factor (TF) families linked to stress responses and growth regulation (MYB, bHLH, WRKY) were differentially expressed in root tips of bermudagrass under salinity. In addition, genes related to cell wall loosening and stiffening (xyloglucan endotransglucosylase/hydrolases, peroxidases) were identified. RNA-seq analysis identified candidate genes encoding TFs involved in the regulation of lignin synthesis, reactive oxygen species (ROS) homeostasis controlled by peroxidases, and the regulation of phytohormone signaling that promote cell wall loosening and therefore root growth under salinity.

  17. Rough wave-like heaped overburden promotes establishment of woody vegetation while leveling promotes grasses during unassisted post mining site development.

    Science.gov (United States)

    Frouz, Jan; Mudrák, Ondřej; Reitschmiedová, Erika; Walmsley, Alena; Vachová, Pavla; Šimáčková, Hana; Albrechtová, Jana; Moradi, Jabbar; Kučera, Jiří

    2018-01-01

    Geodiversity plays an important role in species establishment during spontaneous succession. At post-mining sites in the Czech Republic in 2003, we established plots in which the surface of the heaped overburden was either kept wave-like or leveled. Based on surveys conducted from 2006 to 2015, leveled plots were increasingly dominated by grasses and herbs (and especially by the grass Calamagrostis epigejos) while the wave-like plots were increasingly dominated by the trees Salix caprea and Betula pendula. In 2015, a detailed survey was conducted of the dominant species. Both S. caprea and B. pendula occurred more often in wave-like plots than in leveled plots; this was particularly true for trees taller than 1 m, which were absent in leveled plots. In wave-like plots, leaf and root biomasses of both woody species were higher on the wave slopes than on the wave depressions. Nitrogen content was higher but content stress indicating proline in leaves of S. caprea was lower in wave-like plots than in leveled plots. In wave-like plots, both woody species occurred mainly on wave slopes but C. epigejos occurred mainly in the depressions. We speculate that trees were more abundant in wave-like plots than in leveled plots because the waves trapped tree seeds and snow and because the soil porosity was greater in wave-like than in leveled plots. Grasses may have preferred the leveled plots because soil porosity was lower and clay content was higher in leveled than in wave-like plots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Differentiation of plant age in grasses using remote sensing

    Science.gov (United States)

    Knox, Nichola M.; Skidmore, Andrew K.; van der Werff, Harald M. A.; Groen, Thomas A.; de Boer, Willem F.; Prins, Herbert H. T.; Kohi, Edward; Peel, Mike

    2013-10-01

    Phenological or plant age classification across a landscape allows for examination of micro-topographical effects on plant growth, improvement in the accuracy of species discrimination, and will improve our understanding of the spatial variation in plant growth. In this paper six vegetation indices used in phenological studies (including the newly proposed PhIX index) were analysed for their ability to statistically differentiate grasses of different ages in the sequence of their development. Spectra of grasses of different ages were collected from a greenhouse study. These were used to determine if NDVI, NDWI, CAI, EVI, EVI2 and the newly proposed PhIX index could sequentially discriminate grasses of different ages, and subsequently classify grasses into their respective age category. The PhIX index was defined as: (AVNIRn+log(ASWIR2n))/(AVNIRn-log(ASWIR2n)), where AVNIRn and ASWIR2n are the respective normalised areas under the continuum removed reflectance curve within the VNIR (500-800 nm) and SWIR2 (2000-2210 nm) regions. The PhIX index was found to produce the highest phenological classification accuracy (Overall Accuracy: 79%, and Kappa Accuracy: 75%) and similar to the NDVI, EVI and EVI2 indices it statistically sequentially separates out the developmental age classes. Discrimination between seedling and dormant age classes and the adult and flowering classes was problematic for most of the tested indices. Combining information from the visible near infrared (VNIR) and shortwave infrared region (SWIR) region into a single phenological index captures the phenological changes associated with plant pigments and the ligno-cellulose absorption feature, providing a robust method to discriminate the age classes of grasses. This work provides a valuable contribution into mapping spatial variation and monitoring plant growth across savanna and grassland ecosystems.

  19. Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere.

    Directory of Open Access Journals (Sweden)

    Andrew L Neal

    Full Text Available Benzoxazinoids, such as 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H-one (DIMBOA, are secondary metabolites in grasses. In addition to their function in plant defence against pests and diseases above-ground, benzoxazinoids (BXs have also been implicated in defence below-ground, where they can exert allelochemical or antimicrobial activities. We have studied the impact of BXs on the interaction between maize and Pseudomonas putida KT2440, a competitive coloniser of the maize rhizosphere with plant-beneficial traits. Chromatographic analyses revealed that DIMBOA is the main BX compound in root exudates of maize. In vitro analysis of DIMBOA stability indicated that KT2440 tolerance of DIMBOA is based on metabolism-dependent breakdown of this BX compound. Transcriptome analysis of DIMBOA-exposed P. putida identified increased transcription of genes controlling benzoate catabolism and chemotaxis. Chemotaxis assays confirmed motility of P. putida towards DIMBOA. Moreover, colonisation essays in soil with Green Fluorescent Protein (GFP-expressing P. putida showed that DIMBOA-producing roots of wild-type maize attract significantly higher numbers of P. putida cells than roots of the DIMBOA-deficient bx1 mutant. Our results demonstrate a central role for DIMBOA as a below-ground semiochemical for recruitment of plant-beneficial rhizobacteria during the relatively young and vulnerable growth stages of maize.

  20. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    Science.gov (United States)

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots

  1. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity.

    Directory of Open Access Journals (Sweden)

    Monica Fernandez-Aparicio

    2016-09-01

    Full Text Available Broomrape weeds (Orobanche and Phelipanche spp. are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops i.e. faba bean, field pea and grass pea. Regression functions modelled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2 and 1.5 parasites per faba bean, field pea and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The proportion of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than 4 parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size

  2. The Effect of Orobanche crenata Infection Severity in Faba Bean, Field Pea, and Grass Pea Productivity.

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Flores, Fernando; Rubiales, Diego

    2016-01-01

    Broomrape weeds ( Orobanche and Phelipanche spp.) are root holoparasites that feed off a wide range of important crops. Among them, Orobanche crenata attacks legumes complicating their inclusion in cropping systems along the Mediterranean area and West Asia. The detrimental effect of broomrape parasitism in crop yield can reach up to 100% depending on infection severity and the broomrape-crop association. This work provides field data of the consequences of O. crenata infection severity in three legume crops, i.e., faba bean, field pea, and grass pea. Regression functions modeled productivity losses and revealed trends in dry matter allocation in relation to infection severity. The host species differentially limits parasitic sink strength indicating different levels of broomrape tolerance at equivalent infection severities. Reductions in host aboveground biomass were observed starting at low infection severity and half maximal inhibitory performance was predicted as 4.5, 8.2, and 1.5 parasites per faba bean, field pea, and grass pea plant, respectively. Reductions in host biomass occurred in both vegetative and reproductive organs, the latter resulting more affected. The increase of resources allocated within the parasite was concomitant to reduction of host seed yield indicating that parasite growth and host reproduction compete directly for resources within a host plant. However, the parasitic sink activity does not fully explain the total host biomass reduction because combined biomass of host-parasite complex was lower than the biomass of uninfected plants. In grass pea, the seed yield was negligible at severities higher than four parasites per plant. In contrast, faba bean and field pea sustained low but significant seed production at the highest infection severity. Data on seed yield and seed number indicated that the sensitivity of field pea to O. crenata limited the production of grain yield by reducing seed number but maintaining seed size. In contrast

  3. Development of herbicide resistance in black-grass (Alopecurus myosuroides in Bavaria

    Directory of Open Access Journals (Sweden)

    Gehring, Klaus

    2016-02-01

    Full Text Available Black-grass (Alopecurus myosuroides is one of the most important grass weeds in Bavaria. Chemical weed control with high efficacy is very important in crops like winter cereals, oilseed rape and maize. Crop rotations with more winter cereals, reduced soil cultivation and e.g. contract harvesting enhanced distribution of blackgrass in arable farming regions. Effects of herbicide resistance were observed since the last 20 years. The blackgrass herbicide resistance is well observed by the official plant protection service of Bavaria. A wide experience of resistance tests shows the development of resistant black-grass and provides an opportunity for future prospects in resistance dynamics.

  4. Effect of Two Oil Dispersants on Larval Grass Shrimp (Palaemonetes pugio) Development.

    Science.gov (United States)

    Betancourt, P.; Key, P. B.; Chung, K. W.; DeLorenzo, M. E.

    2015-12-01

    The study focused on the effects that two oil dispersants, Corexit® EC9500A and Finasol® OSR52, have on the development of larval grass shrimp, (Palaemonetes pugio). The hypothesis was that Finasol would have a greater effect on larval grass shrimp development than Corexit. The experiment was conducted using 300 grass shrimp larvae that were 24 hours old. Each larva was exposed individually. In total, five sub-lethal concentrations were tested for each dispersant (control, 1.25, 2.50, 5.0,10.0 mg/L). The larvae were exposed for five days then transferred to clean seawater until metamorphosis into the juvenile stage. Key data measurements recorded included number of days to become juveniles, number of instars, length, dry weight, and mortality. Data from exposed shrimp was compared to the results of the control for each dispersant concentration. Corexit and Finasol exposure treatments of 5 mg/L and 10 mg/L showed significantly higher values for number of days and number of instars to reach juvenile status than values obtained from unexposed, control shrimp. Overall, mortality was higher in the Finasol treatments but the two dispersants did not respond significantly different from one another. Future studies are needed to determine the long term effects of dispersant exposure on all grass shrimp life stages and how any dispersant exposure impacts grass shrimp populations. Grass shrimp serve as excellent toxicity indicators of estuaries, and further studies will help to develop better oil spill mitigation techniques.

  5. Ensiling and hydrothermal pretreatment of grass: Consequences for enzymatic biomass conversion and total monosaccharide yields

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Johansen, Katja Salomon; Didion, Thomas

    2014-01-01

    Ensiling may act as a pretreatment of fresh grass biomass and increase the enzymatic conversion of structural carbohydrates to fermentable sugars. However, ensiling does not provide sufficient severity to be a standalone pretreatment method. Here, ensiling of grass is combined with hydrothermal...... treatment (HTT) with the aim of improving the enzymatic biomass convertibility and decrease the required temperature of the HTT. Results: Grass silage (Festulolium Hykor) was hydrothermally treated at temperatures of 170, 180, and 190°C for 10 minutes. Relative to HTT treated dry grass, ensiling increased...... convertibility). The effect of ensiling of grass prior to HTT improved the enzymatic conversion of cellulose for HTT at 170 and 180°C, but the increased glucose release did not make up for the loss of water soluble carbohydrates (WSC) during ensiling. Overall, sugar yields (C6 + C5) were similar for HTT of grass...

  6. Expressing Parallelism with ROOT

    Energy Technology Data Exchange (ETDEWEB)

    Piparo, D. [CERN; Tejedor, E. [CERN; Guiraud, E. [CERN; Ganis, G. [CERN; Mato, P. [CERN; Moneta, L. [CERN; Valls Pla, X. [CERN; Canal, P. [Fermilab

    2017-11-22

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  7. Expressing Parallelism with ROOT

    Science.gov (United States)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  8. Taxonomic studies of grasses and their indigenous uses in the salt ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    Jan 19, 2009 ... countries like United States, the principal sources of meat ... Many species of native and introduced grasses are utilized in improved ... turning northwest to cross the river Indus near Kalabagh. (Ahmad and ... Key to the identification of grasses of Salt Range of Pakistan. S. No ...... Under shade of trees.

  9. Productivity and nutritive value of three grass-legume mixtures in the ...

    African Journals Online (AJOL)

    Productivity and nutritive value of three grass-legume mixtures in the Sudan savannah zone Kano state, Nigeria. ... Results of the study indicated that Sorghum almum-Lablab purpureus mixture recorded numerically higher dry matter yield (7806 kg dm/hectare) compared to other mixtures, similarly leaf area for grass (46.4) ...

  10. Rumen fermentation profile and intestinal digestibility of maize and grass silages

    NARCIS (Netherlands)

    Ali, M.

    2013-01-01

    Maize and grass silages are commonly used as major feed materials for dairy cows in Europe and are becoming common parts of dairy cow rations in other parts of the world. Thenutritive value of maize and grass silages varies greatly due to variation in chemical composition. A combination of

  11. Chemical composition of elephant grass silages supplemented with different levels of dehydrated cashew bagasse

    Directory of Open Access Journals (Sweden)

    Danillo Glaydson Farias Guerra

    2016-04-01

    Full Text Available The objective of the present study was to evaluate the chemical composition of elephant grass silages supplemented with different levels dried cashew bagasse (DCB. Our experiment used a randomized design replicated four times, each replicate consisting of the following five treatments: 100% elephant grass; 95% elephant grass + 5% DCB; 90% elephant grass + 10% DCB; 85% elephant grass + 15% DCB; and 80% elephant grass + 20% DCB. The elephant grass was cut manually to a residual height of 5 cm at 80 days of age, and cashew bagasse was obtained from the processing of cashew stalks used in fruit pulp manufacturing in Mossoró/RN. Plastic buckets were used as experimental silos, and 90 days after ensiling the experimental silos were opened and the contents analyzed. The addition of dried cashew bagasse to silage linearly increased the levels of dried matter and crude protein by 0.59% and 0.13%, respectively, for each 1% addition (P < 0.05. The neutral detergent fiber and acid detergent content of the silages was reduced by 0.22% and 0.09%, respectively, for each 1% addition of the bagasse. The total carbohydrate content was not influenced by the bagasse addition (P > 0.05, and averaged 82.29%. The levels of non-fiber carbohydrate showed linear growth (P < 0.05 as the dehydrated cashew bagasse was added, and pH and ammoniacal nitrogen levels were reduced. The addition of the dehydrated bagasse to elephant grass silage improves its chemical composition, and it can be effectively added up to the level of 20%.

  12. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.

    Science.gov (United States)

    Linder, H P; Lehmann, Caroline E R; Archibald, Sally; Osborne, Colin P; Richardson, David M

    2018-05-01

    Poaceae (the grasses) is arguably the most successful plant family, in terms of its global occurrence in (almost) all ecosystems with angiosperms, its ecological dominance in many ecosystems, and high species richness. We suggest that the success of grasses is best understood in context of their capacity to colonize, persist, and transform environments (the "Viking syndrome"). This results from combining effective long-distance dispersal, efficacious establishment biology, ecological flexibility, resilience to disturbance and the capacity to modify environments by changing the nature of fire and mammalian herbivory. We identify a diverse set of functional traits linked to dispersal, establishment and competitive abilities. Enhanced long-distance dispersal is determined by anemochory, epizoochory and endozoochory and is facilitated via the spikelet (and especially the awned lemma) which functions as the dispersal unit. Establishment success could be a consequence of the precocious embryo and large starch reserves, which may underpin the extremely short generation times in grasses. Post-establishment genetic bottlenecks may be mitigated by wind pollination and the widespread occurrence of polyploidy, in combination with gametic self-incompatibility. The ecological competitiveness of grasses is corroborated by their dominance across the range of environmental extremes tolerated by angiosperms, facilitated by both C 3 and C 4 photosynthesis, well-developed frost tolerance in several clades, and a sympodial growth form that enabled the evolution of both annual and long-lived life forms. Finally, absence of investment in wood (except in bamboos), and the presence of persistent buds at or below ground level, provides tolerance of repeated defoliation (whether by fire, frost, drought or herbivores). Biotic modification of environments via feedbacks with herbivory or fire reinforce grass dominance leading to open ecosystems. Grasses can be both palatable and productive

  13. Relevance of Allergenic Sensitization to Cynodon dactylon and Phragmites communis: Cross-reactivity With Pooideae Grasses.

    Science.gov (United States)

    López-Matas, M A; Moya, R; Cardona, V; Valero, A; Gaig, P; Malet, A; Viñas, M; García-Moral, A; Labrador, M; Alcoceba, E; Ibero, M; Carnés, J

    The homologous group of sweet grasses belongs to the Pooideae subfamily, but grass pollen species from other subfamilies can also cause allergy, such as Cynodon dactylon (Chloridoideae) and Phragmites communis (Arundinoideae). C dactylon and P communis have not been included in the sweet grasses homologous group because of their low cross-reactivity with other grasses. The aims of this study were to investigate the profile of sensitization to C dactylon and P communis in patients sensitized to grasses and to analyze cross-reactivity between these 2 species and temperate grasses. Patients were skin prick tested with a grass mixture (GM). Specific IgE to GM, C dactylon, P communis, Cyn d 1, and Phl p 1 was measured by ImmunoCAP. A pool of sera was used for the immunoblot assays. Cross-reactivity was studied by ELISA and immunoblot inhibition. Thirty patients had sIgE to GM. Twenty-four (80%) had positive results for C dactylon, 27 (90%) for P communis, 22 (73.3%) for nCyn d 1, and 92.9% for rPhl p 1. Bands were detected in the 3 extracts by immunoblot. Inhibition of GM was not observed with C dactylon or P communis by immunoblot or ELISA inhibition. When C dactylon or P communis were used in the solid phase, GM produced almost complete inhibition. Eighty percent of patients sensitized to grasses were also sensitized to C dactylon and 90% were sensitized to P communis. Sensitization to these species seems to be induced by allergens different to those in sweet grasses.

  14. POTENTIALS OF AGRICULTURAL WASTE AND GRASSES IN ...

    African Journals Online (AJOL)

    Shima

    Potentials of some agricultural waste and grasses were investigated. ... to education, printing, publishing and ... technical form, paper is an aqueous deposit ..... Period of. Soaking. Overnight. Overnight. Overnight. Overnight. Overnight.

  15. Determination of trace element contents in grass samples for cattle feeding using NAA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yusof, Alias Mohamad; Jagir Singh, Jasbir Kaur

    1987-09-01

    An investigation on trace elements contents in six types of grass samples used for cattle feeding have been carried out using NAA techniques. The grass samples, Mardi Digit, African Star, Signal, Guinea, Setaria and Setaria Splendida were found to contain at least 19 trace elements in varying concentrations. The results were compared to the figures obtained from available sources to ascertain the status as to whether the grass samples studied would satisfy the minimum requirements of trace elements present in grass for cattle feeding or otherwise. Preference made on the suitability of the grass samples for cattle feeding was based on the availability and abundance of the trace elements, taking into account factors such as the degree of toxicity, inadequate amounts and contamination due to the presence of other trace elements not essential for cattle feeding.

  16. Determination of trace element contents in grass samples for cattle feeding using NAA techniques

    International Nuclear Information System (INIS)

    Alias Mohamad Yusof; Jasbir Kaur Jagir Singh

    1987-01-01

    An investigation on trace elements contents in six types of grass samples used for cattle feeding have been carried out using NAA techniques. The grass samples, Mardi Digit, African Star, Signal, Guinea, Setaria and Setaria Splendida were found to contain at least 19 trace elements in varying concentrations. The results were compared to the figures obtained from available sources to ascertain the status as to whether the grass samples studied would satisfy the minimum requirements of trace elements present in grass for cattle feeding or otherwise. Preference made on the suitability of the grass samples for cattle feeding was based on the availability and abundance of the trace elements, taking into account factors such as the degree of toxicity, inadequate amounts and contamination due to the presence of other trace elements not essential for cattle feeding. (author)

  17. NITROGEN CONTENT AND DRY-MATTER DIGESTIBILITY OF GUINEA AND SABI GRASSES AS INFLUENCED BY TREE LEGUME CANOPY

    Directory of Open Access Journals (Sweden)

    Andi Lagaligo Amar

    2012-08-01

    Full Text Available A research study was undertaken to study the grass layer across a mini landscape dominated by tree legume Albizia lebbeck to explore the nutritional differences of two introduced grasses, guinea grass (Panicum maximum and sabi grass (Urochloa mosambicensis, paying particular attention to the presence or absence of tree legume canopy of Albizia lebbeck. The two grass species showed a tendency to replace the native spear grass (Heteropogon contortus; their dominance was more or less complete under tree canopies but was increasing in open areas between trees. Nutritional differences were examined by nitrogen concentration and dry matter digestibility. For comparison, Heteropogon contortus, a native species only found in the open, was included in the nutritional determination using the same methods as the guinea and sabi grasses. The quality parameters of the pasture species were statistically compared (LSD, P=0.05. The quality of herbage was different between the species. Urochloa mosambicensis was better than Panicum maximum. In the open, sabi grass has higher N content (0.62% than guinea grass (0.55%, but they were similar when grown under the canopy (0.69% and 0.72%, respectively. Sabi grass has consistently higher dry matter digestibility (41.39% and 36.83%, respectively under the canopy and in the open, than guinea grass (27.78% and 24.77%. These two species are much higher in both N concentration and dry matter digestibility than the native spear grass. The native species has contained 0.28% N, and 17.65% digestible dry matter. The feeding values of herbage were influenced by the canopy factor. Both guinea and sabi grasses have better quality when grown under the tree canopies than in between canopies. Nitrogen concentration and dry matter digestibility of the guinea grass under canopy were, 0.72% and 27.78%, respectively, significantly higher than those from the open area, 0.55% and 24.77%. Similarly, herbage of sabi grass under canopy has 0

  18. Evaluating poverty grass (Danthonia spicata) for golf courses in the Midwest

    Science.gov (United States)

    Nadia E. Navarrete-Tindall; J.W. Van Sambeek

    2010-01-01

    Poverty grass (Danthonia spicata (L.) P. beauv. Ex Roem & Schult. ) results presented here are part of ongoing studies to evaluate its adaptation for golf courses as part of low maintenance natural communities at Lincoln University of Missouri. Because its natural adaptation to shade and poor soils, poverty grass could be established in golf...

  19. Identification and effect of two flavonoids from root bark of Morus alba against Ichthyophthirius multifiliis in grass carp

    Science.gov (United States)

    Morus alba is an important plant for sericulture and has a high medicinal value. In this study, two flavonoids (kuwanons G and O) with antiparasitic activity were isolated from the root bark of M. alba by bioassay-guided fractionation. The chemical structures were determined by pectroscopic analys...

  20. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937