WorldWideScience

Sample records for integrated urban water

  1. Integrated Urban Water Quality Management

    DEFF Research Database (Denmark)

    Rauch, W.; Harremoës, Poul

    1995-01-01

    The basic features of integrated urban water quality management by means of deterministic modeling are outlined. Procedures for the assessment of the detrimental effects in the recipient are presented as well as the basic concepts of an integrated model. The analysis of a synthetic urban drainage...... system provides useful information for water quality management. It is possible to identify the system parameters that contain engineering significance. Continuous simulation of the system performance indicates that the combined nitrogen loading is dominated by the wastewater treatment plant during dry...

  2. Urban water sustainability: an integrative framework for regional water management

    Science.gov (United States)

    Gonzales, P.; Ajami, N. K.

    2015-11-01

    Traditional urban water supply portfolios have proven to be unsustainable under the uncertainties associated with growth and long-term climate variability. Introducing alternative water supplies such as recycled water, captured runoff, desalination, as well as demand management strategies such as conservation and efficiency measures, has been widely proposed to address the long-term sustainability of urban water resources. Collaborative efforts have the potential to achieve this goal through more efficient use of common pool resources and access to funding opportunities for supply diversification projects. However, this requires a paradigm shift towards holistic solutions that address the complexity of hydrologic, socio-economic and governance dynamics surrounding water management issues. The objective of this work is to develop a regional integrative framework for the assessment of water resource sustainability under current management practices, as well as to identify opportunities for sustainability improvement in coupled socio-hydrologic systems. We define the sustainability of a water utility as the ability to access reliable supplies to consistently satisfy current needs, make responsible use of supplies, and have the capacity to adapt to future scenarios. To compute a quantitative measure of sustainability, we develop a numerical index comprised of supply, demand, and adaptive capacity indicators, including an innovative way to account for the importance of having diverse supply sources. We demonstrate the application of this framework to the Hetch Hetchy Regional Water System in the San Francisco Bay Area of California. Our analyses demonstrate that water agencies that share common water supplies are in a good position to establish integrative regional management partnerships in order to achieve individual and collective short-term and long-term benefits.

  3. Integrated management of water resources in urban water system: Water Sensitive Urban Development as a strategic approach

    Directory of Open Access Journals (Sweden)

    Juan Joaquín Suárez López

    2014-08-01

    Full Text Available The urban environment has to be concerned with the integrated water resources management, which necessarily includes the concept of basin unity and governance.  The traditional urban water cycle framework, which includes water supply, sewerage and wastewater treatment services, is being replaced by a holistic and systemic concept, where water is associated with urbanism and sustainability policies. This global point of view cannot be ignored as new regulations demand systemic and environmental approaches to the administrations, for instance, in the management of urban drainage and sewerage systems. The practical expression of this whole cluster interactions is beginning to take shape in several countries, with the definition of Low Impact Development and Water Sensitivity Urban Design concepts. Intends to integrate this new strategic approach under the name: “Water Sensitive Urban Development” (WSUD. With WSUD approach, the current urban water systems (originally conceived under the traditional concept of urban water cycle can be transformed, conceptual and physically, for an integrated management of the urban water system in new models of sustainable urban development. A WSUD implementing new approach to the management of pollution associated with stormwater in the urban water system is also presented, including advances in environmental regulations and incorporation of several techniques in Spain.

  4. Integrated Rural-Urban Water Management for Climate Based ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    There are serious short- and long-term consequences on human health, physical assets, economic ... To work, adaptive climate-proof integrated urban water management must extend throughout the whole catchment, an approach known as integrated water resource management. ... Careers · Contact Us · Site map.

  5. A critical review of integrated urban water modelling – Urban drainage and beyond

    DEFF Research Database (Denmark)

    Bach, Peter M.; Rauch, Wolfgang; Mikkelsen, Peter Steen

    2014-01-01

    considerations (e.g. data issues, model structure, computational and integration-related aspects), common methodology for model development (through a systems approach), calibration/optimisation and uncertainty are discussed, placing importance on pragmatism and parsimony. Integrated urban water models should......Modelling interactions in urban drainage, water supply and broader integrated urban water systems has been conceptually and logistically challenging as evidenced in a diverse body of literature, found to be confusing and intimidating to new researchers. This review consolidates thirty years...... of research (initially driven by interest in urban drainage modelling) and critically reflects upon integrated modelling in the scope of urban water systems. We propose a typology to classify integrated urban water system models at one of four ‘degrees of integration’ (followed by its exemplification). Key...

  6. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  7. Review of Multi-Criteria Decision Aid for Integrated Sustainability Assessment of Urban Water Systems - MCEARD

    Science.gov (United States)

    Integrated sustainability assessment is part of a new paradigm for urban water decision making. Multi-criteria decision aid (MCDA) is an integrative framework used in urban water sustainability assessment, which has a particular focus on utilising stakeholder participation. Here ...

  8. Efficient Assessment of the Environment for Integral Urban Water Management

    Science.gov (United States)

    Rost, Grit; Londong, Jörg

    2015-04-01

    Introduction: Sustainable water supply and sanitation is fundamental, especially in countries that are also particularly vulnerable to water-related problems. The Integrated Water Resources Management (IWRM) approach makes sure that water management is organised in a transdisciplinary way taking into account the river basin, the hydrologic system and the appendant organisation like culture, law and economics. The main objective of IWRM is the sustainable organisation of water resources quality and quantity (GWP and INBO 2009). However there are more important targets in sustainable use of water resources. New sanitation systems are focussing on adding value and maintaining essential resources in circular flow. Focussing on material fluxes can contribute on water quality, food security, sustainable use of renewable energy, adaption on water scarcity and also on rising water and sanitation demand because of rapid urban and suburban growth (Price and Vojinović 2011; Rost et al 2013; Stäudel et al 2014). Problem: There are several planning tools for IWRM as well as for urban water management. But to complete the IWRM approach for the resource oriented concept a systematic assessment tool is missing. The assessment of crucial indicators obviously requires a lot of data from different subjects/disciplines, in different scales of detail and in different accuracy and in data acquisition (Karthe et al 2014). On the one hand there will be data abundance and on the other hand the data can be unavailable or unfeasible for example because of scale and specification(Rost et al 2013). Such a complex integrated concept requires a clearly worked out structure for the way of managing and priority setting. Purpose: To get systematic in the complex planning process the toolbox model is going to develop. The assessment of the environmental screening (one part of the toolbox) is going to be presented in this paper. The first step of assessment leans on the assertion that each of the

  9. Urban water metabolism efficiency assessment: integrated analysis of available and virtual water.

    Science.gov (United States)

    Huang, Chu-Long; Vause, Jonathan; Ma, Hwong-Wen; Yu, Chang-Ping

    2013-05-01

    Resolving the complex environmental problems of water pollution and shortage which occur during urbanization requires the systematic assessment of urban water metabolism efficiency (WME). While previous research has tended to focus on either available or virtual water metabolism, here we argue that the systematic problems arising during urbanization require an integrated assessment of available and virtual WME, using an indicator system based on material flow analysis (MFA) results. Future research should focus on the following areas: 1) analysis of available and virtual water flow patterns and processes through urban districts in different urbanization phases in years with varying amounts of rainfall, and their environmental effects; 2) based on the optimization of social, economic and environmental benefits, establishment of an indicator system for urban WME assessment using MFA results; 3) integrated assessment of available and virtual WME in districts with different urbanization levels, to facilitate study of the interactions between the natural and social water cycles; 4) analysis of mechanisms driving differences in WME between districts with different urbanization levels, and the selection of dominant social and economic driving indicators, especially those impacting water resource consumption. Combinations of these driving indicators could then be used to design efficient water resource metabolism solutions, and integrated management policies for reduced water consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Integrated urban water management for residential areas: a reuse model.

    Science.gov (United States)

    Barton, A B; Argue, J R

    2009-01-01

    Global concern over growing urban water demand in the face of limited water resources has focussed attention on the need for better management of available water resources. This paper takes the "fit for purpose" concept and applies it in the development of a model aimed at changing current practices with respect to residential planning by integrating reuse systems into the design layout. This residential reuse model provides an approach to the design of residential developments seeking to maximise water reuse. Water balance modelling is used to assess the extent to which local water resources can satisfy residential demands with conditions based on the city of Adelaide, Australia. Physical conditions include a relatively flat topography and a temperate climate, with annual rainfall being around 500 mm. The level of water-self-sufficiency that may be achieved within a reuse development in this environment is estimated at around 60%. A case study is also presented in which a conventional development is re-designed on the basis of the reuse model. Costing of the two developments indicates the reuse scenario is only marginally more expensive. Such costings however do not include the benefit to upstream and downstream environments resulting from reduced demand and discharges. As governments look to developers to recover system augmentation and environmental costs the economics of such approaches will increase.

  11. A novel integrated assessment methodology of urban water reuse.

    Science.gov (United States)

    Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S

    2011-01-01

    Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.

  12. Integrating Surface Water Management in Urban and Regional Planning, Case Study of Wuhan in China

    NARCIS (Netherlands)

    Du, N.

    2010-01-01

    The main goal of the study is to examine and develop a spatial planning methodology that would enhance the sustainability of urban development by integrating the surface water system in the urban and regional planning process. Theoretically, this study proposes that proactive-integrated policy and

  13. A Practical Review of Integrated Urban Water Models: Applications as Decision Support Tools and Beyond

    Science.gov (United States)

    Mosleh, L.; Negahban-Azar, M.

    2017-12-01

    The integrated urban water management has become a necessity due to the high rate of urbanization, water scarcity, and climate variability. Climate and demographic changes, shifting the social attitude toward the water usage, and insufficiencies in system resilience increase the pressure on the water resources. Alongside with the water management, modeling urban water systems have progressed from traditional view to comprise alternatives such as decentralized water and wastewater systems, fit-for-purpose practice, graywater/rainwater reuse, and green infrastructure. While there are review papers available focusing on the technical part of the models, they seem to be more beneficial for model developers. Some of the models analyze a number of scenarios considering factors such as climate change and demography and their future impacts. However, others only focus on quality and quantity of water in a supply/demand approach. For example, optimizing the size of water or waste water store, characterizing the supply and quantity of urban stormwater and waste water, and link source of water to demand. A detailed and practical comparison of such models has become a necessity for the practitioner and policy makers. This research compares more than 7 most commonly used integrated urban water cycle models and critically reviews their capabilities, input requirements, output and their applications. The output of such detailed comparison will help the policy makers for the decision process in the built environment to compare and choose the best models that meet their goals. The results of this research show that we need a transition from developing/using integrated water cycle models to integrated system models which incorporate urban water infrastructures and ecological and economic factors. Such models can help decision makers to reflect other important criteria but with the focus on urban water management. The research also showed that there is a need in exploring

  14. iSPUW: integrated sensing and prediction of urban water for sustainable cities

    Science.gov (United States)

    Noh, S. J.; Nazari, B.; Habibi, H.; Norouzi, A.; Nabatian, M.; Seo, D. J.; Bartos, M. D.; Kerkez, B.; Lakshman, L.; Zink, M.; Lee, J.

    2016-12-01

    Many cities face tremendous water-related challenges in this Century of the City. Urban areas are particularly susceptible not only to excesses and shortages of water but also to impaired water quality. To addresses these challenges, we synergistically integrate advances in computing and cyber-infrastructure, environmental modeling, geoscience, and information science to develop integrative solutions for urban water challenges. In this presentation, we describe the various efforts that are currently ongoing in the Dallas-Fort Worth Metroplex (DFW) area for iSPUW: real-time high-resolution flash flood forecasting, inundation mapping for large urban areas, crowdsourcing of water observations in urban areas, real-time assimilation of crowdsourced observations for street and river flooding, integrated control of lawn irrigation and rainwater harvesting for water conservation and stormwater management, feature mining with causal discovery for flood prediction, and development of the Arlington Urban Hydroinformatics Testbed. Analyzed is the initial data of sensor network for water level and lawn monitoring, and cellphone applications for crowdsourcing flood reports. New data assimilation approaches to deal with categorical and continuous observations are also evaluated via synthetic experiments.

  15. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2010-01-01

    Integrated urban water system (IUWS) modeling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOS) and stormwater drainage systems However, some micropollutants tend to appear in more than one environmental...... medium (air, water, sediment, soil, groundwater, etc) In this work, a multimedia fate and transport model (MFTM) is "wrapped around" a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment The combined model was tested on a hypothetical catchment using two scenarios...... on the one hand a reference scenario with a combined sewerage system and on the other hand a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS) A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in reduced surface water concentrations...

  16. Combining multimedia models with integrated urban water system models for micropollutants

    DEFF Research Database (Denmark)

    De Keyser, W.; Gevaert, V.; Verdonck, F.

    2009-01-01

    Integrated urban water system (IUWS) modelling aims at assessing the quality of the surface water receiving the urban emissions through sewage treatment plants, combined sewer overflows (CSOs) and stormwater drainage systems. However, some micropollutants have the tendency to occur in more than one...... environmental medium. In this work, a multimedia fate and transport model (MFTM) is “wrapped around” a dynamic IUWS model for organic micropollutants to enable integrated environmental assessment. The combined model was tested on a hypothetical catchment using two scenarios: a reference scenario...... and a stormwater infiltration pond scenario, as an example of a sustainable urban drainage system (SUDS). A case for Bis(2-ethylhexyl) phthalate (DEHP) was simulated and resulted in a reduced surface water concentration for the latter scenario. However, the model also showed that this was at the expense...

  17. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    Science.gov (United States)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  18. Acceptability of the integral solar water heater by householders in the low income urban community

    CSIR Research Space (South Africa)

    Basson, FA

    1984-01-01

    Full Text Available A research and demonstration project on the use and performance of low cost integral solar water heaters in urban low-income dwellings was carried out in 1982/83. The project involved technical and socio-economic components. This report summarises...

  19. An Implentation Methodology for Integrated Resource Management in Urban Water Planning

    Science.gov (United States)

    Ebrahimi, G.; Thurm, B.; Klein, D. R.; Öberg, G.

    2014-12-01

    Urban water management requires innovative and integrative approaches to improve sustainability in cities keeping in touch with science progress. Integrated Resource Management (IRM) is one of these strategies and has been developed to integrate various natural and human resources. However, it is becoming increasingly clear that it is challenging to move from vision to implementation. The aim of this paper is to identify strengths and weaknesses of IRM and analyze if the approach might facilitate implementation of sustainability objectives in the water management field. A literature review was performed on peer-reviewed papers that were identified through Google Scholar search for the term 'Integrated Resource Management'. It was found that IRM has been used in a number of contexts such as urban planning, forestry, and management of waste and livestock. Significant implementation challenges are highlighted in the literature. Based on the lessons learned in many different fields, from forestry to communication sciences, important characteristics of IRM approach were found such as the need for adequate governance and strong leaderships, stakeholder's involvement, the learning process and the critical need of appropriate evaluation criteria. We conclude developing an implementation methodology and presenting several recommendations to implement IRM in urban management. While Integrated Water Resource Management (IWRM) is recognized as a fruitful approach to achieve sustainable water management, this study suggests that a shift toward Integrated Resource Management (IRM) can be beneficial as it is designed to facilitate consideration of the interrelationships between various natural and human resources.

  20. Sustainable Urban (re-Development with Building Integrated Energy, Water and Waste Systems

    Directory of Open Access Journals (Sweden)

    Tae-Goo Lee

    2013-03-01

    Full Text Available The construction and service of urban infrastructure systems and buildings involves immense resource consumption. Cities are responsible for the largest component of global energy, water, and food consumption as well as related sewage and organic waste production. Due to ongoing global urbanization, in which the largest sector of the global population lives in cities which are already built, global level strategies need to be developed that facilitate both the sustainable construction of new cities and the re-development of existing urban environments. A very promising approach in this regard is the decentralization and building integration of environmentally sound infrastructure systems for integrated resource management. This paper discusses such new and innovative building services engineering systems, which could contribute to increased energy efficiency, resource productivity, and urban resilience. Applied research and development projects in Germany, which are based on integrated system approaches for the integrated and environmentally sound management of energy, water and organic waste, are used as examples. The findings are especially promising and can be used to stimulate further research and development, including economical aspects which are crucial for sustainable urban (re-development.

  1. Application of a sustainability index for integrated urban water ...

    African Journals Online (AJOL)

    guide appropriate action and policy-making towards better service delivery and improved resource management. ... surface water, groundwater and rainwater, as well as methods of ... systems in order to define how the objective of sustainability can ..... the relevant decision-makers towards more sustainable prac- tices.

  2. Sustainable Urban Water Management: Application for Integrated Assessment in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Shokhrukh-Mirzo Jalilov

    2018-01-01

    Full Text Available The design, development, and operation of current and future urban water infrastructure in many parts of the world increasingly rely on and apply the principles of sustainable development. However, this approach suffers from a lack of the necessary knowledge, skills, and practice of how sustainable development can be attained and promoted in a given city. This paper presents the framework of an integrated systems approach analysis that deals with the abovementioned issues. The “Water and Urban Initiative” project, which was implemented by the United Nations University’s Institute for the Advanced Study of Sustainability, focused on urban water and wastewater systems, floods, and their related health risk assessment, and the economics of water quality improvements. A team of researchers has investigated issues confronting cities in the developing countries of Southeast Asia, in relation to sustainable urban water management in the face of such ongoing changes as rapid population growth, economic development, and climate change; they have also run future scenarios and proposed policy recommendations for decision-makers in selected countries in Southeast Asia. The results, lessons, and practical recommendations of this project could contribute to the ongoing policy debates and decision-making processes in these countries.

  3. Advantages of integrated and sustainability based assessment for metabolism based strategic planning of urban water systems.

    Science.gov (United States)

    Behzadian, Kourosh; Kapelan, Zoran

    2015-09-15

    Despite providing water-related services as the primary purpose of urban water system (UWS), all relevant activities require capital investments and operational expenditures, consume resources (e.g. materials and chemicals), and may increase negative environmental impacts (e.g. contaminant discharge, emissions to water and air). Performance assessment of such a metabolic system may require developing a holistic approach which encompasses various system elements and criteria. This paper analyses the impact of integration of UWS components on the metabolism based performance assessment for future planning using a number of intervention strategies. It also explores the importance of sustainability based criteria in the assessment of long-term planning. Two assessment approaches analysed here are: (1) planning for only water supply system (WSS) as a part of the UWS and (2) planning for an integrated UWS including potable water, stormwater, wastewater and water recycling. WaterMet(2) model is used to simulate metabolic type processes in the UWS and calculate quantitative performance indicators. The analysis is demonstrated on the problem of strategic level planning of a real-world UWS to where optional intervention strategies are applied. The resulting performance is assessed using the multiple criteria of both conventional and sustainability type; and optional intervention strategies are then ranked using the Compromise Programming method. The results obtained show that the high ranked intervention strategies in the integrated UWS are those supporting both water supply and stormwater/wastewater subsystems (e.g. rainwater harvesting and greywater recycling schemes) whilst these strategies are ranked low in the WSS and those targeting improvement of water supply components only (e.g. rehabilitation of clean water pipes and addition of new water resources) are preferred instead. Results also demonstrate that both conventional and sustainability type performance indicators

  4. Road traffic impact on urban water quality: a step towards integrated traffic, air and stormwater modelling.

    Science.gov (United States)

    Fallah Shorshani, Masoud; Bonhomme, Céline; Petrucci, Guido; André, Michel; Seigneur, Christian

    2014-04-01

    Methods for simulating air pollution due to road traffic and the associated effects on stormwater runoff quality in an urban environment are examined with particular emphasis on the integration of the various simulation models into a consistent modelling chain. To that end, the models for traffic, pollutant emissions, atmospheric dispersion and deposition, and stormwater contamination are reviewed. The present study focuses on the implementation of a modelling chain for an actual urban case study, which is the contamination of water runoff by cadmium (Cd), lead (Pb), and zinc (Zn) in the Grigny urban catchment near Paris, France. First, traffic emissions are calculated with traffic inputs using the COPERT4 methodology. Next, the atmospheric dispersion of pollutants is simulated with the Polyphemus line source model and pollutant deposition fluxes in different subcatchment areas are calculated. Finally, the SWMM water quantity and quality model is used to estimate the concentrations of pollutants in stormwater runoff. The simulation results are compared to mass flow rates and concentrations of Cd, Pb and Zn measured at the catchment outlet. The contribution of local traffic to stormwater contamination is estimated to be significant for Pb and, to a lesser extent, for Zn and Cd; however, Pb is most likely overestimated due to outdated emissions factors. The results demonstrate the importance of treating distributed traffic emissions from major roadways explicitly since the impact of these sources on concentrations in the catchment outlet is underestimated when those traffic emissions are spatially averaged over the catchment area.

  5. Integrating Infrastructure and Institutions for Water Security in Large Urban Areas

    Science.gov (United States)

    Padowski, J.; Jawitz, J. W.; Carrera, L.

    2015-12-01

    Urban growth has forced cities to procure more freshwater to meet demands; however the relationship between urban water security, water availability and water management is not well understood. This work quantifies the urban water security of 108 large cities in the United States (n=50) and Africa (n=58) based on their hydrologic, hydraulic and institutional settings. Using publicly available data, urban water availability was estimated as the volume of water available from local water resources and those captured via hydraulic infrastructure (e.g. reservoirs, wellfields, aqueducts) while urban water institutions were assessed according to their ability to deliver, supply and regulate water resources to cities. When assessing availability, cities relying on local water resources comprised a minority (37%) of those assessed. The majority of cities (55%) instead rely on captured water to meet urban demands, with African cities reaching farther and accessing a greater number and variety of sources for water supply than US cities. Cities using captured water generally had poorer access to local water resources and maintained significantly more complex strategies for water delivery, supply and regulatory management. Eight cities, all African, are identified in this work as having water insecurity issues. These cities lack sufficient infrastructure and institutional complexity to capture and deliver adequate amounts of water for urban use. Together, these findings highlight the important interconnection between infrastructure investments and management techniques for urban areas with a limited or dwindling natural abundance of water. Addressing water security challenges in the future will require that more attention be placed not only on increasing water availability, but on developing the institutional support to manage captured water supplies.

  6. The role of municipal committees in the development of an integrated urban water policy in Belo Horizonte, Brazil.

    Science.gov (United States)

    Costa, G M; Costa, H S M; Dias, J B; Welter, M G

    2009-01-01

    This paper discusses the challenges involved in adopting an integrated approach to urban water policies and management, a particularly problematic issue in Brazil due to the incomplete nature of urbanization, defined as the lack of adequate and/or universalized access to infrastructure and services, informal housing and conflicts between environmental protection and social housing needs. In the last two decades strong social movements have influenced urban environmental policies from national to local levels. In Belo Horizonte since 1993, decision-making processes have involved important mechanisms of democratic inclusion, which have contributed to fairer urban policies. A brief discussion of the concept of governance follows, introducing the municipal urban policy within which drainage and sanitation policies have been implemented. This paper presents the constitutional and institutional role of the five municipal committees dealing with water governance issues, as they are important arenas for civil society participation. The main constraints to achieving integrated urban water governance at the local level and the extent to which such policies are able to reduce social inequalities and promote social environmental justice in the use and appropriation of urban water, are discussed. This paper is part of the SWITCH-Sustainable Water Management Improves Tomorrow's Cities' Health-research network.

  7. Interactions of water with energy and materials in urban areas and agriculture. IWRM. Integrated water resources management. Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Steusloff, Hartwig (ed.)

    2012-07-01

    The current rationale, range and significance of Integrated Water Resources Management (IWRM) are subject to increasing dimensionality, such as systemic conflicts between water users, increasing regulatory influences, and the growing energy requirements for providing the appropriate water resources. The competition between urban and agricultural consumers for water is dealt with as are regulatory, technological and socio-economic aspects of IWRM. The conference proceedings of IWRM Karlsruhe 2012 impart knowledge and relate practical experience in three key areas of IWRM: 1. Challenges for Future Cities and Efficient Agricultural Production Satisfying the growing demand for fresh water for a growing population as well as for agriculture bears the risk of aggravating the conflict between economic and ecological needs. Providing a reliable and secure supply of water for our future cities requires appropriate technical infrastructure systems coupled with environmentally optimized management. In this context it is essential to have greater awareness of the relationship of water and energy and of the overall water usage including the re-use of water 2. Competing Water Uses Water must be shared between domestic/municipal, industrial, agricultural, and hydropower users as well as between regions. This competition is intensified by the vulnerability of supply and sanitation systems to increasing climate extremes and to terrorism. 3. Regulatory and Policy Framework Using water is associated with a great number of externalities. For this reason a proper legislative and regulatory framework is prerequisite for proper management of the water supply, sewerage and storm-water services as well as water usage, all of which are essential for public health, economic development and environmental protection.

  8. Integrated water design for a decentralized urban landscape: [text and figures

    OpenAIRE

    Ranzato, Marco

    2011-01-01

    In the Veneto Città Diffusa, the decentralized urban landscape of the Veneto Region, Northeast Italy, the economic growth of recent decades brought about increased urbanization and agricultural intensification. The process of change has been accompanied by the extension and/or maximization of centralized services of drinking water, irrigation, waste water and drainage to meet greater demands for the provision and disposal of water. Accordingly, the structure of a formerly poor rural landscape...

  9. Urban Waters Partnership

    Science.gov (United States)

    Includes information on 14 Federal member agencies for the Urban Waters Federal Partnership and 19 designated urban waters locations and the local stakeholder groups and activities. Content was formerly at www.epa.gov/urbanwaters/

  10. Urbanizing rural waters

    NARCIS (Netherlands)

    Hommes, Lena; Boelens, Rutgerd

    2017-01-01

    This article studies how urbanization processes and associated rural-urban water transfers in the Lima region (Peru) create water control hierarchies that align the municipal drinking water company, hydropower plants and rural communities on unequal positions. By scrutinizing the history of water

  11. Water quality and health in a Sahelian semi-arid urban context: an integrated geographical approach in Nouakchott, Mauritania

    Directory of Open Access Journals (Sweden)

    Doulo Traoré

    2013-11-01

    Full Text Available Access to sufficient quantities of safe drinking water is a human right. Moreover, access to clean water is of public health relevance, particularly in semi-arid and Sahelian cities due to the risks of water contamination and transmission of water-borne diseases. We conducted a study in Nouakchott, the capital of Mauritania, to deepen the understanding of diarrhoeal incidence in space and time. We used an integrated geographical approach, combining socio-environmental, microbiological and epidemiological data from various sources, including spatially explicit surveys, laboratory analysis of water samples and reported diarrhoeal episodes. A geospatial technique was applied to determine the environmental and microbiological risk factors that govern diarrhoeal transmission. Statistical and cartographic analyses revealed concentration of unimproved sources of drinking water in the most densely populated areas of the city, coupled with a daily water allocation below the recommended standard of 20 l per person. Bacteriological analysis indicated that 93% of the non-piped water sources supplied at water points were contaminated with 10-80 coliform bacteria per 100 ml. Diarrhoea was the second most important disease reported at health centres, accounting for 12.8% of health care service consultations on average. Diarrhoeal episodes were concentrated in municipalities with the largest number of contaminated water sources. Environmental factors (e.g. lack of improved water sources and bacteriological aspects (e.g. water contamination with coliform bacteria are the main drivers explaining the spatio-temporal distribution of diarrhoea. We conclude that integrating environmental, microbiological and epidemiological variables with statistical regression models facilitates risk profiling of diarrhoeal diseases. Modes of water supply and water contamination were the main drivers of diarrhoea in this semi-arid urban context of Nouakchott, and hence require a

  12. Urban water trajectories

    CERN Document Server

    Allen, Adriana; Hofmann, Pascale; Teh, Tse-Hui

    2017-01-01

    Water is an essential element in the future of cities. It shapes cities’ locations, form, ecology, prosperity and health. The changing nature of urbanisation, climate change, water scarcity, environmental values, globalisation and social justice mean that the models of provision of water services and infrastructure that have dominated for the past two centuries are increasingly infeasible. Conventional arrangements for understanding and managing water in cities are being subverted by a range of natural, technological, political, economic and social changes. The prognosis for water in cities remains unclear, and multiple visions and discourses are emerging to fill the space left by the certainty of nineteenth century urban water planning and engineering. This book documents a sample of those different trajectories, in terms of water transformations, option, services and politics. Water is a key element shaping urban form, economies and lifestyles, part of the ongoing transformation of cities. Cities are face...

  13. Water quality-based real time control of integrated urban drainage: a preliminary study from Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Vezzaro, Luca; Lund Christensen, Margit; Thirsing, Carsten

    2013-01-01

    Global Real Time Control (RTC) of urban drainage systems is increasingly seen as cost-effective solution for responding to increasing performance demands. This study investigated the potential for including water-quality based RTC into the global control strategy which is under implementation...... in the Lynetten catchment (Copenhagen, Denmark). Two different strategies were simulated, considering: (i) water quality at the wastewater treatment plant (WWTP) inlet and (ii) pollution discharge to the bathing areas. These strategies were included in the Dynamic Overflow Risk Assessment (DORA) RTC strategy......, which allows for prioritization of the discharge points in the systems according to their sensitivity. A conceptual hydrological model was used to assess the performance of the integrated control strategy over an entire year. The simulation results showed the benefits of the proposed approaches...

  14. Coping with drought: the experience of water sensitive urban design ...

    African Journals Online (AJOL)

    2014-11-14

    Nov 14, 2014 ... from 4 main WSUD activities, implemented by the George Local Municipality. Water ... George Municipality, integrated urban water management, South Africa, ... The unsustainability of urban water resource management was.

  15. Application of a New Integrated Decision Support Tool (i-DST) for Urban Water Infrastructure: Analyzing Water Quality Compliance Pathways for Three Los Angeles Watersheds

    Science.gov (United States)

    Gallo, E. M.; Hogue, T. S.; Bell, C. D.; Spahr, K.; McCray, J. E.

    2017-12-01

    The water quality of receiving streams and waterbodies in urban watersheds are increasingly polluted from stormwater runoff. The implementation of Green Infrastructure (GI), which includes Low Impact Developments (LIDs) and Best Management Practices (BMPs), within a watershed aim to mitigate the effects of urbanization by reducing pollutant loads, runoff volume, and storm peak flow. Stormwater modeling is generally used to assess the impact of GIs implemented within a watershed. These modeling tools are useful for determining the optimal suite of GIs to maximize pollutant load reduction and minimize cost. However, stormwater management for most resource managers and communities also includes the implementation of grey and hybrid stormwater infrastructure. An integrated decision support tool, called i-DST, that allows for the optimization and comprehensive life-cycle cost assessment of grey, green, and hybrid stormwater infrastructure, is currently being developed. The i-DST tool will evaluate optimal stormwater runoff management by taking into account the diverse economic, environmental, and societal needs associated with watersheds across the United States. Three watersheds from southern California will act as a test site and assist in the development and initial application of the i-DST tool. The Ballona Creek, Dominguez Channel, and Los Angeles River Watersheds are located in highly urbanized Los Angeles County. The water quality of the river channels flowing through each are impaired by heavy metals, including copper, lead, and zinc. However, despite being adjacent to one another within the same county, modeling results, using EPA System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN), found that the optimal path to compliance in each watershed differs significantly. The differences include varied costs, suites of BMPs, and ancillary benefits. This research analyzes how the economic, physical, and hydrological differences between the three

  16. Modeling the Impacts of Urbanization and Industrial Transformation on Water Resources in China: An Integrated Hydro-Economic CGE Analysis

    Directory of Open Access Journals (Sweden)

    Li Jiang

    2014-10-01

    Full Text Available Pressure on existing water resources in China is expected to increase with undergoing rapid demographic transformation, economic development, and global climate changes. We investigate the economy-wide impacts of projected urban population growth and economic structural change on water use and allocation in China. Using a multi-regional CGE (Computable General Equilibrium model, TERM (The Enormous Regional Model, we explore the implications of selected future water scenarios for China’s nine watershed regions. Our results indicate that urbanization and industrial transformation in China will raise the opportunity cost of water use and increase the competition for water between non-agricultural users and irrigation water users. The growth in water demand for domestic and industrial uses reduces the amount of water allocated to agriculture, particularly lower-value and water-intensive field crops. As a response, farmers have the incentive to shift their agricultural operations from traditional field crop production to higher-value livestock or intensive crop production. In addition, our results suggest that growing water demand due to urbanization and industrial transformation will raise the shadow price of water in all nine river basins. Finally, we find that national economic growth is largely attributable to urbanization and non-agricultural productivity growth.

  17. Urban water sustainability: framework and application

    Directory of Open Access Journals (Sweden)

    Wu Yang

    2016-12-01

    Full Text Available Urban areas such as megacities (those with populations greater than 10 million are hotspots of global water use and thus face intense water management challenges. Urban areas are influenced by local interactions between human and natural systems and interact with distant systems through flows of water, food, energy, people, information, and capital. However, analyses of water sustainability and the management of water flows in urban areas are often fragmented. There is a strong need to apply integrated frameworks to systematically analyze urban water dynamics and factors that influence these dynamics. We apply the framework of telecoupling (socioeconomic and environmental interactions over distances to analyze urban water issues, using Beijing as a demonstration megacity. Beijing exemplifies the global water sustainability challenge for urban settings. Like many other cities, Beijing has experienced drastic reductions in quantity and quality of both surface water and groundwater over the past several decades; it relies on the import of real and virtual water from sending systems to meet its demand for clean water, and releases polluted water to other systems (spillover systems. The integrative framework we present demonstrates the importance of considering socioeconomic and environmental interactions across telecoupled human and natural systems, which include not only Beijing (the water-receiving system but also water-sending systems and spillover systems. This framework helps integrate important components of local and distant human-nature interactions and incorporates a wide range of local couplings and telecouplings that affect water dynamics, which in turn generate significant socioeconomic and environmental consequences, including feedback effects. The application of the framework to Beijing reveals many research gaps and management needs. We also provide a foundation to apply the telecoupling framework to better understand and manage water

  18. A study of ecological sanitation as an integrated urban water supply system: case study of sustainable strategy for Kuching City, Sarawak, Malaysia.

    Science.gov (United States)

    Seng, Darrien Mah Yau; Putuhena, Frederik Josep; Said, Salim; Ling, Law Puong

    2009-03-01

    A city consumes a large amount of water. Urban planning and development are becoming more compelling due to the fact of growing competition for water, which has lead to an increasing and conflicting demand. As such, investments in water supply, sanitation and water resources management is a strong potential for a solid return. A pilot project of greywater ecological treatment has been established in Kuching city since 2003. Such a treatment facility opens up an opportunity of wastewater reclamation for reuse as secondary sources of water for non-consumptive purposes. This paper aims to explore the potential of the intended purposes in the newly developed ecological treatment project. By utilizing the Wallingford Software model, InfoWorks WS (Water Supply) is employed to carry out a hydraulic modeling of a hypothetical greywater recycling system as an integrated part of the Kuching urban water supply, where the greywater is treated, recycled and reused in the domestic environment. The modeling efforts have shown water savings of about 40% from the investigated system reinstating that the system presents an alternative water source worth exploring in an urban environment.

  19. Water Quality Changes during Rapid Urbanization in the Shenzhen River Catchment: An Integrated View of Socio-Economic and Infrastructure Development

    Directory of Open Access Journals (Sweden)

    Hua-peng Qin

    2014-10-01

    Full Text Available Surface water quality deterioration is a serious problem in many rapidly urbanizing catchments in developing countries. There is currently a lack of studies that quantify water quality variation (deterioration or otherwise due to both socio-economic and infrastructure development in a catchment. This paper investigates the causes of water quality changes over the rapid urbanization period of 1985–2009 in the Shenzhen River catchment, China and examines the changes in relation to infrastructure development and socio-economic policies. The results indicate that the water quality deteriorated rapidly during the earlier urbanization stages before gradually improving over recent years, and that rapid increases in domestic discharge were the major causes of water quality deterioration. Although construction of additional wastewater infrastructure can significantly improve water quality, it was unable to dispose all of the wastewater in the catchment. However, it was found that socio-economic measures can significantly improve water quality by decreasing pollutant load per gross regional production (GRP or increasing labor productivity. Our findings suggest that sustainable development during urbanization is possible, provided that: (1 the wastewater infrastructure should be constructed timely and revitalized regularly in line with urbanization, and wastewater treatment facilities should be upgraded to improve their nitrogen and phosphorus removal efficiencies; (2 administrative regulation policies, economic incentives and financial policies should be implemented to encourage industries to prevent or reduce the pollution at the source; (3 the environmental awareness and education level of local population should be increased; (4 planners from various sectors should consult each other and adapt an integrated planning approach for socio-economic and wastewater infrastructure development.

  20. Urban Waters Small Grants 101

    Science.gov (United States)

    General information on Urban Waters Small Grants is provided in this document. Grantees are listed by themes, including Environmental Justice, Water Quality, Job Training and Creation, and Green Infrastructure.

  1. Integrated assessment and scenarios simulation of urban water security system in the southwest of China with system dynamics analysis.

    Science.gov (United States)

    Yin, Su; Dongjie, Guan; Weici, Su; Weijun, Gao

    2017-11-01

    The demand for global freshwater is growing, while global freshwater available for human use is limited within a certain time and space. Its security has significant impacts on both the socio-economic system and ecological system. Recently, studies have focused on the urban water security system (UWSS) in terms of either water quantity or water quality. In this study, water resources, water environment, and water disaster issues in the UWSS were combined to establish an evaluation index system with system dynamics (SD) and geographic information systems (GIS). The GIS method performs qualitative analysis from the perspective of the spatial dimension; meanwhile, the SD method performs quantitative calculation about related water security problems from the perspective of the temporal dimension. We established a UWSS model for Guizhou province, China to analyze influencing factors, main driving factors, and system variation law, by using the SD method. We simulated the water security system from 2005 to 2025 under four scenarios (Guiyang scenario, Zunyi scenario, Bijie scenario and combined scenario). The results demonstrate that: (1) the severity of water security in cities is ranked as follows: three cities are secure in Guizhou province, four cities are in basic security and two cities are in a situation of insecurity from the spatial dimension of GIS through water security synthesis; and (2) the major driving factors of UWSS in Guizhou province include agricultural irrigation water demand, soil and water losses area, a ratio increase to the standard of water quality, and investment in environmental protection. A combined scenario is the best solution for UWSS by 2025 in Guizhou province under the four scenarios from the temporal dimension of SD. The results of this study provide a useful suggestion for the management of freshwater for the cities of Guizhou province in southwest China.

  2. Integrated Economic and Financial Analysis of China’s Sponge City Program for Water-resilient Urban Development

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2018-03-01

    Full Text Available To improve Chinese cities’ resilience to climate change, the Sponge City Program, which was designed to tackle water pollution, storm water management, and flooding, was initiated in 2014. Being a major policy initiative, the Sponge City Program raises heated discussions among Chinese academics; however, no relevant extensive economic or financial analysis has been conducted. The research carries out an integrated economic and financial analysis on the Sponge City Program from the perspectives of two stakeholders: the government and the project manager. Different stakeholders have unique perspectives on the management of water projects. This study has two parts: economic analysis and financial analysis. The economic analysis is from the government perspective, and considers all the economic, environmental, and social effects. The financial analysis is from the project manager’s perspective, and judges the financial feasibility of projects. Changde city, one of the demo cities of Sponge City Program, is chosen for the research. The results show that from the perspective of the government, the Sponge City Program should be promoted, because most water projects are economically feasible. From the perspective of the project manager, the program should not be invested in, because the water projects are financially infeasible. A more comprehensive and integrated plan for developing and managing the water projects of the Sponge City Program is required. Otherwise, the private sector may not be interested in investing in the water projects, and the water projects may not be operational in the long term.

  3. Águas urbanas Urban waters

    Directory of Open Access Journals (Sweden)

    Carlos E. M. Tucci

    2008-01-01

    Full Text Available As águas urbanas geralmente incluem abastecimento de água e saneamento. Nessa perspectiva, saneamento envolve a coleta de tratamento de efluentes domésticos e industriais, não inclui drenagem urbana, gestão dos resíduos sólidos, porque ainda perdura uma visão desatualizada da gestão das águas urbanas da cidade. Águas urbanas envolvem componentes que permitem o desenvolvimento ambiental sustentável e utilizam os conceitos da gestão integrada dos recursos hídricos (GIRH, necessários para planejamento, implementação e manutenção da infra-estrutura da cidade. Nesse contexto, ficam denominados Gestão Integrada das Águas Urbanas. Neste artigo, analisam-se o desenvolvimento urbano e suas relações com as águas urbanas no Brasil. A gestão dos recursos hídricos no Brasil é realizada por bacias hidrográficas, e o domínio é federal ou estadual. Examinam-se as possibilidades de gestão da água na cidade e na bacia hidrográfica no contexto institucional brasileiro.Urban Waters systems generally include both water supply & sanitation facilities (WSS. Sanitation refers to domestic and industrial sewage collecting and treatment; it does not include urban stormwater or solid waste management systems. Urban water form components of a sustainable urban environment and the use of the integrated water resource management (IWRM concepts are needed for planning, implementation and maintenance of urban infrastructure. In urban environment, IWRM is referred to specifically as Integrated Urban Water Management (IUWM. In this paper urban development and its relations with urban waters in Brazil are assessed. Management of Water Resources in Brazil is developed by basins and the administration is Federal or from the state. This article assess the alternatives of water management in the city and the basin in the Brazilian institutional environment.

  4. Integrated urban drainage, status and perspectives

    DEFF Research Database (Denmark)

    Harremoës, Poul

    2002-01-01

    This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes...... aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled...... with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important...

  5. Effects of urbanization on water quality variables along urban ...

    African Journals Online (AJOL)

    This study focuses on water quality of permanent and temporary water bodies along the urban and suburban gradients of Chennai City, South India. Water samples were analyzed for their major elements and nutrients. The results indicated that the response of water quality variables was different when compared to urban ...

  6. Creating prototypes for cooling urban water bodies

    NARCIS (Netherlands)

    Cortesoao, Joao; Klok, E.J.; Lenzholzer, Sanda; Jacobs, C.M.J.; Kluck, J.

    2017-01-01

    Abstract When addressing urban heat problems, climate- conscious urban design has been assuming that urban water bodies such as canals, ditches or ponds cool down their surroundings. Recent research shows that this is not necessarily the case and that urban water bodies may actually have a warming e

  7. Lesotho - Urban and Peri-Urban Water and Metolong Dam

    Data.gov (United States)

    Millennium Challenge Corporation — Early on, MCC and the evaluator decided to focus the Urban and Peri-Urban Water evaluation on Package 1 infrastructure, which benefited Maseru and Mazenod. MCC later...

  8. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  9. Urban Water Innovation Network (UWIN): Transitioning Toward Sustainbale Urban Water Systems

    Science.gov (United States)

    Arabi, M.

    2015-12-01

    City water systems are at risk of disruption from global social and environmental hazards, which could have deleterious effects on human health, property, and loss of critical infrastructure. The Urban Water Innovation Network (UWIN), a consortium of 14 academic institutions and other key partners across the U.S., is working to address challenges that threaten urban water systems across the nation. UWIN's mission is to create technological, institutional and management solutions to help communities increase the resilience of their water systems and enhance their preparedness for responding to water crisis. The network seeks solutions that achieve widespread adoption consistent with inclusive, equitable and sustainable urban development. The integrative and adaptive analysis framework of UWIN is presented. The framework identifies a toolbox of sustainable solutions by simultaneously minimizing pressures, enhancing resilience to extreme events, and maximizing cobenefits. The benefits of sustainable urban water solutions for linked urban ecosystems, economies, and arrangements for environmental justice and social equity, will be discussed. The network encompasses six U.S. regions with varying ecohydrologic and climatic regimes ranging from the coastal moist mid-latitude climates of the Mid-Atlantic to the subtropical semi-arid deserts of the Southwest. These regions also represent a wide spectrum of demographic, cultural, and policy settings. The opportunities for cross-site assessments that facilitate the exploration of locally appropriate solutions across regions undergoing various development trajectories will be discussed.

  10. Integrating urban recharge uncertainty into standard groundwater modeling practice: A case study on water main break predictions for the Barton Springs segment of the Edwards Aquifer, Austin, Texas

    Science.gov (United States)

    Sinner, K.; Teasley, R. L.

    2016-12-01

    Groundwater models serve as integral tools for understanding flow processes and informing stakeholders and policy makers in management decisions. Historically, these models tended towards a deterministic nature, relying on historical data to predict and inform future decisions based on model outputs. This research works towards developing a stochastic method of modeling recharge inputs from pipe main break predictions in an existing groundwater model, which subsequently generates desired outputs incorporating future uncertainty rather than deterministic data. The case study for this research is the Barton Springs segment of the Edwards Aquifer near Austin, Texas. Researchers and water resource professionals have modeled the Edwards Aquifer for decades due to its high water quality, fragile ecosystem, and stakeholder interest. The original case study and model that this research is built upon was developed as a co-design problem with regional stakeholders and the model outcomes are generated specifically for communication with policy makers and managers. Recently, research in the Barton Springs segment demonstrated a significant contribution of urban, or anthropogenic, recharge to the aquifer, particularly during dry period, using deterministic data sets. Due to social and ecological importance of urban water loss to recharge, this study develops an evaluation method to help predicted pipe breaks and their related recharge contribution within the Barton Springs segment of the Edwards Aquifer. To benefit groundwater management decision processes, the performance measures captured in the model results, such as springflow, head levels, storage, and others, were determined by previous work in elicitation of problem framing to determine stakeholder interests and concerns. The results of the previous deterministic model and the stochastic model are compared to determine gains to stakeholder knowledge through the additional modeling

  11. Total Water Management, the New Paradigm for Urban Water Systems

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  12. Integrated urban drainage, status and perspectives.

    Science.gov (United States)

    Harremoës, P

    2002-01-01

    This paper summarises the status of urban storm drainage as an integrated professional discipline, including the management-policy interface, by which the goals of society are implemented. The paper assesses the development of the discipline since the INTERURBA conference in 1992 and includes aspects of the papers presented at the INTERURBA-II conference in 2001 and the discussions during the conference. Tools for integrated analysis have been developed, but there is less implementation than could be expected. That is due to lack of adequate knowledge about important mechanisms, coupled with a significant conservatism in the business. However, significant integrated analyses have been reported. Most of them deal with the sewer system and the treatment plant, while few incorporate the receiving water as anything but the object of the loads to be minimised by engineering measures up-stream. Important measures are local infiltration, source control, storage basins, local treatment and real time control. New paradigms have been introduced: risk of pollution due to system failure, technology for water reuse, sustainability, new architecture and greener up-stream solutions as opposed to down-stream concrete solutions. The challenge is to combine the inherited approaches with the new approaches by flexibility and adaptability.

  13. Integrated sustainable urban infrastructures in building projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Quitzau, Maj-Britt; Elle, Morten

    2007-01-01

    Current strategies in urban planning and development merely promote standardized building solutions, while failing to prioritize innovative approaches of integration between building projects and sustainable urban infrastructures. As a result of this, urban infrastructures – the urban veins...... – are outdated from a sustainability perspective. This paper looks into more holistic ways of approaching building projects and discuss whether this provide a basis for an increased integration of urban infrastructures within building projects. In our study, we especially emphasise how conventional ways...... of approaching building projects are influenced by lock-in of existing infrastructural systems and compare this with two examples of more holistic ways of approaching building projects, developed by two architecture firms. The paper points out that such holistic perspective in building projects provide...

  14. Urban Evolution: The Role of Water

    Directory of Open Access Journals (Sweden)

    Sujay S. Kaushal

    2015-07-01

    Full Text Available The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth’s population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of “urban evolution” was proposed. It allows urban planning, management, and restoration to move beyond reactive management to predictive management based on past observations of consistent patterns. Here, we define and review a glossary of core concepts for studying urban evolution, which includes the mechanisms of urban selective pressure and urban adaptation. Urban selective pressure is an environmental or societal driver contributing to urban adaptation. Urban adaptation is the sequential process by which an urban structure, function, or services becomes more fitted to its changing environment or human choices. The role of water is vital to driving urban evolution as demonstrated by historical changes in drainage, sewage flows, hydrologic pulses, and long-term chemistry. In the current paper, we show how hydrologic traits evolve across successive generations of urban ecosystems via shifts in selective pressures and adaptations over time. We explore multiple empirical examples including evolving: (1 urban drainage from stream burial to stormwater management; (2 sewage flows and water quality in response to wastewater treatment; (3 amplification of hydrologic pulses due to the interaction between urbanization and climate variability; and (4 salinization and alkalinization of fresh water due to human inputs and accelerated weathering. Finally, we propose a new conceptual model for the evolution of urban waters from the Industrial Revolution to the present day based on empirical trends and historical information. Ultimately, we propose that water itself is a critical driver of urban evolution that forces urban adaptation, which transforms the structure, function, and services of urban

  15. WATER RESOURCES AND URBAN PLANNING: THE CASE OF A COASTAL AREA IN BRAZIL

    Directory of Open Access Journals (Sweden)

    Iana Alexandra Alves Rufino

    2009-06-01

    Full Text Available Urban planning requires the integration of several disciplines, among them ones related to water resources. The impacts of urban development on those resources, and viceversa, are well known, but some aspects have not been well characterized in literature. This research analyzes a case that shows interesting relationships between urban planning, its legislation, the evolution of urban occupation and several aspects of water resources: groundwater, surface water, drainage and saltwater intrusion. The research argues for integrated and dynamic planning, monitoring and directive enforcement of the urban processes, including environmental dimension and water resources. Advanced decision support techniques are suggested as tools for supporting this integrated approach.

  16. SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics

    Science.gov (United States)

    The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...

  17. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  18. Intelligent Metering for Urban Water: A Review

    OpenAIRE

    Rodney Stewart; Stuart White; Candice Moy; Ariane Liu; Pierre Mukheibir; Damien Giurco; Thomas Boyle

    2013-01-01

    This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering) has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been ...

  19. Disconnecting the autopilot in urban water projects

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Marina Bergen; Øhlenschlæger, Ny

    2011-01-01

    How can we motivate urban planners, water utilities and house owners to collaborate about sustainable urban water projects and to aim for solutions that go beyond the narrow perspective of individual stakeholder interests? A concept for framing a multidisciplinary learning process is developed...... the early stages of an urban water project. To realise new sustainable urban water designs a project team will need to engage and get acceptance from internal and external stakeholders, and this calls for communication and social skills rather than technical skills. The paper identifies potential...

  20. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  1. A novel integrated concept of urban water management in a megalopolis from Latin America (São Paulo, Brazil): risk or opportunity?

    OpenAIRE

    Cunha , Davi ,; Grull , Doron; Mancuso , Pedro ,

    2011-01-01

    8 p.; International audience; Urban water management is a challenge for developing countries because population increase is not accompanied by sanitation improvement. We assessed the feasibility study of an in situ flotation pilot system (10m3/s) in a polluted river in São Paulo (the treated water was pumped to a multipurpose reservoir). We quantified 148 water variables (>200,000 analyses) in 11 sites (Aug/07-Mar/10). The study was favored by the high treated flow and laboratory data availab...

  2. A study on sustainable urban water management in small and medium sized cities in China

    OpenAIRE

    Liu, Guang

    2012-01-01

    Along with the implementation of national urbanization and modernization strategy in China, the urban scale and quantity are increasing systematically. In this process, the role of water is irreplaceable. Urban water system is a multipurpose and integrated system. Considering China's economic and social development requirements, there are many rigorous problems in exploitation, utilization, operation and management of urban water resources comparing with some developed cities in the world. Cu...

  3. GEOSS Water Cycle Integrator

    Science.gov (United States)

    Koike, Toshio; Lawford, Richard; Cripe, Douglas

    2013-04-01

    It is critically important to recognize and co-manage the fundamental linkages across the water-dependent domains; land use, including deforestation; ecosystem services; and food-, energy- and health-securities. Sharing coordinated, comprehensive and sustained observations and information for sound decision-making is a first step; however, to take full advantage of these opportunities, we need to develop an effective collaboration mechanism for working together across different disciplines, sectors and agencies, and thereby gain a holistic view of the continuity between environmentally sustainable development, climate change adaptation and enhanced resilience. To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the intergovernmental Group on Earth Observations (GEO) is implementing the Global Earth Observation System of Systems (GEOSS). A component of GEOSS now under development is the "GEOSS Water Cycle Integrator (WCI)", which integrates Earth observations, modeling, data and information, management systems and education systems. GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEO has established the GEOSS Asian Water Cycle Initiative (AWCI) and GEOSS African Water Cycle Coordination Initiative (AfWCCI). Through regional, inter-disciplinary, multi-sectoral integration and inter-agency coordination in Asia and Africa, GEOSS

  4. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  5. Compost improves urban soil and water quality

    Science.gov (United States)

    Construction in urban zones compacts the soil, which hinders root growth and infiltration and may increase erosion, which may degrade water quality. The purpose of our study was to determine the whether planting prairie grasses and adding compost to urban soils can mitigate these concerns. We simula...

  6. Measure for Measure: Urban Water and Energy

    Science.gov (United States)

    Chini, C.; Stillwell, A. S.

    2017-12-01

    Urban environments in the United States account for a majority of the population and, as such, require large volumes of treated drinking water supply and wastewater removal, both of which need energy. Despite the large share of water that urban environments demand, there is limited accounting of these water resources outside of the city itself. In this study, we provide and analyze a database of drinking water and wastewater utility flows and energy that comprise anthropogenic fluxes of water through the urban environment. We present statistical analyses of the database at an annual, spatial, and intra-annual scale. The average daily per person water flux is estimated as 563 liters of drinking water and 496 liters of wastewater, requiring 340 kWh/1000 m3 and 430 kWh/1000 m3 of energy, respectively, to treat these resources. This energy demand accounts for 1% of the total annual electricity production of the United States. Additionally, the water and embedded energy loss associated with non-revenue water (estimated at 15.8% annually) accounts for 9.1 km3of water and 3600 GWh, enough electricity to power 300,000 U.S. households annually. Through the analysis and benchmarking of the current state of urban water fluxes, we propose the term `blue city,' which promotes urban sustainability and conservation policy focusing on water resources. As the nation's water resources become scarcer and more unpredictable, it is essential to include water resources in urban sustainability planning and continue data collection of these vital resources.

  7. Urban Waters National Training Workshop 2016

    Science.gov (United States)

    This page will house information on the 2016 Urban Waters National Training Workshop in Arlington VA from July 26 until 28. The page has directions, conference goals, speaker biographies, dates, the agenda, and the link to register.

  8. Urban water restrictions: Attitudes and avoidance

    Science.gov (United States)

    Cooper, Bethany; Burton, Michael; Crase, Lin

    2011-12-01

    In most urban cities across Australia, water restrictions remain the dominant policy mechanism to restrict urban water consumption. The extensive adoption of water restrictions as a means to limit demand, over several years, means that Australian urban water prices have consistently not reflected the opportunity cost of water. Given the generally strong political support for water restrictions and the likelihood that they will persist for some time, there is value in understanding households' attitudes in this context. More specifically, identifying the welfare gains associated with avoiding urban water restrictions entirely would be a nontrivial contribution to our knowledge and offer insights into the benefits of alternative policy responses. This paper describes the results from a contingent valuation study that investigates consumers' willingness to pay to avoid urban water restrictions. Importantly, the research also investigates the influence of cognitive and exogenous dimensions on the utility gain associated with avoiding water restrictions. The results provide insights into the impact of the current policy mechanism on economic welfare.

  9. Urbanization eases water crisis in China

    Science.gov (United States)

    Wu, Yiping; Liu, Shu-Guang; Ji, Chen

    2012-01-01

    Socioeconomic development in China has resulted in rapid urbanization, which includes a large amount of people making the transition from rural areas to cities. Many have speculated that this mass migration may have worsened the water crisis in many parts of the country. However, this study shows that the water crisis would be more severe if the rural-to-urban migration did not occur.

  10. MUWS (Microbiology in Urban Water Systems – an interdisciplinary approach to study microbial communities in urban water systems

    Directory of Open Access Journals (Sweden)

    P. Deines

    2010-07-01

    Full Text Available Microbiology in Urban Water Systems (MUWS is an integrated project, which aims to characterize the microorganisms found in both potable water distribution systems and sewer networks. These large infrastructure systems have a major impact on our quality of life, and despite the importance of these systems as major components of the water cycle, little is known about their microbial ecology. Potable water distribution systems and sewer networks are both large, highly interconnected, dynamic, subject to time and varying inputs and demands, and difficult to control. Their performance also faces increasing loading due to increasing urbanization and longer-term environmental changes. Therefore, understanding the link between microbial ecology and any potential impacts on short or long-term engineering performance within urban water infrastructure systems is important. By combining the strengths and research expertise of civil-, biochemical engineers and molecular microbial ecologists, we ultimately aim to link microbial community abundance, diversity and function to physical and engineering variables so that novel insights into the performance and management of both water distribution systems and sewer networks can be explored. By presenting the details and principals behind the molecular microbiological techniques that we use, this paper demonstrates the potential of an integrated approach to better understand how urban water system function, and so meet future challenges.

  11. Valuing flexibilities in the design of urban water management systems.

    Science.gov (United States)

    Deng, Yinghan; Cardin, Michel-Alexandre; Babovic, Vladan; Santhanakrishnan, Deepak; Schmitter, Petra; Meshgi, Ali

    2013-12-15

    Climate change and rapid urbanization requires decision-makers to develop a long-term forward assessment on sustainable urban water management projects. This is further complicated by the difficulties of assessing sustainable designs and various design scenarios from an economic standpoint. A conventional valuation approach for urban water management projects, like Discounted Cash Flow (DCF) analysis, fails to incorporate uncertainties, such as amount of rainfall, unit cost of water, and other uncertainties associated with future changes in technological domains. Such approach also fails to include the value of flexibility, which enables managers to adapt and reconfigure systems over time as uncertainty unfolds. This work describes an integrated framework to value investments in urban water management systems under uncertainty. It also extends the conventional DCF analysis through explicit considerations of flexibility in systems design and management. The approach incorporates flexibility as intelligent decision-making mechanisms that enable systems to avoid future downside risks and increase opportunities for upside gains over a range of possible futures. A water catchment area in Singapore was chosen to assess the value of a flexible extension of standard drainage canals and a flexible deployment of a novel water catchment technology based on green roofs and porous pavements. Results show that integrating uncertainty and flexibility explicitly into the decision-making process can reduce initial capital expenditure, improve value for investment, and enable decision-makers to learn more about system requirements during the lifetime of the project. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Combination effect of sponge iron and calcium nitrate on severely eutrophic urban landscape water: an integrated study from laboratory to fields.

    Science.gov (United States)

    Wang, Guan-Bai; Wang, Yi; Zhang, Ying

    2018-03-01

    In this study, the in situ restoration of urban landscape water through the combined application of sponge iron (SI) and calcium nitrate (CN) was conducted in the Xi'an Moat of China. The combination effect of SI and CN on the phosphorus (P) control was explored through laboratory and field experiments. Results showed that the optimum mass ratio of SI and CN was 4:1, and the optimum dosage of combined SI and CN was 1.4 g/L for controlling eutrophication in the water body at Xi'an Moat. The field experiment demonstrated that SI and CN efficiently controlled P concentration in overlying and interstitial water and obtained a maximum efficiency of 88.6 and 65.2% in soluble reactive P locking, respectively. The total P, organic P, and Ca-bound P contents in sediment simultaneously increased by 7.7, 15.2, and 2.4%, respectively, after 56 days. Therefore, the combined application of SI and CN achieved the goal of transferring the P from overlying and interstitial water to the sediment. Considering the environmental effect and economic investment, the combined application of SI and CN at a mass ratio of 4:1 and dosage of 1.4 g/L is an excellent choice for the in situ rehabilitation of eutrophic water with a high internal P load.

  13. Water scarcity and urban forest management: introduction

    Science.gov (United States)

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  14. Urbanization, Water Pollution, and Public Policy.

    Science.gov (United States)

    Carey, George W.; And Others

    Reviewed in this report is a study concerned with water pollution as it relates to urbanization within the Regional Plan Association's set of 21 contiguous New York, New Jersey and Connecticut counties centered upon the numerous bay and estuarial reaches of the Port of New York and New Jersey. With a time frame covering a decade of water quality…

  15. Governing urban water flows in China

    NARCIS (Netherlands)

    Zhong, L.

    2007-01-01

    China has been witnessing an unprecedented period of continuous high economic growth during the past three decades. But this has been paralleled by severe environmental challenges, of which water problems are of key importance. This thesis addresses the urban water challenges of contemporary China,

  16. SMART MANAGEMENT OF THE WATER URBAN CYCLE

    OpenAIRE

    Sánchez Zaplana, Antonio

    2014-01-01

    Aguas Municipalizadas de Alicante, AMAEM, is the company in charge of managing the urban water cycle in Alicante and several neighbour towns: San Vicente, Sant Joan, Petrer, Monforte and El Campello. More specifically, AMAEM provides the water distribution service in all of them, and is responsible for the sewage service in Alicante, Sant Joan and Monforte. The population served amounts to 750,000 inhabitants, supplied by a 2,000 km water distribution network and 700 km of sewage drains. AMAE...

  17. Towards sustainable urban water governance in Denmark: collective building of capabilities in local authorities

    DEFF Research Database (Denmark)

    Nielsen, Susanne Balslev; Jensen, Marina Bergen

    2016-01-01

    be achieved. The ‘urban water platform’ was tested and is hereby presented as a course concept for building collective capabilities for integrated sustainable water design among local authorities in Denmark. The course is an innovation because: 1) it invites urban planners, road and park managers and sewage...

  18. Holistic Analysis of the Urban Water Systems in Greater Cincinnati Region

    Science.gov (United States)

    Urban water and wastewater systems with two utilities in Greater Cincinnati region were evaluated as a case study to elucidates a bigger picture of a typical centralized urban water system. Two different integrated assessment metrics were used to analyze the same system. LCA an...

  19. Grid Integration | Water Power | NREL

    Science.gov (United States)

    Grid Integration Grid Integration For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power resources like water power is a critical part of the

  20. Managing the urban water-energy nexus

    Science.gov (United States)

    Escriva-Bou, Alvar; Pulido-Velazquez, Manuel; Lund, Jay R.

    2016-04-01

    Water use directly causes a significant amount of energy use in cities. In this paper we assess energy and greenhouse emissions related with each part of the urban water cycle and the consequences of several changes in residential water use for customers, water and energy utilities, and the environment. First, we develop an hourly model of urban water uses by customer category including water-related energy consumption. Next, using real data from East Bay Municipal Utility District in California, we calibrate a model of the energy used in water supply, treatment, pumping and wastewater treatment by the utility. Then, using data from the California Independent System Operator, we obtain hourly costs of energy for the energy utility. Finally, and using emission factors reported by the energy utilities we estimate greenhouse gas emissions for the entire urban water cycle. Results of the business-as-usual scenario show that water end uses account for almost 95% of all water-related energy use, but the 5% managed by the utility is still worth over 12 million annually. Several simulations analyze the potential benefits for water demand management actions showing that moving some water end-uses from peak to off-peak hours such as outdoor use, dishwasher or clothes washer use have large benefits for water and energy utilities, especially for locations with a high proportion of electric water heaters. Other interesting result is that under the current energy rate structures with low or no fixed charges, energy utilities burden most of the cost of the conservation actions.

  1. Water quantity and quality at the urban-rural interface

    Science.gov (United States)

    Ge Sun; B. Graeme Lockaby

    2012-01-01

    Population growth and urban development dramatically alter natural watershed ecosystem structure and functions and stress water resources. We review studies on the impacts of urbanization on hydrologic and biogeochemical processes underlying stream water quantity and water quality issues, as well as water supply challenges in an urban environment. We conclude that...

  2. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  3. An integrated urban drainage system model for assessing renovation scheme.

    Science.gov (United States)

    Dong, X; Zeng, S; Chen, J; Zhao, D

    2012-01-01

    Due to sustained economic growth in China over the last three decades, urbanization has been on a rapidly expanding track. In recent years, regional industrial relocations were also accelerated across the country from the east coast to the west inland. These changes have led to a large-scale redesign of urban infrastructures, including the drainage system. To help the reconstructed infrastructures towards a better sustainability, a tool is required for assessing the efficiency and environmental performance of different renovation schemes. This paper developed an integrated dynamic modeling tool, which consisted of three models for describing the sewer, the wastewater treatment plant (WWTP) and the receiving water body respectively. Three auxiliary modules were also incorporated to conceptualize the model, calibrate the simulations, and analyze the results. The developed integrated modeling tool was applied to a case study in Shenzhen City, which is one of the most dynamic cities and facing considerable challenges for environmental degradation. The renovation scheme proposed to improve the environmental performance of Shenzhen City's urban drainage system was modeled and evaluated. The simulation results supplied some suggestions for the further improvement of the renovation scheme.

  4. Blue green component and integrated urban design

    Directory of Open Access Journals (Sweden)

    Stanković Srđan M.

    2016-01-01

    Full Text Available This paper aims to demonstrate the hidden potential of blue green components, in a synergetic network, not as separate systems, like used in past. The innovative methodology of the project Blue Green Dream is presented through examples of good practice. A new approach in the project initiate thoughtful planning and remodeling of the settlement for the modern man. Professional and scientific public is looking for way to create more healthy and stimulating place for living. However, offered integrative solutions still remain out of urban and architectural practice. Tested technologies in current projects confirmed measurability of innovative approaches and lessons learned. Scientific and professional contributions are summarized in master's and doctoral theses that have been completed or are in process of writing.

  5. Urban stormwater - greywater management system for sustainable urban water management at sub-watershed level

    Science.gov (United States)

    Singh Arora, Amarpreet

    2017-11-01

    Urban water management involves urban water supply (import, treatment and distribution of water), urban wastewater management (collection, treatment and disposal of urban sewage) and urban storm water management. Declining groundwater tables, polluted and declining sources of water, water scarcity in urban areas, unsatisfactory urban water supply and sanitation situation, pollution of receiving water bodies (including the ground water), and urban floods have become the concerns and issues of sustainable urban water management. This paper proposes a model for urban stormwater and sewage management which addresses these concerns and issues of sustainable urban water management. This model proposes segregation of the sewage into black water and greywater, and urban sub-watershed level stormwater-greywater management systems. During dry weather this system will be handling only the greywater and making the latter available as reclaimed water for reuse in place of the fresh water supply. During wet weather, the system will be taking care of (collection and treatment) both the storm water and the greywater, and the excess of the treated water will be disposed off through groundwater recharging. Application of this model in the Patiala city, Punjab, INDIA for selected urban sub-watersheds has been tried. Information and background data required for the conceptualization and design of the sub-watershed level urban stormwater-greywater management system was collected and the system has been designed for one of the sub-watersheds in the Patiala city. In this paper, the model for sustainable urban water management and the design of the Sub-watershed level Urban Stormwater-Greywater Management System are described.

  6. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  7. Intelligent Metering for Urban Water: A Review

    Directory of Open Access Journals (Sweden)

    Rodney Stewart

    2013-07-01

    Full Text Available This paper reviews the drivers, development and global deployment of intelligent water metering in the urban context. Recognising that intelligent metering (or smart metering has the potential to revolutionise customer engagement and management of urban water by utilities, this paper provides a summary of the knowledge-base for researchers and industry practitioners to ensure that the technology fosters sustainable urban water management. To date, roll-outs of intelligent metering have been driven by the desire for increased data regarding time of use and end-use (such as use by shower, toilet, garden, etc. as well as by the ability of the technology to reduce labour costs for meter reading. Technology development in the water sector generally lags that seen in the electricity sector. In the coming decade, the deployment of intelligent water metering will transition from being predominantly “pilot or demonstration scale” with the occasional city-wide roll-out, to broader mainstream implementation. This means that issues which have hitherto received little focus must now be addressed, namely: the role of real-time data in customer engagement and demand management; data ownership, sharing and privacy; technical data management and infrastructure security, utility workforce skills; and costs and benefits of implementation.

  8. Rhine Cities - Urban Flood Integration (UFI)

    NARCIS (Netherlands)

    Redeker, C.

    2013-01-01

    While agglomerations along the Rhine are confronted with the uncertainties of an increasing flood risk due to climate change, different programs are claiming urban river front sites. Simultaneously, urban development, flood management, as well as navigation and environmental protection are

  9. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  10. Understanding complex urban systems integrating multidisciplinary data in urban models

    CERN Document Server

    Gebetsroither-Geringer, Ernst; Atun, Funda; Werner, Liss

    2016-01-01

    This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers—including municipal politicians, spatial planners, and citizen groups—in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches—and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Age...

  11. Beyond passive consumption : Dis/ordering water supply and sanitation at Hanoi’s urban edge

    NARCIS (Netherlands)

    Schramm, S.; Wright-Contreras, Lucía

    2017-01-01

    In Hanoi people access, expand and create water and sanitation infrastructures in multiple ways that include, but are not restricted to, external provision of networked services. Urban master planning and the construction of large technological networks aim at integrating the urban region based on

  12. Adaptive and integrated water management

    NARCIS (Netherlands)

    Pahl-Wostl, C.; Kabat, P.; Möltgen, J.

    2007-01-01

    Sustainable water management is a key environmental challenge of the 21st century. Developing and implementing innovative management approaches and how to cope with the increasing complexity and uncertainties was the theme of the first International Conference on Adaptive and Integrated Water

  13. Balancing urban and peri-urban exchange: water geography of rural livelihoods in Mexico.

    Science.gov (United States)

    Díaz-Caravantes, Rolando E

    2012-01-01

    The peri-urban area is the region where there is a more dynamic interaction between the urban and rural. The peri-urban area supplies natural resources, such as land for urban expansion and agricultural products to feed the urban population. In arid and semi-arid lands, such as northern Mexico, these areas may also be the source of water for the city's domestic demand. In addition, scholars argue that peri-urban residents may have a more advantageous geographical position for selling their labour and agricultural products in cities and, by doing so, sustaining their livelihoods. A considerable number of studies have examined the peri-urban to urban natural resources transfer in terms of land annexation, housing construction, and infrastructure issues; however, the study of the effects of the reallocation of peri-urban water resources to serve urban needs is critical as well because the livelihoods of peri-urban residents, such as those based on agriculture and livestock, depend on water availability. In the case of Hermosillo there is a tremendous pressure on the water resources of peri-urban small farm communities or ejidos because of urban demand. Based on interviews and structured surveys with producers and water managers, this paper examines how peri-urban livelihoods have been reshaped by the reallocation of the city's natural resources in many cases caused some ejido members or ejidatarios to lose livelihoods.

  14. Integrated site investigation and groundwater monitoring in an urban environment

    Science.gov (United States)

    Weatherl, R. K.

    2017-12-01

    Understanding groundwater dynamics around cities and other areas of human influence is of crucial importance for water resource management and protection, especially in a time of environmental and societal change. The human environment presents a unique challenge in terms of hydrological characterization, as the water cycle is generally artificialized and emissions of treated waste and chemical products into the surface- and groundwater system tend to disrupt the natural aqueous signature in significant ways. This project presents an integrated approach for robust characterization and monitoring of an urban aquifer which is actively exploited for municipal water supply. The study is carried out in the town of Fehraltorf, in the canton of Zürich, Switzerland. This particular town encompasses industrial and agricultural zones in addition to its standard urban setting. A minimal amount of data exist at this site, and the data that do exist are spatially and temporally sparse. Making use of traditional hydrogeological methods alongside evolving and emerging technologies, we aim to identify sources of contamination and to define groundwater flow and solute transport through space and time. Chemical and physical indicator parameters are identified for tracing contaminations including micropollutants and plant nutrients. Wireless sensors are installed for continuous on-line monitoring of essential parameters (electrical conductivity, temperature, water level). A wireless sensor network has previously been installed in the sewer system of the study site, facilitating investigation into interactions between sewer water and groundwater. Our approach illustrates the relations between land use, climate, rainfall dynamics, and the groundwater signature through time. At its conclusion, insights gained from this study will be used by municipal authorities to refine protective zones around pumping wells and to direct resources towards updating practices and replacing

  15. Urban Waters and the Patapsco Watershed/Baltimore Region (Maryland)

    Science.gov (United States)

    Patapsco Watershed / Baltimore Area of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  16. Integrated policy analysis of sustainable urban and transportation development

    NARCIS (Netherlands)

    Zhang, J.; Feng, T.; Fujiwara, A.; Fujiwara, A.; Zhang, Junyi

    2013-01-01

    Sustainable urban and transportation development needs to balance economic sustainability, environmental sustainability, and social equity. This study conducts integrated policy analyses by explicitly incorporating these sustainability goals and optimizing the performance of transportation networks.

  17. Effect of urban climate on building integrated photovoltaics performance

    International Nuclear Information System (INIS)

    Tian Wei; Wang Yiping; Ren Jianbo; Zhu Li

    2007-01-01

    It is generally recognized that BIPV (building integrated photovoltaics) has the potential to become a major source of renewable energy in the urban environment. The actual output of a PV module in the field is a function of orientation, total irradiance, spectral irradiance, wind speed, air temperature, soiling and various system-related losses. In urban areas, the attenuation of solar radiation due to air pollution is obvious, and the solar spectral content subsequently changes. The urban air temperature is higher than that in the surrounding countryside, and the wind speed in urban areas is usually less than that in rural areas. Three different models of PV power are used to investigate the effect of urban climate on PV performance. The results show that the dimming of solar radiation in the urban environment is the main reason for the decrease of PV module output using the climatic data of urban and rural sites in Mexico City for year 2003. The urban PV conversion efficiency is higher than that of the rural PV system because the PV module temperature in the urban areas is slightly lower than that in the rural areas in the case. The DC power output of PV seems to be underestimated if the spectral response of PV in the urban environment is not taken into account based on the urban hourly meteorological data of Sao Paulo for year 2004

  18. Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure

    Science.gov (United States)

    Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...

  19. Impediments to integrated urban stormwater management: the need for institutional reform.

    Science.gov (United States)

    Brown, Rebekah R

    2005-09-01

    It is now well established that the traditional practice of urban stormwater management contributes to the degradation of receiving waterways, and this practice was more recently critiqued for facilitating the wastage of a valuable water resource. However, despite significant advances in alternative "integrated urban stormwater management" techniques and processes over the last 20 years, wide-scale implementation has been limited. This problem is indicative of broader institutional impediments that are beyond current concerns of strengthening technological and planning process expertise. Presented here is an analysis of the institutionalization of urban stormwater management across Sydney with the objective of scoping institutional impediments to more sustainable management approaches. The analysis reveals that the inertia with the public administration of urban stormwater inherently privileges and perpetuates traditional stormwater management practices at implementation. This inertia is characterized by historically entrained forms of technocratic institutional power and expertise, values and leadership, and structure and jurisdiction posing significant impediments to change and the realization of integrated urban stormwater management. These insights strongly point to the need for institutional change specifically directed at fostering horizontal integration of the various functions of the existing administrative regime. This would need to be underpinned with capacity-building interventions targeted at enabling a learning culture that values integration and participatory decision making. These insights also provide guideposts for assessing the institutional and capacity development needs for improving urban water management practices in other contexts.

  20. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  1. Data integration for urban transport planning

    NARCIS (Netherlands)

    Huang, Zhendong

    2003-01-01

    Urban transport planning aims at balancing conflicting challenges by promoting more efficient transport systems while reducing negative impacts. The availability of better and more reliable data has not only stimulated new planning methodologies, but also created challenges for efficient data

  2. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  3. Joint Urban Operations Joint Integrating Concept

    Science.gov (United States)

    2007-07-23

    concept could lead to a systems-engineering approach to urban operations based on the misconception that urban ecologies can be treated as if they...profits at the cost of irreparable societal and ecological destruction. The firms conduct a series of focus groups to determine what countermessages...Group, moving directly behind Task Force 1, quickly assemble “pop-up” prefabricated encampments to create temporary refugee camps off the main axis of

  4. Urban growth and water access in sub-Saharan Africa: Progress, challenges, and emerging research directions.

    Science.gov (United States)

    Dos Santos, S; Adams, E A; Neville, G; Wada, Y; de Sherbinin, A; Mullin Bernhardt, E; Adamo, S B

    2017-12-31

    For the next decade, the global water crisis remains the risk of highest concern, and ranks ahead of climate change, extreme weather events, food crises and social instability. Across the globe, nearly one in ten people is without access to an improved drinking water source. Least Developed Countries (LDCs) especially in sub-Saharan Africa (SSA) are the most affected, having disproportionately more of the global population without access to clean water than other major regions. Population growth, changing lifestyles, increasing pollution and accelerating urbanization will continue to widen the gap between the demand for water and available supply especially in urban areas, and disproportionately affect informal settlements, where the majority of SSA's urban population resides. Distribution and allocation of water will be affected by climate-induced water stresses, poor institutions, ineffective governance, and weak political will to address scarcity and mediate uncertainties in future supply. While attempts have been made by many scientists to examine different dimensions of water scarcity and urban population dynamics, there are few comprehensive reviews, especially focused on the particular situation in Sub-Saharan Africa. This paper contributes to interdisciplinary understanding of urban water supply by distilling and integrating relevant empirical knowledge on urban dynamics and water issues in SSA, focusing on progress made and associated challenges. It then points out future research directions including the need to understand how alternatives to centralized water policies may help deliver sustainable water supply to cities and informal settlements in the region. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A framework for considering externalities in urban water asset management.

    Science.gov (United States)

    Marlow, David; Pearson, Leonie; Macdonald, Darla Hatton; Whitten, Stuart; Burn, Stewart

    2011-01-01

    Urban communities rely on a complex network of infrastructure assets to connect them to water resources. There is considerable capital investment required to maintain, upgrade and extend this infrastructure. As the remit of a water utility is broader than just financial considerations, infrastructure investment decisions must be made in light of environmental and societal issues. One way of facilitating this is to integrate consideration of externalities into decision making processes. This paper considers the concept of externalities from an asset management perspective. A case study is provided to show the practical implications to a water utility and asset managers. A framework for the inclusion of externalities in asset management decision making is also presented. The potential for application of the framework is highlighted through a brief consideration of its key elements.

  6. Managed Aquifer Recharge (MAR in Sustainable Urban Water Management

    Directory of Open Access Journals (Sweden)

    Declan Page

    2018-02-01

    Full Text Available To meet increasing urban water requirements in a sustainable way, there is a need to diversify future sources of supply and storage. However, to date, there has been a lag in the uptake of managed aquifer recharge (MAR for diversifying water sources in urban areas. This study draws on examples of the use of MAR as an approach to support sustainable urban water management. Recharged water may be sourced from a variety of sources and in urban centers, MAR provides a means to recycle underutilized urban storm water and treated wastewater to maximize their water resource potential and to minimize any detrimental effects associated with their disposal. The number, diversity and scale of urban MAR projects is growing internationally due to water shortages, fewer available dam sites, high evaporative losses from surface storages, and lower costs compared with alternatives where the conditions are favorable, including water treatment. Water quality improvements during aquifer storage are increasingly being documented at demonstration sites and more recently, full-scale operational urban schemes. This growing body of knowledge allows more confidence in understanding the potential role of aquifers in water treatment for regulators. In urban areas, confined aquifers provide better protection for waters recharged via wells to supplement potable water supplies. However, unconfined aquifers may generally be used for nonpotable purposes to substitute for municipal water supplies and, in some cases, provide adequate protection for recovery as potable water. The barriers to MAR adoption as part of sustainable urban water management include lack of awareness of recent developments and a lack of transparency in costs, but most importantly the often fragmented nature of urban water resources and environmental management.

  7. Capacity issues in local communities for integral urban regeneration

    Directory of Open Access Journals (Sweden)

    Mrđenović Tatjana

    2013-01-01

    Full Text Available The subject of the research in wider sense is organizational-communication capacity of local communities in Serbia in the frame of sustainable development. Along with this, the paper will explore potentialities of Faludi's model of multiplanning agencies as well as Healey's collaborative theory for better efficiency and effectiveness of planning in the process of urban regeneration. Specifically the paper will research relation between organizational structure of local communities in Serbia and their potentialities to provide adequate communication towards integral information for urban regeneration. Research is framed with a problem of efficiency and effectiveness in creating urban regeneration policies, strategies, designs, and technical solutions. The problem will be focused to Serbian context; characterized with inadequate, transitional, system of governance that is moving from centralistic towards decentralist model. This will be further explored through level and type of participation in the process of urban regeneration. The hypothesis of the research explores the nature of the relation between number and types of communication channels, provided by organizational structure of local communities that should enable effectiveness and efficiency of urban regeneration. In other words the hypothesis is: number and types of communication channels (variable A influences the effectiveness and efficiency of urban planning for sustainable urban regeneration (variable B. The aims of the paper are identification of the regulations between the variables. Expected result is establishing the model for measuring the capacity of local communities for integral urban regeneration.

  8. Integrated infomobility services for urban freight distribution

    NARCIS (Netherlands)

    Zuccotti, S.; Corongiu, A.; Forkert, S.; Nasr, A.; Quak, H.; Torres, C.

    2011-01-01

    City logistics is one of the causes of today's road congestion in our cities, but at the same time its efficiency is affected by the traffic problems. The driving behaviour and mission strategies used by vans and lorries operating in urban areas usually does not exploit modern infomobility

  9. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China

    International Nuclear Information System (INIS)

    Wang Junying; Da Liangjun; Song Kun; Li Bailian

    2008-01-01

    As the economic and financial center of China, Shanghai has experienced an extensive urban expansion since the early 1980s, with an attendant cost in environmental degradation. We use an integrated pollution index to study the temporal variations of surface water quality in urban, suburban and rural areas between 1982 and 2005. Data on monitored cross-sections were collected from the Shanghai Environmental Monitoring Center. The results indicated that the spatial pattern of surface water quality was determined by the level of urbanization. Surface water qualities in urban and suburban areas were improved by strengthening the environmental policies and management, but were worsening in rural areas. The relationship between economic growth and surface water quality in Shanghai showed an inversed-U-shaped curve, which reflected a similar pattern in most developed countries. This research suggests that decision makers and city officials should be more aware of the recent pollution increases in Shanghai. - An integrated pollution index documents the deterioration of water quality in greater Shanghai, recently most serious in rural sections

  10. Water Footprint Assessment in Waste Water Treatment Plant: Indicator of the sustainability of urban water cycle.

    Science.gov (United States)

    Gómez Llanos, Eva; Durán Barroso, Pablo; Matías Sánchez, Agustín; Fernández Rodríguez, Santiago; Guzmán Caballero, Raúl

    2017-04-01

    The seventeen Sustainable Development Goals (SDG) represent a challenge for citizens and countries around the world by working together to reduce social inequality, to fight poverty and climate change. The Goal six water and sanitation aims for ensuring, among others, the protection and restoration of water-related ecosystem (target 6.6) and encouraging the water use efficiency (target 6.3). The commitment to this goal is not only the development of sanitation infrastructure, but also incorporates the necessity of a sustainable and efficient management from ecological and economic perspectives. Following this approach, we propose a framework for assessing the waste water treatment plant (WWTP) management based on the Water Footprint (WF) principles. The WF as indicator is able to highlight the beneficial role of WWTPs within the environment and provide a complementary information to evaluate the impact of a WWTP regarding to the use of freshwater and energy. Therefore, the footprint family provides an opportunity to relate the reduction of pollutant load in a WWTP and the associated consumptions in terms of electricity and chemical products. As a consequence, the new methodology allows a better understanding of the interactions among water and energy resources, economic requirements and environmental risks. Because of this, the current technologies can be improved and innovative solutions for monitoring and management of urban water use can be integrated. The WF was calculated in four different WWTP located in the North East of Extremadura (SW Spain) which have activated sludge process as secondary treatment. This zone is characterized by low population density but an incipient tourism development. The WF estimation and its relationship with the electricity consumption examines the efficiency of each WWTP and identifies the weak points in the management in terms of the sustainability. Consequently, the WF establishes a benchmark for multidisciplinary decision

  11. Thirsty Cities: Urban Environments and Water Supply in Latin America

    International Development Research Centre (IDRC) Digital Library (Canada)

    Many cities in Latin America and the Caribbean are experiencing a water crisis as sources become exhausted or degraded. Urbanization, deteriorating infrastructures with a lack of funds for repairs, and inadequate polices are conspiring to cause water shortages.

  12. Understanding peri-urban water management in India | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-07-14

    Jul 14, 2014 ... The city has chosen to pipe in water from more than a hundred kilometres away, ... the effects of climate change and urbanization on water availability in such basins in India. ... Villages in Nepal prepare for weather extremes.

  13. Urbanization, climate change put water security at risk | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2016-06-22

    Jun 22, 2016 ... Increasingly, residents of peri-urban areas are facing water ... regions have distinct environmental, social, and institutional characteristics. ... Protecting food, energy, and livelihoods in Punjab through water-efficient agriculture.

  14. Fine-resolution Modeling of Urban-Energy Systems' Water Footprint in River Networks

    Science.gov (United States)

    McManamay, R.; Surendran Nair, S.; Morton, A.; DeRolph, C.; Stewart, R.

    2015-12-01

    Characterizing the interplay between urbanization, energy production, and water resources is essential for ensuring sustainable population growth. In order to balance limited water supplies, competing users must account for their realized and virtual water footprint, i.e. the total direct and indirect amount of water used, respectively. Unfortunately, publicly reported US water use estimates are spatially coarse, temporally static, and completely ignore returns of water to rivers after use. These estimates are insufficient to account for the high spatial and temporal heterogeneity of water budgets in urbanizing systems. Likewise, urbanizing areas are supported by competing sources of energy production, which also have heterogeneous water footprints. Hence, a fundamental challenge of planning for sustainable urban growth and decision-making across disparate policy sectors lies in characterizing inter-dependencies among urban systems, energy producers, and water resources. A modeling framework is presented that provides a novel approach to integrate urban-energy infrastructure into a spatial accounting network that accurately measures water footprints as changes in the quantity and quality of river flows. River networks (RNs), i.e. networks of branching tributaries nested within larger rivers, provide a spatial structure to measure water budgets by modeling hydrology and accounting for use and returns from urbanizing areas and energy producers. We quantify urban-energy water footprints for Atlanta, GA and Knoxville, TN (USA) based on changes in hydrology in RNs. Although water intakes providing supply to metropolitan areas were proximate to metropolitan areas, power plants contributing to energy demand in Knoxville and Atlanta, occurred 30 and 90km outside the metropolitan boundary, respectively. Direct water footprints from urban landcover primarily comprised smaller streams whereas indirect footprints from water supply reservoirs and energy producers included

  15. Public-private partnerships in China's urban water sector

    NARCIS (Netherlands)

    Zhong, L.; Mol, A.P.J.; Fu, T.

    2008-01-01

    During the past decades, the traditional state monopoly in urban water management has been debated heavily, resulting in different forms and degrees of private sector involvement across the globe. Since the 1990s, China has also started experiments with new modes of urban water service management

  16. Frontiers of Land and Water Governance in Urban Regions

    NARCIS (Netherlands)

    Thomas, Hartmann; Spit, Tejo

    2015-01-01

    A society that intensifies and expands the use of land and water in urban areas needs to search for solutions to manage the frontiers between these two essential elements for urban living. Sustainable governance of land and water is one of the major challenges of our times. Managing retention areas

  17. Innovative approach for achieving of sustainable urban water supply system by using of solar photovoltaic energy

    Directory of Open Access Journals (Sweden)

    Jure Margeta

    2017-01-01

    Full Text Available Paper describes and analyses new and innovative concept for possible integration of solar photovoltaic (PV energy in urban water supply system (UWSS. Proposed system consists of PV generator and invertor, pump station and water reservoir. System is sized in such a manner that every his part is sized separately and after this integrated into a whole. This integration is desirable for several reasons, where the most important is the achievement of the objectives of sustainable living in urban areas i.e. achieving of sustainable urban water supply system. The biggest technological challenge associated with the use of solar, wind and other intermittent renewable energy sources RES is the realization of economically and environmentally friendly electric energy storage (EES. The paper elaborates the use of water reservoires in UWSS as EES. The proposed solution is still more expensive than the traditional and is economically acceptable today in the cases of isolated urban water system and special situations. Wider application will depend on the future trends of energy prices, construction costs of PV generators and needs for CO2 reduction by urban water infrastructure.

  18. Developing Resilient Urban Waterfronts : Integrating Adaptation into Urban Development and Management

    NARCIS (Netherlands)

    van Veelen, P.C.; Deppisch, Sonja

    2017-01-01

    There is a growing attention for integrating climate change adaptation into policies, strategies and decision-making processes (e.g. mainstreaming). This paper explores to what extent climate adaptation can be integrated into processes of urban development and change, based on case study research in

  19. Urban Evolution: the Role of Water

    Science.gov (United States)

    The structure, function, and services of urban ecosystems evolve over time scales from seconds to centuries as Earth's population grows, infrastructure ages, and sociopolitical values alter them. In order to systematically study changes over time, the concept of "urban evolution...

  20. Integrated water and waste management

    DEFF Research Database (Denmark)

    Harremoës, P.

    1997-01-01

    The paper discusses concepts and developments within water quantity, water quality, integrated environmental assessment and wastewater treatment. The historical and the global perspectives are used in the discussion of the role of engineers in today's society. Sustainabilty and ethics are taken...... into the analysis. There is a need for re-evaluation of the resource, society and environment scenarios with a view to the totality of the system and with proper analysis of the flow of water and matter through society. Among the tools are input-output analysis and cradle to grave analysis, in combination...... with compilation of identified sets of values with respect to sustainable use of resources and ultimate fate of the environment and quality of life. The role of the engineer is to make available to society as many technical options as possible - and to put these options into the proper perspective in relation...

  1. Integrated Urban Flood Analysis considering Optimal Operation of Flood Control Facilities in Urban Drainage Networks

    Science.gov (United States)

    Moon, Y. I.; Kim, M. S.; Choi, J. H.; Yuk, G. M.

    2017-12-01

    eavy rainfall has become a recent major cause of urban area flooding due to the climate change and urbanization. To prevent property damage along with casualties, a system which can alert and forecast urban flooding must be developed. Optimal performance of reducing flood damage can be expected of urban drainage facilities when operated in smaller rainfall events over extreme ones. Thus, the purpose of this study is to execute: A) flood forecasting system using runoff analysis based on short term rainfall; and B) flood warning system which operates based on the data from pump stations and rainwater storage in urban basins. In result of the analysis, it is shown that urban drainage facilities using short term rainfall forecasting data by radar will be more effective to reduce urban flood damage than using only the inflow data of the facility. Keywords: Heavy Rainfall, Urban Flood, Short-term Rainfall Forecasting, Optimal operating of urban drainage facilities. AcknowledgmentsThis research was supported by a grant (17AWMP-B066744-05) from Advanced Water Management Research Program (AWMP) funded by Ministry of Land, Infrastructure and Transport of Korean government.

  2. Towards Adaptive Urban Water Management: Up-Scaling Local Projects

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Quitzau, Maj-Britt; Hoffmann, Birgitte

    2013-01-01

    Increasingly, the need for adaptive urban water management approaches is advertised, but the transition towards such approaches in the urban water sector seems to be slow. The purpose of this paper is to provide an in-depth study of how an innovative approach has been adopted in practice by looking...... of rainwater. This insight into the processes of learning aggregation of water practices points towards the important role that the dedicated work performed by local facilitators and intermediaries play in relation to a transition towards more adaptive urban water management....

  3. Urban sprawl and water supply in the Colombian coffee region

    International Nuclear Information System (INIS)

    Gonzalez, Juan Leonardo; Galeano Moreno, Julian; Canon Barriga, Julio

    2012-01-01

    This paper analyses the current situation of water supply systems in the context of urban sprawl in the Colombian coffee region. The authors suggest three factors to understand local and regional water supply systems: land use within areas of urban sprawl; land use in the ecosystems that sustain the water supply; and operation and technical efficiency of the utilities. Accordingly, the work provides an estimate of the degree of urbanization and the spatial extent of urban sprawl in the cities of Manizales, Pereira y Armenia. The ecological land use in Andean and sub Andean ecosystems that supply the aqueducts of these cities is characterized, as well as the operative and technical conditions of water supply providers involved in urban sprawl, highlighting their strengths and their increasing weaknesses.

  4. Integration of LUTI models into sustainable urban mobility plans (SUMPs

    Directory of Open Access Journals (Sweden)

    Nikolaos Gavanas

    2016-06-01

    Full Text Available A literature review indicates that there is an increasing number of Land Use/Transport Interaction (LUTI models being used in policy analysis and support of urban land use, transport and environmental planning. In this context, LUTI models are considered to be useful for the development of scenarios during the preparatory stage of Sustainable Urban Mobility Plans (SUMPs. A SUMP can be defined as a strategic planning framework, proposed by the European Commission, for planning and design of an urban multimodal transport system, which combines multi-disciplinary policy analysis and decision making. The objective of a SUMP is to achieve sustainable urban mobility, i.e. accessibility for all, safety and security, reduction in emissions and energy consumption, efficient and cost-effective transport and an improvement in the urban environment. Based on the overall conceptual and methodological framework of LUTI models (Geurs and van Wee 2004, the scope of the proposed research is to fully integrate a LUTI model into a contemporary transport planning framework and, more specifically, into the SUMP structure. This paper focuses on the configuration of the integration pattern, according to which a LUTI model may evolve and interact with the planning process throughout the eleven elements of the SUMP, as well as the evaluation of the benefits and drawbacks from the implementation of the proposed pattern for the enhancement of SUMP and overall promotion of sustainable urban planning.

  5. MoGIRE: A Model for Integrated Water Management

    Science.gov (United States)

    Reynaud, A.; Leenhardt, D.

    2008-12-01

    Climate change and growing water needs have resulted in many parts of the world in water scarcity problems that must by managed by public authorities. Hence, policy-makers are more and more often asked to define and to implement water allocation rules between competitive users. This requires to develop new tools aiming at designing those rules for various scenarios of context (climatic, agronomic, economic). If models have been developed for each type of water use however, very few integrated frameworks link these different uses, while such an integrated approach is a relevant stake for designing regional water and land policies. The lack of such integrated models can be explained by the difficulty of integrating models developed by very different disciplines and by the problem of scale change (collecting data on large area, arbitrate between the computational tractability of models and their level of aggregation). However, modelers are more and more asked to deal with large basin scales while analyzing some policy impacts at very high detailed levels. These contradicting objectives require to develop new modeling tools. The CALVIN economically-driven optimization model developed for managing water in California is a good example of this type of framework, Draper et al. (2003). Recent reviews of the literature on integrated water management at the basin level include Letcher et al. (2007) or Cai (2008). We present here an original framework for integrated water management at the river basin scale called MoGIRE ("Modèle pour la Gestion Intégrée de la Ressource en Eau"). It is intended to optimize water use at the river basin level and to evaluate scenarios (agronomic, climatic or economic) for a better planning of agricultural and non-agricultural water use. MoGIRE includes a nodal representation of the water network. Agricultural, urban and environmental water uses are also represented using mathematical programming and econometric approaches. The model then

  6. Assessing the performance of urban water utilities in Mozambique ...

    African Journals Online (AJOL)

    Benchmarking analysis has become a strategic tool through which water regulators around the world measure the performance of water utilities. Since 2008, the Water Regulatory Council of Mozambique has been implementing a benchmarking framework to analyse the performance of urban water utilities. This paper ...

  7. Protection of Urban Water body Infrastructure - Policy Requirements

    Science.gov (United States)

    Neelakantan, T. R.; Ramakrishnan, K.

    2017-07-01

    Water body is an important infrastructure of urban landscape. Water bodies like tanks and ponds are constructed to harvest rainwater for local use. Such water bodies serve many environmental functions including flood and soil erosion control and are useful for irrigation, drinking water supply and groundwater recharge. A large number of water bodies recently have been lost due to anthropogenic activities and the remaining water bodies are under stress due to risk of degradation. There are many phases to solve or control the problem; starting from stopping the abuse, to restoration to monitoring and maintenance. In this situation, the existing urban and peri-urban water bodies are to be preserved and rehabilitated. In this study, policy requirements for the protection (preservation and rehabilitation) of water bodies are analyzed with special reference to Thanjavur city. Thanjavur city has many water bodies and moat around the Big-Temple and the palace, and stands as an evidence for water management in ancient days. These water bodies are to be protected and used properly for sustainable growth of the city. This paper envisages the following three: (a) need for evaluation of hydraulic and hydrologic properties of the water bodies for conserving rainwater and controlling flood water in the existing urban water bodies; (b) need for evaluation of potential of socio-environmental services by the water bodies, and (c) need for developing a relative importance index for protection of water bodies to prioritize the remedial actions.

  8. Development of urban water consumption models for the City of Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2011-12-01

    Population growth and rapid urbanization coupled with uncertain climate change are causing new challenges for meeting urban water needs. In arid and semi-arid regions, increasing drought periods and decreasing precipitation have led to water supply shortages and cities are struggling with trade-offs between the water needs of growing urban populations and the well-being of urban ecosystems. The goal of the current research is to build models that can represent urban water use patterns in semi-arid cities by identifying the determinants that control both total and outdoor residential water use over the Los Angeles urban domain. The initial database contains monthly water use records aggregated to the zip code level collected from the Los Angeles Department of Water and Power (LADWP) from 2000 to 2010. Residential water use was normalized per capita and was correlated with socio-demographic, economic, climatic and vegetation characteristics across the City for the 2000-2010 period. Results show that ethnicity, per capita income, and the average number of persons per household are linearly related to total water use per capita. Inter-annual differences in precipitation and implementation of conservation measures affect water use levels across the City. The high variability in water use patterns across the City also appears strongly influenced by income and education levels. The temporal analysis of vegetation indices in the studied neighborhoods shows little correlation between precipitation patterns and vegetation greenness. Urban vegetation appears well-watered, presenting the same greenness activity over the study period despite an overall decrease in water use across the City. We hypothesize that over-watering is occurring and that outdoor water use represents a significant part of the residential water budget in various regions of the City. A multiple regression model has been developed that integrates these fundamental controlling factors to simulate residential

  9. Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments

    Science.gov (United States)

    Liu, Xi; Mijic, Ana; Maksimovic, Cedo

    2014-05-01

    As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a

  10. Cost benefit risk - a concept for management of integrated urban wastewater systems?

    DEFF Research Database (Denmark)

    Hauger, Mikkel B.; Rauch, W.; Linde, Jens Jørgen

    2002-01-01

    Urban wastewater systems should be evaluated and analysed from an integrated point of view, taking all parts of the system, that is sewer system, wastewater treatment plant and receiving waters into consideration. Risk and parameter uncertainties are aspects that hardly ever have been addressed...... in the evaluation and design of urban wastewater systems. In this paper we present and discuss a probabilistic approach for evaluation of the performance of urban wastewater systems. Risk analysis together with the traditional cost-benefit analysis is a special variant of multi-criteria analysis that seeks to find...... the most feasible improvement alternative for an urban wastewater system. The most feasible alternative in this context is the alternative that has the best performance, meaning that the alternative has the lowest sum of costs, benefits and risks. The sum is expressed as the Net Present Cost (NPC). To use...

  11. Interaction Between the Environment and Animals in Urban Settings: Integrated and Participatory Planning

    Science.gov (United States)

    Tarsitano, Elvira

    2006-11-01

    In urban ecosystems, the ecological system has become completely unbalanced; this, in turn, has led to an increase in well-known problems such as air pollution, ground pollution, and water pollution. This imbalance has also led to the growth and spread of pathogens harmful to man, animals, and plants. Urban sustainability indicators, both global and local, also “indicate” the percentage of population, but these refer only to the human population, not the animal population. Cities need good waste, water, and air management, effective traffic planning, and good zoning of businesses, crafts, and services; over and above these activities, cities also need for planning to take into account the existence of pets (dogs, cats, and etc.) and nonpet animals (insects, birds, mice, etc.). Cities tend to be designed around humans and “on a human scale,” without taking into account the fact that a huge animal population is living side by side with people. That explains why overcrowding tends to go hand in hand with urbanization; all these populations, including humans, need to adapt to new spaces and often need to drastically change their behavior. This is a fact that must be included when drafting sustainable city plans. The supposed strategy is that of “integrated-participatory” control of the interactions between the environment and animals in the cities. Strategy will focus on the development of integrated approaches and tools for environment and animal management in the context of urban settings. This will require such specific methods as ecological balance sheets and ecoplans for the planning, management, and control of the interrelation among environment, animal, and public health. The objective is to develop a better understanding of urban biodiversity and of urban ecosystem functioning, in order to understand and minimize the negative impacts of human activities on them. The research will focus on assessing and forecasting changes in urban biodiversity

  12. Modelling the impact of implementing Water Sensitive Urban Design on at a catchment scale

    DEFF Research Database (Denmark)

    Locatelli, Luca; Gabriel, S.; Bockhorn, Britta

    Stormwater management using Water Sensitive Urban Design (WSUD) is expected to be part of future drainage systems. This project aimed to develop a set of hydraulic models of the Harrestrup Å catchment (close to Copenhagen) in order to demonstrate the importance of modeling WSUDs at different scales......, ranging from models of an individual soakaway up to models of a large urban catchment. The models were developed in Mike Urban with a new integrated soakaway model. A small-scale individual soakaway model was used to determine appropriate initial conditions for soakway models. This model was applied...

  13. Relevance and Benefits of Urban Water Reuse in Tourist Areas

    Directory of Open Access Journals (Sweden)

    Gaston Tong Sang

    2012-01-01

    Full Text Available Urban water reuse is one of the most rapidly growing water reuse applications worldwide and one of the major elements of the sustainable management of urban water cycle. Because of the high probability of direct contact between consumers and recycled water, many technical and regulatory challenges have to be overcome in order to minimize health risks at affordable cost. This paper illustrates the keys to success of one of the first urban water reuse projects in the island Bora Bora, French Polynesia. Special emphasis is given on the reliability of operation of the membrane tertiary treatment, economic viability in terms of pricing of recycled water and operating costs, as well as on the benefits of water reuse for the sustainable development of tourist areas.

  14. Model of urban water management towards water sensitive city: a literature review

    Science.gov (United States)

    Maftuhah, D. I.; Anityasari, M.; Sholihah, M.

    2018-04-01

    Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.

  15. Assessing equitable access to urban green space: the role of engineered water infrastructure.

    Science.gov (United States)

    Wendel, Heather E Wright; Downs, Joni A; Mihelcic, James R

    2011-08-15

    Urban green space and water features provide numerous social, environmental, and economic benefits, yet disparities often exist in their distribution and accessibility. This study examines the link between issues of environmental justice and urban water management to evaluate potential improvements in green space and surface water access through the revitalization of existing engineered water infrastructures, namely stormwater ponds. First, relative access to green space and water features were compared for residents of Tampa, Florida, and an inner-city community of Tampa (East Tampa). Although disparities were not found in overall accessibility between Tampa and East Tampa, inequalities were apparent when quality, diversity, and size of green spaces were considered. East Tampa residents had significantly less access to larger, more desirable spaces and water features. Second, this research explored approaches for improving accessibility to green space and natural water using three integrated stormwater management development scenarios. These scenarios highlighted the ability of enhanced water infrastructures to increase access equality at a variety of spatial scales. Ultimately, the "greening" of gray urban water infrastructures is advocated as a way to address environmental justice issues while also reconnecting residents with issues of urban water management.

  16. Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?

    Science.gov (United States)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo; Deletic, Ana; Fowdar, Harsha; Fu, Guangtao; Kleidorfer, Manfred; McCarthy, David; Steen Mikkelsen, Peter; Rauch, Wolfgang; Sweetapple, Chris; Vezzaro, Luca; Yuan, Zhiguo; Willems, Patrick

    2018-04-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, reviews the state-of-the-art and modelling tools developed recently to understand and manage GHG emissions from IUDS. Further, open problems and research gaps are discussed and a framework for handling GHG emissions from IUDSs is presented. The literature review reveals that there is a need to strengthen already available mathematical models for IUDS to take GHG into account.

  17. Adaptive capacity based water quality resilience transformation and policy implications in rapidly urbanizing landscapes

    International Nuclear Information System (INIS)

    Li, Yi; Degener, Jan; Gaudreau, Matthew; Li, Yangfan; Kappas, Martin

    2016-01-01

    Resilience-based management focuses on specific attributes or drivers of complex social-ecological systems, in order to operationalize and promote guiding principles for water quality management in urban systems. We therefore propose a resilience lens drawing on the theory of adaptive capacity and adaptive cycle to evaluate the urban resilience between water quality and land use type. Our findings show that the resilience of water quality variables, which were calculated based on their adaptive capacities, showed adaptive and sustainable trends with dramatic fluctuation. NH_3-N, Cadmium and Total Phosphorus experienced the most vulnerable shifts in the built-up area, agricultural areas, and on bare land. Our framework provided a consistent and repeatable approach to address uncertainty inherent in the resilience of water quality in different landscapes, as well as an approach to monitor variables over time with respect to national water quality standards. Ultimately, we pointed to the political underpinnings for risk mitigation and managing resilient urban system in a particular coastal urban setting. - Highlights: • Integrated framework to analyze the resilience of urban land-water systems • Addressed the changes of adaptive capacity based resilience and transitions • Applied four transition phases of adaptive cycle to water quality management

  18. Adaptive capacity based water quality resilience transformation and policy implications in rapidly urbanizing landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi, E-mail: ly463526@gmail.com [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Degener, Jan [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany); Gaudreau, Matthew [Balsillie School of International Affairs, Faculty of Environment, University of Waterloo, 67 Erb Street West, Waterloo, ON N2L 6C2 (Canada); Li, Yangfan, E-mail: yangf@xmu.edu.cn [Key Laboratory of Coastal and Wetland Ecosystems (Ministry of Education), College of the Environment and Ecology, Xiamen University, Xiamen 361102 (China); Kappas, Martin [Department of Cartography, GIS and Remote Sensing, Institute of Geography, Georg-August University of Goettingen, Goettingen 37077 (Germany)

    2016-11-01

    Resilience-based management focuses on specific attributes or drivers of complex social-ecological systems, in order to operationalize and promote guiding principles for water quality management in urban systems. We therefore propose a resilience lens drawing on the theory of adaptive capacity and adaptive cycle to evaluate the urban resilience between water quality and land use type. Our findings show that the resilience of water quality variables, which were calculated based on their adaptive capacities, showed adaptive and sustainable trends with dramatic fluctuation. NH{sub 3}-N, Cadmium and Total Phosphorus experienced the most vulnerable shifts in the built-up area, agricultural areas, and on bare land. Our framework provided a consistent and repeatable approach to address uncertainty inherent in the resilience of water quality in different landscapes, as well as an approach to monitor variables over time with respect to national water quality standards. Ultimately, we pointed to the political underpinnings for risk mitigation and managing resilient urban system in a particular coastal urban setting. - Highlights: • Integrated framework to analyze the resilience of urban land-water systems • Addressed the changes of adaptive capacity based resilience and transitions • Applied four transition phases of adaptive cycle to water quality management.

  19. The Philippines: integrated planning for balanced urban growth.

    Science.gov (United States)

    1981-12-01

    During the past 80 years, the proportion of the Philippine population living in urban areas has nearly tripled, from 13% at the beginning of the 20th century to 36% in 1980. The number of people living in urban areas multipled 17-fold over this period. Currently, an estimated 17 million people live in urban areas, and this number is expected to reach 30 million by the year 2000. Migration from rural areas has been an important component of urban growth, but it has not been the principal one. Natural increase accounted for 54% of total urban growth in the 1960s and 1970s. A combination of reclassification and migration accounted for the rest. Big cities did not grow as rapidly as small cities, since their growth was generated largely by urban inmigration. Small cities tended to grow faster due to more natural increase than to inmigration. Philippine urbanization has been marked by increasing primacy. Metropolitan Manila, the largest city, has more than quadrupled in size since 1950. The phenomenon of primacy has been the cumulative consequence of historical, demographic, political, and socioeconomic factors. It may also have resulted from growth policies which unintentionally and indirectly favored the premier city. For national planners, the issue of urbanization in the Philippines is closely intertwined with the country's development objectives, particularly those of reducing poverty and attaining a more equitable distribution of income and wealth. The integration of population growth and distribution trends into the planning process is very important. Efforts to actively advocate this approach at various planning levels have been initiated. More must be learned about population and development dynamics, and planning capabilities at all levels must be improved.

  20. Assessing urban water sustainability in South Africa – not just ...

    African Journals Online (AJOL)

    cal system (the urban water cycle), whilst recognising that the system resides within an ... scenario planning, but is also about developing methodologies that prioritise .... a decision support framework; it should also take into account adaptive ...

  1. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Data.gov (United States)

    U.S. Environmental Protection Agency — These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle...

  2. Urban water consumption and its influencing factors in China

    NARCIS (Netherlands)

    Fan, Liangxin; Gai, Lingtong; Tong, Yan; Li, Ruihua

    2017-01-01

    Factors that affect water consumption should be identified to develop effective public policies. However, factors influencing domestic water consumption in cities in China, particularly on a national scale, are unclear. In this study, urban water consumption and its influencing factors in 286

  3. Impact of development and urbanization on variation of water quality ...

    African Journals Online (AJOL)

    The spatial and temporal variations of the physico-chemical water quality parameters, microfauna and micro-flora composition of the Nima Creek in Accra vividly illustrate the environmental problems associated with water bodies in a community where development and urbanization are in progress. Monthly water and ...

  4. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Science.gov (United States)

    These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership is co-chaired by the U.S. Dept. of Housing and Urban Development and the U.S. Environmental Protection Agency. There are also a number of other federal agencies engaged in projects with Tribal, State, and local officials, and community stakeholders. Like many western river ecosystems, the Middle Rio Grande faces numerous challenges in balancing competing needs within a finite water supply and other resource constrains. Historical practices by our ancestors and immigrants to the Middle Rio Grande have established the conditions that we have inherited. Long-term drought exacerbated by climate change is changing conditions that affect natural and human communities as we strive to improve our precious Rio Grande.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will reconnect our urban communities, particularly those that are overburdened or economically distressed, with the waterway by improving coordination among federal agencies and collaborating with community-led revitalization efforts. Our projects will improve our community water systems and promote their economic, environmental and social benefits. Specifically, the Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will support the development of the Valle de Oro

  5. Teaching method: ‘Integrative urban design game’ for soft urban regeneration

    Directory of Open Access Journals (Sweden)

    Mrđenović Tatjana

    2014-01-01

    Full Text Available Urban regeneration is challenged by contradictory process of globalization. This double-sided process can enrich local communities or leave them at margins of global society. Regarding globalization, most authorities claim that urban planning and design are in paradigm crisis. The crisis is an announcement for paradigm shift that is in contemporary theoretical and conceptual frameworks. They give hope for the ‘light at the end of the tunnel’. Their common groundings are: ‘soft and hard infrastructure’; ‘agencies and structures’; ‘power to’; ‘new rationality’, ‘common sense’; ‘communicative action’; and ‘integrative development’. The purpose of the research is to discuss possibilities of teaching method ‘Integrative urban design game’ for soft urban regeneration, elaborating it with respect to the crisis in specific context of building bridges among academia and local communities regarding various teaching approaches. The method was innovated at the Faculty of Architecture in Belgrade and tested in Bač community. The hypothesis is that the method provides soft infrastructure for urban regeneration in local communities. The research will result in a form of principles the game should be grounded on, using participative mimicry model of present and future place for overcoming paradigm crisis. Methodological approach is based on theoretical comparison, case study, and questionnaires among stakeholders. [Projekat Ministarstva nauke Republike Srbije, br. TR 36035: Spatial, environmental, energy and social aspects of developing settlements and climate change - mutual impacts

  6. Understanding urban water performance at the city-region scale using an urban water metabolism evaluation framework.

    Science.gov (United States)

    Renouf, Marguerite A; Kenway, Steven J; Lam, Ka Leung; Weber, Tony; Roux, Estelle; Serrao-Neumann, Silvia; Choy, Darryl Low; Morgan, Edward A

    2018-06-15

    Water sensitive interventions are being promoted to reduce the adverse impacts of urban development on natural water cycles. However it is currently difficult to know the best strategy for their implementation because current and desired urban water performance is not well quantified. This is particularly at the city-region scale, which is important for strategic urban planning. This work aimed to fill this gap by quantifying the water performance of urban systems within city-regions using 'urban water metabolism' evaluation, to inform decisions about water sensitive interventions. To do this we adapted an existing evaluation framework with new methods. In particular, we used land use data for defining system boundaries, and for estimating natural hydrological flows. The criteria for gauging the water performance were water efficiency (in terms of water extracted externally) and hydrological performance (how much natural hydrological flows have changed relative to a nominated pre-urbanised state). We compared these performance criteria for urban systems within three Australian city-regions (South East Queensland, Melbourne and Perth metropolitan areas), under current conditions, and after implementation of example water sensitive interventions (demand management, rainwater/stormwater harvesting, wastewater recycling and increasing perviousness). The respective water efficiencies were found to be 79, 90 and 133 kL/capita/yr. In relation to hydrological performance, stormwater runoff relative to pre-urbanised flows was of most note, estimated to be 2-, 6- and 3- fold, respectively. The estimated performance benefits from water sensitive interventions suggested different priorities for each region, and that combined implementation of a range of interventions may be necessary to make substantive gains in performance. We concluded that the framework is suited to initial screening of the type and scale of water sensitive interventions needed to achieve desired water

  7. City-integrated renewable energy for urban sustainability.

    Science.gov (United States)

    Kammen, Daniel M; Sunter, Deborah A

    2016-05-20

    To prepare for an urban influx of 2.5 billion people by 2050, it is critical to create cities that are low-carbon, resilient, and livable. Cities not only contribute to global climate change by emitting the majority of anthropogenic greenhouse gases but also are particularly vulnerable to the effects of climate change and extreme weather. We explore options for establishing sustainable energy systems by reducing energy consumption, particularly in the buildings and transportation sectors, and providing robust, decentralized, and renewable energy sources. Through technical advancements in power density, city-integrated renewable energy will be better suited to satisfy the high-energy demands of growing urban areas. Several economic, technical, behavioral, and political challenges need to be overcome for innovation to improve urban sustainability. Copyright © 2016, American Association for the Advancement of Science.

  8. Global analysis of urban surface water supply vulnerability

    International Nuclear Information System (INIS)

    Padowski, Julie C; Gorelick, Steven M

    2014-01-01

    This study presents a global analysis of urban water supply vulnerability in 71 surface-water supplied cities, with populations exceeding 750 000 and lacking source water diversity. Vulnerability represents the failure of an urban supply-basin to simultaneously meet demands from human, environmental and agricultural users. We assess a baseline (2010) condition and a future scenario (2040) that considers increased demand from urban population growth and projected agricultural demand. We do not account for climate change, which can potentially exacerbate or reduce urban supply vulnerability. In 2010, 35% of large cities are vulnerable as they compete with agricultural users. By 2040, without additional measures 45% of cities are vulnerable due to increased agricultural and urban demands. Of the vulnerable cities in 2040, the majority are river-supplied with mean flows so low (1200 liters per person per day, l/p/d) that the cities experience ‘chronic water scarcity’ (1370 l/p/d). Reservoirs supply the majority of cities facing individual future threats, revealing that constructed storage potentially provides tenuous water security. In 2040, of the 32 vulnerable cities, 14 would reduce their vulnerability via reallocating water by reducing environmental flows, and 16 would similarly benefit by transferring water from irrigated agriculture. Approximately half remain vulnerable under either potential remedy. (letter)

  9. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-01-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water quality was analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes (LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro- invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  10. URBAN GROWTH AND WATER QUALITY IN THIMPHU, BHUTAN

    Directory of Open Access Journals (Sweden)

    Nandu Giri

    2013-06-01

    Full Text Available Detailed study was undertaken in 2008 and 2009 on assessment of water quality of River Wang Chhu which flows through Thimphu urban area, the capital city of Bhutan. The water samples were examined at upstream of urban area, within the urban area and its downstream. The water samples were analyzed by studying the physico-chemical, biological and benthic macro-invertebrates. The water quality data obtained during present study are discussed in relation to land use/land cover changes(LULC and various ongoing human activities at upstream, within the each activity areas and it’s downstream. Analyses of satellite imagery of 1990 and 2008 using GIS revealed that over a period of eighteen years the forest, scrub and agricultural areas have decreased whereas urban area and road network have increased considerably. The forest cover, agriculture area and scrub decreased from 43.3% to 42.57%, 6.88% to 5.33% and 42.55% to 29.42%, respectively. The LULC changes effect water quality in many ways. The water temperature, pH, conductivity, total dissolved solids, turbidity, nitrate, phosphate, chloride, total coliform, and biological oxygen demand were lower at upstream and higher in urban area. On the other hand dissolved oxygen was found higher at upstream and lower in urban area. The pollution sensitive benthic macro-invertebrates population were dominant at upstream sampling sites whereas pollution tolerant benthic macro-invertebrates were found abundant in urban area and its immediate downstream. The rapid development of urban infrastructure in Thimphu city may be posing serious threats to water regime in terms of its quality. Though the deterioration of water quality is restricted to a few localized areas, the trend is serious and needs proper attention of policy planners and decision makers. Proper treatment of effluents from urban areas is urgently needed to reduce water pollution in such affected areas to check further deterioration of water quality

  11. SOLUTIONS FOR INTEGRATED ADMINISTRATION OF URBAN GREEN AREAS

    Directory of Open Access Journals (Sweden)

    ADINA CLAUDIA NEAMTU

    2014-05-01

    Full Text Available This paper aims to provide an administrative model for green spaces in any geographical area, especially in urban areas. The organizational proposed model also concerns the possibilities to develop new areas with green spaces for both recreation and leisure. Current structures leave much to be desired and, unfortunately, they do not seek to manage the green spaces on types of activities and these activities are not integrated into a unit structure to ensure coordination of operations for maintenance and expansion of these spaces. In the study, for the administrative plan are proposed those necessary changes to create organizational structures needed to implement a coherent strategy and policy to support the development of green space. Given the necessity of an integrated management for urban space, the model proposes solutions to eliminate functional overlaps of the various decision-making bodies by creating a unit of action, together with arrangements for its effective support. Developing effective solutions to managing green spaces for recreation and leisure becomes an obligation for the next period under conditions of increasing green areas arranged as parks and other types of green spaces and hence an increase for the cost of their administration. On the other hand, the paper addresses the issue of integrated management for both, green areas and recreational and leisure facilities existing within the urban areas, by giving more importance and impact for these spaces within communities. In this framework of integrated administration, it is possible to ensure modern leisure amenities in these urban green areas, and on the other hand it is possible to provide a very important prospect of additional revenues for the general budget of the community and also for future budget of planning for new green areas.

  12. Vegetated Treatment Systems for Removing Contaminants Associated with Surface Water Toxicity in Agriculture and Urban Runoff.

    Science.gov (United States)

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Cahn, Michael

    2017-05-15

    Urban stormwater and agriculture irrigation runoff contain a complex mixture of contaminants that are often toxic to adjacent receiving waters. Runoff may be treated with simple systems designed to promote sorption of contaminants to vegetation and soils and promote infiltration. Two example systems are described: a bioswale treatment system for urban stormwater treatment, and a vegetated drainage ditch for treating agriculture irrigation runoff. Both have similar attributes that reduce contaminant loading in runoff: vegetation that results in sorption of the contaminants to the soil and plant surfaces, and water infiltration. These systems may also include the integration of granulated activated carbon as a polishing step to remove residual contaminants. Implementation of these systems in agriculture and urban watersheds requires system monitoring to verify treatment efficacy. This includes chemical monitoring for specific contaminants responsible for toxicity. The current paper emphasizes monitoring of current use pesticides since these are responsible for surface water toxicity to aquatic invertebrates.

  13. Biomimetic Urban Design: Ecosystem Service Provision of Water and Energy

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2017-03-01

    Full Text Available This paper presents an ecosystem biomimicry methodology for urban design called ecosystem service analysis. Ecosystem services analysis can provide quantifiable goals for urban ecological regeneration that are determined by site specific ecology and climate of an urban area. This is important given the large negative environmental impact that most cities currently have on ecosystems. If cities can provide some of their own ecosystem services, pressure may be decreased on the surrounding ecosystems. This is crucial because healthier ecosystems enable humans to better adapt to the impacts that climate change is currently having on urban built environments and will continue to have in the future. A case study analyzing two ecosystem services (provision of energy and provision of water for an existing urban environment (Wellington, New Zealand is presented to demonstrate how the ecosystem services analysis concept can be applied to an existing urban context. The provision of energy in Wellington was found to be an example of an ecosystem service where humans could surpass the performance of pre-development ecosystem conditions. When analyzing the provision of water it was found that although total rainfall in the urban area is almost 200% higher than the water used in the city, if rainwater harvested from existing rooftops were to meet just the demands of domestic users, water use would need to be reduced by 20%. The paper concludes that although achieving ecological performance goals derived from ecosystem services analysis in urban areas is likely to be difficult, determining site and climate specific goals enable urban design professionals to know what a specific city should be aiming for if it is to move towards better sustainability outcomes.

  14. Indicating anthropogenic effectson urban water system - indicators and extension

    Science.gov (United States)

    Strauch, G.; Ufz-Team

    2003-04-01

    Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments

  15. Integrated Quality Management System in Public Urban Traffic

    Directory of Open Access Journals (Sweden)

    Husein Pašagić

    2005-09-01

    Full Text Available Public urban traffic (PUT requirements are based on thespecific characteristics that dictate the requirements themselves.The problems faced by all the big cities regarding public urbantransport are very similar, and they range from unacceptabilityof the very organisational structure of the system facing the populationgrowth, limitations and congestions of the traffic routesloaded by an increasing number of automobiles, to the chroniclack of economic funds for the investments that would createthe necessary conditions for positive shifts. In PUT there aremany random parameters whose statistical laws are not easy todetermine and it is often the topic of research of various profilesof scientists. There is always the satisfaction, that is, the lack ofsatisfaction by the final user of the public urban transport andall the other involved groups. The result is that the potential usersof public urban transport give up and try to find other solutionsfor their transport needs, turning in principle to individualtraffic. Consequently, the number of passenger cars on the trafficroutes increases along with all the resulting negative effects.The complex systems of public urban transport facing the increasingrequirements to improve efficiency have to be subjectedto certain changes in order to achieve physical sustainability oftraffic at all, and to satisfy the environmental requirements thatoccur as counterbalance to the pollution of the urban area.With the aim of achieving optimal conditions for the qualityof service, and by introducing acceptable traffic solutionscombined with the integrated quality management systembased on the standards ISO 9001 and ISO 14000 high-qualityshifts are made possible. The integration of these standards resultsin the rational combining of the quality management systeminto a single efficient system, reflected in achieving high-quality traffic and transport service, improved informationflow, unique documentation, positive

  16. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  17. Species pool versus site limitations of macrophytes in urban waters

    DEFF Research Database (Denmark)

    Vermonden, K.; Leuven, R.S.E.W.; van der Velde, G.

    2010-01-01

    of species expected from species-area relationships of artificial water bodies in rural areas. In urban areas, the number of macrophyte species was similar to artificial water systems in rural areas. Macrophyte species present in the study areas also were generally found within 20-30 km distance to the study...

  18. Coping with drought: the experience of water sensitive urban design ...

    African Journals Online (AJOL)

    This study investigated the extent of Water Sensitive Urban Design (WSUD) activities in the George Municipality in the Western Cape Province, South Africa, and its impact on water consumption. The WSUD approach aims to influence design and planning from the moment rainwater is captured in dams, to when it is treated, ...

  19. Protecting access to water from urban sprawl, climate change in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2011-05-13

    May 13, 2011 ... Water is scarce for residents on the edge of South Asia's expanding cities. ... and a changing climate affect water security in peri-urban South Asia and find fair and sustainable ... Villages in Nepal prepare for weather extremes.

  20. Climate change and urbanization threaten water resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2014-08-14

    Aug 14, 2014 ... JAGP: Have you found that climate-related pressures are related to ... SAK: We found that urbanization and climate change have put extra stress on water ... JAGP: Will the research team continue to work together on water ...

  1. Consumer Cooperatives for Delivery of Urban Water and Sanitation Services

    OpenAIRE

    Ruiz-Mier, Fernando; Ginneken, Meike van

    2008-01-01

    To find the optimal delivery model for urban water supply and sanitation (WSS) services, one must look beyond ownership structures to the practices and designs that support good performance. Consumer cooperatives are often attractive institutional models. This note focuses on a Bolivian cooperative that is one of the most successful water cooperatives in Latin America. Successful cooperatives ...

  2. Countermeasures for Intensive Use of Land from the Perspective of Urban-Rural Integration

    OpenAIRE

    Jia, Li-bin

    2012-01-01

    This paper analyzes problems of excessive emphasis on expansion of urban land, improper village and town construction, and low land utilization efficiency in urban-rural integration construction. In line with characteristics and principle of intensive land use of urban-rural integration, it puts forward integration of urban-rural land layout, practically exploring connotation, and improving land intensification in many ways. Based on these, it presents countermeasures for intensive use of lan...

  3. Sustainability in urban water resources management - some notes from the field

    Science.gov (United States)

    Shuster, W.; Garmestani, A.; Green, O. O.

    2014-12-01

    Urban development has radically transformed landscapes, and along with it, how our cities and suburbs cycle energy and water. One unfortunate outcome of urbanization is the production of massive volumes of uncontrolled runoff volume. Our civic infrastructure is sometimes marginally capable of handling even dry-weather fluxes without wastewater system overflows, much less the challenges of wet-weather events. The predominance of runoff volume in urban water balance has had serious ramifications for regulatory activity, municipal financial matters, and public health. In the interest of protecting human health and the environment, my group's research has primarily addressed the integration of social equity, economic stabilization, and environmental management to underpin the development of sustainable urban water cycles. In this talk, I will present on: 1) the Shepherd Creek Stormwater Management project wherein an economic incentive was used to recruit citizen stormwater managers and distribute parcel-level, green infrastructure-based stormwater control measures; and 2) our urban soil pedologic-hydrologic assessment protocol that we use as a way of understanding the capacity for urban soils to provide ecosystem services, and in cities representing each of the major soil orders.

  4. [Water, sanitation and diarrheal risk in Nouakchott Urban Community, Mauritania].

    Science.gov (United States)

    Sy, Ibrahima; Traoré, Doulo; Niang Diène, Aminata; Koné, Brama; Lô, Baidy; Faye, Ousmane; Utzinger, Jürg; Cissé, Guéladio; Tanner, Marcel

    2017-12-05

    Drinking water and sanitation are two factors of inter-linked inextricably public health especially in the city of Nouakchott where the low availability of these services leads to a multitude of use and hygiene practices involving a complex socio-ecological system with an increased risk of waterborne diseases transmission (diarrhea, cholera, etc.). Thus, this contribution analyzes the impact of socio-ecological system on the development of diarrheal diseases by using socio-environmental and epidemiological data from various sources (national surveys and registries consultation). Overall, the results show that only 25.6% of households have access to drinking water sources while 69.8% of the populations dispose improved latrines. Hence, the weakness in environmental sanitation conditions explains the level of diarrheal morbidity averring 12.8% at the urban level, with an unequal spatial distribution showing less affected communes such as Tevragh Zeina (9.1%) and municipalities more affected like Sebkha (19.1%). The distribution according to the age categories shows that children under 5 years are the most affected with 51.7% followed by people aged over 14 with 34.2%. The correlation analysis between socio-economic, environmental and epidemiological variables reveals a number of significant associations: untreated water consumption and diarrhea (R = 0.429); collection of wastewater and occurrence of diarrhea ; existence of improved latrine and reduction of diarrheal risk (R = 0.402). Therefore, exposure to diarrheal diseases through the prism of water and sanitation is a real public health problem that requires a systemic and integrated approach to improving environmental health.

  5. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    Science.gov (United States)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling

  6. What does resilience mean for urban water services?

    Directory of Open Access Journals (Sweden)

    Åse Johannessen

    2017-03-01

    Full Text Available Disasters and climate change impacts, as well as increased water demand, pose serious risks to the provision of sustainable urban water services, e.g., drinking water, sanitation, and safe drainage, especially in cities. These challenges call for a transition toward improved water management, including considerations of "resilience." However, because the resilience concept has multidisciplinary origins it is open to multiple interpretations, which poses a challenge to understanding and operationalizing the concept. We explore how resilience thinking can be translated into urban water practice to develop the conceptual understanding of transitions toward sustainability. The study is based on a literature review, interviews with water experts, as well as four case studies in South Africa, India, Sweden, and the Philippines. We identify seven key principles or attributes of urban water resilience and the related transition process. We find that resilience building needs to discern between and manage three levels (i.e., socioeconomic, external hazard considerations, and larger social-ecological systems to be sustainable. In addition, we find that human agency is a strong driver of transition processes, with a certain level of risk awareness and risk perception providing one threshold and a certain capacity for action to implement measures and reorganize in response to risks being another. The difficulty of achieving "knowledge to action" derives from the multiple challenges of crossing these two types of identified thresholds. To address long-term trends or stressors, we find an important role for social learning to ensure that the carrying capacity of urban water services is not exceeded or unwanted consequences are created (e.g., long-term trends like salinization and water depletion. We conclude that the resilience term and related concepts add value to understanding and addressing the dynamic dimension of urban water transitions if the key

  7. Stormwater harvesting: Improving water security in South Africa's urban areas

    Directory of Open Access Journals (Sweden)

    Lloyd Fisher-Jeffes

    2017-01-01

    Full Text Available The drought experienced in South Africa in 2016 one of the worst in decades has left many urbanised parts of the country with limited access to water, and food production has been affected. If a future water crisis is to be averted, the country needs to conserve current water supplies, reduce its reliance on conventional surface water schemes, and seek alternative sources of water supply. Within urban areas, municipalities must find ways to adapt to, and mitigate the threats from, water insecurity resulting from, inter alia, droughts, climate change and increasing water demand driven by population growth and rising standards of living. Stormwater harvesting (SWH is one possible alternative water resource that could supplement traditional urban water supplies, as well as simultaneously offer a range of social and environmental benefits. We set out three position statements relating to how SWH can: improve water security and increase resilience to climate change in urban areas; prevent frequent flooding; and provide additional benefits to society. We also identify priority research areas for the future in order to target and support the appropriate uptake of SWH in South Africa, including testing the viability of SWH through the use of real-time control and managed aquifer recharge.

  8. Water Integration In Sugar Industry

    Directory of Open Access Journals (Sweden)

    Wafa Hatim Balla

    2017-03-01

    Full Text Available The sugar industry uses much water and produces a significant amount of wastewater for disposal. Efficient utilization of water is vital in the process industries not only to reduce the cost of the supply and discharge of freshwater associated with the process but also to minimize environmental problems associated with the use and discharge of water. This paper presents the analysis of fresh water used and wastewater discharged in a sugar manufacturing process. In order to reduce the load of the cooling water system. The system was modified to an open recirculation cooling water system. Also the excess condensate internal water and the discharged water from cooling water system were analyzed and optimized using pinch analysis and mathematical optimization techniques by Resource Conversation Networks spreadsheet software.

  9. Integrated Solution Support System for Water Management

    NARCIS (Netherlands)

    Kassahun, A.; Blind, M.; Krause, A.U.M.; Roosenschoon, O.R.

    2008-01-01

    Solving water management problems involves technical, social, economic, political and legal challenges and thus requires an integrated approach involving people from different backgrounds and roles. The integrated approach has been given a prominent role within the European Union¿s Water Framework

  10. Urban Hydrology and Water Quality Modeling - Resolution Modeling Comparison for Water Quantity and Quality

    Science.gov (United States)

    Fry, T. J.; Maxwell, R. M.

    2014-12-01

    Urbanization presents challenging water resource problems for communities worldwide. The hydromodifications associated with urbanization results in increased runoff rates and volumes and increased peak flows. These hydrologic changes can lead to increased erosion and stream destabilization, decreased evapotranspiration, decreased ground water recharge, increases in pollutant loading, and localized anthropogenic climate change or Urban Heat Islands. Stormwater represents a complex and dynamic component of the urban water cycle that requires careful mitigation. With the implementation of Phase II rules under the CWA, stormwater management is shifting from a drainage-efficiency focus to a natural systems focus. The natural system focus, referred to as Low Impact Development (LID), or Green Infrastructure, uses best management practices (BMPs) to reduce the impacts caused by urbanization hydromodification. Large-scale patterns of stormwater runoff from urban environments are complex and it is unclear what the large-scale impacts of green infrastructure are on the water cycle. High resolution physically based hydrologic models can be used to more accurately simulate the urban hydrologic cycle. These types of models tend to be more dynamic and allow for greater flexibility in evaluating and accounting for various hydrologic processes in the urban environment that may be lost with lower resolution conceptual models. We propose to evaluate the effectiveness of high resolution models to accurately represent and determine the urban hydrologic cycle with the overall goal of being able to accurately assess the impacts of LID BMPs in urban environments. We propose to complete a rigorous model intercomparison between ParFlow and FLO-2D. Both of these models can be scaled to higher resolutions, allow for rainfall to be spatially and temporally input, and solve the shallow water equations. Each model is different in the way it accounts for infiltration, initial abstraction losses

  11. The urban forest and ecosystem services: impact on urban water, heat, and pollution cycles at the tree, street, and city scale

    Science.gov (United States)

    S. J. Livesley; E. G. McPherson; C. Calfapietra

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However,...

  12. A hydrologic-economic modeling approach for analysis of urban water supply dynamics in Chennai, India

    Science.gov (United States)

    Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence

    2010-07-01

    In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.

  13. Lauryl alkylbenzene sulfonates in the urban water cycle (Toulouse, France)

    OpenAIRE

    Breton, Audrey; Vignoles, Christian; Montréjaud-Vignoles, Mireille

    2010-01-01

    Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of laurylalkylbenzene sulfonates in a separated sewer system. An analytical method by solid-phase extraction and liquid chromatography coupled with mass spectrometry detection was developed providing ...

  14. Urban water - a new frontier in isotope hydrology.

    Science.gov (United States)

    Ehleringer, James R; Barnette, Janet E; Jameel, Yusuf; Tipple, Brett J; Bowen, Gabriel J

    2016-01-01

    Isotope hydrology has focused largely on landscapes away from densely inhabited regions. In coming decades, it will become increasingly more important to focus on water supplies and dynamics within urban systems. Stable isotope analyses provide important information to water managers within large cities, particularly in arid regions where evaporative histories of water sources, vulnerabilities, and reliabilities of the water supplies can be major issues. Here the spatial and vertical understanding of water supporting urban systems that comes from stable isotope analyses can serve as a useful management tool. We explore this research frontier using the coupled natural-human landscape of the Salt Lake Valley, USA, with its greater than one million inhabitants. We first provide data on the stable isotope ratios of the hydrologic system's primary components: precipitation, incoming surface waters, and terminus waters in this closed basin. We then explore the spatial and temporal patterns of drinking waters within the urban landscape and the new opportunities to better link isotope ratio data with short- and long-term management interests of water managers.

  15. Forecasting urban water demand: A meta-regression analysis.

    Science.gov (United States)

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  16. Contemplating ‘Quality Street’ : integration of environmental quality in planning sustainable urban development

    NARCIS (Netherlands)

    van Stigt, M.

    2016-01-01

    The challenge of sustainable urban development entails integration of environmental interests in decision-making about urban plans. In practice, this is not always successful. This dissertation offers explanations and suggests some strategies for further improvement. Three different perspectives are

  17. Integrated city as a model for a new wave urban tourism

    Science.gov (United States)

    Ariani, V.

    2018-03-01

    Cities are a major player for an urban tourism destination. Massive tourism movement for urban tourism gains competitiveness to the city with similar characteristic. The new framework model for new wave urban tourism is crucial to give more experience to the tourist and valuing for the city itself. The integrated city is the answer for creating a new model for an urban tourism destination. The purpose of this preliminary research is to define integrated city framework for urban tourism development. It provides a rationale for tourism planner pursuing an innovative approach, competitive advantages, and general urban tourism destination model. The methodology applies to this research includes desk survey, literature review and focus group discussion. A conceptual framework is proposed, discussed and exemplified. The framework model adopts a place-based approach to tourism destination and suggests an integrated city model for urban tourism development. This model is a tool for strategy making in re-invention integrated city as an urban tourism destination.

  18. The State of U.S. Urban Water: Data and the Energy-Water Nexus

    Science.gov (United States)

    Chini, Christopher M.; Stillwell, Ashlynn S.

    2018-03-01

    Data on urban water resources are scarce, despite a majority of the U.S. population residing in urban environments. Further, information on the energy required to facilitate the treatment, distribution, and collection of urban water are even more limited. In this study, we evaluate the energy-for-water component of the energy-water nexus by providing and analyzing a unique primary database consisting of drinking water and wastewater utility flows and energy. These anthropogenic fluxes of water through the urban environment are used to assess the state of the U.S. urban energy-water nexus at over 160 utilities. The average daily per person water flux is estimated at 560 L of drinking water and 500 L of wastewater. Drinking water and wastewater utilities require 340 kWh/1,000 m3 and 430 kWh/1,000 m3 of energy, respectively, to treat these resources. The total national energy demand for water utilities accounts for 1.0% of the total annual electricity consumption of the United States. Additionally, the water and embedded energy loss associated with non-revenue water accounts for 9.1 × 109 m3 of water and 3,100 GWh, enough electricity to power 300,000 U.S. households annually. Finally, the water flux and embedded energy fluctuated monthly in many cities. As the nation's water resources become increasingly scarce and unpredictable, it is essential to have a set of empirical data for continuous evaluation and updates on the state of the U.S. urban energy-water nexus.

  19. Integrated solutions for urban runoff pollution control in Brazilian metropolitan regions.

    Science.gov (United States)

    Morihama, A C D; Amaro, C; Tominaga, E N S; Yazaki, L F O L; Pereira, M C S; Porto, M F A; Mukai, P; Lucci, R M

    2012-01-01

    One of the most important causes for poor water quality in urban rivers in Brazil is the low collection efficiency of the sewer system due to unforeseen interconnections with the stormwater drainage system. Since the beginning of the 20th century, Brazilian cities have adopted separate systems for sanitary sewers and stormwater runoff. Gradually these two systems became interconnected. A major challenge faced today by water managers in Brazil is to find efficient and low cost solutions to deal with this mixed system. The current situation poses an important threat to the improvement of the water quality in urban rivers and lakes. This article presents an evaluation of the water quality parameters and the diffuse pollution loads during rain events in the Pinheiros River, a tributary of the Tietê River in São Paulo. It also presents different types of integrated solutions for reducing the pollution impact of combined systems, based on the European experience in urban water management. An evaluation of their performance and a comparison with the separate system used in most Brazilian cities is also presented. The study is based on an extensive water quality monitoring program that was developed for a special investigation in the Pinheiros River and lasted 2.5 years. Samples were collected on a daily basis and water quality variables were analyzed on a daily, weekly or monthly basis. Two hundred water quality variables were monitored at 53 sampling points. During rain events, additional monitoring was carried out using an automated sampler. Pinheiros River is one of the most important rivers in the São Paulo Metropolitan Region and it is also a heavily polluted one.

  20. Integrated Microfluidic Gas Sensors for Water Monitoring

    Science.gov (United States)

    Zhu, L.; Sniadecki, N.; DeVoe, D. L.; Beamesderfer, M.; Semancik, S.; DeVoe, D. L.

    2003-01-01

    A silicon-based microhotplate tin oxide (SnO2) gas sensor integrated into a polymer-based microfluidic system for monitoring of contaminants in water systems is presented. This device is designed to sample a water source, control the sample vapor pressure within a microchannel using integrated resistive heaters, and direct the vapor past the integrated gas sensor for analysis. The sensor platform takes advantage of novel technology allowing direct integration of discrete silicon chips into a larger polymer microfluidic substrate, including seamless fluidic and electrical interconnects between the substrate and silicon chip.

  1. Urban drinking water quality: A survey of selected literature. Issues in urban sustainability No. 1

    Energy Technology Data Exchange (ETDEWEB)

    Pip, E

    1993-01-01

    This literature survey covers a variety of issues relating to the quality of the urban water supply. It begins with a brief historical overview, and goes on to look at the health and politics of water, including issues of contamination. Next, it discusses water quantity including the main uses to which we put our water supply, and means of regulating or charging for usage. The main part of the report deals with water quality, describing how drinking water is assessed in terms of physical, chemical and biological parameters which are deemed to be important because of health or aesthetic reasons. Municipal water treatment and distribution discusses storage and disinfection, followed by a discussion of other treatments such as fluoridation and aeration. Incidental effects of distribution looks at a variety of other related issues such as asbestos fibres or metals in water.

  2. Interactive urban design using integrated planning requirements control

    NARCIS (Netherlands)

    Vries, de B.; Tabak, V.; Achten, H.H.

    2005-01-01

    Urban planning and urban design are separated disciplines. As a consequence, there is hardly any feedback from the urban design process to the urban planning process. To improve interaction between these two, an interactive urban design (IUD) tool has been developed. The tool is implemented in a

  3. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost of indiv......Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost...... of individual very extreme events (e.g. more than 100 years) of approximately 70 % and a 900 % increase in the expected annual losses due to floods. Other case studies in Denmark show smaller impacts, but still very significant increased annual costs compared to the present state. This calls for systematic...

  4. Increasing urban water self-sufficiency: New era, new challenges

    DEFF Research Database (Denmark)

    Rygaard, Martin; Binning, Philip John; Albrechtsen, Hans-Jørgen

    2011-01-01

    and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional...... pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten...... amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We...

  5. Urban water pollution by heavy metals and health implication in ...

    African Journals Online (AJOL)

    Studies of common heavy metals were conducted at Onitsha, Anambra State, the most urbanized city in Southeastern Nigeria. It was discovered that both surface and subsurface water were heavily polluted. Seven (7) heavy metals namely: arsenic (As+2), cadmium (Cd+2), lead (Pb+2), mercury (Hg+2), zinc (Zn+2), copper ...

  6. Health Impact Assessment of New Urban Water Concepts

    NARCIS (Netherlands)

    Sales Ortells, H.

    2015-01-01

    Water features in urban areas are increasingly perceived by citizens as a positive element because they provide aesthetic quality to the neighbourhood and offer recreation opportunities. They may also lead, however, to increased health risks due to the potential presence of waterborne pathogens.

  7. Uncertainty Assessment in Urban Storm Water Drainage Modelling

    DEFF Research Database (Denmark)

    Thorndahl, Søren

    The object of this paper is to make an overall description of the author's PhD study, concerning uncertainties in numerical urban storm water drainage models. Initially an uncertainty localization and assessment of model inputs and parameters as well as uncertainties caused by different model...

  8. Rural Urban Cooperation on Water Management in the Context of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Rural Urban Cooperation on Water Management in the Context of Climate Change in Burkina Faso. Cities greatly depend on rural areas for agricultural ... Coopération entre milieux ruraux et urbains dans la gestion de l'eau face aux changements climatiques au Burkina Faso. Les villes dépendent fortement des milieux ...

  9. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    together with the water footprint concept could thus provide an appropriate framework to support more optimal water management practices by informing production and trade decisions and the development and adoption of water efficient technology. In order to move towards better water governance however a further integration of water-related concerns into water-related sectoral policies is paramount. This will require a concerted effort by all stakeholders, the willingness to adopt a total resource view where water is seen as a key, cross-sectoral input for development and growth, a mix of technical approaches, and the courage to undertake and fund water sector reforms. We are convinced that the water footprint analysis can provide a sufficiently robust fact base for meaningful stakeholder dialogue and action towards solutions.

  10. An Overview of Hybrid Water Supply Systems in the Context of Urban Water Management: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Mukta Sapkota

    2014-12-01

    Full Text Available This paper presents a critical review of the physical impacts of decentralized water supply systems on existing centralized water infrastructures. This paper highlights the combination of centralized and decentralized systems, which is referred to as hybrid water supply systems. The system is hypothesized to generate more sustainable and resilient urban water systems. The basic concept is to use decentralized water supply options such as rainwater tanks, storm water harvesting and localized wastewater treatment and reuse in combination with centralized systems. Currently the impact of hybrid water supply technologies on the operational performance of the downstream infrastructure and existing treatment processes is yet to be known. The paper identifies a number of significant research gaps related to interactions between centralized and decentralized urban water services. It indicates that an improved understanding of the interaction between these systems is expected to provide a better integration of hybrid systems by improved sewerage and drainage design, as well as facilitate operation and maintenance planning. The paper also highlights the need for a framework to better understand the interaction between different components of hybrid water supply systems.

  11. Urbanization Changes the Temporal Dynamics of Nutrients and Water Chemistry

    Science.gov (United States)

    Steele, M.; Badgley, B.

    2017-12-01

    Recent studies find that urban development alters the seasonal dynamics of nutrient concentrations, where the highest concentrations of nitrogen occurred during the winter in urban watersheds, rather than the summer. However, the effects of urbanization on the seasonal concentrations of other nutrients and chemical components is unknown. Therefore, to determine how urbanization changes the seasonal dynamics, once a week we measured concentrations of dissolved organic carbon (DOC), nutrients (NO3, DON, TN, PO4), base cations (Ca, Mg, Na, K), anions (F, Cl, SO4), pH, sediment, temperature, conductivity, and dissolved oxygen (DO) of nine urban, agricultural, and minimally developed watersheds in southwest Virginia, USA. We found that urbanization disrupted the seasonal dynamics of all metrics, except DON, PO4, Ca, sediment, and DO, where some shifted to high concentrations during the winter (Cl, conductivity), highs during late winter or spring (DOC, Na), a season low (TN, SO4, NO3) or high (NH4) during the summer, or remained more constant throughout the year compared to the reference watersheds (Mg, K, pH). The complex changes in seasonal dynamics coincide with a decoupling of common correlations between constituents; for example, DO and NO3 are negatively correlated in reference watersheds (NO3 increases, DO decreases), but positively correlated in urban watersheds. These results suggest that as watersheds become more intensely developed, the influence of natural drivers like temperature and vegetation become steadily overcome by the influence of urban drivers like deicing salts and wastewater leakage, which exert increasing control of seasonal water quality and aquatic habitat.

  12. Integration in urban climate adaptation: Lessons from Rotterdam on integration between scientific disciplines and integration between scientific and stakeholder knowledge

    NARCIS (Netherlands)

    Groot, A.M.E.; Bosch, P.R.; Buijs, S.; Jacobs, C.M.J.; Moors, E.J.

    2015-01-01

    Based on the experience acquired in the Bergpolder Zuid district in the city of Rotterdam, The Netherlands, this paper presents lessons learned so far on science-policy interactions supporting the adaptation to climate change in an urban district. Two types of integration issues were considered: (1)

  13. An integrated method for assessing climate-related risks and adaptation alternatives in urban areas

    Directory of Open Access Journals (Sweden)

    Yvonne Andersson-Sköld

    2015-01-01

    Full Text Available The urban environment is a complex structure with interlinked social, ecological and technical structures. Global warming is expected to have a broad variety of impacts, which will add to the complexity. Climate changes will force adaptation, to reduce climate-related risks. Adaptation measures can address one aspect at the time, or aim for a holistic approach to avoid maladaptation. This paper presents a systematic, integrated approach for assessing alternatives for reducing the risks of heat waves, flooding and air pollution in urban settings, with the aim of reducing the risk of maladaptation. The study includes strategies covering different spatial scales, and both the current climate situation and the climate predicted under climate change scenarios. The adaptation strategies investigated included increasing vegetation; selecting density, height and colour of buildings; and retreat or resist (defend against sea-level rise. Their effectiveness was assessed with regard to not only flooding, heat stress and air quality but also with regard to resource use, emissions to air (incl. GHG, soil and water, and people’s perceptions and vulnerability. The effectiveness of the strategies were ranked on a common scale (from −3 to 3 in an integrated assessment. Integrated assessments are recommended, as they help identify the most sustainable solutions, but to reduce the risk of maladaptation they require experts from a variety of disciplines. The most generally applicable recommendation, derived from the integrated assessment here, taking into account both expertise from different municipal departments, literature surveys, life cycle assessments and publics perceptions, is to increase the urban greenery, as it contributes to several positive aspects such as heat stress mitigation, air quality improvement, effective storm-water and flood-risk management, and it has several positive social impacts. The most favourable alternative was compact, mid

  14. Understanding Transitions Toward Sustainable Urban Water Management: Miami, Las Vegas, Los Angeles

    Science.gov (United States)

    Garcia, M. E.; Manago, K. F.; Treuer, G.; Deslatte, A.; Koebele, E.; Ernst, K.

    2016-12-01

    Cities in the United States face numerous threats to their long-term water supplies including preserving ecosystems, competing uses, and climate change. Yet, it is unclear why only some cities have transitioned toward more sustainable water management. These transitions include strategies such as water conservation, water supply portfolio diversification, long-term planning, and integrated resource management. While the circumstances that motivate or moderate transition may vary greatly across cities' physical and institutional contexts, identifying common factors associated with transition can help resource managers capitalize on windows of opportunity for change. To begin the process of identifying such factors, we ask two questions: 1) what combinations of conditions are associated with water management transitions?, and 2) what are the outcomes of these transitions? We examine three cases of utility-level water management in Miami, Las Vegas, and Los Angeles to create data-driven narratives detailing each city's transition. These narratives systematically synthesize multiple data sources to enable cross-case comparison and provide insights into how and why cities transition. Using the foundational concepts from the exposure-based theory of urban change, we focus our analysis on three broad categories of variables that influence urban water management transition: biophysical, political, and regulatory exposures. First, we compare these factors across time and across cities using metrics that standardize diverse data sources. Next, we incorporate qualitative factors that capture a city's unique conditions by integrating these metrics with salient contextual information. Then, through cross-city comparison, we identify factors associated with transition.

  15. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    Science.gov (United States)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  16. Temporal and spatial patterns of micropollutants in urban receiving waters

    Energy Technology Data Exchange (ETDEWEB)

    Musolff, Andreas, E-mail: andreas.musolff@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Leschik, Sebastian, E-mail: sebastian.leschik@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Moeder, Monika, E-mail: monika.moeder@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstr. 15, 04318 Leipzig (Germany); Strauch, Gerhard, E-mail: gerhard.strauch@ufz.d [UFZ - Helmholtz Centre for Environmental Research, Department of Hydrogeology, Permoserstr. 15, 04318 Leipzig (Germany); Reinstorf, Frido, E-mail: frido.reinstorf@hs-magdeburg.d [University of Applied Sciences Magdeburg-Stendal, Department of Water and Waste Management, Breitscheidstr. 2, 39114 Magdeburg (Germany); Schirmer, Mario, E-mail: mario.schirmer@eawag.c [Eawag, The Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstr. 133, 8600 Duebendorf (Switzerland)

    2009-11-15

    Based on a monitoring program over the course of a year, we characterize the temporal and spatial distribution of selected micropollutants in an urban watershed within the city of Leipzig, Germany. Micropollutants revealed a ubiquitous presence in untreated and treated wastewater, surface water and groundwater. The loads of 4-nonylphenol in the effluents of the municipal wastewater treatment plant followed a seasonal trend, whereas the loads of all other micropollutants were highly variable and not correlated to seasons. In the surface water, load seasonality of caffeine, galaxolide and tonalide resulted from a rapid removal with increased water temperature. The loads of 4-nonylphenol and of caffeine in the colder months increased when rainfall occurred. In the groundwater, complex spatial and temporal patterns were apparent and were related to varying input, retardation and removal processes. As a consequence, an assessment of micropollutants in urban waters should consider different micropollutants' temporal and spatial variability. - Micropollutants in urban receiving waters are characterized by variable temporal and spatial concentration and load patterns that have to be considered in risk assessments.

  17. Water system integration of a chemical plant

    International Nuclear Information System (INIS)

    Zheng Pingyou; Feng Xiao; Qian Feng; Cao Dianliang

    2006-01-01

    Water system integration can minimize both the freshwater consumption and the wastewater discharge of a plant. In industrial applications, it is the key to determine reasonably the contaminants and the limiting concentrations, which will decide the freshwater consumption and wastewater discharge of the system. In this paper, some rules to determine the contaminants and the limiting concentrations are proposed. As a case study, the water system in a chemical plant that produces sodium hydroxide and PVC (polyvinyl chloride) is integrated. The plant consumes a large amount of freshwater and discharges a large amount of wastewater, so minimization of both the freshwater consumption and the wastewater discharge is very important to it. According to the requirements of each water using process on the water used in it, the contaminants and the limiting concentrations are determined. Then, the optimal water reuse scheme is firstly studied based on the water network with internal water mains. To reduce the freshwater consumption and the wastewater discharge further, decentralized regeneration recycling is considered. The water using network is simplified by mixing some of the used water. After the water system integration, the freshwater consumption is reduced 25.5%, and the wastewater discharge is reduced 48%

  18. Water and Urban Development. Zapopan Jal. MÉXICO

    Science.gov (United States)

    Flores, R. M., Sr.; Rosas-Elguera, J.; Pena, L. E.; Lucia, G. I.

    2016-12-01

    Recently there is a need to make a land management project for the metropolitan area of Guadalajara (GDL), the objective is the momentum of an "orderly growth" however there are a number of problems associated with urban growth, one of which is the provision of Water. There is not an adequate exploration of our resources, nor an adequate record of the minimum parameters that can be measured in the case of groundwater, such as the level of infiltration and extraction volume. The extraction is carried out in the northwest of the GDL (currently the area is more urban development), is approximately greater than 658 l / s (SIAPA 2016), beyond the capacity of natural recharge since precipitation of an average of 850 mm. Besides which currently anthropically waterproof. There is a record of more than 40 existing in this sector of the GDL wells, wells and springs are not accounted for, the production areas varies from 14.45 to 180.55 m depth In the study area (approximately 80km2), there are urban uses, industries, airports, agricultural areas in transition to residential areas and a protected natural area. cracks have already appeared in different years and places, some authors propose that are associated with geological structures and others say it is by massive extraction of water. Mitigation measures or water injection wells to recharge aquifers is poor, not considered as a priority for the territorial urban planning element. Which leads to a significant lowering of the aquifers that is up to 67.2 m in a span of two years in some cases. Some urban developments with golf course, contribute significantly to the purification of waste water and recharge of aquifers for irrigation they do, what should force by the state or municipality to issue a series of fiscal stimulus.

  19. Environmental Groundwater Vulnerability Assessment in Urban Water Mines (Porto, NW Portugal

    Directory of Open Access Journals (Sweden)

    Maria José Afonso

    2016-11-01

    Full Text Available A multidisciplinary approach was developed to estimate urban groundwater vulnerability to contamination combining hydrogeology, hydrogeochemistry, subterranean hydrogeotechnics, groundwater ecotoxicology and isotope tracers. Paranhos and Salgueiros spring waters in Porto City were used as a case study. Historical and current vulnerability scenarios were compared using hydrogeological GIS-based modelling. Potential contamination sources were mapped around the spring galleries. Most of these were point sources and their potential contamination load was moderate. The ecotoxicological assessment indicated a low acute toxicity potential. Groundwater radionuclides appeared to be mainly controlled by geological factors and biomineralisation. Vulnerability maps suggest that most of the area has a moderate to low vulnerability to contamination. However, some surface sources such as sewage systems cause contamination and contribute to increased vulnerability. This integrated approach was demonstrated to be adequate for a better knowledge of urban hydrogeological processes and their dynamics, and highlighted the importance of a vulnerability assessment in urban areas.

  20. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia

    Institute of Scientific and Technical Information of China (English)

    John C.Radcliffe; Declan Page; Bruce Naumann; Peter Dillon

    2017-01-01

    Australia has developed extensive policies and guidelines for the management of its water.The City of Salisbury,located within metropolitan Adelaide,South Australia,developed rapidly through urbanisation from the 1970s.Water sensitive urban design principles were adopted to maximise the use of the increased run-off generated by urbanisation and ameliorate flood risk.Managed aquifer recharge was introduced for storing remediated low-salinity stormwater by aquifer storage and recovery (ASR) in a brackish aquifer for subsequent irrigation.This paper outlines how a municipal government has progressively adopted principles of Water Sensitive Urban Design during its development within a framework of evolving national water policies.Salisbury's success with stormwater harvesting led to the formation of a pioneering water business that includes linking projects from nine sites to provide a non-potable supply of 5 × 106 m3 ·year-1.These installations hosted a number of applied research projects addressing well configuration,water quality,reliability and economics and facilitated the evaluation of its system as a potential potable water source.The evaluation showed that while untreated stormwater contained contaminants,subsurface storage and end-use controls were sufficient to make recovered water safe for public open space irrigation,and with chlorination,acceptable for third pipe supplies.Drinking water quality could be achieved by adding microfiltration,disinfection with UV and chlorination.The costs that would need to be expended to achieve drinking water safety standards were found to be considerably less than the cost of establishing dual pipe distribution systems.The full cost of supply was determined to be AUD$1.57 m-3 for non-potable water for public open space irrigation,much cheaper than mains water,AUD $3.45 m-3 at that time.Producing and storing potable water was found to cost AUD$1.96 to $2.24 m-3.

  1. Framework for integration of urban planning, strategic environmental assessment and ecological planning for urban sustainability within the context of China

    International Nuclear Information System (INIS)

    He Jia; Bao Cunkuan; Shu Tingfei; Yun Xiaoxue; Jiang Dahe; Brwon, Lex

    2011-01-01

    Sustainable development or sustainability has been highlighted as an essential principle in urban master planning, with increasing recognition that uncontrollable urbanization may well give rise to various issues such as overexploitation of natural resources, ecosystem destruction, environmental pollution and large-scale climate change. Thus, it is deemed necessary to modify the existing urban and regional administrative system so as to cope with the challenges urban planning is being confronted with and realize the purpose of urban sustainability. This paper contributed to proposing a mechanism which helps to make urban planning with full consideration of issues with respect to sustainable development. We suggested that the integration of urban planning, SEA and ecological planning be a multi-win strategy to offset deficiency of each mentioned political tool being individually applied. We also proposed a framework where SEA and ecological planning are fully incorporated into urban planning, which forms a two-way constraint mechanism to ascertain environmental quality of urban planning, although in practice, planning and SEA processes may conditionally be unified. Moreover, as shown in the case study, the integration of the three political tools may be constrained due to slow changes in the contextual factors, in particular the political and cultural dimensions. Currently within the context of China, there may be three major elements which facilitate integration of the three political tools, which are (1) regulatory requirement of PEIA on urban planning, (2) the promotion or strong administrative support from government on eco-district building, and (3) the willingness of urban planners to collaborate with SEA experts or ecologists.

  2. Dynamic heterogeneity: a framework to promote ecological integration and hypothesis generation in urban systems

    Science.gov (United States)

    S. T. A. Pickett; M. L. Cadenasso; E. J. Rosi-Marshall; Ken Belt; P. M. Groffman; Morgan Grove; E. G. Irwin; S. S. Kaushal; S. L. LaDeau; C. H. Nilon; C. M. Swan; P. S. Warren

    2016-01-01

    Urban areas are understood to be extraordinarily spatially heterogeneous. Spatial heterogeneity, and its causes, consequences, and changes, are central to ecological science. The social sciences and urban design and planning professions also include spatial heterogeneity as a key concern. However, urban ecology, as a pursuit that integrates across these disciplines,...

  3. Social Capital and Economic Integration of Migrants in Urban China.

    Science.gov (United States)

    Lu, Yao; Ruan, Danching; Lai, Gina

    2013-07-01

    Based on data from a 2005 survey conducted in Shanghai, China, this research examines the role of social capital in income inequality between rural migrants and urbanites. We find strong income return on social capital, in particular on social capital from strong ties. We also observe a great disparity in social capital possession between rural migrants and urban local residents. Although social capital from strong ties seems to be more important for rural migrants than for urbanites, local ties and high-status ties do not seem to benefit rural migrants. Hence, migrants not only suffer severe social capital deficits but also capital return deficits. Given the strong income returns on social capital and the substantial differences in access to and return on social capital between migrants and urban residents, social capital is consequently found to explain a large part of the income inequality between the two groups. Overall, our findings reveal macro-structural effects on the role of social capital in labor market stratification. In China, the lack of formal labor market mechanisms continues to create both a strong need for and opportunities for economic actions to be organized around informal channels via social relations. Yet, the long-standing institutional exclusion of migrants caused by the household registration system has resulted in pervasive social exclusion and discrimination which have substantially limited rural migrants' accumulation and mobilization of social capital. Under these conditions, social capital reinforces the economic inequality between migrants and urban residents in China. Such empirical evidence adds to our understanding of the role of social capital in the economic integration of migrants and in shaping intergroup inequality in general.

  4. Analytical optimization of demand management strategies across all urban water use sectors

    Science.gov (United States)

    Friedman, Kenneth; Heaney, James P.; Morales, Miguel; Palenchar, John

    2014-07-01

    An effective urban water demand management program can greatly influence both peak and average demand and therefore long-term water supply and infrastructure planning. Although a theoretical framework for evaluating residential indoor demand management has been well established, little has been done to evaluate other water use sectors such as residential irrigation in a compatible manner for integrating these results into an overall solution. This paper presents a systematic procedure to evaluate the optimal blend of single family residential irrigation demand management strategies to achieve a specified goal based on performance functions derived from parcel level tax assessor's data linked to customer level monthly water billing data. This framework is then generalized to apply to any urban water sector, as exponential functions can be fit to all resulting cumulative water savings functions. Two alternative formulations are presented: maximize net benefits, or minimize total costs subject to satisfying a target water savings. Explicit analytical solutions are presented for both formulations based on appropriate exponential best fits of performance functions. A direct result of this solution is the dual variable which represents the marginal cost of water saved at a specified target water savings goal. A case study of 16,303 single family irrigators in Gainesville Regional Utilities utilizing high quality tax assessor and monthly billing data along with parcel level GIS data provide an illustrative example of these techniques. Spatial clustering of targeted homes can be easily performed in GIS to identify priority demand management areas.

  5. Integrated waste and water management system

    Science.gov (United States)

    Murray, R. W.; Sauer, R. L.

    1986-01-01

    The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

  6. Effects of rainwater harvesting on centralized urban water supply systems

    DEFF Research Database (Denmark)

    Grandet, C.; Binning, Philip John; Mikkelsen, Peter Steen

    2010-01-01

    depths but very different temporal distributions. Supply reliability and the extent of reliance on the public distribution system are identified as suitable performance indicators for mains water infrastructure. A uniform temporal distribution of rainfall in an oceanic climate like that of Dinard......, Northern France, yielded supply reliabilities close to 100% for reasonable tank sizes (0.065 m3/m2 of roof area in Dinard compared with 0.262 m3/m2 in Nice with a RWSO of 30% for a detached house). However, the collection and use of rainfall results in a permanent decrease in mains water demand leading...... to an increase in water age in the distribution network. Investigations carried on a real network showed that water age is greatly affected when rainwater supplies more than 30% of the overall water demand. In urban water utilities planning, rainwater supply systems may however be profitable for the community...

  7. Temporal and spatial variations in the relationship between urbanization and water quality.

    Science.gov (United States)

    Ren, Lijun; Cui, Erqian; Sun, Haoyu

    2014-12-01

    With the development of economy, most of Chinese cities are at the stage of rapid urbanization in recent years, which has caused many environmental problems, especially the serious deterioration of water quality. Therefore, the research of the relationship between urbanization and water quality has important theoretical and practical significance, and it is also the main restriction factor in the urbanization advancement. In this work, we investigated the impact of urbanization on the water quality of the nearby river. We established a comprehensive environmental assessment framework by combining urbanization and water quality, and one model was designed to examine the impact of urbanization on the water quality in Jinan from 2001 to 2010 with factor component analysis. The assessment of urbanization level was accomplished using a comprehensive index system, which was based on four aspects: demographic urbanization, economic urbanization, land urbanization, and social urbanization. In addition, synthetic pollution index method was utilized to assess the water pollution of Xiaoqing River in the study area. Through the analysis of regression curves, we conclude that (1) when the urbanization level is below 25 %, the relationship is low and irregular; (2) if the urbanization level varies between 25 and 40 %, there will be an irreversible degradation of stream water quality; (3) there is a positive correlation between urbanization and pollution levels of urban river after the adjustment period; and (4) land and demographic aspects have the highest independent contribution. This study is a useful reference for policymakers in terms of economic and environmental management.

  8. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria.

    Science.gov (United States)

    Christenson, Elizabeth; Bain, Robert; Wright, Jim; Aondoakaa, Stephen; Hossain, Rifat; Bartram, Jamie

    2014-08-15

    Reducing inequalities is a priority from a human rights perspective and in water and public health initiatives. There are periodic calls for differential national and global standards for rural and urban areas, often justified by the suggestion that, for a given water source type, safety is worse in urban areas. For instance, initially proposed post-2015 water targets included classifying urban but not rural protected dug wells as unimproved. The objectives of this study were to: (i) examine the influence of urban extent definition on water safety in Nigeria, (ii) compare the frequency of thermotolerant coliform (TTC) contamination and prevalence of sanitary risks between rural and urban water sources of a given type and (iii) investigate differences in exposure to contaminated drinking-water in rural and urban areas. We use spatially referenced data from a Nigerian national randomized sample survey of five improved water source types to assess the extent of any disparities in urban-rural safety. We combined the survey data on TTC and sanitary risk with map layers depicting urban versus rural areas according to eight urban definitions. When examining water safety separately for each improved source type, we found no significant urban-rural differences in TTC contamination and sanitary risk for groundwater sources (boreholes and protected dug wells) and inconclusive findings for piped water and stored water. However, when improved and unimproved source types were combined, TTC contamination was 1.6 to 2.3 times more likely in rural compared to urban water sources depending on the urban definition. Our results suggest that different targets for urban and rural water safety are not justified and that rural dwellers are more exposed to unsafe water than urban dwellers. Additionally, urban-rural analyses should assess multiple definitions or indicators of urban to assess robustness of findings and to characterize a gradient that disaggregates the urban-rural dichotomy

  9. Evaluation of Seasonal, ANN, and Hybrid Models in Modeling Urban Water Consumption A Case Study of Rash City

    Directory of Open Access Journals (Sweden)

    Seyed Nematollah Mousavi

    2016-09-01

    Full Text Available Forecasting future water consumption in cities to plan for the required capacities in urban water supply systems (including water transmission networks and water treatment facilities depends on the application of behavioral models of uban water consumption. Being located in the North-South corridor, Rasht City is assuming a new role to play in the national economy as a foreign trade center. It will, thus, be necessary to review its present urban infrastructure in order to draft the required infrastructural development plans for meeting the city’s future water demands. The three Seasonal Autoregressive Integrated Moving Average (SARIMA, Artificial Neural Network (ANN, and SARIMABP approaches were employed in present study to model and forecast Rasht urban water consumption using monthly time series for the period 2001‒2008 of urban water consumption in Rasht. The seasonal unit root test was applied to develop the relevant SARIMA model. Results showed that all the seasonal and non-seasonal unit roots are present in all the frequencies in the monthly time series for Rasht urban water consumption. Using a proper filter, the SAIMA patterns were estimated. In a second stage the SARIMA output was used to determine the ANN output and the hybrid SARIMABP structure was accordingly constructed. The values for Rasht urban water consumption predicted by the three models indicated the superiority of the SARIMABP hybrid model as evidenced by the forecast error index of 0.41% obtained for this model. The other two models of SARIMA and ANN were, however, found to yield acceptable results for urban water managers since the forecasting error recorded for them was below 1%.

  10. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); He, Zhenli [University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945 (United States); Japenga, Jan; Deng, Meihua [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Yang, Xiaoe, E-mail: xeyang@zju.edu.cn [Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2015-12-15

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  11. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils

    International Nuclear Information System (INIS)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-01-01

    Highlights: • Heavy metal source apportionment was conducted in peri-urban agricultural areas. • Precise and quantified results were obtained by using isotope ratio analysis. • The integration of IRA, GIS, PCA, and CA was proved to be more reliable. • Hg pollution was from the use of organic fertilizers in this area. - Abstract: Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74–100% and 0–24% of the total Hg input, while road dusts and solid wastes contributed for 0–80% and 19–100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions.

  12. Grey water characterisation and pollutant loads in an urban slum

    International Nuclear Information System (INIS)

    Katukiza, A. Y.; Ronteltap, M.; Niwagaba, C. B.; Kansiime, F.; Lens, P. N. L.

    2015-01-01

    On-site sanitation provisions in urban slums rarely prioritise grey water management, yet it forms the largest fraction of wastewater. This study was carried out to characterise grey water and quantify its pollutant loads in Bwaise III (Uganda) and to provide data for grey water management in urban slums of developing countries. Samples were collected for analysis from ten representative households as well as from four tertiary drains and the main drainage channel for 7 months in two dry seasons. Grey water production was found to comprise 85 % of the domestic water consumption. The chemical oxygen demand concentration in the grey water generated by laundry, in the kitchen and in the bathroom was 9,225 ± 1,200 mg L-1, 71,250 ± 1,011 mg L-1 and 4,675 ± 750 mg L-1, while the BOD5 (biochemical oxygen demand) to COD ratio was 0.24 ± 0.05, 0.33 ± 0.08 and 0.31 ± 0.07, respectively. The maximum concentration of Escherichia coli and total coliforms was 2.05 9 107 cfu (100 mL)-1 and 1.75 9 108 cfu (100 mL)-1, respectively, in grey water from the bathroom, while that of Salmonella spp. was 7.32 9 106 cfu (100 mL)-1 from laundry. Analysis of variance (ANOVA) showed a significant difference in the concentration of COD, total suspended solids, total organic carbon, dissolved organic carbon, total phosphorus, sodium adsorption ratio, oil and grease, and Salmonella spp. in grey water from laundry, bathroom and kitchen (p/0.05). The high loads of COD ([500 kg day-1), total suspended solids ([200 kg day-1), nutrients (8.3 kg TKN day-1 and 1.4 kg total phosphorus day-1) and microorganisms (106 to 109 cfu c-1 day-1) originating from grey water in Bwaise III show that grey water poses a threat to the environment and a risk to human health in urban slums. Therefore, there is a need to prioritise grey water treatment in urban slums of developing countries to achieve adequate sanitation.

  13. Urban Integrated Industrial Cogeneration Systems Analysis. Phase II final report

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Through the Urban Integrated Industrial Cogeneration Systems Analysis (UIICSA), the City of Chicago embarked upon an ambitious effort to identify the measure the overall industrial cogeneration market in the city and to evaluate in detail the most promising market opportunities. This report discusses the background of the work completed during Phase II of the UIICSA and presents the results of economic feasibility studies conducted for three potential cogeneration sites in Chicago. Phase II focused on the feasibility of cogeneration at the three most promising sites: the Stockyards and Calumet industrial areas, and the Ford City commercial/industrial complex. Each feasibility case study considered the energy load requirements of the existing facilities at the site and the potential for attracting and serving new growth in the area. Alternative fuels and technologies, and ownership and financing options were also incorporated into the case studies. Finally, site specific considerations such as development incentives, zoning and building code restrictions and environmental requirements were investigated.

  14. High Resolution Sensing and Control of Urban Water Networks

    Science.gov (United States)

    Bartos, M. D.; Wong, B. P.; Kerkez, B.

    2016-12-01

    We present a framework to enable high-resolution sensing, modeling, and control of urban watersheds using (i) a distributed sensor network based on low-cost cellular-enabled motes, (ii) hydraulic models powered by a cloud computing infrastructure, and (iii) automated actuation valves that allow infrastructure to be controlled in real time. This platform initiates two major advances. First, we achieve a high density of measurements in urban environments, with an anticipated 40+ sensors over each urban area of interest. In addition to new measurements, we also illustrate the design and evaluation of a "smart" control system for real-world hydraulic networks. This control system improves water quality and mitigates flooding by using real-time hydraulic models to adaptively control releases from retention basins. We evaluate the potential of this platform through two ongoing deployments: (i) a flood monitoring network in the Dallas-Fort Worth metropolitan area that detects and anticipates floods at the level of individual roadways, and (ii) a real-time hydraulic control system in the city of Ann Arbor, MI—soon to be one of the most densely instrumented urban watersheds in the United States. Through these applications, we demonstrate that distributed sensing and control of water infrastructure can improve flash flood predictions, emergency response, and stormwater contaminant mitigation.

  15. The role of the water tankers market in water stressed semi-arid urban areas:Implications on water quality and economic burden.

    Science.gov (United States)

    Constantine, Kinda; Massoud, May; Alameddine, Ibrahim; El-Fadel, Mutasem

    2017-03-01

    Population growth and development are associated with increased water demand that often exceeds the capacity of existing resources, resulting in water shortages, particularly in urban areas, where more than 60% of the world's population resides. In many developing communities, shortages often force households to depend on water tankers amongst other potential sources for the delivery of water for domestic and/or potable use. While water tankers have become an integral part of the water supply system in many countries, the sector is often unregulated and operates with little governmental supervision. Users are invariably unaware of the origin or the quality of purchased water. In an effort to better assess this sector, a field survey of water vending wells and tankers coupled with a water quality sampling and analysis program was implemented in a pilot semi-arid urban area (Beirut, Lebanon) to shed light on the environmental and socio-economic impacts of the water tanker sector. Total dissolved solids (TDS), chloride (Cl - ), and microbial loads exceeded drinking water quality standards. While TDS and Cl - levels were mostly due to saltwater intrusion in coastal wells, tankers were found to be a significant source of total coliforms. Delivered water costs varied depending on the tanker size, the quality of the distributed water, and pre-treatment used, with a markup of nearly 8-24 folds of the public water supply and an equivalent economic burden of 16% of the average household income excluding environmental externalities of water quality. The study concludes with a management framework towards consumer protection under integrated supply and demand side measures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Integrated Urban Wastewater System Data Network - Data network system : Diagnostic Report Cali, Colombia

    NARCIS (Netherlands)

    Unesco-IHE

    2008-01-01

    The pressure on the Urban Wastewater Systems (UWwS) increases as urbanization continues relentlessly and climate change appears to lead to more extreme rainfall events. These pressures have a negative effect on the efficiency of UWwS to reduce the urban pollution reaching water-receiving systems.

  17. Urban Principle of Water Sensitive Design in Kampung Kamboja at Pontianak City

    Science.gov (United States)

    Hasriyanti, N.; Ryanti, E.

    2017-07-01

    This study will define the design principles of settlement area banks of the Kapuas Pontianak to approach the concept of water sensitive urban design (WSUD) in densely populated residential areas. Using a case study of a region densely located on the banks of the river with engineering literature to formulate the aspects taken into consideration and the components are arranged in the design, analysis descriptive paradigm rationalistic to identify the characteristics of residential areas riverbank with consideration of elements WSUD and formulate design principles residential area that is sensitive to water. This research is important to do because of problems related to the water management system in the settlement bank of the river in the city of Pontianak do not maximize. So that the primacy of this study contains several objectives to be achieved is to identify the characteristics of the settlement area riverbanks under consideration aspects areas design that is sensitive to water and principle areas design that will formulate the structure of the existing problems related to the needs of the community infrastructure facilities infrastructure neighborhoods and formulate and create guidelines for appropriate technology for integrated water management systems in the residential area of the riverbank and engineering design for the settlements are sensitive to water (WSUD). The final aim of the study is expected to achieve water management systems in residential areas by utilizing the abundant rainwater availability by using LID (Low Impact Development) through the concept of urban design that sensitive water

  18. Navigating Troubled Waters. An analysis of how urban water regimes in the global South reproduce inequality

    OpenAIRE

    Nastar, Maryam

    2014-01-01

    This research is an attempt to conceptualize the underlying forces behind persistent and ubiquitous problems of inequality in access to water in cities of the global south. Inequality in water access is hypothesized to result from urban water regimes that tend to prioritize the right to water access or to provide preferential terms of access for some groups in society, while marginalizing others. By employing a critical realist approach, different theories in relation to inequality are app...

  19. Model of complex integrated use of alternative energy sources for highly urbanized areas

    Directory of Open Access Journals (Sweden)

    Ivanova Elena Ivanovna

    2014-04-01

    Full Text Available The increase of population and continuous development of highly urbanized territories poses new challenges to experts in the field of energy saving technologies. Only a multifunctional and autonomous system of building engineering equipment formed by the principles of energy efficiency and cost-effectiveness meets the needs of modern urban environment. Alternative energy sources, exploiting the principle of converting thermal energy into electrical power, show lack of efficiency, so it appears to be necessary for reaching a visible progress to skip this middle step. A fuel cell, converting chemical energy straight into electricity, and offering a vast diversity of both fuel types and oxidizing agents, gives a strong base for designing a complex integrated system. Regarding the results of analysis and comparison conducted among the most types of fuel cells proposed by contemporary scholars, a solid oxide fuel cell (SOFC is approved to be able to ensure the smooth operation of such a system. While the advantages of this device meet the requirements of engineering equipment for modern civil and, especially, dwelling architecture, its drawbacks do not contradict with the operating regime of the proposed system. The article introduces a model of a multifunctional system based on solid oxide fuel cell (SOFC and not only covering the energy demand of a particular building, but also providing the opportunity for proper and economical operation of several additional sub-systems. Air heating and water cooling equipment, ventilating and conditioning devices, the circle of water supply and preparation of water discharge for external use (e.g. agricultural needs included into a closed circuit of the integrated system allow evaluating it as a promising model of further implementation of energy saving technologies into architectural and building practice. This, consequently, will positively affect both ecological and economic development of urban environment.

  20. Water, Sanitation and Hygiene Situation in Kenya's Urban Slums.

    Science.gov (United States)

    Kamau, Njoroge; Njiru, Haron

    2018-01-01

    Kenya has undergone rapid urbanization as people migrate to the cities in search of economic opportunities. This has given rise to informal settlements characterized by overcrowding, poor infrastructure, and inadequate social amenities. A cross-sectional study on water, sanitation, and hygiene (WASH) status was carried out in Mathare, an informal settlement in Nairobi. A random sample of 380 households was used. The average household size was five people, and 26% of the household heads had completed secondary or higher level of education. The main source of income (70%) was self-employment with 41% of the households living on less than 1.5 USD per day. The WASH situation in the urban slums is below the minimum standard recommended by the World Health Organization (WHO). There is need to improve the situation by improving and installing basic infrastructure including water, sanitation, and solid waste collection.

  1. WATER NETWORK INTEGRATION IN RAW SUGAR PRODUCTION

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2017-07-01

    Full Text Available One of the main process industries in Cuba is that of the sugarcane. Among the characteristics of this industry is the high demand of water in its processes. In this work a study of water integration was carried out from the different operations of the production process of raw sugar, in order to reduce the fresh water consumption. The compound curves of sources and demands were built, which allowed the determination of the minimum water requirement of the network (1587,84 m3/d, as well as the amount of effluent generated (0,35 m3/tcane.The distribution scheme of fresh water and water reuse among different operations were obtained from the nearest neighbor algorithm. From considering new quality constrains was possible to eliminate the external water consumption, as well as to reduce the amount of effluent in a 37% in relation to the initial constrains.

  2. Suitability assessment of the urban water management transition in the Indonesian context - A case study of Surabaya

    Science.gov (United States)

    Sholihah, Mar'atus; Anityasari, Maria; Maftuhah, Diesta Iva

    2017-06-01

    The rapidly growing urban population, the increasing impact of climate change, and the constantly decreasing availability of the good quality water become the major triggers that force urban water professionals to continuously focus on sustainable urban water management (SUWM). The city as a focal point of population growth in the world has become a critical object for its resiliency, not only in terms of the environmental deterioration but also of the water supplies security. As a response to the current condition, the framework of urban water management transition has been introduced as a sort of transformation for a city to achieve SUWM. Water Sensitive City (WSC) is the ultimate goal of this framework which integrates water access and supply security, public health protection, flood prevention, environmental protection and livability, and economic sustainability. Recently, the urban water management transition and WSC concept are going to be implemented in some cities in Indonesia, including Surabaya. However, in addition to provide a wide range of benefits, the implementation of WSC also brings challenges. In terms of geographical and social aspect, public policy, and the citizen behavior, the cities in Indonesia are undoubtedly different with those in Australian where the concept was developed. Hence, assessing the suitability of urban water management transition in the Indonesian context can be perceived as the most important phase in this whole plan. A case study of Surabaya would be identified as a baseline to measure whether the proposed sequence of urban water management transition is suitable for Indonesian local context. The research aimed to assess the suitability of the framework to be implemented in Indonesia and to propose the modified framework which is more suitable for local context in Indonesia.

  3. Urban agglomerations in the function of regional integration of Serbia in South-Eastern Europe

    Directory of Open Access Journals (Sweden)

    Tošić Dragutin

    2005-01-01

    Full Text Available In this article is analyzed the importance of urban agglomerations in the regional organization of Serbian space at one side, and on the other side they are taken as carriers of the future integration of the Serbian urban system into the urban of the South-Eastern Europe (SEE. In the regional configuration of Serbia, more different forms of territorial impacts of urbanization, urban areas and urban regions. High level of urban centralization is formed under the influence of the population density and functions of the metropolitan area of Belgrade. The problems of unbalanced disposition of population growth and qualitative transformation of urban centers are stressed and analyzed. Based on the role in integration process in the SEE, the metropolitan region of Belgrade is pointed out as its principal carrier and the metropolitan region of Niš as its secondary carrier, as well as the urban centers of importance for the cross-border regional cooperation. As the most suitable instrument of internal regional integration the model of Functional Urban Regions (FURs or Functional Urban Areas (FUAs is proposed, and for external regional integration is proposed the model of Metropolitan European Growth Areas (MEGAs. The coherent short-term and long-term development strategies for Serbian towns and their regions seem absent.

  4. Channels for change: private water and the urban poor

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Matthew; Matthews, Petter; Ryan-Collins, Lily [Engineers Against Poverty (United Kingdom)

    2010-05-15

    For the rapidly urbanising developing world, safe and affordable water is key to health and livelihoods, as well as meeting the Millennium Development Goals. But providing it demands innovative models. Where the context allows and the approach is appropriate, private sector involvement can generate win-win outcomes. Poor people can gain access to high-quality, affordable services, and companies can gain access to new and profitable business opportunities. Two examples of innovative 'private' water suppliers are the Manila Water Company's Water for the Poor Communities (TPSB) programme, and the Water & Sanitation for the Urban Poor (WSUP) partnership. Both have a multisector approach to service expansion and provision, including partnerships with local authorities; strong community involvement in selecting, designing and operating options; appropriate service levels to reduce costs; and a flexible range of services. Many elements of these models are also replicable.

  5. Bacterial communities associated with an occurrence of colored water in an urban drinking water distribution system.

    Science.gov (United States)

    Wu, Hui Ting; Mi, Zi Long; Zhang, Jing Xu; Chen, Chao; Xie, Shu Guang

    2014-08-01

    This study aimed to investigate bacterial community in an urban drinking water distribution system (DWDS) during an occurrence of colored water. Variation in the bacterial community diversity and structure was observed among the different waters, with the predominance of Proteobacteria. While Verrucomicrobia was also a major phylum group in colored water. Limnobacter was the major genus group in colored water, but Undibacterium predominated in normal tap water. The coexistence of Limnobacter as well as Sediminibacterium and Aquabacterium might contribute to the formation of colored water. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  6. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  7. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  8. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    Science.gov (United States)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  9. Recovery of energetically overexploited urban aquifers using surface water

    Science.gov (United States)

    García-Gil, Alejandro; Vázquez-Suñé, Enric; Sánchez-Navarro, José Ángel; Mateo Lázaro, Jesús

    2015-12-01

    Shallow aquifers have an important role in reducing greenhouse gases through helping manage the temperature of urban environments. Nevertheless, the uncontrolled rapid use of shallow groundwater resources to heat or cool urban environments can cause thermal pollution that will limit the long term sustainability of the resource. Therefore, there is a need for appropriate mitigation/remediation strategies capable of recovering energetically overexploited aquifers. In this work, a novel remediation strategy based on surface water recharge into aquifers is presented. To evaluate the capabilities of such measures for effective remediation, this strategy is optimized for a management problem raised in the overheated "Urban Alluvial Aquifer of Zaragoza" (Spain). The application of a transient groundwater flow and heat transport model under 512 different mitigation scenarios has enabled to quantify and discuss the magnitude of the remediation effect as a respond to injection rates of surface water, seasonal schedule of the injection and location of injection. The quantification of the relationship between these variables together with the evaluation of the amount of surface water injected per year in each scenario proposed have provided a better understanding of the system processes and an optimal management alternative. This work also makes awareness of the magnitude of the remediation procedure which is in an order of magnitude of tenths of years.

  10. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  11. Valuing the Environmental Benefits of Urban WaterConservation

    Energy Technology Data Exchange (ETDEWEB)

    Coughlin, Katie M.; Bolduc, Chris A.; Chan, Peter T.; Dunham-Whitehead, C.; Van Buskirk, R.D.

    2007-05-01

    This report documents a project undertaken for theCalifornia Urban Water Conservation Council (the Council) to create a newmethod of accounting for the diverse environmental benefits of raw watersavings. The environmental benefits (EB) model was designed to providewater utilities with a practical tool that they can use to assign amonetary value to the benefits that may accrue from implementing any ofthe Council-recommended Best Management Practices. The model treats onlyenvironmental services associated directly with water, and is intended tocover miscellaneous impacts that are not currently accounted for in anyother cost-benefit analysis.

  12. 'Chasing for Water': Everyday Practices of Water Access in Peri-Urban Ashaiman, Ghana

    Directory of Open Access Journals (Sweden)

    Megan Peloso

    2014-02-01

    Full Text Available Despite recent reports suggesting that access to improved sources of drinking water is rising in Ghana, water access remains a daily concern for many of those living in the capital region. Throughout the Greater Accra Metropolitan Area (GAMA, the urban poor manage uncertainty and establish themselves in the city by leveraging a patchwork system of basic services that draws importantly from informal systems and supplies. This paper takes a case study approach, using evidence gathered from two-months of fieldwork in a peri-urban informal settlement on the fringe of Accra, to explore everyday practices involved in procuring water for daily needs that routinely lead residents outside of the official water supply system. Findings from this case study demonstrate that respondents make use of informal water services to supplement or 'patch up' gaps left by the sporadic water flow of the official service provider, currently Ghana Water Company Ltd. (GWCL. Basic water access is thus constructed through an assemblage of coping strategies and infrastructures. This analysis contributes to understandings of heterogeneity in water access by attending to the everyday practices by which informality is operationalised to meet the needs of the urban poor, in ways that may have previously been overshadowed. This research suggests, for example, that although water priced outside of the official service provider is generally higher per unit, greater security may be obtained from smaller repetitive transactions as well as having the flexibility to pursue multiple sources of water on a day-to-day basis.

  13. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Tadanobu, E-mail: nakat@nies.go.jp [Asian Environment Research Group, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 (Japan); Process Hydrology Section, Centre for Ecology and Hydrology (CEH), Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB (United Kingdom); Hashimoto, Shizuka [Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan)

    2011-08-15

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: > Simulation procedure with multi-scale was newly developed. > Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. > Model predicted effect of urban geometry and anthropogenic exhaustion. > Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  14. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis

    International Nuclear Information System (INIS)

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. - Highlights: → Simulation procedure with multi-scale was newly developed. → Latent heat flux in water-holding pavement had strong impact on hydrothermal changes. → Model predicted effect of urban geometry and anthropogenic exhaustion. → Effective management of water resources is powerful for ameliorating heat island. - This study indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle in urban area.

  15. Deterioration and optimal rehabilitation modelling for urban water distribution systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Pipe failures in water distribution systems can have a serious impact and hence it’s important to maintain the condition and integrity of the distribution system. This book presents a whole-life cost optimisation model for the rehabilitation of water distribution systems. It combines a pipe breakage

  16. The capacity for integrated community energy solutions policies to reduce urban greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bataille, C.; Goldberg, S.; Sharp, J.; Melton, N.; Peters, J.; Wolinetz, M. [Quality Urban Energy Systems of Tomorrow, Ottawa, ON (Canada); Miller, E. [University of Toronto, Toronto, ON (Canada); Cavens, D. [University of British Columbia, Vancouver, BC (Canada)

    2010-08-26

    The implementation of policies promoting integrated urban energy solutions (ICES) could allow a reduction in Canada's urban greenhouse gas (GHG) emissions by 2050. The concept and its related policies impact all urban sectors of the economy, such as residential, commercial, urban and inter-city personal transportation, freight transportation, waste and water. ICES policies are considered feasible and necessary, and many cities around the world, like Stockholm and Utrecht, have implemented them successfully. Sustainable land use policies should be the first to be developed since all urban form, transportation, and energy use decisions are made within the framework they generate. In the long term, moderate to aggressive ICES policies generate reductions of GHG emission and energy use but also an increase of 0.3-0.9% of the GDP. Aggressive ICES policies also allow a reduction in the structural unemployment and an increase of the number of jobs. While the effects of the implementation of targeted abatement policies such as the carbon tax or technology regulations are observed within a few years, ICES produce effects on a longer term. In the short term, they allow the release of money that could be spent by households to reduce the economic burden generated by abatement policies. In the longer term, they allow reductions to take over the effects of the short term policies, taking into consideration the increasing size of the population and the economy. Therefore, ICES policies seem to be an important part of comprehensive policy efforts intending to satisfy Canada's energy use and GHG emissions objectives. 218 refs., 49 tabs., 41 figs.

  17. Urban slum structure: integrating socioeconomic and land cover data to model slum evolution in Salvador, Brazil.

    Science.gov (United States)

    Hacker, Kathryn P; Seto, Karen C; Costa, Federico; Corburn, Jason; Reis, Mitermayer G; Ko, Albert I; Diuk-Wasser, Maria A

    2013-10-20

    The expansion of urban slums is a key challenge for public and social policy in the 21st century. The heterogeneous and dynamic nature of slum communities limits the use of rigid slum definitions. A systematic and flexible approach to characterize, delineate and model urban slum structure at an operational resolution is essential to plan, deploy, and monitor interventions at the local and national level. We modeled the multi-dimensional structure of urban slums in the city of Salvador, a city of 3 million inhabitants in Brazil, by integrating census-derived socioeconomic variables and remotely-sensed land cover variables. We assessed the correlation between the two sets of variables using canonical correlation analysis, identified land cover proxies for the socioeconomic variables, and produced an integrated map of deprivation in Salvador at 30 m × 30 m resolution. The canonical analysis identified three significant ordination axes that described the structure of Salvador census tracts according to land cover and socioeconomic features. The first canonical axis captured a gradient from crowded, low-income communities with corrugated roof housing to higher-income communities. The second canonical axis discriminated among socioeconomic variables characterizing the most marginalized census tracts, those without access to sanitation or piped water. The third canonical axis accounted for the least amount of variation, but discriminated between high-income areas with white-painted or tiled roofs from lower-income areas. Our approach captures the socioeconomic and land cover heterogeneity within and between slum settlements and identifies the most marginalized communities in a large, complex urban setting. These findings indicate that changes in the canonical scores for slum areas can be used to track their evolution and to monitor the impact of development programs such as slum upgrading.

  18. Assessing Urban Water Management Sustainability of a Megacity: Case Study of Seoul, South Korea

    Directory of Open Access Journals (Sweden)

    Hyowon Kim

    2018-05-01

    Full Text Available Many cities are facing various water-related challenges caused by rapid urbanization and climate change. Moreover, a megacity may pose a greater risk due to its scale and complexity for coping with impending challenges. Infrastructure and governance also differ by the level of development of a city which indicates that the analysis of Integrated Water Resources Management (IWRM and water governance are site-specific. We examined the status of IWRM of Seoul by using the City Blueprint® Approach which consists of three different frameworks: (1 Trends and Pressures Framework (TPF, (2 City Blueprint Framework (CBF and (3 the water Governance Capacity Framework (GCF. The TPF summarizes the main social, environmental and financial pressures that may impede water management. The CBF assesses IWRM of the urban water cycle. Finally, the GCF identifies key barriers and opportunities to develop governance capacity. The results indicate that nutrient recovery from wastewater, stormwater separation, and operation cost recovery of water and sanitation services are priority areas for Seoul. Furthermore, the local sense of urgency, behavioral internalization, consumer willingness to pay, and financial continuation are identified as barriers limiting Seoul’s governance capacity. We also examined and compared the results with other mega-cities, to learn from their experiences and plans to cope with the challenges in large cities.

  19. Forecasting operational demand for an urban water supply zone

    Science.gov (United States)

    Zhou, S. L.; McMahon, T. A.; Walton, A.; Lewis, J.

    2002-03-01

    A time series forecasting model of hourly water consumption 24 h in advance for an urban zone within the Melbourne (Australia) water supply system is developed. The model comprises two modules—daily and hourly. The daily module is formulated as a set of equations representing the effects of three factors on water use namely seasonality, climatic correlation, and autocorrelation. The hourly module is developed to disaggregate the estimated daily consumption into hourly consumption. The models were calibrated using hourly and daily data for a 6 year period, and independently validated over an additional seven month period. Over this latter period, the hourly forecast model accounted for 66% of the variance in the peak hourly water consumption with a standard error of 162 l/p/d.

  20. Development of a simplified urban water balance model (WABILA).

    Science.gov (United States)

    Henrichs, M; Langner, J; Uhl, M

    2016-01-01

    During the last decade, water sensitive urban design (WSUD) has become more and more accepted. However, there is not any simple tool or option available to evaluate the influence of these measures on the local water balance. To counteract the impact of new settlements, planners focus on mitigating increases in runoff through installation of infiltration systems. This leads to an increasing non-natural groundwater recharge and decreased evapotranspiration. Simple software tools which evaluate or simulate the effect of WSUD on the local water balance are still needed. The authors developed a tool named WABILA (Wasserbilanz) that could support planners for optimal WSUD. WABILA is an easy-to-use planning tool that is based on simplified regression functions for established measures and land covers. Results show that WSUD has to be site-specific, based on climate conditions and the natural water balance.

  1. An Integrated Model Based on a Hierarchical Indices System for Monitoring and Evaluating Urban Sustainability

    Directory of Open Access Journals (Sweden)

    Xulin Guo

    2013-02-01

    Full Text Available Over 50% of world’s population presently resides in cities, and this number is expected to rise to ~70% by 2050. Increasing urbanization problems including population growth, urban sprawl, land use change, unemployment, and environmental degradation, have markedly impacted urban residents’ Quality of Life (QOL. Therefore, urban sustainability and its measurement have gained increasing attention from administrators, urban planners, and scientific communities throughout the world with respect to improving urban development and human well-being. The widely accepted definition of urban sustainability emphasizes the balancing development of three primary domains (urban economy, society, and environment. This article attempts to improve the aforementioned definition of urban sustainability by incorporating a human well-being dimension. Major problems identified in existing urban sustainability indicator (USI models include a weak integration of potential indicators, poor measurement and quantification, and insufficient spatial-temporal analysis. To tackle these challenges an integrated USI model based on a hierarchical indices system was established for monitoring and evaluating urban sustainability. This model can be performed by quantifying indicators using both traditional statistical approaches and advanced geomatic techniques based on satellite imagery and census data, which aims to provide a theoretical basis for a comprehensive assessment of urban sustainability from a spatial-temporal perspective.

  2. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    Energy Technology Data Exchange (ETDEWEB)

    Bain, R.E.S. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Wright, J.A. [Geography and Environment, University of Southampton, Southampton (United Kingdom); Christenson, E. [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Bartram, J.K., E-mail: jbartram@unc.edu [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States)

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  3. Rural:urban inequalities in post 2015 targets and indicators for drinking-water

    International Nuclear Information System (INIS)

    Bain, R.E.S.; Wright, J.A.; Christenson, E.; Bartram, J.K.

    2014-01-01

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth – over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata)

  4. Modeling and managing urban water demand through smart meters: Benefits and challenges from current research and emerging trends

    Science.gov (United States)

    Cominola, A.; Giuliani, M.; Castelletti, A.; Piga, D.; Rizzoli, A. E.

    2015-12-01

    supporting the development of integrated procedures in the field of urban water management, as well as common actions aiding the collaboration with other sectors, as the nexus with energy demand management.

  5. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    Science.gov (United States)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  6. Storm water runoff concentration matrix for urban areas

    Science.gov (United States)

    Göbel, P.; Dierkes, C.; Coldewey, W. G.

    2007-04-01

    The infrastructure (roads, sidewalk, commercial and residential structures) added during the land development and urbanisation process is designed to collect precipitation and convey it out of the watershed, typically in existing surface water channels, such as streams and rivers. The quality of surface water, seepage water and ground water is influenced by pollutants that collect on impervious surfaces and that are carried by urban storm water runoff. Heavy metals, e.g. lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), polycyclic aromatic hydrocarbons (PAH), mineral oil hydrocarbons (MOH) and readily soluble salts in runoff, contribute to the degradation of water. An intensive literature search on the distribution and concentration of the surface-dependent runoff water has been compiled. Concentration variations of several pollutants derived from different surfaces have been averaged. More than 300 references providing about 1300 data for different pollutants culminate in a representative concentration matrix consisting of medians and extreme values. This matrix can be applied to long-term valuations and numerical modelling of storm water treatment facilities.

  7. Mechanism of Urban Water Dissipation: A Case Study in Xiamen Island

    Science.gov (United States)

    Zhou, J.; Liu, J.; Wang, Z.

    2017-12-01

    Urbanization have resulted in increasing water supply and water dissipation from water uses in urban areas, but traditional hydrological models usually ignores the dissipation from social water cycle. In order to comprehensively calculate the water vapor flux of urban natural - social binary water cycle, this study advanced the concept of urban water dissipation (UWD) to describe all form water transfer from liquid to gas in urban area. UWD units were divided according to the water consumption characteristics of the underlying surface, and experimental methods of investigation, statistics, observation and measurement were used to study the water dissipation of different units, determine the corresponding calculation method, and establish the UWD calculation model. Taking Xiamen Island as an example, the city's water dissipation in 2016 was calculated to be 850 mm and verified by water balance. The results showed that the contributions of water dissipation from the green land, building, hardened ground and water surface. The results means that water dissipation inside buildings was one main component of the total UWD. The proportion of water vapor fluxes exceeds the natural water cycle in the urban area. Social water cycle is the main part of the city's water cycle, and also the hot and focus of urban hydrology research in the future.

  8. Converting Paddy Rice Field to Urban Use Dramatically Altered the Water and Energy Balances in Southern China

    Science.gov (United States)

    Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.

    2017-12-01

    Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.

  9. THE GREEN AREAS MANAGEMENT AND THEIR ECONOMIC AND SOCIAL INTEGRATION IN THE URBAN ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    ADINA CLAUDIA NEAMTU

    2014-05-01

    Full Text Available The situation that exists at the level of the urban areas from Romania testifies a natural environment with a high risk for the health of the inhabitants as a consequence of the low level of the ecological development resulted from the lack of an integrated management of the green areas and spaces in comparison with the other components of the sustainable development. In the strategic management of the green areas and spaces having as purpose the improvement of the quality of air the priority role is held by the obtainment of necessary information in the view of adopting decision. In this context, monitoring the existent green areas represents a fundamental element that has to provide the necessary information. In correlation with this monitoring it is necessary the realization of the operative informational system for supervising the air quality constituted automatically from fix monitoring points and in a real time of the main air pollutants. The domains of sustainable development at the level of urban areas are considered to be: urban planning, the management of green areas and air quality, the management and the reduction of the sweepings, water quality, energy efficiency, clean and efficient transportation, etc.

  10. Adaption to extreme rainfall with open urban drainage system: an integrated hydrological cost-benefit analysis.

    Science.gov (United States)

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark; Arnbjerg-Nielsen, Karsten

    2013-03-01

    This paper presents a cross-disciplinary framework for assessment of climate change adaptation to increased precipitation extremes considering pluvial flood risk as well as additional environmental services provided by some of the adaptation options. The ability of adaptation alternatives to cope with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas. The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental amenity effects, an integration of open drainage basins in urban recreational areas is likely the best adaptation strategy, followed by pipe enlargement and local infiltration strategies. All three were improvements compared to the fourth strategy of no measures taken.

  11. DEVELOPING AN INTEGRATED MANAGEMENT SYSTEM FOR URBAN AND ENERGY PLANNING TOWARDS A LOW-CARBON CITY

    Science.gov (United States)

    Maeda, Hideto; Nakakubo, Toyohiko; Tokai, Akihiro

    In this study, we developed an integrated management model that supports local government to make a promising energy saving measure on a block-scale combined with urban planning. We applied the model to Osaka city and estimated CO2 emissions from the residential and commercial buildings to 2050. The urban renewal cases selected in this study included advanced multipole accumulation case, normal multipole accumulation case, and actual trend continuation case. The energy saving options introduced in each case included all-electric HP system, micro grid system, and we also set the option where the greater CO2 reduction one is selected in each block. The results showed that CO2 emission in 2050 would be reduced by 54.8-57.6% relative to the actual condition by introducing the new energy system in all cases. In addition, the amount of CO2 reduction in actual trend continuation case was highest. The major factor was that the effect of CO2 emission reductions by installing the solar power generation panel was higher than the effect by utilizing heated water mutually on the high-density blocks in terms of total urban buildings' energy consumption.

  12. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management.

    Science.gov (United States)

    Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S

    2012-01-01

    To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.

  13. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  14. Assessing the significance of climate and community factors on urban water demand

    OpenAIRE

    Md Mahmudul Haque; Prasanna Egodawatta; Ataur Rahman; Ashantha Goonetilleke

    2015-01-01

    Ensuring adequate water supply to urban areas is a challenging task due to factors such as rapid urban growth, increasing water demand and climate change. In developing a sustainable water supply system, it is important to identify the dominant water demand factors for any given water supply scheme. This paper applies principal components analysis to identify the factors that dominate residential water demand using the Blue Mountains Water Supply System in Australia as a case study. The resul...

  15. The Impact of Precipitation Deficit and Urbanization on Variations in Water Storage in the Beijing-Tianjin-Hebei Urban Agglomeration

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2017-12-01

    Full Text Available Depletion of water resources has threatened water security in the Beijing-Tianjin-Hebei urban agglomeration, China. However, the relative importance of precipitation and urbanization to water storage change has not been sufficiently studied. In this study, both terrestrial water storage (TWS and groundwater storage (GWS change in Jing-Jin-Ji from 1979 to the 2010s were investigated, based on the global land data assimilation system (GLDAS and the EartH2Observe (E2O outputs, and we used a night light index as an index of urbanization. The results showed that TWS anomaly varied in three stages: significant increase from 1981 to 1996, rapid decrease from 1996 to 2002 and increase from 2002 to the 2010s. Simultaneously, GWS has decreased with about 41.5 cm (500% of GWS in 1979. Both urbanization and precipitation change influenced urban water resource variability. Urbanization was a relatively important factor to the depletion of TWS (explains 83% and GWS (explains 94% since the 1980s and the precipitation deficit explains 72% and 64% of TWS and GWS variabilities. It indicates that urbanization coupled with precipitation deficit has been a more important factor that impacted depletion of both TWS and GWS than climate change only, in the Jing-Jin-Ji region. Moreover, we suggested that the cumulative effect should be considered when discussing the relationship between influence factors and water storage change.

  16. Urban Waters and the Middle Rio Grande/Albuquerque (New Mexico)

    Science.gov (United States)

    Middle Rio Grande/Albuquerque (New Mexico) of the Urban Waters Federal Partnership (UWFP) reconnects urban communities with their waterways by improving coordination among federal agencies and collaborating with community-led efforts.

  17. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    Science.gov (United States)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  18. Towards integrated solutions for water, energy, and land using an integrated nexus modeling framework

    Science.gov (United States)

    Wada, Y.

    2017-12-01

    Humanity has already reached or even exceeded the Earth's carrying capacity. Growing needs for food, energy and water will only exacerbate existing challenges over the next decades. Consequently, the acceptance of "business as usual" is eroding and we are being challenged to adopt new, more integrated, and more inclusive development pathways that avoid dangerous interference with the local environment and global planetary boundaries. This challenge is embodied in the United Nation's Sustainable Development Goals (SDGs), which endeavor to set a global agenda for moving towards more sustainable development strategies. To improve and sustain human welfare, it is critical that access to modern, reliable, and affordable water, energy, and food is expanded and maintained. The Integrated Solutions for Water, Energy, and Land (IS-WEL) project has been launched by IIASA, together with the Global Environment Facility (GEF) and the United Nations Industrial Development Organization (UNIDO). This project focuses on the water-energy-land nexus in the context of other major global challenges such as urbanization, environmental degradation, and equitable and sustainable futures. It develops a consistent framework for looking at the water-energy-land nexus and identify strategies for achieving the needed transformational outcomes through an advanced assessment framework. A multi-scalar approach are being developed that aims to combine global and regional integrated assessment tools with local stakeholder knowledge in order to identify robust solutions to energy, water, food, and ecosystem security in selected regions of the world. These are regions facing multiple energy, water and land use challenges and rapid demographic and economic changes, and are hardest hit by increasing climate variability and change. This project combines the global integrated assessment model (MESSAGE) with the global land (GLOBIOM) and water (Community Water Model) model respectively, and the integrated

  19. Urbanization accelerates long-term salinization and alkalinization of fresh water

    Science.gov (United States)

    Kaushal, S.; Duan, S.; Doody, T.; Haq, S.; Smith, R. M.; Newcomer Johnson, T. A.; Delaney Newcomb, K.; Gorman, J. K.; Bowman, N.; Mayer, P. M.; Wood, K. L.; Belt, K.; Stack, W.

    2017-12-01

    Human dominated land-use increases transport a major ions in streams due to anthropogenic salts and accelerated weathering. We show long-term trends in calcium, magnesium, sodium, alkalinity, and hardness over 50 years in the Baltimore metropolitan region and elsewhere. We also examine how major ion concentrations have increased significantly with impervious surface cover in watersheds across land use. Base cations show strong relationships with acid anions, which illustrates the coupling of major biogeochemical cycles in urban watersheds over time. Longitudinal patterns in major ions can also show increasing trends from headwaters to coastal waters, which suggests coupled biogeochemical cycles over space. We present new results from manipulative experiments and long-term monitoring across different urban regions regarding patterns and processes of salinization and alkalinization. Overall, our work demonstrates that urbanization dramatically increases major ions, ionic strength, and pH over decades from headwaters to coastal waters, which impacts the integrity of aquatic life, infrastructure, drinking water, and coastal ocean alkalinization.

  20. Ubiquitous Integrity via Network Integration and Parallelism—Sustaining Pedestrian/Bike Urbanism

    Directory of Open Access Journals (Sweden)

    Li-Yen Hsu

    2013-08-01

    Full Text Available Nowadays, due to the concern regarding environmental issues, establishing pedestrian/bike friendly urbanism is widely encouraged. To promote safety-assured, mobile communication environments, efficient, reliable maintenance, and information integrity need to be designed, especially in highly possibly interfered places. For busy traffic areas, regular degree-3 dedicated short range communication (DSRC networks are safety and information featured with availability, reliability, and maintainability in paths of multi-lanes. For sparsely populated areas, probes of wireless sensors are rational, especially if sensor nodes can be organized to enhance security, reliability, and flexibility. Applying alternative network topologies, such as spider-webs, generalized honeycomb tori, and cube-connected cycles, for comparing and analyzing is proposed in DSRC and cellular communications to enhance integrity in communications.

  1. An integrated approach to assess the dynamics of a peri-urban watershed influenced by wastewater irrigation

    Science.gov (United States)

    Mahesh, Jampani; Amerasinghe, Priyanie; Pavelic, Paul

    2015-04-01

    In many urban and peri-urban areas of India, wastewater is under-recognized as a major water resource. Wastewater irrigated agriculture provides direct benefits for the livelihoods and food security of many smallholder farmers. A rapidly urbanizing peri-urban micro-watershed (270 ha) in Hyderabad was assessed over a 10-year period from 2000 to 2010 for changes in land use and associated farming practices, farmer perceptions, socio-economic evaluation, land-use suitability for agriculture and challenges in potential irrigated area development towards wastewater use. This integrated approach showed that the change in the total irrigated area was marginal over the decade, whereas the built-up area within the watershed boundaries doubled and there was a distinct shift in cropping patterns from paddy rice to paragrass and leafy vegetables. Local irrigation supplies were sourced mainly from canal supplies, which accounted for three-quarters of the water used and was largely derived from wastewater. The remainder was groundwater from shallow hard-rock aquifers. Farmer perception was that the high nutrient content of the wastewater was of value, although they were also interested to pay modest amounts for additional pre-treatment. The shift in land use towards paragrass and leafy vegetables was attributed to increased profitability due to the high urban demand. The unutilised scrubland within the watershed has the potential for irrigation development, but the major constraints appear to be unavailability of labour and high land values rather than water availability. The study provides evidence to support the view that the opportunistic use of wastewater and irrigation practices, in general, will continue even under highly evolving peri-urban conditions, to meet the livelihood needs of the poor driven by market demands, as urban sprawl expands into cultivable rural hinterlands. Policy support is needed for enhanced recognition of wastewater for agriculture, with flow

  2. Pollution source localization in an urban water supply network based on dynamic water demand.

    Science.gov (United States)

    Yan, Xuesong; Zhu, Zhixin; Li, Tian

    2017-10-27

    Urban water supply networks are susceptible to intentional, accidental chemical, and biological pollution, which pose a threat to the health of consumers. In recent years, drinking-water pollution incidents have occurred frequently, seriously endangering social stability and security. The real-time monitoring for water quality can be effectively implemented by placing sensors in the water supply network. However, locating the source of pollution through the data detection obtained by water quality sensors is a challenging problem. The difficulty lies in the limited number of sensors, large number of water supply network nodes, and dynamic user demand for water, which leads the pollution source localization problem to an uncertainty, large-scale, and dynamic optimization problem. In this paper, we mainly study the dynamics of the pollution source localization problem. Previous studies of pollution source localization assume that hydraulic inputs (e.g., water demand of consumers) are known. However, because of the inherent variability of urban water demand, the problem is essentially a fluctuating dynamic problem of consumer's water demand. In this paper, the water demand is considered to be stochastic in nature and can be described using Gaussian model or autoregressive model. On this basis, an optimization algorithm is proposed based on these two dynamic water demand change models to locate the pollution source. The objective of the proposed algorithm is to find the locations and concentrations of pollution sources that meet the minimum between the analogue and detection values of the sensor. Simulation experiments were conducted using two different sizes of urban water supply network data, and the experimental results were compared with those of the standard genetic algorithm.

  3. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  4. A GIS-based Model for Urban Change and Implications for Water Quality in the Pontchartrain Basin

    Science.gov (United States)

    Carstens, D.; Amer, R. M.

    2017-12-01

    The combination of remote sensing techniques and Geographic Information Systems (GIS) to measure water quality allows researchers to monitor changes in various water quality parameters over temporal and spatial scales that are not always readily apparent from in situ measurements. Water has a distinct spectral behavior in comparison to soil, vegetation and urban, and therefore can be distinguished from surrounding environments. This study involves using remote sensing and GIS methods to map urban sprawl and its resulting influences on water quality in the Pontchartrain Basin over the last three decades. Two images of Landsat Thematic Mapper (TM) were taken in October 1985 and two images of Landsat Operational Land Imager (OLI) were taken in 2015 were atmospherically corrected and processed to map urban sprawl and influences on water quality of Pontchartrain Basin in the last three decades. To accomplish this, a normalized difference building index (NDBI) was developed for Landsat images. The NDBI was calculated from (NIR - SWIR) / (NIR + SWIR), where SWIR is the longest wavelength. The normalized difference vegetation index (NDVI), the normalized difference soil index (NDSI), and the normalized difference water index (NDWI) were also calculated for Landsat images. A GIS model was developed by integrating the NDBI, NDVI, NDSI, and NDWI, and yielded urban/non-urban/water boundary maps with 30-m resolution. Results indicate that urban areas have increased approximately from 25,643 km2 to 26,677 km2, which represents about 4.0% change from non-urban to urban in the last 3 decades. The results are in a good agreement with the U.S. Census data, which indicated that there is a 12.25% increase in population over the last 25 years in the 16 parishes of the Pontchartrain Basin. Urban changes were compared with changes of water quality parameters in PONTCHARTRAIN BASIN, which include pH, specific conductance, nitrogen, phosphorous, and dissolved oxygen. The results show that

  5. Water and Carbon Footprints for Sustainability Analysis of Urban Infrastructure - abstract

    Science.gov (United States)

    Water and transportation infrastructures define spatial distribution of urban population and economic activities. In this context, energy and water consumed per capita are tangible measures of how efficient water and transportation systems are constructed and operated. At a hig...

  6. Urban water supply infrastructure planning under predictive groundwater uncertainty: Bayesian updating and flexible design

    Science.gov (United States)

    Fletcher, S.; Strzepek, K.

    2017-12-01

    Many urban water planners face increased pressure on water supply systems from increasing demands from population and economic growth in combination with uncertain water supply, driven by short-term climate variability and long-term climate change. These uncertainties are often exacerbated in groundwater-dependent water systems due to the extra difficulty in measuring groundwater storage, recharge, and sustainable yield. Groundwater models are typically under-parameterized due to the high data requirements for calibration and limited data availability, leading to uncertainty in the models' predictions. We develop an integrated approach to urban water supply planning that combines predictive groundwater uncertainty analysis with adaptive water supply planning using multi-stage decision analysis. This allows us to compare the value of collecting additional groundwater data and reducing predictive uncertainty with the value of using water infrastructure planning that is flexible, modular, and can react quickly in response to unexpected changes in groundwater availability. We apply this approach to a case from Riyadh, Saudi Arabia. Riyadh relies on fossil groundwater aquifers and desalination for urban use. The main fossil aquifers incur minimal recharge and face depletion as a result of intense withdrawals for urban and agricultural use. As the water table declines and pumping becomes uneconomical, Riyadh will have to build new supply infrastructure, decrease demand, or increase the efficiency of its distribution system. However, poor groundwater characterization has led to severe uncertainty in aquifer parameters such as hydraulic conductivity, and therefore severe uncertainty in how the water table will respond to pumping over time and when these transitions will be necessary: the potential depletion time varies from approximately five years to 100 years. This case is an excellent candidate for flexible planning both because of its severity and the potential for

  7. Forecast Model of Urban Stagnant Water Based on Logistic Regression

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2017-01-01

    Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.

  8. The Economics of Groundwater Replenishment for Reliable Urban Water Supply

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2014-06-01

    Full Text Available This paper explores the potential economic benefits of water banking in aquifers to meet drought and emergency supplies for cities where the population is growing and changing climate has reduced the availability of water. A simplified case study based on the city of Perth, Australia was used to estimate the savings that could be achieved by water banking. Scenarios for investment in seawater desalination plants and groundwater replenishment were considered over a 20 year period of growing demand, using a Monte Carlo analysis that embedded the Markov model. An optimisation algorithm identified the minimum cost solutions that met specified criteria for supply reliability. The impact of depreciation of recharge credits was explored. The results revealed savings of more than A$1B (~US$1B or 37% to 33% of supply augmentation costs by including water banking in aquifers for 95% and 99.5% reliability of supply respectively. When the hypothetically assumed recharge credit depreciation rate was increased from 1% p.a. to 10% p.a. savings were still 33% to 31% for the same reliabilities. These preliminary results show that water banking in aquifers has potential to offer a highly attractive solution for efficiently increasing the security of urban water supplies where aquifers are suitable.

  9. A review of ion and metal pollutants in urban green water infrastructures.

    Science.gov (United States)

    Kabir, Md Imran; Daly, Edoardo; Maggi, Federico

    2014-02-01

    In urban environments, the breakdown of chemicals and pollutants, especially ions and metal compounds, can be favoured by green water infrastructures (GWIs). The overall aim of this review is to set the basis to model GWIs using deterministic approaches in contrast to empirical ones. If a better picture of chemicals and pollutant input and an improved understanding of hydrological and biogeochemical processes affecting these pollutants were known, GWIs could be designed to efficiently retain these pollutants for site-specific meteorological patterns and pollutant load. To this end, we surveyed the existing literature to retrieve a comprehensive dataset of anions and cations, and alkaline and transition metal pollutants incoming to urban environments. Based on this survey, we assessed the pollution load and ecological risk indexes for metals. The existing literature was then surveyed to review the metal retention efficiency of GWIs, and possible biogeochemical processes related to inorganic metal compounds were proposed that could be integrated in biogeochemical models of GWIs. © 2013.

  10. Urban water infrastructure asset management - a structured approach in four water utilities.

    Science.gov (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C

    2012-01-01

    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  11. Leveraging Spatial Data to Assess Where Sewers Leak and Impinge on Urban Water Quality

    Science.gov (United States)

    Holden, P. A.; Roehrdanz, P.; Lee, D. G.; Feraud, M.; Maier, M.; Means, J. C.; Snyder, S.

    2017-12-01

    In the modern urban water environment (UWE), engineered systems provide wastewater collection, treatment, and reuse; stormwater and graywater management; and potable water treatment, distribution and conservation. Underpinning such systems are physical, private and public, infrastructures whose integrities impinge on major goals of protecting groundwater and surface water resources, managing flooding, and securing safe drinking water. Here we study sanitary sewers, i.e. the main pipes in wastewater collection systems that improve public health by reducing pathogen exposure, and that afford reclaiming water for beneficial reuse. We ask: what is the relationship between sanitary sewer integrity and nearby water quality? Research methods include acquiring spatially defined sewer metadata that are analyzed using a published pipe leakage algorithm with variables of age, depth, materials of construction, length, diameter, slope, and nature of overburden. By executing the algorithm within a geographical information system (GIS), coupled with relating leakage probabilities to shallow groundwater table proximities—also digitally assembled, from well depth data—maps of wastewater exfiltration scores were produced for a city. Field sampling shallow groundwater allowed assessing concentrations of wastewater indicator compounds including personal care products and pharmaceuticals (PCPPs), and showing positive relationships between wastewater exfiltration scores and tryptophan-like fluorescence (TLF), reactive nitrogen species, an artificial sweetener acesulfame, and a stable isotope of oxygen (δ18O). The approach is extended to surface waters, where exfiltrating wastewater may transport from leaking sanitary sewers through the unsaturated zone to nearby storm drains or to storm drains that are submerged in contaminated groundwater. Spatially assessing sewer interactions within the UWE, as such, could aid urban infrastructure management and investment.

  12. Integral sustainability as a basic (fundamental requirement for (urban innovation

    Directory of Open Access Journals (Sweden)

    Lalošević Marija

    2013-01-01

    Full Text Available The authors are of the opinion that there is no alternative to sustainable development, and discuss on thesis that sustainability is now a key driver of innovation, but also its essential requirement. This paper discusses the sustainability as a concept that has, above all, the environmental, economic, social and cultural dimension. The aim of the study was to understand sustainability as a fundamental development principle and key benchmark in organisation and development of cities in the future. This paper explores the meaning of innovation processes, sustainability and innovation in urban planning, innovative approaches to sustainable urban development, initiatives in urban sustainability, the key elements of the implementation, modalities of providing financial resources for sustainable projects of public interest, as well as identification of areas suitable for innovation in urban planning, relying on the good practices implemented through multi-sector sustainable projects. In a broader sense, the objective of this paper is to emphasize the need: to promote concept of human dimension in urban development, to direct continual urban development towards 'green' orientation, to implement innovative and smart technologies in the management of modern cities; to promote public participation and multi-sectoral policies in urban development, and to encourage and stimulate sustainable (urban innovation.

  13. Integrating mobility and urban development agendas: a manifesto

    NARCIS (Netherlands)

    Bertolini, L.

    2012-01-01

    Contemporary urban lifestyles and business practices are increasingly dependent on mobility. At the same time, the negative impacts of mobility on natural and social environments are growing dramatically, as is the public outcry for their reversal. Urban planners are faced with a difficult dilemma:

  14. Effect of the settlement of sediments on water infiltration in two urban infiltration basins

    OpenAIRE

    LASSABATERE, Laurent; ANGULO JARAMILLO, R; GOUTALAND, David; LETELLIER, Laetitia; GAUDET, JP; WINIARSKI, Thierry; DELOLME, C

    2010-01-01

    The sealing of surfaces in urban areas makes storm water management compulsory. The suspended solids from surface runoff water accumulate in infiltration basins and may impact on water infiltration. This paper describes a study of the effect of the settlement of sedimentary layers on the water infiltration capacity of two urban infiltrations basins. In situ water infiltration experiments were performed (1) to quantify the effect of sediment on water infiltration at local scale and (2) to deri...

  15. Ag-to-urban water transfer in California: Win-win solutions

    International Nuclear Information System (INIS)

    Jacobi, L.A.; Carley, R.L.

    1993-01-01

    The current long-term drought in California has generated interest in water transfers. Water transfers from farms to the cities are widely viewed as the next major source of supply to urban California. Ag-to-Urban permanent water transfers may have negative consequences to the agricultural sector and to the environment. This paper presents agricultural water use statistics, discusses sources of water for transfer, and suggests sources of water for win-win transfers

  16. Baseline assessment and best practices in urban water cycle services in the city of Hamburg

    OpenAIRE

    van Leeuwen, C.J.; Bertram, N.P.

    2013-01-01

    Megatrends (e.g. demographic changes, water scarcity, water pollution and climate change) pose urgent water challenges in cities. This is highlighted in the European Union (EU) project TRUST (Transitions to the Urban Water Services of Tomorrow; www.trust-i.net/index.php). The main objective of TRUST is to support water authorities and utilities in Europe in formulating and implementing appropriate urban water policies as well as new technology and management solutions in order to enhance urba...

  17. The Metacity: A Conceptual Framework for Integrating Ecology and Urban Design

    Directory of Open Access Journals (Sweden)

    S. T. A. Pickett

    2011-10-01

    Full Text Available We introduce the term metacity as a conceptual framework that can be shared by ecologists and designers and applied across the wide variety of urban habitats found around the world. While the term metacity was introduced by UN-HABITAT to designate hyper cities of over twenty million people, for us it is not limited to large urban agglomerations, but rather refers to the proliferation of new forms of urbanization, each with distinct ecological and social attributes. These various urban configurations when combined with new digital sensing, communication and social networking technologies constitute a virtual meta-infrastructure, present in all cities today. This new metacity has the potential to integrate new activist forms of ecological and urban design research and practice in making the transition from sanitary to sustainable city models globally. The city of Baltimore, Maryland will be used both as a site to illustrate these recent urban trends, and also as an example of the integration of ecology and urban design pursued by the two authors over the past seven years [1,2]. Metacity theory is drawn from both an architectural analysis of contemporary forms of urbanism, new forms of digital monitoring and communication technologies, as well as metapopulation and metacommunity theories in ecology. We seek to provide tools and lessons from our experiences for realizing an integrated metacity approach to achieving social sustainability and ecological resilience on an increasingly urbanized planet.

  18. Modification of Heat-Related Mortality in an Elderly Urban Population by Vegetation (Urban Green) and Proximity to Water (Urban Blue): Evidence from Lisbon, Portugal.

    Science.gov (United States)

    Burkart, Katrin; Meier, Fred; Schneider, Alexandra; Breitner, Susanne; Canário, Paulo; Alcoforado, Maria João; Scherer, Dieter; Endlicher, Wilfried

    2016-07-01

    Urban populations are highly vulnerable to the adverse effects of heat, with heat-related mortality showing intra-urban variations that are likely due to differences in urban characteristics and socioeconomic status. We investigated the influence of urban green and urban blue, that is, urban vegetation and water bodies, on heat-related excess mortality in the elderly > 65 years old in Lisbon, Portugal, between 1998 and 2008. We used remotely sensed data and geographic information to determine the amount of urban vegetation and the distance to bodies of water (the Atlantic Ocean and the Tagus Estuary). Poisson generalized additive models were fitted, allowing for the interaction between equivalent temperature [universal thermal climate index (UTCI)] and quartiles of urban greenness [classified using the Normalized Difference Vegetation Index (NDVI)] and proximity to water (≤ 4 km vs. > 4 km), while adjusting for potential confounders. The association between mortality and a 1°C increase in UTCI above the 99th percentile (24.8°C) was stronger for areas in the lowest NDVI quartile (14.7% higher; 95% CI: 1.9, 17.5%) than for areas in the highest quartile (3.0%; 95% CI: 2.0, 4.0%). In areas > 4 km from water, a 1°C increase in UTCI above the 99th percentile was associated with a 7.1% increase in mortality (95% CI: 6.2, 8.1%), whereas in areas ≤ 4 km from water, the estimated increase in mortality was only 2.1% (95% CI: 1.2, 3.0%). Urban green and blue appeared to have a mitigating effect on heat-related mortality in the elderly population in Lisbon. Increasing the amount of vegetation may be a good strategy to counteract the adverse effects of heat in urban areas. Our findings also suggest potential benefits of urban blue that may be present several kilometers from a body of water. Burkart K, Meier F, Schneider A, Breitner S, Canário P, Alcoforado MJ, Scherer D, Endlicher W. 2016. Modification of heat-related mortality in an elderly urban population by

  19. Water footprint of Jing-Jin-Ji urban agglomeration in China

    Science.gov (United States)

    Zhao, D.

    2017-12-01

    A rapidly expanding economy and increasing water demand for economic production is placing enormous stress on water quantity and aquatic environment in Northern China, especially the so-called Jing-Jin-Ji (Beijing-Tianjin-Hebei) urban agglomeration. Several studies have focused on energy consumption, air pollution, CO2 emissions and regional blue water footprint (WF) following release of the Jing-Jin-Ji Integration Strategy by the China government. However, a comprehensive assessment distinguishing blue, green and grey WF amongst different industrial sectors, ascertaining how WF transfers internally and beyond the region and final demand consumption is not available. In this study, we quantified the WF and virtual water flow on a sectoral basis for the year 2010 through coupling the multi-regional input-output model (MRIO) with WF assessment. The results showed that Beijing and Tianjin are net importers of green, blue and grey water from Hebei and other provinces to support their needs. Conversely, Hebei exports all WF colors to Beijing, Tianjin and other provinces in China, more than 60% of WF is transferred as virtual water. For the overall Jing-Jin-Ji region a small amount of blue water (2,086 million m3) is exported, but huge amounts of green water (15,573 million m3) and grey water (30,620 million m3) are outsourced. A "Virtual Water Strategy" is one measure which could alleviate water stress at the regional scale, with consideration of financial compensation from water receiving regions made to water supplying regions for achieving water management targets. We also found that physical water transfer to Jing-Jin-Ji could not balance virtual blue water exports. Our research suggests that a continuation of an export-based economic development model will worsen Hebei's water stress. Reducing the dependency of Hebei's sectoral economy on export of water intensive and low value added agricultural products may be one strategy to reduce the pressure on regional water

  20. A Three-Year Journey: Lessons Learned from Integrating Teacher Preparation and Urban Studies

    Science.gov (United States)

    Yontz, Brian D.

    2012-01-01

    This narrative outlines the process of how an independent liberal arts college integrated coursework and learning experiences focused on urban school teacher preparation with an existing university program in Urban Studies. Programmatic changes and additions to teacher education programs at independent liberal arts colleges are often very…

  1. Relation Decomposing between Urbanization and Consumption of Water-Energy Sources

    Science.gov (United States)

    Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.

    2017-12-01

    Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.

  2. Integral Pressurized Water Reactor Simulator Manual

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides detailed explanations of the theoretical concepts that the simulator users have to know to gain a comprehensive understanding of the physics and technology of integral pressurized water reactors. It provides explanations of each of the simulator screens and various controls that a user can monitor and modify. A complete description of all the simulator features is also provided. A detailed set of exercises is provided in the Exercise Handbook accompanying this publication.

  3. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  4. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning.

    Science.gov (United States)

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  5. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    Directory of Open Access Journals (Sweden)

    Jiajie Cao

    2017-01-01

    Full Text Available As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and poor water quality. In addition, urban water landscapes hardly provided ecological functions given excessive construction. Accordingly, a proposition to connect tradition with modernism in the improvement and innovation of urban water landscape planning was put forward, and further, the way to achieve it was explored. By taking Qinhu Wetland Park as a case, the principles and specific planning methods on macro- and microperspectives were discussed to guide the development of urban landscape in eastern China.

  6. Best urban water management practices to prevent waterborne infectious diseases under current and future scenarios

    NARCIS (Netherlands)

    de Man-van der Vliet, H.

    2014-01-01

    Water in urban areas may pose a public health risk when people are exposed to urban water, because it may contain pathogens. These pathogens may originate from fecal bird droppings, runoff from paved surfaces (including e.g. dog feces), growth of micro-organisms in water and in some cases discharges

  7. Assessing impact of urbanization on river water quality in the Pearl River Delta Economic Zone, China.

    Science.gov (United States)

    Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu

    2006-09-01

    The Pearl River Delta Economic Zone is one of the most developed regions in China. It has been undergoing a rapid urbanization since the reformation and opening of China in 1978. This process plays a significant impact on the urban environment, particularly river water quality. The main goal of this present study is to assess the impact of urban activities especially urbanization on river water quality for the study area. Some Landsat TM images from 2000 were used to map the areas for different pollution levels of urban river sections for the study area. In addition, an improved equalized synthetic pollution index method was utilized to assess the field analytical results. The results indicate that there is a positive correlation between the rapidity of urbanization and the pollution levels of urban river water. Compared to the rural river water, urban river water was polluted more seriously. During the urban development process, urbanization and urban activities had a significant negative impact on the river water quality.

  8. Ontology-based data integration from heterogeneous urban systems : A knowledge representation framework for smart cities

    NARCIS (Netherlands)

    Psyllidis, A.

    2015-01-01

    This paper presents a novel knowledge representation framework for smart city planning and management that enables the semantic integration of heterogeneous urban data from diverse sources. Currently, the combination of information across city agencies is cumbersome, as the increasingly available

  9. Integrated approaches to long-term studies of urban ecological systems

    Science.gov (United States)

    Nancy B. Grimm; J. Morgan Grove; Steward T.A. Pickett; Charles L. Redman

    2000-01-01

    Urban ecological systems present multiple challenges to ecologists—pervasive human impact and extreme heterogeneity of cities, and the need to integrate social and ecological approaches, concepts, and theory.

  10. Water hammer characteristics of integral pressurized water reactor primary loop

    International Nuclear Information System (INIS)

    Zuo, Qiaolin; Qiu, Suizheng; Lu, Wei; Tian, Wenxi; Su, Guanghui; Xiao, Zejun

    2013-01-01

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions

  11. Water hammer characteristics of integral pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Qiaolin [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Lu, Wei; Tian, Wenxi; Su, Guanghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Xiao, Zejun [Nuclear Power Institute of China, Chengdu, Sichuan 610041 (China)

    2013-08-15

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions.

  12. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  13. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  14. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  15. A Web-based Tool for Transparent, Collaborative Urban Water System Planning for Monterrey, Mexico

    Science.gov (United States)

    Rheinheimer, D. E.; Medellin-Azuara, J.; Garza Díaz, L. E.; Ramírez, A. I.

    2017-12-01

    Recent rapid advances in web technologies and cloud computing show great promise for facilitating collaboration and transparency in water planning efforts. Water resources planning is increasingly in the context of a rapidly urbanizing world, particularly in developing countries. In such countries with democratic traditions, the degree of transparency and collaboration in water planning can mean the difference between success and failure of water planning efforts. This is exemplified in the city of Monterrey, Mexico, where an effort to build a new long-distance aqueduct to increase water supply to the city dramatically failed due to lack of transparency and top-down planning. To help address, we used a new, web-based water system modeling platform, called OpenAgua, to develop a prototype decision support system for water planning in Monterrey. OpenAgua is designed to promote transparency and collaboration, as well as provide strong, cloud-based, water system modeling capabilities. We developed and assessed five water management options intended to increase water supply yield and/or reliability, a dominant water management concern in Latin America generally: 1) a new long-distance source (the previously-rejected project), 2) a new nearby reservoir, 3) expansion/re-operation of an existing major canal, 4) desalination, and 5) industrial water reuse. Using the integrated modeling and analytic capabilities of OpenAgua, and some customization, we assessed the performance of these options for water supply yield and reliability to help identify the most promising ones. In presenting this assessment, we demonstrate the viability of using online, cloud-based modeling systems for improving transparency and collaboration in decision making, reducing the gap between citizens, policy makers and water managers, and future directions.

  16. Developing Intelligent System Dynamic Management Instruments on Water-Food-Energy Nexus in Response to Urbanization

    Science.gov (United States)

    Tsai, W. P.; Chang, F. J.; Lur, H. S.; Fan, C. H.; Hu, M. C.; Huang, T. L.

    2016-12-01

    Water, food and energy are the most essential natural resources needed to sustain life. Water-Food-Energy Nexus (WFE Nexus) has nowadays caught global attention upon natural resources scarcity and their interdependency. In the past decades, Taiwan's integrative development has undergone drastic changes due to population growth, urbanization and excessive utilization of natural resources. The research intends to carry out interdisciplinary studies on WFE Nexus based on data collection and analysis as well as technology innovation, with a mission to develop a comprehensive solution to configure the synergistic utilization of WFE resources in an equal and secure manner for building intelligent dynamic green cities. This study aims to establish the WFE Nexus through interdisciplinary research. This study will probe the appropriate and secure resources distribution and coopetition relationship by applying and developing techniques of artificial intelligence, system dynamics, life cycle assessment, and synergy management under data mining, system analysis and scenario analysis. The issues of synergy effects, economic benefits and sustainable social development will be evaluated as well. First, we will apply the system dynamics to identify the interdependency indicators of WFE Nexus in response to urbanization and build the dynamic relationship among food production, irrigation water resource and energy consumption. Then, we conduct comparative studies of WFE Nexus between the urbanization and the un-urbanization area (basin) to provide a referential guide for optimal resource-policy nexus management. We expect to the proposed solutions can help achieve the main goals of the research, which is the promotion of human well-being and moving toward sustainable green economy and prosperous society.

  17. Treatability of a Highly-Impaired, Saline Surface Water for Potential Urban Water Use

    Directory of Open Access Journals (Sweden)

    Frederick Pontius

    2018-03-01

    Full Text Available As freshwater sources of drinking water become limited, cities and urban areas must consider higher-salinity waters as potential sources of drinking water. The Salton Sea in the Imperial Valley of California has a very high salinity (43 ppt, total dissolved solids (70,000 mg/L, and color (1440 CU. Future wetlands and habitat restoration will have significant ecological benefits, but salinity levels will remain elevated. High salinity eutrophic waters, such as the Salton Sea, are difficult to treat, yet more desirable sources of drinking water are limited. The treatability of Salton Sea water for potential urban water use was evaluated here. Coagulation-sedimentation using aluminum chlorohydrate, ferric chloride, and alum proved to be relatively ineffective for lowering turbidity, with no clear optimum dose for any of the coagulants tested. Alum was most effective for color removal (28 percent at a dose of 40 mg/L. Turbidity was removed effectively with 0.45 μm and 0.1 μm microfiltration. Bench tests of Salton Sea water using sea water reverse osmosis (SWRO achieved initial contaminant rejections of 99 percent salinity, 97.7 percent conductivity, 98.6 percent total dissolved solids, 98.7 percent chloride, 65 percent sulfate, and 99.3 percent turbidity.

  18. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Christenson, Elizabeth; Bain, Robert [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States); Wright, Jim [Geography and Environment, University of Southampton, Southampton (United Kingdom); Aondoakaa, Stephen [Geography and Environmental Management, University of Abuja, Abuja (Nigeria); School of Geography, University of Nottingham, Nottingham (United Kingdom); Hossain, Rifat [World Health Organization, Geneva (Switzerland); Bartram, Jamie, E-mail: jbartram@unc.edu [The Water Institute at UNC, University of North Carolina at Chapel Hill, NC (United States)

    2014-08-15

    Reducing inequalities is a priority from a human rights perspective and in water and public health initiatives. There are periodic calls for differential national and global standards for rural and urban areas, often justified by the suggestion that, for a given water source type, safety is worse in urban areas. For instance, initially proposed post-2015 water targets included classifying urban but not rural protected dug wells as unimproved. The objectives of this study were to: (i) examine the influence of urban extent definition on water safety in Nigeria, (ii) compare the frequency of thermotolerant coliform (TTC) contamination and prevalence of sanitary risks between rural and urban water sources of a given type and (iii) investigate differences in exposure to contaminated drinking-water in rural and urban areas. We use spatially referenced data from a Nigerian national randomized sample survey of five improved water source types to assess the extent of any disparities in urban–rural safety. We combined the survey data on TTC and sanitary risk with map layers depicting urban versus rural areas according to eight urban definitions. When examining water safety separately for each improved source type, we found no significant urban–rural differences in TTC contamination and sanitary risk for groundwater sources (boreholes and protected dug wells) and inconclusive findings for piped water and stored water. However, when improved and unimproved source types were combined, TTC contamination was 1.6 to 2.3 times more likely in rural compared to urban water sources depending on the urban definition. Our results suggest that different targets for urban and rural water safety are not justified and that rural dwellers are more exposed to unsafe water than urban dwellers. Additionally, urban–rural analyses should assess multiple definitions or indicators of urban to assess robustness of findings and to characterize a gradient that disaggregates the urban

  19. Examining the influence of urban definition when assessing relative safety of drinking-water in Nigeria

    International Nuclear Information System (INIS)

    Christenson, Elizabeth; Bain, Robert; Wright, Jim; Aondoakaa, Stephen; Hossain, Rifat; Bartram, Jamie

    2014-01-01

    Reducing inequalities is a priority from a human rights perspective and in water and public health initiatives. There are periodic calls for differential national and global standards for rural and urban areas, often justified by the suggestion that, for a given water source type, safety is worse in urban areas. For instance, initially proposed post-2015 water targets included classifying urban but not rural protected dug wells as unimproved. The objectives of this study were to: (i) examine the influence of urban extent definition on water safety in Nigeria, (ii) compare the frequency of thermotolerant coliform (TTC) contamination and prevalence of sanitary risks between rural and urban water sources of a given type and (iii) investigate differences in exposure to contaminated drinking-water in rural and urban areas. We use spatially referenced data from a Nigerian national randomized sample survey of five improved water source types to assess the extent of any disparities in urban–rural safety. We combined the survey data on TTC and sanitary risk with map layers depicting urban versus rural areas according to eight urban definitions. When examining water safety separately for each improved source type, we found no significant urban–rural differences in TTC contamination and sanitary risk for groundwater sources (boreholes and protected dug wells) and inconclusive findings for piped water and stored water. However, when improved and unimproved source types were combined, TTC contamination was 1.6 to 2.3 times more likely in rural compared to urban water sources depending on the urban definition. Our results suggest that different targets for urban and rural water safety are not justified and that rural dwellers are more exposed to unsafe water than urban dwellers. Additionally, urban–rural analyses should assess multiple definitions or indicators of urban to assess robustness of findings and to characterize a gradient that disaggregates the urban

  20. Spatio-temporal variation in stream water chemistry in a tropical urban watershed

    Science.gov (United States)

    A. Ramirez; K.G. Rosas; A.E. Lugo; O.M. Ramos-Gonzalez

    2014-01-01

    Urban activities and related infrastructure alter the natural patterns of stream physical and chemical conditions. According to the Urban Stream Syndrome, streams draining urban landscapes are characterized by high concentrations of nutrients and ions, and might have elevated water temperatures and variable oxygen concentrations. Here, we report temporal and spatial...

  1. The City Blueprint Approach: Urban Water Management and Governance in Cities in the U.S.

    Science.gov (United States)

    Feingold, Daniel; Koop, Stef; van Leeuwen, Kees

    2018-01-01

    In this paper, we assess the challenges of water, waste and climate change in six cities across the U.S.: New York City, Boston, Milwaukee, Phoenix, Portland and Los Angeles. We apply the City Blueprint ® Approach which consists of three indicator assessments: (1) the Trends and Pressures Framework (TPF), (2) the City Blueprint Framework (CBF) and (3) the water Governance Capacity Framework (GCF). The TPF summarizes the main social, environmental and financial pressures that may impede water management. The CBF provides an integrated overview of the management performances within the urban watercycle. Finally, the GCF provides a framework to identify key barriers and opportunities to develop governance capacity. The GCF has only been applied in NYC. Results show that all cities face pressures from heat risk. The management performances regarding resource efficiency and resource recovery from wastewater and solid waste show considerable room for improvement. Moreover, stormwater separation, infrastructure maintenance and green space require improvement in order to achieve a resilient urban watercycle. Finally, in New York City, the GCF results show that learning through smart monitoring, evaluation and cross-stakeholder learning is a limiting condition that needs to be addressed. We conclude that the City Blueprint Approach has large potential to assist cities in their strategic planning and exchange of knowledge, experiences and lessons. Because the methodology is well-structured, easy to understand, and concise, it may bridge the gap between science, policy and practice. It could therefore enable other cities to address their challenges of water, waste and climate change.

  2. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  3. Improving Urban Water Environment in Eastern China by Blending Traditional with Modern Landscape Planning

    OpenAIRE

    Cao, Jiajie; Yu, Junjun; Tian, Yuan; Zhao, Cai; Wang, Hao

    2017-01-01

    As a fundamental part of greenspace, urban water landscape contributes greatly to the ecological system and at the same time supplies a leisure area for residents. The paper did an analysis on the number of aquatic plant communities, the form of water spaces, and water quality condition by investigating 135 quadrats (90 at amphibious boundary and the land, 45 in the water) in 45 transects of 15 urban and suburban parks. We found that water spaces had monotonous forms with low biodiversity and...

  4. Urban Water and Riverine Quality: Participatory Science in Singapore

    Science.gov (United States)

    Higgitt, D. L.

    2011-12-01

    Singapore is a highly urbanised environment experiencing tropical monsoon hydrological regimes. A heavily engineered fluvial system has been developed over time to provide efficient drainage and reduce the area subject to flood risk. However, recent interest in ecosystem-based approaches to river management and the enhancement of the aesthetic and ecological 'quality' of riverine landscape, coupled with concerns about climate change, has challenged the prevailing engineering view. This is reflected in the Public Utility Board (PUB) ABC Waters Programme, which also seeks to develop community interest in riverine environments and engagement with water-related concerns. As part of a programme developing participatory GIS (PGIS) with school and university students, we have undertaken applications involving participant observation, reporting and analysis of water quality data and habitat quality based on a simplified version of the UK Environment Agency's River Habitat Survey. From an educational perspective, there is evidence that these PGIS initiatives raise environmental awareness and enhance geospatial thinking, particularly in relation to catchment management concepts. The extent to which participant-derived data can contribute to a citizen science of urban water quality and hence deliver some aspects of the community engagement sought after by the authorities, is a topic of debate.

  5. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    Science.gov (United States)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  6. Integration of aerial oblique imagery and terrestrial imagery for optimized 3D modeling in urban areas

    Science.gov (United States)

    Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric

    2018-05-01

    Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.

  7. The modeling of response indicators of integrated water resources ...

    African Journals Online (AJOL)

    models were used to model and predict the relationship between water resources mobilization WRM and response variables in the ... to the fast growing demand of urban and rural populations ... Meteorological Organization (WMO). They fall.

  8. Climate forcing and infectious disease transmission in urban landscapes: integrating demographic and socioeconomic heterogeneity.

    Science.gov (United States)

    Santos-Vega, Mauricio; Martinez, Pamela P; Pascual, Mercedes

    2016-10-01

    Urbanization and climate change are the two major environmental challenges of the 21st century. The dramatic expansion of cities around the world creates new conditions for the spread, surveillance, and control of infectious diseases. In particular, urban growth generates pronounced spatial heterogeneity within cities, which can modulate the effect of climate factors at local spatial scales in large urban environments. Importantly, the interaction between environmental forcing and socioeconomic heterogeneity at local scales remains an open area in infectious disease dynamics, especially for urban landscapes of the developing world. A quantitative and conceptual framework on urban health with a focus on infectious diseases would benefit from integrating aspects of climate forcing, population density, and level of wealth. In this paper, we review what is known about these drivers acting independently and jointly on urban infectious diseases; we then outline elements that are missing and would contribute to building such a framework. © 2016 New York Academy of Sciences.

  9. SWIM (Soil and Water Integrated Model)

    Energy Technology Data Exchange (ETDEWEB)

    Krysanova, V; Wechsung, F; Arnold, J; Srinivasan, R; Williams, J

    2000-12-01

    The model SWIM (Soil and Water Integrated Model) was developed in order to provide a comprehensive GIS-based tool for hydrological and water quality modelling in mesoscale and large river basins (from 100 to 10,000 km{sup 2}), which can be parameterised using regionally available information. The model was developed for the use mainly in Europe and temperate zone, though its application in other regions is possible as well. SWIM is based on two previously developed tools - SWAT and MATSALU (see more explanations in section 1.1). The model integrates hydrology, vegetation, erosion, and nutrient dynamics at the watershed scale. SWIM has a three-level disaggregation scheme 'basin - sub-basins - hydrotopes' and is coupled to the Geographic Information System GRASS (GRASS, 1993). A robust approach is suggested for the nitrogen and phosphorus modelling in mesoscale watersheds. SWIM runs under the UNIX environment. Model test and validation were performed sequentially for hydrology, crop growth, nitrogen and erosion in a number of mesoscale watersheds in the German part of the Elbe drainage basin. A comprehensive scheme of spatial disaggregation into sub-basins and hydrotopes combined with reasonable restriction on a sub-basin area allows performing the assessment of water resources and water quality with SWIM in mesoscale river basins. The modest data requirements represent an important advantage of the model. Direct connection to land use and climate data provides a possibility to use the model for analysis of climate change and land use change impacts on hydrology, agricultural production, and water quality. (orig.)

  10. Stormwater management impacts on urban stream water quality and quantity during and after development in Clarksburg, MD

    Science.gov (United States)

    Loperfido, J. V.; Noe, G. B.; Jarnagin, S.; Mohamoud, Y. M.; Van Ness, K.; Hogan, D. M.

    2012-12-01

    Urbanization and urban land use leads to degradation of local stream habitat and 'urban stream syndrome.' Best Management Practices (BMPs) are often used in an attempt to mitigate the impact of urban land use on stream water quality and quantity. Traditional development has employed stormwater BMPs that were placed in a centralized manner located either in the stream channel or near the riparian zone to treat stormwater runoff from large drainage areas; however, urban streams have largely remained impaired. Recently, distributed placement of BMPs throughout the landscape has been implemented in an attempt to detain, treat, and infiltrate stormwater runoff from smaller drainage areas near its source. Despite increasing implementation of distributed BMPs, little has been reported on the catchment-scale (1-10 km^2) performance of distributed BMPs and how they compare to centralized BMPs. The Clarksburg Special Protection Area (CSPA), located in the Washington, DC exurbs within the larger Chesapeake Bay watershed, is undergoing rapid urbanization and employs distributed BMPs on the landscape that treat small drainage areas with the goal of preserving high-quality stream resources in the area. In addition, the presence of a nearby traditionally developed (centralized BMPs) catchment and an undeveloped forested catchment makes the CSPA an ideal setting to understand how the best available stormwater management technology implemented during and after development affects stream water quality and quantity through a comparative watershed analysis. The Clarksburg Integrated Monitoring Partnership is a consortium of local and federal agencies and universities that conducts research in the CSPA including: monitoring of stream water quality, geomorphology, and biology; analysis of stream hydrological and water quality data; and GIS mapping and analysis of land cover, elevation change and BMP implementation data. Here, the impacts of urbanization on stream water quantity

  11. Mobility of trace metals associated with urban particles exposed to natural waters of various salinities from the Gironde Estuary, France

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Joerg; Blanc, Gerard [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Norra, Stefan [Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry; Klein, Daniel [Bordeaux Univ., Talence (France). UMR 5805 EPOC; Karlsruhe Univ. (Germany). Inst. of Mineralogy and Geochemistry

    2009-08-15

    are preliminary for Bordeaux and may bear important uncertainties due to several assumptions and extrapolation to the annual timescale, the orders of magnitude are probably realistic. Thus, these fluxes are not negligible and need (1) further and improved observation and (2) to be taken into account in both mass budgets at the estuary scale and emission control strategies. Recommendations and perspectives: New approaches combining geochemical and mineralogical characterisation of single urban particle types help identify their role in metal emission into the environment and develop potential limitation strategies (e.g. the ban of priority pollutants in tyres, etc.). Therefore, prioritisation of urban particle sources in terms of fluxes, reactivity of associated pollutants and feasibility of emission reduction is strongly recommended. Coastal cities should integrate extractions of urban particles with saline water into their environmental monitoring programs owing to the fact that saline conditions might cause efficient desorption of potentially toxic trace elements. In continental cities, winter salting is likely to induce intense mobilisation of metals from road sediments that may then reach the aquatic environment, instead of being retained in runoff decantation reservoirs followed by subsequent disposal/treatment with road sediments. However, also particles from continental cities reach coastal waters via rivers and have to be assessed with respect to trace metal desorption under various salinities. There is a strong need for the quantification of fluxes and for the identification of carrier phases and reactivity of metals exported from urban areas to aquatic systems. (orig.)

  12. Forecasting in an integrated surface water-ground water system: The Big Cypress Basin, South Florida

    Science.gov (United States)

    Butts, M. B.; Feng, K.; Klinting, A.; Stewart, K.; Nath, A.; Manning, P.; Hazlett, T.; Jacobsen, T.

    2009-04-01

    The South Florida Water Management District (SFWMD) manages and protects the state's water resources on behalf of 7.5 million South Floridians and is the lead agency in restoring America's Everglades - the largest environmental restoration project in US history. Many of the projects to restore and protect the Everglades ecosystem are part of the Comprehensive Everglades Restoration Plan (CERP). The region has a unique hydrological regime, with close connection between surface water and groundwater, and a complex managed drainage network with many structures. Added to the physical complexity are the conflicting needs of the ecosystem for protection and restoration, versus the substantial urban development with the accompanying water supply, water quality and flood control issues. In this paper a novel forecasting and real-time modelling system is presented for the Big Cypress Basin. The Big Cypress Basin includes 272 km of primary canals and 46 water control structures throughout the area that provide limited levels of flood protection, as well as water supply and environmental quality management. This system is linked to the South Florida Water Management District's extensive real-time (SCADA) data monitoring and collection system. Novel aspects of this system include the use of a fully distributed and integrated modeling approach and a new filter-based updating approach for accurately forecasting river levels. Because of the interaction between surface- and groundwater a fully integrated forecast modeling approach is required. Indeed, results for the Tropical Storm Fay in 2008, the groundwater levels show an extremely rapid response to heavy rainfall. Analysis of this storm also shows that updating levels in the river system can have a direct impact on groundwater levels.

  13. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    Science.gov (United States)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Water Quality and Environmental Flow Management in Rapidly Urbanizing Shenzhen Estuary Area, China

    Science.gov (United States)

    Qin, H.; Su, Q.

    2011-12-01

    Shenzhen estuary is located in a rapidly urbanizing coastal region of Southeast China, and forms the administrative border between mainland China and Hong Kong. It receives the waters of the Shenzhen River, where it enters the Deep Bay. The estuary has great ecological importance with the internationally recognized mangrove wetlands, which provides a habitat for some rare and endangered waterfowl and migratory birds.Water quality in the esturay has deteriorated not only due to increasing wastewater discharges from domestic and industrial sources, but also as a consequence of decreasing base environmental flow during rapid urbanization in the Shenzhen River catchment since 1980s. Measures to improve water quality of the estuary include not only reducing pollutant inputs by intercepting wastewater, but also increasing environmental flow by reusing reclaimed wastewater or withdrawing nearshore seawater into the river. However, salinity alternation due to flow increase is deemed to have impacts on the mangrove wetland ecosystem. In this paper, Environmental Fluid Dynamics Code (EFDC) is used to simulate hydrodynamics, salinity, and water quality condition in the Shenzhen estuary. After calibration and validation, the model is used to evaluate effects of various control measures on water quality improvement and salinity alteration in the estuary. The results indicate that implementing different measures independently does not reach the goals of water quality improvement; furthermore, increasing environmental flow by importing nearshore seawater may greatly increase the salinity in the Shenzhen River, destroy the fresh ecosystem of the river and have non-negligible impacts on the mangrove wetland ecosystem. Based on the effectiveness and impacts of the measures, an integrated measure, which combine pollutant loads reduction and environmental flow increase by reusing reclaimed wastewater, is proposed to achieve water environmental sustainability in the study area.

  15. Impact of urbanization on inflows and water quality of rawal lake

    International Nuclear Information System (INIS)

    Awais, M.; Afzal, M.

    2016-01-01

    Two phenomena playing important role in affecting water resources all over the world are: urbanization and climate changes. Urban and peri-urban water bodies are very vulnerable to these phenomena in terms of quality and quantity protection. This study was aimed to perceive the impact of ever-increasing urbanization on water quality in the catchment area of Rawal Lake. Rawal Lake supplies water for domestic use to Rawalpindi city and Cantonment area. The water was found biologically unfit for human consumption due to total and faecal coliforms counts higher than WHO limits. Similarly, turbidity and calcium was more than WHO standards. There should be detailed study on climate change parallel to urbanization in the Rawal catchment to quantify its impacts on water quality and inflows. (author)

  16. Use of non-conventional technologies for sustainable urban water resource management

    International Nuclear Information System (INIS)

    Brar, T.S.

    2005-01-01

    Patiala an erstwhile Princely State Capital also known as city of gardens, is the fourth largest city of Punjab (India) with a population of 0.35 million in 2001. Water demand has continuously increased with the growth of the city to 206.03 Million liters per day (MLD) and is expected to cross 400.00 MLD. Ground water being the only source of water supply today, Water supply network of Patiala presently consists of over 100 tube wells, which has resulted in fall of ground water level from 3.3 m in 1980 to 24.9 m in 2004 at an annual rate of 0.85 m per year. The main reason for the problem is the neglect of water resources while preparing the master plan for the city. Inspite of having a network of canals with sanctioned flow of 209.8 MLD per day and seasonal drains with annual discharge of 200 m/sup 3//s for 15 to 20 days. Average annual rainfall in the city is over 800 mm but it also drains out as runoff resulting in decrease in ground water recharge. The wastewater that is generated is 131.31 MLD and is expected to be 317.6 MLD in 2021. It is being discharged in the seasonal drains without any treatment and polluting the groundwater. This paper discusses the proposal for the Sustainable Urban Water Resource Management Plan for Patiala. The proposal calls for Paradigm shift from conventional to non-conventional technologies and integrate water resource management as an integral part of master plan. (author)

  17. An Integrated Modelling Framework to Assess Flood Risk under Urban Development and Changing Climate

    DEFF Research Database (Denmark)

    that combines a model for the socio-economic development of cities (DANCE4WATER) with an urban flood model. The urban flood model is a 1D-2D spatially distributed hydrologic and hydraulic model that, for a given urban layout, simulates flow in the sewer system and the surface flow in the catchment (MIKE FLOOD......). The socio-economic model computes urban layouts that are transferred to the hydraulic model in the form of changes of impervious area and potential flow paths on the surface. Estimates of flood prone areas, as well as the expected annual damage due to flooding, are returned to the socio-economic model...... as an input for further refinement of the scenarios for the urban development. Our results in an Australian case study suggest that urban development is a major driver for flood risk and vice versa that flood risk can be significantly reduced if it is accounted for in the development of the cities...

  18. Integration of Neural Networks and Cellular Automata for Urban Planning

    Institute of Scientific and Technical Information of China (English)

    Anthony Gar-on Yeh; LI Xia

    2004-01-01

    This paper presents a new type of cellular automata (CA) model for the simulation of alternative land development using neural networks for urban planning. CA models can be regarded as a planning tool because they can generate alternative urban growth. Alternative development patterns can be formed by using different sets of parameter values in CA simulation. A critical issue is how to define parameter values for realistic and idealized simulation. This paper demonstrates that neural networks can simplify CA models but generate more plausible results. The simulation is based on a simple three-layer network with an output neuron to generate conversion probability. No transition rules are required for the simulation. Parameter values are automatically obtained from the training of network by using satellite remote sensing data. Original training data can be assessed and modified according to planning objectives. Alternative urban patterns can be easily formulated by using the modified training data sets rather than changing the model.

  19. The integrated indicator of sustainable urban development based on standardization

    Directory of Open Access Journals (Sweden)

    Leonova Tatiana

    2018-01-01

    Full Text Available The paper justifies the necessity for the system of planned indicators for sustainable urban development design in accordance with the requirements of international standards and the Russian standard GOST R ISO 37120-2015, and the estimation of their actual achievement based on complex qualimetric models. An analysis of opinions on this issue and an overview of Russian normative documents for assessing the effectiveness of the municipalities, including urban development are presented. General methodological principles and sequence for the construction of qualimetric models, as well as formulas for the calculation of complex indicators, taking into account the specific weights obtained on the basis of expert assessment, are presented, the need for careful selection of experts and determination of the consistency of expert opinions is indicated. The advantages and disadvantages of this approach are shown. Conclusions are drawn on the use of qualimetric models for sustainable urban development.

  20. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    Science.gov (United States)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    Under the Commonwealth Water Act 2007 the Bureau of Meteorology was given a new national role in water information, encompassing standards, water accounts and assessments, hydrological forecasting, and collecting, enhancing and making freely available Australia’s water information. The Australian Water Resources Information System (AWRIS) is being developed to fulfil part of this role, by providing foundational data, information and model structures and services. Over 250 organisations across Australia are required to provide water data and metadata to the Bureau, including federal, state and local governments, water storage management and hydroelectricity companies, rural and urban water utilities, and catchment management bodies. The data coverage includes the categories needed to assess and account for water resources at a range of scales. These categories are surface, groundwater and meteorological observations, water in storages, water restrictions, urban and irrigation water use and flows, information on rights, allocations and trades, and a limited suite of water quality parameters. These data are currently supplied to the Bureau via a file-based delivery system at various frequencies from annual to daily or finer, and contain observations taken at periods from minutes to monthly or coarser. One of the primary keys to better data access and utilisation is better data organisation, including content and markup standards. As a significant step on the path to standards for water data description, the Bureau has developed a Water Data Transfer Format (WDTF) for transmission of a variety of water data categories, including site metadata. WDTF is adapted from the OGC’s observation and sampling-features standard. The WDTF XML schema is compatible with the OGC's Web Feature Service (WFS) interchange standard, and conforms to GML Simple Features profile (GML-SF) level 1, emphasising the importance of standards in data exchange. In the longer term we are also

  1. Rural:urban inequalities in post 2015 targets and indicators for drinking-water.

    Science.gov (United States)

    Bain, R E S; Wright, J A; Christenson, E; Bartram, J K

    2014-08-15

    Disparities in access to drinking water between rural and urban areas are pronounced. Although use of improved sources has increased more rapidly in rural areas, rising from 62% in 1990 to 81% in 2011, the proportion of the rural population using an improved water source remains substantially lower than in urban areas. Inequalities in coverage are compounded by disparities in other aspects of water service. Not all improved sources are safe and evidence from a systematic review demonstrates that water is more likely to contain detectable fecal indicator bacteria in rural areas. Piped water on premises is a service enjoyed primarily by those living in urban areas so differentiating amongst improved sources would exacerbate rural:urban disparities yet further. We argue that an urban bias may have resulted due to apparent stagnation in urban coverage and the inequity observed between urban and peri-urban areas. The apparent stagnation at around 95% coverage in urban areas stems in part from relative population growth - over the last two decades more people gained access to improved water in urban areas. There are calls for setting higher standards in urban areas which would exacerbate the already extreme rural disadvantage. Instead of setting different targets, health, economic, and human rights perspectives, We suggest that the focus should be kept on achieving universal access to safe water (primarily in rural areas) while monitoring progress towards higher service levels, including greater water safety (both in rural and urban areas and among different economic strata). Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Assessment of the urban water system with an open, reproducible process applied to Chicago

    Science.gov (United States)

    Urban water systems convey complex environmental and man-made flows. The relationships among water flows and networked storages remains difficult to comprehensively evaluate. Such evaluation is important, however, as interventions are designed (e.g, conservation measures, green...

  3. Managing Water in the Rural-Urban Interface : the Key to Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Water in the Rural-Urban Interface : the Key to Climate Change Resilient Cities ... cities - one in East and the other in West Africa - through better management ... Sustaining water use : stakeholders' strategies under different climate ...

  4. Decision-Making under Uncertainty for Water Sustainability and Urban Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Kelli L. Larson

    2015-11-01

    Full Text Available Complexities and uncertainties surrounding urbanization and climate change complicate water resource sustainability. Although research has examined various aspects of complex water systems, including uncertainties, relatively few attempts have been made to synthesize research findings in particular contexts. We fill this gap by examining the complexities, uncertainties, and decision processes for water sustainability and urban adaptation to climate change in the case study region of Phoenix, Arizona. In doing so, we integrate over a decade of research conducted by Arizona State University’s Decision Center for a Desert City (DCDC. DCDC is a boundary organization that conducts research in collaboration with policy makers, with the goal of informing decision-making under uncertainty. Our results highlight: the counterintuitive, non-linear, and competing relationships in human–environment dynamics; the myriad uncertainties in climatic, scientific, political, and other domains of knowledge and practice; and, the social learning that has occurred across science and policy spheres. Finally, we reflect on how our interdisciplinary research and boundary organization has evolved over time to enhance adaptive and sustainable governance in the face of complex system dynamics.

  5. Bringing Water into an Integrated Assessment Framework

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald; Pitcher, Hugh M.

    2010-11-30

    We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economic systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and streamflow

  6. Environmental Accounting for the Urban Water System: Past, Present and Future - Oregon

    Science.gov (United States)

    The modern urban water system (UWS), or the provision of supply, sanitation and drainage services in an urban context, represents the ever-evolving physical manifestation of society’s propensity to solve pressing water problems. While solutions generally entail immediate be...

  7. Water and Sanitation in Urban Slum: A Case from Bandung Municipality, West Java, Indonesia

    NARCIS (Netherlands)

    Nastiti, A.; Primasuri, W.A.; Setiani, B.; Sudradjat, A.; Latifah, I.; Roosmini, D.; Smits, A.J.M.; Meijerink, S.V.

    2014-01-01

    Providing equal access among urban quintiles is the main challenge in urban water and sanitation sector. This paper tries to depict the choice and behavior regarding drinking water and sanitation of 127 slum households in Bandung Municipality. Issues explored using close-ended questionnaires are

  8. Water Quality Dynamics of Urban Water Bodies during Flooding in Can Tho City, Vietnam

    Directory of Open Access Journals (Sweden)

    Hong Quan Nguyen

    2017-04-01

    Full Text Available Water pollution associated with flooding is one of the major problems in cities in the global South. However, studies of water quality dynamics during flood events are not often reported in literature, probably due to difficult conditions for sampling during flood events. Water quality parameters in open water (canals, rivers, and lakes, flood water on roads and water in sewers have been monitored during the extreme fluvial flood event on 7 October 2013 in the city of Can Tho, Vietnam. This is the pioneering study of urban flood water pollution in real time in Vietnam. The results showed that water quality is very dynamic during flooding, especially at the beginning of the event. In addition, it was observed that the pathogen and contaminant levels in the flood water are almost as high as in sewers. The findings show that population exposed to flood water runs a health risk that is nearly equal to that of being in contact with sewer water. Therefore, the people of Can Tho not only face physical risk due to flooding, but are also exposed to health risks.

  9. Social-ecological research in urban natural areas: an emergent process for integration

    Science.gov (United States)

    Michelle L. Johnson; D. S. Novem Auyeung; Nancy F. Sonti; Clara C. Pregitzer; Heather L. McMillen; Richard Hallett; Lindsay K. Campbell; Helen M. Forgione; Mina Kim; Sarah Charlop-Powers; Erika S. Svendsen

    2018-01-01

    Understanding the structure and function of urban landscapes requires integrating social and ecological research. Here, we integrate parallel social and ecological assessments of natural areas within New York City. We examined social data (from a rapid assessment of park use and meaning, collected at a park zone level) alongside ecological data (froma plot-based...

  10. Towards integrated urban and horticultural planning in Hanoi and Nanjing

    NARCIS (Netherlands)

    Berg, van den L.; Xiaoping, S.; Kamphuis, B.M.

    2006-01-01

    In an international and interdisciplinary research project, partly funded by the European Union, the possibilities were explored of having specialized horticultural production around East Asian cities benefit from urban growth. Anywhere in the world, farmers around cities have to cope with two

  11. A vision on methodology for integrated sustainable urban development: bequest

    NARCIS (Netherlands)

    Bentivegna, V.; Curwell, S.; Deakin, M.; Lombardi, P.; Mitchell, G.; Nijkamp, P.

    2002-01-01

    The concepts and visions of sustainable development that have emerged in the post-Brundtland era are explored in terms laying the foundations for a common vision of sustainable urban development (SUD). The described vision and methodology for SUD resulted from the activities of an international

  12. Integration amidst Separation: Religion, Urban Education, and the First Amendment

    Science.gov (United States)

    Magaldi-Dopman, Danielle; Park-Taylor, Jennie

    2014-01-01

    In today's urban schools, foreign-born children and children of immigrants are the fastest growing sector of the student population and as a result of this changing demographic, our schools are more ethnically, racially and religiously diverse than they have ever been (Suárez-Orozco et al. in "Thriving and spirituality among youth:…

  13. The integral treatment of urban solid wastes. Experience at Spain

    International Nuclear Information System (INIS)

    Calderon U, R.

    1995-01-01

    In this work, which is the origin of the urban solid wastes in a City, how is it classify and which are the most important methods for its elimination, once have been collected are presented. Statistics on the Spanish Case, how is the treatment system and which are the most representative methods for its elimination is describe

  14. SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA

    Science.gov (United States)

    Mohanty, A. K.

    2009-12-01

    SURFACE WATER AND GROUND WATER QUALITY MONITORING FOR RESTORATION OF URBAN LAKES IN GREATER HYDERABAD, INDIA A.K. Mohanty, K. Mahesh Kumar, B. A. Prakash and V.V.S. Gurunadha Rao Ecology and Environment Group National Geophysical Research Institute, (CSIR) Hyderabad - 500 606, India E-mail:atulyakumarmohanty@yahoo.com Abstract: Hyderabad Metropolitan Development Authority has taken up restoration of urban lakes around Hyderabad city under Green Hyderabad Environment Program. Restoration of Mir Alam Tank, Durgamcheruvu, Patel cheruvu, Pedda Cheruvu and Nallacheruvu lakes have been taken up under the second phase. There are of six lakes viz., RKPuramcheruvu, Nadimicheruvu (Safilguda), Bandacheruvu Patelcheruvu, Peddacheruvu, Nallacheruvu, in North East Musi Basin covering 38 sq km. Bimonthly monitoring of lake water quality for BOD, COD, Total Nitrogen, Total phosphorous has been carried out for two hydrological cycles during October 2002- October 2004 in all the five lakes at inlet channels and outlets. The sediments in the lake have been also assessed for nutrient status. The nutrient parameters have been used to assess eutrophic condition through computation of Trophic Status Index, which has indicated that all the above lakes under study are under hyper-eutrophic condition. The hydrogeological, geophysical, water quality and groundwater data base collected in two watersheds covering 4 lakes has been used to construct groundwater flow and mass transport models. The interaction of lake-water with groundwater has been computed for assessing the lake water budget combining with inflow and outflow measurements on streams entering and leaving the lakes. Individual lake water budget has been used for design of appropriate capacity of Sewage Treatment Plants (STPs) on the inlet channels of the lakes for maintaining Full Tank Level (FTL) in each lake. STPs are designed for tertiary treatment i.e. removal of nutrient load viz., Phosphates and Nitrates. Phosphates are

  15. Microbiological Evaluation of Water Quality from Urban Watersheds for Domestic Water Supply Improvement

    Directory of Open Access Journals (Sweden)

    Alexandria K. Graves

    2011-11-01

    Full Text Available Agricultural and urban runoffs may be major sources of pollution of water bodies and major sources of bacteria affecting the quality of drinking water. Of the different pathways by which bacterial pathogens can enter drinking water, this one has received little attention to date; that is, because soils are often considered to be near perfect filters for the transport of bacterial pathogens through the subsoil to groundwater. The goals of this study were to determine the distribution, diversity, and antimicrobial resistance of pathogenic Escherichia coli isolates from low flowing river water and sediment with inputs from different sources before water is discharged into ground water and to compare microbial contamination in water and sediment at different sampling sites. Water and sediment samples were collected from 19 locations throughout the watershed for the isolation of pathogenic E. coli. Heterotrophic plate counts and E. coli were also determined after running tertiary treated water through two tanks containing aquifer sand material. Presumptive pathogenic E. coli isolates were obtained and characterized for virulent factors and antimicrobial resistance. None of the isolates was confirmed as Shiga toxin E. coli (STEC, but as others, such as enterotoxigenic E. coli (ETEC. Pulsed field gel electrophoresis (PFGE was used to show the diversity E. coli populations from different sources throughout the watershed. Seventy six percent of the isolates from urban sources exhibited resistance to more than one antimicrobial agent. A subsequent filtration experiment after water has gone through filtration tanks containing aquifer sand material showed that there was a 1 to 2 log reduction in E. coli in aquifer sand tank. Our data showed multiple strains of E. coli without virulence attributes, but with high distribution of resistant phenotypes. Therefore, the occurrence of E. coli with multiple resistances in the environment is a matter of great concern

  16. Exchanges across land-water-scape boundaries in urban systems: strategies for reducing nitrate pollution.

    Science.gov (United States)

    Cadenasso, M L; Pickett, S T A; Groffman, P M; Band, L E; Brush, G S; Galvin, M F; Grove, J M; Hagar, G; Marshall, V; McGrath, B P; O'Neil-Dunne, J P M; Stack, W P; Troy, A R

    2008-01-01

    Conservation in urban areas typically focuses on biodiversity and large green spaces. However, opportunities exist throughout urban areas to enhance ecological functions. An important function of urban landscapes is retaining nitrogen thereby reducing nitrate pollution to streams and coastal waters. Control of nonpoint nitrate pollution in urban areas was originally based on the documented importance of riparian zones in agricultural and forested ecosystems. The watershed and boundary frameworks have been used to guide stream research and a riparian conservation strategy to reduce nitrate pollution in urban streams. But is stream restoration and riparian-zone conservation enough? Data from the Baltimore Ecosystem Study and other urban stream research indicate that urban riparian zones do not necessarily prevent nitrate from entering, nor remove nitrate from, streams. Based on this insight, policy makers in Baltimore extended the conservation strategy throughout larger watersheds, attempting to restore functions that no longer took place in riparian boundaries. Two urban revitalization projects are presented as examples aimed at reducing nitrate pollution to stormwater, streams, and the Chesapeake Bay. An adaptive cycle of ecological urban design synthesizes the insights from the watershed and boundary frameworks, from new data, and from the conservation concerns of agencies and local communities. This urban example of conservation based on ameliorating nitrate water pollution extends the initial watershed-boundary approach along three dimensions: 1) from riparian to urban land-water-scapes; 2) from discrete engineering solutions to ecological design approaches; and 3) from structural solutions to inclusion of individual, household, and institutional behavior.

  17. Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling

    Science.gov (United States)

    Hyndman, D. W.; Xu, T.; Deines, J. M.; Cao, G.; Nagelkirk, R.; Viña, A.; McConnell, W.; Basso, B.; Kendall, A. D.; Li, S.; Luo, L.; Lupi, F.; Ma, D.; Winkler, J. A.; Yang, W.; Zheng, C.; Liu, J.

    2017-08-01

    Water sustainability in megacities is a growing challenge with far-reaching effects. Addressing sustainability requires an integrated, multidisciplinary approach able to capture interactions among hydrology, population growth, and socioeconomic factors and to reflect changes due to climate variability and land use. We developed a new systems modeling framework to quantify the influence of changes in land use, crop growth, and urbanization on groundwater storage for Beijing, China. This framework was then used to understand and quantify causes of observed decreases in groundwater storage from 1993 to 2006, revealing that the expansion of Beijing's urban areas at the expense of croplands has enhanced recharge while reducing water lost to evapotranspiration, partially ameliorating groundwater declines. The results demonstrate the efficacy of such a systems approach to quantify the impacts of changes in climate and land use on water sustainability for megacities, while providing a quantitative framework to improve mitigation and adaptation strategies that can help address future water challenges.

  18. Integrating environmental goals into urban redevelopment schemes: lessons from the Code River, Yogyakarta, Indonesia.

    Science.gov (United States)

    Setiawan, B B

    2002-01-01

    The settlement along the bank of the Code River in Yogyakarta, Indonesia provides housing for a large mass of the city's poor. Its strategic location and the fact that most urban poor do not have access to land, attracts people to "illegally" settle along the bank of the river. This brings negative consequences for the environment, particularly the increasing domestic waste along the river and the annual flooding in the rainy season. While the public controversies regarding the existence of the settlement along the Code River were still not resolved, at the end of the 1980s, a group of architects, academics and community members proposed the idea of constructing a dike along the River as part of a broader settlement improvement program. From 1991 to 1998, thousands of local people mobilized their resources and were able to construct 6,000 metres of riverside dike along the Code River. The construction of the riverside dike along the River has become an important "stimulant" that generated not only settlement improvement, but also a better treatment of river water. As all housing units located along the River are now facing the River, the River itself is considered the "front-yard". Before the dike was constructed, the inhabitants used to treat the River as the "backyard" and therefore just throw waste into the River. They now really want to have a cleaner river, since the River is an important part of their settlement. The settlement along the Code River presents a complex range of persistent problems with informal settlements in Indonesia; such problems are related to the issues of how to provide more affordable and adequate housing for the poor, while at the same time, to improve the water quality of the river. The project represents a good case, which shows that through a mutual partnership among stakeholders, it is possible to integrate environmental goals into urban redevelopment schemes.

  19. Lessons from a transplantation of zebra mussels into a small urban river: An integrated ecotoxicological assessment.

    Science.gov (United States)

    Bourgeault, A; Gourlay-Francé, C; Vincent-Hubert, F; Palais, F; Geffard, A; Biagianti-Risbourg, S; Pain-Devin, S; Tusseau-Vuillemin, M-H

    2010-10-01

    It is often difficult to evaluate the level of contamination in small urban rivers because pollution is mainly diffuse, with low levels of numerous substances. The use of a coupled approach using both chemical and biological measurements may provide an integrated evaluation of the impact of micro-pollution on the river. Zebra mussels were transplanted along a metal and organic pollution gradient in spring 2008. For two months, mussels and water samples were collected from two sites every two weeks and analyzed for metal and PAH content as well as water physicochemical parameters. Diffusive gradients in thin film (DGT) were also used to assess levels of labile metals. Exposure of mussels to contaminants and potential impact were evaluated using physiological indices and various biomarkers including condition index (CI), defense mechanisms (glutathione-S-transferase: GST), digestive enzymes (amylase and cellulase) and genotoxicity (micronucleus test: MN and comet assay: CA). For most contaminants, the water contamination was significantly higher downstream. Bioaccumulation in zebra mussels was related to water contamination in the framework of the biodynamic model, which allowed us to take into account the biological dilution that was caused by the growth of soft tissue downstream. Thus, metal influxes were on average two times higher downstream than upstream in particular for Zn, Cr, Cu and Cd. Significant differences in condition index were observed (final CI was 0.42 ± 0.03 downstream and 0.31 ± 0.03 upstream) reflecting a better food availability downstream. Moreover a significant decrease of GST activity and digestive enzymes activity in the cristalline style was observed downstream. Interpreting this decrease requires considering not only micro-pollution but also the trophic status related to the water's physicochemistry. The MN test and the CA on gill cells highlighted genotoxicity in mussels transplanted downstream compared to upstream. © 2010 Wiley

  20. Dual-Level Material and Psychological Assessment of Urban Water Security in a Water-Stressed Coastal City

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2015-04-01

    Full Text Available The acceleration of urbanization and industrialization has been gradually aggravating water security issues, such as water shortages, water pollution, and flooding or drought disasters and so on. Water security issues have become a great challenge to urban sustainable development. In this context, we proposed a dual-level material and psychological assessment method to assess urban water security. Psychological security coefficients were introduced in this method to combine material security and residents’ security feelings. A typical water-stressed coastal city in China (Dalian was chosen as a case study. The water security status of Dalian from 2010 to 2012 was analysed dynamically. The results indicated that the Dalian water security statuses from 2010 to 2012 were basically secure, but solutions to improve water security status and solve water resource problems are still required. This dual-level material and psychological assessment for urban water security has improved conventional material assessment through the introduction of psychological security coefficients, which can benefit decision-making for urban water planning, management and protection.

  1. Hourly Water Quality Dynamics in Rivers Downstream of Urban Areas: Quantifying Seasonal Variation and Modelling Impacts of Urban Growth

    Science.gov (United States)

    Hutchins, M.; McGrane, S. J.; Miller, J. D.; Hitt, O.; Bowes, M.

    2016-12-01

    Continuous monitoring of water flows and quality is invaluable in improving understanding of the influence of urban areas on river health. When used to inform predictive modelling, insights can be gained as to how urban growth may affect the chemical and biological quality of rivers as they flow downstream into larger waterbodies. Water flow and quality monitoring in two urbanising sub-catchments (long term flow records are available, but particular focus is given to monitoring of an extended set of sites during prolonged winter rainfall. In the Ray sub-catchment streams were monitored in which urban cover varied across a range of 7-78%. A rural-urban gradient in DO was apparent in the low flow period prior to the storms. Transient low DO (works (STW). In this respect temperature- and respiration-driven DO sags in summer were at least if not more severe than those driven by the winter storms. Likewise, although winter storm NH4 concentrations violated EU legislation downstream of the STW, they were lower than summer concentrations in pollutant flushes following dry spells. In contrast the predominant phenomenon affecting water quality in the Cut during the storms was dilution. Here, a river water quality model was calibrated and applied over the course of a year to capture the importance of periphyton photosynthesis and respiration cycles in determining water quality and to predict the influence of hypothetical urban growth on downstream river health. The periods monitored intensively, dry spells followed by prolonged rainfall, represent: (i) marked changes in conditions likely to become more prevalent in future, (ii) situations under which water quality in urban areas is likely to be particularly vulnerable, being influenced for example by first flush effects followed by capacity exceedance at STW. Despite this, whilst being somewhat long lasting in places, impacts on DO were not severe.

  2. Landscape Optimization in a Highly Urbanized Tourism Destination: An Integrated Approach in Nanjing, China

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2017-12-01

    Full Text Available Planning and developing urban tourism destinations must encompass landscape optimization to achieve healthy urban ecosystems, as well as for evolution sustainability. This study explored sustainable landscape planning by examining the optimization of landscape spatial distribution in an urban tourism destination–Nanjing, China—using an integrated approach that included remote sensing (RS, geographic information system (GIS, and landscape metrics in the context of an urban tourism destination evolution model. Least-cost modeling in GIS was also used to optimize decision-making from an ecological perspective. The results indicated that landscapes were more homogenous, fragmented, and less connected. Except for the eastern area, the landscape evolution showed characteristics of both degeneration and growth. A complete greenway network including sources, greenways, and nodes were constructed, and an increase in natural landscapes was strongly recommended. The findings provide geographic insights for sustainable urban tourism planning and development via comprehensive methodological applications.

  3. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  4. Comprehensive Regional Modeling for Long-Range Planning: Linking Integrated Urban Models and Geographic Information Systems

    OpenAIRE

    Johnston, Robert; de la Barra, Thomas

    2000-01-01

    This study demonstrates the sequential linking of two types of models to permit the comprehensive evaluation of regional transportation and land use policies. First, we operate an integrated urban model (TRANUS), which represents both land and travel markets with zones and networks. The travel and land use projections from TRANUS are outlined, to demonstrate the general reasonableness of the results, as this is the first application of a market-based urban model in the US. Second, the land us...

  5. Approaching integrated urban-rural development in China: The changing institutional roles

    OpenAIRE

    Li, Yuheng; Hu, Zhichao; Liu, Yansui

    2014-01-01

    Ever since the twenty-first century, the Chinese government has been undertaking a series of rural-favored policies and measures to promote comprehensive development in rural China. The fundamental purpose is to accomplish integrated urban-rural development (IURD) given the ever enlarging urban-rural inequalities during the post-reform era. Considering the long time biased policies against the countryside, the paper aims to examine the institutional roles in approaching the IURD. IURD at prov...

  6. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma

    2016-11-01

    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  7. Integrated Water Management Approaches for Sustainable Food Production

    NARCIS (Netherlands)

    Fraiture, de C.M.S.; Fayrap, A.; Unver, O.; Ragab, R.

    2014-01-01

    With a growing and increasingly wealthy and urban population, it is likely that the role of agricultural water management in ensuring food security will become more important. Pressure on water resources is high. Adverse environmental impacts as a result of sometimes poor management of irrigation

  8. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    Science.gov (United States)

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  9. Water resources for urban water and food security: the case of megacity Hong Kong

    Science.gov (United States)

    Vanham, Davy; Gawlik, Bernd; Bidoglio, Giovanni

    2017-04-01

    The extent to which urban dwellers consume resources is key on the path to reaching global SDGs. One of these resources is water, which is consumed in a direct and indirect way by city inhabitants, to achieve water and food security within city borders. In this study, we quantify the water resources required to provide these two essential securities for megacity Hong Kong. During the last years, this city has made large investments to make its urban water supply system more water efficient and sustainable. As such, its municipal water abstraction - often defined as direct water use - has decreased from 355 litres per capita per day (l/cap/d) in 2005 to 326 l/cap/d in 2013. Due to its political history, Hong Kong is unique in the world in data availability on urban food consumption. It is therefore the ideal case study to show typical urban food consumption behaviour and its related indirect water use. The current average diet in Hong Kong is very different to the average Chinese diet. It is characterised by a high intake of water intensive products like animal products and sugar, leading to a food related indirect water use or water footprint (WFcons) of 4727 l/cap/d. According to recommendations from the Chinese Nutrition Society for a healthy diet, the intake of some product groups should be increased (vegetables and fruit) and of other product groups reduced (sugar, crop oils, meat and animal fats). This would result in a reduction of the WFcons of 40% to 2852 l/cap/d. Especially the reduced intake of meat (including offals) from currently 126 kg per capita per year (kg/cap/yr) to the recommended value 27 kg/cap/yr would result in a substantial WFcons reduction. Meat consumption in Hong Kong is extremely high. A pesco-vegetarian diet would result in a reduction of 49% (to 2398 l/cap/d) and a vegetarian diet in a 53% (to 2224 l/cap/d) reduction. Hong Kong citizens can thus save a lot of water by looking at their indirect water use, through a change in their diet

  10. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    Science.gov (United States)

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  11. How Natural Water Retention Measures (NWRM) can help rural and urban environments improve their resilience?

    Science.gov (United States)

    Siauve, Sonia

    2016-04-01

    The challenges related to water resources management are exacerbated by climate change which implies additional complexity and uncertainty. The impacts of climate change have thus to be taken into account, from today on the next decades, to ensure a sustainable integrated water resources management. One of the main environmental objective of the Water Framework Directive (2000/30/CE) was to achieve and maintain a good status for all water bodies by the target date of 2015. Unfortunately, Member States didn't manage to reach this goal and in this context, the European Commission (EC), since many years, have started many initiatives and reforms to improve the global situation. In 2012 the DG Environment (DGENV) of the EC published a "Blueprint to safeguard Europe's water resources" that states the need for further implementation of water resource management measures and in particular Natural Water Retention Measures (NWRMs). NWRM are measures that aim to safeguard and enhance the water storage potential of landscape, soils and aquifers, by restoring ecosystems, natural features and characteristics of water courses, and by using natural processes. They are Nature-Based Solutions supporting adaptation and reducing vulnerability of water resources. Their interest lies with the multiple benefits they can deliver, and their capacity to contribute simultaneously to the achievement of the objectives of different European policies (WFD, FD, Biodiversity strategy …). However the knowledge on NWRM is scattered and addressed differently in the countries, whereas the NWRM potential for improving the state of the environment and resilience (drought, flood, biodiversity…) in a changing environment is high. In 2013, all EU countries started the elaboration of the second River Basin Management Plan and associated Programme of Measures. To support MS authorities and local implementers of these measures DGENV launched a 14 month project for collaboratively building knowledge and

  12. Urban adaptation to mega-drought: Anticipatory water modeling, policy, and planning in Phoenix

    Science.gov (United States)

    Gober, P.; Sampson, D. A.; Quay, R.; White, D. D.; Chow, W.

    2016-12-01

    There is increasing interest in using the results of water models for long-term planning and policy analysis. Achieving this goal requires more effective integration of human dimensions into water modeling and a paradigm shift in the way models are developed and used. A user-defined focus argues in favor of models that are designed to foster public debate and engagement about the difficult trade-offs that are inevitable in managing complex water systems. These models also emphasize decision making under uncertainty and anticipatory planning, and are developed through a collaborative and iterative process. This paper demonstrates the use of anticipatory modeling for long-term drought planning in Phoenix, one of the largest and fastest growing urban areas in the southwestern USA. WaterSim 5, an anticipatory water policy and planning model, was used to explore groundwater sustainability outcomes for mega-drought conditions across a range of policies, including population growth management, water conservation, water banking, direct reuse of RO reclaimed water, and water augmentation. Results revealed that business-as-usual population growth, per capita use trends, and management strategies may not be sustainable over the long term, even without mega-drought conditions as years of available groundwater supply decline over the simulation period from 2000 to 2060. Adding mega-drought increases the decline in aquifer levels and increases the variability in flows and uncertainty about future groundwater supplies. Simulations that combine drought management policies can return the region to sustainable. Results demonstrate the value of long-term planning and policy analysis for anticipating and adapting to environmental change.

  13. Groundwater for urban water supplies in northern China - An overview

    Science.gov (United States)

    Zaisheng, Han

    Groundwater plays an important role for urban and industrial water supply in northern China. More than 1000 groundwater wellfields have been explored and installed. Groundwater provides about half the total quantity of the urban water supply. Complete regulations and methods for the exploration of groundwater have been established in the P.R. China. Substantial over-exploitation of groundwater has created environmental problems in some cities. Some safeguarding measures for groundwater-resource protection have been undertaken. Résumé Les eaux souterraines jouent un rôle important dans l'approvisionnement en eau des agglomérations et des industries du nord de la Chine. Les explorations ont conduit à mettre en place plus de 1000 champs de puits captant des eaux souterraines. Les eaux souterraines satisfont environ la moitié des besoins en eau des villes. Une réglementation complète et des méthodes d'exploration des eaux souterraines ont étéétablies en République Populaire de Chine. Une surexploitation très nette est à l'origine de problèmes environnementaux dans certaines villes. Des mesures ont été prises pour protéger la ressource en eau souterraine. Resumen El agua subterránea desempeña un papel importante en el suministro de agua para uso doméstico e industrial en la China septentrional. Se han explorado y puesto en marcha más de 1000 campos de explotación de aguas subterráneas, que proporcionan cerca de la mitad del total del suministro urbano. En la República Popular de China se han definido totalmente la legislación y la metodología para realizar estas explotaciones. La gran sobreexplotación en algunas ciudades ha creado algunos problemas medioambientales. Como consecuencia, se han llevado a cabo algunas medidas de protección de los recursos de aguas subterráneas.

  14. Thailand Environment Monitor : Integrated Water Resources Management - A Way Forward

    OpenAIRE

    World Bank

    2011-01-01

    Water is everyone's business. Beside a necessity for living, water has implications on public health and, most importantly, can cause social conflicts. This is because water is limited, is difficult to control, and can easily be polluted. The Integrated Water Resource Management (IWRM) process is considered worldwide as a means to reduce social conflicts from competing water needs as well ...

  15. Emerging contaminants of public health significance as water quality indicator compounds in the urban water cycle.

    Science.gov (United States)

    Pal, Amrita; He, Yiliang; Jekel, Martin; Reinhard, Martin; Gin, Karina Yew-Hoong

    2014-10-01

    The contamination of the urban water cycle (UWC) with a wide array of emerging organic compounds (EOCs) increases with urbanization and population density. To produce drinking water from the UWC requires close examination of their sources, occurrence, pathways, and health effects and the efficacy of wastewater treatment and natural attenuation processes that may occur in surface water bodies and groundwater. This paper researches in details the structure of the UWC and investigates the routes by which the water cycle is increasingly contaminated with compounds generated from various anthropogenic activities. Along with a thorough survey of chemicals representing compound classes such as hormones, antibiotics, surfactants, endocrine disruptors, human and veterinary pharmaceuticals, X-ray contrast media, pesticides and metabolites, disinfection-by-products, algal toxins and taste-and-odor compounds, this paper provides a comprehensive and holistic review of the occurrence, fate, transport and potential health impact of the emerging organic contaminants of the UWC. This study also illustrates the widespread distribution of the emerging organic contaminants in the different aortas of the ecosystem and focuses on future research needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Participatory environmental governance in China: Public hearings on urban water tariff setting.

    NARCIS (Netherlands)

    Zhong, L.; Mol, A.P.J.

    2008-01-01

    In the late 1990s China started to expand its market economic reform to the public sector, such as water services. This reform led to major changes in urban water management, including water tariff management. The reforms in water tariff management relate not only to tariffs, but also to the

  17. Integrated water resources management : A case study in the Hehei river basin, China

    Science.gov (United States)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  18. Impact of urban sprawl on water quality in eastern Massachusetts, USA.

    Science.gov (United States)

    Tu, Jun; Xia, Zong-Guo; Clarke, Keith C; Frei, Allan

    2007-08-01

    A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.

  19. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Flexible engineering designs for urban water management in Lusaka, Zambia.

    Science.gov (United States)

    Tembo, Lucy; Pathirana, Assela; van der Steen, Peter; Zevenbergen, Chris

    2015-01-01

    Urban water systems are often designed using deterministic single values as design parameters. Subsequently the different design alternatives are compared using a discounted cash flow analysis that assumes that all parameters remain as-predicted for the entire project period. In reality the future is unknown and at best a possible range of values for design parameters can be estimated. A Monte Carlo simulation could then be used to calculate the expected Net Present Value of project alternatives, as well as so-called target curves (cumulative frequency distribution of possible Net Present Values). The same analysis could be done after flexibilities were incorporated in the design, either by using decision rules to decide about the moment of capacity increase, or by buying Real Options (in this case land) to cater for potential capacity increases in the future. This procedure was applied to a sanitation and wastewater treatment case in Lusaka, Zambia. It included various combinations of on-site anaerobic baffled reactors and off-site waste stabilisation ponds. For the case study, it was found that the expected net value of wastewater treatment systems can be increased by 35-60% by designing a small flexible system with Real Options, rather than a large inflexible system.

  1. Identifying water price and population criteria for meeting future urban water demand targets

    Science.gov (United States)

    Ashoori, Negin; Dzombak, David A.; Small, Mitchell J.

    2017-12-01

    Predictive models for urban water demand can help identify the set of factors that must be satisfied in order to meet future targets for water demand. Some of the explanatory variables used in such models, such as service area population and changing temperature and rainfall rates, are outside the immediate control of water planners and managers. Others, such as water pricing and the intensity of voluntary water conservation efforts, are subject to decisions and programs implemented by the water utility. In order to understand this relationship, a multiple regression model fit to 44 years of monthly demand data (1970-2014) for Los Angeles, California was applied to predict possible future demand through 2050 under alternative scenarios for the explanatory variables: population, price, voluntary conservation efforts, and temperature and precipitation outcomes predicted by four global climate models with two CO2 emission scenarios. Future residential water demand in Los Angeles is projected to be largely driven by price and population rather than climate change and conservation. A median projection for the year 2050 indicates that residential water demand in Los Angeles will increase by approximately 36 percent, to a level of 620 million m3 per year. The Monte Carlo simulations of the fitted model for water demand were then used to find the set of conditions in the future for which water demand is predicted to be above or below the Los Angeles Department of Water and Power 2035 goal to reduce residential water demand by 25%. Results indicate that increases in price can not ensure that the 2035 water demand target can be met when population increases. Los Angeles must rely on furthering their conservation initiatives and increasing their use of stormwater capture, recycled water, and expanding their groundwater storage. The forecasting approach developed in this study can be utilized by other cities to understand the future of water demand in water-stressed areas

  2. Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region

    International Nuclear Information System (INIS)

    Mörtberg, Ulla; Goldenberg, Romain; Kalantari, Zahra; Kordas, Olga; Deal, Brian; Balfors, Berit; Cvetkovic, Vladimir

    2017-01-01

    Urban development trajectories are changing towards compact, energy-efficient cities and renewable energy sources, and this will strongly affect ecosystem services (ES) that cities are dependent on but tend to disregard. Such ES can be provisioning, regulating and cultural ES, around which competition over land resources will increase with energy system shifts. Much of this can be foreseen to take place within urbanising regions that are simultaneously the living environment of a major part of the human population today. In order to inform critical urban policy decisions, tools for integrated assessment of urban energy and transport options and ecosystem services need to be developed. For this purpose, a case study of the Stockholm region was conducted, analysing three scenarios for the future urbanisation of the region, integrating a transport energy perspective and an ES perspective. The results showed that a dense but polycentric development pattern gives more opportunities for sustainable urban development, while the dense monocentric scenario has apparent drawbacks from an ES perspective. The methodology is compatible with a model integration platform for urban policy support and will thus enable integrated policy assessment of complex urban systems, with the goal of increasing their sustainability. - Highlights: • A diffuse urban pattern leads to low access to jobs and high energy consumption. • A dense monocentric urban pattern implies high energy efficiency and low access to ES. • A dense polycentric urban pattern allows for a combination of urban functions. • ES needs to be integrated into sustainability assessments of urban policy options.

  3. Integrating retention soil filters into urban hydrologic models - Relevant processes and important parameters

    Science.gov (United States)

    Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich

    2018-04-01

    Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated

  4. The City Blueprint Approach: Urban Water Management and Governance in Cities in the U.S.

    Science.gov (United States)

    Feingold, Daniel; Koop, Stef; van Leeuwen, Kees

    2018-01-01

    In this paper, we assess the challenges of water, waste and climate change in six cities across the U.S.: New York City, Boston, Milwaukee, Phoenix, Portland and Los Angeles. We apply the City Blueprint® Approach which consists of three indicator assessments: (1) the Trends and Pressures Framework (TPF), (2) the City Blueprint Framework (CBF) and (3) the water Governance Capacity Framework (GCF). The TPF summarizes the main social, environmental and financial pressures that may impede water management. The CBF provides an integrated overview of the management performances within the urban watercycle. Finally, the GCF provides a framework to identify key barriers and opportunities to develop governance capacity. The GCF has only been applied in NYC. Results show that all cities face pressures from heat risk. The management performances regarding resource efficiency and resource recovery from wastewater and solid waste show considerable room for improvement. Moreover, stormwater separation, infrastructure maintenance and green space require improvement in order to achieve a resilient urban watercycle. Finally, in New York City, the GCF results show that learning through smart monitoring, evaluation and cross-stakeholder learning is a limiting condition that needs to be addressed. We conclude that the City Blueprint Approach has large potential to assist cities in their strategic planning and exchange of knowledge, experiences and lessons. Because the methodology is well-structured, easy to understand, and concise, it may bridge the gap between science, policy and practice. It could therefore enable other cities to address their challenges of water, waste and climate change.

  5. Optimization of an integrated electrodisinfection/electrocoagulation process with Al bipolar electrodes for urban wastewater reclamation.

    Science.gov (United States)

    Cotillas, Salvador; Llanos, Javier; Cañizares, Pablo; Mateo, Sara; Rodrigo, Manuel A

    2013-04-01

    In this work, a novel integrated electrochemical process for urban wastewater regeneration is described. The electrochemical cell consists in a Boron Doped Diamond (BDD) or a Dimensionally Stable Anode (DSA) as anode, a Stainless Steel (SS) as cathode and a perforated aluminum plate, which behaves as bipolar electrode, between anode and cathode. Thus, in this cell, it is possible to carry out, at the same time, two different electrochemical processes: electrodisinfection (ED) and electrocoagulation (EC). The treatment of urban wastewater with different anodes and different operating conditions is studied. First of all, in order to check the process performance, experiments with synthetic wastewaters were carried out, showing that it is possible to achieve a 100% of turbidity removal by the electrodissolution of the bipolar electrode. Next, the effect of the current density and the anode material are studied during the ED-EC process of actual effluents. Results show that it is possible to remove Escherichia coli and turbidity simultaneously of an actual effluent from a WasteWater Treatment Facility (WWTF). The use of BDD anodes allows to remove the E. coli completely at an applied electric charge of 0.0077 A h dm(-3) when working with a current density of 6.65 A m(-2). On the other hand, with DSA anodes, the current density necessary to achieve the total removal of E. coli is higher (11.12 A m(-2)) than that required with BDD anodes. Finally, the influence of cell flow path and flow rate have been studied. Results show that the performance of the process strongly depends on the characteristics of the initial effluent (E. coli concentration and Cl(-)/NH(4)(+) initial ratio) and that a cell configuration cathode (inlet)-anode (outlet) and a higher flow rate enhance the removal of the turbidity from the treated effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    Recent droughts in California have highlighted and refocused attention on the problem of providing reliable sources of water to sustain the State`s future economic development. Specific elements of concern include not only the stability and availability of future water supplies in the State, but also how current surface and groundwater storage and distribution systems may be more effectively managed and upgraded, how treated wastewater may be more widely recycled, and how legislative and regulatory processes may be used or modified to address conflicts between advocates of urban growth, industrial, agricultural, and environmental concerns. California is not alone with respect to these issues. They are clearly relevant throughout the West, and are becoming more so in other parts of the US. They have become increasingly important in developing and highly populated nations such as China, India, and Mexico. They are critically important in the Middle East and Southeast Asia, especially as they relate to regional stability and security issues. Indeed, in almost all cases, there are underlying themes of `reliability` and `sustainability` that pertain to the assurance of current and future water supplies, as well as a broader set of `stability` and `security` issues that relate to these assurances--or lack thereof--to the political and economic future of various countries and regions. In this latter sense, and with respect to regions such as China, the Middle East, and Southeast Asia, water resource issues may take on a very serious strategic nature, one that is most illustrative and central to the emerging notion of `environmental security.` In this report, we have identified a suite of technical tools that, when developed and integrated together, may prove effective in providing regional governments the ability to manage their water resources. Our goal is to formulate a framework for an Integrated Systems Analysis (ISA): As a strategic planning tool for managing

  7. High-Resolution Mapping of Urban Surface Water Using ZY-3 Multi-Spectral Imagery

    Directory of Open Access Journals (Sweden)

    Fangfang Yao

    2015-09-01

    Full Text Available Accurate information of urban surface water is important for assessing the role it plays in urban ecosystem services under the content of urbanization and climate change. However, high-resolution monitoring of urban water bodies using remote sensing remains a challenge because of the limitation of previous water indices and the dark building shadow effect. To address this problem, we proposed an automated urban water extraction method (UWEM which combines a new water index, together with a building shadow detection method. Firstly, we trained the parameters of UWEM using ZY-3 imagery of Qingdao, China. Then we verified the algorithm using five other sub-scenes (Aksu, Fuzhou, Hanyang, Huangpo and Huainan ZY-3 imagery. The performance was compared with that of the Normalized Difference Water Index (NDWI. Results indicated that UWEM performed significantly better at the sub-scenes with kappa coefficients improved by 7.87%, 32.35%, 12.64%, 29.72%, 14.29%, respectively, and total omission and commission error reduced by 61.53%, 65.74%, 83.51%, 82.44%, and 74.40%, respectively. Furthermore, UWEM has more stable performances than NDWI’s in a range of thresholds near zero. It reduces the over- and under-estimation issues which often accompany previous water indices when mapping urban surface water under complex environmental conditions.

  8. Extraction of Urban Water Bodies from High-Resolution Remote-Sensing Imagery Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2018-05-01

    Full Text Available Accurate information on urban surface water is important for assessing the role it plays in urban ecosystem services in the context of human survival and climate change. The precise extraction of urban water bodies from images is of great significance for urban planning and socioeconomic development. In this paper, a novel deep-learning architecture is proposed for the extraction of urban water bodies from high-resolution remote sensing (HRRS imagery. First, an adaptive simple linear iterative clustering algorithm is applied for segmentation of the remote-sensing image into high-quality superpixels. Then, a new convolutional neural network (CNN architecture is designed that can extract useful high-level features of water bodies from input data in a complex urban background and mark the superpixel as one of two classes: an including water or no-water pixel. Finally, a high-resolution image of water-extracted superpixels is generated. Experimental results show that the proposed method achieved higher accuracy for water extraction from the high-resolution remote-sensing images than traditional approaches, and the average overall accuracy is 99.14%.

  9. Uncertainty propagation in urban hydrology water quality modelling

    NARCIS (Netherlands)

    Torres Matallana, Arturo; Leopold, U.; Heuvelink, G.B.M.

    2016-01-01

    Uncertainty is often ignored in urban hydrology modelling. Engineering practice typically ignores uncertainties and uncertainty propagation. This can have large impacts, such as the wrong dimensioning of urban drainage systems and the inaccurate estimation of pollution in the environment caused

  10. A Review of Water Reclamation Research in China Urban Landscape Design and Planning Practice

    Science.gov (United States)

    Gan, Wei; Zeng, Tianran

    2018-04-01

    With the continuously growing demand for better living environment, more and more attention and efforts have been paid to the improvement of urban landscape. However, the expansion of green area and water features are at the cost of high consumption of water resources, which has become prominent problems in cities that suffer from water shortage. At the same time, with the water shortage and water environment deterioration problems that shared globally, water conservation has become an inevitable choice to achieve sustainable social development. Urban landscape is not simply a consuming body of water resources, but also are of water-saving potential and able to perform the function of water storage. Thus, recycling the limited water resources becomes a challenge for every landscape designer. This paper is intended to overview the existing effort of reclaimed water recycle research in China landscape designing fields, and raise recommendations for future research and development.

  11. An Integrated Approach to Evaluate Urban Adaptive Capacity to Climate Change

    Directory of Open Access Journals (Sweden)

    Qiangsheng Hu

    2018-04-01

    Full Text Available Climate change and accelerated urbanization have posed severe challenges to urban development, resulting in a growing series of climate and environmental problems that have a significant impact on industrial production and urban life. In a developing country such as China, more than 57% of the population lives in urban areas. It is vital for these cities to adapt to climate-induced risks. A better understanding of how to improve adaptive capacity could enhance the ability to achieve a desirable state when the city experiences stress. This paper used an integrated approach for evaluating the urban adaptive capacity to climate change. It developed the evaluation index system of urban adaptive capacity (UAC based on the driver–pressure–state–impact–response model (DPSIR, and adopted grey relational analysis (GRA and the entropy method to analyze the level of UAC in Changsha, the capital city of Hunan Province, from 2006 to 2015. The results revealed that the UAC of Changsha showed a significant increase from 2006 to 2015. Among the five first-grade indicators, the response dimension had the greatest influence on the improvement of UAC. The study may provide suggestions for adaptive capacity building and sustainable development in other urban areas.

  12. K West integrated water treatment system subproject safety analysis document

    International Nuclear Information System (INIS)

    SEMMENS, L.S.

    1999-01-01

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System

  13. K West integrated water treatment system subproject safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    SEMMENS, L.S.

    1999-02-24

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  14. Making meaning of urban American Indian identity: a multistage integrative process.

    Science.gov (United States)

    Lucero, Nancy M

    2010-10-01

    The cultural identity and tribal connectedness of American Indians are commonly believed to have been negatively affected by the urbanization process in which American Indians have been involved during the past half century. This phenomenological study examined the processes through which cultural identity was formed and maintained by a group of American Indians who had lived since childhood in urban areas, away from their reservations or tribal communities. Seven urban Indian adults, each from a different tribe, shared their experiences related to coming to understand what it means to be American Indian and the development of their American Indian cultural identity. Four themes emerged from participant interviews and were seen to correspond to stages that participants passed through, from their teens through their 30s, that led to understanding and integration of their American Indian identity. Findings point to the importance of considering issues of cultural identity development when providing social work services to urban American Indian young adults.

  15. Decomposition of the Urban Water Footprint of Food Consumption: A Case Study of Xiamen City

    Directory of Open Access Journals (Sweden)

    Jiefeng Kang

    2017-01-01

    Full Text Available Decomposition of the urban water footprint can provide insight for water management. In this paper, a new decomposition method based on the log-mean Divisia index model (LMDI was developed to analyze the driving forces of water footprint changes, attributable to food consumption. Compared to previous studies, this new approach can distinguish between various factors relating to urban and rural residents. The water footprint of food consumption in Xiamen City, from 2001 to 2012, was calculated. Following this, the driving forces of water footprint change were broken down into considerations of the population, the structure of food consumption, the level of food consumption, water intensity, and the population rate. Research shows that between 2001 and 2012, the water footprint of food consumption in Xiamen increased by 675.53 Mm3, with a growth rate of 88.69%. Population effects were the leading contributors to this change, accounting for 87.97% of the total growth. The food consumption structure also had a considerable effect on this increase. Here, the urban area represented 94.96% of the water footprint increase, driven by the effect of the food consumption structure. Water intensity and the urban/rural population rate had a weak positive cumulative effect. The effects of the urban/rural population rate on the water footprint change in urban and rural areas, however, were individually significant. The level of food consumption was the only negative factor. In terms of food categories, meat and grain had the greatest effects during the study period. Controlling the urban population, promoting a healthy and less water-intensive diet, reducing food waste, and improving agriculture efficiency, are all elements of an effective approach for mitigating the growth of the water footprint.

  16. Towards a peri-urban political ecology of water quality decline

    NARCIS (Netherlands)

    Karpouzoglou, Timothy; Marshall, Fiona; Mehta, Lyla

    2018-01-01

    Recent years have witnessed an expanding body of peri-urban and urban scholarship. However, recent scholarship has yet to adequately address the central role of politics and power shaping water quality decline. The article focuses on the trans-Hindon region which is part of Ghaziabad city, close to

  17. Urban Stormwater Runoff. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    Science.gov (United States)

    Simko, Robert A.

    Urban stormwater runoff collects pollutants from many parts of a city and is an important consideration in water quality planning. Presented is an instructor's guide for a learning session covering various aspects of urban runoff including pollutant sources, management practices, and regulatory programs. Intended for citizen advisory groups, this…

  18. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    1, 2 SOUTH WEST REGIONAL CENTRE FOR NATIONAL WATER RESOURCES CAPACITY BUILDING NETWORK,. FEDERAL UNIVERSITY OF ... that an integrated approach to water resource development and management offers the best ...

  19. Framework for local government to implement integrated water ...

    African Journals Online (AJOL)

    2009-06-11

    Jun 11, 2009 ... Integrated water resource management (IWRM) is such a process and it ..... procedures. The WSDP consists of 10 business elements (see Table. 1). ..... Origin, volume and quality of raw water available from each source.

  20. SESSION V: INTEGRATED APPROACHES IN LAND AND WATER ...

    African Journals Online (AJOL)

    SESSION V: INTEGRATED APPROACHES IN LAND AND WATER MANAGEMENT RESEARCH/LAND AND WATER MANAGEMENT ECONOMICS AND POLICY - Socioeconomic implications of improved forage species on smallholder farms in Kenya.

  1. Integrated modeling of ozonation for optimization of drinking water treatment

    NARCIS (Netherlands)

    van der Helm, A.W.C.

    2007-01-01

    Drinking water treatment plants automation becomes more sophisticated, more on-line monitoring systems become available and integration of modeling environments with control systems becomes easier. This gives possibilities for model-based optimization. In operation of drinking water treatment

  2. Cooling water systems design using process integration

    CSIR Research Space (South Africa)

    Gololo, KV

    2010-09-01

    Full Text Available Cooling water systems are generally designed with a set of heat exchangers arranged in parallel. This arrangement results in higher cooling water flowrate and low cooling water return temperature thus reducing cooling tower efficiency. Previous...

  3. Water Recycling via Aquifers for Sustainable Urban Water Quality Management: Current Status, Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Elise Bekele

    2018-04-01

    Full Text Available Managed aquifer recharge (MAR is used worldwide in urban environments to replenish groundwater to provide a secure and sustainable supply of potable and non-potable water. It relies on natural treatment processes within aquifers (i.e., filtration, sorption, and degradation, and in some cases involves infiltration through the unsaturated zone to polish the given source water, e.g., treated wastewater, stormwater, or rainwater, to the desired quality prior to reuse. Whilst MAR in its early forms has occurred for millennia, large-scale schemes to replenish groundwater with advanced treated reclaimed water have come to the fore in cities such as Perth, Western Australia, Monterey, California, and Changwon, South Korea, as water managers consider provision for projected population growth in a drying climate. An additional bonus for implementing MAR in coastal aquifers is assisting in the prevention of seawater intrusion. This review begins with the rationale for large-scale MAR schemes in an Australian urban context, reflecting on the current status; describes the unique benefits of several common MAR types; and provides examples from around the world. It then explores several scientific challenges, ranging from quantifying aquifer removal for various groundwater contaminants to assessing risks to human health and the environment, and avoiding adverse outcomes from biogeochemical changes induced by aquifer storage. Scientific developments in the areas of water quality assessments, which include molecular detection methods for microbial pathogens and high resolution analytical chemistry methods for detecting trace chemicals, give unprecedented insight into the “polishing” offered by natural treatment. This provides opportunities for setting of compliance targets for mitigating risks to human health and maintaining high performance MAR schemes.

  4. Public-Private Partnerships in China’s Urban Water Sector

    Science.gov (United States)

    Mol, Arthur P. J.; Fu, Tao

    2008-01-01

    During the past decades, the traditional state monopoly in urban water management has been debated heavily, resulting in different forms and degrees of private sector involvement across the globe. Since the 1990s, China has also started experiments with new modes of urban water service management and governance in which the private sector is involved. It is premature to conclude whether the various forms of private sector involvement will successfully overcome the major problems (capital shortage, inefficient operation, and service quality) in China’s water sector. But at the same time, private sector involvement in water provisioning and waste water treatments seems to have become mainstream in transitional China. PMID:18256780

  5. Spatio-temporal dynamics of surface water quality in a Portuguese peri-urban catchment

    Science.gov (United States)

    Ferreira, Carla; Walsh, Rory; Coelho, Celeste; Ferreira, António

    2016-04-01

    Urban development poses great pressure on water resources, but the impact of different land-uses on streamwater quality in partly urbanized catchments is not well understood. Focussing on a Portuguese peri-urban catchment, this paper explores the impact of a mosaic of different urban and non-urban land-uses on streamwater quality, and the influence of a seasonal Mediterranean climate on pollutant dynamics. The catchment has a 40% urban cover, dispersed amongst patches of woodland (56%) and agricultural fields (4%). Apart from the catchment outlet, streamwater quality was assessed at three sub-catchment sites: (i) Porto Bordalo, encompassing a 39% urban area with a new major road; (ii) Espírito Santo, draining a sub-catchment with 49% urban cover, mostly comprising detached houses surrounded by gardens; and (iii) Quinta, with a 25% urban cover. The Porto Bordalo sub-catchment is underlain by limestone, whereas the Espírito Santo and Quinta sub-catchments overlie sandstone. Water quality variables (notably nutrients, heavy metals and COD) were assessed for samples collected at different stages in the storm hydrograph responses to ten rainfall events occurring between October 2011 and March 2013. Urban areas had great impacts on COD, with highest median concentrations in Espírito Santo (18.0 mg L-1) and lowest in Quinta (9.5 mgL-1). In Espírito Santo, the management of gardens triggered greatest median concentrations of N-NO3 (1.46 mgL-1, purban patterns and storm drainage system, should help enable urban planners to minimize adverse impacts of urbanization on water quality.

  6. Will urban expansion lead to an increase in future water pollution loads?--a preliminary investigation of the Haihe River Basin in northeastern China.

    Science.gov (United States)

    Dong, Yang; Liu, Yi; Chen, Jining

    2014-01-01

    Urban expansion is a major driving force changing regional hydrology and nonpoint source pollution. The Haihe River Basin, the political, economic, and cultural center of northeastern China, has undergone rapid urbanization in recent decades. To investigate the consequences of future urban sprawl on nonpoint source water pollutant emissions in the river basin, the urban sprawl in 2030 was estimated, and the annual runoff and nonpoint source pollution in the Haihe River basin were simulated. The Integrated Model of Non-Point Sources Pollution Processes (IMPULSE) was used to simulate the effects of urban sprawl on nonpoint source pollution emissions. The outcomes indicated that the urban expansion through 2030 increased the nonpoint source total nitrogen (TN), total phosphorous (TP), and chemical oxygen demand (COD) emissions by 8.08, 0.14, and 149.57 kg/km(2), respectively. Compared to 2008, the total nonpoint emissions rose by 15.33, 0.57, and 12.39 %, respectively. Twelve percent of the 25 cities in the basin would increase by more than 50 % in nonpoint source TN and COD emissions in 2030. In particular, the nonpoint source TN emissions in Xinxiang, Jiaozuo, and Puyang would rise by 73.31, 67.25, and 58.61 %, and the nonpoint source COD emissions in these cities would rise by 74.02, 51.99, and 53.27 %, respectively. The point source pollution emissions in 2008 and 2030 were also estimated to explore the effects of urban sprawl on total water pollution loads. Urban sprawl through 2030 would bring significant structural changes of total TN, TP, and COD emissions for each city in the area. The results of this study could provide insights into the effects of urbanization in the study area and the methods could help to recognize the role that future urban sprawl plays in the total water pollution loads in the water quality management process.

  7. Dynamics of the Urban Water-Energy Nexuses of Mumbai and London

    Science.gov (United States)

    De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.

    2016-12-01

    Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.

  8. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment

    Science.gov (United States)

    Chen, Lei; Dai, Ying; Zhi, Xiaosha; Xie, Hui; Shen, Zhenyao

    2018-04-01

    As two key threats to receiving water bodies, the generation mechanisms and processes of urban and agricultural nonpoint sources (NPSs) show clear differences, which lead to distinct characteristics of water quality responses with mixed land-uses catchments compared to single land-use ones. However, few studies have provided such insights in these characteristic or quantified different water environment responses to NPS pollution. In this study, an integrated modelling approach was developed for those complex catchments by combining three commonly used models: SWMM (Storm Water Management Model), SWAT (Soil and Water Assessment Tool) and MIKE 11. A case study was performed in a typical urban-rural catchment of Chao Lake, China. The simulated results indicated that urban NPS pollution responded sensitively to rainfall events and was greatly affected by the antecedent dry days. Compare to urban NPS, agricultural NPS pollution was characterized with the time-lag to rainfall depended on soil moisture and the post-rain-season emissions carried by lateral flows, and were also affected by the local farm-practice schedule. With comprehensive impacts from urban-rural land-uses, the time-interleaved urban and agricultural NPS pollution emissions and more abundant pollution accumulation both led to a decrease in the responsive time and an increase in the frequency of peak pollution concentration values even during the dry season. These obtained characteristics can provide guidance for drafting watershed management plans in similar mixed land use catchments.

  9. Literacy and Arts-Integrated Science Lessons Engage Urban Elementary Students in Exploring Environmental Issues

    Science.gov (United States)

    Gray, P.; Elser, C. F.; Klein, J. L.; Rule, A. C.

    2016-01-01

    This descriptive case study examined student attitudes, writing skills and content knowledge of urban fourth and fifth graders (6 males, 9 female) during a six-week literacy, thinking skill, and art-integrated environmental science unit. Pre- and post-test questions were used to address knowledge of environmental problems and student environmental…

  10. A web GIS based integrated flood assessment modeling tool for coastal urban watersheds

    Science.gov (United States)

    Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.

    2014-03-01

    Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.

  11. Sustainable urban development, the Dutch method: best practice for the European integrated approach?

    NARCIS (Netherlands)

    Boeve, M.N.; van Middelkoop, L.

    2010-01-01

    An important European environmental policy aim is to create "sustainable cities". The aim of this article is to explore the possible tensions between environmental measures and urban spatial planning law that can arise in creating such sustainable cities and examine opportunities for integrated

  12. Activity markers and household space in Swahili urban contexts: An integrated geoarchaeological approach

    DEFF Research Database (Denmark)

    Wynne-Jones, Stephanie; Sulas, Federica

    , this paper draws from recent work at a Swahili urban site to illustrate the potential and challenges of an integrated geoarchaeological approach to the study of household space. The site of Songo Mnara (14th–16thc. AD) thrived as a Swahili stonetown off the coast of Tanzania. Here, our work has concentrated...

  13. Agromere: Integrating urban agriculture in the development of the city of Almere

    NARCIS (Netherlands)

    Jansma, J.E.; Visser, A.

    2011-01-01

    The objective of Agromere, a planning concept for an area situated in the rapidly growing Dutch city of Almere (185,000 inhabitants), was to explore opportunities to re-integrate agriculture into modern Dutch city life, while at the same time inspiring stakeholders to incorporate urban agriculture

  14. Cultivating the Academic Integrity of Urban Adolescents with Ethical Philosophy Programming

    Science.gov (United States)

    Seider, Scott; Novick, Sarah; Gomez, Jessica

    2013-01-01

    This mixed-methods study considered the effects of ethical philosophy programming at a high-performing, high-poverty urban high school upon the academic integrity of participating adolescents ("n" = 279). Analyses of pre-post survey data revealed that participating adolescents reported significantly higher levels of academic integrity…

  15. Multivariate autoregressive modelling and conditional simulation of precipitation time series for urban water models

    NARCIS (Netherlands)

    Torres-Matallana, J.A.; Leopold, U.; Heuvelink, G.B.M.

    2017-01-01

    Precipitation is the most active flux and major input of hydrological systems. Precipitation controls hydrological states (soil moisture and groundwater level), and fluxes (runoff, evapotranspiration and groundwater recharge).
    Hence, precipitation plays a paramount role in urban water systems.

  16. The urban harvest approach as framework and planning tool for improved water and resource cycles

    NARCIS (Netherlands)

    Leusbrock, I.; Nanninga, T.A.; Lieberg, K.; Agudelo, C.; Keesman, K.J.; Zeeman, G.; Rijnaarts, H.

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource

  17. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Laura Essl

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation, however, is

  18. Discussion on Sustainable Water Technologies for Peri-Urban Areas of Mexico City: Balancing Urbanization and Environmental Conservation

    Directory of Open Access Journals (Sweden)

    Tiemen A. Nanninga

    2012-09-01

    Full Text Available Often centralized water supply, sanitation and solid waste services struggle to keep up with the rapid expansion of urban areas. The peri-urban areas are at the forefront of this expansion and it is here where decentralized technologies are increasingly being implemented. The introduction of decentralized technologies allows for the development of new opportunities that enable the recovery and reuse of resources in the form of water, nutrients and energy. This resource-oriented management of water, nutrients and energy requires a sustainable system aimed at low resource use and high recovery and reuse rates. Instead of investigating each sector separately, as has been traditionally done, this article proposes and discusses a concept that seeks to combine the in- and outflows of the different sectors, reusing water and other liberated resources where possible. This paper shows and demonstrates examples of different types of sustainable technologies that can be implemented in the peri-urban areas of Mexico City [rainwater harvesting, EcoSan and biofiltros (small constructed wetlands, and (vermi-composting]. An innovative participatory planning method, combining scenario development with a participatory planning workshop with key stakeholders, was applied and resulted in three concept scenarios. Specific technologies were then selected for each concept scenario that the technical feasibility and applicability was assessed. Following this, the resulting resource flows (nutrients, water and energy were determined and analyzed. The results show that decentralized technologies not only have the potential to deliver adequate water supply, sanitation and solid waste services in peri-urban areas and lessen environmental pollution, but also can recover significant amounts of resources thereby saving costs and providing valuable inputs in, for instance, the agricultural sector. Social acceptance of the technologies and institutional cooperation

  19. Can Mobile-Enabled Payment Methods Reduce Petty Corruption in Urban Water Provision?

    Directory of Open Access Journals (Sweden)

    Aaron Krolikowski

    2014-02-01

    Full Text Available Corruption in the urban water sector constrains economic growth and human development in low-income countries. This paper empirically evaluates the ability of novel mobile-enabled payment methods to reduce information asymmetries and mitigate petty corruption in the urban water sector’s billing and payment processes. Overcoming these barriers may promote improved governance and water service delivery. The case of Dar es Salaam is used to explore the role of mobile-enabled payment instruments through the use of a stratified random sample of 1097 water utility customers and 42 interviews with representatives from the water sector, the telecommunications industry, civil society, and banking institutions. Results show that mobile-enabled payment methods can reduce information asymmetries and the incidence of petty corruption to promote improved financial management by making payment data more transparent and limiting the availability of economic rents in the billing and payment process. Implications for African urban water services include wider availability and more effective use of human and financial resources. These can be used to enhance water service delivery and citizen participation in the production of urban water supplies. The use of mobile-enabled payment methods in the urban water sector represents an application of mobile communication technologies in a low-income country with proven potential for scalability that simultaneously supports the achievement of development objectives.

  20. Urban Plan and Water Infrastructures Planning: A Methodology Based on Spatial ANP

    Directory of Open Access Journals (Sweden)

    Michele Grimaldi

    2017-05-01

    Full Text Available Cities are exploding, occupying rural territory in dispersed and fragmented ways. A consequence of this phenomenon is that the demand for utilities includes more and more extensive territories. Among them, fulfilling the demand for services related to integrated water service presents many difficulties. The economic costs needed to meet service demand and the environmental costs associated with its non-fulfilment are inversely proportional to the population needing service in rural areas, since that population is distributed across a low-density gradient. Infrastructure planning, within the area of competence, generally follows a policy of economic sustainability, fixing a service coverage threshold in terms of a “sufficient” concentration of population and economic activity (91/271/CEE. This threshold, homogenous within the territorial limits of a water infrastructure plan, creates uncertainty in the planning of investments, which are not sized on the actual, appropriately spatialized, demand for service. Careful prediction of the location of infrastructure investments would guarantee not only economic savings but also reduce the environmental costs generated by the lack of utilities. Therefore, is necessary to create a link between water infrastructure planning and urban planning, which is responsible for the future spatial distribution of service demand. In this study, the relationships between the instruments of regulation and planning are compared by a multi-criteria spatial analysis network (analytic network process (ANP. This method, tested on a sample of a city in southern Italy, allows us to optimize the design and location of the investment needed to meet the service criteria, looking at the actual efficiency of the networks. The result of this application is a suitability map that allows us to validate the criteria for defining urban transformations.

  1. Contribution of complementary foods to the total daily water needs of urban Guatemalan infants

    NARCIS (Netherlands)

    Enneman, A.; Campos, R.; Hernandez, L.; Palma, A.V.; Vossenaar, M.; Solomons, N.W.

    2010-01-01

    Background: Estimates of adequate intake (AI) for water only became available in 2005. The daily water AI for 6-12-month-old infants of both sexes is 800 mL. The present study aimed to estimate the water intake of urban infants receiving both breast milk and complementary feeding (CF) and to compare

  2. A Case Study on Nitrogen Uptake and Denitrification in a Restored Urban Stream in Baltimore, Maryland

    Science.gov (United States)

    Restoring urban infrastructure and managing the nitrogen cycle represent emerging challenges for urban water quality. We investigated whether stormwater control measures (SCMs), a form of green infrastructure, integrated into restored and degraded urban stream networks can influe...

  3. Integration of cabs and hired cars in urban transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer,

    1984-01-01

    Integrating taxis and limousine services into the public transit system has become a major goal in designing new forms of public transportation. Expanding the spectrum of possible use for these vehicles - for both scheduled and on-demand service - requires, first of all, a qualitative and quantitative analysis of the current state of affairs in this area. Administrative, organizational, technical, and legal issues as well as the respective traffic patterns had to be investigated. This investigation was to find out if, and in what ways, taxis and limousine services could actually be incorporated into the public transit system. In addition, the results were interpreted against the background of experiments and tentative models for regular, scheduled and supplementary public transit. As a result, we developed a generalized concept for integrating the two systems and proposed possible forms of service, organization, and financial calculation. Included were legal issues and comments on contractual relations between the partners.

  4. Impact of different irrigation systems on water quality in peri-urban areas of Gujarat, India

    OpenAIRE

    Vangani, Ruchi; Saxena, Deepak; Gerber, Nikolaus; Mavalankar, Dileep; von Braun, Joachim

    2016-01-01

    The ever-growing population of India, along with the increasing competition for water for productive uses in different sectors - especially irrigated agriculture and related local water systems and drainage - poses a challenge in an effort to improve water quality and sanitation. In rural and peri-urban settings, where agriculture is one of the main sources of livelihood, the type of water use in irrigated agriculture has complex interactions with drinking water and sanitation. In particular,...

  5. Integrating Product Water Quality Effects In Holistic Assessments Of Water Systems

    OpenAIRE

    Rygaard, Martin

    2011-01-01

    While integrated assessments of sustainability of water systems are largely focused on quantity issues, chemical use, and energy consumption, effects of the supplied water quality are often overlooked. Drinking water quality affects corrosion rates, human health, applicability of water and aesthetics. Even small changes in the chemical composition of water may accumulate large impacts on city scale. Here, a method for integrated assessment of water quality is presented. Based on dose-response...

  6. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    Science.gov (United States)

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H 2 O 2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO 3 -N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Using Automatic Control Approach In Detention Storages For Storm Water Management In An Urban Watershed

    Science.gov (United States)

    Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.

  8. Micropollutants throughout an integrated urban drainage model: Sensitivity and uncertainty analysis

    Science.gov (United States)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    2017-11-01

    The paper presents the sensitivity and uncertainty analysis of an integrated urban drainage model which includes micropollutants. Specifically, a bespoke integrated model developed in previous studies has been modified in order to include the micropollutant assessment (namely, sulfamethoxazole - SMX). The model takes into account also the interactions between the three components of the system: sewer system (SS), wastewater treatment plant (WWTP) and receiving water body (RWB). The analysis has been applied to an experimental catchment nearby Palermo (Italy): the Nocella catchment. Overall, five scenarios, each characterized by different uncertainty combinations of sub-systems (i.e., SS, WWTP and RWB), have been considered applying, for the sensitivity analysis, the Extended-FAST method in order to select the key factors affecting the RWB quality and to design a reliable/useful experimental campaign. Results have demonstrated that sensitivity analysis is a powerful tool for increasing operator confidence in the modelling results. The approach adopted here can be used for blocking some non-identifiable factors, thus wisely modifying the structure of the model and reducing the related uncertainty. The model factors related to the SS have been found to be the most relevant factors affecting the SMX modeling in the RWB when all model factors (scenario 1) or model factors of SS (scenarios 2 and 3) are varied. If the only factors related to the WWTP are changed (scenarios 4 and 5), the SMX concentration in the RWB is mainly influenced (till to 95% influence of the total variance for SSMX,max) by the aerobic sorption coefficient. A progressive uncertainty reduction from the upstream to downstream was found for the soluble fraction of SMX in the RWB.

  9. Impacts of Urbanization on Water Use and Energy-related CO2 Emissions of Residential Consumption in China: A Spatio-temporal Analysis during 2003-2012

    Science.gov (United States)

    Cai, J.; Yin, H.; Varis, O.

    2017-12-01

    China has been undergoing unprecedented urbanization since the 1978 economic reform, especially with the present growth rate for the last decade at approximately 20 million people per year. This rapid and perennial progress has been raising soaring concerns on environmental sustainability, due to a severe nationwide deterioration of China's environment and ecosystems in the context of ceaselessly increasing demand for water and energy. It is therefore of prime necessity and importance to comprehend China's water and energy security under the effect of its dramatic demographic changes. Analyses of this issue still remain few and far between, and a comprehensive picture has not been available that would help understand China's recent development in urbanization, its spatial features and links to water and energy security, particularly regarding residential consumption, as well as national policy-making in the context of its water-energy nexus. Consequently, we addressed these knowledge gaps by performing an integrated and quantitative spatio-temporal analysis of the impacts of China's urbanization on water use of residential consumption (WURC) and energy-related CO2 emissions of residential consumption (ERCERC). We proposed per capita WURC and per capita ERCERC as potential national indicators for policy-making targets of its water and energy security. Our study, conducted over the period 2003-2012, for the first time demonstrated strong evidence of the significant impacts of China's urbanization on WURC and ERCERC. Its highlights can be portrayed as follows: (1) rural areas dominated per capita WURC at both national and provincial scales, with a significant increasing trend, while WURC share and per capita WURC in urban areas decreased, despite the fact that the urban population was soaring; (2) per capita ERCERC was significantly augmented in both urban and rural areas nationwide; and (3) per capita WURC and per capita ERCERC had a significant positive correlation

  10. Managing urban water supplies in developing countries Climate change and water scarcity scenarios

    Science.gov (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  11. The inter-relationships between urban dynamics and water resource and supply based on multitemporal analysis

    Science.gov (United States)

    Aldea, Alexandru; Aldea, Mihaela

    2016-08-01

    The growth and concentration of population, housing and industry in urban and suburban areas in the continuous evolution of a city over time causes complex social, economic, and physical challenges. The population and its relationship with the use and development of the land and water is a critical issue of urban growth, and since ancient times land, water and man were directly involved in the human populations' survival. Nevertheless the current potential of study over this relationship between urban growth, water supply, drainage and water resources conditions becomes more and more attractive due to the possibility to make use of the broader variety of information sources and technologies readily available in recent years, with emphasis on the open data and on the big data as primary sources. In this regard we present some new possibilities of analyses over the demographics, land use/land cover and water supply and conservation based on a study over a Romanian region of development (Bucharest-Ilfov). As urban development usually outgrows the existing water supply systems, the resolution consists in drilling new and deeper wells, building new water distribution pipelines, building longer aqueducts and larger reservoirs, or finding new sources and constructing completely new water supply systems, water supplies may evolve this way from a result into a cause and driver of urban growth. The evolution trends of the studied area was estimated based on the open satellite time-series imagery and remote sensing techniques by land use/land cover extraction and the identification of the changes in urbanization. The survey is mainly focused on the expansion of the water network in terms of areal, total length and number of connections correlated with the amount of water produced, consumed and lost within a supply zone. Some urban human activities including the industrial ones alter water resource by pollution, over pumping of groundwater, construction of dams and reservoirs

  12. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  13. Integrative evaluation for sustainable decisions of urban wastewater system management under uncertainty

    Science.gov (United States)

    Hadjimichael, A.; Corominas, L.; Comas, J.

    2017-12-01

    With sustainable development as their overarching goal, urban wastewater system (UWS) managers need to take into account multiple social, economic, technical and environmental facets related to their decisions. In this complex decision-making environment, uncertainty can be formidable. It is present both in the ways the system is interpreted stochastically, but also in its natural ever-shifting behavior. This inherent uncertainty suggests that wiser decisions would be made under an adaptive and iterative decision-making regime. No decision-support framework has been presented in the literature to effectively addresses all these needs. The objective of this work is to describe such a conceptual framework to evaluate and compare alternative solutions for various UWS challenges within an adaptive management structure. Socio-economic aspects such as externalities are taken into account, along with other traditional criteria as necessary. Robustness, reliability and resilience analyses test the performance of the system against present and future variability. A valuation uncertainty analysis incorporates uncertain valuation assumptions in the decision-making process. The framework is demonstrated with an application to a case study presenting a typical problem often faced by managers: poor river water quality, increasing population, and more stringent water quality legislation. The application of the framework made use of: i) a cost-benefit analysis including monetized environmental benefits and damages; ii) a robustness analysis of system performance against future conditions; iii) reliability and resilience analyses of the system given contextual variability; and iv) a valuation uncertainty analysis of model parameters. The results suggest that the installation of bigger volumes would give rise to increased benefits despite larger capital costs, as well as increased robustness and resilience. Population numbers appear to affect the estimated benefits most, followed by

  14. PIXE analysis of tree leaves as a possible comparative integral monitor of particulates in urban areas

    International Nuclear Information System (INIS)

    Zucchiati, A.; Annegarm, H.J.; Chisci, R.

    1988-01-01

    The possibility of obtaing integral comparative data for particulate distribution in urban areas from PIXE analysis of tree leaves is discussed in relation to the leaf gross anatomy, to the diffusion of selected tree species in such areas and to the implementation of experimental techniques necessary to make PIXE analysis effective. Multielemental scans were performed on a small set samples; results are compared to PIXE analysis of typical urban aerosols. The validity of the method and the criteria for yearly relative comparisons of different areas are discissed

  15. Analysing monthly sectorial water use and its influence on salt intrusion induced water shortage in urbanized deltas

    NARCIS (Netherlands)

    Yao, Mingtian; Yan, Dan; Kabat, Pavel; Huang, Heqing; Hutjes, Ronald W.A.; Werners, Saskia E.

    2016-01-01

    Urbanizing delta regions face seasonal water shortages induced by rising salt intrusion. Decreasing river discharge is readily listed as the major cause of water shortage events. Yet, observations of river discharge often fail to support this attribution. Evidence of the association between

  16. Inventing a paradigm of piped water: the evolution of urban water concessions on the European continent, 1800-1970

    NARCIS (Netherlands)

    Braadbaart, O.D.

    2007-01-01

    European foundries master the art of mass-producing cast iron pipes in the early 1800s (Cast Iron Soil Pipe Institute 2006:1). Slow sand filters, buried pipes with bell and spigot joints, steam powered pumps, and water towers make for a universally applicable technology for urban water supply. Piped

  17. Armenia : Towards Integrated Water Resources Management

    OpenAIRE

    World Bank

    2001-01-01

    The objective of this paper is to examine the challenges in the water sector faced by Armenia today, and outline options for management and allocation of its water resources in the future, considering the need for a stable, transparent apublic sector management framework and sustainable resource use for long-term private investment and job creation, and for appropriate balances among water...

  18. Corporatization of the water sector: Implications for transitioning to sustainable urban water management

    DEFF Research Database (Denmark)

    Fratini, Chiara; Elle, Morten; Brown, Norman R.

    2012-01-01

    In the context of climate change, the Danish water sector is experiencing two major pressures. On one hand, a number of agents are pushing towards more sustainable urban water management (SUWM) approaches with the aim of improving surface water quality and mitigating flood risk. On the other hand....... A more direct collaboration of the national regulator of competitive performances with government institutions and other non-governmental actors might be an effective answer to such challenges....... the influencing factors for transitioning to SUWM and highlighted the potential governance attributes for enhancing and/or constraining such change. This paper explores the corporatization of the water sector and its implications for transitioning to SUWM. On the base of a preliminary literature review we...... identify the rationales for and drawbacks of corporatization and compare them with the critical factors to build institutional capacity for SUWM. Preliminary results suggest that corporatization is expected to create a range of challenges that might hinder the transition towards more SUWM approaches...

  19. Urban food-energy-water nexus: a case study of Beijing

    Science.gov (United States)

    Wu, Z.; Shao, L.

    2017-12-01

    The interactions between the food, energy and water sectors are of great importance to urban sustainable development. This work presents a framework to analyze food-energy-water (FEW) nexus of a city. The method of multi-scale input-output analysis is applied to calculate consumption-based energy and water use that is driven by urban final demand. It is also capable of accounting virtual energy and water flows that is embodied in trade. Some performance indicators are accordingly devised for a comprehensive understanding of the urban FEW nexus. A case study is carried out for the Beijing city. The embodied energy and water use of foods, embodied water of energy industry and embodied energy of water industry are analyzed. As a key node of economic network, Beijing exchanges a lot of materials and products with external economic systems, especially other Chinese provinces, which involves massive embodied energy and water flows. As a result, Beijing relies heavily on outsourcing energy and water to meet local people's consumption. It is revealed that besides the apparent supply-demand linkages, the underlying interconnections among food, water and energy sectors are critical to create sustainable urban areas.

  20. [Remote sensing monitoring and screening for urban black and odorous water body: A review.

    Science.gov (United States)

    Shen, Qian; Zhu, Li; Cao, Hong Ye

    2017-10-01

    Continuous improvement of urban water environment and overall control of black and odorous water body are not merely national strategic needs with the action plan for prevention and treatment of water pollution, but also the hot issues attracting the attention of people. Most previous researches concentrated on the study of cause, evaluation and treatment measures of this phenomenon, and there are few researches on the monitoring using remote sensing, which is often a strain to meet the national needs of operational monitoring. This paper mainly summarized the urgent research problems, mainly including the identification and classification standard, research on the key technologies, and the frame of remote sensing screening systems for the urban black and odorous water body. The main key technologies were concluded too, including the high spatial resolution image preprocessing and extraction technique for black and odorous water body, the extraction of water information in city zones, the classification of the black and odorous water, and the identification and classification technique based on satellite-sky-ground remote sensing. This paper summarized the research progress and put forward research ideas of monitoring and screening urban black and odorous water body via high spatial resolution remote sensing technology, which would be beneficial to having an overall grasp of spatial distribution and improvement progress of black and odorous water body, and provide strong technical support for controlling urban black and odorous water body.

  1. DETERMINING INDICATORS OF URBAN HOUSEHOLD WATER CONSUMPTION THROUGH MULTIVARIATE STATISTICAL TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Gledsneli Maria Lima Lins

    2010-12-01

    Full Text Available Water has a decisive influence on populations’ life quality – specifically in areas like urban supply, drainage, and effluents treatment – due to its sound impact over public health. Water rational use constitutes the greatest challenge faced by water demand management, mainly with regard to urban household water consumption. This makes it important to develop researches to assist water managers and public policy-makers in planning and formulating water demand measures which may allow urban water rational use to be met. This work utilized the multivariate techniques Factor Analysis and Multiple Linear Regression Analysis – in order to determine the participation level of socioeconomic and climatic variables in monthly urban household consumption changes – applying them to two districts of Campina Grande city (State of Paraíba, Brazil. The districts were chosen based on socioeconomic criterion (income level so as to evaluate their water consumer’s behavior. A 9-year monthly data series (from year 2000 up to 2008 was utilized, comprising family income, water tariff, and quantity of household connections (economies – as socioeconomic variables – and average temperature and precipitation, as climatic variables. For both the selected districts of Campina Grande city, the obtained results point out the variables “water tariff” and “family income” as indicators of these district’s household consumption.

  2. Life cycle assessments of urban water systems: a comparative analysis of selected peer-reviewed literature.

    Science.gov (United States)

    Loubet, Philippe; Roux, Philippe; Loiseau, Eleonore; Bellon-Maurel, Veronique

    2014-12-15

    Water is a growing concern in cities, and its sustainable management is very complex. Life cycle assessment (LCA) has been increasingly used to assess the environmental impacts of water technologies during the last 20 years. This review aims at compiling all LCA papers related to water technologies, out of which 18 LCA studies deals with whole urban water systems (UWS). A focus is carried out on these 18 case studies which are analyzed according to criteria derived from the four phases of LCA international standards. The results show that whereas the case studies share a common goal, i.e., providing quantitative information to policy makers on the environmental impacts of urban water systems and their forecasting scenarios, they are based on different scopes, resulting in the selection of different functional units and system boundaries. A quantitative comparison of life cycle inventory and life cycle impact assessment data is provided, and the results are discussed. It shows the superiority of information offered by multi-criteria approaches for decision making compared to that derived from mono-criterion. From this review, recommendations on the way to conduct the environmental assessment of urban water systems are given, e.g., the need to provide consistent mass balances in terms of emissions and water flows. Remaining challenges for urban water system LCAs are identified, such as a better consideration of water users and resources and the inclusion of recent LCA developments (territorial approaches and water-related impacts). Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona

    Science.gov (United States)

    Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.

    2018-02-01

    The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.

  4. Modeling Integrated Water-User Decisions with Intermittent Supplies

    Science.gov (United States)

    Lund, J. R.; Rosenberg, D.

    2006-12-01

    We present an economic-engineering method to estimate urban water use demands with intermittent water supplies. A two-stage, probabilistic optimization formulation includes a wide variety of water supply enhancement and conservation actions that individual households can adopt to meet multiple water quality uses with uncertain water availability. We embed the optimization in Monte-Carlo simulations to show aggregate effects at a utility (citywide) scale for a population of user conditions and decisions. Parametric analysis provides derivations of supply curves to subsidize conservation, demand responses to alternative pricing, and customer willingness-to-pay to avoid shortages. Results show a good empirical fit for the average and distribution of billed residential water use in Amman, Jordan. Additional outputs give likely market penetration rates for household conservation actions, associated water savings, and subsidies required to entice further adoption. We discuss new insights to size, target, market, and finance conservation programs and interpret a demand curve with block pricing.

  5. Scale effects on spatially varying relationships between urban landscape patterns and water quality.

    Science.gov (United States)

    Sun, Yanwei; Guo, Qinghai; Liu, Jian; Wang, Run

    2014-08-01

    Scientific interpretation of the relationships between urban landscape patterns and water quality is important for sustainable urban planning and watershed environmental protection. This study applied the ordinary least squares regression model and the geographically weighted regression model to examine the spatially varying relationships between 12 explanatory variables (including three topographical factors, four land use parameters, and five landscape metrics) and 15 water quality indicators in watersheds of Yundang Lake, Maluan Bay, and Xinglin Bay with varying levels of urbanization in Xiamen City, China. A local and global investigation was carried out at the watershed-level, with 50 and 200 m riparian buffer scales. This study found that topographical features and landscape metrics are the dominant factors of water quality, while land uses are too weak to be considered as a strong influential factor on water quality. Such statistical results may be related with the characteristics of land use compositions in our study area. Water quality variations in the 50 m buffer were dominated by topographical variables. The impact of landscape metrics on water quality gradually strengthen with expanding buffer zones. The strongest relationships are obtained in entire watersheds, rather than in 50 and 200 m buffer zones. Spatially varying relationships and effective buffer zones were verified in this study. Spatially varying relationships between explanatory variables and water quality parameters are more diversified and complex in less urbanized areas than in highly urbanized areas. This study hypothesizes that all these varying relationships may be attributed to the heterogeneity of landscape patterns in different urban regions. Adjustment of landscape patterns in an entire watershed should be the key measure to successfully improving urban lake water quality.

  6. Modeling the resilience of urban water supply using the capital portfolio approach

    Science.gov (United States)

    Krueger, E. H.; Klammler, H.; Borchardt, D.; Frank, K.; Jawitz, J. W.; Rao, P. S.

    2017-12-01

    The dynamics of global change challenge the resilience of cities in a multitude of ways, including pressures resulting from population and consumption changes, production patterns, climate and landuse change, as well as environmental hazards. Responses to these challenges aim to improve urban resilience, but lack an adequate understanding of 1) the elements and processes that lead to the resilience of coupled natural-human-engineered systems, 2) the complex dynamics emerging from the interaction of these elements, including the availability of natural resources, infrastructure, and social capital, which may lead to 3) unintended consequences resulting from management responses. We propose a new model that simulates the coupled dynamics of five types of capitals (water resources, infrastructure, finances, political capital /management, and social adaptive capacity) that are necessary for the provision of water supply to urban residents. We parameterize the model based on data for a case study city, which is limited by constraints in water availability, financial resources, and faced with degrading infrastructure, as well as population increase, which challenge the urban management institutions. Our model analyzes the stability of the coupled system, and produces time series of the capital dynamics to quantify its resilience as a result of the portfolio of capitals available to usher adaptive capacity and to secure water supply subjected to multiple recurring shocks. We apply our model to one real urban water supply system located in an arid environment, as well as a wide range of hypothetical case studies, which demonstrates its applicability to various types of cities, and its ability to quantify and compare water supply resilience. The analysis of a range of urban water systems provides valuable insights into guiding more sustainable responses for maintaining the resilience of urban water supply around the globe, by showing how unsustainable responses risk the

  7. Tapping Alternatives: The Benefits of Managing Urban Water Demands.

    Science.gov (United States)

    Dziegielewski, Benedykt; Baumann, Duane D.

    1992-01-01

    Presents the California plan for water demand management. Water conservation techniques are used to balance demand with supply. Discusses the implementation process: (1) water-use and service area analysis; (2) water-use forecasts; (3) benefit-cost analysis; (4) and development of a long-term water management plan. (17 references) (MCO)

  8. Urban Surface Water Quality, Flood Water Quality and Human Health Impacts in Chinese Cities. What Do We Know?

    Directory of Open Access Journals (Sweden)

    Yuhan Rui

    2018-02-01

    Full Text Available Climate change and urbanization have led to an increase in the frequency of extreme water related events such as flooding, which has negative impacts on the environment, economy and human health. With respect to the latter, our understanding of the interrelationship between flooding, urban surface water and human health is still very limited. More in-depth research in this area is needed to further strengthen the process of planning and implementation of responses to mitigate the negative health impacts of flooding in urban areas. The objective of this paper is to assess the state of the research on the interrelationship between surface water quality, flood water quality and human health in urban areas based on the published literature. These insights will be instrumental in identifying and prioritizing future research needs in this area. In this study, research publications in the domain of urban flooding, surface water quality and human health were collated using keyword searches. A detailed assessment of these publications substantiated the limited number of publications focusing on the link between flooding and human health. There was also an uneven geographical distribution of the study areas, as most of the studies focused on developed countries. A few studies have focused on developing countries, although the severity of water quality issues is higher in these countries. The study also revealed a disparity of research in this field across regions in China as most of the studies focused on the populous south-eastern region of China. The lack of studies in some regions has been attributed to the absence of flood water quality monitoring systems which allow the collection of real-time water quality monitoring data during flooding in urban areas. The widespread implementation of cost effective real-time water quality monitoring systems which are based on the latest remote or mobile phone based data acquisition techniques is recommended

  9. Integrated environmental monitoring and simulation system for use as a management decision support tool in urban areas.

    Science.gov (United States)

    Fatta, D; Naoum, D; Loizidou, M

    2002-04-01

    Leachates are generated as a result of water or other liquid passing through waste at a landfill site. These contaminated liquids originate from a number of sources, including the water produced during the decomposition of the waste as well as rain-fall which penetrates the waste and dissolves the material with which it comes into contact. The penetration of the rain-water depends on the nature of the landfill (e.g. surface characteristics, type and quantity of vegetation, gradient of layers, etc). The uncontrolled infiltration of leachate into the vadose (unsaturated) zone and finally into the saturated zone (groundwater) is considered to be the most serious environmental impact of a landfill. In the present paper the water flow and the pollutant transport characteristics of the Ano Liosia Landfill site in Athens (Greece) were simulated by creating a model of groundwater flows and contaminant transport. A methodology for the model is presented. The model was then integrated into the Ecosim system which is a prototype funded by the EU, (Directorate General XIII: Telematics and Environment). This is an integrated environmental monitoring and modeling system, which supports the management of environmental planning in urban areas.

  10. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  11. INTEGRATED WATER TREATMENT SYSTEM PERFORMANCE EVALUATION

    International Nuclear Information System (INIS)

    Sexton, R.A.; Meeuwsen, W.E.

    2009-01-01

    This document describes the results of an evaluation of the current Integrated Water Treatment System (IWTS) operation against design performance and a determination of short term and long term actions recommended to sustain IWTS performance. The KW IWTS was designed to treat basin water and maintain basin clarity during fuel retrieval, washing, and packaging activities in the KW Basin. The original design was based on a mission that was limited to handling of KW Basin fuel. The use of the IWTS was extended by the decision to transfer KE fuel to KW to be cleaned and packaged using KW systems. The use was further extended for the packaging of two more Multi-Canister Overpacks (MCOs) containing legacy fuel and scrap. Planning is now in place to clean and package Knock Out Pot (KOP) Material in MCOs using these same systems. Some washing of KOP material in the Primary Cleaning Machine (PCM) is currently being done to remove material that is too small or too large to be included in the KOP Material stream. These plans will require that the IWTS remain operational through a campaign of as many as 30 additional MCOs, and has an estimated completion date in 2012. Recent operation of the IWTS during washing of canisters of KOP Material has been impacted by low pressure readings at the inlet of the P4 Booster Pump. The system provides a low pressure alarm at 10 psig, and low-low pressure interlock at 5 psig. The response to these low readings has been to lower total system flow to between 301 and 315 gpm. In addition, the IWTS operator has been required to operate the system in manual mode and make frequent adjustments to the P4 booster pump speed during PCM washes. The preferred mode of operation is to establish a setpoint of 317 gpm for the P4 pump speed and run IWTS in semi-automatic mode. Based on hydraulic modeling compared to field data presented in this report, the low P4 inlet pressure is attributed to restrictions in the 2-inch KOP inlet hose and in the KOP itself

  12. Challenges of communicating integrated water resource management in Zimbabwe

    NARCIS (Netherlands)

    Marimbe, S.; Manzungu, E.

    2003-01-01

    With the promulgation of the 1998 Water Act the Government of Zimbabwe took a decisive step to reform the country's water sector, to bring it in line with contemporary socio-political realities obtaining in the country, and in tune with the philosophy of integrated water resources management.

  13. Multiobjective decision-making in integrated water management

    NARCIS (Netherlands)

    Wind, H.G.; Pouwels, I.H.M.; Pouwels, I.H.M.; Witter, V.J.

    1995-01-01

    Traditionally, decision-making by water authorities in the Netherlands is largely based on intuition. Their tasks were, after all, relatively few and straight-forward. The growing number of tasks, together with the new integrated approach on water management issues, however, induces water

  14. Adaption to Extreme Rainfall with Open Urban Drainage System: An Integrated Hydrological Cost-Benefit Analysis

    DEFF Research Database (Denmark)

    Zhou, Qianqian; Panduro, Toke Emil; Thorsen, Bo Jellesmark

    2013-01-01

    with extreme rainfalls is evaluated using a quantitative flood risk approach based on urban inundation modeling and socio-economic analysis of corresponding costs and benefits. A hedonic valuation model is applied to capture the local economic gains or losses from more water bodies in green areas....... The framework was applied to the northern part of the city of Aarhus, Denmark. We investigated four adaptation strategies that encompassed laissez-faire, larger sewer pipes, local infiltration units, and open drainage system in the urban green structure. We found that when taking into account environmental...

  15. The future of urban waste water reuse. El futuro de la reutilizacion de las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Farias Iglesias, M. (PRIDESA. Madrid (Spain))

    1992-11-01

    An explanation is given for the interest in the re-use of urban waste water, together with the possible uses for it. Water quality parameters such as the quantity of material in suspension, fertilizers, heavy metals, boron, bacteria and viruses, salinity, toxicity and pathogenous agents are given for water to be re-used, whether it be for drinking purposes or industrial use. Consideration is also given to the possibility of injecting this water into aquifers. (Author)

  16. Virtual reality in urban water management: communicating urban flooding with particle-based CFD simulations.

    Science.gov (United States)

    Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang

    2018-01-01

    For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.

  17. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models.

    Science.gov (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.

    2014-12-01

    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  18. An Integrated Analysis of Changes in Water Stress in Europe

    DEFF Research Database (Denmark)

    Henrichs, T.; Lehner, B.; Alcamo, J.

    2002-01-01

    Future changes in water availability with climate change and changes in water use due to socio-economic development are to occur in parallel. In an integrated analysis we bring together these aspects of global change in a consistent manner, and analyse the water stress situation in Europe. We find...... that today high water stress exists in one-fifth of European river basin area. Under a scenario projection, increases in water use throughout Eastern Europe are accompanied by decreases in water availability in most of Southern Europe--combining these trends leads to a marked increase in water stress...

  19. SIMULTANEOUS INTEGRATION OF WATER AND ENERGY: ACHIEVEMENTS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    Junior Lorenzo Llanes

    2016-01-01

    Full Text Available Process Integration (PI is a tool that for over forty years has demonstrated its strength to provide optimal solutions to complex problems. The interaction of exchange systems of energy and water networks is a typical case of such problems. The gradual increase in the consumption of water and energy has determined the development of methodologies that take into account the simultaneous integration of these resources. This paper aims to present a literature review related to the simultaneous integration of water and energy. First, general items related to this research field are presented, emphasizing the approaches to simultaneous integration (Pinch Analysis and Mathematical Programming. Some recent cases of studies, demonstrating the strength of these tools mainly focus to sugar industry, are also presented. Finally some of the challenges to be faced by the simultaneous integration of water and energy for the diversification of the Cuban sugar industry are presented.

  20. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment.

    Science.gov (United States)

    Chen, Xiaochen; Chen, Yuqing; Shimizu, Toshiyuki; Niu, Jia; Nakagami, Ken'ichi; Qian, Xuepeng; Jia, Baoju; Nakajima, Jun; Han, Ji; Li, Jianhua

    2017-05-15

    An innovative ecosystem services-based sustainability assessment was conducted in the important urban agglomeration of the Lake Biwa region, Japan, covering the time period from 1950 to 2014. A 22-indicator system was established that was based on the major ecosystem services of Lake Biwa and its water courses, i.e., provisioning services regarding aquatic products and water; regulating services regarding floods and water quality; cultural services regarding recreation and tourism, scientific research, and environmental education; and supporting services regarding biodiversity. First, changes in the eight ecosystem services were discussed together with the considerable experience and difficult lessons that can be drawn from the development trajectory. Next, with the indicators rearranged according to sustainability principles, the regional sustainability over the past six-plus decades was assessed. In general, this urban agglomeration has been progressing in terms of its sustainability, although economic and social development was achieved at the cost of environmental degradation in the past, and the current economic downturn is hurting the balanced development and integrated benefits. The results lead directly to recommendations for regional development, especially in terms of economic rejuvenation, from the perspective of improving management of Lake Biwa's water resources. Moreover, the relevant knowledge is educational and inspirational for other places in the world that are facing similar development issues. For example, the effective and even pioneering countermeasures that have been taken against environmental degradation, as well as the participation and collaboration of multiple stakeholders, could be useful as a model. Moreover, the study invites increased understanding of ecosystem vulnerability to anthropogenic devastation and emphasizes the priority of precautionary measures over countermeasures in the context of holistic urban planning and sustainable

  1. The potential water buffering capacity of urban green infrastructure in an arid environment

    Science.gov (United States)

    Wang, Z.; Yang, J.

    2017-12-01

    Urban green infrastructure offers arid cities an attractive means of mitigation/adaptation to environmental challenges of elevated thermal stress, but imposes the requirement of outdoor irrigation that aggravates the stress of water resource management. Future development of cities is inevitably constrained by the limited availability of water resources, under challenges of emergent climate change and continuous population growth. This study used the Weather Research and Forecasting model with urban dynamics to assess the potential water buffering capacity of urban green infrastructure in arid environments and its implications for sustainable urban planning. The Phoenix metropolitan area, Arizona, United States, is adopted as a testbed with two hypothetical cases, viz. the water-saving and the fully-greening scenarios investigated. Modifications of the existing green infrastructure and irrigation practices are found to significantly influence the thermal environment of Phoenix. In addition, water saving by xeriscaping (0.77 ± 0.05 × 10^8 m^3) allows the region to support 19.8% of the annual water consumption by the projected 2.62 million population growth by 2050, at a cost of an increase in urban ambient temperature of about 1 o^C.

  2. Reconstructing the role of landuse change on water yield at the Maya urban center Tikal, Guatemala [700-800 AD

    Science.gov (United States)

    Shu, L.; Duffy, C.; French, K. D.; Murtha, T., Jr.; Garcia-Gonzalez, S. E.

    2014-12-01

    In recent years scientists have been debating the role of climate on the trajectory of Maya culture in the Late Classic period, 600-900 AD. Paleo-climatologists have reconstructed realizations of climate [Haug 2003; Medina-Elizalde 2012; Hodell 1995] that offer evidence for reduced precipitation in the Late Classic period. Recently French et al [2014] proposed that landuse change may also play an important role in the available water supply at Tikal, with the removal of tropical forest and conversion to maize-agriculture and urban landuse leading to extensive development of sophisticated water storage systems and rainfall harvesting for water supply and irrigation. Rapid population growth is a concurrent and compounding factor [Scarborough 2012; Shaw 2003] where landuse impacts the distribution and availability of water storage in the surrounding watershed. Although proposed climate scenarios for the Late Classic offer a quantitative scenario for possible atmospheric conditions at Tikal, the impact of land use change on the distribution and availability of water supply has not been evaluated. In this research we reconstruct the plausible vulnerability of the water supply at Tikal under the combined forces of climatic and land use change. The Penn State Integrated Hydrologic Model (PIHM) [Qu and Duffy 2007] is used to simulate the daily-to-seasonal space and time distribution of soil moisture, groundwater and surface water storage for the period 700-800 AD, the peak of Tikal's population history. The analysis includes a quantitative assessment of the likely changes in available water storage as tropical forest is converted to maize agriculture and urban land. In particular we examine the important control that reduced canopy interception plays in the seasonal availability of water. Preliminary simulations suggest that removing tropical forest increases runoff and available water storage, which may serve to moderate seasonal and long-term drought conditions.

  3. Conjunctively optimizing flash flood control and water quality in urban water reservoirs by model predictive control and dynamic emulation

    Science.gov (United States)

    Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea

    2014-05-01

    Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.

  4. A real-time control framework for urban water reservoirs operation

    Science.gov (United States)

    Galelli, S.; Goedbloed, A.; Schwanenberg, D.

    2012-04-01

    Drinking water demand in urban areas is growing parallel to the worldwide urban population, and it is acquiring an increasing part of the total water consumption. Since the delivery of sufficient water volumes in urban areas represents a difficult logistic and economical problem, different metropolitan areas are evaluating the opportunity of constructing relatively small reservoirs within urban areas. Singapore, for example, is developing the so-called 'Four National Taps Strategies', which detects the maximization of water yields from local, urban catchments as one of the most important water sources. However, the peculiar location of these reservoirs can provide a certain advantage from the logistical point of view, but it can pose serious difficulties in their daily management. Urban catchments are indeed characterized by large impervious areas: this results in a change of the hydrological cycle, with decreased infiltration and groundwater recharge, and increased patterns of surface and river discharges, with higher peak flows, volumes and concentration time. Moreover, the high concentrations of nutrients and sediments characterizing urban discharges can cause further water quality problems. In this critical hydrological context, the effective operation of urban water reservoirs must rely on real-time control techniques, which can exploit hydro-meteorological information available in real-time from hydrological and nowcasting models. This work proposes a novel framework for the real-time control of combined water quality and quantity objectives in urban reservoirs. The core of this framework is a non-linear Model Predictive Control (MPC) scheme, which employs the current state of the system, the future discharges furnished by a predictive model and a further model describing the internal dynamics of the controlled sub-system to determine an optimal control sequence over a finite prediction horizon. The main advantage of this scheme stands in its reduced

  5. The Urban Forest and Ecosystem Services: Impacts on Urban Water, Heat, and Pollution Cycles at the Tree, Street, and City Scale.

    Science.gov (United States)

    Livesley, S J; McPherson, G M; Calfapietra, C

    2016-01-01

    Many environmental challenges are exacerbated within the urban landscape, such as stormwater runoff and flood risk, chemical and particulate pollution of urban air, soil and water, the urban heat island, and summer heat waves. Urban trees, and the urban forest as a whole, can be managed to have an impact on the urban water, heat, carbon and pollution cycles. However, there is an increasing need for empirical evidence as to the magnitude of the impacts, both beneficial and adverse, that urban trees can provide and the role that climatic region and built landscape circumstance play in modifying those impacts. This special section presents new research that advances our knowledge of the ecological and environmental services provided by the urban forest. The 14 studies included provide a global perspective on the role of trees in towns and cities from five continents. Some studies provide evidence for the cooling benefit of the local microclimate in urban green space with and without trees. Other studies focus solely on the cooling benefit of urban tree transpiration at a mesoscale or on cooling from canopy shade at a street and pedestrian scale. Other studies are concerned with tree species differences in canopy interception of rainfall, water uptake from biofilter systems, and water quality improvements through nutrient uptake from stormwater runoff. Research reported here also considers both the positive and the negative impacts of trees on air quality, through the role of trees in removing air pollutants such as ozone as well as in releasing potentially harmful volatile organic compounds and allergenic particulates. A transdisciplinary framework to support future urban forest research is proposed to better understand and communicate the role of urban trees in urban biogeochemical cycles that are highly disturbed, highly managed, and of paramount importance to human health and well-being. Copyright © by the American Society of Agronomy, Crop Science Society of

  6. Integrated urban flood risk assessment – adapting a multicriteria approach to a city

    Directory of Open Access Journals (Sweden)

    C. Kubal

    2009-11-01

    Full Text Available Flood risk assessment is an essential part of flood risk management. As part of the new EU flood directive it is becoming increasingly more popular in European flood policy. Particularly cities with a high concentration of people and goods are vulnerable to floods. This paper introduces the adaptation of a novel method of multicriteria flood risk assessment, that was recently developed for the more rural Mulde river basin, to a city. The study site is Leipzig, Germany. The "urban" approach includes a specific urban-type set of economic, social and ecological flood risk criteria, which focus on urban issues: population and vulnerable groups, differentiated residential land use classes, areas with social and health care but also ecological indicators such as recreational urban green spaces. These criteria are integrated using a "multicriteria decision rule" based on an additive weighting procedure which is implemented into the software tool FloodCalc urban. Based on different weighting sets we provide evidence of where the most flood-prone areas are located in a city. Furthermore, we can show that with an increasing inundation extent it is both the social and the economic risks that strongly increase.

  7. Electre III method in assessment of variants of integrated urban public transport system in Cracow

    Directory of Open Access Journals (Sweden)

    Katarzyna SOLECKA

    2014-12-01

    Full Text Available There is a lot of methods which are currently used for assessment of urban public transport system development and operation e.g. economic analysis, mostly Cost-Benefit Analysis – CBA, Cost-Effectiveness Analysis - CEA, hybrid methods, measurement methods (survey e.g. among passengers and measurement of traffic volume, vehicles capacity etc., and multicriteria decision aiding methods (multicriteria analysis. The main aim of multicriteria analysis is the choice of the most desirable solution from among alternative variants according to different criteria which are difficult to compare against one another. There are several multicriteria methods for assessment of urban public transport system development and operation, e.g. AHP, ANP, Electre, Promethee, Oreste. The paper presents an application of one of the most popular variant ranking methods – Electre III method. The algorithm of Electre III method usage is presented in detail and then its application for assessment of variants of urban public transport system integration in Cracow is shown. The final ranking of eight variants of integration of urban public transport system in Cracow (from the best to the worst variant was drawn up with the application of the Electre III method. For assessment purposes 10 criteria were adopted: economical, technical, environmental, and social; they form a consistent criteria family. The problem was analyzed with taking into account different points of view: city authorities, public transport operators, city units responsible for transport management, passengers and others users. Separate models of preferences for all stakeholders were created.

  8. Toward a Theory of Integrated Urban Ecology: Complementing Pickett et al.

    Directory of Open Access Journals (Sweden)

    Robert Mugerauer

    2010-12-01

    Full Text Available The analyses substantially delineating "integrative studies of large urban areas as bio-physical-social complexes" and the suggestions by Pickett et al. in "Beyond Urban Legends" (Bioscience 2008 58 139-150 provide an initial framework for a theory of urban ecology. This article intends to contribute to the project by: 1 improving the philosophical rigor of critical concepts and epistemologies; 2 making explicit the complementary theoretical and empirical work in urban ecology already being done that can be better integrated, for example, studies from outside the U.S. and uses of actor network theory; 3 bringing forward more disciplines and theories which successfully deploy modes of thinking, research procedures, and practices more adequate to the phenomena at all scales and levels of particularity, i.e., micro, phenomenal, macro, to fill in some of the empirical gaps in the middle, specifically those having to do with human values and the richness of the everyday lifeworld. In addition to what is available within complexity theory itself, chief among the approaches to be utilized are phenomenology, ethnographic thick description, and actor network theory.

  9. Understanding residential water-use behaviour in urban South Africa

    CSIR Research Space (South Africa)

    Jacobs-Mata, Inga M

    2018-01-01

    Full Text Available South Africa’s water supply is under great pressure as demand continues to rise. Demand mitigation strategies implemented by the Department of Water and Sanitation (DWS), water boards and local authorities, and a few water awareness initiatives...

  10. Determinants of domestic water consumption in a growing urban ...

    African Journals Online (AJOL)

    cinthia

    principal factor hampering proper and adequate water demand estimation especially in the developing nations. (Ayanshola et al., 2010). Metering of water use which could have helped in efficient water use is not in use in. Nigeria, thus bases for proper definition of the actual water use, according to Bilthas (2008) is lacked.

  11. Coping with drought: the experience of water sensitive urban design ...

    African Journals Online (AJOL)

    2014-11-14

    Nov 14, 2014 ... cled water supply', supplied by local authorities. This system provides recycled water as an alternative source of water, for non-potable use only, via a pipeline with a tap for each user who opts to use it (McAlister, 2007). Stormwater is reused via rainwater harvesting tanks which allows for the re-use of water.

  12. Welfare values of sustained urban water flows for recreational and cultural amenities under climate change

    NARCIS (Netherlands)

    Nikouei, A.; Brouwer, R.

    2017-01-01

    The main objective of this study is to estimate the welfare values related to sustained water flows in the Zayandeh-Rud River for recreational and cultural amenities in the urban park of Isfahan City in Iran. As is elsewhere the case in arid regions, the drying up of the river due to growing water

  13. Governance Regime Factors Conducive to Innovation Uptake in Urban Water Management: Experiences from Europe

    Directory of Open Access Journals (Sweden)

    Josselin Rouillard

    2016-10-01

    Full Text Available Innovative ways to manage the urban water cycle are required to deal with an ageing drinking and waste water infrastructure and new societal imperatives. This paper examines the influence of water governance in enabling transformations and technological innovation uptake in urban water management. A governance assessment framework is developed and applied in three case-studies, examining different scales and types of innovations used to tackle challenges in European urban water management. The methodology combines documentary analysis and interviews to reconstruct historical storylines of the shift in the water governance of urban water management for each site. The research provides detailed empirical observations on the factors conducive to innovation uptake at the local level. Critical governance factors such as commitment to compromise, the necessity to build political support, and the role of “entrepreneurs” and coalitions are highlighted. The paper also explores the role of discursive strategies and partnership design, as well as that of regulative, economic and communicative instruments, in creating barriers and opportunities to initiate and secure change. A number of recommendations targeted at innovators and water managers are presented in the conclusion.

  14. Situational analysis of the microbial water quality in a peri-urban catchment in South Africa

    CSIR Research Space (South Africa)

    Venter, SN

    1997-01-01

    Full Text Available A situational analysis of a peri-urban catchment experiencing microbial water quality problems was carried out using data collected over two and a half years. The water and land use in the area was determined. The main sources of pollution were...

  15. Governance Models and Partnerships in the Urban Water Sector : A framework for analysis and evaluation

    NARCIS (Netherlands)

    van Montfort, Cor; Michels, Ank|info:eu-repo/dai/nl/11124501X; Frankowski, Andrea

    2014-01-01

    This working paper is part of a research project on governance models and partnerships in water supply and wastewater management in urban areas. The project is a collaboration between Utrecht University and Tilburg University, both of which are located in the Netherlands. Water governance models

  16. Waste water as a source for secondary resources and linkage to other urban systems

    NARCIS (Netherlands)

    Agudelo Vera, C.M.; Mels, A.R.; Rijnaarts, H.H.M.

    2010-01-01

    Urban metabolism studies have shown that, in terms of sheer mass, water is the largest and the most vital component. Population growth and higher living standards will cause ever increasing demands for good quality municipal and industrial water, and ever increasing sewage flows within a limited

  17. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  18. An economic model for energisation and its integration into the urban energy planning process

    International Nuclear Information System (INIS)

    Nissing, Christian; Blottnitz, Harro von

    2010-01-01

    It is widely recognised that access to and supply of modern energy play a key role in poverty alleviation and sustainable development. The emerging concept of energisation seems to capture this idea, and if implemented in its full complexity it should have multiple beneficial effects. To demonstrate this, an economic model is developed for an urban developmental context, drawing on the theory of urban ecosystems and illustrating energy and waste production and consumption issues with current South African data sets. This new understanding of the concept of energisation is then integrated into a local government energy planning process, by means of a checklist for energy planners, covering 18 aspects that between them affect all 7 identifiable tiers of the energy service supply network. A 6-step structured approach is proposed for integrating sustainable energisation into the first four phases of the advanced local energy planning (ALEP) tool.

  19. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    Science.gov (United States)

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  20. ARTICULATED MODES OF INTEGRATION: THE STRUCTURING OF THE EUROPEAN URBAN SYSTEM

    OpenAIRE

    Rozenblat, Céline; Pumain, Denise

    2008-01-01

    European integration is for its essential part reflected in the building of urban networks that are increasing interdependencies between cities. Evidence of this process is brought through the observation of a variety of networks whose nodes are located in cities, especially the development of international functions. Analysis of airlines networks (2000) as well as the economic linkages between multinational firms (1990,1996) provide a good illustration reflecting the dominant features of suc...

  1. THE GREEN AREAS MANAGEMENT AND THEIR ECONOMIC AND SOCIAL INTEGRATION IN THE URBAN ENVIRONMENT

    OpenAIRE

    ADINA CLAUDIA NEAMTU; LIVIU NEAMTU

    2014-01-01

    The situation that exists at the level of the urban areas from Romania testifies a natural environment with a high risk for the health of the inhabitants as a consequence of the low level of the ecological development resulted from the lack of an integrated management of the green areas and spaces in comparison with the other components of the sustainable development. In the strategic management of the green areas and spaces having as purpose the improvement of the quality of ...

  2. Integration of deep geothermal energy and woody biomass conversion pathways in urban systems

    OpenAIRE

    Moret, Stefano; Peduzzi, Emanuela; Gerber, Léda; Maréchal, François

    2016-01-01

    Urban systems account for about two-thirds of global primary energy consumption and energy-related greenhouse gas emissions, with a projected increasing trend. Deep geothermal energy and woody biomass can be used for the production of heat, electricity and biofuels, thus constituting a renewable alternative to fossil fuels for all end-uses in cities: heating, cooling, electricity and mobility. This paper presents a methodology to assess the potential for integrating deep geothermal energy and...

  3. Integrating Informational, Social, and Behavioral Exchanges Between Humans, Urban Centers, and the Internet

    Science.gov (United States)

    2014-06-01

    behaviors were solely enacted within the physical bounds of an urban center- mall , outdoor shopping plaza, or downtown, to name a few. The Internet has...Homans, G. 1974. Social Behavior , revised ed. New York: Harcourt-Brace. Langford, Gary O. 2012. Engineering Systems Integration: Theory , Metrics, and...merging of city theory ( plans , goals, aggregate functions) with physical design (Levy 2013). City planning takes into consideration the needs, benefits

  4. Methodological procedures and analytical instruments to evaluate an indicators integrated archive for urban management

    International Nuclear Information System (INIS)

    Del Ciello, R.; Napoleoni, S.

    1998-01-01

    This guide provides the results of a research developed at ENEA (National Agency for new Technology, Energy and the Environment) Casaccia center (Rome, Italy) aimed to define methodological procedures and analytical instruments needed to carry out an indicators integrated archive for urban management. The guide also defines the scheme of a negotiation process aimed to reach and exchange data and information among governmental and local administrations, non-governmental organizations and scientific bodies [it

  5. The visual-landscape analysis during the integration of high-rise buildings within the historic urban environment

    OpenAIRE

    Akristiniy Vera A.; Dikova Elena A.

    2018-01-01

    The article is devoted to one of the types of urban planning studies - the visual-landscape analysis during the integration of high-rise buildings within the historic urban environment for the purposes of providing pre-design and design studies in terms of preserving the historical urban environment and the implementation of the reconstructional resource of the area. In the article formed and systematized the stages and methods of conducting the visual-landscape analysis taking into account t...

  6. Integration or Disintegration of the Ecological and Urban Functions of the River in the City? A Polish Perspective

    OpenAIRE

    Katarzyna KUBIAK-WÓJCICKA; Justyna CHODKOWSKA-MISZCZUK; Krzysztof ROGATKA

    2018-01-01

    This article aims to find whether the urbanized area experiences integration or disintegration of the ecological and urban functions of the river. The river has always played an important role in urban areas, although over the centuries, it has come through radical changes. At first, it decided on the location of the city, served as a defense and means of transport, and during the period of industrialization it became the technical base for the city. Currently, the river has again come to be ...

  7. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  8. Robust Economic Control Decision Method of Uncertain System on Urban Domestic Water Supply.

    Science.gov (United States)

    Li, Kebai; Ma, Tianyi; Wei, Guo

    2018-03-31

    As China quickly urbanizes, urban domestic water generally presents the circumstances of both rising tendency and seasonal cycle fluctuation. A robust economic control decision method for dynamic uncertain systems is proposed in this paper. It is developed based on the internal model principle and pole allocation method, and it is applied to an urban domestic water supply system with rising tendency and seasonal cycle fluctuation. To achieve this goal, first a multiplicative model is used to describe the urban domestic water demand. Then, a capital stock and a labor stock are selected as the state vector, and the investment and labor are designed as the control vector. Next, the compensator subsystem is devised in light of the internal model principle. Finally, by using the state feedback control strategy and pole allocation method, the multivariable robust economic control decision method is implemented. The implementation with this model can accomplish the urban domestic water supply control goal, with the robustness for the variation of parameters. The methodology presented in this study may be applied to the water management system in other parts of the world, provided all data used in this study are available. The robust control decision method in this paper is also applicable to deal with tracking control problems as well as stabilization control problems of other general dynamic uncertain systems.

  9. Local Institutional Development and Organizational Change for Advancing Sustainable Urban Water Futures

    Science.gov (United States)

    Brown, Rebekah R.

    2008-02-01

    This paper presents the local institutional and organizational development insights from a five-year ongoing interdisciplinary research project focused on advancing the implementation of sustainable urban water management. While it is broadly acknowledged that the inertia associated with administrative systems is possibly the most significant obstacle to advancing sustainable urban water management, contemporary research still largely prioritizes investigations at the technological level. This research is explicitly concerned with critically informing the design of methodologies for mobilizing and overcoming the administrative inertia of traditional urban water management practice. The results of fourteen in-depth case studies of local government organizations across Metropolitan Sydney primarily reveal that (i) the political institutionalization of environmental concern and (ii) the commitment to local leadership and organizational learning are key corporate attributes for enabling sustainable management. A typology of five organizational development phases has been proposed as both a heuristic and capacity benchmarking tool for urban water strategists, policy makers, and decision makers that are focused on improving the level of local implementation of sustainable urban water management activity. While this investigation has focused on local government, these findings do provide guideposts for assessing the development needs of future capacity building programs across a range of different institutional contexts.

  10. Urban water management : Modelling, simulation and control of the activated sludge process

    OpenAIRE

    Ekman, Mats

    2003-01-01

    During the last few decades, wastewater treatment processes in urban water management have become more and more efficient and complex. Several factors such as urbanization, stricter legislations on effluent quality, economics, increased knowledge of the involved biological, chemical and physical processes as well as technical achievements have been important incentives for the development of more efficient procedures for wastewater treatment plants. Future requirements on more sustainable urb...

  11. THE VULNERABILITY TO WATER HAZARDS OF URBAN AREA TURDA– CÂMPIA TURZII

    Directory of Open Access Journals (Sweden)

    IOANA URCAN

    2012-12-01

    Full Text Available The vulnerability to water hazards of urban area Turda – Câmpia Turzii. The risk was defined as a social object whose primary component is vulnerability. This paper examines the way in which vulnerability was defined by highlighting its three aspects: physical, technical and social. The vulnerability involves a complex systematic approach especially when cities are analyzed. The economic, social heritage, the environmental elements can all become factors of vulnerability. In this paper the urban areas vulnerable towaterborne hazards, especially floods were mentioned. The means to reduce urban vulnerability were analyzed, highlighting the measures taken by the local communities to mitigate the crisis.

  12. Health financing and integration of urban and rural residents' basic medical insurance systems in China.

    Science.gov (United States)

    Zhu, Kun; Zhang, Luying; Yuan, Shasha; Zhang, Xiaojuan; Zhang, Zhiruo

    2017-11-07

    China is in the process of integrating the new cooperative medical scheme (NCMS) and the urban residents' basic medical insurance system (URBMI) into the urban and rural residents' basic medical insurance system (URRBMI). However, how to integrate the financing policies of NCMS and URBMI has not been described in detail. This paper attempts to illustrate the differences between the financing mechanisms of NCMS and URBMI, to analyze financing inequity between urban and rural residents and to identify financing mechanisms for integrating urban and rural residents' medical insurance systems. Financing data for NCMS and URBMI (from 2008 to 2015) was collected from the China health statistics yearbook, the China health and family planning statistics yearbook, the National Handbook of NCMS Information, the China human resources and social security statistics yearbook, and the China social security yearbook. "Ability to pay" was introduced to measure inequity in health financing. Individual contributions to NCMS and URBMI as a function of per capita disposable income was used to analyze equity in health financing between rural and urban residents. URBMI had a financing mechanism that was similar to that used by NCMS in that public finance accounted for more than three quarters of the pooling funds. The scale of financing for NCMS was less than 5% of the per capita net income of rural residents and less than 2% of the per capita disposable income of urban residents for URBMI. Individual contributions to the NCMS and URBMI funds were less than 1% of their disposable and net incomes. Inequity in health financing between urban and rural residents in China was not improved as expected with the introduction of NCMS and URBMI. The role of the central government and local governments in financing NCMS and URBMI was oscillating in the past decade. The scale of financing for URRBMI is insufficient for the increasing demands for medical services from the insured. The pooling fund

  13. Passive Sensor Integration for Vehicle Self-Localization in Urban Traffic Environment

    Directory of Open Access Journals (Sweden)

    Yanlei Gu

    2015-12-01

    Full Text Available This research proposes an accurate vehicular positioning system which can achieve lane-level performance in urban canyons. Multiple passive sensors, which include Global Navigation Satellite System (GNSS receivers, onboard cameras and inertial sensors, are integrated in the proposed system. As the main source for the localization, the GNSS technique suffers from Non-Line-Of-Sight (NLOS propagation and multipath effects in urban canyons. This paper proposes to employ a novel GNSS positioning technique in the integration. The employed GNSS technique reduces the multipath and NLOS effects by using the 3D building map. In addition, the inertial sensor can describe the vehicle motion, but has a drift problem as time increases. This paper develops vision-based lane detection, which is firstly used for controlling the drift of the inertial sensor. Moreover, the lane keeping and changing behaviors are extracted from the lane detection function, and further reduce the lateral positioning error in the proposed localization system. We evaluate the integrated localization system in the challenging city urban scenario. The experiments demonstrate the proposed method has sub-meter accuracy with respect to mean positioning error.

  14. Socio-economic characterization of integrated cropping systems in urban and peri-urban agriculture of Faisalabad, Pakistan

    Directory of Open Access Journals (Sweden)

    Shoaib Ur Rehman

    2013-12-01

    Full Text Available Faisalabad city is surrounded by agricultural lands, where farmers are growing vegetables, grain crops, and fodder for auto-consumption and local marketing. To study the socioeconomic impact and resource use in these urban and peri-urban agricultural production (UPA systems, a baseline survey was conducted during 2009–2010. A total of 140 households were selected using a stratified sampling method and interviewed with a structured questionnaire. The results revealed that 96 % of the households rely on agriculture as their main occupation. Thirty percent of the households were owners of the land and the rest cultivated either rented or sharecropped land. Most of the families (70 % were headed by a member with primary education, and only 10 % of the household head had a secondary school certificate. Irrigationwater was obtained from waste water (37 %, canals (27 %, and mixed alternative sources (36 %. A total of 35 species were cultivated in the UPA systems of which were 65% vegetables, 15% grain and fodder crops, and 5% medicinal plants. Fifty-nine percent of the households cultivated wheat, mostly for auto-consumption. The 51 % of the respondents grew cauliflower (Brassica oleracea L. and gourds (Cucurbitaceae in the winter and summer seasons, respectively. Group marketing was uncommon and most of the farmers sold their produce at the farm gate (45 % and on local markets (43 %. Seeds and fertilizers were available from commission agents and dealers on a credit basis with the obligation to pay by harvested produce. A major problem reported by the UPA farmers of Faisalabad was the scarcity of high quality irrigation water, especially during the hot dry summer months, in addition to lacking adequate quantities of mineral fertilizers and other inputs during sowing time. Half of the respondents estimated their daily income to be less than 1.25 US$ and spent almost half of it on food. Monthly average household income and expenses were 334 and 237 US

  15. Efficiency evaluation of urban and rural municipal water service ...

    African Journals Online (AJOL)

    2016-01-01

    Jan 1, 2016 ... systems have seen some success; however, the efficiency with which these water services ... literature, firms are now referred to as decision making units ..... is the most advisable method to use for water service providers as.

  16. Development of urban runoff model FFC-QUAL for first-flush water-quality analysis in urban drainage basins.

    Science.gov (United States)

    Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae

    2018-01-01

    An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. A simple flow-concentration modelling method for integrating water ...

    African Journals Online (AJOL)

    A simple flow-concentration modelling method for integrating water quality and ... flow requirements are assessed for maintenance low flow, drought low flow ... the instream concentrations of chemical constituents that will arise from different ...

  18. Urban and peri-urban agricultural production in Beijing municipality and its impact on water quality

    NARCIS (Netherlands)

    Wolf, J.; Wijk, van M.S.; Cheung, X.; Hu, Y.; Diepen, van C.A.; Jongbloed, A.W.; Keulen, van H.; Lu, C.H.; Roeter, R.

    2003-01-01

    This paper reviews water use and water resource issues in Beijing Municipality, the main trends in the agricultural production systems in and around the city with respect to land use, input use, production and economic role, and the impacts of agricultural activities on water quality. Rapid

  19. A holistic water balance of Austria - how does the quantitative proportion of urban water requirements relate to other users?

    Science.gov (United States)

    Vanham, D

    2012-01-01

    Traditional water use statistics only include the blue water withdrawal/consumption of municipalities, industry and irrigated agriculture. When, however, green water use of the agricultural sector is included as well as the virtual water use/water footprint (WF), water use quantity statistics become very different. In common water use statistics, Austria withdraws in total about 2.5 km(3) per year, only 3% of available resources (total discharge 81.4 km(3) = surface and ground water). The total water consumption (0.5 km(3)) is less than 1% of available resources. Urban (municipal) water requirements account for 27% of total withdrawal or 33% of consumption. When agricultural green water use (cropland) is included in statistics, the fraction of municipal water requirements diminishes to 7.6% of total withdrawal and 2.5% of total consumption. If the evapotranspiration of grassland and alpine meadows is also included in agricultural green water use, this fraction decreases to 3.2% and 0.9% respectively. When the WF is assessed as base value for water use in Austria, the municipal water use represents 5.8% of this value. In this globalized world, these traditional water use statistics are no longer recommendable. Only a holistic water balance approach really represents water use statistics.

  20. Impacts of Forest to Urban Land Conversion and ENSO Phase on Water Quality of a Public Water Supply Reservoir

    Directory of Open Access Journals (Sweden)

    Emile Elias

    2016-01-01

    Full Text Available We used coupled watershed and reservoir models to evaluate the impacts of deforestation and l Niño Southern Oscillation (ENSO phase on drinking water quality. Source water total organic carbon (TOC is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs. The Environmental Fluid Dynamics Code (EFDC reservoir model is used to evaluate the difference between daily pre- and post- urbanization nutrients and TOC concentration. Post-disturbance (future reservoir total nitrogen (TN, total phosphorus (TP, TOC and chlorophyll-a concentrations were found to be higher than pre-urbanization (base concentrations (p < 0.05. Predicted future median TOC concentration was 1.1 mg·L−1 (41% higher than base TOC concentration at the source water intake. Simulations show that prior to urbanization, additional water treatment was necessary on 47% of the days between May and October. However, following simulated urbanization, additional drinking water treatment might be continuously necessary between May and October. One of six ENSO indices is weakly negatively correlated with the measured reservoir TOC indicating there may be higher TOC concentrations in times of lower streamflow (La Niña. There is a positive significant correlation between simulated TN and TP concentrations with ENSO suggesting higher concentrations during El Niño.

  1. Urban community perception towards intermittent water supply system.

    Science.gov (United States)

    Joshi, M W; Talkhande, A V; Andey, S P; Kelkar, P S

    2002-04-01

    While evaluating intermittent and continuous water supply systems, consumers opinion survey was undertaken for critical appraisal of both modes of operation. With the help of a pre-designed set of questions relating to various aspects of water supply and the opinion of consumers regarding degree of service, a house to house survey was conducted in the study area of Ghaziabad and Jaipur. The consumer opinion survey clearly indicated a satisfactory degree of service wherever adequate quantity of water was made available irrespective of the mode of water supply. Number of complaints regarding quality of water supplied, timings of supply, low pressures and breakdowns in supply were reported during intermittent water supply. Every family stored water for drinking and other uses. Most of the families discard drinking water once the fresh water supply is resumed next day. Discarded drinking water is usually used in kitchen for washing and gardening. Storage for other purposes depends on economic status and availability of other sources like open dug well in the house. While most of the respondents had no complaints on water tariff, all of them were in favour of continuous water supply.

  2. Loose and Tight GNSS/INS