WorldWideScience

Sample records for integrated water management

  1. Adaptive and integrated water management

    NARCIS (Netherlands)

    Pahl-Wostl, C.; Kabat, P.; Möltgen, J.

    2007-01-01

    Sustainable water management is a key environmental challenge of the 21st century. Developing and implementing innovative management approaches and how to cope with the increasing complexity and uncertainties was the theme of the first International Conference on Adaptive and Integrated Water Manage

  2. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  3. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    weather, while the overflow from the combined sewer system plays a minor role. Oxygen depletion in urban rivers is caused by intermittent discharges from both sewer system and wastewater treatment plant. Neglecting one of them in the evaluation of the environmental impact gives a wrong impression of total......The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  4. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...

  5. Linking integrated water resources management and integrated coastal zone management.

    Science.gov (United States)

    Rasch, P S; Ipsen, N; Malmgren-Hansen, A; Mogensen, B

    2005-01-01

    Some of the world's most valuable aquatic ecosystems such as deltas, lagoons and estuaries are located in the coastal zone. However, the coastal zone and its aquatic ecosystems are in many places under environmental stress from human activities. About 50% of the human population lives within 200 km of the coastline, and the population density is increasing every day. In addition, the majority of urban centres are located in the coastal zone. It is commonly known that there are important linkages between the activities in the upstream river basins and the environment conditions in the downstream coastal zones. Changes in river flows, e.g. caused by irrigation, hydropower and water supply, have changed salinity in estuaries and lagoons. Land use changes, such as intensified agricultural activities and urban and industrial development, cause increasing loads of nutrients and a variety of chemicals resulting in considerable adverse impacts in the coastal zones. It is recognised that the solution to such problems calls for an integrated approach. Therefore, the terms Integrated Water Resources Management (IWRM) and Integrated Coastal Zone Management (ICZM) are increasingly in focus on the international agenda. Unfortunately, the concepts of IWRM and ICZM are mostly being developed independently from each other by separate management bodies using their own individual approaches and tools. The present paper describes how modelling tools can be used to link IWRM and ICZM. It draws a line from the traditional sectoral use of models for the Istanbul Master Planning and assessment of the water quality and ecological impact in the Bosphorus Strait and the Black Sea 10 years ago, to the most recent use of models in a Water Framework Directive (WFD) context for one of the selected Pilot River Basins in Denmark used for testing of the WFD Guidance Documents.

  6. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  7. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  8. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Science.gov (United States)

    2011-04-05

    ... Bureau of Reclamation Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement... Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The Washington State...; and (4) identify a comprehensive approach for efficient management of basin water supplies....

  9. Knowledge and information management for integrated water resource management

    Science.gov (United States)

    Watershed information systems that integrate data and analytical tools are critical enabling technologies to support Integrated Water Resource Management (IWRM) by converting data into information, and information into knowledge. Many factors bring people to the table to participate in an IWRM fra...

  10. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    together with the water footprint concept could thus provide an appropriate framework to support more optimal water management practices by informing production and trade decisions and the development and adoption of water efficient technology. In order to move towards better water governance however a further integration of water-related concerns into water-related sectoral policies is paramount. This will require a concerted effort by all stakeholders, the willingness to adopt a total resource view where water is seen as a key, cross-sectoral input for development and growth, a mix of technical approaches, and the courage to undertake and fund water sector reforms. We are convinced that the water footprint analysis can provide a sufficiently robust fact base for meaningful stakeholder dialogue and action towards solutions.

  11. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  12. Urban water sustainability: an integrative framework for regional water management

    Directory of Open Access Journals (Sweden)

    P. Gonzales

    2015-11-01

    Full Text Available Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  13. Water management as a key component of integrated weed management

    Directory of Open Access Journals (Sweden)

    Giuseppe Zanin

    2011-02-01

    Full Text Available Water management within the cropping system is a key factor for an integrated weed management. Soil moisture affects seed persistence and seed dormancy, thus influencing their germination, the establishment of seedlings as well as the competition at adult stage and the number, vitality and dormancy of the new seeds produced by the weeds. The interactions among water availability and competition are very complex and still not fully understood. A research effort in this sector should the be very relevant for the development of new approaches of weed management, such as “Ecological weed management”, aiming to reduce weed density and competitiveness and, in the medium term, to prevent undesired modifications of the weed flora.

  14. ``Virtual water'': An unfolding concept in integrated water resources management

    Science.gov (United States)

    Yang, Hong; Zehnder, Alexander

    2007-12-01

    In its broadest sense, virtual water refers to the water required for the production of food commodities. Issues relating to virtual water have drawn much attention in scientific communities and the political sphere since the mid 1990s. This paper provides a critical review of major research issues and results in the virtual water literature and pinpoints the remaining questions and the direction of research in future virtual water studies. We conclude that virtual water studies have helped to raise the awareness of water scarcity and its impact on food security and to improve the understanding of the role of food trade in compensating for water deficit. However, the studies so far have been overwhelmingly concerned with the international food trade, and many solely quantified virtual water flows associated with food trade. There is a general lack of direct policy relevance to the solutions to water scarcity and food insecurity, which are often local, regional, and river basin issues. The obscurity in the conceptual basis of virtual water also entails some confusion. The methodologies and databases of the studies are often crude, affecting the robustness and reliability of the results. Looking ahead, future virtual water studies need to enhance the policy relevance by strengthening their linkages with national and regional water resources management. Meanwhile, integrated approaches taking into consideration the spatial and temporal variations of blue and green water resources availability and the complexity of natural, socioeconomic, and political conditions are necessary in assessing the trade-offs of the virtual water strategy in dealing with water scarcity. To this end, interdisciplinary efforts and quantitative methods supported by improved data availability are greatly important.

  15. Integrated urban water management in commercial buildings.

    Science.gov (United States)

    Trowsdale, S; Gabe, J; Vale, R

    2011-01-01

    Monitoring results are presented as an annual water balance from the pioneering Landcare Research green building containing commercial laboratory and office space. The building makes use of harvested roof runoff to flush toilets and urinals and irrigate glasshouse experiments, reducing the demand for city-supplied water and stormwater runoff. Stormwater treatment devices also manage the runoff from the carpark, helping curb stream degradation. Composting toilets and low-flow tap fittings further reduce the water demand. Despite research activities requiring the use of large volumes of water, the demand for city-supplied water is less than has been measured in many other green buildings. In line with the principles of sustainability, the composting toilets produce a useable product from wastes and internalise the wastewater treatment process.

  16. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    of the growing demand for water to irrigation, industrial and domestic uses. As a response, the Chinese authorities have launched the 2011 No. 1 Central Policy Document, which set targets related to water scarcity and water quality and marks the first step towards sustainable management of the Chinese water...... resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... basin-wide costs of water supply and water curtailment. Water users are characterized by water demand and economic value, turning the complex water management problem into a single objective cost minimization problem. The physical system and management scenarios are represented as constraints...

  17. Finding practical approaches to integrated water resources management

    NARCIS (Netherlands)

    Butterworth, J.; Warner, J.F.; Moriarty, P.; Smits, S.; Batchelor, Ch.

    2010-01-01

    Integrated Water Resources Management (IWRM) has often been interpreted and implemented in a way that is only really suited to countries with the most developed water infrastructures and management capacities. While sympathetic to many of the criticisms levelled at the IWRM concept and recognising

  18. Banking for the future: Prospects for integrated cyclical water management

    Science.gov (United States)

    Ross, Andrew

    2014-11-01

    Integrated management of surface water and groundwater can provide efficient and flexible use of water by making the best use of the properties of different types of water resources. Integrated cyclical water management can help adaptation to climate variation and uncertainty by varying the proportion of surface water and groundwater allocations over time in response to changing water availability. Water use entitlements and rules specify conditions for the use, storage and exchange of surface water and groundwater. These entitlements and rules provide certainty for water users, investors and managers. Entitlements and rules also need to be flexible to enable users and managers to respond to changing water availability and knowledge. Arrangements to provide certainty and flexibility can conflict. For example guarantees of specific long-term allocations of water, or shares of allocations can conflict with arrangements to bank water underground during wet periods and then to use an increased amount of groundwater in dry periods. Systems of water entitlements and rules need to achieve a balance between certainty and flexibility. This article explores the effect of water entitlements and rules, and arrangements to provide certainty and flexibility for the integration of surface water and groundwater management over time. The analysis draws on case studies from the Namoi River basin in New South Wales and the South Platte River basin in Colorado. Integrated cyclical water management requires a comprehensive, flexible and balanced system of water entitlements and rules that allow extended water carryover, water banking, aquifer storage and recovery over the wet and dry climate cycle. Opportunities for extended carryover and aquifer storage and recovery over the wet and dry climate cycle merit further consideration in New South Wales, Colorado and other jurisdictions.

  19. Urban water sustainability: an integrative framework for regional water management

    OpenAIRE

    2015-01-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative ef...

  20. Bringing ecosystem services into integrated water resources management.

    Science.gov (United States)

    Liu, Shuang; Crossman, Neville D; Nolan, Martin; Ghirmay, Hiyoba

    2013-11-15

    In this paper we propose an ecosystem service framework to support integrated water resource management and apply it to the Murray-Darling Basin in Australia. Water resources in the Murray-Darling Basin have been over-allocated for irrigation use with the consequent degradation of freshwater ecosystems. In line with integrated water resource management principles, Australian Government reforms are reducing the amount of water diverted for irrigation to improve ecosystem health. However, limited understanding of the broader benefits and trade-offs associated with reducing irrigation diversions has hampered the planning process supporting this reform. Ecosystem services offer an integrative framework to identify the broader benefits associated with integrated water resource management in the Murray-Darling Basin, thereby providing support for the Government to reform decision-making. We conducted a multi-criteria decision analysis for ranking regional potentials to provide ecosystem services at river basin scale. We surveyed the wider public about their understanding of, and priorities for, managing ecosystem services and then integrated the results with spatially explicit indicators of ecosystem service provision. The preliminary results of this work identified the sub-catchments with the greatest potential synergies and trade-offs of ecosystem service provision under the integrated water resources management reform process. With future development, our framework could be used as a decision support tool by those grappling with the challenge of the sustainable allocation of water between irrigation and the environment. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  1. Towards an integrated water management - Comparing German and Dutch water law from a spatial planning perspective

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2015-01-01

    Water management increasingly deals with spatial aspects; spatial planning interferes and depends in various ways on water management. Particularly in urban areas, this interference calls for an integrated water management. As a result, water management and spatial planning meet. Laws frame the inte

  2. Integrating water resources management in eco-hydrological modelling.

    Science.gov (United States)

    Koch, H; Liersch, S; Hattermann, F F

    2013-01-01

    In this paper the integration of water resources management with regard to reservoir management in an eco-hydrological model is described. The model was designed to simulate different reservoir management options, such as optimized hydropower production, irrigation intake from the reservoir or optimized provisioning downstream. The integrated model can be used to investigate the impacts of climate variability/change on discharge or to study possible adaptation strategies in terms of reservoir management. The study area, the Upper Niger Basin located in the West African Sahel, is characterized by a monsoon-type climate. Rainfall and discharge regime are subject to strong seasonality. Measured data from a reservoir are used to show that the reservoir model and the integrated management options can be used to simulate the regulation of this reservoir. The inflow into the reservoir and the discharge downstream of the reservoir are quite distinctive, which points out the importance of the inclusion of water resources management.

  3. MoGIRE: A Model for Integrated Water Management

    Science.gov (United States)

    Reynaud, A.; Leenhardt, D.

    2008-12-01

    Climate change and growing water needs have resulted in many parts of the world in water scarcity problems that must by managed by public authorities. Hence, policy-makers are more and more often asked to define and to implement water allocation rules between competitive users. This requires to develop new tools aiming at designing those rules for various scenarios of context (climatic, agronomic, economic). If models have been developed for each type of water use however, very few integrated frameworks link these different uses, while such an integrated approach is a relevant stake for designing regional water and land policies. The lack of such integrated models can be explained by the difficulty of integrating models developed by very different disciplines and by the problem of scale change (collecting data on large area, arbitrate between the computational tractability of models and their level of aggregation). However, modelers are more and more asked to deal with large basin scales while analyzing some policy impacts at very high detailed levels. These contradicting objectives require to develop new modeling tools. The CALVIN economically-driven optimization model developed for managing water in California is a good example of this type of framework, Draper et al. (2003). Recent reviews of the literature on integrated water management at the basin level include Letcher et al. (2007) or Cai (2008). We present here an original framework for integrated water management at the river basin scale called MoGIRE ("Modèle pour la Gestion Intégrée de la Ressource en Eau"). It is intended to optimize water use at the river basin level and to evaluate scenarios (agronomic, climatic or economic) for a better planning of agricultural and non-agricultural water use. MoGIRE includes a nodal representation of the water network. Agricultural, urban and environmental water uses are also represented using mathematical programming and econometric approaches. The model then

  4. Challenges of Integrated Water Resources Management in Indonesia

    OpenAIRE

    Mohamad Ali Fulazzaky

    2014-01-01

    The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM) should cope with complex issues of water in order to maximize the resultant economic and social welfare in an eq...

  5. Emergence of Integrated Water Resources Management: measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  6. Does Integrated Water Resources Management Support Institutional Change? The Case of Water Policy Reform in Israel

    Directory of Open Access Journals (Sweden)

    Itay Fischhendler

    2010-03-01

    Full Text Available Many international efforts have been made to encourage integrated water resources management through recommendations from both the academic and the aid and development sectors. Recently, it has been argued that integrated water resources management can help foster better adaptation of management and policy responses to emerging water crises. Nevertheless, few empirical studies have assessed how this type of management works in practice and what an integrated water management system implies for institutional adaptation and change. Our assessment of the Israeli water sector provides one view of how they can be shaped by an integrated structure in the water sector. Our analysis of recent efforts to adapt Israel's water management system to new conditions and uncertainties reveals that the interconnectedness of the system and the consensus decision-making process, led by a dominant actor who coordinates and sets the policy agenda, tends to increase the complexity of negotiations. In addition, the physical integration of water management leads to sunk costs of large-scale physical infrastructure. Both these factors create a path dependency that empowers players who receive benefits from maintaining the existing system. This impedes institutional reform of the water management system and suggests that integrated water resources management creates policy and management continuity that may only be amenable to incremental changes. In contrast, real adaptation that requires reversibility and the ability to change management strategies in response to new information or monitoring of specific management outcomes.

  7. Integrated Water Resources Management Improving Langat Basin Ecosystem Health

    Directory of Open Access Journals (Sweden)

    Mazlin B. Mokhtar

    2008-01-01

    Full Text Available The ecosystem provides us with all the goods and services that form the base of our economic, social cultural and spiritual life. Good scientific information will be required for managing the environment by using the Ecosystem approach. The groundwater is considered as a possible supplementary of alternative water source, and some factories already started shifting their water source from surface water to groundwater. Uncontrolled use of groundwater, however, may induce serious environmental problems, e.g., land subsidence, saltwater intrusion to the aquifer. The establishment of a balanced multi-sector and integrated groundwater resources and environmental management plan is deemed urgent to attain a sustainable groundwater resources use and to maintain a favorable groundwater quality in the Langat Basin. To achieve sustainable lifestyle in large scale ecosystem requires integrated and holistic approaches from all stakeholders. Through Aquifer Storage Recovery (ASR it was determined a revolutionized water resources management, providing a sustainable supply while minimizing the environmental impact of surface storage. By using underground geologic formations to store water, by integrated water resources management advisory system (IWRMAS aquifer recharge can now easily applied to obviate water resource and environmental problems, including seasonal shortages, emergency storage, ground subsidence and saline intrusion.

  8. Efficient Assessment of the Environment for Integral Urban Water Management

    Science.gov (United States)

    Rost, Grit; Londong, Jörg

    2015-04-01

    Introduction: Sustainable water supply and sanitation is fundamental, especially in countries that are also particularly vulnerable to water-related problems. The Integrated Water Resources Management (IWRM) approach makes sure that water management is organised in a transdisciplinary way taking into account the river basin, the hydrologic system and the appendant organisation like culture, law and economics. The main objective of IWRM is the sustainable organisation of water resources quality and quantity (GWP and INBO 2009). However there are more important targets in sustainable use of water resources. New sanitation systems are focussing on adding value and maintaining essential resources in circular flow. Focussing on material fluxes can contribute on water quality, food security, sustainable use of renewable energy, adaption on water scarcity and also on rising water and sanitation demand because of rapid urban and suburban growth (Price and Vojinović 2011; Rost et al 2013; Stäudel et al 2014). Problem: There are several planning tools for IWRM as well as for urban water management. But to complete the IWRM approach for the resource oriented concept a systematic assessment tool is missing. The assessment of crucial indicators obviously requires a lot of data from different subjects/disciplines, in different scales of detail and in different accuracy and in data acquisition (Karthe et al 2014). On the one hand there will be data abundance and on the other hand the data can be unavailable or unfeasible for example because of scale and specification(Rost et al 2013). Such a complex integrated concept requires a clearly worked out structure for the way of managing and priority setting. Purpose: To get systematic in the complex planning process the toolbox model is going to develop. The assessment of the environmental screening (one part of the toolbox) is going to be presented in this paper. The first step of assessment leans on the assertion that each of the

  9. Role of water reuse for enhancing integrated water management in Europe and Mediterranean countries.

    Science.gov (United States)

    Lazarova, V; Levine, B; Sack, J; Cirelli, G; Jeffrey, P; Muntau, H; Salgot, M; Brissaud, F

    2001-01-01

    Recycling water is an important aspect of water resource and environment management policies, ensuring reliable alternative water resources, reducing environmental pollution and achieving a more sustainable form of development. This paper focuses on wastewater reuse as a strategy for integrated water management. Key economic, financial, regulatory, social and technical factors that help to make water reuse projects successful are reviewed. Selected examples from Northern and Western Europe and arid and semi-arid Mediterranean regions illustrate the contribution of wastewater reuse to integrated management of water resources.

  10. Challenges of Integrated Water Resources Management in Indonesia

    Directory of Open Access Journals (Sweden)

    Mohamad Ali Fulazzaky

    2014-07-01

    Full Text Available The increased demands for water and land in Indonesia as a consequence of the population growth and economic development has reportedly have been accelerated from the year to year. The spatial and temporal variability of human induced hydrological changes in a river basin could affect quality and quantity of water. The challenge is that integrated water resources management (IWRM should cope with complex issues of water in order to maximize the resultant economic and social welfare in an equitable manner, without compromising the sustainability of vital ecosystems. Even though the government of Indonesia has adopted new paradigm for water resources management by the enactment of Law No. 7/2004 on water resources, the implementation of IWRM may face the technical and managerial challenges. This paper briefly reviews the implementation of IWRM and related principles and provides an overview of potential water-related issues and progress towards implementation of IWRM in Indonesia. The availability of water and a broader range of water-related issues are identified. The recommended actions for improving the future IWRM are suggested. Challenges to improve the capacity buildings of IWRM related to enabling environment, institutional frameworks and management instruments are verified to contribute to the future directions for efficient problem-solving ability.

  11. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  12. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  13. Integrated water resources management in the Ruhr River Basin, Germany.

    Science.gov (United States)

    Bode, H; Evers, P; Albrecht, D R

    2003-01-01

    The Ruhr, with an average flow of 80.5 m3/s at its mouth, is a comparatively small tributary to the Rhine River that has to perform an important task: to secure the water supply of more than 5 million people and of the industry in the densely populated region north of the river. The complex water management system and network applied by the Ruhrverband in the natural Ruhr River Basin has been developed step by step, over decades since 1913. And from the beginning, its major goal has been to achieve optimal conditions for the people living in the region. For this purpose, a functional water supply and wastewater disposal infrastructure has been built up. The development of these structures required and still requires multi-dimensional planning and performance. Since the river serves as receiving water and at the same time as a source of drinking water, the above-standard efforts of Ruhrverband for cleaner water also help to conserve nature and wildlife. Ruhrverband has summed up its environmental awareness in the slogan: "For the people and for the environment". This basic water philosophy, successfully applied to the Ruhr for more than 80 years, will be continued in accordance with the new European Water Framework Directive, enacted in 2000, which demands integrated water resources management in natural river basins, by including the good ecological status of surface waterbodies as an additional goal.

  14. Studies launched on integrated water resources management in Heihe

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ As a component of the CAS Action Plan for the Development of China's West, a research project on integrated management of water resources was initiated on 10 June at the Research and Experiment Station for Desert Ecological Hydrology in Alxa, Inner Mongolia, an outpost of the Cold and Arid Regions Environmental and Engineering Research Institute of CAS. CAS Vice President Li Jiayang attended the launching ceremony.

  15. A web-based system for the integrated water management

    Science.gov (United States)

    Giordano, R.; Passarella, G.; Uricchio, V. F.; Lopez, N.

    2003-04-01

    The success of complexity theory has posed new challenges also in the environmental resources management. From the complexity point of view, in fact, the environment has to be considered as a system with numerous parts interrelated each other by strongly and no-linear feedback relationships. In this perspective, when an action is performed its results become difficult to control. Therefore, to construct and to select the most suitable alternatives for environmental resources management, an holistic approach has to be adopted. In water resources management domain, increasing interest is posed to the integrated management, in which the total system of biotic and a-biotic elements of certain water environment is taken into account. Our contribution moves from the idea that the term integrated has to be referred also to human agents which take decisions influencing the water environment. In other words, Integrated Water Management (IWM) considers how different action affect, and can reinforce, each other and it promotes the coordinated development and management of water, land and related resources. The IWM stresses the interrelationships among the actions at different types, working at different levels of influence, coordinating stakeholders' actions. The coordination requires an appropriate information level about the strategies used by each stakeholder. To improve the information flow inside a watershed and therefore the coordination among agents, a web-based system is proposed. It could be defined as an electronic agora where a set of stakeholders can be involved both in information exchange and in conflicts resolution. More in detail, to improve the coordination process, the proposed system allows the stakeholders to find someone with similar or conflicting interests to collaborate with; to make contact with selected people; to build a common understanding (that is the identification of a common goal, the negotiation about the way this goal should be reached); to

  16. An integrated risk management model for source water protection areas

    National Research Council Canada - National Science Library

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-01-01

    .... For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans...

  17. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  18. From Flood Control to Water Management: A Journey of Bangladesh towards Integrated Water Resources Management

    Directory of Open Access Journals (Sweden)

    Animesh K. Gain

    2017-01-01

    Full Text Available Integrated Water Resources Management (IWRM is considered as a practical approach in solving water-related problems, which are socio-ecologically complex in nature. Bangladesh has also embraced the IWRM approach against its earlier attempt to flood control. In this paper, we evaluate the current status of IWRM in Bangladesh through the lens of policy shifts, institutional transitions and project transformations using seven key dimensions of IWRM. Looking at IWRM from such perspectives is lacking in current literature. A thorough review of policy shifts suggests that all the key dimensions of IWRM are “highly reflected” in the current policy documents. The dimension of “integrated management” is “highly reflected” in both institutional transition and project-level transformation. Most other dimensions are also recognised at both institutional and project levels. However, such reflections gradually weaken as we move from policies to institutions to projects. Despite catchment being considered as a spatial unit of water management at both institutional and project levels, transboundary basin planning is yet to be accomplished. The participation of local people is highly promoted in various recent projects. However, equity and social issues have received less attention at project level, although it has significant potential for supporting some of the key determinants of adaptive capacity. Thus, the IWRM dimensions are in general reflected in recent policies, institutional reforms and project formulation in Bangladesh. However, to solve the complex water-problems, basin scale management through transboundary cooperation and equity and social issues need to be implemented at institutional and project levels.

  19. Integrating policy, disintegrating practice: water resources management in Botswana

    Science.gov (United States)

    Swatuk, Larry A.; Rahm, Dianne

    Botswana is generally regarded as an African ‘success story’. Nearly four decades of unabated economic growth, multi-party democracy, conservative decision-making and low-levels of corruption have made Botswana the darling of the international donor community. One consequence of rapid and sustained economic development is that water resources use and demands have risen dramatically in a primarily arid/semi-arid environment. Policy makers recognize that supply is limited and that deliberate steps must be taken to manage demand. To this end, and in line with other members of the Southern African Development Community (SADC), Botswana devised a National Water Master Plan (NWMP) and undertook a series of institutional and legal reforms throughout the 1990s so as to make water resources use more equitable, efficient and sustainable. In other words, the stated goal is to work toward Integrated Water Resources Management (IWRM) in both policy and practice. However, policy measures have had limited impact on de facto practice. This paper reflects our efforts to understand the disjuncture between policy and practice. The information presented here combines a review of primary and secondary literatures with key informant interviews. It is our view that a number of constraints-cultural, power political, managerial-combine to hinder efforts toward sustainable forms of water resources use. If IWRM is to be realized in the country, these constraints must be overcome. This, however, is no small task.

  20. Integrated urban water management for residential areas: a reuse model.

    Science.gov (United States)

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  1. Integrated water and waste management system for future spacecraft

    Science.gov (United States)

    Ingelfinger, A. L.; Murray, R. W.

    1974-01-01

    Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).

  2. Integrating science, policy and stakeholder perspectives for water resource management

    Science.gov (United States)

    Barbour, Emily; Allan, Andrew; Whitehead, Paul; Salehin, Mashfiqus; Lazzar, Attila; Lim, Michelle; Munsur Rahman, Md.

    2015-04-01

    Successful management of water resources requires an integrated approach considering the complex relationships between different biophysical processes, governance frameworks and socio-economic factors. The Ecosystem Services for Poverty Alleviation (ESPA) Deltas project has developed a range of socio-economic scenarios using a participatory approach, and applied these across different biophysical models as well as an integrated environmental, socio-economic model of the Ganges-Brahmaputra-Meghna (GBM) Delta. This work demonstrates a novel approach through the consideration of multiple ecosystem services and related socio-economic factors in the development of scenarios; the application of these to multiple models at multiple scales; and the participatory approach to improve project outcomes and engage national level stakeholders and policy makers. Scenarios can assist in planning for an uncertain future through exploring plausible alternatives. To adequately assess the potential impacts of future changes and management strategies on water resources, the wider biophysical, socio-economic and governance context needs to be considered. A series of stakeholder workshops have been held in Bangladesh to identify issues of main concern relating to the GBM Delta; to iteratively develop scenario narratives for business as usual, less sustainable, and more sustainable development pathways; and to translate these qualitative scenarios into a quantitative form suitable for analysis. The combined impact of these scenarios and climate change on water quantity and quality within the GBM Basin are demonstrated. Results suggest that climate change is likely to impact on both peak and low flows to a greater extent than most socio-economic changes. However, the diversion of water from the Ganges and Brahmaputra has the potential to significantly impact on water availability in Bangladesh depending on the timing and quantity of diversions. Both climate change and socio

  3. Finding Practical Approaches to Integrated Water Resources Management

    Directory of Open Access Journals (Sweden)

    John Butterworth

    2010-02-01

    Full Text Available Integrated Water Resources Management (IWRM has often been interpreted and implemented in a way that is only really suited to countries with the most developed water infrastructures and management capacities. While sympathetic to many of the criticisms levelled at the IWRM concept and recognising the often disappointing levels of adoption, this paper and the series of papers it introduces identify some alternative ways forward in a developmental context that place more emphasis on the practical in-finding solutions to water scarcity. A range of lighter, more pragmatic and context-adapted approaches, strategies and entry points are illustrated with examples from projects and initiatives in mainly 'developing' countries. The authors argue that a more service-orientated (WASH, irrigation and ecosystem services, locally rooted and balanced approach to IWRM that better matches contexts and capacities should build on such strategies, in addition to the necessary but long-term policy reforms and river basin institution-building at higher levels. Examples in this set of papers not only show that the 'lighter', more opportunistic and incremental approach has potential as well as limitations but also await wider piloting and adoption.

  4. Integrated Water Management Approaches for Sustainable Food Production

    NARCIS (Netherlands)

    Fraiture, de C.M.S.; Fayrap, A.; Unver, O.; Ragab, R.

    2014-01-01

    With a growing and increasingly wealthy and urban population, it is likely that the role of agricultural water management in ensuring food security will become more important. Pressure on water resources is high. Adverse environmental impacts as a result of sometimes poor management of irrigation an

  5. Integrated Water Management Approaches for Sustainable Food Production

    NARCIS (Netherlands)

    Fraiture, de C.M.S.; Fayrap, A.; Unver, O.; Ragab, R.

    2014-01-01

    With a growing and increasingly wealthy and urban population, it is likely that the role of agricultural water management in ensuring food security will become more important. Pressure on water resources is high. Adverse environmental impacts as a result of sometimes poor management of irrigation

  6. Integrated waste and water management in mining and metallurgical industries

    Institute of Scientific and Technical Information of China (English)

    B.K.C.CHAN; S.BOUZALAKOS; A.W.L.DUDENEY

    2008-01-01

    Extractive operations usually co-produce large quantities of unmarketable materials (mineral wastes),most of which are conventionally discarded to dumps (coarse material) and tailings ponds (fines).Escalating cost and regulation worldwide highlight an increasing need for reduction and re-use of such wastes.The present paper introduces a new integrated waste management scheme for solids and water.The scheme was exemplified by novel treatment of synthetic waste and process water linked to the biohydrometallurgical processing of metal sulphide flotation concentrates.Bioleaching of sulphide concentrate leads to two types of solid waste:a ferrihydrite/gypsum precipitate from neutralisation of the bioleach liquor and un-leached gangue.The paper indicates that,depending upon the minor components involved,the solid phases in admixture might be usefully distributed among three types of product:conventional underground backfill,cemented civil engineering backfill (particularly controlled low strength material or CLSM) and manufactured soil.It emphasizes CLSM containing simulated mineral waste,showing that such material can exhibit the required characteristics of strength,porosity and permeability.When toxic components,e.g.,arsenic from refractory gold ore,are present,encapsulation will be required.Process water is typically recycled as far as possible,although any excess should be treated before re-use or discharge.The paper also highlights treatment by reverse osmosis (one of the few methods able to generally remove dissolved components),particularly showing that arsenic in oxidation state +6 can be readily removed for discharge (<50×10-12 As),although additional ion exchange is needed for potable water (<10×10-12 As).

  7. Water governance, resilience and global environmental change - a reassessment of integrated water resources management (IWRM).

    Science.gov (United States)

    Galaz, V

    2007-01-01

    Integrated Water Resource Management (IWRM) is gaining increased acceptance among water policy makers and researchers as a way to create more effective governance institutions, leading towards integrated water development solutions for poverty alleviation, while addressing social, economic and environmental aspects of water challenges. However, global environmental change poses fundamental challenges to water policy makers as it implies vast scientific, and hence, policy uncertainty; its implications for international water governance initiatives remain unspecified, effectively hindering dialogue on how current IWRM initiatives should be modified. This paper addresses the lag between our growing understanding of resilient interconnected freshwater resources (and their governance) and the reforms being promoted by policy makers. In particular, there is a need to rethink some of IWRM's key components to better tackle the challenges posed by the complex behaviour of interconnected social-ecological systems and global environmental change.

  8. An Integrated Risk Management Model for Source Water Protection Areas

    Directory of Open Access Journals (Sweden)

    Shang-Lien Lo

    2012-10-01

    Full Text Available Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  9. An integrated risk management model for source water protection areas.

    Science.gov (United States)

    Chiueh, Pei-Te; Shang, Wei-Ting; Lo, Shang-Lien

    2012-10-17

    Watersheds are recognized as the most effective management unit for the protection of water resources. For surface water supplies that use water from upstream watersheds, evaluating threats to water quality and implementing a watershed management plan are crucial for the maintenance of drinking water safe for humans. The aim of this article is to establish a risk assessment model that provides basic information for identifying critical pollutants and areas at high risk for degraded water quality. In this study, a quantitative risk model that uses hazard quotients for each water quality parameter was combined with a qualitative risk model that uses the relative risk level of potential pollution events in order to characterize the current condition and potential risk of watersheds providing drinking water. In a case study of Taipei Source Water Area in northern Taiwan, total coliforms and total phosphorus were the top two pollutants of concern. Intensive tea-growing and recreational activities around the riparian zone may contribute the greatest pollution to the watershed. Our risk assessment tool may be enhanced by developing, recording, and updating information on pollution sources in the water supply watersheds. Moreover, management authorities could use the resultant information to create watershed risk management plans.

  10. Watershed Management Optimization Support Tool: An approach for incorporating LID into integrated water management plans

    Science.gov (United States)

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) has supported the development of the Wat...

  11. Watershed Management Optimization Support Tool: An approach for incorporating LID into integrated water management plans

    Science.gov (United States)

    To assist communities in the evaluation of green infrastructure, low impact development, and land conservation practices as part of an Integrated Water Resources Management (IWRM) approach, the U.S. Environmental Protection Agency (US EPA) has supported the development of the Wat...

  12. 77 FR 12076 - Final Programmatic Environmental Impact Statement and Integrated Water Resource Management Plan...

    Science.gov (United States)

    2012-02-28

    ... Management Plan, Yakima River Basin, Water Enhancement Project, Benton, Kittitas, Klickitat, and Yakima... analyzed the elements of the Integrated Water Resource Management Plan in the FPEIS. The FPEIS addresses... management plan includes three major components (Habitat, Systems Modification, and Water Supply) which...

  13. Integrated Water Supply and Land Resource Management in Developing Countries

    Science.gov (United States)

    Jakeman, A. J.; Croke, B. F.; Croke, B. F.; Dietrich, C. R.; Letcher, R. A.; Merritt, W.; Perez, P.

    2001-05-01

    Intensification of agricultural development has led to water supply conflicts and exacerbation of environmental problems in many developing countries. In Thailand, for example, issues of water access between upstream and downstream users and on-site erosion and off-site water quality are common in the Northern Highlands. The authors report on a framework which has been developed to assist improved land use planning and water allocation. It can be used to assess the water supply, environmental and socioeconomic impacts of land use, climate and government policy. This framework utilises the integration of catchment supply models, crop, water allocation and erosion models, as well as models of household decision making. For the Mae Chaem catchment in Thailand, the authors present details of the particular method of integration of these models and results for the individual model components. The effects of changes in land use and climate variations on the distribution of water supply, crop yields and erosion illustrate the types of tradeoffs that have to be made. Crucial to the effectiveness of such integrated tools is an understanding of the reliability of the integrated model's predictions of different outcomes. The authors present a relevant framework for analysing model uncertainty in order to appreciate the degree to which one can confidently differentiate among different model outcomes resulting from different land use changes.

  14. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  15. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    OpenAIRE

    Juan Joaquín Suárez López; Jerónimo Puertas; Jose Anta; Alfredo Jácome; José Manuel Álvarez-Campana

    2014-01-01

    The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmenta...

  16. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  17. Transforming Water Management: an Emerging Promise of Integrated Earth Observations

    Science.gov (United States)

    Lawford, R. G.

    2011-12-01

    Throughout its history, civilization has relied on technology to facilitate many of its advances. New innovations and technologies have often provided strategic advantages that have led to transformations in institutions, economies and ultimately societies. Observational and information technologies are leading to significant developments in the water sector. After a brief introduction tracing the role of observational technologies in the areas of hydrology and water cycle science, this talk explores the existing and potential contributions of remote sensing data in water resource management around the world. In particular, it outlines the steps being undertaken by the Group on Earth Observations (GEO) and its Water Task to facilitate capacity building efforts in water management using Earth Observations in Asia, Africa and Latin and Caribbean America. Success stories on the benefits of using Earth Observations and applying GEO principles are provided. While GEO and its capacity building efforts are contributing to the transformation of water management through interoperability, data sharing, and capacity building, the full potential of these contributions has not been fully realized because impediments and challenges still remain.

  18. Utilising integrated urban water management to assess the viability of decentralised water solutions.

    Science.gov (United States)

    Burn, Stewart; Maheepala, Shiroma; Sharma, Ashok

    2012-01-01

    Cities worldwide are challenged by a number of urban water issues associated with climate change, population growth and the associated water scarcity, wastewater flows and stormwater run-off. To address these problems decentralised solutions are increasingly being considered by water authorities, and integrated urban water management (IUWM) has emerged as a potential solution to most of these urban water challenges, and as the key to providing solutions incorporating decentralised concepts at a city wide scale. To incorporate decentralised options, there is a need to understand their performance and their impact on a city's total water cycle under alternative water and land management options. This includes changes to flow, nutrient and sediment regimes, energy use, greenhouse gas emissions, and the impacts on rivers, aquifers and estuaries. Application of the IUWM approach to large cities demands revisiting the fundamental role of water system design in sustainable city development. This paper uses the extended urban metabolism model (EUMM) to expand a logical definition for the aims of IUWM, and discusses the role of decentralised systems in IUWM and how IUWM principles can be incorporated into urban water planning.

  19. Pantanal Taquari : tools for decision making in integrated water management

    NARCIS (Netherlands)

    Jongman, R.H.G.

    2005-01-01

    Results of a project within the Water for Food and Ecosystems Programme. The sanding up of Rio Taquari is a major problem, because of the nearly permanent inundation of a large area. Solving that problem is difficult as there is no coherent river management organisation

  20. Integrated Water Resources Management, institutions and livelihoods under stress: bottom-up perspectives from Zimbabwe

    OpenAIRE

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (IWRM) has been adopted in the river basin in an attempt to improve water resources management. However, it is not known whether, or how, IWRM has improved practices in water resources management and...

  1. The water management in the industry: Integral system of water management; La gestion del agua en la industria: sistema integral de gestion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Meseque i Sebastia, C.; Cabeza Diaz, R.; Coll i Raich, M. [Instituto Catalan de Energia (Spain)

    1995-06-01

    This article presents the need of integral system for water management in the industry. This system should facilitate to know and control the water. The first part explains the system with its four parts. The second part presents the data to realize the analysis in the decision making. At last a practical case is exposed.

  2. Managing water resources for sustainable development: the case of integrated river basin management in China.

    Science.gov (United States)

    Song, X; Ravesteijn, W; Frostell, B; Wennersten, R

    2010-01-01

    The emerging water crisis in China shows that the current institutional frameworks and policies with regard to water resources management are incapable of achieving an effective and satisfactory situation that includes Integrated River Basin Management (IRBM). This paper analyses this framework and related policies, examines their deficiencies in relation to all water stress problems and explores alternatives focusing on river basins. Water resources management reforms in modern China are reviewed and the main problems involved in transforming the current river management system into an IRBM-based system are analysed. The Huai River basin is used as an example of current river basin management, with quantitative data serving to show the scale and scope of the problems in the country as a whole. The institutional reforms required are discussed and a conceptual institutional framework is proposed to facilitate the implementation of IRBM in China. In particular, the roles, power and responsibilities of River Basin Commissions (RBCs) should be legally strengthened; the functions of supervising, decision-making and execution should be separated; and cross-sectoral legislation, institutional coordination and public participation at all levels should be promoted.

  3. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model

    Science.gov (United States)

    Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu

    2017-05-01

    Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.

  4. Some aspects of integrated water resources management in central Asia

    Science.gov (United States)

    Khaydarova, V.; Penkova, N.; Pak, E.; Poberejsky, L.; Beltrao, J.

    2003-04-01

    Two main tasks are to be implemented for elaboration of the governmental water distribution criteria in Central Asia: 1 -development of the common methodological basis for the intergovernmental water distribution; and 2 - to reopen and continue both theoretical and experimental researches of various aspects of the wastewater reuse. The prospects of socio economic development of all Central Asian countries are substantially defined by the water resources availability. The water resources of Central Asia belong, mainly, watersheds of the Syr-Darya and Amu Darya rivers. The basic flow of Amu Darya is formed in territory of Tajikistan. Then the Amu Darya river proceeds along border of Afghanistan with Uzbekistan, crosses Turkmenistan and again comes back to Uzbekistan and then runs into the Aral Sea. The Syr-Darya is second river on the water discharge and is first river on length in Central Asia. The basic flow of Syr Darya is formed in territory of Kyrgyzstan. Then the Syr-Darya river crosses of Uzbekistan and Tajikistan and runs into the Aral Sea in territory of Kazakhstan. During the Soviet Union the water resources of two river watersheds were divided among the Central Asian republics on the basis of the general plans developed by the center in Moscow. In the beginning of 90s years, after taking of sovereignty by the former Soviet republics, the unified control system of water resources management was abolished and the various approaches to its transformation caused by features of the national economy developing, elected models of transition from command to market mechanisms of economic activity, and also specificity of political and social processes in each of the states of region were planned. The distinctions of modern priorities of economic development of the states of region have generated the contradiction of interests in the intergovernmental water distribution that can in the long term become complicated even more in connection with the increasing of water

  5. Integrated and Adaptive Management of Water Resources: Tensions, Legacies, and the Next Best Thing

    Directory of Open Access Journals (Sweden)

    Nathan L. Engle

    2011-03-01

    Full Text Available Integrated water resources management (IWRM and adaptive management (AM are two institutional and management paradigms designed to address shortcomings within water systems governance; the limits of hierarchical water institutional arrangements in the case of IWRM and the challenge of making water management decisions under uncertainty in the case of AM. Recently, there has been a trend to merge these paradigms to address the growing complexity of stressors shaping water management such as globalization and climate change. However, because many of these joint approaches have received little empirical attention, questions remain about how they might work, or not, in practice. Here, we explore a few of these issues using empirical research carried out in Brazil. We focus on highlighting the potentially negative interactions, tensions, and trade-offs between different institutions/mechanisms perceived as desirable as research and practice attempt to make water systems management simultaneously integrated and adaptive. Our examples pertain mainly to the use of techno-scientific knowledge in water management and governance in Brazil's IWRM model and how it relates to participation, democracy, deliberation, diversity, and adaptability. We show that a legacy of technical and hierarchical management has shaped the integration of management, and subsequently, the degree to which management might also be adaptive. Although integrated systems may be more legitimate and accountable than top-down command and control ones, the mechanisms of IWRM may be at odds with the flexible, experimental, and self-organizing nature of AM.

  6. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    Science.gov (United States)

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  7. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    Science.gov (United States)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  8. Integrated Water-Less Management of Night Soil for Depollution of Water Resources and Water Conservation

    Directory of Open Access Journals (Sweden)

    Pramod R. Chaudhari

    2016-05-01

    Full Text Available Use of water for flushing night soil and enormous sewage disposal are responsible for pollution and depletion of fresh water resources in India and other countries. The review of traditional methods in the world provides idea of zero-waste discharge residential units. Experiences and research in India, China, Japan, America and Sweden has indicated feasibility of waterless management of night soil, composting and use of biofertilizer product in agriculture. A novel idea of ecological management of night soil and urine is presented in which night soil may be conditioned for transportation and treatment by adding suitable waste product(s from industry and other sources. Different night soil treatment methods are reviewed and emphasized the need for further research on whole cycle of ecological management or sustainable sanitation depending on local conditions. The benefits of this system are zero sewage discharge, reuse of waste as resource, recovery of nutrients in waste as fertilizer, production of fuel gas and reduction of pathogens in biofertilizer. This will help in water conservation and regenerating the quality and quantity of river flow for use as water ways and irrigation and to improve the public health. Potential technical intervention and research needs are discussed in this article

  9. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use efficien

  10. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  11. Integrated Water Resource Management and Energy Requirements for Water Supply in the Copiapó River Basin, Chile

    Directory of Open Access Journals (Sweden)

    Francisco Suárez

    2014-08-01

    Full Text Available Population and industry growth in dry climates are fully tied to significant increase in water and energy demands. Because water affects many economic, social and environmental aspects, an interdisciplinary approach is needed to solve current and future water scarcity problems, and to minimize energy requirements in water production. Such a task requires integrated water modeling tools able to couple surface water and groundwater, which allow for managing complex basins where multiple stakeholders and water users face an intense competition for limited freshwater resources. This work develops an integrated water resource management model to investigate the water-energy nexus in reducing water stress in the Copiapó River basin, an arid, highly vulnerable basin in northern Chile. The model was utilized to characterize groundwater and surface water resources, and water demand and uses. Different management scenarios were evaluated to estimate future resource availability, and compared in terms of energy requirements and costs for desalinating seawater to eliminate the corresponding water deficit. Results show a basin facing a very complex future unless measures are adopted. When a 30% uniform reduction of water consumption is achieved, 70 GWh over the next 30 years are required to provide the energy needed to increase the available water through seawater desalination. In arid basins, this energy could be supplied by solar energy, thus addressing water shortage problems through integrated water resource management combined with new technologies of water production driven by renewable energy sources.

  12. An Implentation Methodology for Integrated Resource Management in Urban Water Planning

    Science.gov (United States)

    Ebrahimi, G.; Thurm, B.; Klein, D. R.; Öberg, G.

    2014-12-01

    Urban water management requires innovative and integrative approaches to improve sustainability in cities keeping in touch with science progress. Integrated Resource Management (IRM) is one of these strategies and has been developed to integrate various natural and human resources. However, it is becoming increasingly clear that it is challenging to move from vision to implementation. The aim of this paper is to identify strengths and weaknesses of IRM and analyze if the approach might facilitate implementation of sustainability objectives in the water management field. A literature review was performed on peer-reviewed papers that were identified through Google Scholar search for the term 'Integrated Resource Management'. It was found that IRM has been used in a number of contexts such as urban planning, forestry, and management of waste and livestock. Significant implementation challenges are highlighted in the literature. Based on the lessons learned in many different fields, from forestry to communication sciences, important characteristics of IRM approach were found such as the need for adequate governance and strong leaderships, stakeholder's involvement, the learning process and the critical need of appropriate evaluation criteria. We conclude developing an implementation methodology and presenting several recommendations to implement IRM in urban management. While Integrated Water Resource Management (IWRM) is recognized as a fruitful approach to achieve sustainable water management, this study suggests that a shift toward Integrated Resource Management (IRM) can be beneficial as it is designed to facilitate consideration of the interrelationships between various natural and human resources.

  13. Sustainability Assessment of indicators for integrated water resources management.

    Science.gov (United States)

    Pires, A; Morato, J; Peixoto, H; Botero, V; Zuluaga, L; Figueroa, A

    2017-02-01

    The scientific community strongly recommends the adoption of indicators for the evaluation and monitoring of progress towards sustainable development. Furthermore, international organizations consider that indicators are powerful decision-making tools. Nevertheless, the quality and reliability of the indicators depends on the application of adequate and appropriate criteria to assess them. The general objective of this study was to evaluate how indicators related to water use and management perform against a set of sustainability criteria. Our research identified 170 indicators related to water use and management. These indicators were assessed by an international panel of experts that evaluated whether they fulfil the four sustainability criteria: social, economic, environmental, and institutional. We employed an evaluation matrix that classified all indicators according to the DPSIR (Driving Forces, Pressures, States, Impacts and Responses) framework. A pilot study served to test and approve the research methodology before carrying out the full implementation. The findings of the study show that 24 indicators comply with the majority of the sustainability criteria; 59 indicators are bi-dimensional (meaning that they comply with two sustainability criteria); 86 are one-dimensional indicators (fulfilling just one of the four sustainability criteria) and one indicator do not fulfil any of the sustainability criteria. Copyright © 2016. Published by Elsevier B.V.

  14. Towards adaptive and integrated management paradigms to meet the challenges of water governance.

    Science.gov (United States)

    Halbe, J; Pahl-Wostl, C; Sendzimir, J; Adamowski, J

    2013-01-01

    Integrated Water Resource Management (IWRM) aims at finding practical and sustainable solutions to water resource issues. Research and practice have shown that innovative methods and tools are not sufficient to implement IWRM - the concept needs to also be integrated in prevailing management paradigms and institutions. Water governance science addresses this human dimension by focusing on the analysis of regulatory processes that influence the behavior of actors in water management systems. This paper proposes a new methodology for the integrated analysis of water resources management and governance systems in order to elicit and analyze case-specific management paradigms. It builds on the Management and Transition Framework (MTF) that allows for the examination of structures and processes underlying water management and governance. The new methodology presented in this paper combines participatory modeling and analysis of the governance system by using the MTF to investigate case-specific management paradigms. The linking of participatory modeling and research on complex management and governance systems allows for the transfer of knowledge between scientific, policy, engineering and local communities. In this way, the proposed methodology facilitates assessment and implementation of transformation processes towards IWRM that require also the adoption of adaptive management principles. A case study on flood management in the Tisza River Basin in Hungary is provided to illustrate the application of the proposed methodology.

  15. Human well-being values of environmental flows enhancing social equity in integrated water resources management

    NARCIS (Netherlands)

    Meijer, K.S.

    2007-01-01

    This dissertation discusses how the importance of river flow-sustained ecosystems for local communities can be quantified for the purpose of balancing water supply and demand in Integrated Water Resources Management. Due to the development of water resources, for example through the construction of

  16. Surface water quality management using an integrated discharge permit and the reclaimed water market.

    Science.gov (United States)

    Jamshidi, Shervin; Niksokhan, Mohammad Hossein; Ardestani, Mojtaba

    2014-01-01

    Water quality trading is a sustainable framework for surface water quality management. It uses discharge permits to reduce the total treatment costs. For example, the case of Gharesoo River in Iran shows that the nitrogen permit market between point and non-point sources is 37% more economical than the command and control framework. Nevertheless, the cost saving may be reduced to 6% by the end of the study period (2050). This depression may be due to the limited technical support for wastewater treatment plants. Therefore, an integrated market is recommended in which the discharge permits and the reclaimed water are traded simultaneously. In this framework, the allocation of secondary treated domestic wastewater for irrigation can provide capacity for other pollutants to discharge into the surface water. This innovative approach may decrease the total treatment costs by 63% at present, while 65%, may be achieved by the end of the study period. Furthermore, this market is able to determine the environmental penalty, trading permits, and reuse prices. For example, the maximum ratio of the average reuse price to the penalty cost is determined as 1 to 10. It is introduced as an incentive indicator for stakeholders to consider the integrated market. Consequently, the applicability and the efficiency of using this approach are verified long term.

  17. Water resources and human behaviour: an integrated landscape management perspective

    Directory of Open Access Journals (Sweden)

    Luiz Oosterbeek

    2013-09-01

    Full Text Available A two sides balance can be drawn from the last 20 years of active intents to change local, regional and global policies concerning water and global environment issues. On one hand, as a consequence of the “sustainable development” model, there is an increasing awareness of the issues in stake, and environment became a core part of any public policy. International conferences and the investment in scientific research in these areas are an expression of this. Yet, concerns are growing in face of the increasing stress imposed on freshwater resources, climate change and the difficulties to achieve international consensus on specific strategies. This was the focus of discussion in the international conference on climate change organised in Nagoya in December 2010, by ICSS, ICSU and ICPHS. A revision of the conceptual approach to sustainable development, moving beyond a strictly socio-economic understanding of human behaviour and incorporating, as basic strategies, the dimensions of culture, didactics of dilemma and governance, is currently being applied in some scenarios, hopefully with a better result. The paper discusses water resources in the context of climate change from this integrated perspective.

  18. FREE MARKETS - A STIMULUS OR IMPEDIMENT FOR INTEGRATED WATER RESOURCES MANAGEMENT?

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Sehlke; Stephen E. Draper

    2005-04-01

    A significant philosophical water management controversy exists over the balance between economics, social equity and environmental protection in integrated water resources management. For many, the economic outcomes predominate, even to the marginalization of the others. This conviction became significant in the United States in 1980 when the United States Supreme Court ruled that groundwater, under certain circumstances, could be considered a commodity of interstate commerce. The ruling differentiated between water as a human need and as an economic good. (Sporhase, 1982)

  19. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model: SECTORAL WATER MANAGEMENT IN IA-ESM

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Nathalie [Pacific Northwest National Laboratory, Richland Washington USA; Hejazi, Mohamad I. [Joint Global Change Research Institute, College Park Maryland USA; Leung, L. Ruby [Pacific Northwest National Laboratory, Richland Washington USA; Liu, Lu [Department of Civil and Environmental Engineering, University of Maryland, College Park Maryland USA; Huang, Maoyi [Pacific Northwest National Laboratory, Richland Washington USA; Li, Hong-Yi [Montana State University, College of Agriculture, Bozeman Montana USA; Tesfa, Teklu [Pacific Northwest National Laboratory, Richland Washington USA

    2017-05-01

    To advance understanding of the interactions between human activities and the water cycle, an integrated terrestrial water cycle component has been developed for Earth system models. This includes a land surface model fully coupled to a river routing model and a generic water management model to simulate natural and regulated flows. A global integrated assessment model and its regionalized version for the U.S. are used to simulate water demand consistent with the energy technology and socio-economics scenarios. Human influence on the hydrologic cycle includes regulation and storage from reservoirs, consumptive use and withdrawal from multiple sectors ( irrigation and non-irrigation) and overall redistribution of water resources in space and time. As groundwater provides an important source of water supply for irrigation and other uses, the integrated modeling framework has been extended with a simplified representation of groundwater as an additional supply source, and return flow generated from differences between withdrawals and consumptive uses from both groundwater and surface water systems. The groundwater supply and return flow modules are evaluated by analyzing the simulated regulated flow, reservoir storage and supply deficit for irrigation and non-irrigation sectors over major hydrologic regions of the conterminous U.S. The modeling framework is then used to provide insights on the reliability of water resources by isolating the reliability due to return flow and/or groundwater sources of water. Our results show that high sectoral ratio of withdrawals over consumptive demand adds significant stress on the water resources management that can be alleviated by reservoir storage capacity. The return flow representation therefore exhibits a clear east-west contrast in its hydrologic signature, as well as in its ability to help meet water demand. Groundwater use has a limited hydrologic signature but the most pronounced signature is in terms of decreasing water

  20. Integrated water resources management (IWRM) approach in water governance in Lao PDR. Cases of hydropower and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Jusi, S.

    2013-06-01

    Water resources are essential for socio-economic development, enabling, for example, hydropower and irrigation. Water resources management and development are expected to become more complex and challenging and to involve new uncertainties as water development increases and accelerates in different water use sectors and is coupled with increasing population, urbanisation, and climate change. Hence, water resources need to be managed in more integrated and sustainable way, both in Lao PDR and in the whole Mekong Basin area. Integrated Water Resources Management (IWRM) has become a universal paradigm of enhancing and promoting sustainable and equal water resources management and use. However, integrating water functions is a very complex task as it involves many actors with different interests. This research analyses the application of the IWRM approach and the related principles of integration, decentralisation, and participation in the development and management of water resources in Laotian water regime at the water use sectors of hydropower and irrigation. A case study approach was used for the research and for the four appended articles in order to examine hydropower and irrigation sectors, institutional structures, and processes of institutional change - Integrated Water Resources Management (IWRM) at constitutional, organisational, and operational levels. The constitutional level refers to water policy and law, organisational to water resource management, and operational to water use. The Management and Transition Framework (MTF) and one of its components, Institutional Analysis and Development (IAD) framework, have been used for the research to explore processes, institutions, and actors related to water governance reforms including the adoption of the IWRM paradigm, and to increase understanding of the strengths and weaknesses related to different institutional contexts and levels in Laotian water management. Through Action Situations, IAD and MTF have

  1. Scenarios of Future Water use on Mediterranean Islands based on an Integrated Assessment of Water Management

    Science.gov (United States)

    Lange, M. A.

    2006-12-01

    The availability of water in sufficient quantities and adequate quality presents considerable problems on Mediterranean islands. Because of their isolation and thus the impossibility to draw on more distant or more divers aquifers, they rely entirely on precipitation as natural replenishing mechanism. Recent observations indicate decreasing precipitation, increasing evaporation and steadily growing demand for water on the islands. Future climate change will exacerbate this problem, thus increasing the already pertinent vulnerability to droughts. Responsible planning of water management strategies requires scenarios of future supply and demand through an integrated assessment including climate scenarios based on regional climate modeling as well as scenarios on changes in societal and economical determinants of water demand. Constructing such strategies necessitates a thorough understanding about the interdependencies and feedbacks between physical/hydrological and socio-economic determinants of water balances on an island. This has to be based on a solid understanding of past and present developments of these drivers. In the framework of the EU-funded MEDIS project (Towards sustainable water use on Mediterranean Islands: addressing conflicting demands and varying hydrological, social and economic conditions, EVK1-CT-2001-00092), detailed investigations on present vulnerabilities and adaptation strategies to droughts have been carried out on Mallorca, Corsica, Sicily, Crete and Cyprus. This was based on an interdisciplinary study design including hydrological, geophysical, agricultural-, social and political sciences investigations. A central element of the study has been the close interaction with stakeholders on the islands and their contribution to strategy formulation. An important result has been a specification of vulnerability components including: a physical/environmental-, an economical/regulatory- and a social/institutional/political component. Their

  2. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management

    DEFF Research Database (Denmark)

    Refsgaard, A.; Jacobsen, T.; Jacobsen, Brian H.

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized...... basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates...... by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling...

  3. Integration of Drainage, Water Quality and Flood Management in Rural, Urban and Lowland Areas

    NARCIS (Netherlands)

    Vlotman, W.F.; Wong, T.; Schultz, E.

    2007-01-01

    Managing drainage in rural and peri-urban environments has become an essential part of integrated water management. Drainage has become a science of control, storage and (re)use while meeting triple bottom-line requirements (environment, social and economic assessments). Controlled drainage in rural

  4. Istanbul : the challenges of integrated water resources management in Europa’s megacity

    NARCIS (Netherlands)

    van Leeuwen, Kees; Sjerps, Rosa

    Effective integrated water resources management (IWRM) and developments impacting on water resources are recognized as key components of environmentally sustainable development. Istanbul (Turkey) is a very large metropolitan city with a population of approximately 14 million. Istanbul is one of the

  5. Istanbul : the challenges of integrated water resources management in Europa’s megacity

    NARCIS (Netherlands)

    van Leeuwen, Kees; Sjerps, Rosa

    2016-01-01

    Effective integrated water resources management (IWRM) and developments impacting on water resources are recognized as key components of environmentally sustainable development. Istanbul (Turkey) is a very large metropolitan city with a population of approximately 14 million. Istanbul is one of the

  6. Integrated Water Resources Management, institutions and livelihoods under stress: bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (I

  7. Integrated Water Resources Management, institutions and livelihoods under stress: Bottom-up perspectives from Zimbabwe

    NARCIS (Netherlands)

    Mabiza, C.C.

    2013-01-01

    The majority of people in Limpopo river basin depend on rainfed agriculture. Unfortunately the Limpopo is water scarce, and parts of the basin such as the Mzingwane catchment are under stress in terms of agro-ecological and socio-politico-economic conditions. Integrated Water Resources Management (I

  8. INTEGRATED MANAGEMENT SYSTEMS IN LOCAL PUBLIC ENTERPRIZE FOR PRODUCTION, DISTRIBUTION AND CLEANING OF WASTED WATER

    Directory of Open Access Journals (Sweden)

    Slavko Arsovski

    2007-06-01

    Full Text Available Appearance of large number of management systems, with different and sometimes divergent demands, needs reconsideration of their implementation strategies and their integration in one integrated management system (IMS. So defined IMS would be designed and implemented in different areas. In this paper is presented basic concept of integration of partical management systems in areas of quality (ISO 9001, environmental protection (ISO 14001, occupational health (ISO 18001, food safety (ISO 22000 and accreditation of laboratories (ISO17025/ISO17020. As a pilot organization is choosed local public enterprise for production, supply and drain of water.

  9. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  10. Aquatic weed control within an integrated water management framework.

    NARCIS (Netherlands)

    Querner, E.P.

    1993-01-01

    Aquatic weed control, carried out by the water boards in the Netherlands, is required to maintain sufficient discharge capacity of the surface water system. Weed control affects the conditions of both surface water and groundwater. The physically based model MOGROW was developed to simulate the flow

  11. Integrated water resource and flood risk management: comparing the US and the EU

    OpenAIRE

    Serra-Llobet Anna; Conrad Esther; Schaefer Kathleen

    2016-01-01

    Floods are the most important natural hazard in the EU and US, causing 700 deaths and at least €25 billion in insured economic losses in Europe since 1998, and causing nearly $10 billion annual average flood losses in the US. Flood control is commonly viewed as a matter of building dykes, dams, and other structures, but effective flood management within the perspective of Integrated Water Resource Management (IWRM) must address multiple components of the flood risk management cycle (Figure 1)...

  12. Optimizing water resources management in large river basins with integrated surface water-groundwater modeling: A surrogate-based approach

    Science.gov (United States)

    Wu, Bin; Zheng, Yi; Wu, Xin; Tian, Yong; Han, Feng; Liu, Jie; Zheng, Chunmiao

    2015-04-01

    Integrated surface water-groundwater modeling can provide a comprehensive and coherent understanding on basin-scale water cycle, but its high computational cost has impeded its application in real-world management. This study developed a new surrogate-based approach, SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), to incorporate the integrated modeling into water management optimization. Its applicability and advantages were evaluated and validated through an optimization research on the conjunctive use of surface water (SW) and groundwater (GW) for irrigation in a semiarid region in northwest China. GSFLOW, an integrated SW-GW model developed by USGS, was employed. The study results show that, due to the strong and complicated SW-GW interactions, basin-scale water saving could be achieved by spatially optimizing the ratios of groundwater use in different irrigation districts. The water-saving potential essentially stems from the reduction of nonbeneficial evapotranspiration from the aqueduct system and shallow groundwater, and its magnitude largely depends on both water management schemes and hydrological conditions. Important implications for water resources management in general include: first, environmental flow regulation needs to take into account interannual variation of hydrological conditions, as well as spatial complexity of SW-GW interactions; and second, to resolve water use conflicts between upper stream and lower stream, a system approach is highly desired to reflect ecological, economic, and social concerns in water management decisions. Overall, this study highlights that surrogate-based approaches like SOIM represent a promising solution to filling the gap between complex environmental modeling and real-world management decision-making.

  13. An optimization framework for the integration of water management and shale gas supply chain design

    OpenAIRE

    Guerra, O. J.; Calderon, A. J.; Papageorgiou, L. G.; Siirola, J. J.; Reklaitis, G. V.

    2016-01-01

    This study presents the mathematical formulation and implementation of a comprehensive optimization framework for the assessment of shale gas resources. The framework simultaneously integrates water management and the design and planning of the shale gas supply chain, from the shale formation to final product demand centers and from fresh water supply for hydraulic fracturing to water injection and/or disposal. The framework also addresses some issues regarding wastewater quality, i.e., total...

  14. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    was that many of the professionals in the water sector organizations ( .... project basis as a "tack-on" to the main contract of ... natural asset that needs to be maintained to ensure ..... in Figure 2, through joint research, education, training,.

  15. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir......As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open......-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...

  16. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    Science.gov (United States)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity

  17. Integrated water management. The contribution of agricultural planning; Integrierte Wasserbewirtschaftung. Beitrag der Landwirtschaftsplanung

    Energy Technology Data Exchange (ETDEWEB)

    Bruns, Diedrich [Univ. Kassel (DE). Fachgebiet Landwirtschaftsplanung/Naturschutz (Germany)

    2004-09-01

    Official ''Landscape Planning'' provides information on Nature and Landscape for decision making. In Germany it makes contributions to environmental and spatial planning on all levels of public administration, including water and watershed management. As part of comprehensive planning a number of programmatic documents are provided on national, regional and local levels. These may serve as starting points for contributions to sectoral planning. In ''Integrated Water Management'' these include contributions to River Basin Management, to flood risk management for watersheds, and Environmental Reports required as part of Strategic Environmental Assessment. In project approval contributions of landscape planning include Environmental Reports for EIA, as well as landscape design and mitigation plans required according to environmental legislation. Additional contributions are made during implementation and construction of individual measures. Two examples of ''Integrated Water Management'' serve to demonstrate which factors lead to success in co-operation between water management planning and landscape planning''. The first factor of importance is that contracts for both are issued simultaneously, and that their task and mission is comprehensive and all inclusive. Public consultations are becoming increasingly important parts of spatial planning. They provide challenges that may also be mastered successfully in close co-operation of water management and landscape planning. (orig.)

  18. Groundwater modeling in integrated water resources management--visions for 2020.

    Science.gov (United States)

    Refsgaard, Jens Christian; Højberg, Anker Lajer; Møller, Ingelise; Hansen, Martin; Søndergaard, Verner

    2010-01-01

    Groundwater modeling is undergoing a change from traditional stand-alone studies toward being an integrated part of holistic water resources management procedures. This is illustrated by the development in Denmark, where comprehensive national databases for geologic borehole data, groundwater-related geophysical data, geologic models, as well as a national groundwater-surface water model have been established and integrated to support water management. This has enhanced the benefits of using groundwater models. Based on insight gained from this Danish experience, a scientifically realistic scenario for the use of groundwater modeling in 2020 has been developed, in which groundwater models will be a part of sophisticated databases and modeling systems. The databases and numerical models will be seamlessly integrated, and the tasks of monitoring and modeling will be merged. Numerical models for atmospheric, surface water, and groundwater processes will be coupled in one integrated modeling system that can operate at a wide range of spatial scales. Furthermore, the management systems will be constructed with a focus on building credibility of model and data use among all stakeholders and on facilitating a learning process whereby data and models, as well as stakeholders' understanding of the system, are updated to currently available information. The key scientific challenges for achieving this are (1) developing new methodologies for integration of statistical and qualitative uncertainty; (2) mapping geological heterogeneity and developing scaling methodologies; (3) developing coupled model codes; and (4) developing integrated information systems, including quality assurance and uncertainty information that facilitate active stakeholder involvement and learning.

  19. A transdisciplinary approach for supporting the integration of ecosystem services into land and water management

    Science.gov (United States)

    Fatt Siew, Tuck; Döll, Petra

    2015-04-01

    Transdisciplinary approaches are useful for supporting integrated land and water management. However, the implementation of the approach in practice to facilitate the co-production of useable socio-hydrological (and -ecological) knowledge among scientists and stakeholders is challenging. It requires appropriate methods to bring individuals with diverse interests and needs together and to integrate their knowledge for generating shared perspectives/understanding, identifying common goals, and developing actionable management strategies. The approach and the methods need, particularly, to be adapted to the local political and socio-cultural conditions. To demonstrate how knowledge co-production and integration can be done in practice, we present a transdisciplinary approach which has been implemented and adapted for supporting land and water management that takes ecosystem services into account in an arid region in northwestern China. Our approach comprises three steps: (1) stakeholder analysis and interdisciplinary knowledge integration, (2) elicitation of perspectives of scientists and stakeholders, scenario development, and identification of management strategies, and (3) evaluation of knowledge integration and social learning. Our adapted approach has enabled interdisciplinary and cross-sectoral communication among scientists and stakeholders. Furthermore, the application of a combination of participatory methods, including actor modeling, Bayesian Network modeling, and participatory scenario development, has contributed to the integration of system, target, and transformation knowledge of involved stakeholders. The realization of identified management strategies is unknown because other important and representative decision makers have not been involved in the transdisciplinary research process. The contribution of our transdisciplinary approach to social learning still needs to be assessed.

  20. Integrated optimal allocation model for complex adaptive system of water resources management (II): Case study

    Science.gov (United States)

    Zhou, Yanlai; Guo, Shenglian; Xu, Chong-Yu; Liu, Dedi; Chen, Lu; Wang, Dong

    2015-12-01

    Climate change, rapid economic development and increase of the human population are considered as the major triggers of increasing challenges for water resources management. This proposed integrated optimal allocation model (IOAM) for complex adaptive system of water resources management is applied in Dongjiang River basin located in the Guangdong Province of China. The IOAM is calibrated and validated under baseline period 2010 year and future period 2011-2030 year, respectively. The simulation results indicate that the proposed model can make a trade-off between demand and supply for sustainable development of society, economy, ecology and environment and achieve adaptive management of water resources allocation. The optimal scheme derived by multi-objective evaluation is recommended for decision-makers in order to maximize the comprehensive benefits of water resources management.

  1. Integrated crop water management might sustainably halve the global food gap

    Science.gov (United States)

    Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.

    2016-02-01

    As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.

  2. Conjunctive operation of river facilities for integrated water resources management in Korea

    Science.gov (United States)

    Kim, Hwirin; Jang, Cheolhee; Kim, Sung

    2016-10-01

    With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day-1) with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  3. Conjunctive operation of river facilities for integrated water resources management in Korea

    Directory of Open Access Journals (Sweden)

    H. Kim

    2016-10-01

    Full Text Available With the increasing trend of water-related disasters such as floods and droughts resulting from climate change, the integrated management of water resources is gaining importance recently. Korea has worked towards preventing disasters caused by floods and droughts, managing water resources efficiently through the coordinated operation of river facilities such as dams, weirs, and agricultural reservoirs. This has been pursued to enable everyone to enjoy the benefits inherent to the utilization of water resources, by preserving functional rivers, improving their utility and reducing the degradation of water quality caused by floods and droughts. At the same time, coordinated activities are being conducted in multi-purpose dams, hydro-power dams, weirs, agricultural reservoirs and water use facilities (featuring a daily water intake of over 100 000 m3 day−1 with the purpose of monitoring the management of such facilities. This is being done to ensure the protection of public interest without acting as an obstacle to sound water management practices. During Flood Season, each facilities contain flood control capacity by limited operating level which determined by the Regulation Council in advance. Dam flood discharge decisions are approved through the flood forecasting and management of Flood Control Office due to minimize flood damage for both upstream and downstream. The operational plan is implemented through the council's predetermination while dry season for adequate quantity and distribution of water.

  4. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment-scale water management.

    Science.gov (United States)

    Refsgaard, A; Jacobsen, T; Jacobsen, B; Ørum, J-E

    2007-01-01

    The EU Water Framework Directive (WFD) requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive agricultural production and leakage of nitrate constitute a major pollution problem with respect groundwater aquifers (drinking water), fresh surface water systems (water quality of lakes) and coastal receiving waters (eutrophication). The case study presented illustrates an advanced modelling approach applied in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse the effects of specific, localized basin water management plans. The paper also includes a land rent modelling approach which can be used to choose the most cost-effective measures and the location of these measures. As a forerunner to the use of basin-scale models in WFD basin water management plans this project demonstrates the potential and limitations of comprehensive, integrated modelling tools.

  5. A review of inexact optimization modeling and its application to integrated water resources management

    Science.gov (United States)

    Wang, Ran; Li, Yin; Tan, Qian

    2015-03-01

    Water is crucial in supporting people's daily life and the continual quest for socio-economic development. It is also a fundamental resource for ecosystems. Due to the associated complexities and uncertainties, as well as intensive competition over limited water resources between human beings and ecosystems, decision makers are facing increased pressure to respond effectively to various water-related issues and conflicts from an integrated point of view. This quandary requires a focused effort to resolve a wide range of issues related to water resources, as well as the associated economic and environmental implications. Effective systems analysis approaches under uncertainty that successfully address interactions, complexities, uncertainties, and changing conditions associated with water resources, human activities, and ecological conditions are desired, which requires a systematic investigation of the previous studies in relevant areas. Systems analysis and optimization modeling for integrated water resources management under uncertainty is thus comprehensively reviewed in this paper. A number of related methodologies and applications related to stochastic, fuzzy, and interval mathematical optimization modeling are examined. Then, their applications to integrated water resources management are presented. Perspectives of effective management schemes are investigated, demonstrating many demanding areas for enhanced research efforts, which include issues of data availability and reliability, concerns over uncertainty, necessity of post-modeling analysis, and the usefulness of the development of simulation techniques.

  6. Integrated water resources management for sustainable development of in western rural China

    Institute of Scientific and Technical Information of China (English)

    CHEN Gui-bao; HUANG Gao-bao

    2010-01-01

    Management in water resources development of Jinghe watershed of western rural China is examined with Participatory Rural Appraisal method--a rare applied method in China and questionnaire survey of stakeholders.Combination of these two survey methods derives good results as it could avoid personal bias in identifying and ranking the issues on a concrete basis in following up households'survey.Statistic Package for Social Sciences(SPSS)was used for data analysis.Results indicate that since the early 1980s.issues of water scarcity,river pollution,soil erosion,insufficient participation of stakeholders in water resources use and management,as well as centrahzed water planning and management system have created difficulties for sustainable development of the watershed.The stakeholders and local governments are fully aware of the challenges and are committed to achieving a solution through integrated water resource management(IWRD).The concept and the application of IWRD for rural China are reviewed and analyzed,and a framework for implementation of IWRD in China is developed.It is conchided that the keys to successful implementation of the approach will depend on optimal arrangement of institutions,policy reforms,community involvement and capacity building in water sector,which need to fully integrate various management functions within the watershed.

  7. Technical-economic modelling of integrated water management: wastewater reuse in a French island.

    Science.gov (United States)

    Xu, P; Valette, F; Brissaud, F; Fazio, A; Lazarova, V

    2001-01-01

    An integrated technical-economic model is used to address water management issues in the French island of Noirmoutier. The model simulates potable water production and supply, potable and non potable water demand and consumption, wastewater collection, treatment and disposal, water storage, transportation and reuse. A variety of water management scenarios is assessed through technical, economic and environmental evaluation. The scenarios include wastewater reclamation and reuse for agricultural and landscape irrigation as well as domestic non potable application, desalination of seawater and brackish groundwater for potable water supply. The study shows that, in Noirmoutier, wastewater reclamation and reuse for crop irrigation is the most cost-effective solution to the lack of water resources and the protection of sensitive environment. Some water management projects which are regarded as having less economic benefit in the short-term may become competitive in the future, as a result of tightened environmental policy, changed public attitudes and advanced water treatment technologies. The model provides an appropriate tool for water resources planning and management.

  8. Application of Water Evaluation and Planning Model for Integrated Water Resources Management: Case Study of Langat River Basin, Malaysia

    Science.gov (United States)

    Leong, W. K.; Lai, S. H.

    2017-06-01

    Due to the effects of climate change and the increasing demand on water, sustainable development in term of water resources management has become a major challenge. In this context, the application of simulation models is useful to duel with the uncertainty and complexity of water system by providing stakeholders with the best solution. This paper outlines an integrated management planning network is developed based on Water Evaluation and Planning (WEAP) to evaluate current and future water management system of Langat River Basin, Malaysia under various scenarios. The WEAP model is known as an integrated decision support system investigate major stresses on demand and supply in terms of water availability in catchment scale. In fact, WEAP is applicable to simulate complex systems including various sectors within a single catchment or transboundary river system. To construct the model, by taking account of the Langat catchment and the corresponding demand points, we defined the hydrological model into 10 sub-hydrological catchments and 17 demand points included the export of treated water to the major cities outside the catchment. The model is calibrated and verified by several quantitative statistics (coefficient of determination, R2; Nash-Sutcliffe efficiency, NSE and Percent bias, PBIAS). The trend of supply and demand in the catchment is evaluated under three scenarios to 2050, 1: Population growth rate, 2: Demand side management (DSM) and 3: Combination of DSM and reduce non-revenue water (NRW). Results show that by reducing NRW and proper DSM, unmet demand able to reduce significantly.

  9. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Science.gov (United States)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G.

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates.

  10. Water management in proton exchange membrane fuel cells using integrated electroosmotic pumping

    Energy Technology Data Exchange (ETDEWEB)

    Buie, Cullen R.; Posner, Jonathan D.; Fabian, Tibor; Cha, Suk-Won; Kim, Daejoong; Prinz, Fritz B.; Eaton, John K.; Santiago, Juan G. [Department of Mechanical Engineering, Stanford University, Stanford, CA 94305 (United States)

    2006-10-20

    Recent experimental and numerical investigations on proton exchange membrane fuel cells (PEMFCs) emphasize water management as a critical factor in the design of robust, high efficiency systems. Although various water management strategies have been proposed, water is still typically removed by pumping air into cathode channels at flow rates significantly higher than required by fuel cell stoichiometry. Such methods are thermodynamically unfavorable and constrain cathode flow channel design. We have developed proton exchange membrane fuel cells (PEMFCs) with integrated planar electroosmotic (EO) pumping structures that actively remove liquid water from cathode flow channels. EO pumps can relieve cathode design barriers and facilitate efficient water management in fuel cells. EO pumps have no moving parts, scale appropriately with fuel cells, operate across a wide range of conditions, and consume a small fraction of fuel cell power. We demonstrate and quantify the efficacy of EO water pumping using controlled experiments in a single channel cathode flow structure. Our results show that, under certain operating conditions, removing water from the cathode using integrated EO pumping structures improves fuel cell performance and stability. The application of EO pumps for liquid water removal from PEMFC cathodes extends their operational range and reduces air flow rates. (author)

  11. Integrated management of land and water resources based on a collective approach to fragmented international conventions.

    Science.gov (United States)

    Duda, Alfred M

    2003-12-29

    Interlinked crises of land degradation, food security, ecosystem decline, water quality and water flow depletion stand in the way of poverty reduction and sustainable development. These crises are made worse by increased fluctuations in climatic regimes. Single-purpose international conventions address these crises in a piecemeal, sectoral fashion and may not meet their objectives without greater attention to policy, legal, and institutional reforms related to: (i) balancing competing uses of land and water resources within hydrologic units; (ii) adopting integrated approaches to management; and (iii) establishing effective governance institutions for adaptive management within transboundary basins. This paper describes this global challenge and argues that peace, stability and security are all at stake when integrated approaches are not used. The paper presents encouraging results from a decade of transboundary water projects supported by the Global Environment Facility in developing countries that test practical applications of processes for facilitating reforms related to land and water that are underpinned by science-based approaches. Case studies of using these participative processes are described that collectively assist in the transition to integrated management. A new imperative for incorporating interlinkages among food, water, and environment security at the basin level is identified.

  12. Assessment of runoff water quality for an integrated best-management practice system in an agricultural watershed

    Science.gov (United States)

    To better understand, implement and integrate best management practices (BMPs) in agricultural watersheds, critical information on their effectiveness is required. A representative agricultural watershed, Beasley Lake, was used to compare runoff water quality draining through an integrated system of...

  13. Integrated modelling of nitrate loads to coastal waters and land rent applied to catchment scale water management

    DEFF Research Database (Denmark)

    Jacosen, T.; Refsgaard, A.; Jacobsen, Brian H.

    in river basin management. Point sources (e.g. sewage treatment plant discharges) and distributed diffuse sources (nitrate leakage) are included to provide a modelling tool capable of simulating pollution transport from source to recipient to analyse effects of specific, localized basin water management...... plans. The paper also includes a land rent modelling approach which can be used to choose the most cost effective measures and the location of these measures. As a forerunner to the use of basin scale models in WFD basin water management plans this project demonstrates potential and limitations......Abstract The EU WFD requires an integrated approach to river basin management in order to meet environmental and ecological objectives. This paper presents concepts and full-scale application of an integrated modelling framework. The Ringkoebing Fjord basin is characterized by intensive...

  14. The role of Dutch expertise in Romanian water projects. Case study "Integrated water management for the Tecucel River Basin"

    NARCIS (Netherlands)

    Vinke-de Kruijf, Joanne

    2012-01-01

    Floods are the most important natural risk in Romania. They occur almost on a yearly basis and cause major economic damage and casualties. The project ‘Integrated Water Management for the Tecucel River Basin’ was formulated in response to a flood in the city of Tecuci and its surroundings in 2007.

  15. An integrated soil-crop system model for water and nitrogen management in North China

    Science.gov (United States)

    Liang, Hao; Hu, Kelin; Batchelor, William D.; Qi, Zhiming; Li, Baoguo

    2016-05-01

    An integrated model WHCNS (soil Water Heat Carbon Nitrogen Simulator) was developed to assess water and nitrogen (N) management in North China. It included five main modules: soil water, soil temperature, soil carbon (C), soil N, and crop growth. The model integrated some features of several widely used crop and soil models, and some modifications were made in order to apply the WHCNS model under the complex conditions of intensive cropping systems in North China. The WHCNS model was evaluated using an open access dataset from the European International Conference on Modeling Soil Water and N Dynamics. WHCNS gave better estimations of soil water and N dynamics, dry matter accumulation and N uptake than 14 other models. The model was tested against data from four experimental sites in North China under various soil, crop, climate, and management practices. Simulated soil water content, soil nitrate concentrations, crop dry matter, leaf area index and grain yields all agreed well with measured values. This study indicates that the WHCNS model can be used to analyze and evaluate the effects of various field management practices on crop yield, fate of N, and water and N use efficiencies in North China.

  16. An integrated water resources management strategy for Al-Ain City, United Arab Emirates

    Science.gov (United States)

    Mohamed, M. M.

    2014-09-01

    Al-Ain is the second largest city in the Emirate of Abu Dhabi and the third in the UAE. Currently, desalination plants are the only source of drinking water in the city with an average daily supply of 170 MIG. Recently, Abu Dhabi Urban Planning Council (UPC) released Al-Ain 2030 Plan. Projects suggested in this plan, over and above the expected natural population growth, will certainly put additional stress on the water resources in the city. Therefore, Al-Ain city seems to be in urgent need for an integrated water resources management strategy towards achieving sustainable development. This strategy will contain three main components; namely, a Water Demand Forecasting Model (WDFM), a Water Budget Model (WBM), and a Water Resources Optimization Model (WROM). The main aim of this paper is to present the WBM that estimates all inflows and outflows to assess water resources sustainability in the city.

  17. Application of a fully-integrated groundwater-surface water flow model in municipal asset management

    Science.gov (United States)

    Bowman, L. K.; Unger, A.; Jones, J. P.

    2014-12-01

    Access to affordable potable water is critical in the development and maintenance of urban centres. Given that water is a public good in Canada, all funds related to operation and maintenance of the drinking water and wastewater networks must come from consumers. An asset management system can be put in place by municipalities to more efficiently manage their water and wastewater distribution system to ensure proper use of these funds. The system works at the operational, tactical, and strategic levels, thus ensuring optimal scheduling of operation and maintenance activities, as well as prediction of future water demand scenarios. At the operational level, a fully integrated model is used to simulate the groundwater-surface water interaction of the Laurel Creek Watershed, of which 80% is urbanized by the City of Waterloo. Canadian municipalities typically lose 13% of their potable water through leaks in watermains and sanitary sewers, and sanitary sewers often generate substantial inflows from fractures in pipe walls. The City of Waterloo sanitary sewers carry an additional 10,000 cubic meters of water to wastewater treatment plants. Therefore, watermain and sanitary sewers present a significant impact on the groundwater-surface water interaction, as well as the affordability of the drinking water and wastewater networks as a whole. To determine areas of concern within the network, the integrated groundwater-surface water model also simulates flow through the City of Waterloo's watermain and sanitary sewer networks. The final model will be used to assess the interaction between measured losses of water from the City of Waterloo's watermain system, infiltration into the sanitary sewer system adjacent to the watermains, and the response of the groundwater system to deteriorated sanitary sewers or to pipes that have been recently renovated. This will ultimately contribute to the City of Waterloo's municipal asset management plan.

  18. Integrated water resources assessment and management in the Kharaa River Basin, Mongolia

    Science.gov (United States)

    Ibisch, Ralf; Karthe, Daniel; Hofmann, Jürgen; Borchardt, Dietrich

    2016-04-01

    A comprehensive study on hydrology, hydro-morphology, climatology, water physico-chemistry and ecology was conducted in the Kharaa River Basin (Mongolia) between 2006 and 2013. The assessment provided a detailed characterization of water resources for the first time and serves as a scientific basis to develop an integrated water resources management (IWRM) in the region. Following European water management approaches we identified "water bodies" as the smallest management sub-unit within the river basin, based on characteristic abiotic and biocenotic features. Four clearly identifiable water bodies in the Kharaa River main channel and seven water bodies in the tributaries were delineated. In order to achieve a good ecological status of the surface water bodies, type-specific undisturbed reference states of various aquatic ecosystems were identified and current deviations thereof were assessed. Based on the assessment a set of water management measures was developed. With regards to water quality and quantity, the upper reaches of the Kharaa River basin were classified as having a "good" ecological and chemical status. Compared to these natural reference conditions in the upper reaches, the initial risk assessment identified several "hot spot" regions with impacted water bodies in the middle and lower basin. Therefore, the affected water bodies are at risk of not achieving the good ecological and/or chemical status for surface waters. The use of natural references conditions offers a sound scientific base to assess the impact of anthropogenic activities across the Kharaa River basin. Based on the scientific results and practical experiences from a seven-year project in the region, the potentials and limitations of IWRM implementation will be discussed in the presentation.

  19. Montana's Clark Fork River Basin Task Force: a vehicle for integrated water resources management?

    Science.gov (United States)

    Shively, David D; Mueller, Gerald

    2010-11-01

    This article examines what is generally considered to be an unattainable goal in the western United States: integrated water resources management (IWRM). Specifically, we examine an organization that is quite unique in the West, Montana's Clark Fork River Basin Task Force (Task Force), and we analyze its activities since its formation in 2001 to answer the question: are the activities and contributions of the Task Force working to promote a more strongly integrated approach to water resources management in Montana? After reviewing the concepts underlying IWRM, some of the issues that have been identified for achieving IWRM in the West, and the Montana system of water right allocation and issues it faces, we adapt Mitchell's IWRM framework and apply it to the analysis of the Task Force's activities in the context of IWRM. In evaluating the physical, interaction, and protocol/planning/policy components of IWRM, we find that the Task Force has been contributing to the evolution of Montana's water resources management towards this framework, though several factors will likely continue to prevent its complete realization. The Task Force has been successful in this regard because of its unique nature and charge, and because of the authority and power given it by successive Montana legislatures. Also critical to the success of the organization is its ability to help translate into policy the outcomes of legal and quasi-judicial decisions that have impacted the state's water resources management agency.

  20. Towards integrated water resources management in Colombia: challenges and opportunities for spatial environmental planning

    Science.gov (United States)

    Salazar, Sergio; Hernández, Sebastián

    2015-04-01

    Only until 2010 was enacted the first national policy related to the integrated management of water resources in Colombia. In 2011 was established the Directorate for Integrated Water Resources Management within the Ministry of Environment and Sustainable Development. Between 2010 to 2013 were adopted the regulatory instruments to be developed within the hierarchical structure for spatial environmental planning around the water resources, considering both a transdisciplinary framework and a multi-ethnic and multi-participatory approach. In this context, there is a breakthrough in the development of strategic and tactic actions summarized as follows: i) technical guidelines or projects were developed for the spatial environmental planning at the macroscale river basins (i.e. Magdalena-Cauca river basin with 2.3 million hectares), meso-scale (river basins from 50.000 to 2 million hectares and aquifers) and local scale (catchments areas less than 50.000 hectares); ii) there is an advance in the knowledge of key hydrological processes in the basins of the country as well as actions to restore and preserve ecosystems essential for the regulation of water supply and ecosystem services; iii) demand characterization introducing regional talks with socio-economic stakeholders and promoting water efficiency actions; iv) water use regulation as a way for decontamination and achieving quality standards for prospective uses; v) introduction of risks analysis associated with water resources in the spatial environmental planning and establishment of mitigation and adaptation measures; vi) strengthening the monitoring network of water quality and hydrometeorological variables; vii) strengthening interactions with national and international research as well as the implementation of a national information system of water resources; viii) steps towards water governance with the introduction of socio-economic stakeholder in the spatial environmental planning and implementation of

  1. Integrated modeling approach for optimal management of water, energy and food security nexus

    Science.gov (United States)

    Zhang, Xiaodong; Vesselinov, Velimir V.

    2017-03-01

    Water, energy and food (WEF) are inextricably interrelated. Effective planning and management of limited WEF resources to meet current and future socioeconomic demands for sustainable development is challenging. WEF production/delivery may also produce environmental impacts; as a result, green-house-gas emission control will impact WEF nexus management as well. Nexus management for WEF security necessitates integrated tools for predictive analysis that are capable of identifying the tradeoffs among various sectors, generating cost-effective planning and management strategies and policies. To address these needs, we have developed an integrated model analysis framework and tool called WEFO. WEFO provides a multi-period socioeconomic model for predicting how to satisfy WEF demands based on model inputs representing productions costs, socioeconomic demands, and environmental controls. WEFO is applied to quantitatively analyze the interrelationships and trade-offs among system components including energy supply, electricity generation, water supply-demand, food production as well as mitigation of environmental impacts. WEFO is demonstrated to solve a hypothetical nexus management problem consistent with real-world management scenarios. Model parameters are analyzed using global sensitivity analysis and their effects on total system cost are quantified. The obtained results demonstrate how these types of analyses can be helpful for decision-makers and stakeholders to make cost-effective decisions for optimal WEF management.

  2. Implementing Integrated Water Resources Management in the Ebro River Basin: From Theory to Facts

    Directory of Open Access Journals (Sweden)

    Jorge Bielsa

    2014-12-01

    Full Text Available In this article, we analyze how successful the implementation of Integrated Water Resource Management (IWRM in the Ebro river catchment (in Spain has been. Our main aim is to show some gaps between theory and practice. This implies analyzing the political dimensions of governance and their change and reflecting on the interface between governance and technical knowledge about water. We highlight problems, such as the lack of institutional coordination, blind spots in technical information and path dependences. Actual water management has led to plans for further irrigation even though water availability is, and is expected to continue, shrinking due to climate change and other local factors. To overcome these mismatches, we propose further synchronization, innovative ways of public participation and knowledge sharing between institutions and researchers. As a showcase, we portray a practical real example of a desirable institutional arrangement in one sub-catchment.

  3. A hydroeconomic modeling framework for optimal integrated management of forest and water

    Science.gov (United States)

    Garcia-Prats, Alberto; del Campo, Antonio D.; Pulido-Velazquez, Manuel

    2016-10-01

    Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a "payment for environmental services" scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations.

  4. Development of a regional model for integrated management of water resources at the basin scale

    Science.gov (United States)

    Gaiser, T.; Printz, A.; von Raumer, H. G. Schwarz; Götzinger, J.; Dukhovny, V. A.; Barthel, R.; Sorokin, A.; Tuchin, A.; Kiourtsidis, C.; Ganoulis, I.; Stahr, K.

    Integrated modeling is a novel approach to couple knowledge and models from different disciplines and research fields and to use their potential in the strategic planning of water management at the river basin scale. The MOSDEW integrated regional model has been developed in the Neckar basin, a 14,000 km 2 river catchment in South-West Germany as a model cascade of nine submodels covering large scale hydrology, groundwater flow, water demand, agricultural production, point and non-point pollution and chemical as well as biological water quality. The models are being tested and validated in the Neckar basin as well as in additional river basins in West Africa (Ouémé basin) and Central Asia (Chirchik-Ahangaran-Keles basin, CHAB) with contrasting ecological, hydrological and socio-economic boundary conditions. The transfer to the CHAB basin required changes in the submodel selection and integration structure due to the strong anthropogenic modifications of the flow regime in the downstream area. There, water is conveyed from the Chirchik river to other catchments and distributed in a complex channel system to satisfy the demand of competing water users (irrigation, urban water supply, energy production). In the Ouémé basin, the ecohydraulic model was not integrated due to lack of input data for ecological requirements of fish species whereas the groundwater flow model was not applicable to the predominant presence of aquifers in fractured rock. The model results obtained so far are promising with respect to their accuracy to be used in scenario simulations for the strategic basin wide planning of water management.

  5. Integrated frameworks for assessing and managing health risks in the context of managed aquifer recharge with river water.

    Science.gov (United States)

    Assmuth, Timo; Simola, Antti; Pitkänen, Tarja; Lyytimäki, Jari; Huttula, Timo

    2016-01-01

    Integrated assessment and management of water resources for the supply of potable water is increasingly important in light of projected water scarcity in many parts of the world. This article develops frameworks for regional-level waterborne human health risk assessment of chemical and microbiological contamination to aid water management, incorporating economic aspects of health risks. Managed aquifer recharge with surface water from a river in Southern Finland is used as an illustrative case. With a starting point in watershed governance, stakeholder concerns, and value-at-risk concepts, we merge common methods for integrative health risk analysis of contaminants to describe risks and impacts dynamically and broadly. This involves structuring analyses along the risk chain: sources-releases-environmental transport and fate-exposures-health effects-socio-economic impacts-management responses. Risks attributed to contaminants are embedded in other risks, such as contaminants from other sources, and related to benefits from improved water quality. A set of models along this risk chain in the case is presented. Fundamental issues in the assessment are identified, including 1) framing of risks, scenarios, and choices; 2) interaction of models and empirical information; 3) time dimension; 4) distributions of risks and benefits; and 5) uncertainties about risks and controls. We find that all these combine objective and subjective aspects, and involve value judgments and policy choices. We conclude with proposals for overcoming conceptual and functional divides and lock-ins to improve modeling, assessment, and management of complex water supply schemes, especially by reflective solution-oriented interdisciplinary and multi-actor deliberation.

  6. Ecosystem services and integrated water resource management: different paths to the same end?

    Science.gov (United States)

    Cook, Brian R; Spray, Christopher J

    2012-10-30

    The two concepts that presently dominate water resource research and management are the Global Water Partnership's (GWP, 2000) interpretation of Integrated Water Resource Management (IWRM) and Ecosystem Services (ES) as interpreted by the Millennium Ecosystem Assessment (MA, 2005). Both concepts are subject to mounting criticism, with a significant number of critiques focusing on both their conceptual and methodological incompatibility with management and governance, what has come to be known as the 'implementation gap'. Emergent within the ES and IWRM literatures, then, are two parallel debates concerning the gap between conceptualisation and implementation. Our purpose for writing this review is to argue: 1) that IWRM and ES have evolved into nearly identical concepts, 2) that they face the same critical challenge of implementation, and 3) that, if those interested in water research and management are to have a positive impact on the sustainable utilisation of dwindling water resources, they must break the tendency to jump from concept to concept and confront the challenges that arise with implementation.

  7. Integrated constructed wetlands: water management as a land-use issue, implementing the 'Ecosystem Approach'.

    Science.gov (United States)

    Harrington, R; Carroll, P; Cook, S; Harrington, C; Scholz, M; McInnes, R J

    2011-01-01

    Awareness of the need for social, economic and environmental coherence in the management of water is becoming evermore apparent. Water supply as well as treatment is becoming more costly; a challenge that is not only limited to developing countries. The use of wetlands, natural and constructed, is now more widely accepted as a means of tackling a range of problems in water management to deliver this coherence. The use of 16 Integrated Constructed Wetlands that mimic shallow, emergent-vegetated, palustrine wetlands in a 2,500 ha catchment in County Waterford, Southeast Ireland, has shown a number of distinct advantages in implementing the all encompassing 'Ecosystem Approach', addressing the key elements for sustainable water management in an intensively used agricultural area. The significant increase in water quality, biodiversity, social amenities and acceptance by the local rural community provided by this 'real' field-scale demonstration show the benefits that such a joined-up approach can have on catchment management in the widest sense.

  8. Integrated water resources management: lost on the road from ambition to realisation?

    Science.gov (United States)

    Jeffrey, P; Gearey, M

    2006-01-01

    The recognition that water plays a central role in industrial, agricultural, economic, social and cultural development has, over the past half century, led to the development of strategic management approaches based on the concept of integrated water resources management (IWRM). This paper assesses the extent to which IWRM theory has been converted into practice and identifies existing "research gaps". We set out our arguments as a critique of IWRM; describing its basic tenets, exploring its value as a conceptual tool, considering its scientific pedigree, questioning its novelty as a resource management paradigm, and suggesting ways of translating the theory into more widespread practice. Finally, we argue that whilst models in their broadest sense can make a significant contribution to IWRM research and practice, a revised assessment of the source of their value is required.

  9. Integrative assessment of hydrological, ecological, and economic systems for water resources management at river basin scale

    Institute of Scientific and Technical Information of China (English)

    Xianglian LI; Xiusheng YANG; Qiong GAO; Yu LI; Suocheng DONG

    2009-01-01

    This study presents a basin-scale integrative hydrological, ecological, and economic (HEE) modeling system, aimed at evaluating the impact of resources management, especially agricultural water resources management, on the sustainability of regional water resources. The hydrological model in the modeling system was adapted from SWAT, the Soil and Water Assessment Tool, to simulate the water balance in terms of soil moisture, evapotranspiration, and streamflow. An ecologi-cal model was integrated into the hydrological model to compute the ecosystem production of biomass production and yield for different land use types. The economic model estimated the monetary values of crop production and water productivity over irrigated areas. The modeling system was primarily integrated and run on a Windows platform and was able to produce simulation results at daily time steps with a spatial resolution of hydrological response unit (HRU). The modeling system was then calibrated over the period from 1983 to 1991 for the upper and middle parts of the Yellow River basin, China.Calibration results showed that the efficiencies of the modeling system in simulating monthly streamflow over 5hydrological stations were from 0.54 to 0.68 with an average of 0.64, indicating an acceptable calibration.Preliminary simulation results from 1986 to 1995 revealed that water use in the study region has largely reduced the streamflow in many parts of the area except for that in the riverhead. Spatial distribution of biomass production, and crop yield showed a strong impact of irrigation on agricultural production. Water productivity over irrigated cropland ranged from 1 to 1640 USD/(ha.mm 1), indicat-ing a wide variation of the production conditions within the study region and a great potential in promoting water use efficiency in low water productivity areas. Generally,simulation results from this study indicated that the modeling system was capable of tracking the temporal and spatial

  10. Integrated water resource and flood risk management: comparing the US and the EU

    Directory of Open Access Journals (Sweden)

    Serra-Llobet Anna

    2016-01-01

    Full Text Available Floods are the most important natural hazard in the EU and US, causing 700 deaths and at least €25 billion in insured economic losses in Europe since 1998, and causing nearly $10 billion annual average flood losses in the US. Flood control is commonly viewed as a matter of building dykes, dams, and other structures, but effective flood management within the perspective of Integrated Water Resource Management (IWRM must address multiple components of the flood risk management cycle (Figure 1. We systematically reviewed governance structures, guidance documents, and mapping products in both the EU and US, drawing particular examples from California and Spain, to determine how the US and the EU approach the flood risk management within different IWRM initiatives, which strategies and agencies are involved in the different phases –characterization (flood hazard and risk assessment and mapping, mitigation (prevention and protection, emergency (preparation and response, and (short and long term recovery-, and how these agencies relate to each other. The regions have strong similarities in economy and environmental values, but have evolved very different approaches to cope with floods. The US and EU have similar organizational structures, but very different legislative frameworks. In the US overarching policy and large scale infrastructure funding have traditionally resided at the federal level with state and local agencies exercising strong land use control. EU member states have arguably advanced ahead of the US in some significant ways since adoption of the EU Floods Directive in 2007, a more top-down approach. Among the Directive’s many components, one important requirement is submission of flood risk management plans (by the end of 2015, which, for first time, take into account all phases of flood management. This umbrella strategy to cope with floods is creating a more consistent and integrated flood risk management approach in Europe. In

  11. The interplay of snow, surface water, and groundwater reservoirs for integrated water resources management

    Science.gov (United States)

    Rajagopal, S.; Huntington, J.

    2015-12-01

    Changes in climate, growth in population and economy have increased the reliance on groundwater to augment supplies of surface water across the world, and especially the Western United States. Martis Valley, a high altitude, snow dominated watershed in the Sierra Nevada, California has both surface (river/reservoir) and groundwater resources that are utilized to meet demands within the valley. The recent drought and changing precipitation type (less snow, more rain) has stressed the regional surface water supply and has increased the reliance on groundwater pumping. The objective of this paper is to quantify how changes in climate and depletion of snow storage result in decreased groundwater recharge and increased groundwater use, and to assess if increased surface water storage can mitigate impacts to groundwater under historic and future climate conditions. These objectives require knowledge on the spatiotemporal distribution of groundwater recharge, discharge, and surface and groundwater interactions. We use a high resolution, physically-based integrated surface and groundwater model, GSFLOW, to identify key mechanisms that explain recent hydrologic changes in the region. The model was calibrated using a multi-criteria approach to various historical observed hydrologic fluxes (streamflow and groundwater pumping) and states (lake stage, groundwater head, snow cover area). Observations show that while groundwater use in the basin has increased significantly since the 1980's, it still remains a relatively minor component of annual consumptive water use. Model simulations suggest that changes from snow to rain will lead to increases in Hortonian and Dunnian runoff, and decreases in groundwater recharge and discharge to streams, which could have a greater impact on groundwater resources than increased pumping. These findings highlight the necessity of an integrated approach for evaluating natural and anthropogenic impacts on surface and groundwater resources.

  12. Performance evaluation of River Basin Organizations to implement integrated water resources management using composite indexes

    Science.gov (United States)

    Gallego-Ayala, Jordi; Juízo, Dinis

    In the Southern African Development Community region, Integrated Water Resources Management (IWRM) principles and tools are being implemented through the existing regional framework for water resources development and management. The IWRM approach is applied at river basin level seeking a balance between the economic efficiency, social equity and environmental sustainability in water resources management and development. This paper uses composite indexes to analyze the performance of River Basin Organizations (RBOs) as key implementing agents of the IWRM framework. The assessment focuses on three RBOs that fall under the Regional Water Administration for Southern Mozambique (ARA-Sul) jurisdiction, namely: Umbeluzi, Incomati and Limpopo River Basin Management Units. The analysis focus on the computation of a set of multidimensional key performance indicators developed by Hooper (2010) but adapted to the Mozambican context. This research used 24 out of 115 proposed universal key performance indicators. The indicators for this case study were selected based on their suitability to evaluate performance in line with the legal and institutional framework context that guides the operations of RBOs in Mozambique. Finally these indicators were integrated in a composite index, using an additive and multiplicative aggregation method coupled with the Analytic Hierarchy Process technique employed to differentiate the relative importance of the various indicators considered. The results demonstrate the potential usefulness of the methodology developed to analyze the RBOs performance and proved useful in identifying the main performance areas in need of improvement for better implementation of IWRM at river basin level in Mozambique. This information should support both the IWRM framework adaptation to local context and the implementation at river basin level in order to improve water governance.

  13. The integrated resource planning of the energy sector as a basis to water management in urban areas

    Directory of Open Access Journals (Sweden)

    Gilberto de Martino Jannuzzi

    2008-12-01

    Full Text Available The Water Resources Planning in use doesn´t diverges substantially from the Traditional Energy Planning. With the energy crisis occurred at Brazil in 2001 the blackout possibility shows that the impact on the society might happen at any time. The same occurs to the water because of its scarcity. The Integrated Resource Planning (IRP was diffused as a way of fully managing a resource by the supply and demand sizes and can be considerated a viable option for the conventional planning. This composition is meant to do a study of the specific bibliography about the energy IRP and the Water Resource Management. Utilizing conceptions of the energy area, Water Integrated Resource Planning has been created to be used at the public utilities. The Water Integrated Resource Planning conducts the Water Integrated Management through this resource saving, joining this to a different tax and increasing the supply with alternative options such as the wastewater and the rainwater use.

  14. Sustainable and integrated water resources management for the coastal areas of Shandong Province, China.

    Science.gov (United States)

    Kutzner, R; Zhang, B; Kaden, S; Geiger, W F

    2006-01-01

    Water scarcity and water pollution are severe problems in the Northern part of China, strongly affecting socio-economic development and standards of living and environment. The Shandong province is specifically plagued by water scarcity. In the coastal catchments of the Shandong province the water scarcity is even increased due to saltwater intrusion, reducing the usability of water resources available. The pressing water problems in the costal catchments in the Shandong province and resulting socio-economic troubles forced the Chinese authorities to implement a variety of measures to relieve water scarcity and abate saltwater intrusion. But not much has been achieved so far as the measures are not coordinated in their effects and cost-benefit relations have not been considered sufficiently. Such a situation calls for good, which means integrated, sustainable water management. The assessment of this situation in the project "Flood Control and Groundwater Recharge in Coastal Catchments" financed by the German Ministry of Research and Education is presented. Further objectives and first ideas for an IWRM-concept are explained. These ideas are based on concepts developed in Germany in the context of the fulfilment of the European Water Framework Directive.

  15. Integrated control of landscape irrigation and rainwater harvesting for urban water management

    Science.gov (United States)

    Lee, J. H.; Dhakal, B.; Noh, S.; Seo, D. J.

    2016-12-01

    Demand for freshwater is increasing rapidly in large and fast-growing urban areas such as the Dallas-Fort Worth Metroplex (DFW). With almost complete reliance on surface water, water supply for DFW is limited by the available storage in the reservoir systems which is now subject to larger variability due to climate change. Landscape irrigation is estimated to account for nearly one-third of all residential water use in the US and as much as 60% in dry climate areas. In landscape irrigation, a large portion of freshwater is commonly lost by sub-optimal practices. If practiced over a large area, one may expect optimized smart irrigation to significantly reduce urban freshwater demand. For increasing on-site water supply, rainwater harvesting (RHW) is particularly attractive in that it conserves potable water while reducing stormwater runoff. Traditional static RWH methods, however, have limited success due to the inefficient water usage. If, on the other hand, lawn irrigation and rainwater harvesting can be optimized as an integrated operation and controlled adaptively to the feedback from the environmental sensors, weather conditions and forecast, one may expect the combined benefits for water conservation and stormwater management to be larger. In this work, we develop a prototype system for integrated control of lawn irrigation and RWH for water conservation and stormwater management, and assess and demonstrate the potential impact and value of the system. For in-situ evaluation, we deploy a wireless sensor network consisting of low-cost off-the-shelf sensors and open-sourced components, and collect observations of temperature, humidity, soil moisture, and solar radiation at the test site at the UTA community garden in Arlington, Texas. We assess the health of the lawn grass using normalized vegetation index (NDVI) from the time lapse images at the site. In this poster, we describe the approach and share the initial results.

  16. The UN Convention on International Watercourses and integrated water management: A bridge built

    Energy Technology Data Exchange (ETDEWEB)

    Tzatzaki, Vasiliki-Maria [University of Athens, Athens (Greece)], E-mail: tz_vicky@yahoo.gr

    2008-11-01

    The UN Convention on the Law of the Non Navigational Uses of International Watercourses incorporates principles regarding the management of international water resources. The most important principles are the duty of the riparian states to cooperate, not to cause significant harm, to protect the aquatic environment and to utilize the watercourses reasonably and equitably. The lack of hierarchy between these principles signifies that the necessary step for the sound management of shared natural resources is an integrated approach, which takes into account economic development, human needs and environmental protection. Moreover, the UN Convention proved to be useful for the International Court of Justice (hereinafter ICJ) in the settlement of the Gabcikovo- Nagymaros dispute between Hungary and Slovakia for the Danube River. The Court highlighted the importance of the Convention by reminding the riparian states of their obligation to abide by its principles. On the other hand, the ICJ has used the principles of the Convention in the pending case of Pulp Mills between Uruguay and Argentina. This paper is going to show that the UN Convention is an international legal framework with general guidelines in order to create regional conventions, which promotes integrated water management as a solution to the emerging challenges of international water law and potential future conflicts.

  17. An integrated study of earth resources in the state of California using remote sensing techniques. [water and forest management

    Science.gov (United States)

    Colwell, R. N.

    1974-01-01

    Progress and results of an integrated study of California's water resources are discussed. The investigation concerns itself primarily with the usefulness of remote sensing of relation to two categories of problems: (1) water supply; and (2) water demand. Also considered are its applicability to forest management and timber inventory. The cost effectiveness and utility of remote sensors such as the Earth Resources Technology Satellite for water and timber management are presented.

  18. Development process for integrated water resources management plan under a bottom-up participation perspective

    Directory of Open Access Journals (Sweden)

    Kittiwet Kuntiyawichai

    2014-06-01

    Full Text Available This article presents the development process for the integrated water resources management and development plan of Maha Sarakham Province by considering the priority and urgency of water problem issues. Gathering feedback from stakeholders and prioritizing water management and development projects are also taken into consideration. In view of integrated plans, the project is classified into short-, medium- and long-term plans with the project duration of 2 years, 3 years and 5 years, respectively. In this case, the plans can be categorized into proposed provincial and local plans. Firstly, the comprehensive provincial plans can be divided into 2 groups, i.e. district plans with the total number of 532 plans, which comprise of 505 projects for coping with drought and 27 projects for flood mitigation, and provincial plans from 13 agencies with the amount of 513 projects, which include 396 projects and 117 projects for dealing with drought and flood, respectively. Secondly, there are 4,099 of local plans to be put in place, in which 3,973 projects and 126 projects are proposed to handle drought and flood problems, respectively. From the analysis, it is found that if all planned drought relief projects are implemented, the water demand for domestic and agricultural needs could be covered by 96% and 51%, respectively. In case of the entire proposed flood alleviation projects are executed, 29% of the total flood prone areas can be effectively protected.

  19. Integrating water management and spatial planning - Strategies based on the dutch experience

    NARCIS (Netherlands)

    Woltjer, Johan; Al, Niels

    2007-01-01

    A close connection is emerging between water management and spatial planning in the Netherlands as a result of a new acceptance of water on land, and the European Union's recent emphasis on managing water at the scale of entire river basins. We review Dutch and European trends in water management

  20. 76 FR 71070 - Draft Programmatic Environmental Impact Statement for the Integrated Water Resource Management...

    Science.gov (United States)

    2011-11-16

    ... Management Plan, Yakima River Basin Water Enhancement Project, Benton, Kittitas, Klickitat, and Yakima... Water Resource Management Plan, Yakima River Basin Water Enhancement Project. The draft Programmatic... approach for efficient management of basin water supplies. Initial efforts in the mid-1980s (Phase...

  1. Integrating water management and spatial planning - Strategies based on the dutch experience

    NARCIS (Netherlands)

    Woltjer, Johan; Al, Niels

    2007-01-01

    A close connection is emerging between water management and spatial planning in the Netherlands as a result of a new acceptance of water on land, and the European Union's recent emphasis on managing water at the scale of entire river basins. We review Dutch and European trends in water management an

  2. The enabling institutional context for integrated water management: lessons from Melbourne.

    Science.gov (United States)

    Ferguson, Briony C; Brown, Rebekah R; Frantzeskaki, Niki; de Haan, Fjalar J; Deletic, Ana

    2013-12-15

    There is widespread international acceptance that climate change, demographic shifts and resource limitations impact on the performance of water servicing in cities. In response to these challenges, many scholars propose that a fundamental move away from traditional centralised infrastructure towards more integrated water management is required. However, there is limited practical or scholarly understanding of how to enable this change in practice and few modern cities have done so successfully. This paper addresses this gap by analysing empirical evidence of Melbourne's recent experience in shifting towards a hybrid of centralised and decentralised infrastructure to draw lessons about the institutional context that enabled this shift. The research was based on a qualitative single-case study, involving interviews and envisioning workshops with urban water practitioners who have been directly involved in Melbourne's water system changes. It was found that significant changes occurred in the cultural-cognitive, normative and regulative dimensions of Melbourne's water system. These included a shift in cultural beliefs for the water profession, new knowledge through evidence and learning, additional water servicing goals and priorities, political leadership, community pressure, better coordinated governance arrangements and strong market mechanisms. The paper synthesises lessons from the case study that, with further development, could form the basis of prescriptive guidance for enabling the shift to new modes of water servicing to support more liveable, sustainable and resilient outcomes for future cities.

  3. Brine production strategy modeling for active and integrated management of water resources in CCS

    Science.gov (United States)

    Court, B.; Celia, M. A.; Nordbotten, J. M.; Buscheck, T. A.; Elliot, T. J.; Bandilla, K.; Dobossy, M.

    2010-12-01

    Our society is at present highly dependent on coal, which will continue to play a major role in baseload electricity production in the coming decades. Most projected climate change mitigation strategies require CO2 Capture and Sequestration (CCS) as a vital element to stabilize CO2 atmospheric emissions. In these strategies, CCS will have to expand in the next two decades by several orders of magnitude compared to current worldwide implementation. At present the interactions among freshwater extraction, CO2 injection, and brine management are being considered too narrowly across CCS operations, and in the case of freshwater almost completely overlooked. Following the authors’ recently published overview of these challenges, an active and integrated management of water resources throughout CCS operations was proposed to avoid overlooking critical challenges that may become major obstacles to CCS implementation. Water resources management is vital for several reasons including that a coal-fired power plant retrofitted for CCS requires twice as much cooling water as the original plant. However this increased demand may be accommodated by brine extraction and treatment, which would concurrently function as large-scale pressure management and a potential source of freshwater. Synergistic advantages of such proactive integration that were identified led the authors to concluded that: Active management of CCS operations through an integrated approach -including brine production, treatment, use for cooling, and partial reinjection- can address challenges simultaneously with several synergistic advantages; and, that freshwater and brine must be linked to CO2 and pressure as key decision making parameters throughout CCS operations while recognizing scalability and potential pore space competition challenges. This work presents a detailed modeling investigation of a potential integration opportunity resulting from brine production. Technical results will focus solely on the

  4. OpenDanubia - An integrated, modular simulation system to support regional water resource management

    Science.gov (United States)

    Muerth, M.; Waldmann, D.; Heinzeller, C.; Hennicker, R.; Mauser, W.

    2012-04-01

    The already completed, multi-disciplinary research project GLOWA-Danube has developed a regional scale, integrated modeling system, which was successfully applied on the 77,000 km2 Upper Danube basin to investigate the impact of Global Change on both the natural and anthropogenic water cycle. At the end of the last project phase, the integrated modeling system was transferred into the open source project OpenDanubia, which now provides both the core system as well as all major model components to the general public. First, this will enable decision makers from government, business and management to use OpenDanubia as a tool for proactive management of water resources in the context of global change. Secondly, the model framework to support integrated simulations and all simulation models developed for OpenDanubia in the scope of GLOWA-Danube are further available for future developments and research questions. OpenDanubia allows for the investigation of water-related scenarios considering different ecological and economic aspects to support both scientists and policy makers to design policies for sustainable environmental management. OpenDanubia is designed as a framework-based, distributed system. The model system couples spatially distributed physical and socio-economic process during run-time, taking into account their mutual influence. To simulate the potential future impacts of Global Change on agriculture, industrial production, water supply, households and tourism businesses, so-called deep actor models are implemented in OpenDanubia. All important water-related fluxes and storages in the natural environment are implemented in OpenDanubia as spatially explicit, process-based modules. This includes the land surface water and energy balance, dynamic plant water uptake, ground water recharge and flow as well as river routing and reservoirs. Although the complete system is relatively demanding on data requirements and hardware requirements, the modular structure

  5. Watershed influence on fluvial ecosystems: an integrated methodology for river water quality management.

    Science.gov (United States)

    Carone, Maria T; Simoniello, Tiziana; Manfreda, Salvatore; Caricato, Gaetano

    2009-05-01

    The EU Water Framework Directive 2000/60 (Integrated River Basin Management for Europe) establishes the importance of preserving water quality through policies applied at watershed level given the strong links existing among ecological, hydrological, and hydrogeological systems. Therefore, monitoring campaigns of river water quality should be planned with multidisciplinary approaches starting from a landscape perspective. In this paper, the effects of the basin hydrology on the river water quality and, in particular, the impacts caused by the runoff production coming from agricultural areas are investigated. The fluvial segments receiving consistent amount of pollutant loads (due to the runoff routing over agricultural areas) are assumed more critical in terms of water quality and thus, they require more accurate controls. Starting from this perspective, to evaluate the runoff productions coming from agricultural areas, we applied a semi-distributed hydrological model that adopts satellite data, pedological and morphological information for the watershed description. Then, the river segments receiving critical amount of runoff loads from the surrounding cultivated areas were identified. Finally, in order to validate the approach, water quality for critical and non critical segment was investigated seasonally, by using river macroinvertebrates as indicators of water quality because of their effectiveness in preserving in time a memory of pollution events. Biomonitoring data showed that river water quality strongly decreases in correspondence of fluvial segments receiving critical amount of runoff coming from agricultural areas. The results highlight the usefulness of such a methodology to plan monitoring campaigns specifically devoted to non-point pollution sources and suggest the possibility to use this approach for water quality management and for planning river restoration policies.

  6. Socio-hydrology and integrated water resources management in northern Australia

    Science.gov (United States)

    Douglas, Michael; Jackson, Sue

    2017-04-01

    Australia's tropical rivers account for more than half of the nation's freshwater resources. Nearly all of these rivers flow freely to the sea, with less than 0. 01% of river flows diverted for human use, but there is increasing interest in developing the region's water resources for irrigated agriculture. Interdisciplinary research conducted over the past decade has demonstrated the reliance of biodiversity on free-flowing rivers and has also identified a broad range of benefits that people derive from these river systems including irrigated agriculture, tourism, commercial and recreational fishing and Indigenous subsistence harvesting. This has revealed the highly coupled nature of the socio-hydrological system in northern Australia's catchments and the trade-offs among different water users. This paper provides an overview of past and current research with a focus on how socio-hydrology may assist in undertaking integrated water resource management in this region.

  7. Water management strategy overview

    Energy Technology Data Exchange (ETDEWEB)

    Ducette, B. [Suncor Energy Inc. Oil Sands, Fort McMurray, AB (Canada)

    2003-07-01

    Suncor's oil sands operations produce 225,000 bbl/day of crude oil products from Alberta's Fort McMurray area. Water is a key resource used for enhanced recovery methods to produce crude oil products from oil sands. A water management strategy is required to monitor and control the amount of water used in the bitumen liberation process, cooling, the steam assisted gravity drainage process, steam for cogeneration, an energy transfer medium, a transportation medium, feedstock, and potable water. The water management strategy is designed to manage both short and long term water issues and develop sustainable water management strategies in an integrated manner. The strategy also encourages open communication on water to optimize synergy between operators, energy producers, and governments. The opportunities and challenges of a water management strategy were outlined with reference to recycling opportunities, managing water chemistry, and improving the ability to measure water use.

  8. The Potential Role of Mental Model Methodologies in Multistakeholder Negotiations: Integrated Water Resources Management in South Africa

    Directory of Open Access Journals (Sweden)

    Derick R. Du Toit

    2011-09-01

    Full Text Available Equitable redistribution of resources is an emergent phenomenon in democratizing countries, and attempts are often characterized by decentralized decision making within a framework of multistakeholder negotiations. South Africa offers a unique opportunity to explore the manifestations of these relationships, particularly through Integrated Water Resources Management and its National Water Act of 1998. The Integrated Water Resources Management framework provides for collaborative strategic planning, shared visioning, consideration to water resource protection, attention to the regulation of use, operational planning, and implementation of management plans. Water users, with different stakes and views of how the resource should be managed, are expected to arrive at a single strategic plan for a specific hydrological region. Clearly this complex planning situation creates a need for tools that assist in producing a measure of convergence in thinking and enough of a shared rationale to allow stakeholder participation to produce an integrated management outcome. Several such tools are available in the overall catchment management strategy, but these would benefit from clearer understanding of the positions from which different stakeholders are operating and a way of knowing whether these positions are aligning. In this paper challenges posed by differences in meaning and understanding amongst stakeholders are examined against the need to engage stakeholders in water resources management. We deliberate on the prospects of employing mental model methodologies within the context of the strategic management framework for water management described.

  9. Operationalising uncertainty in data and models for integrated water resources management.

    Science.gov (United States)

    Blind, M W; Refsgaard, J C

    2007-01-01

    Key sources of uncertainty of importance for water resources management are (1) uncertainty in data; (2) uncertainty related to hydrological models (parameter values, model technique, model structure); and (3) uncertainty related to the context and the framing of the decision-making process. The European funded project 'Harmonised techniques and representative river basin data for assessment and use of uncertainty information in integrated water management (HarmoniRiB)' has resulted in a range of tools and methods to assess such uncertainties, focusing on items (1) and (2). The project also engaged in a number of discussions surrounding uncertainty and risk assessment in support of decision-making in water management. Based on the project's results and experiences, and on the subsequent discussions a number of conclusions can be drawn on the future needs for successful adoption of uncertainty analysis in decision support. These conclusions range from additional scientific research on specific uncertainties, dedicated guidelines for operational use to capacity building at all levels. The purpose of this paper is to elaborate on these conclusions and anchoring them in the broad objective of making uncertainty and risk assessment an essential and natural part in future decision-making processes.

  10. Before and after integrated catchment management in a headwater catchment: changes in water quality.

    Science.gov (United States)

    Hughes, Andrew O; Quinn, John M

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  11. Before and After Integrated Catchment Management in a Headwater Catchment: Changes in Water Quality

    Science.gov (United States)

    Hughes, Andrew O.; Quinn, John M.

    2014-12-01

    Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.

  12. Groundwater–surface water interactions in wetlands for integrated water resources management (preface)

    NARCIS (Netherlands)

    Schot, P.P.; Winter, T.C.

    2006-01-01

    Groundwater–surface water interactions constitute an important link between wetlands and the surrounding catchment. Wetlands may develop in topographic lows where groundwater exfiltrates. This water has its functions for ecological processes within the wetland, while surface water outflow from

  13. Quantifying green water flows for improved Integrated Land and Water Resource Management under the National Water Act of South Africa: A review on hydrological research in South Africa.

    Science.gov (United States)

    Jarmain, C.; Everson, C. S.; Gush, M. B.; Clulow, A. D.

    2009-09-01

    The contribution of hydrological research in South Africa in quantifying green water flows for improved Integrated Land and Water Resources Management is reviewed. Green water refers to water losses from land surfaces through transpiration (seen as a productive use) and evaporation from bare soil (seen as a non-productive use). In contrast, blue water flows refer to streamflow (surface water) and groundwater / aquifer recharge. Over the past 20 years, a number of methods have been used to quantify the green water and blue water flows. These include micrometeorological techniques (e.g. Bowen ratio energy balance, eddy covariance, surface renewal, scintillometry, lysimetry), field scale models (e.g. SWB, SWAP), catchment scale hydrological models (e.g. ACRU, SWAT) and more recently remote sensing based models (e.g. SEBAL, SEBS). The National Water Act of South Africa of 1998 requires that water resources are managed, protected and used (developed, conserved and controlled) in an equitable way which is beneficial to the public. The quantification of green water flows in catchments under different land uses has been pivotal in (a) regulating streamflow reduction activities (e.g. forestry) and the management of alien invasive plants, (b) protecting riparian and wetland areas through the provision of an ecological reserve, (c) assessing and improving the water use efficiency of irrigated pastures, fruit tree orchards and vineyards, (d) quantifying the potential impact of future land uses like bio-fuels (e.g. Jatropha) on water resources, (e) quantifying water losses from open water bodies, and (f) investigating "biological” mitigation measures to reduce the impact of polluted water resources as a result of various industries (e.g. mining). This paper therefore captures the evolution of measurement techniques applied across South Africa, the impact these results have had on water use and water use efficiency and the extent to which it supported the National Water Act of

  14. Comparative analysis of integrated water resources management models and instruments in South America: case studies in Brazil and Colombia

    Directory of Open Access Journals (Sweden)

    Raquel dos Santos

    2013-04-01

    Full Text Available Brazil and Colombia are rich in terms of water supply, ranking as world leaders in the supply of water resources. Despite this, both countries have problems of relative scarcity of this vital liquid in highly populated areas with much economic activity. Establishing policies and legal environmental standards has long tradition in both countries. However, although there are provisions and instruments for water management at the water basin level, these do not necessarily follow the conceptual development of integrated water resources management (IWRM. As a result, the two countries have partially implemented IWRM elements but with different characteristics both in its structure and instrumentality. In Colombia the State Government, through the Regional Environmental Corporations, implements IWRM (concessions, fee for water use, pollution rate, basin plans, etc, with no formal involvement of civil society management. In Brazil, however, IWRM management structure and tools are decentralized and participatory, as are the Water Basin Committees, entities where the State Government, municipalities and users participate, those with the greatest weight in water management. In Brazil, however, this model is not yet implemented in all watersheds. Thus, the aim of this paper is to compare the institutional and legal aspects of water management models in Brazil and Colombia with regard to the integrated water management concept. For the latter, we worked with a case study for each country regarding Nima River watershed (Colombia and Tietê Jacaré (Brazil.

  15. Strategic implementation of integrated water resources management in Mozambique: An A’WOT analysis

    Science.gov (United States)

    Gallego-Ayala, Jordi; Juízo, Dinis

    The Integrated Water Resources Management (IWRM) paradigm has become an important framework in development and management of water resources. Many countries in the Southern Africa region have begun water sector reforms to align the sector with the IWRM concepts. In 2007 the Mozambican Government started to update the policy and the legal framework of the water sector to foster the application of IWRM concept as a basis for achieving sustainable development. However the steps towards the implementation of this national framework are still in preparation. This research aims to identify and establish a priority ranking of the fundamental factors likely to affect the outcome of the IWRM reforms in Mozambique. This study uses the hybrid multi-criteria decision method A’WOT, a methodology coined by Kurttila et al. (2000). This method relies on the combination of the Strengths, Weaknesses, Opportunities, and Threats (SWOT) technique and the Analytic Hierarchy Process (AHP) technique. Using this procedure it is possible to identify and rank the factors affecting the functioning of a system. The key factors affecting the implementation of the IWRM, analysed in this study, were identified through an expert group discussion. These factors have been grouped into different categories of SWOT. Subsequently, the AHP methodology was applied to obtain the relative importance of each factor captured in the SWOT analysis; to this end the authors interviewed a panel of water resources management experts and practitioners. As a result, of this study and the application of the A’WOT methodology, the research identified and ranked the fundamental factors for the success of the IWRM strategy in Mozambique. The results of this study suggest that in Mozambique a planning strategy for the implementation of the IWRM should be guided mainly by combination of interventions in factors falling under opportunity and weakness SWOT groups.

  16. Human-Nature Relationship in Mediterranean Streams: Integrating Different Types of Knowledge to Improve Water Management

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez

    2009-12-01

    Full Text Available The social and ecological systems of Mediterranean streams are intrinsically linked as a result of long human occupation. In this region, these links vary greatly across small distances due to geomorphology, resulting in great diversity across space, which poses particular challenges for understanding and managing these systems. This demands (i interdisciplinary integration of knowledge that focuses on the social-ecological interactions, while according due consideration to the whole; and also (ii transdisciplinary integration, integrating lay and expert knowledge to understand local specificities. To address these needs - a focus on interactions and local knowledge - the research presented here studies the human-nature relationship in Mediterranean streams. Its main objective is to improve understanding of Mediterranean streams, but it also provides practical inputs to enhance local-level management. The study adopts an applied approach from the perspective of natural resources management. A case study was developed conducting field work on streams within the Natura 2000 site of Monfurado, Portugal - a mainly privately owned area with conflicting land uses between conservation and farming. Rivers and streams in Portugal are considered to be in very bad condition, particularly with regard to water quality. The experimental design was based, from a critical realism perspective of inter- and trans-disciplinarity, on the complementarities between methodologies from (i the social sciences: value survey and analysis of discourse; and (ii the natural sciences: biomonitoring and integrity biotic indexes. Results characterized the connected systems from both ecological and social points of view. They also characterized the relationship between both dimensions. We concluded that well-established riparian vegetation cover of streams is a key structural element of the human-nature relationship in the Mediterranean streams of Monfurado at several levels

  17. Collaborative Catchment-Scale Water Quality Management using Integrated Wireless Sensor Networks

    Science.gov (United States)

    Zia, Huma; Harris, Nick; Merrett, Geoff

    2013-04-01

    Electronics and Computer Science, University of Southampton, United Kingdom Summary The challenge of improving water quality (WQ) is a growing global concern [1]. Poor WQ is mainly attributed to poor water management and outdated agricultural activities. We propose that collaborative sensor networks spread across an entire catchment can allow cooperation among individual activities for integrated WQ monitoring and management. We show that sharing information on critical parameters among networks of water bodies and farms can enable identification and quantification of the contaminant sources, enabling better decision making for agricultural practices and thereby reducing contaminants fluxes. Motivation and results Nutrient losses from land to water have accelerated due to agricultural and urban pursuits [2]. In many cases, the application of fertiliser can be reduced by 30-50% without any loss of yield [3]. Thus information about nutrient levels and trends around the farm can improve agricultural practices and thereby reduce water contamination. The use of sensor networks for monitoring WQ in a catchment is in its infancy, but more applications are being tested [4]. However, these are focussed on local requirements and are mostly limited to water bodies. They have yet to explore the use of this technology for catchment-scale monitoring and management decisions, in an autonomous and dynamic manner. For effective and integrated WQ management, we propose a system that utilises local monitoring networks across a catchment, with provision for collaborative information sharing. This system of networks shares information about critical events, such as rain or flooding. Higher-level applications make use of this information to inform decisions about nutrient management, improving the quality of monitoring through the provision of richer datasets of catchment information to local networks. In the full paper, we present example scenarios and analyse how the benefits of

  18. Integrated hydrological modeling of the North China Plain and implications for sustainable water management

    Directory of Open Access Journals (Sweden)

    H. Qin

    2013-10-01

    Full Text Available Groundwater overdraft has caused fast water level decline in the North China Plain (NCP since the 1980s. Although many hydrological models have been developed for the NCP in the past few decades, most of them deal only with the groundwater component or only at local scales. In the present study, a coupled surface water–groundwater model using the MIKE SHE code has been developed for the entire alluvial plain of the NCP. All the major processes in the land phase of the hydrological cycle are considered in the integrated modeling approach. The most important parameters of the model are first identified by a sensitivity analysis process and then calibrated for the period 2000–2005. The calibrated model is validated for the period 2006–2008 against daily observations of groundwater heads. The simulation results compare well with the observations where acceptable values of root mean square error (RMSE (most values lie below 4 m and correlation coefficient (R (0.36–0.97 are obtained. The simulated evapotranspiration (ET is then compared with the remote sensing (RS-based ET data to further validate the model simulation. The comparison result with a R2 value of 0.93 between the monthly averaged values of simulated actual evapotranspiration (AET and RS AET for the entire NCP shows a good performance of the model. The water balance results indicate that more than 70% of water leaving the flow system is attributed to the ET component, of which about 0.25% is taken from the saturated zone (SZ; about 29% comes from pumping, including irrigation pumping and non-irrigation pumping (net pumping. Sustainable water management analysis of the NCP is conducted using the simulation results obtained from the integrated model. An effective approach to improve water use efficiency in the NCP is by reducing the actual ET, e.g. by introducing water-saving technologies and changes in cropping.

  19. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    Science.gov (United States)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  20. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    Science.gov (United States)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real

  1. Interactions of water quality and integrated groundwater management: Examples from the United States and Europe: Chapter 14

    Science.gov (United States)

    Warner, Kelly L.; Barataud, Fabienne; Hunt, Randall J.; Benoit, Marc; Anglade, Juliette; Borchardt, Mark A.

    2015-01-01

    Groundwater is available in many parts of the world, but the quality of the water may limit its use. Contaminants can limit the use of groundwater through concerns associated with human health, aquatic health, economic costs, or even societal perception. Given this broad range of concerns, this chapter focuses on examples of how water quality issues influence integrated groundwater management. One example evaluates the importance of a naturally occurring contaminant Arsenic (As) for drinking water supply, one explores issues resulting from agricultural activities on the land surface and factors that influence related groundwater management, and the last examines unique issues that result from human-introduced viral pathogens for groundwater-derived drinking water vulnerability. The examples underscore how integrated groundwater management lies at the intersections of environmental characterization, engineering constraints, societal needs, and human perception of acceptable water quality. As such, water quality factors can be a key driver for societal decision making.

  2. The Role of Desalinated Water in Integrated Water Resource Management in Abu Dhabi Emirate-UAE

    OpenAIRE

    Al-Omar, Muthanna

    2012-01-01

    Water resources components in Abu Dhabi encompass the conventional sources (rain, springs, ponds and groundwater), and unconventional sources (desalinated water and reclaimed wastewater). The latter represent the most important resources for the time being, since ground water is brackish or salty and the annual rainfall is very low in Abu Dhabi Emirate. Thus conventional water resources are considered under sever depletion and exceeded their natural recharging capacity by 24 times. Per capita...

  3. Sahra integrated modeling approach to address water resources management in semi-arid river basins

    Energy Technology Data Exchange (ETDEWEB)

    Springer, E. P.; Gupta, Hoshin V. (Hoshin Vijai),; Brookshire, David S.; Liu, Y. (Yuqiong)

    2004-01-01

    Water resources decisions in the 21Sf Century that will affect allocation of water for economic and environmental will rely on simulations from integrated models of river basins. These models will not only couple natural systems such as surface and ground waters, but will include economic components that can assist in model assessments of river basins and bring the social dimension to the decision process. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated models to assess impacts of climate variability and land use change on water resources in semi-arid river basins. The objectives of this paper are to describe the SAHRA integrated modeling approach and to describe the linkage between social and natural sciences in these models. Water resources issues that arise from climate variability or land use change may require different resolution models to answer different questions. For example, a question related to streamflow may not need a high-resolution model whereas a question concerning the source and nature of a pollutant will. SAHRA has taken a multiresolution approach to integrated model development because one cannot anticipate the questions in advance, and the computational and data resources may not always be available or needed for the issue to be addressed. The coarsest resolution model is based on dynamic simulation of subwatersheds or river reaches. This model resolution has the advantage of simplicity and social factors are readily incorporated. Users can readily take this model (and they have) and examine the effects of various management strategies such as increased cost of water. The medium resolution model is grid based and uses variable grid cells of 1-12 km. The surface hydrology is more physically based using basic equations for energy and water balance terms, and modules are being incorporated that will simulate engineering components

  4. Integrated hydrological and water quality model for river management: A case study on Lena River

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, André, E-mail: andrerd@gmail.com; Botelho, Cidália; Boaventura, Rui A.R.; Vilar, Vítor J.P., E-mail: vilar@fe.up.pt

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km{sup 2} watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between − 26% and 23% for calibration and − 30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms. - Highlights: • An integrated hydrological and water quality model for river management is presented. • An insight into the

  5. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran

    Science.gov (United States)

    The paradigm of integrated water resources management requires coupled analysis of hydrology and water resources in a river basin. Population growth and uncertainties due to climate change make historic data not a reliable source of information for future planning of water resources, hence necessit...

  6. An integrated measurement and modeling methodology for estuarine water quality management

    Institute of Scientific and Technical Information of China (English)

    Michael Hartnett; Stephen Nash

    2015-01-01

    This paper describes research undertaken by the authors to develop an integrated measurement and modeling methodology for water quality management of estuaries. The approach developed utilizes modeling and measurement results in a synergistic manner. Modeling results were initially used to inform the field campaign of appropriate sampling locations and times, and field data were used to develop accurate models. Remote sensing techniques were used to capture data for both model development and model validation. Field surveys were undertaken to provide model initial conditions through data assimilation and determine nutrient fluxes into the model domain. From field data, salinity re-lationships were developed with various water quality parameters, and relationships between chlorophyll a concentrations, transparency, and light attenuation were also developed. These relationships proved to be invaluable in model development, particularly in modeling the growth and decay of chlorophyll a. Cork Harbour, an estuary that regularly experiences summer algal blooms due to anthropogenic sources of nutrients, was used as a case study to develop the methodology. The integration of remote sensing, conventional fieldwork, and modeling is one of the novel aspects of this research and the approach developed has widespread applicability.

  7. Integrated Approach to Transboundary Waters Management, such as a Rivermouth and a Lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C.H.; Lee, B.K.; Yoo, H.J. [Korea Environment Institute, Seoul (Korea); Kang, D.S.; Nam, J.H. [Korea Maritime Institute, Seoul (Korea)

    2001-12-01

    Estuaries and coastal lagoons (estuarine environments) are typical transitional ecosystems between land and sea, where sea water is mixed with fresh water. It is well known that estuarine environments are very valuable ecosystems because of their unique ecological functions and geographical features, as well as socioeconomic values. These precious estuaries, however, have become severely deteriorated and damaged by human activities through watersheds and intensive coastal developments. In this respect, this study aims to develop integrated management strategies for protection, improvement, and restoration of estuarine environments that would support sustainable uses of those precious natural resources. This study found that regardless of their ecological value, estuaries and coastal lagoons in Korea have deteriorated due to a lack of appropriate management systems and imprudent development and utilization. Furthermore, considering the fact that destruction of the estuaries has been caused by national development projects, the study urges the Korean government to change its development-oriented policies on estuaries and coastal lagoons to more sustainable ones so that future generations may enjoy the benefits from healthy natural estuaries and coastal lagoons. The Korean government, thus, needs to declare that it will no longer promote any development-oriented policy that might destroy valuable estuaries and coastal lagoons, in preparing for the 2002 WSSD which will be held in South Africa in 2002. (author). 175 refs., 72 figs., 95 tabs.

  8. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments.

    Science.gov (United States)

    Nnane, Daniel Ekane; Ebdon, James Edward; Taylor, Huw David

    2011-03-01

    In many parts of the world, microbial contamination of surface waters used for drinking, recreation, and shellfishery remains a pervasive risk to human health, especially in Less Economically Developed Countries (LEDC). However, the capacity to provide effective management strategies to break the waterborne route to human infection is often thwarted by our inability to identify the source of microbial contamination. Microbial Source Tracking (MST) has potential to improve water quality management in complex river catchments that are either routinely, or intermittently contaminated by faecal material from one or more sources, by attributing faecal loads to their human or non-human sources, and thereby supporting more rational approaches to microbial risk assessment. The River Ouse catchment in southeast England (U.K.) was used as a model with which to investigate the integration and application of a novel and simple MST approach to monitor microbial water quality over one calendar year, thereby encompassing a range of meteorological conditions. A key objective of the work was to develop simple low-cost protocols that could be easily replicated. Bacteriophages (viruses) capable of infecting a human specific strain of Bacteroides GB-124, and their correlation with presumptive Escherichia coli, were used to distinguish sources of faecal pollution. The results reported here suggest that in this river catchment the principal source of faecal pollution in most instances was non-human in origin. During storm events, presumptive E. coli and presumptive intestinal enterococci levels were 1.1-1.2 logs higher than during dry weather conditions, and levels of the faecal indicator organisms (FIOs) were closely associated with increased turbidity levels (presumptive E. coli and turbidity, r = 0.43). Spatio-temporal variation in microbial water quality parameters was accounted for by three principal components (67.6%). Cluster Analysis, reduced the fourteen monitoring sites to six

  9. The role of material engineering within the concept of an integrated water resources management

    Science.gov (United States)

    Breiner, Raphael; Müller, Harald S.

    2016-09-01

    By means of a case study, the successful implementation of a rheologically optimised cement-based mortar for the construction as well as for the rehabilitation of rain water cisterns is presented in this paper. The material was developed within the scope of a German-Indonesian joint project ["Integrated Water Resources Management" (IWRM)], funded by the German Federal Ministry of Education and Research. Comprehensive rheological investigations are presented which provide the database for the optimization of the mortar with regard to its intended range of application. For the selection of the source materials, special emphasis was placed on the ready availability at low cost. The rheological properties of the fresh mortar allow an easy workability by hand while the hardened mortar shows a durable and tight appearance at the same time. The developed material can be used as a coating for walls, floors and ceilings of cisterns, for the local rehabilitation of damaged areas only or even as a construction material for complete new cisterns. The future multiplication of the IWRM project results within the region was assured by a local capacity development when the presented material concept was applied in practise in Indonesia for the construction of sustainable rain water cisterns in Gunung Kidul.

  10. [Medico-ecological approaches to the integrated management of water resources].

    Science.gov (United States)

    El'piner, L I

    2012-01-01

    The necessity of taking into account the interests of public health care informing and implementing solutions for water management has been substantiated. Scientific frameworks and regulatory sanitary legislative documents relating to various areas of water management have been considered. The possibilities and the importance of performing complex territory medical ecological forecasts of effects of changes in hydrological situation have been demonstrated.

  11. IWRM: for sustainable use of water; 50 years of international experience with the concept of integrated water resources management; background document to the FAO/Netherlands conference on water for food an ecosystems, The Hague, 31 January - 5 February 2005

    NARCIS (Netherlands)

    Snellen, W.B.; Schrevel, A.

    2004-01-01

    Since the concept was explained in detail at the Dublin Conference in 1992 (International Conference on Water and the Environment: Development Issues for the 21st Century), Integrated Water Resources Management has been at the core of thinking on water resource development. Today, integrated water

  12. IWRM: for sustainable use of water; 50 years of international experience with the concept of integrated water resources management; background document to the FAO/Netherlands conference on water for food an ecosystems, The Hague, 31 January - 5 February 2005

    NARCIS (Netherlands)

    Snellen, W.B.; Schrevel, A.

    2004-01-01

    Since the concept was explained in detail at the Dublin Conference in 1992 (International Conference on Water and the Environment: Development Issues for the 21st Century), Integrated Water Resources Management has been at the core of thinking on water resource development. Today, integrated water r

  13. Integrated and Sustainable Water Management of Red-Thai Binh Rivers System Under Change

    Science.gov (United States)

    Giuliani, M.; Anghileri, D.; Castelletti, A.; Mason, E.; Micotti, M.; Soncini-Sessa, R.; Weber, E.

    2014-12-01

    Vietnam is currently undergoing a rapid economic and demographic development, characterized by internal migrations from the rural areas to the main cities with increasing water demands to guarantee adequate energy and food productions. Hydropower is the primary renewable energy resource in the country, accounting for 33% of the total electric power production, while agriculture contributes for 18% of the national GDP and employs 70% of the population. To cope with this heterogeneous and fast-evolving context, water resources development and management have to be reconsidered by enlarging their scope across sectors and by adopting effective tools to analyze the potential of current and projected infrastructure along with their operating strategies. This work contributes a novel decision-analytic framework based on Multi-Objective Evolutionary Direct Policy Search (MOE-DPS) to support the design of integrated and sustainable water resources management strategies in the Red-Thai Binh River system. The Red River Basin is the second largest basin of Vietnam, with a total area of about 169,000 km2, and comprises three main tributaries and several reservoirs, namely SonLa and HoaBinh on the Da River, ThacBa and TuyenQuang on the Lo River. These reservoirs are regulated for maximizing hydropower production, mitigating flood primarily in Hanoi, and guaranteeing irrigation water supply to the agricultural districts in the delta. The dimensionality of the system and the number of objectives involved increase the complexity of the problem. We address these challenges by combining the MOE-DPS framework with Gaussian radial basis functions policy approximation and the Borg MOEA, which have been demonstrated to guarantee good solutions quality in such many objective policy design problems. Results show that the proposed framework successfully identified alternative management strategies for the system, which explore different tradeoffs among the multi-sector services involved

  14. An Integrated Decision Support System for Water Quality Management of Songhua River Basin

    Science.gov (United States)

    Zhang, Haiping; Yin, Qiuxiao; Chen, Ling

    2010-11-01

    In the Songhua River Basin of China, many water resource and water environment conflicts interact. A Decision Support System (DSS) for the water quality management has been established for the Basin. The System is featured by the incorporation of a numerical water quality model system into a conventional water quality management system which usually consists of geographic information system (GIS), WebGIS technology, database system and network technology. The model system is built based on DHI MIKE software comprising of a basin rainfall-runoff module, a basin pollution load evaluation module, a river hydrodynamic module and a river water quality module. The DSS provides a friendly graphical user interface that enables the rapid and transparent calculation of various water quality management scenarios, and also enables the convenient access and interpretation of the modeling results to assist the decision-making.

  15. An idealized rural coastal zone management integrating land and water use

    OpenAIRE

    Dagoon, N. J.

    1998-01-01

    Various countries have formulated special integrated coastal zone management (ICZM) strategies which seek to both manage development and conserve natural resources and integrate and coordinate the relevant people sectors and their functions and roles within the bounds of this rich realm. Concerns that may be addressed by ICZM include: 1) Natural resources degradation; 2) Pollution; 3) Land use conflicts; and, 4) Destruction of life and property by natural hazards. Some prevalent sources of en...

  16. Designing plant scale process integration for water management in an Indian paper mill.

    Science.gov (United States)

    Shukla, Sudheer Kumar; Kumar, Vivek; Chakradhar, B; Kim, Taesung; Bansal, M C

    2013-10-15

    In the present study, plant-scale process integration was applied to an Indian paper mill using the water cascade analysis (WCA) technique. Three limiting constraints, chemical oxygen demand (COD), total dissolved solids (TDS), and adsorbable organic halides (AOX), were considered for the study. A nearest neighbor algorithm was used to distribute the freshwater and recycled water among the plant operations. It was found that the limiting critical constraint depends upon the types of processes and streams involved in the integration. The limiting critical constraint can differ for different sections of the same industry, and can differ in different schemes of integration. After process integration, a 55.6% reduction in effluent flow, a 36% reduction in COD, and a 73% reduction in AOX were observed. After process integration, a 35.21% reduction in pollution costs can be achieved and, assuming the average production of the mill to be 225 tons per day, a savings of Indian rupees (INR) 1.73 per kg of paper produced can be achieved by employing process integration. The water cess was calculated as INR 3024.77 per day without integration for the sections that were considered for integration, while after integration, a 41.53% savings in the form of water cess was calculated.

  17. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    Science.gov (United States)

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  18. An Integrated Water Resources Management of Develi Closed Basin in Kayseri - Türkiye

    OpenAIRE

    YILDIZ, Fatma Ebru; GÜRER, İbrahim

    2010-01-01

    This study describes an integrated water budget model of Develi Closed Basin. Sultansazlığı Wetland, being as one of the seven important wetlands and the second important bird habitat of Turkiye, is placed in Develi Closed Basin. In the recent years, Sultansazlığı faced with water scarcity and salinity problems, there is an intensive irrigated agricultural practice around the wetland with abundant use of water due to wild flooding. In the content of this study; an integrated water budget of D...

  19. INTEGRATED MANAGEMENT OF WATER RESOURCES IN THE VALLEY OF OUED-SOUF (ALGERIA: ISSUES FITNESS FOR A NEW STRATEGY

    Directory of Open Access Journals (Sweden)

    S. Khechana

    2010-12-01

    Full Text Available This study designed to analyze and evaluate the results of trend scenarios of the strategy management of water resources used in the valley of Oued-Souf, who led the region to a truly dramatic situation and almost desperate: rise of groundwater and its adverse consequences. In terms of this work, we seek a model (plan for the development of these resources according to criteria of sustainability, and will take into account socio-economic and ecosystem aspect. That by adaptation and implementation of integrated management of water resources (IMWR in this unit of water resources, to meet the needs of decision support in water management, so as to guide and mobilize progressive human resources, information, financial and material, as well as various private and public sectors towards finding concrete and measurable results of water and ecosystems.

  20. INTEGRATED MANAGEMENT OF WATER RESOURCES IN THE VALLEY OF OUED-SOUF (ALGERIA: ISSUES FITNESS FOR A NEW STRATEGY

    Directory of Open Access Journals (Sweden)

    S. Khechana

    2015-08-01

    Full Text Available This study designed to analyze and evaluate the results of trend scenarios of the strategy management of water resources used in the valley of Oued-Souf, who led the region to a truly dramatic situation and almost desperate: rise of groundwater and its adverse consequences. In terms of this work, we seek a model (plan for the development of these resources according to criteria of sustainability, and will take into account socio-economic and ecosystem aspect. That by adaptation and implementation of integrated management of water resources (IMWR in this unit of water resources, to meet the needs of decision support in water management, so as to guide and mobilize progressive human resources, information, financial and material, as well as various private and public sectors towards finding concrete and measurable results of water and ecosystems.

  1. Integrating Surface Water Management in Urban and Regional Planning, Case Study of Wuhan in China

    NARCIS (Netherlands)

    Du, N.

    2010-01-01

    The main goal of the study is to examine and develop a spatial planning methodology that would enhance the sustainability of urban development by integrating the surface water system in the urban and regional planning process. Theoretically, this study proposes that proactive-integrated policy and a

  2. Integrating Surface Water Management in Urban and Regional Planning, Case Study of Wuhan in China

    NARCIS (Netherlands)

    Du, N.|info:eu-repo/dai/nl/30484098X

    2010-01-01

    The main goal of the study is to examine and develop a spatial planning methodology that would enhance the sustainability of urban development by integrating the surface water system in the urban and regional planning process. Theoretically, this study proposes that proactive-integrated policy and

  3. Integrated water and renewable energy management: the Acheloos-Peneios region case study

    Science.gov (United States)

    Koukouvinos, Antonios; Nikolopoulos, Dionysis; Efstratiadis, Andreas; Tegos, Aristotelis; Rozos, Evangelos; Papalexiou, Simon-Michael; Dimitriadis, Panayiotis; Markonis, Yiannis; Kossieris, Panayiotis; Tyralis, Christos; Karakatsanis, Georgios; Tzouka, Katerina; Christofides, Antonis; Karavokiros, George; Siskos, Alexandros; Mamassis, Nikos; Koutsoyiannis, Demetris

    2015-04-01

    Within the ongoing research project "Combined Renewable Systems for Sustainable Energy Development" (CRESSENDO), we have developed a novel stochastic simulation framework for optimal planning and management of large-scale hybrid renewable energy systems, in which hydropower plays the dominant role. The methodology and associated computer tools are tested in two major adjacent river basins in Greece (Acheloos, Peneios) extending over 15 500 km2 (12% of Greek territory). River Acheloos is characterized by very high runoff and holds ~40% of the installed hydropower capacity of Greece. On the other hand, the Thessaly plain drained by Peneios - a key agricultural region for the national economy - usually suffers from water scarcity and systematic environmental degradation. The two basins are interconnected through diversion projects, existing and planned, thus formulating a unique large-scale hydrosystem whose future has been the subject of a great controversy. The study area is viewed as a hypothetically closed, energy-autonomous, system, in order to evaluate the perspectives for sustainable development of its water and energy resources. In this context we seek an efficient configuration of the necessary hydraulic and renewable energy projects through integrated modelling of the water and energy balance. We investigate several scenarios of energy demand for domestic, industrial and agricultural use, assuming that part of the demand is fulfilled via wind and solar energy, while the excess or deficit of energy is regulated through large hydroelectric works that are equipped with pumping storage facilities. The overall goal is to examine under which conditions a fully renewable energy system can be technically and economically viable for such large spatial scale.

  4. Scenario analysis for integrated water resources planning and management under uncertainty in the Zayandehrud river basin

    Science.gov (United States)

    Safavi, Hamid R.; Golmohammadi, Mohammad H.; Sandoval-Solis, Samuel

    2016-08-01

    The goal of this study is to develop and analyze three scenarios in the Zayandehrud river basin in Iran using a model already built and calibrated by Safavi et al. (2015) that has results for the baseline scenario. Results from the baseline scenario show that water demands will be supplied at the cost of depletion of surface and ground water resources, making this scenario undesirable and unsustainable. Supply Management, Demand Management, and Meta (supply and demand management) scenarios are the selected scenarios in this study. They are to be developed and declared into the Zayandehrud model to assess and evaluate the imminent status of the basin. Certain strategies will be employed for this purpose to improve and rectify the current management policies. The five performance criteria of time-based and volumetric reliability, resilience, vulnerability, and maximum deficit will be employed in the process of scenario analysis and evaluation. The results obtained from the performance criteria will be summed up into a so-called 'Water Resources Sustainability Index' to facilitate comparison among the likely trade-offs. Uncertainties arising from historical data, management policies, rainfall-runoff model, demand priorities, and performance criteria are considered in the proposed conceptual framework and modeled by appropriate approaches. Results show that the Supply Management scenario can be used to improve upon the demand supply but that it has no tangible effects on the improvement of the resources in the study region. In this regard, the Demand Management scenario is found to be more effective than the water supply one although it still remains unacceptable. Results of the Meta scenario indicate that both the supply and demand management scenarios must be applied if the water resources are to be safeguarded against degradation and depletion. In other words, the supply management scenario is necessary but not adequate; rather, it must be coupled to the demand

  5. The impact of integrated water management on the Space Station propulsion system

    Science.gov (United States)

    Schmidt, George R.

    1987-01-01

    The water usage of elements in the Space Station integrated water system (IWS) is discussed, and the parameters affecting the overall water balance and the water-electrolysis propulsion-system requirements are considered. With nominal IWS operating characteristics, extra logistic water resupply (LWR) is found to be unnecessary in the satisfaction of the nominal propulsion requirements. With the consideration of all possible operating characteristics, LWR will not be required in 65.5 percent of the cases, and for 17.9 percent of the cases LWR can be eliminated by controlling the stay time of theShuttle Orbiter orbiter.

  6. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  7. Risk management of BTEX contamination in ground water--an integrated fuzzy approach.

    Science.gov (United States)

    Qin, X S; Huang, G H; Li, Y P

    2008-01-01

    Abstract An integrated fuzzy simulation-assessment method (FSAM) was developed for assessing environmental risks from petroleum hydrocarbon contamination in ground water. In the FSAM, techniques of fuzzy simulation and fuzzy risk assessment were coupled into a general framework to reflect a variety of system uncertainties. A petroleum-contaminated site located in western Canada was selected as a study case for demonstrating applicability of the proposed method. The risk assessment results demonstrated that system uncertainties would significantly impact expressions of risk-level outputs. A relatively deterministic expression of the risks would have clearer representations of the study problem but may miss valuable uncertain information; conversely, an assessment under vaguer system conditions would help reveal potential consequences of adverse effects but would suffer from a higher degree of fuzziness in presenting the modeling outputs. Based on the risk assessment results, a decision analysis procedure was used to calculate a general risk index (GRI) to help identify proper responsive actions. The proposed method was useful for evaluating risks within a system containing multiple factors with complicated uncertainties and interactions and providing support for identifying proper site management strategies.

  8. A web platform for integrated surface water - groundwater modeling and data management

    Science.gov (United States)

    Fatkhutdinov, Aybulat; Stefan, Catalin; Junghanns, Ralf

    2016-04-01

    Model-based decision support systems are considered to be reliable and time-efficient tools for resources management in various hydrology related fields. However, searching and acquisition of the required data, preparation of the data sets for simulations as well as post-processing, visualization and publishing of the simulations results often requires significantly more work and time than performing the modeling itself. The purpose of the developed software is to combine data storage facilities, data processing instruments and modeling tools in a single platform which potentially can reduce time required for performing simulations, hence decision making. The system is developed within the INOWAS (Innovative Web Based Decision Support System for Water Sustainability under a Changing Climate) project. The platform integrates spatially distributed catchment scale rainfall - runoff, infiltration and groundwater flow models with data storage, processing and visualization tools. The concept is implemented in a form of a web-GIS application and is build based on free and open source components, including the PostgreSQL database management system, Python programming language for modeling purposes, Mapserver for visualization and publishing the data, Openlayers for building the user interface and others. Configuration of the system allows performing data input, storage, pre- and post-processing and visualization in a single not disturbed workflow. In addition, realization of the decision support system in the form of a web service provides an opportunity to easily retrieve and share data sets as well as results of simulations over the internet, which gives significant advantages for collaborative work on the projects and is able to significantly increase usability of the decision support system.

  9. From management to negotiation: technical and institutional innovations for integrated water resource management in the Upper Comoé River Basin, Burkina Faso.

    Science.gov (United States)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users' needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  10. From Management to Negotiation: Technical and Institutional Innovations for Integrated Water Resource Management in the Upper Comoé River Basin, Burkina Faso

    Science.gov (United States)

    Roncoli, Carla; Kirshen, Paul; Etkin, Derek; Sanon, Moussa; Somé, Léopold; Dembélé, Youssouf; Sanfo, Bienvenue J.; Zoungrana, Jacqueline; Hoogenboom, Gerrit

    2009-10-01

    This study focuses on the potential role of technical and institutional innovations for improving water management in a multi-user context in Burkina Faso. We focus on a system centered on three reservoirs that capture the waters of the Upper Comoé River Basin and servicing a diversity of users, including a sugar manufacturing company, a urban water supply utility, a farmer cooperative, and other downstream users. Due to variable and declining rainfall and expanding users’ needs, drastic fluctuations in water supply and demand occur during each dry season. A decision support tool was developed through participatory research to enable users to assess the impact of alternative release and diversion schedules on deficits faced by each user. The tool is meant to be applied in the context of consultative planning by a local user committee that has been created by a new national integrated water management policy. We contend that both solid science and good governance are instrumental in realizing efficient and equitable water management and adaptation to climate variability and change. But, while modeling tools and negotiation platforms may assist users in managing climate risk, they also introduce additional uncertainties into the deliberative process. It is therefore imperative to understand how these technological and institutional innovations frame water use issues and decisions to ensure that such framing is consistent with the goals of integrated water resource management.

  11. Exploring the government society and science interfaces in integrated water resource management in South Africa

    CSIR Research Space (South Africa)

    Ashton, PJ

    2006-12-01

    Full Text Available as the goods and services that are derived from or linked to such water use (Van Wyk et al. 2006). The focus on greater equity within South Africa’s new water policy requires stakeholders to shift away from rights-based water allocations to a system where.... These drivers can be represented as axes on a matrix (Figure 1), where the general trend of change is shown as a progressive broadening of the scope of water resource management envelopes from (A) to (C) over time. The upper left-hand quadrant represents...

  12. Integrated management systems

    CERN Document Server

    Bugdol, Marek

    2015-01-01

    Examining the challenges of integrated management, this book explores the importance and potential benefits of using an integrated approach as a cross-functional concept of management. It covers not only standardized management systems (e.g. International Organization for Standardization), but also models of self-assessment, as well as different types of integration. Furthermore, it demonstrates how processes and systems can be integrated, and how management efficiency can be increased. The major part of this book focuses on management concepts which use integration as a key tool of management processes (e.g. the systematic approach, supply chain management, virtual and network organizations, processes management and total quality management). Case studies, illustrations, and tables are also provided to exemplify and illuminate the content, as well as examples of successful and failed integrations. Providing a particularly useful resource to managers and specialists involved in the improvement of organization...

  13. Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?

    Science.gov (United States)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian

    2017-03-01

    The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification

  14. Integrated Water Resources Management in a Lake System: A Case Study in Central Italy

    Directory of Open Access Journals (Sweden)

    Stefano Casadei

    2016-12-01

    Full Text Available Lake Trasimeno is a closed lake in Central Italy and in historically its water level has been affected by wide fluctuations mostly depending on the climate. The lake has suffered many water crises due to water scarcity and in recent decades, droughts have also severely affected the economic and environmental situation. The aim of this study was to analyze the possibility of limiting these severe level fluctuations by evaluating of feasible water resource management policies that could also reduce the environmental stress of this area. Therefore, a specific decision support system (DSS has been developed in order to simulate different scenarios for the entire water system of the Trasimeno area. In particular, the hydrological model implemented in the DSS allowed for the simulation and validation of different management policy hypotheses for the water resource in order to mitigate environmental and water crises for the Lake Trasimeno. Results indicated that it is possible to transfer a certain amount of water from nearby reservoirs without affecting the availability of the resource for specific users. In this way, Lake Trasimeno can benefit both from an increase in water levels in the lake, so a possible better situation in quantitatively and qualitatively.

  15. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    Science.gov (United States)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  16. Integrated nursery pest management

    Science.gov (United States)

    R. Kasten Dumroese

    2012-01-01

    What is integrated pest management? Take a look at the definition of each word to better understand the concept. Two of the words (integrated and management) are relatively straightforward. Integrated means to blend pieces or concepts into a unified whole, and management is the wise use of techniques to successfully accomplish a desired outcome. A pest is any biotic (...

  17. 流域水资源集成管理%Integrated water resources management on river basin.

    Institute of Scientific and Technical Information of China (English)

    曾维华; 杨志峰; 程声通

    2001-01-01

    从对目前国内外流域水资源管理发展历程与存在的问题的分析入手,立足于水资源管理的实际问题,以流域水资源复杂大系统分析与冲突分析理论为基础,系统地提出了适合我国国情的流域水资源集成管理模式、组织结构与技术路线.%Starting from analyzing the course and problems of domestic and oversea water resources management progressing, the model, organization structure and technical line of integrated water resources management on river basin suitable for national conditions were put forward on the basis of systemic analysis and conflict analysis theories on complicated watershed system and actual problems of water resources management.

  18. Integrity of Local Ecosystems and Storm Water Management in Residential Areas

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; WANG Weida; GONG Zhaoguo

    2006-01-01

    The authors designed an ecological storm water system in a residential area to replace the conventional underground channels for the collection of storm water so as to reduce the nutrients and sediments discharged. This system contains natural sub-creeks as drainage channels discharging overflow to nearby creeks, an open green trench, a storage pond,and natural sub-creeks. The sub-creeks were designed to be integrated into community landscape, which not only increases the efficiency of water usage, but also improves the aesthetic qualities of the community residence area as required by Agenda 21. This research proved the feasibility of an open storm water collection and utilization system for the design of a community water system.

  19. Towards Core Modelling Practices in Integrated Water Resource Management: An Interdisciplinary View of the Modelling Process

    Science.gov (United States)

    Jakeman, A. J.; Elsawah, S.; Pierce, S. A.; Ames, D. P.

    2016-12-01

    The National Socio-Environmental Synthesis Center (SESYNC) Core Modelling Practices Pursuit is developing resources to describe core practices for developing and using models to support integrated water resource management. These practices implement specific steps in the modelling process with an interdisciplinary perspective; however, the particular practice that is most appropriate depends on contextual aspects specific to the project. The first task of the pursuit is to identify the various steps for which implementation practices are to be described. This paper reports on those results. The paper draws on knowledge from the modelling process literature for environmental modelling (Jakeman et al., 2006), engaging stakeholders (Voinov and Bousquet, 2010) and general modelling (Banks, 1999), as well as the experience of the consortium members. We organise the steps around the four modelling phases. The planning phase identifies what is to be achieved, how and with what resources. The model is built and tested during the construction phase, and then used in the application phase. Finally, models that become part of the ongoing policy process require a maintenance phase. For each step, the paper focusses on what is to be considered or achieved, rather than how it is performed. This reflects the separation of the steps from the practices that implement them in different contexts. We support description of steps with a wide range of examples. Examples are designed to be generic and do not reflect any one project or context, but instead are drawn from common situations or from extremely different ones so as to highlight some of the issues that may arise at each step. References Banks, J. (1999). Introduction to simulation. In Proceedings of the 1999 Winter Simulation Conference. Jakeman, A. J., R. A. Letcher, and J. P. Norton (2006). Ten iterative steps in development and evaluation of environmental models. Environmental Modelling and Software 21, 602-614. Voinov, A

  20. TUGAI: An integrated simulation tool for ecological assessment of alternative water management strategies in a degraded river delta.

    Science.gov (United States)

    Schlüter, Maja; Rüger, Nadja; Savitsky, Andre G; Novikova, Nina M; Matthies, Michael; Lieth, Helmut

    2006-10-01

    The development of ecologically sound water allocation strategies that account for the needs of riverine ecosystems is a pressing issue, especially in semiarid river basins. In the Aral Sea Basin, a search for strategies to mitigate ecological and socioeconomic deterioration has been in process since the early 1990s. The Geographic Information System-based simulation tool TUGAI has been developed to support the policy determination process by providing a simple, problem-oriented method to assess ecological effects of alternative water management strategies for the Amudarya River. It combines a multiobjective water allocation model with simple, spatially explicit statistical and rule-based models of landscape dynamics. Changes in environmental conditions are evaluated by a fuzzy habitat suitability index for Populus euphratica, which is the dominant species of the characteristic riverine Tugai forests. Water management scenarios can be developed by altering spatiotemporal water distribution in the delta area or the amount of water inflow into the delta. Outcomes of scenario analysis are qualitative comparisons of the ecological effects of different options for a time period of up to 28 years. The given approach utilizes different types of knowledge, from quantitative hydrological data to qualitative local expert knowledge. The main purpose of the tool is to integrate the knowledge in a comprehensive way to make it available for discussions on alternative policies in moderated workshops with stakeholders. In this article, the modules of the tool, their integration, and three hypothetical scenarios are presented. Based on the experience gained when developing the TUGAI tool, we propose that the general framework can be transferred to other areas where tradeoffs in water allocation between the environment and other water users are of major concern. The potential for a simulation tool to structure and inform a complex resource management situation by involving local

  1. Total Water Management - slides

    Science.gov (United States)

    Total Water Management (TWM) examines urban water systems in an interconnected manner. It encompasses reducing water demands, increasing water recycling and reuse, creating water supply assets from stormwater management, matching water quality to end-use needs, and achieving envi...

  2. Quality of water and antibiotic resistance of Escherichia coli from water sources of hilly tribal villages with and without integrated watershed management-a one year prospective study.

    Science.gov (United States)

    Nerkar, Sandeep S; Tamhankar, Ashok J; Khedkar, Smita U; Lundborg, Cecilia Stålsby

    2014-06-01

    In many hilly tribal areas of the world, water scarcity is a major problem and diarrhoea is common. Poor quality of water also affects the environment. An integrated watershed management programme (IWMP) aims to increase availability of water and to improve life conditions. Globally, there is a lack of information on water contamination, occurrence of diarrhoea and antibiotic resistance, a serious global concern, in relation to IWMP in hilly tribal areas. Therefore, a prospective observational study was conducted during 2011–2012 in six villages in a hilly tribal belt of India, three with and three without implementation of an IWMP, to explore quality of water, diarrhoeal cases in the community and antibiotic resistance of Escherichia coli from water sources. The results showed that physico-chemical quality of water was within limits of safe consumption in all samples. The odds of coliform contamination in water samples was 2.3 times higher in non-watershed management villages (NWMV) compared to integrated watershed management villages (IWMV) (95% CI 0.8–6.45, p = 0.081). The number of diarrhoeal cases (18/663 vs. 42/639, p < 0.05) was lower in IWMV as compared to NWMV. Overall E. coli isolates showed high susceptibility to antibiotics. Resistance to a wider range of antibiotics was observed in NWMV.

  3. Peru Water Resources: Integrating NASA Earth Observations into Water Resource Planning and Management in Perus La Libertad Region

    Science.gov (United States)

    Padgett-Vasquez, Steve; Steentofte, Catherine; Holbrook, Abigail

    2014-01-01

    Developing countries often struggle with providing water security and sanitation services to their populations. An important aspect of improving security and sanitation is developing a comprehensive understanding of the country's water budget. Water For People, a non-profit organization dedicated to providing clean drinking water, is working with the Peruvian government to develop a water budget for the La Libertad region of Peru which includes the creation of an extensive watershed management plan. Currently, the data archive of the necessary variables to create the water management plan is extremely limited. Implementing NASA Earth observations has bolstered the dataset being used by Water For People, and the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) model has allowed for the estimation of the evapotranspiration values for the region. Landsat 8 imagery and the DEM (Digital Elevation Model) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor onboard Terra were used to derive the land cover information, and were used in conjunction with local weather data of Cascas from Peru's National Meteorological and Hydrological Service (SENAMHI). Python was used to combine input variables and METRIC model calculations to approximate the evapotranspiration values for the Ochape sub-basin of the Chicama River watershed. Once calculated, the evapotranspiration values and methodology were shared Water For People to help supplement their decision support tools in the La Libertad region of Peru and potentially apply the methodology in other areas of need.

  4. Integration of Large-Scale Optimization and Game Theory for Sustainable Water Quality Management

    Science.gov (United States)

    Tsao, J.; Li, J.; Chou, C.; Tung, C.

    2009-12-01

    Sustainable water quality management requires total mass control in pollutant discharge based on both the principles of not exceeding assimilative capacity in a river and equity among generations. The stream assimilative capacity is the carrying capacity of a river for the maximum waste load without violating the water quality standard and the spirit of total mass control is to optimize the waste load allocation in subregions. For the goal of sustainable watershed development, this study will use large-scale optimization theory to optimize the profit, and find the marginal values of loadings as reference of the fair price and then the best way to get the equilibrium by water quality trading for the whole of watershed will be found. On the other hand, game theory plays an important role to maximize both individual and entire profits. This study proves the water quality trading market is available in some situation, and also makes the whole participants get a better outcome.

  5. Integrating Decentralized Rainwater Management in Urban Planning and Design: Flood Resilient and Sustainable Water Management Using the Example of Coastal Cities in The Netherlands and Taiwan

    Directory of Open Access Journals (Sweden)

    Thorsten Schuetze

    2013-05-01

    Full Text Available Urbanized delta areas worldwide share a growing tendency of exposure to water stress induced by the effects of climate change and anthropogenic factors, threatening the operation of infrastructure systems and future urban development. The important synergistic impacts coexisting with freshwater scarcity are increasing urbanization rates, subsiding soils, saltwater intrusion in aquifers and rivers, coastal erosion, and increased flooding. Innovative design strategies and concepts for the integration of decentralized rainwater management measures can contribute to the integrated and climate resilient planning of urban spaces that are threatened by climate change scenarios that worsen the security of urban infrastructures and the future availability of fresh water. Decentralized rainwater management, including retention, storage, and reuse strategies that are integrated into spatial planning and urban design, can reduce flood risks while simultaneously enhancing freshwater availability. This paper discusses a paradigm shift in urban water management, from centralized to decentralized management (that is, from threats to opportunities, using the example of two case studies. Concepts and strategies for building climate resilient cities, which address flood control, the protection of freshwater resources, and the harmonization of a natural and more sustainable water balance, are presented for Almere (Rhine Schelde Delta, The Netherlands and Hsingchu (Dotzpu Delta, Taiwan.

  6. Using an Integrated Participatory Modeling Approach to Assess Water Management Options and Support Community Conversations on Maui

    Directory of Open Access Journals (Sweden)

    Rushil S. Mistry

    2009-12-01

    Full Text Available The purpose of this study is to provide an integrated analysis of water distribution on Maui and the cross-sectoral impacts of policies and regulations aimed at rejuvenating and sustaining the deep-rooted culture on the island. Since the water diversion system was implemented in 1876 on the island of Maui, there has been contention among local interest groups over the right way to manage and allocate this precious resource. There is also concern over the availability of the precious resource in the long term, as the demand for water is expected to exceed the potential supply of water on Maui by 2020. This paper analyzes various long run scenarios of policy options presently being discussed on Maui. By collaborating with local experts, business leaders, and community members, to develop a tool that facilitates policy formulation and evaluation, informed decisions can then be made by the local community to ensure sustainable development.

  7. Quantify Effects of Integrated Land Management on Water Quality in Agricultural Landscape in South Fork Watershed, Iowa River

    Science.gov (United States)

    Ha, M.; Wu, M. M.

    2014-12-01

    Sustainable biofuel feedstock production — environmental sustainability and economic sustainability — may be achieved by using a multi-faceted approach. This study focuses on quantifying the water sustainability of an integrated landscaping strategy, by which current land use and land management, cropping system, agricultural Best Management Practices (BMPs), and economics play equal roles. The strategy was applied to the South Fork watershed, IA, including the tributaries of Tipton and Beaver Creeks, which expand to 800-km2 drainage areas. The watershed is an agricultural dominant area covered with row-crops production. On the basis of profitability, switchgrass was chosen as a replacement for row crops in low-productivity land. Areas for harvesting agricultural residue were selected on the basis of soil conservation principals. Double cropping with a cover crop was established to further reduce soil loss. Vegetation buffer strips were in place at fields and in riparian areas for water quality control, resource conservation, and eco service improvement. The Soil and Water Assessment Tool (SWAT) was applied to evaluate source reduction under various management schemes and land use changes. SWAT modeling incorporated 10-yr meteorological information, soil data, land slope classification, land use, four-year crop-rotation cycle, and management operations. Tile drain and pothole parameters were modeled to assess the fate and transport of nutrients. The influence of landscape management and cropping systems on nitrogen and phosphorus loadings, erosion process, and hydrological performance at the sub-watershed scale was analyzed and key factors identified. Results suggest strongly that incorporating agricultural BMPs and conservation strategies into integrated landscape management for certain energy crops in row-crop production regions can be economical and environmentally sustainable.

  8. Integrated hydrological and water quality model for river management: a case study on Lena River.

    Science.gov (United States)

    Fonseca, André; Botelho, Cidália; Boaventura, Rui A R; Vilar, Vítor J P

    2014-07-01

    The Hydrologic Simulation Program FORTRAN (HSPF) model was used to assess the impact of wastewater discharges on the water quality of a Lis River tributary (Lena River), a 176 km(2) watershed in Leiria region, Portugal. The model parameters obtained in this study, could potentially serve as reference values for the calibration of other watersheds in the area or with similar climatic characteristics, which don't have enough data for calibration. Water quality constituents modeled in this study included temperature, fecal coliforms, dissolved oxygen, biochemical oxygen demand, total suspended solids, nitrates, orthophosphates and pH. The results were found to be close to the average observed values for all parameters studied for both calibration and validation periods with percent bias values between -26% and 23% for calibration and -30% and 51% for validation for all parameters, with fecal coliforms showing the highest deviation. The model revealed a poor water quality in Lena River for the entire simulation period, according to the Council Directive concerning the surface water quality intended for drinking water abstraction in the Member States (75/440/EEC). Fecal coliforms, orthophosphates and nitrates were found to be 99, 82 and 46% above the limit established in the Directive. HSPF was used to predict the impact of point and nonpoint pollution sources on the water quality of Lena River. Winter and summer scenarios were also addressed to evaluate water quality in high and low flow conditions. A maximum daily load was calculated to determine the reduction needed to comply with the Council Directive 75/440/EEC. The study showed that Lena River is fairly polluted calling for awareness at behavioral change of waste management in order to prevent the escalation of these effects with especially attention to fecal coliforms.

  9. Promoting Health and Well-Being by Managing for Social-Ecological Resilience: the Potential of Integrating Ecohealth and Water Resources Management Approaches

    Directory of Open Access Journals (Sweden)

    Martin J. Bunch

    2011-03-01

    Full Text Available In coupled social-ecological systems, the same driving forces can result in combined social and environmental health inequities, hazards, and impacts. Policies that decrease social inequities and improve social cohesion, however, also have the potential to improve health outcomes and to minimize and offset the drivers of ecosystem change. Actions that address both biophysical and social environments have the potential to create a "double dividend" that improves human health, while also promoting sustainable development. One promising approach to managing the complex, reciprocal interactions among ecosystems, society, and health is the integration of the ecohealth approach (which holds that human health and well-being are both dependent on ecosystems and are important outcomes of ecosystem management with watershed-based water resources management. Using key management concepts such as resilience, such approaches can help reduce vulnerability to natural hazards, maintain ecological flows of water and the provision of other ecological services, and promote long-term sustainability of coupled human and natural systems. Priorities for understanding and realizing health benefits of watershed management include (i addressing poverty and reducing inequities, (ii promoting resilience (for health in watersheds, and (iii applying watersheds as a context for intersectoral management tools and policy integration. Examples of work linking health and watershed management demonstrate that not only is appreciation of complex systems important, but an effective approach is participatory and transdisciplinary and gives attention to equity and historical context.

  10. From Fragmented to Integrated Knowledge for Sustainable Water and Land Management and Governance in Highland–Lowland Contexts

    Directory of Open Access Journals (Sweden)

    Isabelle Providoli

    2017-08-01

    Full Text Available The crucial role mountain ecosystems play for mountain communities and people living in the lowlands is emphasized by the 3 mountain-specific targets of Agenda 2030 (targets 6.6, 15.1, and 15.4. To achieve these targets, sound and integrated knowledge is needed for policy- and decision-making that fosters sustainable management of water and land resources in mountain areas, including equitable negotiation of trade-offs between stakeholders. The Water and Land Resources Centres in Kenya and Ethiopia and the recently approved Global Land Programme working group on Land Systems for Mountain Futures are just 2 of a number of initiatives launched by the Centre for Development and Environment and its partners to integrate and share knowledge for evidence-informed policies and practices aimed at safeguarding key mountain ecosystem services.

  11. Integrated water resources management of the Ichkeul basin taking into account the durability of its wetland ecosystem using WEAP model

    Science.gov (United States)

    Shabou, M.; Lili-Chabaane, Z.; Gastli, W.; Chakroun, H.; Ben Abdallah, S.; Oueslati, I.; Lasram, F.; Laajimi, R.; Shaiek, M.; Romdhane, M. S.; Mnajja, A.

    2012-04-01

    The Conservation of coastal wetlands in the Mediterranean area is generally faced with development issues. It is the case of Tunisia where the precipitation is irregular in time and space. For the equity of water use (drinking, irrigation), there is a planning at the national level allowing the possibility of water transfer from regions rich in water resources to poor ones. This plan was initially done in Tunisia without taking into account the wetlands ecosystems and their specificities. The main purpose of this study is to find a model able to integrate simultaneously available resources and various water demands within a watershed by taking into account the durability of related wetland ecosystems. It is the case of the Ichkeul basin. This later is situated in northern of Tunisia, having an area of 2080 km2 and rainfall of about 600 mm/year. Downstream this basin, the Ichkeul Lake is characterized by a double alternation of seasonal high water and low salinity in winter and spring and low water levels and high salinity in summer and autumn that makes the Ichkeul an exceptional ecosystem. The originality of this hydrological system of Lake-marsh conditions is related to the presence of aquatic vegetation in the lake and special rich and varied hygrophilic in the marshes that constitutes the main source of food for large migrating water birds. After the construction of three dams on the principle rivers that are feeding the Ichkeul Lake, aiming particularly to supply the local irrigation and the drinking water demand of cities in the north and the east of Tunisia, freshwater inflow to the lake is greatly reduced causing a hydrological disequilibrium that influences the ecological conditions of the different species. Therefore, to ensure the sustainability of the water resources management, it's important to find a trade off between the existing hydrological and ecological systems taking into account water demands of various users (drinking, irrigation fishing, and

  12. An integrated optimization method for river water quality management and risk analysis in a rural system.

    Science.gov (United States)

    Liu, J; Li, Y P; Huang, G H; Zeng, X T; Nie, S

    2016-01-01

    In this study, an interval-stochastic-based risk analysis (RSRA) method is developed for supporting river water quality management in a rural system under uncertainty (i.e., uncertainties exist in a number of system components as well as their interrelationships). The RSRA method is effective in risk management and policy analysis, particularly when the inputs (such as allowable pollutant discharge and pollutant discharge rate) are expressed as probability distributions and interval values. Moreover, decision-makers' attitudes towards system risk can be reflected using a restricted resource measure by controlling the variability of the recourse cost. The RSRA method is then applied to a real case of water quality management in the Heshui River Basin (a rural area of China), where chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and soil loss are selected as major indicators to identify the water pollution control strategies. Results reveal that uncertainties and risk attitudes have significant effects on both pollutant discharge and system benefit. A high risk measure level can lead to a reduced system benefit; however, this reduction also corresponds to raised system reliability. Results also disclose that (a) agriculture is the dominant contributor to soil loss, TN, and TP loads, and abatement actions should be mainly carried out for paddy and dry farms; (b) livestock husbandry is the main COD discharger, and abatement measures should be mainly conducted for poultry farm; (c) fishery accounts for a high percentage of TN, TP, and COD discharges but a has low percentage of overall net benefit, and it may be beneficial to cease fishery activities in the basin. The findings can facilitate the local authority in identifying desired pollution control strategies with the tradeoff between socioeconomic development and environmental sustainability.

  13. Integration of soil moisture and geophysical datasets for improved water resource management in irrigated systems

    Science.gov (United States)

    Finkenbiner, Catherine; Franz, Trenton E.; Avery, William Alexander; Heeren, Derek M.

    2016-04-01

    Global trends in consumptive water use indicate a growing and unsustainable reliance on water resources. Approximately 40% of total food production originates from irrigated agriculture. With increasing crop yield demands, water use efficiency must increase to maintain a stable food and water trade. This work aims to increase our understanding of soil hydrologic fluxes at intermediate spatial scales. Fixed and roving cosmic-ray neutron probes were combined in order to characterize the spatial and temporal patterns of soil moisture at three study sites across an East-West precipitation gradient in the state of Nebraska, USA. A coarse scale map was generated for the entire domain (122 km2) at each study site. We used a simplistic data merging technique to produce a statistical daily soil moisture product at a range of key spatial scales in support of current irrigation technologies: the individual sprinkler (˜102m2) for variable rate irrigation, the individual wedge (˜103m2) for variable speed irrigation, and the quarter section (0.82 km2) for uniform rate irrigation. Additionally, we were able to generate a daily soil moisture product over the entire study area at various key modeling and remote sensing scales 12, 32, and 122 km2. Our soil moisture products and derived soil properties were then compared against spatial datasets (i.e. field capacity and wilting point) from the US Department of Agriculture Web Soil Survey. The results show that our "observed" field capacity was higher compared to the Web Soil Survey products. We hypothesize that our results, when provided to irrigators, will decrease water losses due to runoff and deep percolation as sprinkler managers can better estimate irrigation application depth and times in relation to soil moisture depletion below field capacity and above maximum allowable depletion. The incorporation of this non-contact and pragmatic geophysical method into current irrigation practices across the state and globe has the

  14. Model-based Impact Assessment of an Integrated Water Management Strategy on Ecosystem Services relevant to Food Security in Namibia

    Science.gov (United States)

    Luetkemeier, R.; Liehr, S.

    2012-04-01

    North-central Namibia is characterized by seasonal alterations of drought and heavy rainfall, mostly saline groundwater resources and a lack of perennial rivers. Water scarcity poses a great challenge for freshwater supply, harvest and food security against the background of high population growth and climate change. CuveWaters project aims at poverty reduction and livelihood improvement on a long term basis by introducing a multi-resource-mix as part of an integrated water resources management (IWRM) approach. Herein, creating water buffers by rainwater harvesting (RWH) and subsurface water storage as well as reuse of treated wastewater facilitates micro-scale gardening activities. This link constitutes a major component of a sustainable adaptation strategy by contributing to the conservation and improvement of basic food and freshwater resources in order to reduce drought vulnerability. This paper presents main findings of an impact assessment carried out on the effect of integrated water resources management on ecosystem services (ESS) relevant to food security within the framework of CuveWaters project. North-central Namibia is perceived as a social-ecological system characterized by a strong mutual dependence between natural environment and anthropogenic system. This fundamental reliance on natural resources highlights the key role of ESS in semi-arid environments to sustain human livelihoods. Among other services, food provision was chosen for quantification as one of the most fundamental ESS in north-central Namibia. Different nutritional values were utilized as indicators to adopt a demand-supply approach (Ecosystem Service Profile) to illustrate the ability of the ecosystem to meet people's nutritional requirements. Calculations have been conducted using both Bayesian networks to incorporate uncertainty introduced by the variability of monthly precipitation and the application of plant specific water production functions. Results show that improving the

  15. Feedbacks between managed irrigation and water availability: Diagnosing temporal and spatial patterns using an integrated hydrologic model

    Science.gov (United States)

    Condon, Laura E.; Maxwell, Reed M.

    2014-03-01

    Groundwater-fed irrigation has been shown to deplete groundwater storage, decrease surface water runoff, and increase evapotranspiration. Here we simulate soil moisture-dependent groundwater-fed irrigation with an integrated hydrologic model. This allows for direct consideration of feedbacks between irrigation demand and groundwater depth. Special attention is paid to system dynamics in order to characterized spatial variability in irrigation demand and response to increased irrigation stress. A total of 80 years of simulation are completed for the Little Washita Basin in Southwestern Oklahoma, USA spanning a range of agricultural development scenarios and management practices. Results show regionally aggregated irrigation impacts consistent with other studies. However, here a spectral analysis reveals that groundwater-fed irrigation also amplifies the annual streamflow cycle while dampening longer-term cyclical behavior with increased irrigation during climatological dry periods. Feedbacks between the managed and natural system are clearly observed with respect to both irrigation demand and utilization when water table depths are within a critical range. Although the model domain is heterogeneous with respect to both surface and subsurface parameters, relationships between irrigation demand, water table depth, and irrigation utilization are consistent across space and between scenarios. Still, significant local heterogeneities are observed both with respect to transient behavior and response to stress. Spatial analysis of transient behavior shows that farms with groundwater depths within a critical depth range are most sensitive to management changes. Differences in behavior highlight the importance of groundwater's role in system dynamics in addition to water availability.

  16. Process oriented thinking as a key for integration of ecohydrology, biotechnology and engineering for sustainable water resources management and ecosystems

    Science.gov (United States)

    Zalewski, M.

    2015-04-01

    The recent high rate of environmental degradation due to unsustainable use of water and other natural resources and mismanagement, is, in many cases, the result of a dominant sectoral approach, limited communication between different users and agencies, and lack of knowledge transfer between different disciplines, and especially lack of dialogue between environmental scientists and engineers. There is no doubt that the genuine improvement of human well-being has to be based on understanding the complexity of interactions between abiotic, biotic and socio-economic systems. The major drivers of biogeosphere evolution and function have been the cycles of water and nutrients in a complex array of differing climates and catchment geomorphologies. In the face of global climate change and unequally distributed human populations, the recent sectoral mechanistic approach in natural resources management has to be replaced by an evolutionary systems approach based on well-integrated problem-solving and policy-oriented environmental science. Thus the principles of ecohydrology should be the basis for further integration of ecology, hydrology, engineering, biotechnology and other environmental sciences. Examples from UNESCO IHP VII show how the integration of these will not only increase the efficiency of measures to harmonize ecosystem potentials with societal needs, but also significantly reduce the costs of sustainable environmental management.

  17. Mineral waters in Brazil: an analysis of the market and institutional framework for integrated and sustainable management

    Directory of Open Access Journals (Sweden)

    Pedro dos Santos Portugal Júnior

    2015-04-01

    Full Text Available This article presents an overview of the mineral water market in Brazil, based on three important considerations: first, the market structure prevailing in this segment is analyzed, addressing the evolution and main groups that make up the Brazilian market for mineral waters; next, we make a brief reference to the legal and institutional framework on mineral waters; and finally, we analyze the directions for integrated and sustainable environmental management in this segment. In this way, we sought to contextualize the market’s legal, institutional and economic parameters, as well as the implications of these parameters that can be decisive in the environmental management process, which companies can use to enhance the excellence of that process. These changes imply that mineral water be included in the national policy of water resources, named the PNRH, and not as an ore. It should also be included in the National Plan of Solid Waste (PNRS, with a complete view of the product life cycle.

  18. Lessons for Integrated Water Resources Management from the San Pedro HELP Basin on the U.S.-Mexico Border

    Science.gov (United States)

    Browning, A.; Goodrich, D.; Varady, R.; Richter, H.

    2007-12-01

    The San Pedro Basin sits within an intermountain ecotone with the Sonoran and Chihuahuan Deserts to the west and east and the Rocky Mountain and Sierra Madre Mountain habitats to the north and south. The headwaters of the basin originate in northern Sonora and flow north into southeast Arizona. As the region's only remaining perennial stream, the San Pedro River serves as an international flyway for over 400 bird species. It is one of the western hemisphere's most ecologically diverse areas with some 20 different biotic communities, and "possesses one of the richest assemblages of land mammal species in the world." Large mining, military, and municipal entities are major users of the same groundwater resources that maintain perennial flow in the San Pedro. This presentation describes empirical evidence of the positive impacts on watershed management of scientists and policy researchers working closely with water managers and elected officials in a functioning HELP basin. We posit that when hydrologists help watershed groups understand the processes controlling water quality and quantity, and when managers and stakeholders connect these processes to social, economic and legal issues then transboundary cooperation in policymaking and water management is most effective. The distinctive physical and socioeconomic characteristics of the basin as well as differences in institutional regulations, water law issues, and their local implementations in Arizona and Sonora are discussed. We illustrate how stakeholders and scientific researchers in both countries strive to balance ecosystem needs with human demands to create new, integrated basin management. Finally, we describe how the accomplishments of the San Pedro collaborative process, including the use of environmental-conflict-resolution tools, have contributed to the UNESCO HELP (Hydrology for the Environment, Life, and Policy) agenda.

  19. Software Configuration Management Plan for the K West Basin Integrated Water Treatment System (IWTS) Project A.9

    Energy Technology Data Exchange (ETDEWEB)

    GREEN, J.W.

    2000-05-01

    This document provides a configuration control plan for the software associated with the operation and control of the Integrated Water Treatment System (IWTS). It establishes requirements for ensuring configuration item identification, configuration control, configuration status accounting, defect reporting and resolution of computer software. It is written to comply with HNF-SD-SNF-CM-001, Spent Nuclear Fuel Configuration Management Plan (Forehand 1998) and HNF-PRO-309 Computer Software Quality Assurance Requirements, and applicable sections of administrative procedure CM-6-037-00, SNF Project Process Automation Software and Equipment.

  20. Pathways and impacts of nitrogen in water bodies: establishing a framework for integrated assessment modelling of management benefits

    DEFF Research Database (Denmark)

    Andersen, Mikael Skou; Kronvang, Brian; Carstensen, Jacob

    the study demonstrates how state-of-the-art environmental modelling can be linked with valuation to provide an adequate cross-media assessment framework relevant to integrated water quality management. The results must be regarded as illustrative and more research is required in several areas to consolidate...... pollution, whereby both ecosystem and human health effects are considered. Diffuse nitrogen-loss from agricultural activities is the main pollution source in focus within the framework, while the catchments explored are situated in Czech Republic, Denmark, Italy, Luxembourg, Norway and UK. Methodologically...

  1. Integrating multisensor satellite data merging and image reconstruction in support of machine learning for better water quality management.

    Science.gov (United States)

    Chang, Ni-Bin; Bai, Kaixu; Chen, Chi-Farn

    2017-10-01

    Monitoring water quality changes in lakes, reservoirs, estuaries, and coastal waters is critical in response to the needs for sustainable development. This study develops a remote sensing-based multiscale modeling system by integrating multi-sensor satellite data merging and image reconstruction algorithms in support of feature extraction with machine learning leading to automate continuous water quality monitoring in environmentally sensitive regions. This new Earth observation platform, termed "cross-mission data merging and image reconstruction with machine learning" (CDMIM), is capable of merging multiple satellite imageries to provide daily water quality monitoring through a series of image processing, enhancement, reconstruction, and data mining/machine learning techniques. Two existing key algorithms, including Spectral Information Adaptation and Synthesis Scheme (SIASS) and SMart Information Reconstruction (SMIR), are highlighted to support feature extraction and content-based mapping. Whereas SIASS can support various data merging efforts to merge images collected from cross-mission satellite sensors, SMIR can overcome data gaps by reconstructing the information of value-missing pixels due to impacts such as cloud obstruction. Practical implementation of CDMIM was assessed by predicting the water quality over seasons in terms of the concentrations of nutrients and chlorophyll-a, as well as water clarity in Lake Nicaragua, providing synergistic efforts to better monitor the aquatic environment and offer insightful lake watershed management strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Achieving sustainable ground-water management by using GIS-integrated simulation tools: the EU H2020 FREEWAT platform

    Science.gov (United States)

    Rossetto, Rudy; De Filippis, Giovanna; Borsi, Iacopo; Foglia, Laura; Toegl, Anja; Cannata, Massimiliano; Neumann, Jakob; Vazquez-Sune, Enric; Criollo, Rotman

    2017-04-01

    In order to achieve sustainable and participated ground-water management, innovative software built on the integration of numerical models within GIS software is a perfect candidate to provide a full characterization of quantitative and qualitative aspects of ground- and surface-water resources maintaining the time and spatial dimension. The EU H2020 FREEWAT project (FREE and open source software tools for WATer resource management; Rossetto et al., 2015) aims at simplifying the application of EU water-related Directives through an open-source and public-domain, GIS-integrated simulation platform for planning and management of ground- and surface-water resources. The FREEWAT platform allows to simulate the whole hydrological cycle, coupling the power of GIS geo-processing and post-processing tools in spatial data analysis with that of process-based simulation models. This results in a modeling environment where large spatial datasets can be stored, managed and visualized and where several simulation codes (mainly belonging to the USGS MODFLOW family) are integrated to simulate multiple hydrological, hydrochemical or economic processes. So far, the FREEWAT platform is a large plugin for the QGIS GIS desktop software and it integrates the following capabilities: • the AkvaGIS module allows to produce plots and statistics for the analysis and interpretation of hydrochemical and hydrogeological data; • the Observation Analysis Tool, to facilitate the import, analysis and visualization of time-series data and the use of these data to support model construction and calibration; • groundwater flow simulation in the saturated and unsaturated zones may be simulated using MODFLOW-2005 (Harbaugh, 2005); • multi-species advective-dispersive transport in the saturated zone can be simulated using MT3DMS (Zheng & Wang, 1999); the possibility to simulate viscosity- and density-dependent flows is further accomplished through SEAWAT (Langevin et al., 2007); • sustainable

  3. Integrated Health Management Definitions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Joint Army Navy NASA Air Force Modeling and Simulation Subcommittee's Integrated Health Management panel was started about 6 years ago to help foster...

  4. Managing for Organizational Integrity.

    Science.gov (United States)

    Paine, Lynn Sharp

    1994-01-01

    Compliance-based ethics programs focus on prevention, detection, and punishment. Companies should adopt an integrity-based approach to ethics management that combines a concern for the law with an emphasis on managerial responsibility for ethical behavior. (JOW)

  5. Managing for Organizational Integrity.

    Science.gov (United States)

    Paine, Lynn Sharp

    1994-01-01

    Compliance-based ethics programs focus on prevention, detection, and punishment. Companies should adopt an integrity-based approach to ethics management that combines a concern for the law with an emphasis on managerial responsibility for ethical behavior. (JOW)

  6. Building Capacity to Integrate NASA Earth Science into Water Resources Management Applications in the Context of a Changing Climate

    Science.gov (United States)

    Prados, A. I.; Mehta, A. V.

    2011-12-01

    The NASA Applied Sciences program provides technical capacity building activities to enable decision-makers to integrate NASA Earth Science into environmental management activities. This includes workshops tailored to end-user needs by working directly with agencies to 1) identify environmental management activities that could benefit from NASA Earth Science and 2) conducting workshops that teach the NASA products and decision-support tools best suited to the identified application area. Building on a successful 3-year effort on air pollution monitoring for environmental applications, the project has expanded into water resources. Climate Change has dramatically increased demand for observational and predictive data in support of decision making activities related to water supply and demand. However, a gap remains between NASA products and applied research and the entities who stand to benefit from their utilization. To fill this gap, the project has developed short courses on 1) impacts of climate change on water resources 2) hands-on exercises on access and interpretation of NASA imagery relevant to water resources management via the use of decision-support web tools and software and 3) case studies on the application of NASA products in the field. The program is currently focused on two areas 1) precipitation products over the central and southern U.S. that help communities and agencies improve flooding forecasts and 2) snow and snow/water equivalent products over the western U.S and Latin America that can provide end-users with improved stream flow prediction in Spring within a framework of decreasing snow availability.

  7. Application of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River basin

    Institute of Scientific and Technical Information of China (English)

    Xianglian LI; Qiong GAO; Tingwu LEI; Xiusheng YANG

    2011-01-01

    This study presents an application of a well-calibrated integrative hydro-ecological model to examine water resources management in the upper and middle parts of the Yellow River basin, an arid and semiarid area in northwestern China. The hydro-ecological model was developed to simulate dynamic and accumulative hydrologic, ecologic, and economic variables at different spatial units. Four water management scenarios based on water use priorities, a business-as-usual scenario, an ecological scenario, an irrigation use efficiency scenario and water use scenario were designed and modeled over the period of 2011-2020 to reflect alternative water management pathways to the future. Water resource conditions were assessed in terms streamfiow, actual evapotranspiration,soil water, groundwater yield, overall water yield, and derived indicator of drought index. Unit crop yield was to assess ecological production, and monetary values of crop productivity and water productivity were used to assess economic output. Scenario analysis results suggested that water stress would continue in the study region under both current water use patterns and ecological scenarios of river flow being fully satisfied. Water use scenarios would result in decreased water availability and ecosystem degradation in the long mn. Improving irrigation use efficiency would be the most efficient approach in securing long-term water and food supply. The simulation results from this study provided useful information for evaluating long-term water resources management strategies, and will contribute to the knowledge of interdisciplinary modeling for water resources management in the study region.

  8. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    Science.gov (United States)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz

    2011-01-01

    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that

  9. Potential impacts of human water management on the European heat wave 2003 using fully integrated bedrock-to-atmosphere simulations

    Science.gov (United States)

    Keune, Jessica; Sulis, Mauro; Kollet, Stefan; Wada, Yoshihide

    2017-04-01

    Recent studies indicate that anthropogenic impacts on the terrestrial water cycle lead to a redistribution of water resources in space and time, can trigger land-atmosphere feedbacks, such as the soil moisture-precipitation feedback, and potentially enhance convection and precipitation. Yet, these studies do not consider the full hydrologic cycle from the bedrock to the atmosphere or apply simplified hydrologic models, neglecting the connection of irrigation to water withdrawal and groundwater depletion. Thus, there is a need to incorporate water resource management in 3D hydrologic models coupled to earth system models. This study addresses the impact of water resource management, i.e. irrigation and groundwater abstraction, on land-atmosphere feedbacks through the terrestrial hydrologic cycle in a physics-based soil-vegetation-atmosphere system simulating 3D groundwater dynamics at the continental scale. The integrated Terrestrial Systems Modeling Platform, TerrSysMP, consisting of the three-dimensional subsurface and overland flow model ParFlow, the Community Land Model CLM3.5 and the numerical weather prediction model COSMO of the German Weather Service, is set up over the European CORDEX domain in 0.11° resolution. The model closes the terrestrial water and energy cycles from aquifers into the atmosphere. Anthropogenic impacts are considered by applying actual daily estimates of irrigation and groundwater abstraction from Wada et al. (2012, 2016), as a source at the land surface and explicit removal of groundwater from aquifer storage, respectively. Simulations of the fully coupled system are performed over the 2003 European heat wave and compared to a reference simulation, which does not consider human interactions in the terrestrial water cycle. We study the space and time characteristics and evolution of temperature extremes, and soil moisture and precipitation anomalies influenced by human water management during the heat wave. A first set of simulations

  10. INTEGRATED WATER MONITORING TO SUPPORT THE MANAGEMENT OF HEALTHY SEGARA ANAKAN ESTUARY

    Directory of Open Access Journals (Sweden)

    Sri Noegrahati

    2007-03-01

    Full Text Available ABSTRACT Estuaries provide vital nesting and feeding habitats for many aquatic plants and animals, therefore suitable methods are needed for monitoring the changes in estuarine waters to keep the health of coastal habitats. Limitations in understanding the relationship between discrete physicochemical measurements and cause of the alteration in the quality and functioning of an ecosystem, has lead to the integration of physicochemical and biological monitoring. In this work, spatial time series integrated monitoring of Southern part of Segara Anakan Estuary, Central Java, Indonesia, was carried out from August 2003 to May 2004. The parameters were measured at the lowest water depth. Dramatic changes in physicochemical parameters of salinity, total suspended solids, turbidity and biological parameters of phytoplankton diversity, density was observed during dry season (August-September 2003 and wet season (December 2003-March 2004, while the changes in parameters of organics (DO, BOD and COD and nutrients (N-NH3 N-NO and P were not significant. The difference of freshwater influx into the estuary caused higher salinity in dry season (25 to 2 ppt and faster water velocity in wet season (0,4 to 0,2 m/detik. The higher rainfall and faster water velocity in wet season caused more re-aeration via the water surface, therefore, photosynthetic production, measured as increase rate of DO in day time, could be assessed only in dry season. Limitation of phytoplankton ability to carry out photosynthesis in wet season, as observed by the decrease of the daytime CO consumption rate, were due to the drastic increase of turbidity (0,8 to 14,1 NTU caused by total suspended solids transported with the freshwater influx. In other turn, this limitation caused the decrease of phytoplankton diversity and density. Considering that healthy estuaries are critical for the continued survival of many species of fish and other aquatic life, and phytoplankton forms the base of

  11. Integration of atmospheric sciences and hydrology for the development of decision support systems in sustainable water management

    Science.gov (United States)

    Kunstmann, Harald; Jung, Gerlinde; Wagner, Sven; Clottey, H.

    Sustainable decisions in water resources management require scientifically sound information on water availability. Central support in hydrological decision making arises from hydrological modelling which in turn depends on meteorological input. This work intends to show how integration of atmospheric science and hydrology, particularly the joint modelling of atmospheric and terrestrial water cycle, allows to provide decision support for two fundamental problems in sustainable water management: (1) the impact of global climate change on water availability, and (2) the near-real time estimation of recent resources and fluxes. The performance of joint atmospheric-hydrological simulations and its application for decision support is demonstrated for the Volta Basin of West Africa. First, the impact of global warming on water availability in the Volta Basin is assessed by joint regional climate-hydrology simulations. Time slices of ECHAM4 global climate scenario IS92a are dynamically downscaled to a resolution of 9 × 9 km 2 with the mesoscale meteorological model MM5 and the terrestrial water balance is subsequently calculated by the distributed hydrological model WaSiM. Results indicate a slight increase in total annual precipitation by 5%, but also a significant decrease of precipitation in April (in total 20%, for specific regions up to 70%), at the beginning of the rainy season. Terrestrial water balance variables react highly nonlinear to changes in precipitation and temperature. Second, the performance of joint atmospheric-hydrological simulations as a tool for near-real-time, model based water monitoring system for the White Volta subcatchment is assessed. Operational available GFS (Global Forecasting System) global analyses are dynamically downscaled to 9 × 9 km 2 resolution and meteorological fields subsequently applied for calculating the terrestrial water balance. Albeit a bias in precipitation simulations can be observed when comparing to point

  12. Integrated water resources management and water users' associations in the arid region of northwest China: a case study of farmers' perceptions.

    Science.gov (United States)

    Hu, Xiao-Jun; Xiong, You-Cai; Li, Yong-Jin; Wang, Jian-Xin; Li, Feng-Min; Wang, Hai-Yang; Li, Lan-Lan

    2014-12-01

    Water scarcity is a critical policy issue in the arid regions of northwest China. The local government has widely adopted integrated water resources management (IWRM), but lacks support from farmers and farm communities. We undertook a case study in the Minqin oasis of northwest China to examine farmers' responses to IWRM and understand why farmer water users' associations (WUAs) are not functioning effectively at the community level. Results of quantitative and qualitative surveys of 392 farmers in 27 administrative villages showed that over 70% of farmers disapprove of the IWRM market-based reforms. In particular, the failure of farmer WUAs can be attributed to overlapping organizational structures between the WUAs and the villagers' committees; mismatches between the organizational scale of the WUAs and practical irrigation management by the farmers themselves; marginalization of rural women in water decision-making processes; and the inflexibility of IWRM implementation. An important policy implication from this study is that rebuilding farmer WUAs is key to overcoming the difficulties of IWRM. The current water governance structure, which is dominated by administrative systems, must be thoroughly reviewed to break the vicious cycle of tension and distrust between farmers and the government.

  13. A METHODOLOGY BASED ON AN ECOLOGICAL ECONOMY APPROACH FOR THE INTEGRATING MANAGEMENT OF THE SULPHUROUS WATER IN AN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    Gabriel Orlando Lobelles Sardiñas

    2016-10-01

    Full Text Available Despite the current highly stringent international standards regulating the contaminating emissions to the environment, the Oil refinery of Cienfuegos is still generating liquid and gaseous emissions contaminating the environment. The construction of new units as part of the Refinery expansion leads to an increase of these emissions due to the lack of technologies for the reutilization of the sulphurous water. The objective of this paper is to propose a methodology for the integral management of the sulphurous residual water in the oil refining process, including the evaluation and selection of the most feasible technological variant to minimize the sulphur contamination of water and the resulting emissions during the process. The methodology is based on the ecological economy tools, allowing a comprehensible evaluation of six technological variants at the refinery of Cienfuegos. The Life Cycle Assessment was applied (ACV by its Spanish acronym, by means of the software SimaPro 7.1. It was evaluated through the Eco Speed Method, to minimize the possible uncertainty. An economic evaluation was performed, taking into account the external costs for a more comprehensive analysis, enabling, along with the ecological indicators, the selection of the best technological variant, achieving a methodology based on a comprehensive evaluation, and as a positive impact, the implementation of the chosen variant (V5, 98.27% of the process water was recovered, as well as the sulphur that recovered from 94 to 99.8 %, reducing the emissions from 12 200 to 120 mg/Nm3 as SO2.

  14. The International Center for Integrated Water Resources Management (ICIWaRM): The United States' Contribution to UNESCO IHP's Global Network of Water Centers

    Science.gov (United States)

    Logan, W. S.

    2015-12-01

    The concept of a "category 2 center"—i.e., one that is closely affiliated with UNESCO, but not legally part of UNESCO—dates back many decades. However, only in the last decade has the concept been fully developed. Within UNESCO, the International Hydrological Programme (IHP) has led the way in creating a network of regional and global water-related centers.ICIWaRM—the International Center for Integrated Water Resources Management—is one member of this network. Approved by UNESCO's General Conference, the center has been operating since 2009. It was designed to fill a niche in the system for a center that was backed by an institution with on-the-ground water management experience, but that also had strong connections to academia, NGOs and other governmental agencies. Thus, ICIWaRM is hosted by the US Army Corps of Engineers' Institute for Water Resources (IWR), but established with an internal network of partner institutions. Three main factors have contributed to any success that ICIWaRM has achieved in its global work: A focus on practical science and technology which can be readily transferred. This includes the Corps' own methodologies and models for planning and water management, and those of our university and government partners. Collaboration with other UNESCO Centers on joint applied research, capacity-building and training. A network of centers needs to function as a network, and ICIWaRM has worked together with UNESCO-affiliated centers in Chile, Brazil, Paraguay, the Dominican Republic, Japan, China, and elsewhere. Partnering with and supporting existing UNESCO-IHP programs. ICIWaRM serves as the Global Technical Secretariat for IHP's Global Network on Water and Development Information in Arid Lands (G-WADI). In addition to directly supporting IHP, work through G-WADI helps the center to frame, prioritize and integrate its activities. With the recent release of the United Nation's 2030 Agenda for Sustainable Development, it is clear that

  15. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    -source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...

  16. Lessons learned from the integration of local stakeholders in water management approaches in central-northern Namibia

    Science.gov (United States)

    Jokisch, A.; Urban, W.

    2012-04-01

    Water is the main limiting factor for economic and agricultural development in central-northern Namibia, where approximately 50% of the Namibian population lives on less than 10% of the country's surface area. The climate in the region can be characterized as semi-arid, with distinctive rainy and dry seasons and an average precipitation of 470 mm/a. Central-northern Namibia can furthermore be characterized by a system of so-called Oshanas, very shallow ephemeral river streams which drain the whole region from north to south towards the Etosha-Saltpan. Water quality within these ephemeral river streams rapidly decreases towards the end of the dry season due to high rates of evaporation (2,700 mm/a) which makes the water unsuitable for human consumption and in certain times of the year also for irrigation purposes. Other local water resources are scarce or of low quality. Therefore, the local water supply is mainly secured via a pipeline scheme which is fed by the Namibian-Angolan border river Kunene. Within the research project CuveWaters - Integrated Water Resources Management in central-northern Namibia different small scale water supply and sanitation technologies are implemented and tested as part of the projects multi-resource mix. The aim is to decentralize the regional water supply and make it more sustainable especially in the face of climate change. To gain understanding and to create ownership within the local population for the technologies implemented, stakeholder participation and capacity development are integral parts of the project. As part of the implementation process of rainwater harvesting and water harvesting from ephemeral river streams, pilot plants for the storage of water were constructed with the help of local stakeholders who will also be the beneficiaries of the pilot plants. The pilot plants consist of covered storage tanks and infrastructure for small scale horticultural use of the water stored. These small scale horticultural

  17. Economic Policy Instruments and Evaluation Methods in Dutch Water Management: An analysis of their contribution to an integrated approach

    NARCIS (Netherlands)

    S.P. Boot (Sander Paul)

    2007-01-01

    textabstractIn international water policy, a trend can be observed towards more attention for economic approaches in water management. In 1992, at the International Conference on Water and the Environment (ICWE) in Dublin, the Convention on the Protection and Use of Transboundary Water Courses and I

  18. SimBasin: A serious gaming framework for integrated and cooperative decision-making in water management

    Science.gov (United States)

    Angarita, H.; Craven, J.; Caggiano, F.; Corzo, G.

    2016-12-01

    An Integrated approach involving extensive stakeholder dialogue is widely advocated in sustainable water management. However, it requires a social learning process in which scientist and stakeholders become aware of the relationship between their own frames of reference and those of others, differences can be dealt with constructively, and shared ideas can be used to facilitate cooperation. Key obstacles in this process are heritage systems, attitudes and processes, factually wrong, incomplete or unshared mental models, and lack of science-policy dialogue (Pahl-Wostl et al., 2005) To overcome these barriers, a space is required which is free of heritage systems, where mental models can be safely and easily compared and corrected, and where scientists and policy-makers can come together. A "serious game" can serve as such a space - Serious games are games or simulations used to achieve an organizational or educational goal, and such games have already been used to facilitate stakeholder cooperation in the water management sector (Rusca et al., 2005). As well as bringing stakeholders together, they can be an accessible interface between scientific models and non-experts. Here we present SimBasin, a multiplayer serious game framework and development engine. The engine allows to easily create a simulated multiplayer basin management game using WEAP water resources modelling software (SEI, 1992-2015), to facilitate the communication of the complex, long term and wide range relationships between hydrologic, climate, and human systems present in river basins, and enable dialogue between policy-makers and scientists. Different games have been created using the Sim-Basin engine and used in various contexts. Here are discussed experiences with stakeholders at a national forum in Bogotá, flood risk management agencies in the lower Magdalena River Basin in Colombia and with water professionals in Bangkok. The experience shows that the game is a useful tool for enabling

  19. Integrating GIS, remote sensing and mathematical modelling for surface water quality management in irrigated watersheds

    NARCIS (Netherlands)

    Azab, A.M.

    2012-01-01

    The intensive uses of limited water resources, the growing population rates and the various increasing human activities put high and continuous stresses on these resources. Major problems affecting the water quality of rivers, streams and lakes may arise from inadequately treated sewage, poor land

  20. Assessing risks for integrated water resource management: coping with uncertainty and the human factor

    Science.gov (United States)

    Polo, M. J.; Aguilar, C.; Millares, A.; Herrero, J.; Gómez-Beas, R.; Contreras, E.; Losada, M. A.

    2014-09-01

    Risk assessment for water resource planning must deal with the uncertainty associated with excess/scarcity situations and their costs. The projected actions for increasing water security usually involve an indirect "call-effect": the territory occupation/water use is increased following the achieved protection. In this work, flood and water demand in a mountainous semi-arid watershed in southern Spain are assessed by means of the stochastic simulation of extremes, when this human factor is/is not considered. The results show how not including this call-effect induced an underestimation of flood risk after protecting the floodplain of between 35 and 78 % in a 35-year planning horizon. Similarly, the pursued water availability of a new reservoir resulted in a 10-year scarcity risk increase up to 38 % when the trend of expanding the irrigated area was included in the simulations. These results highlight the need for including this interaction in the decision-making assessment.

  1. 18 CFR 740.4 - State water management planning program.

    Science.gov (United States)

    2010-04-01

    ... STATE WATER MANAGEMENT PLANNING PROGRAM § 740.4 State water management planning program. (a) A State...) The integration of water quantity and water quality planning and management; (ii) The protection and... integration of ground and surface water planning and management; and (v) Water conservation. (4) Identify...

  2. The role of material engineering within the concept of an integrated water resources management

    National Research Council Canada - National Science Library

    Breiner, Raphael; Müller, Harald S

    2016-01-01

    By means of a case study, the successful implementation of a rheologically optimised cement-based mortar for the construction as well as for the rehabilitation of rain water cisterns is presented in this paper...

  3. Integrated management systems

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg; Remmen, Arne; Mellado, M. Dolores

    2006-01-01

    Different approaches to integration of management systems (ISO 9001, ISO 14001, OHSAS 18001 and SA 8000) with various levels of ambition have emerged. The tendency of increased compatibility between these standards has paved the road for discussions of, how to understand the different aspects of ...

  4. Integrated Pest Management.

    Science.gov (United States)

    Council on Environmental Quality, Washington, DC.

    After a brief discussion of the problems of pesticide use and the status of current pest control practices, a definition of integrated pest management is given along with some examples of its successful application, and a description of some of the reasons why the concept has not been applied more widely. The major techniques which can be used as…

  5. Coupled modelling of subsurface water flux for an integrated flood risk management

    Directory of Open Access Journals (Sweden)

    T. Sommer

    2009-07-01

    Full Text Available Flood events cause significant damage not only on the surface but also underground. Infiltration of surface water into soil, flooding through the urban sewer system and, in consequence, rising groundwater are the main causes of subsurface damage. The modelling of flooding events is an important part of flood risk assessment. The processes of subsurface discharge of infiltrated water necessitate coupled modelling tools of both, surface and subsurface water fluxes. Therefore, codes for surface flooding, for discharge in the sewerage system and for groundwater flow were coupled with each other. A coupling software was used to amalgamate the individual programs in terms of mapping between the different model geometries, time synchronization and data exchange. The coupling of the models was realized on two scales in the Saxon capital of Dresden (Germany. As a result of the coupled modelling it could be shown that surface flooding dominates processes of any flood event. Compared to flood simulations without coupled modelling no substantial changes of the surface inundation area could be determined. Regarding sewerage, the comparison between the influx of groundwater into sewerage and the loading due to infiltration by flood water showed infiltration of surface flood water to be the main reason for sewerage overloading. Concurrent rainfalls can intensify the problem. The infiltration of the sewerage system by rising groundwater contributes only marginally to the loading of the sewerage and the distribution of water by sewerage has only local impacts on groundwater rise. However, the localization of risk areas due to rising groundwater requires the consideration of all components of the subsurface water fluxes. The coupled modelling has shown that high groundwater levels are the result of a multi-causal process that occurs before and during the flood event.

  6. The role of water and sediment connectivity in integrated flood management: a case study on the island of Saint Lucia

    Science.gov (United States)

    Jetten, Victor; van Westen, Cees; Ettema, Janneke; van den Bout, Bastian

    2016-04-01

    Disaster Risk Management combines the effects of natural hazards in time and space, with elements at risk, such as ourselves, infrastructure or other elements that have a value in our society. The risk in this case is defined as the sum of potential consequences of one or more hazards and can be expressed as potential damages. Generally, we attempt to reduce risk by better risk management, such as increase of resilience, protection and spatial planning. Caribbean islands are hit by hurricanes and tropical storms with a frequency of 1 to 2 every 10 years, with devastating consequences in terms of flash floods and landslides. The islands basically consist of a central (volcanic) mountain range, with medium and small sized catchments radiating outward towards the ocean. The coastal zone is inhabited, while the ring road network is essential for functioning of the island. An example of a case study is given for the island of Saint Lucia. Recorded rainfall intensities during tropical storms of 12 rainfall stations surpass 200 mm/h, causing immediate flash floods. Very often however, sediment is a forgotten variable in flash flood management: protection and mitigation measures as well as spatial planning all focus on the hydrology, the extent and depth of flood water, and sometimes of flood velocities. With recent developments, the opensource model LISEM includes hydrology and runoff, flooding, and erosion, transport and deposition both in runoff, channel flow and flood waters. We will discuss the practical solutions we implemented in connecting slopes, river channels and floodplains in terms of water and sediment, and the strength and weaknesses we have encountered so far. Catchment analysis shows two main effects: on the one hand in almost all cases upstream flooding serves as a temporary water storage that prevents further damage downstream, while on the other hand, erosion upstream often blocks bridges and decreases channel storage downstream, which increases the

  7. Emerging Concepts for Integrating Human and Environmental Water Needs in River Basin Management

    Science.gov (United States)

    2005-09-01

    processes cannot be monitored in “real time” and must instead be inferred from “post-event” forensic evaluations of the river. These attributes make the...international research experience in marine biology, aquatic botany , estuarine and river management, and environmental science, employed by the Dutch Royal

  8. Consequences of supply and demand management options for integrated water resources management in the Jabotabek- Citarum region, Indonesia

    NARCIS (Netherlands)

    Hengsdijk, H.; Krogt, van der W.; Verhaeghe, R.J.; Bindraban, P.S.

    2006-01-01

    In peri-urban areas competition among domestic, municipal, industrial and agriculture water use is strong and calls for identification of alternatives to bridge the widening gap between required and available water resources. In this study, the RIver BAsin SIMulation (RIBASIM) model is applied to ex

  9. Water Management in Poland

    Directory of Open Access Journals (Sweden)

    Wojciech Majewski

    2015-03-01

    Full Text Available This paper presents the current situation in Polish water resources management. Discussed here are measures taken by the Ministry of Environment to introduce a new water law, as well as reforms of water management in Poland. The state of water resources in Poland are described, and the actions needed to improve this situation, taking into account possible climate changes and their impact on the use of water resources. Critically referred to is the introduction by the Ministry of Environment of charges for water abstraction by hydro power plants, and adverse effects for the energy and water management sectors are discussed.

  10. Multilevel integrated flood management aproach

    Science.gov (United States)

    Brilly, Mitja; Rusjan, Simon

    2013-04-01

    The optimal solution for complex flood management is integrated approach. Word »integration« used very often when we try to put something together, but should distinguish full multiple integrated approach of integration by parts when we put together and analyse only two variables. In doing so, we lost complexity of the phenomenon. Otherwise if we try to put together all variables we should take so much effort and time and we never finish the job properly. Solution is in multiple integration captures the essential factors, which are different on a case-by-case (Brilly, 2000). Physical planning is one of most important activity in which flood management should be integrated. The physical planning is crucial for vulnerability and its future development and on other hand our structural measures must be incorporate in space and will very often dominated in. The best solution is if space development derived on same time with development of structural measures. There are good examples with such approach (Vienna, Belgrade, Zagreb, and Ljubljana). Problems stared when we try incorporating flood management in already urbanised area or we would like to decrease risk to some lower level. Looking to practice we learn that middle Ages practices were much better than to day. There is also »disaster by design« when hazard increased as consequence of upstream development or in stream construction or remediation. In such situation we have risk on areas well protected in the past. Good preparation is essential for integration otherwise we just lost time what is essential for decision making and development. We should develop clear picture about physical characteristics of phenomena and possible solutions. We should develop not only the flood maps; we should know how fast phenomena could develop, in hour, day or more. Do we need to analyse ground water - surface water relations, we would like to protected area that was later flooded by ground water. Do we need to take care about

  11. Integrated Land Management

    DEFF Research Database (Denmark)

    Enemark, Stig

    2004-01-01

    for integrated land management includes some educational and professional challenges to be met at the threshold of the third millennium.    In short, it is critical that we prepare the profession as well the educational system to meet the challenges of tomorrow in achieving sustainable urban and rural......This paper aims to build a general understanding and conceptual approach to integrated land management. The conceptual understanding may take the form of a hierarchy of levels. The foundation stone is an overall national land policy. Appropriate cadastral systems support land policies by providing...... identification of the land parcels and a framework for security of tenure, land value and land use. Appropriate cadastral systems support a wider land administration infrastructure within the areas of land tenure, land value and land use. Appropriate land administration systems then form the basic for sound land...

  12. 长江流域水资源综合管理探讨%Discussion on integrated water resources management in Yangtze River Basin

    Institute of Scientific and Technical Information of China (English)

    王海伟

    2014-01-01

    为适应中央生态文明建设、国家经济转型升级、实行最严格水资源管理制度和深化水利改革等国家与行业发展的新形势及对水资源管理的新要求,在总结长江流域取水许可管理、水资源配置和调度管理、水资源监测评估、流域最严格水资源管理制度试点等工作的基础上,分析了长江流域水资源管理面临的形势和存在的突出问题,结合长江流域近期水资源管理的总体思路,提出了推进流域水资源综合管理的建议。%For adapting to new requirements of national ecological civilization construction, economic transformation and upgra-ding, implementation of the most stringent water resources management system and deepening the reform of water resources man-agement, on the basis of experience summarization of water resources management of Yangtze River Basin in the aspects of water licensing, water resources allocation and dispatching, water resource monitoring and assessment, pilot implementation of the most stringent water resources management system etc. , the situation of water resources management and the existed prominent prob-lems in the basin are analyzed. With the combination of general strategy for water resources management of the basin in the near future, the suggestions on promoting the integrated management of water resources management of Yangtze River Basin are put forward.

  13. Improving the Flexibility of Optimization-Based Decision Aiding Frameworks for Integrated Water Resource Management

    Science.gov (United States)

    Guillaume, J. H.; Kasprzyk, J. R.

    2013-12-01

    Deep uncertainty refers to situations in which stakeholders cannot agree on the full suite of risks for their system or their probabilities. Additionally, systems are often managed for multiple, conflicting objectives such as minimizing cost, maximizing environmental quality, and maximizing hydropower revenues. Many objective analysis (MOA) uses a quantitative model combined with evolutionary optimization to provide a tradeoff set of potential solutions to a planning problem. However, MOA is often performed using a single, fixed problem conceptualization. Focus on development of a single formulation can introduce an "inertia" into the problem solution, such that issues outside the initial formulation are less likely to ever be addressed. This study uses the Iterative Closed Question Methodology (ICQM) to continuously reframe the optimization problem, providing iterative definition and reflection for stakeholders. By using a series of directed questions to look beyond a problem's existing modeling representation, ICQM seeks to provide a working environment within which it is easy to modify the motivating question, assumptions, and model identification in optimization problems. The new approach helps identify and reduce bottle-necks introduced by properties of both the simulation model and optimization approach that reduce flexibility in generation and evaluation of alternatives. It can therefore help introduce new perspectives on the resolution of conflicts between objectives. The Lower Rio Grande Valley portfolio planning problem is used as a case study.

  14. Integrated phytobial remediation for sustainable management of arsenic in soil and water.

    Science.gov (United States)

    Roy, Madhumita; Giri, Ashok K; Dutta, Sourav; Mukherjee, Pritam

    2015-02-01

    Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications

  15. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Voisin, Nathalie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richey, Jeff [Univ. of Washington, Seattle, WA (United States); Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taira, Randal Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Constans, Michael [Univ. of Washington, Seattle, WA (United States); Wigmosta, Mark S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Van Cleve, Frances B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tesfa, Teklu K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-12-01

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  16. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    Energy Technology Data Exchange (ETDEWEB)

    Copping, Andrea E.; Yang, Zhaoqing; Voisin, Nathalie; Richey, Jeff; Wang, Taiping; Taira, Randal Y.; Constans, Michael; Wigmosta, Mark S.; Van Cleve, Frances B.; Tesfa, Teklu K.

    2013-12-31

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  17. Integrated Financial Management Program

    Science.gov (United States)

    Pho, Susan

    2004-01-01

    Having worked in the Employees and Commercial Payments Branch of the Financial Management Division for the past 3 summers, I have seen the many changes that have occurred within the NASA organization. As I return each summer, I find that new programs and systems have been adapted to better serve the needs of the Center and of the Agency. The NASA Agency has transformed itself the past couple years with the implementation of the Integrated Financial Management Program (IFMP). IFMP is designed to allow the Agency to improve its management of its Financial, Physical, and Human Resources through the use of multiple enterprise module applications. With my mentor, Joseph Kan, being the branch chief of the Employees and Commercial Payments Branch, I have been exposed to several modules, such as Travel Manager, WebTads, and Core Financial/SAP, which were implemented in the last couple of years under the IFMP. The implementation of these agency-wide systems has sometimes proven to be troublesome. Prior to IFMP, each NASA Center utilizes their own systems for Payroll, Travel, Accounts Payable, etc. But with the implementation of the Integrated Financial Management Program, all the "legacy" systems had to be eliminated. As a result, a great deal of enhancement and preparation work is necessary to ease the transformation from the old systems to the new. All this work occurs simultaneously; for example, e-Payroll will "go live" in several months, but a system like Travel Manager will need to have information upgraded within the system to meet the requirements set by Headquarters. My assignments this summer have given me the opportunity to become involved with such work. So far, I have been given the opportunity to participate in projects resulting from a congressional request, several bankcard reconciliations, updating routing lists for Travel Manager, updating the majordomo list for Travel Manager approvers and point of contacts, and a NASA Headquarters project involving

  18. Recent Progresses in Incorporating Human Land-Water Management into Global Land Surface Models Toward Their Integration into Earth System Models

    Science.gov (United States)

    Pokhrel, Yadu N.; Hanasaki, Naota; Wada, Yoshihide; Kim, Hyungjun

    2016-01-01

    The global water cycle has been profoundly affected by human land-water management. As the changes in the water cycle on land can affect the functioning of a wide range of biophysical and biogeochemical processes of the Earth system, it is essential to represent human land-water management in Earth system models (ESMs). During the recent past, noteworthy progress has been made in large-scale modeling of human impacts on the water cycle but sufficient advancements have not yet been made in integrating the newly developed schemes into ESMs. This study reviews the progresses made in incorporating human factors in large-scale hydrological models and their integration into ESMs. The study focuses primarily on the recent advancements and existing challenges in incorporating human impacts in global land surface models (LSMs) as a way forward to the development of ESMs with humans as integral components, but a brief review of global hydrological models (GHMs) is also provided. The study begins with the general overview of human impacts on the water cycle. Then, the algorithms currently employed to represent irrigation, reservoir operation, and groundwater pumping are discussed. Next, methodological deficiencies in current modeling approaches and existing challenges are identified. Furthermore, light is shed on the sources of uncertainties associated with model parameterizations, grid resolution, and datasets used for forcing and validation. Finally, representing human land-water management in LSMs is highlighted as an important research direction toward developing integrated models using ESM frameworks for the holistic study of human-water interactions within the Earths system.

  19. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  20. The limits of integrated water resources management: a case study of Brazil’s Paraíba do Sul River Basin

    Directory of Open Access Journals (Sweden)

    Antonio Ioris

    2008-11-01

    Full Text Available The transition to water sustainability involves challenging questions about problem assessment, stakeholder involvement, and response coordination. To overcome these difficulties, new approaches have been developed to inform regulatory changes and to help to improve the level of water sustainability. One of the preferred methods is integrated water resources management (IWRM that combines different aspects and a plurality of goals associated with water use and conservation. However, important obstacles remain in the way of IWRM and, ultimately, water sustainability. A case study in the Paraíba do Sul River Basin in the southeastern region of Brazil illustrates the multiple barriers to appropriate integration of socioeconomic considerations into the sustainable management of water systems. The opportunity to improve environmental conditions and to engage local stakeholders has been frustrated by the contradictory directions of regulatory reforms. On one hand, IWRM-informed policies have introduced flexible instruments of water regulation and pushed for the reorganization of the river-basin committee. On the other hand, the focus has been restricted to technical and managerial solutions that tend to ignore the influence of social inequalities and political asymmetries and, as a consequence, undermine water sustainability.

  1. Estimation of effective soil hydraulic parameters for water management studies in semi-arid zones. Integral use of modelling, remote sensing and parameter estimation

    NARCIS (Netherlands)

    Jhorar, R.K.

    2002-01-01

    Key words: evapotranspiration, effective soil hydraulic parameters, remote sensing, regional water management, groundwater use, Bhakra Irrigation System, India.The meaningful application of water management simulation models at regional scale for the analysis of alternate water manage

  2. Rational protection of the quality of coastal waters by means of integrated, real-time management of the water environment; Proteccion racional de la calidad de las aguas costeras mediante la gestion integrada y en tiempo real del medio hidrico

    Energy Technology Data Exchange (ETDEWEB)

    Malgrat i Bregolat, P.; Suner Roqueta, D.; Escaler Puigoriol, M. I.; Rivero Moreno, F.

    2005-07-01

    Before the implementation Water Framework directive, it was usual to forget that a good environment protection of the receiving waters needs a correct and coordinated operation of the subsystems of the water cycle, specially sewerage system, WWTP and receiving waters. This explains that most of the countries have focused their efforts in the treatment of dry weather flows forgetting the management of wet weather flows. Actually the idea that a sewerage system or a WWTP can not be planned or managed independently without considering the effects on the receiving waters is commonly accepted because not only each one of these systems must work correctly but also it is required a minimum impact in the receiving waters of the sewerage and WWTP overflows in dry and wet weather. All these links will affect the management strategy of the sewerage system (storm water detection tanks, gates, pumping stations, etc)., the interceptor, the WWTP and the receiving waters. Only an integral planning of the whole water cycle will allow us to get a sustainable environment in the XXI century. Integral management will be important to product the quality of the coastal waters specially in the bathing areas. (Author) 5 refs.

  3. Integrated parasite management

    DEFF Research Database (Denmark)

    Clausen, Jesper Hedegaard; Madsen, Henry; Van, Phan Thi

    2015-01-01

    Fishborne zoonotic trematodes (FZT) are an emerging problem and there is now a consensus that, in addition to wild-caught fish, fish produced in aquaculture present a major food safety risk, especially in Southeast Asia where aquaculture is important economically. Current control programs target ...... that target critical control points in the aquaculture production cycle identified from a thorough understanding of FZT and host biology and epidemiology. We present recommendations for an integrated parasite management (IPM) program for aquaculture farms.......Fishborne zoonotic trematodes (FZT) are an emerging problem and there is now a consensus that, in addition to wild-caught fish, fish produced in aquaculture present a major food safety risk, especially in Southeast Asia where aquaculture is important economically. Current control programs target...

  4. Integrated Disability Management

    Directory of Open Access Journals (Sweden)

    Silvia Angeloni

    2013-10-01

    Full Text Available This article sets out to increase awareness regarding the wide and universal significance of disability, as well as the important benefits of an Integrated Disability Management (IDM approach. The scientific basis for IDM is explored in the first place through an analysis of its relationship to the International Classification of Functioning, Disability and Health (ICF. The conceptual paradigm of the ICF shares an ideological position with the IDM approach in that they are both underpinned by dynamic and multidimensional constructions of disability, which imply equally holistic and interdisciplinary responses. The IDM approach can be applied across a diversity of human situations to provide solutions that reflect the multifaceted and widespread nature of disability. The IDM approach is intended as a strategy capable of handling: inclusion of people with disabilities, active aging of human resources, health and safety in the workplace, prevention of disabilities and various diseases, return-to-work, absenteeism, and presenteeism.

  5. Managing the impact of gold panning activities within the context of integrated water resources management planning in the Lower Manyame Sub-Catchment, Zambezi Basin, Zimbabwe

    Science.gov (United States)

    Zwane, Nonhlanhla; Love, David; Hoko, Zvikomborero; Shoko, Dennis

    Riverbed alluvial gold panning activities are a cause for degradation of river channels and banks as well as water resources, particularly through accelerated erosion and siltation, in many areas of Zimbabwe. The lower Manyame sub-catchment located in the Northern part of the country is one such area. This study analysed the implications of cross-sectoral coordination of the management of panning and its impacts. This is within the context of conflicts of interests and responsibilities. A situational analysis of different stakeholders from sectors that included mining, environment, water, local government and water users who were located next to identified panning sites, as well as panners was carried out. Selected sites along the Dande River were observed to assess the environmental effects. The study determined that all stakeholder groups perceived siltation and river bank degradation as the most severe effect of panning on water resources, yet there were divergent views with regards to coordination of panning management. The Water Act of 1998 does not give enough power to management institutions including the Lower Manyame Sub-catchment Council to protect water resources from the impacts of panning, despite the fact that the activities affect the water resource base. The Mines and Minerals Act of 1996 remains the most powerful legislation, while mining sector activities adversely affect environmental resources. Furthermore, complexities were caused by differences in the definition of water resources management boundaries as compared to the overall environmental resources management boundaries according to the Environmental Management Act (EMA) of 2000, and by separate yet parallel water and environmental planning processes. Environmental sector institutions according to the EMA are well linked to local government functions and resource management is administrative, enhancing efficient coordination.

  6. Quality Management and Integrated Management System

    OpenAIRE

    2011-01-01

    Graduation theses is directed on the Management System and the characteristics of the company and its development since 2003. Theses is introduced on the Integrated Management System, which consists of the Quality Management System, the Environmental Management System and the Occupational Health and Safety Assessment Series. The theses is especially directed on the Occupational Health and Safety Assessment Series. Management System is analyzed and steps are recommended to improve these proces...

  7. Rich Water World an adaptive water management tool

    Science.gov (United States)

    van Rheenen, Hans; van den Berg, Wim

    2015-04-01

    Rich Water World an adaptive water management tool based on weather forecasting, sensor data and hydrological modelling. Climate change will cause periods of more extreme rainfall relieved by periods of drought. Water systems have to become more robust and self supporting in order to prevent damage by flooding and drought. For climate proof water management, it is important to anticipate on extreme events by using excellent weather forecast data, sensor data on soil and water, and hydrologic model data. The Rich Water World project has created an Adaptive Water Management Tool that integrates all these data.

  8. ASPECTS OF OPTIMIZATION OF WATER MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    E. BEILICCI

    2013-03-01

    Full Text Available Water management system include all activities and works which providing the administration of public domain of water, with local / national interest, and qualitative, quantitative and sustainable management of water resources. Hydrotechnical arrangements, consisting of a set of hydraulic structures, produce both a favorable and unfavorable influences on environment. Their different constructive and exploitation solutions exercise a significantly impact on the environment. Therefore the advantages and disadvantages of each solution must be weighed and determined to materialize one or other of them seriously argued.The optimization of water management systems is needed to meet current and future requirements in the field of rational water management in the context of integrated water resources management. Optimization process of complex water management systems includes several components related to environmental protection, technical side and the business side. This paper summarizes the main aspects and possibilities of optimization of existing water management systems and those that are to be achieved.

  9. Integrating wastewater reuse in water resources management for hotels in arid coastal regions - Case Study of Sharm El Sheikh, Egypt.

    Science.gov (United States)

    Lamei, A; van der Zaag, P; Imam, E

    2009-01-01

    Hotels in arid coastal areas use mainly desalinated water (using reverse osmosis) for their domestic water supply, and treated wastewater for irrigating green areas. Private water companies supply these hotels with their potable and non-potable water needs. There is normally a contractual agreement stating a minimum amount of water that has to be supplied by the water company and that the hotel management has to pay for regardless of its actual consumption ("contracted-for water supply"). Hotels have to carefully analyse their water requirements in order to determine which percentage of the hotel's peak water demand should be used in the contract in order to reduce water costs and avoid the risk of water shortage. This paper describes a model to optimise the contracted-for irrigation water supply with the objective function to minimise total water cost to hotels. It analyses what the contracted-for irrigation water supply of a given hotel should be, based on the size of the green irrigated area on one hand and the unit prices of the different types of water on the other hand. An example from an arid coastal tourism-dominated city is presented: Sharm El Sheikh (Sharm), Egypt. This paper presents costs of wastewater treatment using waste stabilisation ponds, which is the prevailing treatment mechanism in the case study area for centralised plants, as well as aerobic/anaerobic treatment used for decentralised wastewater treatment plants in the case study area. There is only one centralised wastewater treatment plant available in the city exerting monopoly and selling treated wastewater to hotels at a much higher price than the actual cost that a hotel would bear if it treated its own wastewater. Contracting for full peak irrigation demand is the highest total cost option. Contracting for a portion of the peak irrigation demand and complementing the rest from desalination water is a cheaper option. A better option still is to complement the excess irrigation demand

  10. Twinning European and South Asian river basins to enhance capacity and implement adaptive integrated water resources management approaches - results from the EC-project BRAHMATWINN

    Science.gov (United States)

    Flügel, W.-A.

    2011-04-01

    The EC-project BRAHMATWINN was carrying out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs of the twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and Southeast Asia respectively. Social and natural scientists in cooperation with water law experts and local stakeholders produced the project outcomes presented in Chapter 2 till Chapter 10 of this publication. BRAHMATWINN applied a holistic approach towards IWRM comprising climate modelling, socio-economic and governance analysis and concepts together with methods and integrated tools of applied Geoinformatics. A detailed description of the deliverables produced by the BRAHMATWINN project is published on the project homepage http://www.brahmatwinn.uni-jena.de.

  11. Purge water management system

    Science.gov (United States)

    Cardoso-Neto, Joao E.; Williams, Daniel W.

    1996-01-01

    A purge water management system for effectively eliminating the production of purge water when obtaining a groundwater sample from a monitoring well. In its preferred embodiment, the purge water management system comprises an expandable container, a transportation system, and a return system. The purge water management system is connected to a wellhead sampling configuration, typically permanently installed at the well site. A pump, positioned with the monitoring well, pumps groundwater through the transportation system into the expandable container, which expands in direct proportion with volume of groundwater introduced, usually three or four well volumes, yet prevents the groundwater from coming into contact with the oxygen in the air. After this quantity of groundwater has been removed from the well, a sample is taken from a sampling port, after which the groundwater in the expandable container can be returned to the monitoring well through the return system. The purge water management system prevents the purge water from coming in contact with the outside environment, especially oxygen, which might cause the constituents of the groundwater to oxidize. Therefore, by introducing the purge water back into the monitoring well, the necessity of dealing with the purge water as a hazardous waste under the Resource Conservation and Recovery Act is eliminated.

  12. Further development and implementation of the DIWA distributed hydrological model-based integrated hydroinformatics system in the Danube River Basin for supporting decision making in water management

    Science.gov (United States)

    Szabó, J. A.; Réti, G. Z.; Tóth, T.

    2012-04-01

    Today, the most significant mission of the decision makers on integrated water management issues is to carry out sustainable management for sharing the resources between a variety of users and the environment under conditions of considerable uncertainty (such as climate/land use/population/etc. change) conditions. In light of this increasing water management complexity, we consider that the most pressing needs is to develop and implement up-to-date Spatial Decision Support Systems (SDSS) for aiding decision-making processes to improve water management. One of the most important parts of such an SDSS is a distributed hydrologic model-based integrated hydroinformatics system to analyze the different scenarios. The less successful statistical and/or empirical model-experiments of earlier decades have highlighted the importance of paradigm shift in hydrological modelling approach towards the physically based distributed models, to better describe the complex hydrological processes even on catchments of more ten thousands of square km. Answers to questions like what are the effects of human actions in the catchment area (e. g. forestation or deforestation) or the changing of climate/land use on the flood, drought, or water scarcity, or what is the optimal strategy for planning and/or operating reservoirs, have become increasingly important. Nowadays the answers to this kind of questions can be provided more easily than before. The progress of applied mathematical methods, the advanced state of computer technology as well as the development of remote sensing and meteorological radar technology have accelerated the research capable of answering these questions using well-designed integrated hydroinformatics systems. With most emphasis on the recent years of extensive scientific and computational development HYDROInform UnLtd developed a distributed hydrological model-based integrated hydroinformatics system for supporting the various decisions in water management. Our

  13. A system method for the assessment of integrated water resources management (IWRM) in mountain watershed areas: the case of the "Giffre" watershed (France).

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management (IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  14. Integrated management of waterbirds: Beyond the conventional

    Science.gov (United States)

    Erwin, R.M.; Parsons, Katharine C.; Brown, Stephen C.; Erwin, R. Michael; Czech, Helen A.; Coulson, John C.

    2002-01-01

    Integrated waterbird management over the past few decades has implicitly referred to methods for managing wetlands that usually attempt to enhance habitat for taxonomic groups such as shorebirds and wading birds, in addition to waterfowl, the traditional focus group. Here I describe five elements of integration in management: taxonomic, spatial, temporal, population and habitat, and multiple-use management objectives. Spatial integration simply expands the scale of management concern. Rather than emphasizing management on a very limited number of impoundments or wetlands in small refuges or wildlife management areas, the vision is beginning to shift to connectivity within larger landscapes on the order of many square kilometers as telemetry data on daily and seasonal movements for many species become available. Temporal integration refers to the potential for either simultaneous management for waterbirds and commercial 'crops' (e.g., crayfish and rice) or for temporally-staggered management such as row crop production in spring-summer growing seasons and waterbird management on fallow fields in the non-growing (winter) season. Integrating population dynamics with habitats has become a major research focus over the past decade. Identifying which wetlands are ?sources? or ?sinks? for specific populations provides managers with critical information about effective management. Further, the applications of spatially explicit population models place heavy demands on researchers to identify use patterns for breeding and dispersing individuals by age, sex, and reproductive class. Population viability analysis models require much the same information. Finally, multiple-use management integration refers to trying to optimize the uses of wetlands, when only one (perhaps secondary) use may include waterbird management. Depending upon the ownership and primary land use of a particular parcel of land containing wetlands and/or water bodies, managing for waterbirds may be an

  15. The Efficacy of Bacillus thuringiensis spp. galleriae Against Rice Water Weevil (Coleoptera: Curculionidae) for Integrated Pest Management in California Rice.

    Science.gov (United States)

    Aghaee, Mohammad-Amir; Godfrey, Larry D

    2015-02-01

    Rice water weevil (Lissorhoptrus oryzophilus Kushel) is the most damaging insect pest of rice in the United States. Larval feeding on the roots stunt growth and reduce yield. Current pest management against the weevil in California relies heavily on pyrethroids that can be damaging to aquatic food webs. Examination of an environmentally friendly alternative biopesticide based on Bacillus thuringiensis spp. galleriae chemistry against rice water weevil larvae showed moderate levels of activity in pilot studies. We further examined the performance of different formulations of Bt.galleriae against the leading insecticide used in California rice, λ-cyhalothrin. The granular formulation performed as well as the λ-cyhalothrin in use in California in some of our greenhouse and field studies. This is the first reported use of B. thuringiensis spp. galleriae against rice water weevil.

  16. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    DEFF Research Database (Denmark)

    Guzinski, Radoslaw; Kass, Steve; Huber, Silvia

    2014-01-01

    The Water Observation and Information System (WOIS) is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO) data. The WOIS has been developed by, among others, the authors of this paper under the TIGER...... to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements...... of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological...

  17. Sustainability of integrated land and water resources management in the face of climate and land use changes

    Science.gov (United States)

    Setegn, Shimelis

    2017-04-01

    Sustainable development integrates economic development, social development, and environmental protection. Land and Water resources are under severe pressure from increasing populations, fast development, deforestation, intensification of agriculture and the degrading environment in many part of the world. The demand for adequate and safe supplies of water is becoming crucial especially in the overpopulated urban centers of the Caribbean islands. Moreover, population growth coupled with environmental degradation and possible adverse impacts of land use and climate change are major factors limiting freshwater resource availability. The main objective of this study is to develop a hydrological model and analyze the spatiotemporal variability of hydrological processes in the Caribbean islands of Puerto Rico and Jamaica. Physically based eco-hydrological model was developed and calibrated in the Rio Grande Manati and Wag water watershed. Spatial distribution of annual hydrological processes, water balance components for wet and dry years, and annual hydrological water balance of the watershed are discussed. The impact of land use and climate change are addressed in the watersheds. Appropriate nature based adaptation strategies were evaluated. The study will present a good understanding of advantages and disadvantages of nature-based solutions for adapting climate change, hydro-meteorological risks and other extreme hydrological events.

  18. The Role of Mainstreaming Gender in Integrated Water Resources Management%性别主流化在集成水资源管理中的意义

    Institute of Scientific and Technical Information of China (English)

    郭玲霞; 苏英; 王德耀; 董莉丽

    2013-01-01

    集成水资源管理是促进管理地区水、土及相关资源协调发展和管理的过程,在该过程中,不仅强调当地居民的经济和社会福利最大化,而且要确保当地社会的公平和可持续性.广泛的公众参与和性别平等是集成水资源管理的基本原则,也是其公平、可持续性的体现.在集成水资源管理中,考虑性别问题,有利于女性在水资源管理中的充分参与,发挥妇女在水资源利用管理及环境保护中的重要作用,促进水资源管理可持续发展.此外,应用性别分析方法,能够使自然资源利用的分析更加精确.文章在介绍集成水资源管理概念和原则的基础上,结合社会性别分析理论,阐述了性别视角和分析方法在水资源管理可持续发展中的重要意义,并提出了在集成水资源管理中性别主流化的途径.%Integrated Water Resources Management is a process which promotes the coordinated development and management of water, land and related resources, in order to maximize the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. Widely public participation and gender equality are the main aspects of the fairness and sustainability of integrated water resource management, which is aimed at broadening women's access to water, enhancing women's participation in water management and promoting gender equality in the water resources management. A gender perspective in IWRM is necessary for increasing project effectiveness; ensuring women's involvement can support environmental sustainability, and making the social and economic analysis completely by understanding of gender differences and inequalities. Without specific attention to gender issues and initiatives, projects can reinforce inequalities between women and men and even increase imbalances. In addition, participatory methods used to introduce gender equality issues. What's more, partner

  19. Integrated supply chain risk management

    Directory of Open Access Journals (Sweden)

    Riaan Bredell

    2007-11-01

    Full Text Available Integrated supply chain risk management (ISCRM has become indispensable to the theory and practice of supply chain management. The economic and political realities of the modern world require not only a different approach to supply chain management, but also bold steps to secure supply chain performance and sustainable wealth creation. Integrated supply chain risk management provides supply chain organisations with a level of insight into their supply chains yet to be achieved. If correctly applied, this process may optimise management decision-making and assist in the protection and enhancement of shareholder value.

  20. Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System

    Directory of Open Access Journals (Sweden)

    Radoslaw Guzinski

    2014-08-01

    Full Text Available The Water Observation and Information System (WOIS is an open source software tool for monitoring, assessing and inventorying water resources in a cost-effective manner using Earth Observation (EO data. The WOIS has been developed by, among others, the authors of this paper under the TIGER-NET project, which is a major component of the TIGER initiative of the European Space Agency (ESA and whose main goal is to support the African Earth Observation Capacity for Water Resource Monitoring. TIGER-NET aims to support the satellite-based assessment and monitoring of water resources from watershed to cross-border basin levels through the provision of a free and powerful software package, with associated capacity building, to African authorities. More than 28 EO data processing solutions for water resource management tasks have been developed, in correspondence with the requirements of the participating key African water authorities, and demonstrated with dedicated case studies utilizing the software in operational scenarios. They cover a wide range of themes and information products, including basin-wide characterization of land and water resources, lake water quality monitoring, hydrological modeling and flood forecasting and mapping. For each monitoring task, step-by-step workflows were developed, which can either be adjusted by the user or largely automatized to feed into existing data streams and reporting schemes. The WOIS enables African water authorities to fully exploit the increasing EO capacity offered by current and upcoming generations of satellites, including the Sentinel missions.

  1. Critical multi-level governance issues of integrated modelling: An example of low-water management in the Adour-Garonne basin (France)

    Science.gov (United States)

    Mazzega, Pierre; Therond, Olivier; Debril, Thomas; March, Hug; Sibertin-Blanc, Christophe; Lardy, Romain; Sant'ana, Daniel

    2014-11-01

    This paper presents the experience gained related to the development of an integrated simulation model of water policy. Within this context, we analyze particular difficulties raised by the inclusion of multi-level governance that assigns the responsibility of individual or collective decision-making to a variety of actors, regarding measures of which the implementation has significant effects toward the sustainability of socio-hydrosystems. Multi-level governance procedures are compared with the potential of model-based impact assessment. Our discussion is illustrated on the basis of the exploitation of the multi-agent platform MAELIA dedicated to the simulation of social, economic and environmental impacts of low-water management in a context of climate and regulatory changes. We focus on three major decision-making processes occurring in the Adour-Garonne basin, France: (i) the participatory development of the Master Scheme for Water Planning and Management (SDAGE) under the auspices of the Water Agency; (ii) the publication of water use restrictions in situations of water scarcity; and (iii) the determination of the abstraction volumes for irrigation and their allocation. The MAELIA platform explicitly takes into account the mode of decision-making when it is framed by a procedure set beforehand, focusing on the actors' participation and on the nature and parameters of the measures to be implemented. It is observed that in some water organizations decision-making follows patterns that can be represented as rule-based actions triggered by thresholds of resource states. When decisions are resulting from individual choice, endowing virtual agents with bounded rationality allows us to reproduce (in silico) their behavior and decisions in a reliable way. However, the negotiation processes taking place during the period of time simulated by the models in arenas of collective choices are not all reproducible. Outcomes of some collective decisions are very little or

  2. Integrated Water Basin Management Including a Large Pit Lake and a Water Supply Reservoir: The Mero-Barcés Basin

    Science.gov (United States)

    Delgado, Jordi; Juncosa-Rivera, Ricardo; Hernández-Anguiano, Horacio; Muñoz-Ibáñez, Andrea

    2016-04-01

    Water resource managers attempt to minimize conflicts among users, preserve the environment as much as possible, and satisfy user necessities at a minimum cost. Several European directives indirectly address mine restoration policies, with a goal of minimizing negative impacts and adding social and environmental value where possible. Water management must consider water sources, ecological flows, flood control, and variability in the demands for urban, industrial, and agricultural uses. In the context of the present study, the city of A Coruña is located in Galicia (NW Spain). The water supply system for this city and surrounding municipalities (~400.000 inhabitants) is based on the Abegondo-Cecebre reservoir. In cases when precipitation is scarce (e.g. no rain for more than seven consecutive months) and there is a seasonal increase in demand significantly stress the supply system so that, as occurred in 2010, shortages and water supply restrictions need to be considered. This is a clear indication of that, at present, the Abegondo-Cecebre reservoir has not enough capacity to cope with a scenario of increasing water demand (due to the vegetative and seasonal increase of population) and hydric stress likely connected with the widely acknowledged climate change. In the present context of monetary resources scarcity and society concern with respect large new public work projects, the construction of a new dam is challenging. However the opportunity provided by the recent flooding of the Meirama open pit (a large mine void that has been forced-flooded for its reclamation and it is located in the headwaters of one of the rivers draining towards the Abegondo-Cecebre reservoir) proves to be a significant new asset that will help to improve the future water management scenarios under the acknowledged uncertain conditions. In this study we have studied in detail the hydrochemistry of the affected systems (lake, river and reservoir) in order to make clear whether or not the

  3. 1988 Annual water management plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Ruby Lake NWR 1987 Annual Water Management Report 1988 Annual Water Management Plan. Includes 1987 weather summary, water availability forecast, summary of 1987...

  4. Integrating Sustainability in Management Education

    Directory of Open Access Journals (Sweden)

    Emmanuel Raufflet

    2013-10-01

    Full Text Available Over the last decade, numerous modules, courses, and programs in Management Education have integrated sustainability into their curricula. However, this “integration” has translated into very diverse forms and contents. This article aims to clarify these ambiguities. It maps four forms of sustainability integration in Management Education. These four distinct forms are (1 discipline-based integration, in which the anchoring point is the business discipline (sustainability is added as a dimension of this body of knowledge; (2 strategic-/competitive-based integration, in which the anchoring point is the strategy of the organization (sustainability is viewed as a potential contributor to the firm’s competitive advantage; (3 integration by application, in which managerial tools and approaches from business disciplines are applied so as to contribute to addressing a sustainability challenge; and, last, (4 systemic integration, in which the anchoring point is a social-ecological-economic challenge defined from an interdisciplinary perspective. Implications of this chapter for the design of courses and programs and the practice of sustainability in Management Education are twofold. First, this article contributes to going beyond the prevailing tendency of studies in the field of sustainability in Management Education to focus mainly on tools and applications. In doing so, this article helps frame these challenges on the level of course and program design. Second, this article helps management educators map what they are intending to achieve by the integration of sustainability into the Management Education curriculum.

  5. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.

    Science.gov (United States)

    Falloon, Pete; Betts, Richard

    2010-11-01

    , management and land use, although an overall reduction in the total stock may result from a smaller agricultural land area. Adaptation in the water sector could potentially provide additional benefits to agricultural production such as reduced flood risk and increased drought resilience. The two main sources of uncertainty in climate impacts on European agriculture and water management are projections of future climate and their resulting impacts on water and agriculture. Since changes in climate, agricultural ecosystems and hydrometeorology depend on complex interactions between the atmosphere, biosphere and hydrological cycle there is a need for more integrated approaches to climate impacts assessments. Methods for assessing options which "moderate" the impact of agriculture in the wider sense will also need to consider cross-sectoral impacts and socio-economic aspects. Crown Copyright © 2009. Published by Elsevier B.V. All rights reserved.

  6. Innovative low cost procedure for nutrient removal as an integrated element of a decentralised water management concept for rural areas.

    Science.gov (United States)

    Burde, M; Rolf, F; Grabowski, F

    2001-01-01

    The absence of large rivers with rather high niveau of self purifying effect in parts of east Germany leads to a discharging of the effluent of wastewater treatment plants into the groundwater in many cases. One useful consequence is the idea of realisation of decentralised measures and concepts in urban water resources management concerning municipal wastewater as well as rainfall, precipitation. At the same time, only the upper soil zone--a few decimetres--is water--saturated and thus discharge effective, even when extreme rainfall takes place. Underneath, however, there generally exists an unsaturated soil zone, which is up to now a rather unexplored retardation element of the hydrologic- and substrate-cycle. Nutrient removal in small wastewater treatment plants that are emptying into ground waters is often beneficial. The presented studies optimised an inexpensive method of subsequent enhanced wastewater treatment. The developed reactor is similar to a concentrated subsoil passage. The fixed bed reactor is divided in two sections to achieve aerobic and anoxic conditions for nitrification/denitrification processes. To enhance phosphorus removal, ferrous particles are put into the aerobic zone. Two series of column tests were carried out and a technical pilot plant was built to verify the efficiency of the process. The results show that this method can be implemented successfully.

  7. 推进水务一体化管理加快水资源开发利用%Promoting Water Resources Integration Management, Speed up the Development and Utilization of Water Resources

    Institute of Scientific and Technical Information of China (English)

    贾飞

    2015-01-01

    Through the analysis of the status of the Zhangzi County water resource management, promoting the necessity of the integration of water and the county domain integration of water, to promote the scientific use of water resources, the eldest son of the county’s economic development provides hydraulic support.%通过分析长子县水资源管理的现状,说明了推进水务一体化和县域水务一体化的必要性,以促进水资源的科学利用,为长子县的经济发展提供水利支持。

  8. On the use of Rotary Gas/gas Heat Exchangers as a Novel Integration Option for Heat and Water Management in Exhaust Gas Recycling Gas Turbine Plants

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2014-01-01

    This work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to t...

  9. Integrated Water Management in Urban and Rural Water Supply Practice Pingyao%水务一体化管理在平遥城乡供水实践中的应用

    Institute of Scientific and Technical Information of China (English)

    孙贵新; 雷凌平; 任学强

    2014-01-01

    On the basis of elaborated Pingyao County water management of the implementation of the integration, combining the development of the practice of water supply companies, from the water supply and water demand, the market is expanding, and the summary and analysis of water resources and water supply enterprises to optimize their development, draw integration of water supply and demand is a win-win, to broaden the market of urban and rural water supply, improve water supply enterprises institutional guarantees of vigor and vitality, but also the fundamental way to the county water supply industry rapid development.%在阐述了平遥县实行水务一体化管理现状的基础上,结合供水企业的发展实践,从供水与需水、市场拓宽、水资源优化和供水企业自身发展等方面进行总结和分析,得出了水务一体化是实现供需双赢、拓宽城乡供水市场、提高供水企业生机和活力的体制保证,也是县域供水行业快速发展的根本出路。

  10. Integrated water resource planning in the city of Cape Town

    African Journals Online (AJOL)

    driniev

    Demand Management Strategy and Policy which was officially adopted and ... how to initiate an integrated resource planning approach. .... Free basic water of 6Kl per ... water week activities, marketing at the World Summit, the Schools.

  11. Integrated Building Health Management

    Data.gov (United States)

    National Aeronautics and Space Administration — Abstract: Building health management is an important part in running an efficient and cost-effective building. Many problems in a building’s system can go undetected...

  12. From national to regional plans – the Integrated Drought Management Programme of the Global Water Partnership for Central and Eastern Europe

    Directory of Open Access Journals (Sweden)

    Sabina Bokal

    2014-06-01

    Full Text Available In the past few decades it has become evident that the countries of Central and Eastern Europe (CEE are affected by droughts which are becoming more and more lasting and severe. The region׳s vulnerability to this natural hazard alerted the public, governments, and operational agencies to the many socio-economic problems accompanying water shortage and to the need for drought mitigation measures. In addition, climate change amplifies the frequency and severity of droughts in the region. In this context, the CEE region of the Global Water Partnership (GWP recently launched the regional Integrated Drought Management Programme (IDMP as part of the global joint World Meteorological Organization (WMO/GWP IDMP. The purpose of this paper is to present the work plan of the GWP CEE IDM Programme which is being implemented in the years 2013–2015. The planning process for this Programme carried out in 2012 included national and regional reviews of existing drought risks, policies and strategies. The programme inception phase was summarized in October 2012 by a regional workshop organized jointly by GWP and WMO, with the participation of representatives of the United Nations Convention to Combat Desertification (UNCCD Secretariat, the Drought Management Centre for Southeastern Europe (DMCSEE, the EU Joint Research Centre, the United Nations Economic Commission for Europe (UNECE and the European Drought Centre. The Programme was launched in February 2013 and involves more than 40 organizations from 9 CEE countries. The basic four elements of the Programme include policy advice, demonstration projects, capacity building knowledge management and regional cooperation (from national to regional plans. The major output, building upon national initiatives, shall be a coordinated regional framework for drought monitoring, early warning, prediction and management, accompanied by a set of guidelines and tools for the development of regional, national and local

  13. Integrated Forest Management Charter

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    The purpose of this charter is to establish, maintain, and implement programs for the protection, preservation, and enhancement of the land and water resources of Los Alamos National Laboratory in a changing climate.

  14. Energy and Water Management

    Science.gov (United States)

    Valek, Susan E.

    2008-01-01

    Energy efficiency isn't just a good idea; it's a necessity, both for cost reasons and to meet federal regulatory requirements. First, rising energy unit costs continue to erode NASA's mission budget. NASA spent roughly $156M on facility energy in FY 2007. Although that represents less than one per cent of NASA's overall annual budget, the upward trend in energy costs concerns the agency. While NASA reduced consumption 13%, energy unit costs have risen 63%. Energy cost increases counteract the effects of energy conservation, which results in NASA buying less yet spending more. The second factor is federal energy legislation. The National Energy Conservation Policy Act, as amended by the Energy Policy Act of 2005, Executive Order (EO) 13423 (January, 2007), and the Energy Independence and Security Act (December, 2007), mandates energy/water conservation goals for all federal agencies, including NASA. There are also reporting requirements associated with this legislation. The Energy/Water Management Task was created to support NASA Headquarters Environmental Management Division (HO EMD) in meeting these requirements. With assistance from TEERM, HQ EMD compiled and submitted the NASA Annual Report to the Department of Energy FY 2007. The report contains information on how NASA is meeting federally mandated energy and water management goals. TEERM monitored input for timeliness, errors, and conformity to the new energy/water reporting guidelines and helped compile the information into the final report. TEERM also assists NASA Energy/Water Management with proposal and award calls, updates to the energy/water management database, and facilitating communication within the energy/water management community. TEERM is also supporting NASA and the Interagency Working Group (IWG) on Hydrogen and Fuel Cells. Established shortly after the President announced the Hydrogen Fuel Initiative in 2003, this IWG serves as the mechanism for collaboration among the Federal agencies

  15. Vernacular Knowledge and Water Management – Towards the Integration of Expert Science and Local Knowledge in Ontario, Canada

    Directory of Open Access Journals (Sweden)

    Hugh Simpson

    2015-10-01

    Full Text Available Complex environmental problems cannot be solved using expert science alone. Rather, these kinds of problems benefit from problem-solving processes that draw on 'vernacular' knowledge. Vernacular knowledge integrates expert science and local knowledge with community beliefs and values. Collaborative approaches to water problem-solving can provide forums for bringing together diverse, and often competing, interests to produce vernacular knowledge through deliberation and negotiation of solutions. Organised stakeholder groups are participating increasingly in such forums, often through involvement of networks, but it is unclear what roles these networks play in the creation and sharing of vernacular knowledge. A case-study approach was used to evaluate the involvement of a key stakeholder group, the agricultural community in Ontario, Canada, in creating vernacular knowledge during a prescribed multi-stakeholder problem-solving process for source water protection for municipal supplies. Data sources – including survey questionnaire responses, participant observation, and publicly available documents – illustrate how respondents supported and participated in the creation of vernacular knowledge. The results of the evaluation indicate that the respondents recognised and valued agricultural knowledge as an information source for resolving complex problems. The research also provided insight concerning the complementary roles and effectiveness of the agricultural community in sharing knowledge within a prescribed problem-solving process.

  16. Economic resilience through "One-Water" management

    Science.gov (United States)

    Hanson, Randall T.; Schmid, Wolfgang

    2013-01-01

    Disruption of water availability leads to food scarcity and loss of economic opportunity. Development of effective water-resource policies and management strategies could provide resiliance to local economies in the face of water disruptions such as drought, flood, and climate change. To accomplish this, a detailed understanding of human water use and natural water resource availability is needed. A hydrologic model is a computer software system that simulates the movement and use of water in a geographic area. It takes into account all components of the water cycle--“One Water”--and helps estimate water budgets for groundwater, surface water, and landscape features. The U.S. Geological Survey MODFLOW One-Water Integrated Hydrologic Model (MODFLOWOWHM) software and scientific methods can provide water managers and political leaders with hydrologic information they need to help ensure water security and economic resilience.

  17. Networking of integrated pest management

    NARCIS (Netherlands)

    Lamichhane, Jay Ram; Aubertot, Jean Noël; Begg, Graham; Birch, Andrew Nicholas E.; Boonekamp, Piet; Dachbrodt-Saaydeh, Silke; Hansen, Jens Grønbech; Hovmøller, Mogens Støvring; Jensen, Jens Erik; Jørgensen, Lise Nistrup; Kiss, Jozsef; Kudsk, Per; Moonen, Anna Camilla; Rasplus, Jean Yves; Sattin, Maurizio; Streito, Jean Claude; Messéan, Antoine

    2016-01-01

    Integrated pest management (IPM) is facing both external and internal challenges. External challenges include increasing needs to manage pests (pathogens, animal pests and weeds) due to climate change, evolution of pesticide resistance as well as virulence matching host resistance. The complexity

  18. Solidarity in water management

    Directory of Open Access Journals (Sweden)

    Andrea Keessen

    2016-12-01

    Full Text Available Adaptation to climate change can be an inclusive and collective, rather than an individual effort. The choice for collective arrangements is tied to a call for solidarity. We distinguish between one-sided (assisting community members in need and two-sided solidarity (furthering a common interest and between voluntary and compulsory solidarity. We assess the strength of solidarity as a basis for adaptation measures in six Dutch water management case studies. Traditionally, Dutch water management is characterized by compulsory two-sided solidarity at the water board level. Since the French times, the state is involved through compulsory national solidarity contributions to avoid societal disruption by major floods. In so far as this furthers a common interest, the contributions qualify as two-sided solidarity, but if it is considered assistance to flood-prone areas, they also qualify as one-sided solidarity. Although the Delta Programme explicitly continues on this path, our case studies show that solidarity continues to play an important role in Dutch water management in the process of adapting to a changing climate, but that an undifferentiated call for solidarity will likely result in debates over who should pay what and why. Such discussions can lead to cancellation or postponement of adaptation measures, which are not considered to be in the common interest or result in an increased reliance on local solidarity.

  19. How integrated is river basin management?

    Science.gov (United States)

    Downs, Peter W.; Gregory, Kenneth J.; Brookes, Andrew

    1991-05-01

    Land and water management is increasingly focused upon the drainage basin. Thirty-six terms recently used for schemes of “integrated basin management” include reference to the subject or area and to the aims of integrated river basin management, often without allusion to the multiobjective nature. Diversity in usage of terms has occurred because of the involvement of different disciplines, of the increasing coherence of the drainage basin approach, and the problems posed in particular parts of the world. The components included in 21 different approaches are analyzed, and, in addition to showing that components related broadly to water supply, river channel, land, and leisure aspects, it is concluded that there are essentially five interrelated facets of integrated basin management that involved water, channel, land, ecology, and human activity. Two aspects not fully included in many previous schemes concern river channel changes and the dynamic integrity of the fluvial system. To clarify the terminology used, it is suggested that the term comprehensive river basin management should be used where a wide range of components is involved, whereas integrated basin management can signify the interactions of components and the dominance of certain components in the particular area. Holistic river basin management is advocated as a term representing an approach that is both fully comprehensive and integrated but also embraces the energetics of the river system and consideration of changes of river channels and of human impacts throughout the river system. The paradigm of working with the river can be extended to one of working with the river in the holistic basin context.

  20. Open Source GIS based integrated watershed management

    Science.gov (United States)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address

  1. Interaction between stakeholders and research for integrated river basin management

    NARCIS (Netherlands)

    Jongman, R.H.G.; Padovani, C.R.

    2006-01-01

    Integrated Water Management calls for basin-wide coordination of activities related to land and water use. The need for multi-stakeholder involvement, the necessity to integrate scientific approaches and local information, the process of mutual communication, the results of discussions on integrated

  2. Managing Change toward Adaptive Water Management through Social Learning

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2007-12-01

    Full Text Available The management of water resources is currently undergoing a paradigm shift toward a more integrated and participatory management style. This paper highlights the need to fully take into account the complexity of the systems to be managed and to give more attention to uncertainties. Achieving this requires adaptive management approaches that can more generally be defined as systematic strategies for improving management policies and practices by learning from the outcomes of previous management actions. This paper describes how the principles of adaptive water management might improve the conceptual and methodological base for sustainable and integrated water management in an uncertain and complex world. Critical debate is structured around four questions: (1 What types of uncertainty need to be taken into account in water management? (2 How does adaptive management account for uncertainty? (3 What are the characteristics of adaptive management regimes? (4 What is the role of social learning in managing change? Major transformation processes are needed because, in many cases, the structural requirements, e.g., adaptive institutions and a flexible technical infrastructure, for adaptive management are not available. In conclusion, we itemize a number of research needs and summarize practical recommendations based on the current state of knowledge.

  3. Mussel production and Water Framework Directive targets in the Limfjord, Denmark: an integrated assessment for use in system-based management

    DEFF Research Database (Denmark)

    Dinesen, Grete E.; Timmermann, K.; Roth, E.

    2011-01-01

    Growth of human activities often conflict with nature conservation requirements and integrated assessments are necessary to build reliable scenarios for management. In the Limfjord, Denmark’s largest estuary, nutrient loading reductions are necessary to fulfill EU regulations criteria...... and hard to predict. This study focuses on the usefulness of a System Approach Framework (SAF) implementation for stakeholder understanding of complex systems and development of sustainable management. Ecological-social-economic (ESE) model simulations clearly demonstrated the potential problems of WFD......, such as the Water Framework Directive (WFD). Cuts in nutrient loadings do not necessarily result in corresponding reductions in eutrophication impacts or in improving primary and higher trophic-level production. Similarly, the socioeconomic consequences of a mussel fishery and aquaculture production are complex...

  4. Toward A Science of Sustainable Water Management

    Science.gov (United States)

    Brown, C.

    2016-12-01

    Societal need for improved water management and concerns for the long-term sustainability of water resources systems are prominent around the world. The continued susceptibility of society to the harmful effects of hydrologic variability, pervasive concerns related to climate change and the emergent awareness of devastating effects of current practice on aquatic ecosystems all illustrate our limited understanding of how water ought to be managed in a dynamic world. The related challenges of resolving the competition for freshwater among competing uses (so called "nexus" issues) and adapting water resources systems to climate change are prominent examples of the of sustainable water management challenges. In addition, largely untested concepts such as "integrated water resources management" have surfaced as Sustainable Development Goals. In this presentation, we argue that for research to improve water management, and for practice to inspire better research, a new focus is required, one that bridges disciplinary barriers between the water resources research focus on infrastructure planning and management, and the role of human actors, and geophysical sciences community focus on physical processes in the absence of dynamical human response. Examples drawn from climate change adaptation for water resource systems and groundwater management policy provide evidence of initial progress towards a science of sustainable water management that links improved physical understanding of the hydrological cycle with the socioeconomic and ecological understanding of water and societal interactions.

  5. Integrated water resources modelling for assessing sustainable water governance

    Science.gov (United States)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  6. Paladin Integrated Management (PIM)

    Science.gov (United States)

    2013-12-01

    DAMIR - Defense Acquisition Management Information Retrieval Dev Est - Development Estimate DoD - Department of Defense DSN - Defense Switched Network...contractor support to Production Qualification Testing, Initial Operational Test and Evaluation ( IOT &E) and the Logistics Demonstration. In the FY 2015 PB...LRIP testing and the planned Logistics Demonstration. This reduced contractor support increases schedule risk for IOT &E and First Unit Equipped

  7. Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions

    Science.gov (United States)

    Rad, Arash Modaresi; Ghahraman, Bijan; Khalili, Davar; Ghahremani, Zahra; Ardakani, Samira Ahmadi

    2017-09-01

    Conventionally, drought analysis has been limited to single drought category. Utilization of models incorporating multiple drought categories, can relax this limitation. A copula-based model is proposed, which uses meteorological and hydrological drought characteristics to assess drought events for ultimate management of water resources, at small scales, i.e., sub-watersheds. The chosen study area is a sub-basin located at Karkheh watershed (western Iran), with five raingauge stations and one hydrometric station, located upstream and at the outlet, respectively, which represent 41-year of data. Prior to drought analysis, time series of precipitation and streamflow records are investigated for possible dependency/significant trend. Considering semi-arid nature of the study area, boxplots are utilized to graphically capture the rainy months, which are used to evaluate the degree of correlation between streamflow and precipitation records via nonparametric correlations. Time scales of 3- and 12-month are considered, which are used to study vulnerability of early vegetation establishment and long-term ecosystem resilience, respectively. Among four common goodness of fit (GOF) tests, Anderson-Darling is found preferable for defining copula distribution functions through GOF measures, i.e., Akaike and Bayesian information criteria and normalized root mean square error. Furthermore, a GOF method is proposed to evaluate the uncertainty associated with different copula models using the concept of entropy. A new bivariate drought modeling approach is proposed through copulas. The proposed index named standardized precipitation-streamflow index (SPSI) unlike common indices which are used in conjunction with station data, can be applied on a regional basis. SPDI is compared with widely applied streamflow drought index (SDI) and standardized precipitation index (SPI). To assess the homogeneity of the dependence structure of SPSI regionally, Kendall-τ and upper tail coefficient

  8. On Demand, Development and Dependence: A Review of Current and Future Implications of Socioeconomic Changes for Integrated Water Resource Management in the Okavango Catchment of Southern Africa

    Directory of Open Access Journals (Sweden)

    Thomas Weinzierl

    2013-02-01

    Full Text Available Water is both a key and limited resource in the Okavango Catchment of Southern Africa. It is vital for the ecosystem and the three riparian states Angola, Botswana and Namibia who use the water of the catchment for multiple purposes including pastoralism, farming and tourism. Socioeconomic changes, primarily strong population growth and increasing development demands pose significant challenges for the Okavango Catchment and its Integrated Water Resource Management (IWRM. In this paper, we first review the socioeconomic background and the current and projected water situation. Against this background, we analyze the dependence of the riparian states and the local livelihoods on the Okavango Catchment. Third, we discuss the implications of socioeconomic changes and increased water demand for the IWRM in the catchment. We review the scientific literature and relevant reports. Further we utilize (geo-spatial analysis of socioeconomic, livelihood and hydrological data, supplemented by a field visit to Namibia and Botswana. Our findings suggest that strong population growth and the stabilization of Angola are likely to increase the pressure to develop the region along the Okavango. The central challenge for IWRM is hence to enable Angola to meet its development needs without limiting livelihood and economic prospects in Botswana and Namibia.

  9. Linking Environmental Research and Practice: Lessons From The Integration of Climate Science and Water Management in the Western United States

    Science.gov (United States)

    Ferguson, D. B.; Rice, J.; Woodhouse, C. A.

    2015-12-01

    Efforts to better connect scientific research with people and organizations involved in environmental decision making are receiving increased interest and attention. Some of the challenges we currently face, however—including complex questions associated with climate change—present unique challenges because of their scale and scope. Focused research on the intersections between environment and society has provided substantial insight into dynamics of large-scale environmental change and the related impacts on people, natural resources, and ecosystems, yet our ability to connect this research to real-world decision making remains limited. Addressing these complex environmental problems requires broad cooperation between scientists and those who may apply research results in decision making, but there are few templates for guiding the growing number of scientists and practitioners now engaging in this kind of cooperative work. This presentation will offer a set of heuristics for carrying out collaborative work between scientists and practitioners. These heuristics were derived from research that examined the direct experiences of water resources professionals and climate researchers who have been working to integrate science and practice.

  10. But What Do the Data Say? Lessons in Integrating Science and Policy to Inform International and Domestic Water Management Decisions

    Science.gov (United States)

    Voss, K.

    2015-12-01

    As scientists we are often encouraged to describe our research in terms of its "broader impacts" - to link our results to a tangible action or change outside of our scientific discipline. Although writing these goals in a proposal is simple, actually executing the proposed "broader impacts" is often more complicated. This presentation will briefly describe several international and domestic experiences that sought to utilize scientific research to inform pressing policy decisions related to water management. The lessons draw from ongoing efforts to improve transboundary groundwater collaboration in the Middle East, mitigate the impact of glacial lake outburst floods in high mountain regions, and prompt a political response to the California drought and groundwater depletion. As current initiatives at the science-policy interface, key challenges and ideas for improvement will be discussed, particularly: effective, concise communication of scientific data, awareness of broader political/economic contexts, and long-term trust building with decision-makers. Finally, this presentation will highlight several opportunities and suggestions to promote graduate students' involvement in these activities and to build skills at the science-policy interface.

  11. From waste treatment to integrated resource management.

    Science.gov (United States)

    Wilsenach, J A; Maurer, M; Larsen, T A; van Loosdrecht, M C M

    2003-01-01

    Wastewater treatment was primarily implemented to enhance urban hygiene. Treatment methods were improved to ensure environmental protection by nutrient removal processes. In this way, energy is consumed and resources like potentially useful minerals and drinking water are disposed of. An integrated management of assets, including drinking water, surface water, energy and nutrients would be required to make wastewater management more sustainable. Exergy analysis provides a good method to quantify different resources, e.g. utilisable energy and nutrients. Dilution is never a solution for pollution. Waste streams should best be managed to prevent dilution of resources. Wastewater and sanitation are not intrinsically linked. Source separation technology seems to be the most promising concept to realise a major breakthrough in wastewater treatment. Research on unit processes, such as struvite recovery and treatment of ammonium rich streams, also shows promising results. In many cases, nutrient removal and recovery can be combined, with possibilities for a gradual change from one system to another.

  12. Integrated Approach to Managing Sustainability

    OpenAIRE

    László Berényi

    2013-01-01

    Achieving a higher level of sustainable development needs both individual and corporate efforts. An effective solution needs an integrated approach that allows the consideration of environmental and social values in addition to the economic interest. Additional management tools may be useful but sustaining them needs often untenable efforts from the organisations.This paper draws up a framework for how to integrate the values of sustainable development into the corporate activities by using c...

  13. A generic open-source toolbox to help long term irrigation monitoring for integrated water management in semi-arid Mediterranean areas.

    Science.gov (United States)

    Le Page, Michel; Gosset, Cindy; Oueslati, Ines; Calvez, Roger; Zribi, Mehrez; Lili Chabaane, Zohra

    2016-04-01

    In semi arid areas, irrigated plains are often the major consumer of water well beyond other water demands. Traditionally fed by surface water, irrigation has massively shifted to a more reliable resource: groundwater. This shift occurred in the late thirty years has also provoked an extension and intensification of irrigation, often translated into impressive groundwater table decreases. Integrated water management needs a systematic and robust way to estimate the water demands by the agricultural sector. We propose a generic toolbox based on the FAO-56 method and the Crop Coefficient/NDVI approach used in Remote Sensing. The toolbox can be separated in three main areas: 1) It facilitates the preparation of different input datasets: download, domain extraction, homogenization of formats, or spatial interpolation. 2) A collection of algorithms based on the analysis of NDVI time series is proposed: Separation of irrigated vs non-irrigated area, a simplified annual land cover classification, Crop Coefficient, Fraction Cover and Efficient Rainfall. 3) Synthesis against points or areas produces the output data at the desired spatial and temporal resolution for Integrated Water Modeling or data analysis and comparison. The toolbox has been used in order to build a WEAP21 model of the Merguellil basin in Tunisia for the period of 2000-2014. Different meteorological forcings were easily used and compared: WFDEI, AGRI4CAST, MED-CORDEX. A local rain gauges database was used to produce a daily rainfall gridded dataset. MODIS MOD13Q1 (16 days, 250m) data was used to produce the NDVI derived datasets (Kc, Fc, RainEff). Punctual evapotranspiration was compared to actual measurements obtained by flux towers on wheat and barley showing good agreements on a daily basis (r2=0.77). Finally, the comparison to monthly statistics of three irrigated commands was performed over 4 years. This late comparison showed a bad agreement which led us to suppose two things: First, the simple

  14. Operational Management System for Regulated Water Systems

    Science.gov (United States)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  15. Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia.

    Science.gov (United States)

    Hofmann, J; Venohr, M; Behrendt, H; Opitz, D

    2010-01-01

    Within the framework of Integrated Water Resources Management (IWRM) the nutrient and heavy metal levels within the Kharaa river basin were investigated. By the application of the MONERIS model, which quantifies nutrient emissions into river basins, various point and diffuse pathways, as well as nutrient load in rivers, could be analysed. Despite seasonal variations and inputs of point sources (e.g. Wastewater Treatment Plant Darkhan) the nutrient concentrations in most of the subbasins are on a moderate level. This shows evidence for a nutrient limited ecosystem as well as dilution effects. However, in the middle and lower reaches heavy metal concentrations of arsenic and mercury, which are linked to mining activities in many cases, are a point of concern. Thus measures are necessary to protect the valuable chemical and ecological status of the Kharaa River and its tributaries. As a result of the growing economic pressure Mongolia will enhance the agricultural production by irrigation. Until 2015 about 60% of the agricultural land shall be irrigated. In addition the gold mining activities shall increase by 20% a year. Both sectors have a high demand for water quantity and quality. The model MONERIS allows the assessment of measures which are inevitable to protect the water quality under shrinking water availability.

  16. Integrated Resource Management at a Watershed Scale

    Science.gov (United States)

    Byrne, J. M.; MacDonald, R. J.; Cairns, D.; Barnes, C. C.; Mirmasoudi, S. S.; Lewis, D.

    2014-12-01

    Watershed hydrologists, managers and planners have a long list of resources to "manage." Our group has worked for over a decade to develop and apply the GENESYS (Generate Earth Systems Science) high-resolution spatial hydrometeorological model. GENESYS was intended for modelling of alpine snowpack, and that work has been the subject of a series of hydrometeorology papers that applied the model to evaluate how climate change may impact water resources for a series of climate warming scenarios through 2100. GENESYS has research modules that have been used to assess alpine glacier mass balance, soil water and drought, forest fire risk under climate change, and a series of papers linking GENESYS to a water temperature model for small headwater streams. Through a major commercialization grant, we are refining, building, adopting, and adapting routines for flood hydrology and hydraulics, surface and groundwater storage and runoff, crop and ecosystem soil water budgets, and biomass yields. The model will be available for research collaborations in the near future. The central goal of this development program is to provide a series of research and development tools for non-profit integrated resource management in the developed and developing world. A broader question that arises is what are the bounds of watershed management, if any? How long should our list of "managed" resources be? Parallel work is evaluating the relative values of watershed specialists managing many more resources with the watershed. Hydroelectric power is often a key resource complimentary to wind, solar and biomass renewable energy developments; and biomass energy is linked to water supply and agriculture. The August 2014 massive tailings dam failure in British Columbia threatens extensive portions of the Fraser River sockeye salmon run, millions of fish, and there are concerns about long-term contamination of water supplies for many British Columbians. This disaster, and many others that may occur

  17. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization - abstract

    Science.gov (United States)

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  18. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization

    Science.gov (United States)

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  19. Water resources management in Rostov region (Russia)

    Science.gov (United States)

    Nazarenko, O.

    2009-04-01

    Proper management of water resources leads to the development of the region. Nowadays there is an urgent problem - water shortage. Many European countries face this problem, Russia is not the excluding. In addition, there is a problem not only of water quantity, but quality as well. Although Rostov region is well provided with fresh water, the water resources are unevenly disturbed within region. Rostov region is heavily populated and receive moderate rainfall. Groundwater has a limited capacity for renewal. At the same time, Rostov region is industrial and agricultural one that is why pressures from agriculture, industry and domestic users affect the quantity of water resources. Both water quality and availability must be integrated in long-term planning and policy implications concerning water management. In Russia there are high standards for water quality. Effectively managed water-supply and resource protection systems generate the indispensable basis for agricultural and industrial production. Throughout the Region, urban and rural development has thrived where water sources have been effectively managed. Rostov region can be divided into three parts: northern districts, central part of the region and southern ones. Main cities in the region have not enough available drinking water. In the region ground water is used for curing and water supplying purpose.

  20. Mussel Production and Water Framework Directive Targets in the Limfjord, Denmark: an Integrated Assessment for Use in System-Based Management

    Directory of Open Access Journals (Sweden)

    Grete E. Dinesen

    2011-12-01

    Full Text Available Growth of human activities often conflict with nature conservation requirements and integrated assessments are necessary to build reliable scenarios for management. In the Limfjord, Denmark's largest estuary, nutrient loading reductions are necessary to fulfill EU regulations criteria, such as the Water Framework Directive (WFD. Cuts in nutrient loadings do not necessarily result in corresponding reductions in eutrophication impacts or in improving primary and higher trophic-level production. Similarly, the socioeconomic consequences of a mussel fishery and aquaculture production are complex and hard to predict. This study focuses on the usefulness of a System Approach Framework (SAF implementation for stakeholder understanding of complex systems and development of sustainable management. Ecological-social-economic (ESE model simulations clearly demonstrated the potential problems of WFD implementation for mussel fishers and mussel farmers. Simulation of mussel fishery closures resulted in a tenfold increase in the hitherto fishable mussel biomass and a similar decrease in the biomass of shallow-water mussels and medium-sized ones in deep water. A total closure of the mussel fishery could result in an annual profit loss of ~€6.2 million. Scenario simulation of the introduction of one, two, three, and four mussel culture farms of ~19 ha showed that the introduction of line-mussels would decrease the biomass of wild mussels both in shallow and deep waters, affecting the catch and profit of fishers. The SAF, which included consultation with stakeholders at all stages, differs from the traditional public consultation process in that (1 communication was verbal and multilateral, (2 discussion among stakeholders was facilitated, and (3 stakeholder opinions and priorities formed the focus of the ESE assessment.

  1. Implementation of integrated management system

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar Junior, Joao Carlos A.; Fonseca, Victor Zidan da [Industrias Nucleares do Brasil (INB-RJ) Resende, RJ (Brazil)]. E-mail: joaojunior@inb.gov.br; victorfonseca@inb.gov.br

    2007-07-01

    In present day exist quality assurance system, environment, occupational health and safety such as ISO9001, ISO14001 and OHSAS18001 and others standards will can create. These standards can be implemented and certified they guarantee one record system, quality assurance, documents control, operational control, responsibility definition, training, preparing and serve to emergency, monitoring, internal audit, corrective action, continual improvement, prevent of pollution, write procedure, reduce costs, impact assessment, risk assessment , standard, decree, legal requirements of municipal, state, federal and local scope. These procedure and systems when isolate applied cause many management systems and bureaucracy. Integration Management System reduce to bureaucracy, excess of documents, documents storage and conflict documents and easy to others standards implementation in future. The Integrated Management System (IMS) will be implemented in 2007. INB created a management group for implementation, this group decides planing, works, policy and advertisement. Legal requirements were surveyed, internal audits, pre-audits and audits were realized. INB is partially in accordance with ISO14001, OSHAS18001 standards. But very soon, it will be totally in accordance with this norms. Many studies and works were contracted to deal with legal requirements. This work have intention of show implementation process of ISO14001, OHSAS18001 and Integrated Management System on INB. (author)

  2. Integrated ageing management of Atucha NPP

    Energy Technology Data Exchange (ETDEWEB)

    Ranalli, Juan M.; Marchena, Martin H.; Zorrilla, Jorge R.; Antonaccio, Elvio E.; Brenna, Pablo; Yllanez, Daniela; Cruz, Gerardo Vera de la; Luraschi, Carlos, E-mail: ranalli@cnea.gov.ar [Gerencia Coordinacion Proyectos CNEA-NASA, Comision Nacional de Energia Atomica, Buenos Aires (Argentina); Sabransky, Mario, E-mail: msabransky@na-sa.com.ar [Departamento Gestion de Envejecimiento, Central Nuclear Atucha I-II Nucleoelectrica Argentina S.A., Provincia de Buenos Aires (Argentina)

    2013-07-01

    Atucha NPP is a two PHWR unit site located in Lima, Province of Buenos Aires, 120 km north of Buenos Aires, Argentina. Until recent, the site was split in Atucha I NPP, a 350 MW pressure vessel heavy water reactor in operation since 1974; and Atucha II, a similar design reactor, twice as big as Atucha I finishing a delayed construction. With the start-up of Atucha II and aiming to integrate the management of the plants, the Utility (Nucleolectrica Argentina Sociedad Anonima - NASA) has reorganized its operation units. Within this reorganization, an Ageing Management Department has been created to cope with all ageing issues of both Atucha I and II units. The Atomic Energy Commission of Argentina (Comision Nacional de Energia Atomica - CNEA) is a state-owned R and D organization that; among other functions such as designing and building research reactors, developing uranium mining and supplying radioisotopes to the medical market; is in charge of providing support and technological update to all Argentinean NPPs. The Ageing Management Department of Atucha NPP and the Ageing Management Division of CNEA has formed a joint working group in order to set up an Integrated Ageing Management Program for Atucha NPP following IAEA guidelines. In the present work a summary of the activities, documental structure and first outputs of the Integrated Ageing Management Program of Atucha NPP is presented. (author)

  3. Water management tools for Mississippi

    Science.gov (United States)

    Our goal is to equip crop producers in the Southeast with tools to improve crop production and management including: • Knowledge of crop and soil water relations • Irrigation scheduling tools for better water management, and • Economic benefits of water conservation technologies Crop performance can...

  4. ASPECTS OF INTEGRATION MANAGEMENT METHODS

    Directory of Open Access Journals (Sweden)

    Artemy Varshapetian

    2015-10-01

    Full Text Available For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010 and is therefore not considered in the article. A large number of publications devoted to the methods and tools of production management, for example (Halevi, 2007. On the basis of what was said in the article discusses the possibility of the integration of only three methods have received in recent years, the most widely used, namely: Six Sigma method - SS (George et al., 2005 and supplements its-Design for six sigm? - DFSS (Taguchi, 2003; Lean production transformed with the development to the "Lean management" and further to the "Lean thinking" - Lean (Hirano et al., 2006; Theory of Constraints, developed E.Goldratt - TOC (Dettmer, 2001. The article investigates some aspects of this integration: applications in diverse fields, positive features, changes in management structure, etc.

  5. Integrated Building Management System (IBMS)

    Energy Technology Data Exchange (ETDEWEB)

    Anita Lewis

    2012-07-01

    This project provides a combination of software and services that more easily and cost-effectively help to achieve optimized building performance and energy efficiency. Featuring an open-platform, cloud- hosted application suite and an intuitive user experience, this solution simplifies a traditionally very complex process by collecting data from disparate building systems and creating a single, integrated view of building and system performance. The Fault Detection and Diagnostics algorithms developed within the IBMS have been designed and tested as an integrated component of the control algorithms running the equipment being monitored. The algorithms identify the normal control behaviors of the equipment without interfering with the equipment control sequences. The algorithms also work without interfering with any cooperative control sequences operating between different pieces of equipment or building systems. In this manner the FDD algorithms create an integrated building management system.

  6. Some aspects of integrated coastal zone management in India

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.

    . This trend has created tremendous pressures and the ecological balance is disturbing. There are various factors which are degrading the coastal waters. The Integrated Coastal Management is relatively a recent concept, which involves multidisciplinary approach...

  7. An Integrated Assessment of Investments towards Global Water Sustainability

    Directory of Open Access Journals (Sweden)

    Andrea M. Bassi

    2010-10-01

    Full Text Available To date there has been limited research on integrated water resource management, specifically regarding investments, from a global perspective, largely due to the complexity of the problem and to generally local water management practices. Water demand and supply are very often affected by international factors and with global climate change, population growth and increasing consumption, water management is now more than ever a global issue. This paper gives an overview of current and impending water problems while assessing investment needs for integrated water management as a possible solution to projected water challenges. The analysis compares a business as usual case (BAU to a scenario in which investments improve water efficiency use across sectors to curb demand, increase innovative supply from desalination and enhance conventional water resources management measures. System dynamics modeling is employed to represent the structural factors influencing water demand and supply in the context of an integrated framework including cross-sectoral linkages. The analysis confirms that sustainable water management is feasible, but it requires investments in the range of $145 billion per year between 2011 and 2050 (0.16% of GDP or $17/person/year and timely, effective action.

  8. INTEGRATION OF ENVIRONMENTAL MANAGEMENT SYSTEM

    Directory of Open Access Journals (Sweden)

    Tomescu Ada Mirela

    2012-07-01

    Full Text Available The relevance of management as significant factor of business activity can be established on various management systems. These will help to obtain, organise, administrate, evaluate and control particulars: information, quality, environmental protection, health and safety, various resources (time, human, finance, inventory etc. The complexity of nowadays days development, forced us to think ‘integrated’. Sustainable development principles require that environment management policies and practices are not good in themselves but also integrate with all other environmental objectives, and with social and economic development objectives. The principles of sustainable development involve that environment management policies and practices. These are not sound in them-self but also integrate with all other environmental objectives, and with social and economic development objectives. Those objectives were realized, and followed by development of strategies to effects the objective of sustainable development. Environmental management should embrace recent change in the area of environmental protection, and suit the recently regulations of the field -entire legal and economic, as well as perform management systems to meet the requirements of the contemporary model for economic development. These changes are trailed by abandon the conventional approach of environmental protection and it is replaced by sustainable development (SD. The keys and the aims of Cleaner Productions (CP are presented being implemented in various companies as a non-formalised environmental management system (EMS. This concept is suggested here as a proper model for practice where possible environmental harmful technologies are used -e.g. Rosia Montana. Showing the features and the power of CP this paper is a signal oriented to involve the awareness of policy-makers and top management of diverse Romanian companies. Many companies in European countries are developing

  9. A credibility-based chance-constrained optimization model for integrated agricultural and water resources management: A case study in South Central China

    Science.gov (United States)

    Lu, Hongwei; Du, Peng; Chen, Yizhong; He, Li

    2016-06-01

    This study presents a credibility-based chance-constrained optimization model for integrated agricultural irrigation and water resources management. The model not only deals with parameter uncertainty represented as fuzzy sets, but also provides a credibility level which indicates the confidence level of the generated optimal management strategies. The model is used on a real-world case study in South Central China. Results from the case study reveal that: (1) a reduction in credibility level would result in an increasing planting area of watermelon, but impaired the planting acreage of high-quality rice and silk; (2) groundwater allocation would be prioritized for reducing surface water utilization cost; (3) the actual phosphorus and nitrogen emissions reached their limit values in most of the zones over the planning horizon (i.e., phosphorus and nitrogen emissions reaching 969 tonnes and 3814 tonnes under λ = 1.00, respectively; phosphorus and nitrogen emissions reaching 972 tonnes and 3891 tonnes under λ = 0.70, respectively). When the credibility level reduces from 1.00 to 0.70, system benefit would rise by 32.60% and groundwater consumption would be reduced by 79.51%. However, the pollutant discharge would not increase as expected, which would be reduced by 40.14% on the contrary. If system benefit is not of major concern, an aggressive strategy is suggested by selecting a rather low credibility level (say, 0.70). This strategy is suggested for guaranteeing protection of local groundwater resources and mitigation of local environmental deterioration by sacrificing part of system benefit.

  10. Recent California Water Transfers: Emerging Options in Water Management

    Science.gov (United States)

    1992-12-01

    where droughts endure long enough that water managers have opportunities and motivation to test innovative water management strategies . With literally...water demands expand. This serves to motivate examination and experimentation with novel water management strategies , such as water transfers. 10... management strategies to which water transfers can be applied. The latter part of the chapter identifies several additional types of water transfers

  11. Systematic Methodology of Integrated Supply Chain Management

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Supply chain management (SCM) is a strategy for global competition. Th e characteristics of SCM are integration, systematic and coordination. Using sys tematic, coordination thoughts and integration theory, a new model of enterprise integration based on supply chain management is put forward and an implementing paradigm for systematic methodology of supply chain management is developed.

  12. New methodologies for the integrated analysis of groundwater management. Altiplano water system case study (Murcia, SE Spain); Nuevas metodologias para el analisis integrado de la gestion del agua subterranea. Aplicacion al caso de estudio del Altiplano (Murcia, SE Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J. L.; Garcia Arostegui, J. L.

    2009-07-01

    Integrated analysis of water management incorporates a great range of dimensions and aspects involved in the management of a water system. Lately, these kind of studies have become numerous because they allow getting a holistic knowledge and they also help managers with the decision making process. Nevertheless, there is not yet a general methodology for tackling this type of studies and there is a big opened field concerning the tools and techniques application. This paper establishes a methodology, which can be extrapolated to other case studies, and a practical procedure for the integrated analysis of groundwater management. This analysis starts with the identification and conceptualization of the hydric problematic. Then, a second phase is focused on the development of sectorial and detailed studies. The third phase is the building of the Decision Support System (DSS) based on the results from the sectorial studies. This research develops and proposes the application of a stochastic DSS based on Object-Oriented Bayesian Networks (OOBNs) that allows incorporating a huge range of aspects such as hydrogeological, socioeconomic and environmental, among others. The last phase of the procedure is the simulation of water management scenarios through the DSS. This allows comparing and quantifying the impacts generated by three water management interventions which have been proposed previously. The first scenario establishes the continuation of the current situation, the second scenario is made up of for several water management interventions which are the incoming of external water resources, the purchase of water rights and a reduction of the water demand; finally, the third scenario implies to reach the equilibrium in the aquifer water budgets. (Author) 19 refs.

  13. Portfolios of adaptation investments in water management

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; Werners, Saskia E.

    2015-01-01

    This study explores how Modern Portfolio Theory (MPT) can guide investment decisions in integrated water resources management (IWRM) and climate change adaptation under uncertainty. The objectives of the paper are to: (i) explain the concept of diversification to reduce risk, as formulated in MPT

  14. Portfolios of adaptation investments in water management

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; Werners, Saskia E.

    2015-01-01

    This study explores how Modern Portfolio Theory (MPT) can guide investment decisions in integrated water resources management (IWRM) and climate change adaptation under uncertainty. The objectives of the paper are to: (i) explain the concept of diversification to reduce risk, as formulated in

  15. Portfolios of adaptation investments in water management

    NARCIS (Netherlands)

    Aerts, Jeroen C.J.H.; Botzen, Wouter; Werners, Saskia E.

    2015-01-01

    This study explores how Modern Portfolio Theory (MPT) can guide investment decisions in integrated water resources management (IWRM) and climate change adaptation under uncertainty. The objectives of the paper are to: (i) explain the concept of diversification to reduce risk, as formulated in MPT

  16. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    Science.gov (United States)

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  17. Integrating a mini catchment with mulching for soil water management in a sloping jujube orchard on the semiarid Loess Plateau of China

    Directory of Open Access Journals (Sweden)

    H. C. Li

    2015-11-01

    Full Text Available Conserving more soil water is of great importance to the success of arid and semiarid orchards. On the hilly areas of the Loess Plateau of China, mini catchments, named fish-scale pits, are widely used in orchards for collecting surface runoff to infiltrate more soil water. However, the flat surface inside fish-scale pits would increase soil evaporation during non-rainfall periods. Therefore, we integrated fish-scale pits with mulching, a popular meaning to reduce soil evaporation, to test whether this integration could improve soil water conservation. The results showed that soil water deficit was observed for all treatments. However, soil water deficit was further intensified in the dry month. An index was used to represent the soil water supply from rainfall infiltration denoted WS. For the fish-scale pit with branch mulching treatment in the entire soil profile, the compensation degree of SWS were greater than 0. However, the CK treatment showed negative values in the 40–180 cm. In conclusion, integrating fish-scale pits with mulching could conserve significantly more soil water by increasing infiltration and decreasing evaporation compared to fish-scale pits alone. Since the mulching branches were trimmed jujube branches, the integration of fish-scale pit with branch mulching is recommended in jujube orchards in order to both preserve more soil water and reduce the cost of mulching materials.

  18. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    . The paper identifies the aspects of FM that should be considered during the different stages of design. A typology of knowledge transfer from building operation to building design is presented based on a combination of knowledge push from building operation and knowledge pull from building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures....... Involvement of professional facilities managers in the design process is an obvious strategy, but increased competences are needed among building clients, designers and the operational staff. More codification of operational knowledge is also needed, for instance in IT systems. The paper is based...

  19. Integrated Foreign Exchange Risk Management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen

    Empirical research has focused on export as a proxy for the exchange rate exposure and the use of foreign exchange derivatives as the instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role...... of import in medium-sized, manufacturing firms in Denmark (a small, open economy). We find a strong, negative relation between import and foreign exchange derivatives usage on the aggregate level. Our findings are consistent with the notion that firms use import to match the foreign exchange exposure...... created by foreign sales activities....

  20. Integrated Foreign Exchange Risk Management

    DEFF Research Database (Denmark)

    Aabo, Tom; Høg, Esben; Kuhn, Jochen

    Empirical research has focused on export as a proxy for the exchange rate exposure and the use of foreign exchange derivatives as the instrument to deal with this exposure. This empirical study applies an integrated foreign exchange risk management approach with a particular focus on the role...... of import in medium-sized, manufacturing firms in Denmark (a small, open economy). We find a strong, negative relation between import and foreign exchange derivatives usage on the aggregate level. Our findings are consistent with the notion that firms use import to match the foreign exchange exposure...

  1. Distribution Integrity Management Plant (DIMP)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Jerome F. [Los Alamos National Laboratory

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records

  2. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  3. An Integrated Approach to Identification, Assessment and Management of Watershed-Scale Risk for Sustainable Water Use Through Reuse and Recycling

    Science.gov (United States)

    Hunter, C. K.; Bolster, D.; Gironas, J. A.

    2014-12-01

    Water resources are essential to development, not only economically but also socially, politically and ecologically. With growing demand and potentially shrinking supply, water scarcity is one of the most pressing socio-ecological problems of the 21st century. Considering implications of global change and the complexity of interrelated systems, uncertain future conditions compound problems associated with water stress, requiring hydrologic models to re-examine traditional water resource planning and management. The Copiapó water basin, located in the Atacama Desert of northern Chile exhibits a complex resource management scenario. With annual average precipitation of only 28 mm, water intensive sectors such as export agriculture, extensive mining, and a growing population have depleted the aquifeŕs reserves to near critical levels. Being that global climate change models predict a decrease in already scarce precipitation, and that growing population and economies demand will likely increase, the real future situation might be even worse than that predicted. A viable option for alleviation of water stress, water reuse and recycling has evolved through technological innovation to feasibly meet hydraulic needs with reclaimed water. For the proper application of these methods for resource management, however, stakeholders must possess tools by which to quantify hydrologic risk, understand its factors of causation, and choose between competing management scenarios and technologies so as to optimize productivity. While previous investigations have addressed similar problems, they often overlook aspects of forecasting uncertainty, proposing solutions that while accurate under specific scenarios, lack robustness to withstand future variations. Using the WEAP (Water Evaluation and Planning) platform for hydrologic modeling, this study proposes a methodology, applicable to other stressed watersheds, to quantify inherent risk in water management positions, while considering

  4. Integrated Work Management: Overview, Course 31881

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-30

    Integrated work management (IWM) is the process used for formally implementing the five-step process associated with integrated safety management (ISM) and integrated safeguards and security management (ISSM) at Los Alamos National Laboratory (LANL). IWM also directly supports the LANL Environmental Management System (EMS). IWM helps all workers and managers perform work safely and securely and in a manner that protects people, the environment, property, and the security of the nation. The IWM process applies to all work activities at LANL, from working in the office to designing experiments to assembling and detonating explosives. The primary LANL document that establishes and describes IWM requirements is Procedure (P) 300, Integrated Work Management.

  5. Integrated analysis of the climate change effects on water availability for catchment management. The case of the Ésera River (Spain)

    Science.gov (United States)

    Solera, Abel; Segura, Carlos; Bussi, Gianbattista; Momblanch, Andrea; Francés, Félix

    2014-05-01

    The analysis of the impact of climate change on water resources is of primary importance in Mediterranean Areas. Mean precipitation is expected to decrease, although an increase in its torrentiality is foreseen, and temperature is expected to increase. In addition, growing urban water demand and new environmental requirements also contribute to increase water stress. To achieve an improved use of water resources, new and detailed studies of the impact of the climate change are needed. Due to the high complexity of rainfall-runoff processes and the need to incorporate climate change effect in them, physically based distributed models are proposed as a tool for assessing and analysing the climate change impact on water discharge. In this case, the distributed conceptual TETIS model was employed. This model was previously calibrated and validated in order to reproduce the hydrological cycle of a Mediterranean-influenced catchment, the Ésera River (Spain), under current climate conditions. Then, the TETIS model was driven by the results of a climatic model (precipitation and temperature series) under three climatic scenarios: current climate (or control scenario), A2 and B2 of the Special Report on Emission Scenarios. Water discharge series were generated at different points of the catchment. The model results pointed out that a global decrease in water yield is devised, being around 33% and 37% for scenario A2 and B2 respectively. Water discharge series were subsequently used in the analysis of climate change impact on water resources and water use in the studied river basin. To do so, a water allocation model was built, calibrated and validated under current streamflow conditions for the Ésera River. It considered all the water management infrastructures, water uses and environmental requirements. The results from TETIS for the three different scenarios were introduced as inputs to the water management model, what allowed performing three simulations. The outcomes

  6. The World Commission on Dams: A fundamental step towards integrated water resources management and poverty reduction? A pilot case in the Lower Zambezi, Mozambique

    Science.gov (United States)

    Scodanibbio, Lucia; Mañez, Gustavo

    The Cahora Bassa dam in the Lower Zambezi has undoubtedly brought varied economic benefits (such as hydroelectricity) to Mozambique. There is also, however, evidence of certain negative impacts that have increased the vulnerability of downstream populations. Specifically, current water management practices in the Zambezi have affected people’s livelihoods by the frequent unpredictable releases of water that wash away riverbank crops, impoverish fish stocks and fish habitat, and threaten the valuable shrimp exports. These releases have also worsened the effects of large floods, for example the floods of 2001. The ecosystem of the Zambezi delta, which is a Ramsar site, has also suffered since Cahora Bassa’s regulation. The Mozambican government is proposing to construct a new dam downstream of Cahora Bassa at Mphanda Nkuwa. In the feasibility study, there was no due consideration of rural downstream communities and their livelihoods. This has left many potentially affected people uninformed and vulnerable to the risks associated with the new development. The new dam is likely to worsen the already severe impacts of Cahora Bassa. The World Commission on Dams (WCD) developed seven strategic priorities, designed to inform all decisions related to future dam developments. These priorities follow principles of public participation, social equity, environmental sustainability, economic efficiency and accountability. The WCD proposed best-practice guidelines for both addressing existing dams and for any future ones which are planned. According to the WCD, affected communities have a right to participate in the decision to build a dam, they should be the first to benefit from the project, and the rivers on which their livelihoods are based should be protected. Stakeholder participation is one of the fundamental components of integrated water resources management (IWRM). For effective participation in dam projects, affected people need to be empowered, have access to

  7. INTEGRATED SUSTAINABLE MANGROVE FOREST MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2015-07-01

    Full Text Available Mangrove forest as a renewable resource must be managed based on sustainable basis in which the benefits of ecological, economic and social from the forest have to equity concern in achieving the optimum forest products and services in fulfill the needs of recent generation without destruction of future generation needs and that does not undesirable effects on the physical and social environment. This Sustainable Forest Management (SFM practices needs the supporting of sustainability in the development of social, economic and environment (ecological sounds simultaneously, it should be run by the proper institutional and regulations. In operational scale, SFM need integration in terms of knowledge, technical, consultative of stakeholders, coordination among sectors and other stakeholders, and considerations of ecological inter-relationship in which mangroves as an integral part of both a coastal ecosystem and a watershed (catchment area. Some tools have been developed to measure the performent of SFM, such as initiated by ITTO at 1992 and followed by Ministry of Forestry of Indonesia (1993, CIFOR (1995, LEI (1999, FSC (1999, etc., however, the true nuance of SFM’s performance is not easy to be measured. 

  8. Principles and practices of sustainable water management

    Institute of Scientific and Technical Information of China (English)

    Bixia Xu

    2010-01-01

    Literature related to sustainable water management is reviewed to illustrate the relationship among water management, sustainability (sustainable development), and sustainable water management. This review begins with the explanation on the definition of sustainable water management, followed by a discussion of sustainable water management principles and practices.

  9. Institutional and legal arrangements in the Nile river basin: suggestions to improve the current situation toward adaptive integrated water resources management.

    Science.gov (United States)

    Abdalla, Khalid Mohamed El Hassan

    2008-01-01

    A comparative study was conducted in this work in order to investigate the current situation in the Nile river basin (NRB) regarding the institutional and legal arrangements needed to support the adaptive integrated water resources management (AIWRM) strategy. Two similar river basins were selected to achieve this comparison and to introduce suggestions to reform the current situation in the basin. Before that, the ideal situation is investigated to be as a yardstick for the desired situation. The study indicated that the necessary AIWRM criteria may include regulatory as well as implementation organizations that support shared-vision reaching with its all necessary features (cooperation, stakeholders' participation, subsidiarity, and information and knowledge exchange). Thus the main features of the desired situations regarding AIWRM in river basins are stakeholders' participation, learning-driven ability, quick response to risks and uncertainties, and finally a legal framework that could support these criteria. Although the AIWRM criteria seem to be satisfied in NRB, the basin lacks the necessary regulatory institutions as well as the legal framework. According to this, this study recommends to reform the current situation in NRB by creating regulator institutions (policy and decision making level) as well a legal framework to legitimate them.

  10. Instruments for an equitable management of shared waters

    Directory of Open Access Journals (Sweden)

    Ruxandra M. Petrescu-Mag

    2010-02-01

    Full Text Available Concepts of Integrated Water Resources and River Basins Management are considered as key points to the question of how conflict can be avoided and international waters be managed. Over the last fifty years, countries have been engaged in more than 500 conflictive events over water. Almost 90% were disagreements over infrastructure and water quantity allocation. The Convention on the NonnavigationalUses of International Watercourses (1997 provides an important template for cooperation and equitable transboundary water-sharing.

  11. Integrated Computer System of Management in Logistics

    Science.gov (United States)

    Chwesiuk, Krzysztof

    2011-06-01

    This paper aims at presenting a concept of an integrated computer system of management in logistics, particularly in supply and distribution chains. Consequently, the paper includes the basic idea of the concept of computer-based management in logistics and components of the system, such as CAM and CIM systems in production processes, and management systems for storage, materials flow, and for managing transport, forwarding and logistics companies. The platform which integrates computer-aided management systems is that of electronic data interchange.

  12. Managing IT Integration Risk in Acquisitions

    DEFF Research Database (Denmark)

    Henningsson, Stefan; Kettinger, William J.

    2016-01-01

    The article discusses a framework for evaluating risk of information technology (IT) integration in acquisitions. Topics include the use of the experience of serial acquirer Trelleborg AB to show the merits of the framework for managing the risk and to determine low-risk acquisitions......, the importance of managing IT integration risk, and various risk areas for acquisition IT integration....

  13. Economics of Water Management

    NARCIS (Netherlands)

    Zhu, X.

    2015-01-01

    Water is a scarce natural resource. It is not only used as an input to economic activity such as irrigation, household and industrial water use, and hydropower generation, but also provides ecosystem services such as the maintenance of wetlands, wildlife support, and river flows for aquatic

  14. Managing water for life

    Institute of Scientific and Technical Information of China (English)

    Daniel P. LOUCKS; Haifeng JIA

    2012-01-01

    Water is essential for life. In spite of the entire engineering infrastructure devoted to the treatment, regulation and beneficial uses of water, occasionally sufficient quantities and qualities of water become scarce. When this happens, just how do we decide how much less water to allocate to all of us and the activities we engage in to sustain and enhance our quality of life? This paper addresses some of the complexities of answering such a question, especially as society increasingly recognizes the need to provide flow regimes that will maintain healthy aquatic and floodplain ecosystems that also impact the economic, physical and even the spiritual quality of our lives. For we depend on these ecosystems to sustain our wellbeing. We are indeed a part of our ecosystems. We depend upon on aquatic ecosystems to moderate river flow qualities and quantities, reduce the extremes of floods and droughts, reduce erosion, detoxify and decompose water- borne wastes, generate and preserve flood plain soils and renew their fertility, regulate disease carrying organisms, and to enhance recreational benefits of river systems. This question of deciding just how much water to allocate to each water user and for the maintenance of viable aquatic ecosystems, especially when there is not enough, is a complex, and largely political, issue. This issue is likely to become even more complex and political and contentious in the future as populations grow and as water quantities and their qualities become even more variable and uncertain.

  15. An integrated quality management tool based on GIS technology

    OpenAIRE

    ALEXANDRESCU, Maria Ilinca; ICHIM, Laurentiu; CHEVERESAN, Bogdan; MARINESCU, Maria; VASIU, Aurora; TUCHIU, Elena; SCHENK, Collin; SOUTTER, Marc; Drobot, Radu

    2008-01-01

    Abstract According to the Water Framework Directive 2000/60/EC, water bodies have to achieve the good status by 2015. In order to fulfill this objective the quality management must be improved. An integrated GIS application, called GESRO, was created. It is an extension to ArcGIS that uses its functionality to automatically classify the water quality into classes based on measured values. This classification is done for chemical and biological indicators, dangerous substances, drinking water,...

  16. Integrating socio-economic and biophysical data to support water allocations within river basins: an example from the Inkomati Water Management Area in South Africa

    CSIR Research Space (South Africa)

    De Lange, Willem J

    2010-01-01

    Full Text Available ; based on a meta-modelling approach using Geographical Information Systems, the geo-spatial analysis platform, and an application of a water-use simulation model. The method is developed and applied to the irrigation agriculture sector in the Inkomati...

  17. ECONOMIC ANALYSIS OF ALFALFA INTEGRATED MANAGEMENT PRACTICES

    OpenAIRE

    Ward, Clement E.; Dowdy, Alan K.; Berberet, Richard C.; Stritzke, Jimmie F.

    1990-01-01

    Integrated pest management (IMP) initially focused on insect pest control. More recently, IPM encompasses a broader concept of management, one which crosses several disciplinary boundaries. This article reports results of research dealing with four integrated management decisions for alfalfa (cultivar selection, inset control, weed control, and end-of-season harvest options.

  18. Storm Water Management Model (SWMM)

    Science.gov (United States)

    EPA's Storm Water Management Model (SWMM) is used throughout the world for planning, analysis and design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban areas.

  19. Technology for Water Treatment (National Water Management)

    Science.gov (United States)

    1992-01-01

    The buildup of scale and corrosion is the most costly maintenance problem in cooling tower operation. Jet Propulsion Laboratory successfully developed a non-chemical system that not only curbed scale and corrosion, but also offered advantages in water conservation, cost savings and the elimination of toxic chemical discharge. In the system, ozone is produced by an on-site generator and introduced to the cooling tower water. Organic impurities are oxidized, and the dissolved ozone removes bacteria and scale. National Water Management, a NASA licensee, has installed its ozone advantage systems at some 200 cooling towers. Customers have saved money and eliminated chemical storage and discharge.

  20. Integrating Decentralized Rainwater Management in Urban Planning and Design: Flood Resilient and Sustainable Water Management Using the Example of Coastal Cities in The Netherlands and Taiwan

    OpenAIRE

    Thorsten Schuetze; Lorenzo Chelleri

    2013-01-01

    Urbanized delta areas worldwide share a growing tendency of exposure to water stress induced by the effects of climate change and anthropogenic factors, threatening the operation of infrastructure systems and future urban development. The important synergistic impacts coexisting with freshwater scarcity are increasing urbanization rates, subsiding soils, saltwater intrusion in aquifers and rivers, coastal erosion, and increased flooding. Innovative design strategies and concepts for the integ...

  1. 基于网络的城市水资源综合信息管理系统设计与开发%Design and Development of Integrated Urban Water Resources Management Information System Based on Network

    Institute of Scientific and Technical Information of China (English)

    高亮; 冯琳伟; 晋华; 邢述彦; 张天菊

    2013-01-01

    To solve the complex management prohlems of water resources data, an integrated urhan water resources management information system was developed hased on Java EE platform and B S mode network system. The example of Changzhi City. Shanxi Province show that the system can effectively manage the materials including water users hasic information, water using, discharge and consume information, water abstraction licensing information and payment information of water resources fee. etc.. This system provides technical support for reasonable allocation of water resources management decision.%为解决水资源数据管理不善的问题,基于Java EE平台,采用B/S结构网络化模式,研发了一套城市水资源综合信息管理系统.在山西省长治市应用结果表明,该系统可有效管理取用水户、取用水量、取水许可和水资源费征收等水资源基本业务,为水资源管理合理配置决策提供了技术支持.

  2. Information Security Management - Part Of The Integrated Management System

    Science.gov (United States)

    Manea, Constantin Adrian

    2015-07-01

    The international management standards allow their integrated approach, thereby combining aspects of particular importance to the activity of any organization, from the quality management systems or the environmental management of the information security systems or the business continuity management systems. Although there is no national or international regulation, nor a defined standard for the Integrated Management System, the need to implement an integrated system occurs within the organization, which feels the opportunity to integrate the management components into a cohesive system, in agreement with the purpose and mission publicly stated. The issues relating to information security in the organization, from the perspective of the management system, raise serious questions to any organization in the current context of electronic information, reason for which we consider not only appropriate but necessary to promote and implement an Integrated Management System Quality - Environment - Health and Operational Security - Information Security

  3. Climate changes Dutch water management

    NARCIS (Netherlands)

    Schaik, van H.

    2007-01-01

    This booklet starts out describing how our water management strategy has evolved over the centuries from increasingly defensive measures to an adaptive approach. The second part presents smart, areaspecific examples in planning and zoning of water, land and ecosystems for our coast, rivers, cities a

  4. WATER MANAGEMENT OF CONSTRUCTION SITE

    OpenAIRE

    Patil V.A*, Gawade S.L

    2017-01-01

    At prior stage water management is not considered to be vital point of planning and supervision as well, as the time passes all the possible chances of water entry in the structured is observed. As a result it seems very worst stage of existing building. Here entry of water may be from underground source, due to wrong workmanship or entry of water from surface source. Final result will be in the form of structurally weak building. For underground water entry there are number of chances of cor...

  5. Geoarchaeology of water management at Great Zimbabwe

    DEFF Research Database (Denmark)

    Sulas, Federica; Pikirayi, Innocent; Sagiya, Munyaradzi Elton

    In Africa, research on water management in urban contexts has often focussed rainfall, and the occurrence floods and droughts, whereas small-scale catchment systems and soil moisture regimes have received far less attention. This paper sets out to re-address the issue by examining the occurrence...... management of water resources over the last thousand years or so. These findings call for a rethinking of current models of urban evolutions in the region. More importantly, this study illustrates the need for integrating different datasets at multiple spatial and temporal scales to address people-water......, distribution and use of multiple water resources at the ancient urban landscape of Great Zimbabwe. Here, the rise and demise of the urban site have been linked to changing rainfall in the 1st mill. AD. Accordingly, rainfall shortages and consequent droughts eventually leading to the decline and abandonment...

  6. Integrated sustainable waste management in developing countries

    OpenAIRE

    Wilson, D C; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly in the context of technological integration in developed countries. Instead, integrated sustainable waste management examines both the physical components (collection, disposal and recycling) and th...

  7. Issues of governance in water resource management and spatial planning

    NARCIS (Netherlands)

    Rocco de Campos Pereira, R.C.; Schweitzer, R.

    2013-01-01

    This paper describes governance arrangements in regional spatial planning and water resources management at the regional level from a normative point of view. It discusses the need to integrate spatial planning and resources management in order to deliver socially sustainable integral territorial ma

  8. INTEGRATED PROJECT MANAGEMENT MEASURES IN CMMI

    OpenAIRE

    Mahmoud Khraiwesh

    2015-01-01

    Project management is quite important to execute projects effectively and efficiently. Project management is vital to projects success. The main challenge of project management is to achieve all project goals, taking into consideration time, scope, budget constraints, and quality. This paper will identify general measures for the two specific goals and its ten specific practices of Integrated Project management Process Area in Capability Maturity Model Integration (CMMI). CMMI is ...

  9. Urbanization and water management

    NARCIS (Netherlands)

    Segeren, W.A.; Slijkoord, F.; Wiggers, J.B.M.; Kremer, R.H.J.; Schultz, E.; Vliet, J.H. van der; Dragt, J.S.J.

    1978-01-01

    On May 4th 1977, a symposium was held at Lunteren, Netherlands, that had been jointly organized by TNO's Committee for Hydrological Research, the Netherlands Association of Water Boards and the Netherlands Institute for Directors and Engineers of Municipal Public Works Departments. The symposium's c

  10. Economic effects of a reservoir re-operation policy in the Rio Grande/Bravo for integrated human and environmental water management

    Directory of Open Access Journals (Sweden)

    J. Pablo Ortiz-Partida

    2016-12-01

    New hydrological insights: This study determines the economic feasibility of the EF policy. Results show that a proposed Environmental Flow policy would increase irrigated agriculture profit, slightly decrease recreational activities profit, and reduce costs from flood damage and environmental restoration compared to the baseline policy. In addition to supporting ecological objectives, the proposed EF policy would increase the economic benefits of water management objectives.

  11. Storm water management implications on WWTPS in combined sewer systems: Integration strategies and process conditions; Implicaciones sobre la estacion depuradora de la gestion de aguas pluviales en los sistemas de saneamiento unitario: estrategias de integracion y afecciones sobre los procesos

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Lopez, J.; Jacome Burgos, A.; Anta Alvarez, J.; Blanco Menendez, J. P.; Hernaez Oubina, D.; Rio Cambeses, H. del

    2012-07-01

    New design and strategies to manage wet weather floes in combined sewer systems, which main objective is to minimize environmental impacts on water bodies, require the treatment of large volumes of storm water. Wet weather flows introduced into combined sewer show dynamic-transient behavior both in terms of flow discharges and pollution. With traditional design strategies, large pollution peaks are spilled during rain events into water receiving bodies by combined sewer overflows (CSOs). Nowadays, CSOs have been reduced providing some storage capacity into the combined sewer systems (either in network, by means storm water tanks, or in WWTP). The stored storm water and its associated pollution should be treated. WWTP inflows during rainy events are conditioned by the local storm water management strategy. The WWTP can be overcome if it is managed using traditional dry weather strategies. In order to optimize the treatment performance and to assure that urban pollution do not reach aquatic environment, the WWTP must participate in the system in an integrated manner. This is a key element. This paper shows firstly the importance of CSO pollution and the development of new strategies for storm water management in combined sewer systems. Storm water tanks, located in the sewerage system, have been one of the most common solutions adopted but there are some experiences of wet weather flow management at the WWTP. All these strategies are revised in the paper. Once the role of the WWTP in the new combined sewer systems is known, the article presents a review about the problems generated by the hydraulic overloads and the large variations of the pollution characteristics on different stages of the water line. Special emphasis is made on the problems generated in secondary processes based on activated sludge. these problems are analysed in detail and some mitigation strategies are proposed. (Author) 20 refs.

  12. Integrated Pest Management Plan Kulm Wetland Management District 1999

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Kulm WMD. The goals and...

  13. Integrated Pest Management Plan : Kulm Wetland Management District 2004

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The purpose of the Integrated Pest Management Plan is to provide a comprehensive, environmentally sensitive approach to managing pests on the Kulm WMD. The goals and...

  14. 1998 annual water management report [and] 1999 annual water management plan [ Ruby Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Content includes 1998 weather summary, 1998 water management summaries, 1999 water availability forecast, and 1999 water management strategy.

  15. Ruby Lake National Wildlife Refuge 2000 annual water management report and 2001 annual water management plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Content includes 2000 weather summary, 2000 water management summaries, 2001 water availability forecast, and 2001 water management strategy.

  16. 1999 annual water management report [and] 2000 annual water management plan [ Ruby Lake National Wildlife refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Content includes 1999 weather summary, 1999 water management summaries, 2001 water availability forecast, and 2001 water management strategy.

  17. Study on Shanghai Water Management Information Standard and its application

    Institute of Scientific and Technical Information of China (English)

    Wang Huajie; Zheng Xiaoyang

    2007-01-01

    In Shanghai, three trades including water conservancy, water supply and water drainage are managed integratively by Shanghai Water Authority. However, trade division is apparent among them, and information sharing needs to be strengthened.Therefore, lack of information standard is becoming an urgent problem to be solved. According to the strategic objectives of "Golden Water Project" in China and "Digital City" in Shanghai, "Shanghai Water Management Information Standard" is made for normalizing information classifications, codes, terms,GIS symbols and attributed data structures. It not only coincides with national standards,ministerial standards and Shanghai local standards, but also embodies the characteristic of integrated water management in Shanghai. It provides "traffic rule" for resources integrating and information sharing. Some good research ideas such as omni-direction,multi-levels and facing application can be popularized in other provinces and municipalities of China.

  18. Integrated Co-management of Lakes through Beach Management Units

    OpenAIRE

    Goverment of Uganda; Department for International Development (DFID) of the UK Government

    2007-01-01

    Metadata only record In 1999, the Integrated Co-management of Lakes through Beach Management Units project was started in an effort to implement a new approach to the management of lake resources in Uganda. The main components of this plan involved decentralization, local community management, and improving the livelihood of the poor. In order to finance the management of these areas, the Beach Management Units (BMU's) are charging user fees to those individuals who obtain benefit from the...

  19. Integrated Water Resources Management for Sustainable Irrigation at the Basin Scale Manejo Integrado de Recursos Hídricos para Riego Sustentable a Nivel de Cuenca

    Directory of Open Access Journals (Sweden)

    Max Billib

    2009-12-01

    Full Text Available The objective of this paper is to review the state of art on integrated water resources management (IWRM approaches for sustainable irrigation at the basin scale under semi-arid and arid climatic conditions, with main emphasis on Latin America, but including case studies of other semi-arid and arid regions in the world. In Latin America the general concept of IWRM has proved to be hard to implement. Case studies recommend to develop the approach from lower to upper scale and oriented at the end-user. As IWRM is an interdisciplinary approach and used for very different objectives, the main emphasis is given to IWRM approaches for sustainable irrigation and their environmental aspects. The review shows that in Latin America the environmental impact is mostly analysed at the field level, the impact on the whole basin is less considered. Many publications present the development of models, advisory services and tools for decision support systems at a high technical level. Some papers present studies of environmental aspects of sustainable irrigation, especially for salt affected areas. Multi-criteria decision making models are developed for irrigation planning and irrigation scenarios are used to show the impact of different irrigation management decision. In general integrated approaches in Latin America are scarce.El objetivo de esta publicación es revisar el estado del arte de los diferentes enfoques que se han usado para lograr un manejo integrado de los recursos hídricos (MIRH asociados a una agricultura de riego sustentable a nivel de cuenca en condiciones áridas y semiáridas, con énfasis en Latinoamérica, pero incluyen casos de estudio de otras regiones similares del mundo. En Latinoamérica el concepto general de MIRH ha resultado difícil de implementar. De los estudios de casos, se recomienda desarrollar este enfoque desde una escala menor a una mayor orientándose al usuario final. MIRH es un enfoque interdisciplinario usado para

  20. Integrated Work Management: Preparer, Course 31883

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-07

    The preparer (also called the “planner”) plays a key role in the integrated work management (IWM) process at Los Alamos National Laboratory (LANL). This course, Integrated Work Management: Preparer (COURSE 31883), describes the IWM roles and responsibilities of the preparer. This course also discusses IWM requirements that must be met by the preparer.

  1. INTEGRATIVE AUGMENTATION OF STANDARDIZED MANAGEMENT SYSTEMS

    Directory of Open Access Journals (Sweden)

    Stanislav Karapetrovic

    2008-03-01

    Full Text Available The development, features and integrating abilities of different international standards related to management systems are discussed. A group of such standards that augment the performance of quality management systems in organizations is specifically focused on. The concept, characteristics and an illustrative example of one augmenting standard, namely ISO 10001, are addressed. Integration of standardized augmenting systems, both by themselves and within the overall management system, is examined. It is argued that, in research and practice alike, integrative augmentation represents the future of standardized quality and other management systems.

  2. Integrated supply and demand management in operations

    OpenAIRE

    Transchel, Sandra

    2008-01-01

    The goal matching supply with demand, which is the fundament of supply chain management, has changed the role of operations management from pure cost control to value creation. The recent developments of integrating revenue management with supply chain management activities and the resulting successes have indicated the tremendous potential to improve the supply chain performance in the same way that revenue management has revolutionized the airline industry. This thesis investigates how an i...

  3. Water management plan : revised March 1988

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Content of the Ruby Lake NWR Water Management Plan includes information on refuge background, objectives and management strategies, and water management program...

  4. Water sustainable management for buildings Water sustainable management for buildings

    Directory of Open Access Journals (Sweden)

    Juan Arturo Ocaña Ponce

    2013-01-01

    Full Text Available This paper presents a literature review article that deals with how to manage water in build­ings, specifically in facility projects, in ways to save water during the use, maintenance and operation of the building. This work is aimed at architects, builders and developers, and may be helpful for decision-making in the planning and management of efficient water use in buildings.Este trabajo es un artículo de revisión relacionado con el manejo y gestión del recurso agua, particularmente en proyectos de edificaciones, con el fin de propiciar ahorro de agua durante el uso, mantenimiento y operación del inmueble. Este documento está dirigido a arquitectos, constructores y desarrolladores inmobiliarios y puede ser de gran utilidad para la toma de decisiones en la fase de planeación y de gestión del uso eficiente del agua en los edificios.

  5. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... flood conditions. Suggestions were made on ways of planning sustainable water supply systems for Nigeria. Key words: Water Resources, Management, Strategies, Climate Change ...

  6. Seafood and Water Management

    Directory of Open Access Journals (Sweden)

    Saskia M. van Ruth

    2014-12-01

    Full Text Available Seafood is an important food source for many. Consumers should be entitled to an informed choice, and there is growing concern about correct composition labeling of seafood. Due to its high price, it has been shown to be vulnerable to adulteration. In the present study, we focus on moisture levels in seafood. Moisture and crude protein contents of chilled and frozen cod, pangasius, salmon, shrimp and tilapia purchased from various retail outlets in the Netherlands were examined by reference methods and the values of which were compared with the reported data from other studies in literature. Significant differences in proximate composition were determined for different species and between chilled and frozen products of the same species. Pangasius products showed the highest moisture contents in general (86.3 g/100 g, and shrimp products revealed the largest differences between chilled and frozen products. Comparison with literature values and good manufacturing practice (GMP standards exposed that, generally, chilled pangasius, frozen pangasius and frozen shrimp products presented considerably higher moisture and lower crude protein/nitrogen contents than those found in other studies. From the GMP standards, extraneous water was estimated on average at 26 g/100 g chilled pangasius product, and 25 and 34 g/100 g product for frozen shrimp and pangasius products, respectively.

  7. Knowledge management in the water management using the planning and implementation of the integrated flood protection law Obere Iller as an example; Wissensmanagement in der Wasserwirtschaft am Beispiel der Planung und Umsetzung des integrierten Hochwasserschutzkonzeptes Obere Iller

    Energy Technology Data Exchange (ETDEWEB)

    Schuetter, Joachim

    2010-07-01

    The expert in the water management competently and responsibly must co-operate with technical flexibility within interdisciplinary teams and participation processes. Central questions can be derived from practice for the investigation with knowledge in concrete water-economical action: (a) Is the technical networking of knowledge sufficient in organizations of water management?; (b) Does the communication of knowledge in the water management fulfil the expectations of the challenges by very different specialized terminologies, communication formats, styles of thinking and planning cultures?; (c) Is the participation of knowledge carriers appropriate in water-economical planning processes?; (d) What are the influences of the structures of water-economical organizations on handling knowledge?; (e) How is knowledge reflected, arranged and stored for planning processes? The contribution under consideration uses the method of case study analysis. Two knowledge management models are used. The comparison of the results of analysis with success factors from the knowledge management research results to organization dimensions for the advancement of handling knowledge in the water management.

  8. Water management in the oil sands industry

    Energy Technology Data Exchange (ETDEWEB)

    Pauls, R. [Syncrude Canada Ltd., Fort McMurray, AB (Canada)

    2004-07-01

    Water management issues at Alberta's 4 oil sand deposits were discussed. The 4 deposits include the Peace River, Athabasca, Wabasca and Cold Lake deposits, with the Athabasca deposit being the largest and the only surface-mineable deposit. Large quantities of water are needed to extract bitumen from oil sands. This paper addressed water volume withdrawal from the Athabasca River, the primary source of water for the surface-mining oil sands industry. It also addressed Muskeg River watershed integrity, quality of water withdrawn from reclaimed landscapes, groundwater contamination, and ecological viability of end-pit lakes. Currently, half of Syncrude's oil sand is transported from mine to extraction plant by conveyor belts. The other half is pipelined as a warm water slurry. By 2005, all transport will be by pipeline. The oil sand is mixed with hot water, steam and surfactants to condition it for extraction. Seventy-nine per cent of the water used by Syncrude is recycled water and the remainder comes from the Athabasca River. Syncrude diverts 2.5 to 3 barrels of water from the Athabasca River for every barrel of oil produced. This paper discussed the in-stream flow needs of the Athabasca River based on protection of aquatic ecosystems. Flow needs are addressed by the Cumulative Effects Management Association (CEMA). The paper states that the proportion of annual flow withdrawn from the Athabasca River is too low to have a significant impact on aquatic systems, but the main concern lies in water use during low flow periods, typically during the winter months. Developers will likely come under pressure to develop off-site reservoirs to store water for use during these low-flow periods. tabs., figs.

  9. FACTORS THAT INFLUENCE ADOPTION OF INTEGRATED SOIL FERTILITY AND WATER MANAGEMENT PRACTICES BY SMALLHOLDER FARMERS IN THE SEMI-ARID AREAS OF EASTERN KENYA

    Directory of Open Access Journals (Sweden)

    Miriam Mutua Mutuku

    2017-05-01

    Full Text Available In arid and semi-arid lands (ASALs, low adoption of integrated soil fertility and water management (ISFWM technologies has contributed to food and nutrition insecurity. A study was conducted to assess factors influencing smallholder farmers’ adoption decision of ISFWM technologies in Mwala and Yatta Sub-Counties. A questionnaire was administered to 248 respondents in the study region. Selection of household heads was done in ‘Farmer-led adoption approach’ sites otherwise known as Primary and Secondary Participatory Technology Evaluations (PPATEs and SPPATEs and Non-PPATEs/SPATEs sites in both Sub-Counties. Relationships between different variables were determined by the Tobit model. The results revealed that group membership (P<0.016, inaccessible credit services (P<0.017, gender (P<0.025, age and access to agricultural extension services (P<0.027 influenced adoption of ISFWM technology significantly. Cost of inputs and access to radio information (P<0.01, access to appropriate farm machines (p<0.001, cost of labor and farmers’ perception on seasons’ reliability (P<0.004 and out-put markets (P<0.006 were reported to affect adoption of ISFWM practices highly significantly. Descriptive statistic results indicated that majority of the respondents (93.9% in the project areas were adopting a combination of tied ridges, organic fertilizer and improved seed compared to only 6.1% in the non-project area. There was also significantly (P<0.01 higher adoption (76.5% of a combination of tied ridges, both fertilizer and improved seed in the project area in contrast to merely 23.5% in non-project area, as well as those adopting (80% a combination of zai pit, both fertilizer and improved seed compared to only 20% in non-project area. Policy makers should focus on availability of affordable credit facilities and farm machines, ease access to information, labor and input-output markets for enhanced farm productivity and livelihoods of the smallholder

  10. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  11. Water management, agriculture, and ground-water supplies

    Science.gov (United States)

    Nace, Raymond L.

    1960-01-01

    Southeastern States. Ground water is not completely 'self-renewing' because, where it is being mined, the reserve is being diminished and the reserve would be renewed only if pumping were stopped. Water is being mined at the rate of 5 million acre-feet per year in Arizona and 6 million in the High Plains of Texas. In contrast, water has been going into storage in the Snake River Plain of Idaho, where deep percolation from surface-water irrigation has added about 10 million acre-feet of storage since irrigation began. Situations in California illustrate problems of land subsidence resulting from pumping and use of water, and deterioration of ground-water reservoirs due to sea-water invasion. Much water development in the United States has been haphazard and rarely has there been integrated development of ground water and surface water. Competition is sharpening and new codes of water law are in the making. New laws, however, will not prevent the consequences of bad management. An important task for water management is to recognize the contingencies that may arise in the future and to prepare for them. The three most important tasks at hand are to make more efficient use of water, to develop improved quantitative evaluations of water supplies arid their quality, and to develop management practices which are based on scientific hydrology.

  12. Integrating the autonomous subsystems management process

    Science.gov (United States)

    Ashworth, Barry R.

    1992-01-01

    Ways in which the ranking of the Space Station Module Power Management and Distribution testbed may be achieved and an individual subsystem's internal priorities may be managed within the complete system are examined. The application of these results in the integration and performance leveling of the autonomously managed system is discussed.

  13. Women and rural water management

    NARCIS (Netherlands)

    Mandara, Christina Geoffrey; Niehof, Anke; Horst, van der Hilje

    2017-01-01

    This paper discusses how informal structures intersect with women's participation in formally created decision-making spaces for managing domestic water at the village level in Tanzania. The results reveal the influence of the informal context on women's access to and performance in the formal de

  14. Economic instruments for water management

    Directory of Open Access Journals (Sweden)

    Jaime Echeverría

    2013-06-01

    Full Text Available Problems related to water management in Costa Rica have an economic origin. Partly, as a consequence of a natural condition of water richness, as well as the concept of public service with fees that don´t promote neither investment nor efficiency of water resource use. Solutions must be targeted toward the economic conditions generating pollution, little efficiency, and lesser infiltration area. Water social cost regarding its use and pollution must be recognized and paid. The water user fee and pollution fee represent a step forward. A higher application of this kind of instruments will generate profit-benefit to the economy and might encourage the protection of the environment and natural resources.

  15. Export channel pricing management for integrated solutions

    OpenAIRE

    Roine, Henna; Sainio, Liisa-Maija; Saarenketo, Sami

    2012-01-01

    This article studies systems integrators' export channel pricing management for integrated solutions. We find support from our empirical case study for the notion that a systems integrator's export channel pricing strategy is multidimensional and dependent on international pricing environment and partner characteristics and that export partnerships have unique implications on a systems integrator's pricing process. The results show that giving up pricing control in export channel context may ...

  16. Export channel pricing management for integrated solutions

    OpenAIRE

    Roine, Henna; Sainio, Liisa-Maija; Saarenketo, Sami

    2012-01-01

    This article studies systems integrators' export channel pricing management for integrated solutions. We find support from our empirical case study for the notion that a systems integrator's export channel pricing strategy is multidimensional and dependent on international pricing environment and partner characteristics and that export partnerships have unique implications on a systems integrator's pricing process. The results show that giving up pricing control in export channel context may ...

  17. Community-Based Integrated Watershed Management

    Institute of Scientific and Technical Information of China (English)

    Li Qianxiang; Kennedy N.logbokwe; Li Jiayong

    2005-01-01

    Community-based watershed management is different from the traditional natural resources management. Traditional natural resources management is a way from up to bottom, but the community-based watershed management is from bottom to up. This approach focused on the joining of different stakeholders in integrated watershed management, especially the participation of the community who has been ignored in the past. The purpose of this paper is to outline some of the important basic definitions, concepts and operational framework for initiating community-based watershed management projects and programs as well as some successes and practical challenges associated with the approach.

  18. Transaction management with integrity checking

    DEFF Research Database (Denmark)

    Martinenghi, Davide; Christiansen, Henning

    2005-01-01

    Database integrity constraints, understood as logical conditions that must hold for any database state, are not fully supported by current database technology. It is typically up to the database designer and application programmer to enforce integrity via triggers or tests at the application level......, which are difficult to maintain and error prone. Two important aspects must be taken care of. 1.~It is too time consuming to check integrity constraints from scratch after each update, so simplified checks before each update should be used relying on the assumption that the current state is consistent...

  19. An Assessment of Integrated Health Management Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Lybeck, Nancy; Coble, Jamie B.; Tawfik, Magdy; Bond, Leonard J.

    2012-05-18

    In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging NPPs presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to better understanding and management of the challenges posed by aging NPPs. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced online surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of an NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of an NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures

  20. Management of the water balance and quality in mining areas

    Science.gov (United States)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    systematically integrate all water balance components (groundwater, surface water, infiltration, precipitation, mine water facilities and operations etc.) into overall dynamic mine site considerations. After coupling the surface and ground water models (e.g. Feflow and WSFS) with each other, they are compared with Goldsim. The third objective is to integrate the monitoring and modelling tools into the mine management system and process control. The modelling and predictive process control can prevent flood situations, ensure water adequacy, and enable the controlled mine water treatment. The project will develop a constantly updated management system for water balance including both natural waters and process waters.

  1. Resources from waste : integrated resource management phase 1 study report

    Energy Technology Data Exchange (ETDEWEB)

    Corps, C. [Asset Strategics, Victoria BC (Canada); Salter, S. [Farallon Consultants Ltd., Victoria, BC (Canada); Lucey, P. [Aqua-Tex Scientific Consulting Ltd., Victoria, BC (Canada); O' Riordan, J.

    2008-02-29

    Integrated resource management (IRM) of municipal waste streams and water systems requires a structured analysis of options that consider environmental aspects such as greenhouse gases, carbon taxes and credits. Each option's inputs and outputs are assessed to determine the net highest and best use and value. IRM focuses on resource recovery and extracting maximum value. It considers the overall net impact on the taxpayer and requires the integration of liquid and solid waste streams to maximize values for recovering energy in the form of biofuels, heat, minerals, water and reducing electricity demand. IRM is linked to water management through reuse of treated water for groundwater recharge and to offset potable water use for non-potable purposes such as irrigation, including potential commercial use, which contributes to maintaining or improving the health of watersheds. This report presented a conceptual design for the application of IRM in the province of British Columbia (BC) and analyzed its potential contribution to the provincial climate change agenda. The report discussed traditional waste management, the IRM approach, and resource recovery technology and opportunities. The business case for IRM in BC was also outlined. It was concluded that IRM has the potential to be a viable solution to water, solid and liquid waste management that should be less expensive, result in fewer environmental impacts, and provide greater flexibility than traditional approaches to waste management. 63 refs., 17 tabs., 21 figs., 10 appendices.

  2. Business process management and IT management: The missing integration

    DEFF Research Database (Denmark)

    Rahimi, Fatemeh; Møller, Charles; Hvam, Lars

    2016-01-01

    The importance of business processes and the centrality of IT to contemporary organizations' performance calls for a specific focus on business process management and IT management. Despite the wide scope of business process management covering both business and IT domains, and the profound impact...... of IT on process innovations, the association between business process management and IT management is under-explored. Drawing on a literature analysis of the capabilities of business process and IT governance frameworks and findings from a case study, we propose the need for horizontal integration between the two...... management functions to enable strategic and operational business - IT alignment. We further argue that the role of IT in an organization influences the direction of integration between the two functions and thus the choice of integration mechanisms. Using case study findings, we propose...

  3. Western Kenya integrated ecosystem management project

    OpenAIRE

    Kenya Agricultural Research Institute (KARI)

    2007-01-01

    The project seeks to improve the productivity and sustainability of land use systems in selected watersheds in the Nzoia, Yala and Nyando river basins through adoption of an integrated ecosystem management approach. In order to achieve this the project will: (i) support on- and off-farm conservation strategies; and (ii) improve the capacity of local communities and institutions to identify, formulate and implement integrated ecosystem management activities (including both on-and off-farm land...

  4. Hanford site integrated pest management plan

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, R.F.

    1996-04-09

    The Hanford Site Integrated Pest Management Plan (HSIPMP) defines the Integrated Pest Management (IPM) decision process and subsequent strategies by which pest problems are to be solved at all Hanford Site properties per DOE-RL Site Infrastructure Division memo (WHC 9505090). The HSIPMP defines the roles that contractor organizations play in supporting the IPM process. In short the IPM process anticipates and prevents pest activity and infestation by combining several strategies to achieve long-term pest control solutions.

  5. 78 FR 77550 - Integrated Corridor Management Deployment Planning Grants

    Science.gov (United States)

    2013-12-23

    ... Federal Highway Administration Integrated Corridor Management Deployment Planning Grants AGENCY: Federal... is extending the application period for the Integrated Corridor Management Deployment Planning Grants... Integrated Corridor Management Deployment Planning Grants. The purpose of this notice was to invite States...

  6. INTEGRATED PROJECT MANAGEMENT MEASURES IN CMMI

    Directory of Open Access Journals (Sweden)

    Mahmoud Khraiwesh

    2015-10-01

    Full Text Available Project management is quite important to execute projects effectively and efficiently. Project management is vital to projects success. The main challenge of project management is to achieve all project goals, taking into consideration time, scope, budget constraints, and quality. This paper will identify general measures for the two specific goals and its ten specific practices of Integrated Project management Process Area in Capability Maturity Model Integration (CMMI. CMMI is a framework for improvement and assessment of computer information systems. The method we used to define the measures is to apply the Goal Questions Metrics (GQM paradigm to the two specific goals and its ten specific practices of Integrated Project management Process Area in CMMI.

  7. Urban Water Resources Integrated Management Planning Based on the Concept of LID%基于LID理念的城市水资源综合管理规划研究

    Institute of Scientific and Technical Information of China (English)

    张忠广; 黄津辉; 林超; 向文艳

    2013-01-01

    为寻求解决北方城市水资源短缺与水质污染双重问题的措施,以天津市空港经济区为例,根据其气候特征,制定了水资源综合管理规划设计量化目标,提出了基于LID理念的以人工湿地为主要手段的水资源综合管理规划方法,并选用PCSWMM模型对经济区降雨和水资源分配情况进行了模拟分析.结果表明,人工湿地的建立可达到水平衡、防洪与水质指标的要求,可见基于LID的城市综合水资源管理规划具有可行性.%To solve the problem of water shortage and water pollution in the northern city of China,this paper studies the Airport Economic Area in Tianjin City.According to the meteorological characteristics of the zone,integrated water resources management planning program based on the concept of LID and the artificial wetland is proposed to quantify the design goal.Moreover,the PCSWMM model is selected to simulate rainfall and water resources allocation in Economic Area.The results show that construction of artificial wetland can attain the target of water balance,flood control and water quality control.Therefore,the integrated water resources management planning based the concept of LID is feasible.

  8. Integrated Structural Health Management Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group Inc. (CRG) proposes to advance the state of the art in composite health management through refinement of an existing technology developed...

  9. Integrated water resource assessment for the Adelaide region, South Australia

    Science.gov (United States)

    Cox, James W.; Akeroyd, Michele; Oliver, Danielle P.

    2016-10-01

    South Australia is the driest state in the driest inhabited country in the world, Australia. Consequently, water is one of South Australia's highest priorities. Focus on water research and sources of water in the state became more critical during the Millenium drought that occurred between 1997 and 2011. In response to increased concern about water sources the South Australian government established The Goyder Institute for Water Research - a partnership between the South Australian State Government, the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Flinders University, University of Adelaide and University of South Australia. The Goyder Institute undertakes cutting-edge science to inform the development of innovative integrated water management strategies to ensure South Australia's ongoing water security and enhance the South Australian Government's capacity to develop and deliver science-based policy solutions in water management. This paper focuses on the integrated water resource assessment of the northern Adelaide region, including the key research investments in water and climate, and how this information is being utilised by decision makers in the region.

  10. ASPECTS OF INTEGRATION MANAGEMENT METHODS

    OpenAIRE

    2015-01-01

    For manufacturing companies to succeed in today's unstable economic environment, it is necessary to restructure the main components of its activities: designing innovative product, production using modern reconfigurable manufacturing systems, a business model that takes into account the global strategy and management methods using modern management models and tools. The first three components are discussed in numerous publications, for example, (Koren, 2010) and is therefore not considered in...

  11. Integrated sustainable waste management in developing countries

    NARCIS (Netherlands)

    Wilson, D.C.; Velis, C.A.; Rodic-Wiersma, L.

    2013-01-01

    This paper uses the lens of ‘integrated sustainable waste management’ to examine how cities in developing countries have been tackling their solid waste problems. The history of related concepts and terms is reviewed, and ISWM is clearly differentiated from integrated waste management, used mostly

  12. Integrating Sustainable Development into Operations Management Courses

    Science.gov (United States)

    Fredriksson, Peter; Persson, Magnus

    2011-01-01

    Purpose: It is widely acknowledged that aspects of sustainable development (SD) should be integrated into higher level operations management (OM) education. The aim of the paper is to outline the experiences gained at Chalmers University of Technology in Sweden from integrating aspects of SD into OM courses. Design/methodology/approach: The paper…

  13. Promoting the management and protection of private water wells.

    Science.gov (United States)

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  14. Research on Integrated Green Supply Chain Management

    Institute of Scientific and Technical Information of China (English)

    DENG Lei; WANG Xu

    2006-01-01

    On the basis of the analyzing product life cycle and value chain management in green supply chain, integrated green supply chain is put forward and constructed which involve lean production, agile manufacturing and green supply chain. This integrated structure provides an effective method for resolving some questions such as cost, market, environment, etc. in enterprise. A case study is presented at the end of paper to demonstrate how integrated supply chain implemented successfully in enterprise.

  15. Design Integration of Facilities Management

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2009-01-01

    . The paper identifies the aspects of FM that should be considered during the different stages of design. A typology of knowledge transfer from building operation to building design is presented based on a combination of knowledge push from building operation and knowledge pull from building design....... Strategies, methods and barriers for the transfer and integration of operational knowledge into the design process are discussed. Multiple strategies are needed to improve the integration of FM in design. Building clients must take on a leading role in defining and setting up requirements and procedures...

  16. Integration of operational research and environmental management

    NARCIS (Netherlands)

    Bloemhof - Ruwaard, J.M.

    1996-01-01


    The subject of this thesis is the integration of Operational Research and Environmental Management. Both sciences play an important role in the research of environmental issues. Part I describes a framework for the interactions between Operational Research and Environmental Management.

  17. INTEGRATED HSEQ MANAGEMENT SYSTEMS: DEVELOPMENTS AND TRENDS

    Directory of Open Access Journals (Sweden)

    Osmo Kauppila

    2015-06-01

    Full Text Available The integration of health and safety, environmental and quality (HSEQ management systems has become a current topic in the 21st century, as the need for systems thinking has grown along with the number of management system standards. This study aims to map current developments and trends in integrated HSEQ management. Three viewpoints are taken: the current state of the main HSEQ management standards, research literature on integrated management systems (IMS, and a case study of an industry-led HSEQ cluster in Northern Finland. The results demonstrate that some of the most prominent current trends are the harmonization of the high level structure of management systems by ISO, the evaluation of IMS, accounting for the supply chain in HSEQ issues, and sustainability and risk management. The results of the study can be used by practitioners to get a view of the current state of HSEQ management systems and their integration, and by researchers to seek out potential directions for HSEQ and IMS related research.

  18. Integration of operational research and environmental management.

    NARCIS (Netherlands)

    Bloemhof-Ruwaard, J.M.

    1996-01-01

    The subject of this thesis is the integration of Operational Research and Environmental Management. Both sciences play an important role in the research of environmental issues. Part I describes a framework for the interactions between Operational Research and Environmental Management. The framework

  19. Integrated pest management - an overview and update

    Science.gov (United States)

    Thomas D. Landis; R. Kasten Dumroese

    2014-01-01

    Integrated pest management, better known as IPM, is a familiar term for those of us working in forest, conservation, and native plant nurseries. An almost synonymous concept is "holistic pest management" that has been the topic of chapters in recent Agriculture Handbooks that would be useful to growers of native plants (see Landis and others 2009; Landis and...

  20. Integrated Approach to User Account Management

    Science.gov (United States)

    Kesselman, Glenn; Smith, William

    2007-01-01

    IT environments consist of both Windows and other platforms. Providing user account management for this model has become increasingly diffi cult. If Microsoft#s Active Directory could be enhanced to extend a W indows identity for authentication services for Unix, Linux, Java and Macintosh systems, then an integrated approach to user account manag ement could be realized.

  1. Water Management Plan Recommendations for 2007

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This memorandum outlines the management strategy for water level management on St. Vincent Island in 2007. A table of planned water levels for each month is provided...

  2. Partnering and integrated supply management

    DEFF Research Database (Denmark)

    Bjarnø, Ole-Christian; Olsen, Anders; Thyssen, Mikael

    2003-01-01

    are common among the actors in the building industry. Partnering is still in its early stages, and a strategic development of the concept to include long-term collaborative relationships appears to be able to offer considerable potential, while there is a pressing need for the development of methods...... for strategic management of collaborative relationships on a line with the purchasing perspectives offered by Supply Chain Management. Based on a study of the literature and an in-depth case study carried out within a large Scandinavian contractor, this article gives a proposal for how Partnering can...... be supported by strategic purchasing, with the aim of achieving strategic Partnering. The contribution of this article is thus the development of a new purchasing perspective within Construction Supply Chain Management....

  3. Transaction management with integrity checking

    DEFF Research Database (Denmark)

    Martinenghi, Davide; Christiansen, Henning

    2005-01-01

    , which are difficult to maintain and error prone. Two important aspects must be taken care of. 1.~It is too time consuming to check integrity constraints from scratch after each update, so simplified checks before each update should be used relying on the assumption that the current state is consistent...

  4. Integrated and ecological nutrient management

    NARCIS (Netherlands)

    Haan, de J.J.

    2002-01-01

    This VEGINECO method manual is one of a series of publications resulting from the VEGINECO project. VEGINECO specialises in producing tested and improved multi-objective farming methods for key farming practices – e.g. crop rotation, fertilisation and crop protection – to facilitate the integration

  5. Integrated Performance Management strategy, risk and sustainability Management

    OpenAIRE

    Lux, Wilfried

    2014-01-01

    This article gives an overview about an integrated approach to Performance Management, meaning strategy formulation and implementation. A step-wise approach is illustrated to arrive at strategic goals and to implement them by defi key performance indicators, actions and responsibilities. Modern approachesto trend analysis are introduced in order to make more predictable statements. Risk management as the other side of strategy implementation is suggested to get integrated into the process of ...

  6. Local water rights and local water user entities: the unsung heroines of water resource management in Tanzania

    Science.gov (United States)

    Sokile, Charles S.; Koppen, Barbara van

    When considering water management, formal institutions tend to overshadow the local informal ones although the latter guide day-to-day interactions on water use. Conversely, Integrated Water Resources Management (IWRM) has demonstrated a bias toward the formal state-based institutions for water management. A study was carried out to examine how local water rights and local informal institutional arrangements influence water management in the Great Ruaha River catchment in the Rufiji basin in Tanzania. Participatory appraisals were carried out, supplemented by focus group discussions, interviews, and a stakeholders’ workshop. It was found that local water rights, local water rotations and local water user groups are widely in use and are more influential than the formal water rights, water fees and water user associations (WUAs). Water allocation at the driest period depends on local informal relations among irrigators. More than 70% of water users surveyed choose to settle disputes over water via informal channels and the latter are more effective in resolving water conflicts and reconciling the antagonists compared to the formal routes. It was also found that although much emphasis and many resources have been expended in transforming local water rights and water related organisations to formal registered ones, the former have remained popular and water users feel more affiliated to local arrangements. The paper concludes that local informal water management can offer the best lessons for the formal management arrangements and should not be simply overlooked. Finally, the paper recommends that the formal and informal institutions should be amalgamated to bring forth a real Integrated Water Resource Management framework.

  7. Integrated safety management system verification: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.F.

    1998-08-12

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These

  8. Integrated safety management system verification: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.F.

    1998-08-12

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalizing an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System. The Manager, Richland Operations Office (RL), initiated a combined Phase 1 and Phase 2 Integrated Safety Management Verification review to confirm that PNNL had successfully submitted a description of their ISMS and had implemented ISMS within the laboratory facilities and processes. A combined review was directed by the Manager, RL, based upon the progress PNNL had made in the implementation of ISM. This report documents the results of the review conducted to verify: (1) that the PNNL integrated safety management system description and enabling documents and processes conform to the guidance provided by the Manager, RL; (2) that corporate policy is implemented by line managers; (3) that PNNL has provided tailored direction to the facility management; and (4) the Manager, RL, has documented processes that integrate their safety activities and oversight with those of PNNL. The general conduct of the review was consistent with the direction provided by the Under Secretary`s Draft Safety Management System Review and Approval Protocol. The purpose of this review was to provide the Manager, RL, with a recommendation to the adequacy of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and, to provide an evaluation of the extent and maturity of ISMS implementation within the Laboratory. Further, this review was intended to provide a model for other DOE Laboratories. In an effort to reduce the time and travel costs associated with ISM verification the team agreed to conduct preliminary training and orientation electronically and by phone. These

  9. Integrating agricultural policies and water policies under water supply and climate uncertainty

    Science.gov (United States)

    MejíAs, Patricia; Varela-Ortega, Consuelo; Flichman, Guillermo

    2004-07-01

    Understanding the interactions of water and agricultural policies is crucial for achieving an efficient management of water resources. In the EU, agricultural and environmental policies are seeking to converge progressively toward mutually compatible objectives and, in this context, the recently reformed Common Agricultural Policy (CAP) and the EU Water Framework Directive constitute the policy framework in which irrigated agriculture and hence water use will evolve. In fact, one of the measures of the European Water Directive is to establish a water pricing policy for improving water use and attaining a more efficient water allocation. The aim of this research is to investigate the irrigators' responses to these changing policy developments in a self-managed irrigation district in southern Spain. A stochastic programming model has been developed to estimate farmers' response to the application of water pricing policies in different agricultural policy scenarios when water availability is subject to varying climate conditions and water storage capacity in the district's reservoir. Results show that irrigators are price-responsive, but a similar water-pricing policy in different agricultural policy options could have distinct effects on water use, farmers' income, and collected revenue by the water authority. Water availability is a critical factor, and pricing policies are less effective for reducing water consumption in drought years. Thus there is a need to integrate the objectives of water policies within the objectives of the CAP programs to avoid distortion effects and to seek synergy between these two policies.

  10. Climate Teleconnections and Water Management

    Science.gov (United States)

    Abtew, Wossenu; Melesse, Assefa M.

    2014-02-01

    Advancements have been made in identifying teleconnection between various climate phenomena and regional hydrometeorology. This knowledge can be systematically applied to predict regional hydrometeorology to gain lead time for resource and risk management decision making. Adaptations for droughts, floods, and cold and warm weather conditions are necessary for optimal food production and, in many cases, for survival. The El Niño Southern Oscillation (ENSO) climatic phenomenon has been linked to seasonal weather of many regions mainly through rainfall and temperature. The development of El Niño or La Niña has usually opposing regional effects. Its effects are manifested in regional droughts and crop yield reduction, loss of livestock feed, water supply shortage or floods and flood damages, insect population and pathogens, wildfires, etc. A new method has been used to track ENSO development using cumulative sea surface temperature (SST) anomaly and cumulative Southern Oscillation Index (SOI) from freely available data. The relationships of ENSO indices and the Blue Nile hydrology have been shown using an index that tracks cumulative SST anomaly. It has been shown that the Upper Blue Nile basin rainfall and flows have teleconnection to ENSO. Dry years are likely to occur during El Niño years at a confidence level of 90 % and La Niña years favor wetter condition. The results of this study can be applied to resource management decision making to mitigate drought or flood impacts with a lead time of at least few months. ENSO tracking and forecasting helps prediction of approaching hydrologic conditions to make early water management decisions. A case study with organizational structure and decision making process is presented where ENSO conditions are tracked weekly and results are applied for water management decision making.

  11. Rocky Mountain Arsenal surface water management plan : water year 2003

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan (SWMP) for Water Year 2003 (WY 2003) (October I, 2002 to September 30, 2003) is an assessment of the nonpotable water demands at...

  12. Rocky Mountain Arsenal surface water management plan : water year 2005

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2005 (October 1, 2004 to September 30, 2005) is an assessment of the nonpotable water demands at the Rocky...

  13. Rocky Mountain Arsenal surface water management plan : water year 2006

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The Surface Water Management Plan for Water Year (WY) 2006 (October 1, 2005 to September 30, 2006) is an assessment of the nonpotable water demands at the Rocky...

  14. Watershed management for water supply in developing world city

    Institute of Scientific and Technical Information of China (English)

    车越; 杨凯; 吕永鹏; 张宏伟; 吴健; 杨永川

    2009-01-01

    The water supply system in Shanghai provides about 2.55×109 m3/a,of which more than 50% is derived from the Upper Huangpu River Watershed. During the process of rapid urbanization and industrialization,the role of watershed management in sustaining clean drinking water quality at surface sources is emphasized in Shanghai. This paper proposes an integrated watershed management (IWM) approach in the context of the current pressures and problems of source water protection at the Upper Huangpu River Watershed in Shanghai. Based on data sets of land use,water quality and regional development,multi-criteria analysis and system dynamics techniques were used to evaluate effectiveness and improve decision-making of source water protection at a watershed scale. Different scenarios for potential source water quality changing from 2008 to 2020 were predicted,based on a systematic analysis and system dynamics modeling,a watershed management approach integrating land use prioritization and stakeholder involvement was designed to conserve the source water quality. The integrated watershed management (IWM) approach may help local authorities better understand and address the complex source water system,and develop improved safe drinking water strategies to better balance urban expansion and source water protection.

  15. Stillwater Wildlife Management Area Annual Water Management Plan

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This plan summarizes last years planned water management program and actual CY 1983 water events. A more detailed summary is available in the CY 1983 Annual Water...

  16. Promoting Sustainable Water Management in Area Development: A Regulatory Approach

    NARCIS (Netherlands)

    Buijze, Anoeska

    2015-01-01

    Water management is an integral part of sustainable area/urban development, and this article examines the interplay between water law and governance in three cases in the Netherlands to determine what sort of written law can provide normative guidance during governance processes, whilst at the same

  17. Integrated groundwater management: An overview of concepts and challenges

    Science.gov (United States)

    Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew; Jakeman, Anthony J.; Barreteau, Olivier; Hunt, Randall J.; Rinaudo, Jean-Daniel; Ross, Andrew

    2016-01-01

    Managing water is a grand challenge problem and has become one of humanity’s foremost priorities. Surface water resources are typically societally managed and relatively well understood; groundwater resources, however, are often hidden and more difficult to conceptualize. Replenishment rates of groundwater cannot match past and current rates of depletion in many parts of the world. In addition, declining quality of the remaining groundwater commonly cannot support all agricultural, industrial and urban demands and ecosystem functioning, especially in the developed world. In the developing world, it can fail to even meet essential human needs. The issue is: how do we manage this crucial resource in an acceptable way, one that considers the sustainability of the resource for future generations and the socioeconomic and environmental impacts? In many cases this means restoring aquifers of concern to some sustainable equilibrium over a negotiated period of time, and seeking opportunities for better managing groundwater conjunctively with surface water and other resource uses. However, there are many, often-interrelated, dimensions to managing groundwater effectively. Effective groundwater management is underpinned by sound science (biophysical and social) that actively engages the wider community and relevant stakeholders in the decision making process. Generally, an integrated approach will mean “thinking beyond the aquifer”, a view which considers the wider context of surface water links, catchment management and cross-sectoral issues with economics, energy, climate, agriculture and the environment. The aim of the book is to document for the first time the dimensions and requirements of sound integrated groundwater management (IGM). The primary focus is on groundwater management within its system, but integrates linkages beyond the aquifer. The book provides an encompassing synthesis for researchers, practitioners and water resource managers on the concepts and

  18. Integrated Resource Management and Recovery

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard

    2014-01-01

    resources, i.e. security of supply, but also the need for efficient recovery of the same resources after the use-phase of the products. While this recovery may appear simple, considerable challenges exist. Management and recovery of resources in waste materials, or in general residual streams in society......, depends on the quality of these resources and technological abilities to extract resources from mixed materials, e.g. mobile phones, solar cells, or mixed domestic waste. The "effort" invested in recovery of secondary resources should not be more than the "benefit" associated with the secondary resources....... Over the recent decades, DTU Environment has worked extensively both with resource recovery technologies and life cycle assessment (LCA) models (www.EASETECH.dk) dedicated to evaluating resource management and recovery systems. Advanced sustainability assessments of resource recovery and utilization...

  19. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  20. Coupling the hydrological and ecological process to implement the sustainable water resources manage-ment in Hanjiang River Basin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiang; XIA Jun

    2009-01-01

    Research on the combination of hydrological variation and ecological demands plays an important role In water availability assessment and sustainable management on basin scale.An integrative frame, consisting of hydrological regime modelling, ecological water demands estimation and renewable re-sources management, is given in this paper in order to support the implementation of the sustainable water resources management.The suggested integrative frame has been used to study the integrated water resources management in southern Hanjiang River Basin which is the water source of South-to-North Water Transportation Project in China.SWAT (soil and water assessment tool) model was used to simulate the monthly averaging streamflow and the amounts of ecological water demands in stream were also estimated in order to evaluate the available water resources for the local users and the transportation project.Then we formed the developing scenarioes by coupling the available water re-sources, the recovering rate of water resources in natural water cycle, the local water use rate and the amounts of the water transported to North, and used the Scheafer model to analyze their evolving tra-jectories.Eventually, the sustainable water resources management measures were assembled by the comprehensive evaluation of the scenarioea.The research indicates that the integrative frame provided a new way for the integrated water resources management in river basin.

  1. Global challenges in integrated coastal zone management

    DEFF Research Database (Denmark)

    place in Arendal, Norway between 3-7 July 2011. The main objective of the Symposium was to present current knowledge and to address issues on advice and management related to the coastal zone. The major themes of papers included in this book are: Coastal habitats and ecosystem services Adaptation...... integration of data and information in policy and management, combining expertise from nature and social science, to reach a balanced and sustainable development of the coastal zone. This important book comprises the proceedings of The International Symposium on Integrated Coastal Zone Management, which took....../mitigation to change in coastal systems Coastal governance Linking science and management Comprising a huge wealth of information, this timely and well-edited volume is essential reading for all those involved in coastal zone management around the globe. All libraries in research establishments and universities where...

  2. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  3. Integrated safety management system verification: Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R.F.

    1998-08-10

    Department of Energy (DOE) Policy (P) 450.4, Safety Management System Policy, commits to institutionalization of an Integrated Safety Management System (ISMS) throughout the DOE complex. The DOE Acquisition Regulations (DEAR, 48 CFR 970) requires contractors to manage and perform work in accordance with a documented Integrated Safety Management System (ISMS). Guidance and expectations have been provided to PNNL by incorporation into the operating contract (Contract DE-ACM-76FL0 1830) and by letter. The contract requires that the contractor submit a description of their ISMS for approval by DOE. PNNL submitted their proposed Safety Management System Description for approval on November 25,1997. RL tentatively approved acceptance of the description pursuant to a favorable recommendation from this review. The Integrated Safety Management System Verification is a review of the adequacy of the ISMS description in fulfilling the requirements of the DEAR and the DOE Policy. The purpose of this review is to provide the Richland Operations Office Manager with a recommendation for approval of the ISMS description of the Pacific Northwest Laboratory based upon compliance with the requirements of 49 CFR 970.5204(-2 and -78); and to verify the extent and maturity of ISMS implementation within the Laboratory. Further the review will provide a model for other DOE laboratories managed by the Office of Assistant Secretary for Energy Research.

  4. Integrated solid waste management in megacities

    Directory of Open Access Journals (Sweden)

    M.A. Abdoli

    2016-05-01

    Full Text Available Rapid urbanization and industrialization, population growth and economic growth in developing countries make management of municipal solid waste more complex comparing with developed countries. Furthermore, the conventional municipal solid waste management approach often is reductionists, not tailored to handle complexity. Therefore, the need to a comprehensive and multi-disciplinary approach regarding the municipal solid waste management problems is increasing. The concept of integrated solid waste management is accepted for this aim all over the world. This paper analyzes the current situation as well as opportunities and challenges regarding municipal solid waste management in Isfahan according to the integrated solid waste management framework in six aspects: environmental, political/legal, institutional, socio-cultural, financial/economic, technical and performance aspects. Based on the results obtained in this analysis, the main suggestions for future integrated solid waste management of Isfahan are as i promoting financial sustainability by taking the solid waste fee and reducing the expenses through the promoting source collection of recyclable materials, ii improving compost quality and also marketing the compost products simultaneously, iii promoting the private sector involvements throughout the municipal solid waste management system.

  5. Y-12 Integrated Materials Management System

    Energy Technology Data Exchange (ETDEWEB)

    Alspaugh, D. H.; Hickerson, T. W.

    2002-06-03

    The Integrated Materials Management System, when fully implemented, will provide the Y-12 National Security Complex with advanced inventory information and analysis capabilities and enable effective assessment, forecasting and management of nuclear materials, critical non-nuclear materials, and certified supplies. These capabilities will facilitate future Y-12 stockpile management work, enhance interfaces to existing National Nuclear Security Administration (NNSA) corporate-level information systems, and enable interfaces to planned NNSA systems. In the current national nuclear defense environment where, for example, weapons testing is not permitted, material managers need better, faster, more complete information about material properties and characteristics. They now must manage non-special nuclear material at the same high-level they have managed SNM, and information capabilities about both must be improved. The full automation and integration of business activities related to nuclear and non-nuclear materials that will be put into effect by the Integrated Materials Management System (IMMS) will significantly improve and streamline the process of providing vital information to Y-12 and NNSA managers. This overview looks at the kinds of information improvements targeted by the IMMS project, related issues, the proposed information architecture, and the progress to date in implementing the system.

  6. Renewed mer model of integral management

    Directory of Open Access Journals (Sweden)

    Janko Belak

    2015-12-01

    Full Text Available Background: The research work on entrepreneurship, enterprise's policy and management, which started in 1992, successfully continued in the following years. Between 1992 and 2011, more than 400 academics and other researchers have participated in research work (MER research program whose main orientation has been the creation of their own model of integral management. Results: In past years, academics (researchers and authors of published papers from Austria, Belgium, Bosnia and Herzegovina, Bulgaria, Byelorussia, Canada, the Czech Republic, Croatia, Estonia, France, Germany, Hungary, Italy, Poland, Romania, Russia, the Slovak Republic, Slovenia, Switzerland, Ukraine, and the US have cooperated in MER programs, coming from more than fifty institutions. Thus, scientific doctrines of different universities influenced the development of the MER model which is based on both horizontal and vertical integration of the enterprises' governance and management processes, instruments and institutions into a consistently operating unit. Conclusions: The presented MER model is based on the multi-layer integration of governance and management with an enterprise and its environment, considering the fundamental desires for the enterprises' existence and, thus, their quantitative as well as qualitative changes. The process, instrumental, and institutional integrity of the governance and management is also the initial condition for the implementation of all other integration factors.

  7. New water management and conservation options

    Energy Technology Data Exchange (ETDEWEB)

    Peachey, B.R. [New Paradigm Engineering Ltd., Edmonton, AB (Canada)

    2004-07-01

    The importance of water management issues in oil and gas operations was discussed in an effort to demonstrate how a basic understanding of water impacts, issues and management options can help the industry maximize oil and gas recovery while improving their financial and environmental results. Water related practices and regulations used for conventional oil production in western Canada may be useful in determining water management practices in expanded applications such as in the oil sands and coalbed methane (CBM) sectors. Although many water management strategies exist, they must be chosen proactively for each situation, since no one solution works well in all cases. The association of water and hydrocarbon production was also summarized with reference to water use, costs of water, and benefits of water. Water also represents environmental risks and opportunities such as leaks and spills; corrosion of equipment; competition for fresh water; expanding use of water for enhanced oil recovery; and, use of fresh water from CBM operations for irrigation or as an energy source for geothermal power production. Water's link to climate change was also addressed. Some of the options for water management include: selling off water prone assets; block, retreat and minimize other costs; use water effectively and maximize oil; use blocking agents; control water coning; segregate waste water streams; reduce water volumes with downhole separation and disposal; and, reduce fresh water use. 14 refs., 22 figs.

  8. Decision support for integrated water-energy planning.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  9. Integrated Constructed Wetlands (ICW) for livestock wastewater management.

    Science.gov (United States)

    Harrington, Rory; McInnes, Robert

    2009-11-01

    Social, economic and environmental coherence is sought in the management of livestock wastewater. Wetlands facilitate the biogeochemical processes that exploit livestock wastewater and provide opportunities to achieve such coherence and also to deliver on a range of ecosystem services. The Integrated Constructed Wetland (ICW) concept integrates three inextricably linked objectives: water quantity and quality management, landscape-fit to improve aesthetic site values and enhanced biodiversity. The synergies derived from this explicit integration allow one of the key challenges for livestock management to be addressed. An example utilizing twelve ICW systems from a catchment on the south coast of Ireland demonstrates that over an eight year period mean reduction of total and soluble phosphorus (molybdate reactive phosphorus) exceeded 95% and the mean removal of ammonium-N exceeded 98%. This paper reviews evidence regarding the capacity of ICWs to provide a coherent and sustainable alternative to conventional systems.

  10. Urban-Water Harmony model to evaluate the urban water management.

    Science.gov (United States)

    Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun

    2014-01-01

    Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.

  11. Upstream pipelines : inspection, corrosion and integrity management

    Energy Technology Data Exchange (ETDEWEB)

    Paez, J.; Stephenson, M. [Talisman Energy Inc., Calgary, AB (Canada)] (comps.)

    2009-07-01

    Accurate inspection techniques are needed to ensure the integrity of pipelines. This working group discussed methods of reducing pipeline failures for a variety of pipes. A summary of recent pipeline performance statistics was presented, as well as details of third party damage and fiberglass pipe failures. A batch inhibitor joint industry project was described. The session demonstrated that integrity program need to be developed at the field-level as well as at the upper management level. Fiberglass pipeline failures are significant problem for pipeline operators. Corrosion monitoring, pigging and specific budgets are needed in order to ensure the successful management of pipeline integrity. New software developed to predict pipeline corrosion rates was discussed, and methods of determining mole fractions and flow regimes were presented. The sessions included updates from regulators and standards agencies as well as discussions of best practices, regulations, codes and standards related to pipeline integrity. The working group was divided into 4 sessions: (1) updates since 2007 with input from the Canadian Association of Petroleum Producers (CAPP) and the Upstream Pipeline Integrity Management Association (UPIMA); (2) integrity of non-metallic pipelines; (3) upstream pipeline integrity issues; and (4) hot topics. tabs., figs.

  12. Innovative Sustainable Water Management Practices in Solar Residential Design

    OpenAIRE

    C. Jason Mabry; Franca Trubiano

    2012-01-01

    This paper communicates the results of an architectural research project which sought innovative design strategies for achieving energy and resource efficiencies in water management systems traditionally used in single-family housing. It describes the engineering of an efficient, multifaceted, and fully integrated water management system for a domesticenvironment of 800 sq. ft., entirely powered by solar energy. The four innovations whose details are conveyed include the use of alternate mate...

  13. Linking the physical and the socio-economic compartments of an integrated water and land use management model on a river basin scale using an object-oriented water supply model

    Science.gov (United States)

    Barthel, Roland; Nickel, Darla; Meleg, Alejandro; Trifkovic, Aleksandar; Braun, Juergen

    -oriented concepts of the Unified Modelling Language (UML) and is implemented in JAVA. This short overview is meant to answer key questions such as why and how WaterSupply was implemented, what is unique and new about the model and what are the general lessons learned and the added value with regard to integrated modelling on a river basin scale. It is obvious that in the attempt to answer these questions it is not possible to satisfy experts from all the relevant related fields, which include computer sciences, economy, behavioural science and not least water supply engineering and hydrology.

  14. Applying Telecoupling Framework for Urban Water Sustainability Research and Management

    Science.gov (United States)

    Yang, W.; Hyndman, D. W.; Winkler, J. A.; Viña, A.; Deines, J.; Lupi, F.; Luo, L.; Li, Y.; Basso, B.; Zheng, C.; Ma, D.; Li, S.; Liu, X.; Zheng, H.; Cao, G.; Meng, Q.; Ouyang, Z.; Liu, J.

    2016-12-01

    Urban areas, especially megacities (those with populations greater than 10 million), are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and also interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need for applying integrated frameworks to systematically analyze urban water dynamics and factors influencing these dynamics. Here, we apply the framework of telecoupling (socioeconomic and environmental interactions over distances) to analyze urban water issues, using Beijing as a demonstration city. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems). The integrated framework presented here demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water receiving system), but also water sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. This study also provides a foundation to apply the telecoupling framework to better understand and

  15. Conjunctive Surface Water and Groundwater Management under Climate Change

    Directory of Open Access Journals (Sweden)

    Xiaodong eZhang

    2015-09-01

    Full Text Available Climate change can result in significant impacts on regional and global surface water and groundwater resources. Using groundwater as a complimentary source of water has provided an effective means to satisfy the ever-increasing water demands and deal with surface water shortages problems due to robust capability of groundwater in responding to climate change. Conjunctive use of surface water and groundwater is crucial for integrated water resources management. It is helpful to reduce vulnerabilities of water supply systems and mitigate the water supply stress in responding to climate change. Some critical challenges and perspectives are discussed to help decision/policy makers develop more effective management and adaptation strategies for conjunctive water resources use in facing climate change under complex uncertainties.

  16. Integrated Resource Planning for Urban Waste Management

    Directory of Open Access Journals (Sweden)

    Damien Giurco

    2015-01-01

    Full Text Available The waste hierarchy currently dominates waste management planning in Australia. It is effective in helping planners consider options from waste avoidance or “reduction” through to providing infrastructure for landfill or other “disposal”. However, it is inadequate for guiding context-specific decisions regarding sustainable waste management and resource recovery, including the ability for stakeholders to compare a range of options on an equal footing whilst considering their various sustainability impacts and trade-offs. This paper outlines the potential use of Integrated Resource Planning (IRP as a decision-making approach for the urban waste sector, illustrated using an Australian case study. IRP is well established in both the water and energy sectors in Australia and internationally. It has been used in long-term planning enabling decision-makers to consider the potential to reduce resource use through efficiency alongside options for new infrastructure. Its use in the waste sector could address a number of the current limitations experienced by providing a broader context-sensitive, adaptive, and stakeholder focused approach to planning not present in the waste hierarchy and commonly used cost benefit analysis. For both efficiency and new infrastructure options IRP could be useful in assisting governments to make decisions that are consistent with agreed objectives while addressing costs of alternative options and uncertainty regarding their environmental and social impacts. This paper highlights various international waste planning approaches, differences between the sectors where IRP has been used and gives a worked example of how IRP could be applied in the Australian urban waste sector.

  17. Power management techniques for integrated circuit design

    CERN Document Server

    Chen, Ke-Horng

    2016-01-01

    This book begins with the premise that energy demands are directing scientists towards ever-greener methods of power management, so highly integrated power control ICs (integrated chip/circuit) are increasingly in demand for further reducing power consumption. * A timely and comprehensive reference guide for IC designers dealing with the increasingly widespread demand for integrated low power management * Includes new topics such as LED lighting, fast transient response, DVS-tracking and design with advanced technology nodes * Leading author (Chen) is an active and renowned contributor to the power management IC design field, and has extensive industry experience * Accompanying website includes presentation files with book illustrations, lecture notes, simulation circuits, solution manuals, instructors manuals, and program downloads.

  18. Integrated Project Management System description. [UMTRAP Project

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is a Department of Energy (DOE) designated Major System Acquisition (MSA). To execute and manage the Project mission successfully and to comply with the MSA requirements, the UMTRA Project Office ( Project Office'') has implemented and operates an Integrated Project Management System (IPMS). The Project Office is assisted by the Technical Assistance Contractor's (TAC) Project Integration and Control (PIC) Group in system operation. Each participant, in turn, provides critical input to system operation and reporting requirements. The IPMS provides a uniform structured approach for integrating the work of Project participants. It serves as a tool for planning and control, workload management, performance measurement, and specialized reporting within a standardized format. This system description presents the guidance for its operation. Appendices 1 and 2 contain definitions of commonly used terms and abbreviations and acronyms, respectively. 17 figs., 5 tabs.

  19. Framework for local government to implement integrated water ...

    African Journals Online (AJOL)

    2009-06-11

    Jun 11, 2009 ... resource management linked to water service delivery. EH Haigh, HE Fox and HD ..... maintenance and management of water and sanitation infrastructure including ...... water quality and drinking water quality regulations.

  20. [Countermeasures for strict water quality management of drinking water sources: some thoughts and suggestions on implementing strict water resources management].

    Science.gov (United States)

    Fu, Guo-Wei

    2013-08-01

    Suggestions on Carrying Out Strict Management Regulations of Water Resources were promulgated by the State Council in January, 2012. This is an important issue which has drawn public attention. I strongly support the principle and spirit of the regulations, as well as the request that governments above the county level bear the overall management responsibility. However, as to the technical route of and countermeasures for achieving strict management, several problems exist in reality. Relevant opinions and suggestions are given in this paper (the paper focuses exclusively on drinking water sources which are most in need of strict protection and management). Main opinions are as follows. (1) The sources of drinking water meeting the Class II standard in Surface Water Environment Quality Standards (GB 3838-2002) may not necessarily be unpolluted; (2) A necessary condition for protecting drinking water sources is that the effluents of enterprises' workshops discharged into the conservation zone should meet the regulation on the permitted maximum concentration of priority-I pollutants defined in the Integrated Wastewater Discharge Standard (GB 8978-1996); (3) There is a strong doubt about whether Class II standard in GB 3838-2002 for priority I pollutants reflects environmental background values in water.

  1. iSAW: Integrating Structure, Actors, and Water to Study Socio-Hydro-Ecological Systems

    OpenAIRE

    Rebecca L. Hale; Armstrong, Andrea; Baker, Michelle A.; Bedingfield, Sean; Betts, David; Buahin, Caleb; Buchert, Martin; Crowl, Todd; Dupont, R. Ryan; Ehleringer, James R.; Endter-Wada, Joanna; Flint, Courtney; Grant, Jacqualine; Hinners, Sarah; Horsburgh, Jeffery S.

    2015-01-01

    Urbanization, climate, and ecosystem change represent major challenges for managing water resources. Although water systems are complex, a need exists for a generalized representation of these systems to identify important components and linkages to guide scientific inquiry and aid water management. We developed an integrated Structure-Actor-Water framework (iSAW) to facilitate the understanding of and transitions to sustainable water systems. Our goal was to produce an interdisciplinary fram...

  2. Integration of Standardized Management Systems: A Dilemma?

    Directory of Open Access Journals (Sweden)

    Manuel Ferreira Rebelo

    2015-06-01

    Full Text Available The growing proliferation of management systems standards (MSSs, and their individualized implementation, is a real problem faced by organizations. On the other hand, MSSs are aimed at improving efficiency and effectiveness of organizational responses in order to satisfy the requirements, needs and expectations of the stakeholders. Each organization has its own identity and this is an issue that cannot be neglected; hence, two possible approaches can be attended. First, continue with the implementation of individualized management systems (MSs; or, integrate the several MSSs versus related MSs into an integrated management system (IMS. Therefore, in this context, organizations are faced with a dilemma, as a result of the increasing proliferation and diversity of MSSs. This paper takes into account the knowledge gained through a case study conducted in the context of a Portuguese company and unveils some of the advantages and disadvantages of integration. A methodology is also proposed and presented to support organizations in developing and structuring the integration process of their individualized MSs, and consequently minimize problems that are generators of inefficiencies, value destruction and loss of competitiveness. The obtained results provide relevant information that can support Top Management decision in solving that dilemma and consequently promote a successful integration, including a better control of business risks associated to MSSs requirements and enhancing sustainable performance, considering the context in which organizations operate.

  3. Managing Water-Food-Energy Futures in the Canadian Prairies

    Science.gov (United States)

    Wheater, H. S.; Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. A.

    2016-12-01

    The water-food-energy nexus is a convenient phrase to highlight competing societal uses for water and the need for cross-sectoral policy integration, but this can lead to oversimplification of the multiple dimensions of water (and energy) management. In practice, water managers must balance (and prioritize) demands for water for many uses, including environmental flows, and reservoir operation often involves managing conflicting demands, for example to maximize retention for supply, reduce storage to facilitate flood control, and constrain water levels and releases for habitat protection. Agriculture and water quality are also inextricably linked: irrigated agriculture requires appropriate water quality for product quality and certification, but agriculture can be a major source of nutrient pollution, with impacts on human and ecosystem health, drinking water treatment and amenity. And energy-water interactions include energy production (hydropower and cooling water for thermal power generation) and energy consumption (e.g. for pumping and water and wastewater treatment). These dependencies are illustrated for the Canadian prairies, and a risk-based approach to the management of climate change is presented. Trade-offs between economic benefits of hydropower and irrigation are illustrated for alternative climate futures, including implications for freshwater habitats. The results illustrate that inter-sector interactions vary as a function of climate and its variability, and that there is a need for policy to manage inter-sector allocations as a function of economic risk.

  4. Integrating cost management and work management concepts for operations

    Energy Technology Data Exchange (ETDEWEB)

    Vanditmars, C. [BC Gas Utilities Ltd., Burnaby, BC (Canada)

    1995-11-01

    Development of B C Gas Utility Limited`s integrated work and cost management system was described, with emphasis on cost management without reliance on the financial systems, and standard costing and operational side benefits. The objectives of the system were identified as dynamic monitoring and control, and local empowerment. The concept underlying the two systems was explained in detail. In the case of the work management system the ability to manage all work in operations areas was stressed, along with its universal availability. Other benefits expected included improved resource utilization, improved productivity, better control of cost, improved revenue generation, superior customer service, a simplified financial system, and improved employee motivation through empowerment.

  5. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  6. Risk management in waste water treatment.

    Science.gov (United States)

    Wagner, M; Strube, I

    2005-01-01

    With the continuous restructuring of the water market due to liberalisation, privatisation and internationalisation processes, the requirements on waste water disposal companies have grown. Increasing competition requires a target-oriented and clearly structured procedure. At the same time it is necessary to meet the environment-relevant legal requirements and to design the processes to be environment-oriented. The implementation of risk management and the integration of such a management instrument in an existing system in addition to the use of modern technologies and procedures can help to make the operation of the waste water treatment safer and consequently strengthen market position. The risk management process consists of three phases, risk identification, risk analysis/risk assessment and risk handling, which are based on each other, as well as of the risk managing. To achieve an identification of the risks as complete as possible, a subdivision of the kind of risks (e.g. legal, financial, market, operational) is suggested. One possibility to assess risks is the portfolio method which offers clear representation. It allows a division of the risks into classes showing which areas need handling. The determination of the appropriate measures to handle a risk (e.g. avoidance, reduction, shift) is included in the concluding third phase. Different strategies can be applied here. On the one hand, the cause-oriented strategy, aiming at preventive measures which aim to reduce the probability of occurrence of a risk (e.g. creation of redundancy, systems with low susceptibility to malfunction). On the other hand, the effect-oriented strategy, aiming to minimise the level of damage in case of an undesired occurrence (e.g. use of alarm systems, insurance cover).

  7. Effects of massive wind power integration on short-term water resource management in central Chile - a grid-wide study

    Science.gov (United States)

    Haas, J.; Olivares, M. A.; Palma, R.

    2013-12-01

    In central Chile, water from reservoirs and streams is mainly used for irrigation and power generation. Hydropower reservoirs operation is particularly challenging because: i) decisions at each plant impact the entire power system, and ii) the existence of large storage capacity implies inter-temporal ties. An Independent System Operator (ISO) decides the grid-wide optimal allocation of water for power generation, under irrigation-related constraints. To account for the long-term opportunity cost of water, a future cost function is determined and used in the short term planning. As population growth and green policies demand increasing levels of renewable energy in power systems, deployment of wind farms and solar plants is rising quickly. However, their power output is highly fluctuating on short time scales, affecting the operation of power plants, particularly those fast responding units as hydropower reservoirs. This study addresses these indirect consequences of massive introduction of green energy sources on reservoir operations. Short-term reservoir operation, under different wind penetration scenarios, is simulated using a replica of Chile's ISO's scheduling optimization tools. Furthermore, an ongoing study is exploring the potential to augment the capacity the existing hydro-power plants to better cope with the balancing needs due to a higher wind power share in the system. As reservoir releases determine to a great extent flows at downstream locations, hourly time series of turbined flows for 24-hour periods were computed for selected combinations between new wind farms and increased capacity of existing hydropower plants. These time series are compiled into subdaily hydrologic alteration (SDHA) indexes (Zimmerman et al, 2010). The resulting sample of indexes is then analyzed using duration curves. Results show a clear increase in the SDHA for every reservoir of the system as more fluctuating renewables are integrated into the system. High

  8. 78 FR 65751 - Integrated Corridor Management Deployment Planning Grants

    Science.gov (United States)

    2013-11-01

    ... Federal Highway Administration Integrated Corridor Management Deployment Planning Grants AGENCY: Federal... States, Metropolitan Planning Organizations (MPO), and local governments that intend to initiate or continue Integrated Corridor Management (ICM) development with their partners, such as arterial management...

  9. New challenges in integrated water quality modelling

    NARCIS (Netherlands)

    Rode, M.; Arhonditsis, G.; Balin, D.; Kebede, T.; Krysanova, V.; Griensven, A.; Zee, van der S.E.A.T.M.

    2010-01-01

    There is an increasing pressure for development of integrated water quality models that effectively couple catchment and in-stream biogeochemical processes. This need stems from increasing legislative requirements and emerging demands related to contemporary climate and land use changes. Modelling w

  10. Ramjets: Thermal Management an Integrated Engineering Approach

    Science.gov (United States)

    2010-09-01

    and Thermal Management (Propulsion a vitesse elevee : Conception du moteur - integration et gestion thermique ) 14. ABSTRACT Within the framework of...a central body extending from the nose tip to the end of the plug nozzle. At the front end of the annular combustor the fuel (assumed to be Jet-A

  11. Integrated Pest Management. A Curriculum Report.

    Science.gov (United States)

    McCabe, Robert H., Ed.; And Others

    This book consists of materials prepared for a conference aimed at developing courses of study in Integrated Pest Management appropriate for use at several levels: secondary schools, MDTA programs, community colleges and technical institutions, baccalaureate programs, and master's and doctoral level programs. The first section (Background Papers)…

  12. Water quality management of aquifer recharge using advanced tools.

    Science.gov (United States)

    Lazarova, Valentina; Emsellem, Yves; Paille, Julie; Glucina, Karl; Gislette, Philippe

    2011-01-01

    Managed aquifer recharge (MAR) with recycled water or other alternative resources is one of the most rapidly growing techniques that is viewed as a necessity in water-short areas. In order to better control health and environmental effects of MAR, this paper presents two case studies demonstrating how to improve water quality, enable reliable tracing of injected water and better control and manage MAR operation in the case of indirect and direct aquifer recharge. Two water quality management strategies are illustrated on two full-scale case studies, including the results of the combination of non conventional and advanced technologies for water quality improvement, comprehensive sampling and monitoring programs including emerging pollutants, tracer studies using boron isotopes and integrative aquifer 3D GIS hydraulic and hydrodispersive modelling.

  13. Water sustainability: reforming water management in new global era of climate change.

    Science.gov (United States)

    Shah, Kavita; Sharma, Prashant Kumar; Nandi, Ipsita; Singh, Nidhi

    2014-10-01

    The National Seminar on Sustainable Water Resource Management in Era of Changing Climate (NSWRM-2014) on 10-11 January 2014 organised by the Institute of Environment and Sustainable Development and Environmental Science and Technology, Banaras Hindu University, witnessed the presence of experts from environmentalists, industrialists and experts on water resources and its management. The deliberations and scientific discussions led to the conclusion that it is not just the resource but the natural capacity to sustain it that requires monitoring, understanding and stewardship. The focus of governance in India needs to move at a faster pace from conventional methods of sector-based water management to more integrated approach for sustainable water resource management. It is more of the people participation that is the future key towards sustainable water resource management in India.

  14. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  15. Information management through integration of distributed resources.

    Science.gov (United States)

    Stead, W W

    1988-07-01

    Duke University Medical Center conducted a strategic planning process focused on information management needs beginning in 1983 and ending in 1985. That effort concluded that the institution was ready to establish an Integrated Academic Information Management System (IAIMS). A model was proposed in which information management was to be achieved through integrated distributed resources. The elements of the IAIMS model are ongoing policy development and planning; communications; an electronic library or resource inventory; coordination of the development or selection of the end-user function; user support; and ongoing evaluation. This model is being tested to determine its effectiveness in meeting the administrative, patient care, research, and educational needs of a basic science department and a clinical science department at Duke University.

  16. A streamlined approach for pipeline integrity management

    Energy Technology Data Exchange (ETDEWEB)

    Porter, T.R. [Tuboscope Pipeline Services, Houston, TX (United States); Marr, J.E. [Marr and Associates, A Tuboscope Company, Calgary, AB (Canada)

    2004-07-01

    While regulations call for safe and reliable operation of pipelines, business calls for economic return and reduced liability. This paper presented a system that provides rapid, comprehensive and economic improvements for pipeline integrity decision support. The first phase of a pipeline integrity management plan (IMP) involves the identification of integrity threats to the pipeline. This may involve 22 root causes as defined by the Pipeline Research Council International (PRCI), grouped into 9 categories of related failure types, further grouped into time related defect types. Time dependent defects include external corrosion, internal corrosion and stress corrosion cracking. Stable defects include manufacturing related or welding defects, while time independent defects include mechanical damage, incorrect operations and outside forces. In designing an IMP, high consequence areas (HCAs) must be defined along with the integrity threats that could affect the pipeline. A baseline risk assessment is then performed using data from the integrity threat models to identify risks areas, individual lines, pipe segments or joints. Integrity management decisions are made based on the outcome of initial assessments, resulting in integrity assessment tools such as in line inspection (ILI) technologies, direct assessment (DA), and hydrostatic testing. Pipeline engineers benefit from having ILI, DA and other data integrated and interacting with geographic information system (GIS) data. This paper presented the LinaView PRO{sup TM} IMP tool developed by Tuboscope that enhances dig smart excavation decision making; remediation and mitigation planning; responding to one-call emergency response; implementation of government regulations; HCA identification; integration of a wide variety of data; comprehensive dynamic segmentation; and, data validation in support of risk assessment. The objective of an IMP is the safe and reliable delivery system for oil and gas product to markets. 9

  17. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands.

    Science.gov (United States)

    Baptista, Isaurinda; Ritsema, Coen; Geissen, Violette

    2015-01-01

    Soil erosion, runoff and related nutrient losses are a big risk for soil fertility in Cabo Verde drylands. In 2012, field trials were conducted in two agro-ecological zones to evaluate the effects of selected techniques of soil-water management combined with organic amendments (T1: compost/manure + soil surfactant; T2: compost/animal or green manure + pigeon-pea hedges + soil surfactant; T3: compost/animal or green manure + mulch + pigeon-pea hedges) on nitrogen (N) and phosphorus (P) losses in eroded soil and runoff and on crop yields. Three treatments and one control (traditional practice) were tested in field plots at three sites with a local maize variety and two types of beans. Runoff and eroded soil were collected after each erosive rain, quantified, and analysed for NO3-N and PO4-P concentrations. In all treatments runoff had higher concentrations of NO3-N (2.20-4.83 mg L-1) than of PO4-P (0.02-0.07 mg L-1), and the eroded soil had higher content of PO4-P (5.27-18.8 mg g-1) than of NO3-N (1.30-8.51 mg g-1). The control had significantly higher losses of both NO3-N (5.4, 4.4 and 19 kg ha-1) and PO4-P (0.2, 0.1 and 0.4 kg ha-1) than the other treatments. T3 reduced soil loss, runoff and nutrient losses to nearly a 100% while T1 and T2 reduced those losses from 43 to 88%. The losses of NO3-N and PO4-P were highly correlated with the amounts of runoff and eroded soil. Nutrient losses from the applied amendments were low (5.7% maximum), but the losses in the control could indicate long-term nutrient depletion in the soil (19 and 0.4 kg ha-1 of NO3-N and PO4-P, respectively). T1-T3 did not consistently increase crop yield or biomass in all three sites, but T1 increased both crop yield and biomass. We conclude that T3 (combining crop-residue mulch with organic amendment and runoff hedges) is the best treatment for steep slope areas but, the pigeon-pea hedges need to be managed for higher maize yield. T1 (combining organic amendment with soil surfactant) could be a

  18. Integrated Guidelines for Management of Alloy 600 Locations

    Energy Technology Data Exchange (ETDEWEB)

    Na, Kyung-Hwan; Chung, Hansub; Yang, Jun-Seog; Lee, Kyoung-Soo [KHNP-Central Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The locations experiencing PWSCC include steam generator tubes, pressurizer instrumental nozzles, control rod driving mechanism(CRDM) penetration nozzles, reactor outlet nozzles, and bottom mounted instrumental(BMI) nozzles. Korea Hydro and Nuclear Power Co.(KHNP) has developed integrated guidelines for management of alloy 600 locations and the guidelines are under review by the regulator. The guidelines consist of alloy 600 location database, inspection program, maintenance/preventive maintenance method, and finally water chemistry management for PWSCC mitigation. In this paper, the detailed contents are presented. The integrated guidelines collected all relevant information on the management of alloy 600 locations. This information may be useful for establishing the most effective preventive maintenance strategies by prioritization in addition to maintenance strategies. Table II summarize maintenance strategies for alloy 600 locations.

  19. 黄河水资源统一管理调度制度建设与实践%Construction and Practice of Integrated Water Resources Management and Regulation System of the Yellow River

    Institute of Scientific and Technical Information of China (English)

    乔西现

    2016-01-01

    In order to alleviate water shortage situation and support social⁃economic development in the Yellow River basin, in recent years, around the implementation of the most strict water resources management system, Yellow River Conservancy Commission has constructed and applied a series of systems, including the total water withdrawal licensing control, planning water resources argumentation, integrated water resources regulation and water right transfer etc., which ensures no drying up in the Yellow River for 17 consecutive years. The limited water resources of the Yellow River have supported the sustainable social⁃economic development in the basin to the maximum degree and achieved significant social, economic and ecological benefits.%为缓解黄河水资源短缺状况,支撑流域经济社会发展,近年来,围绕落实最严格水资源管理制度,黄河水利委员会在取水许可总量控制、规划水资源论证、黄河水量统一调度及黄河水权转让等方面开展了制度建设和实践,确保了黄河干流连续17 a不断流,使有限的黄河水资源最大程度地支撑了流域经济社会可