WorldWideScience

Sample records for integrated transcriptome analysis

  1. Integrative analysis of metabolomics and transcriptomics data

    DEFF Research Database (Denmark)

    Brink-Jensen, Kasper; Bak, Søren; Jørgensen, Kirsten

    2013-01-01

    ) measurements from the same samples, to identify genes controlling the production of metabolites. Due to the high dimensionality of both LC-MS and DNA microarray data, dimension reduction and variable selection are key elements of the analysis. Our proposed approach starts by identifying the basis functions......The abundance of high-dimensional measurements in the form of gene expression and mass spectroscopy calls for models to elucidate the underlying biological system. For widely studied organisms like yeast, it is possible to incorporate prior knowledge from a variety of databases, an approach used...... ("building blocks") that constitute the output from a mass spectrometry experiment. Subsequently, the weights of these basis functions are related to the observations from the corresponding gene expression data in order to identify which genes are associated with specific patterns seen in the metabolite data...

  2. Chicken hepatic response to chronic heat stress using integrated transcriptome and metabolome analysis.

    Directory of Open Access Journals (Sweden)

    Sara F Jastrebski

    Full Text Available The liver plays a central role in metabolism and is important in maintaining homeostasis throughout the body. This study integrated transcriptomic and metabolomic data to understand how the liver responds under chronic heat stress. Chickens from a rapidly growing broiler line were heat stressed for 8 hours per day for one week and liver samples were collected at 28 days post hatch. Transcriptome analysis reveals changes in genes responsible for cell cycle regulation, DNA replication, and DNA repair along with immune function. Integrating the metabolome and transcriptome data highlighted multiple pathways affected by heat stress including glucose, amino acid, and lipid metabolism along with glutathione production and beta-oxidation.

  3. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  4. An Integrated Transcriptome-Wide Analysis of Cave and Surface Dwelling Astyanax mexicanus

    Science.gov (United States)

    Gross, Joshua B.; Furterer, Allison; Carlson, Brian M.; Stahl, Bethany A.

    2013-01-01

    Numerous organisms around the globe have successfully adapted to subterranean environments. A powerful system in which to study cave adaptation is the freshwater characin fish, Astyanax mexicanus. Prior studies in this system have established a genetic basis for the evolution of numerous regressive traits, most notably vision and pigmentation reduction. However, identification of the precise genetic alterations that underlie these morphological changes has been delayed by limited genetic and genomic resources. To address this, we performed a transcriptome analysis of cave and surface dwelling Astyanax morphs using Roche/454 pyrosequencing technology. Through this approach, we obtained 576,197 Pachón cavefish-specific reads and 438,978 surface fish-specific reads. Using this dataset, we assembled transcriptomes of cave and surface fish separately, as well as an integrated transcriptome that combined 1,499,568 reads from both morphotypes. The integrated assembly was the most successful approach, yielding 22,596 high quality contiguous sequences comprising a total transcriptome length of 21,363,556 bp. Sequence identities were obtained through exhaustive blast searches, revealing an adult transcriptome represented by highly diverse Gene Ontology (GO) terms. Our dataset facilitated rapid identification of sequence polymorphisms between morphotypes. These data, along with positional information collected from the Danio rerio genome, revealed several syntenic regions between Astyanax and Danio. We demonstrated the utility of this positional information through a QTL analysis of albinism in a surface x Pachón cave F2 pedigree, using 65 polymorphic markers identified from our integrated assembly. We also adapted our dataset for an RNA-seq study, revealing many genes responsible for visual system maintenance in surface fish, whose expression was not detected in adult Pachón cavefish. Conversely, several metabolism-related genes expressed in cavefish were not detected in

  5. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    Science.gov (United States)

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  6. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas.

    Directory of Open Access Journals (Sweden)

    Priscila Daniele Ramos Cirilo

    Full Text Available Uterine Leiomyomas (ULs are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40-50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs. Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs.We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC and gene expression microarrays (SAM. The CONEXIC algorithm was applied to integrate the data.The integrated analysis identified the top 30 significant genes (P<0.01, which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell proliferation, including FGFR1 and IGFBP5. Transcriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively and IGFBP5 (P = 0.0002 and P = 0.006, respectively were up-regulated in the tumours when compared with the adjacent normal myometrium.The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs.

  7. Toxicogenomic markers for corticosteroid treatment in beef cattle: integrated analysis of transcriptomic data.

    Science.gov (United States)

    Pegolo, Sara; Di Camillo, Barbara; Montesissa, Clara; Cannizzo, Francesca Tiziana; Biolatti, Bartolomeo; Bargelloni, Luca

    2015-03-01

    In the present work, an integrated analysis was performed on DNA-microarray data of bovine muscle samples belonging to controls, animals treated with various growth promoters (GPs) and unknown commercial samples. The aim was identify a robust gene expression signature of corticosteroid treatment for the classification of commercial samples, despite the effects of biological variation and other confounding factors. DNA-Microarray data from 5 different batches of bovine skeletal muscle samples were analyzed (146 samples). After preprocessing, expression data from animals treated with corticosteroids and controls from the different batches (89 samples) were used to train a Support Vector Machines (SVMs) classifier. The optimal number of gene probes chosen by our classification framework was 73. The SVMs with linear kernel built on these 73 biomarker genes was predicted to perform on novel samples with a high classification accuracy (Matthew's correlation coefficient equal to 0.77) and an average percentage of false positive and false negative equal to 5% and 6%, respectively. Concluding, a relatively small set of genes was able to discriminate between controls and corticosteroid-treated animals, despite different breeds, animal ages, and combination of GPs. The results are extremely promising, suggesting that integrated analysis provides robust transcriptomic signatures for GP abuse. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets.

    Science.gov (United States)

    Lemieux, Sebastien; Sargeant, Tobias; Laperrière, David; Ismail, Houssam; Boucher, Geneviève; Rozendaal, Marieke; Lavallée, Vincent-Philippe; Ashton-Beaucage, Dariel; Wilhelm, Brian; Hébert, Josée; Hilton, Douglas J; Mader, Sylvie; Sauvageau, Guy

    2017-07-27

    Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Integrative investigation of metabolic and transcriptomic data

    Directory of Open Access Journals (Sweden)

    Önsan Z İlsen

    2006-04-01

    Full Text Available Abstract Background New analysis methods are being developed to integrate data from transcriptome, proteome, interactome, metabolome, and other investigative approaches. At the same time, existing methods are being modified to serve the objectives of systems biology and permit the interpretation of the huge datasets currently being generated by high-throughput methods. Results Transcriptomic and metabolic data from chemostat fermentors were collected with the aim of investigating the relationship between these two data sets. The variation in transcriptome data in response to three physiological or genetic perturbations (medium composition, growth rate, and specific gene deletions was investigated using linear modelling, and open reading-frames (ORFs whose expression changed significantly in response to these perturbations were identified. Assuming that the metabolic profile is a function of the transcriptome profile, expression levels of the different ORFs were used to model the metabolic variables via Partial Least Squares (Projection to Latent Structures – PLS using PLS toolbox in Matlab. Conclusion The experimental design allowed the analyses to discriminate between the effects which the growth medium, dilution rate, and the deletion of specific genes had on the transcriptome and metabolite profiles. Metabolite data were modelled as a function of the transcriptome to determine their congruence. The genes that are involved in central carbon metabolism of yeast cells were found to be the ORFs with the most significant contribution to the model.

  10. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    Science.gov (United States)

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  11. Comprehensive Characterization for Ginsenosides Biosynthesis in Ginseng Root by Integration Analysis of Chemical and Transcriptome

    Directory of Open Access Journals (Sweden)

    Jing-Jing Zhang

    2017-05-01

    Full Text Available Herbgenomics provides a global platform to explore the genetics and biology of herbs on the genome level. Panax ginseng C.A. Meyer is an important medicinal plant with numerous pharmaceutical effects. Previous reports mainly discussed the transcriptome of ginseng at the organ level. However, based on mass spectrometry imaging analyses, the ginsenosides varied among different tissues. In this work, ginseng root was separated into three tissues—periderm, cortex and stele—each for five duplicates. The chemical analysis and transcriptome analysis were conducted simultaneously. Gene-encoding enzymes involved in ginsenosides biosynthesis and modification were studied based on gene and molecule data. Eight widely-used ginsenosides were distributed unevenly in ginseng roots. A total of 182,881 unigenes were assembled with an N50 contig size of 1374 bp. About 21,000 of these unigenes were positively correlated with the content of ginsenosides. Additionally, we identified 192 transcripts encoding enzymes involved in two triterpenoid biosynthesis pathways and 290 transcripts encoding UDP-glycosyltransferases (UGTs. Of these UGTs, 195 UGTs (67.2% were more highly expressed in the periderm, and that seven UGTs and one UGT were specifically expressed in the periderm and stele, respectively. This genetic resource will help to improve the interpretation on complex mechanisms of ginsenosides biosynthesis, accumulation, and transportation.

  12. [Integrating obtained knowledge from transcriptome data by a new framework for data analysis].

    Science.gov (United States)

    Konishi, Tomokazu

    2006-01-01

    Microarray analyses facilitate the investigation of quantitative information coded in the genome by measuring transcriptome, which records the decoded information from the genome. The state of a cell and differences from other states can be studied through genome information, by comparing one set of transcriptome data to other sets. Clearly, those data should be shared and compared with researchers, and the knowledge should be integrated. Unfortunately, at present data comparisons in microarray analyses are quite difficult; the accuracy as well as the reproducibility is low. The difficulties are originated from data analyses methods. Data comparison requires an intelligent framework, such as that discussed by philosopher Sir Karl R Popper. Frameworks for microarray analyses have been developed by many efforts of bioinformatitians. The frameworks currently used are being inspected and critically discussed. By checking the mathematical models that form the practical frameworks, arbitrariness such as the lack of falsifiability has been pointed out. The paradigm in this field of analyses is also criticized by disagreement with the scientific standard, and it is shown as the origin of errors in analyses. The excessive numbers of frameworks produced in an ad hoc manner has also been criticized, since the existence of so many allows researchers to select different frameworks, discussions beyond frameworks are always difficult. A new framework that uses a parametric model is introduced with an explanation of the bases of the framework and the process of testing. Additionally, differences of obtained results by these frameworks are presented using GeneChip data, in stability of log-ratio measurements and reproducibility of analyses. The possibility of artificial decoding of genome information by an extended framework is also discussed.

  13. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01.

    Science.gov (United States)

    Lv, Long-Xian; Yan, Ren; Shi, Hai-Yan; Shi, Ding; Fang, Dai-Qiong; Jiang, Hui-Yong; Wu, Wen-Rui; Guo, Fei-Fei; Jiang, Xia-Wei; Gu, Si-Lan; Chen, Yun-Bo; Yao, Jian; Li, Lan-Juan

    2017-01-06

    Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius. Copyright © 2016. Published by Elsevier B.V.

  14. CoryneCenter – An online resource for the integrated analysis of corynebacterial genome and transcriptome data

    Directory of Open Access Journals (Sweden)

    Hüser Andrea T

    2007-11-01

    Full Text Available Abstract Background The introduction of high-throughput genome sequencing and post-genome analysis technologies, e.g. DNA microarray approaches, has created the potential to unravel and scrutinize complex gene-regulatory networks on a large scale. The discovery of transcriptional regulatory interactions has become a major topic in modern functional genomics. Results To facilitate the analysis of gene-regulatory networks, we have developed CoryneCenter, a web-based resource for the systematic integration and analysis of genome, transcriptome, and gene regulatory information for prokaryotes, especially corynebacteria. For this purpose, we extended and combined the following systems into a common platform: (1 GenDB, an open source genome annotation system, (2 EMMA, a MAGE compliant application for high-throughput transcriptome data storage and analysis, and (3 CoryneRegNet, an ontology-based data warehouse designed to facilitate the reconstruction and analysis of gene regulatory interactions. We demonstrate the potential of CoryneCenter by means of an application example. Using microarray hybridization data, we compare the gene expression of Corynebacterium glutamicum under acetate and glucose feeding conditions: Known regulatory networks are confirmed, but moreover CoryneCenter points out additional regulatory interactions. Conclusion CoryneCenter provides more than the sum of its parts. Its novel analysis and visualization features significantly simplify the process of obtaining new biological insights into complex regulatory systems. Although the platform currently focusses on corynebacteria, the integrated tools are by no means restricted to these species, and the presented approach offers a general strategy for the analysis and verification of gene regulatory networks. CoryneCenter provides freely accessible projects with the underlying genome annotation, gene expression, and gene regulation data. The system is publicly available at http://www.CoryneCenter.de.

  15. Integrated analysis of transcriptome and proteome changes related to the Ogura cytoplasmic male sterility in cabbage.

    Directory of Open Access Journals (Sweden)

    Miaomiao Xing

    Full Text Available Cabbage (Brassica oleracea L. var. capitata, an important vegetable crop in the Brassicaceae family, is economically important worldwide. In the process of hybrid seed production, Ogura cytoplasmic male sterility (OguCMS, controlled by the mitochondrial gene orf138, has been extensively used for cabbage hybrid production with complete and stable male sterility. To identify the critical genes and pathways involved in the sterility and to better understand the underlying molecular mechanisms, the anther of OguCMS line R2P2CMS and the fertile line R2P2 were used for RNA-seq and iTRAQ (Isobaric Tags for Relative and Absolute Quantitation proteome analysis. RNA-seq analysis generated 13,037,109 to 13,066,594 SE50-clean reads, from the sterile and fertile lines, which were assembled into 36,890 unigenes. Among them, 1,323 differentially expressed genes (DEGs were identified, consisting of 307 up- and 1016 down-regulated genes. For ITRAQ analysis, a total of 7,147 unique proteins were identified, and 833 were differentially expressed including 538 up- and 295 down-regulated proteins. These were mainly annotated to the ribosome, spliceosome and mRNA surveillance pathways. Combined transcriptomic and proteomic analyses identified 22 and 70 genes with the same and opposite expression profiles, respectively. Using KEGG analysis of DEGs, gibberellin mediated signaling pathways regulating tapetum programmed cell death and four different pathways involved in sporopollenin synthesis were identified. Secretion and translocation of the sporopollenin precursors were identified, and the key genes participating in these pathways were all significantly down-regulated in R2P2CMS. Light and transmission electron (TE microscopy revealed fat abnormal tapetum rather than vacuolization and degradation at the tetrad and microspore stages of the OguCMS line. This resulted in the failed deposition of sporopollenin on the pollen resulting in sterility. This study provides a

  16. GeNNet: an integrated platform for unifying scientific workflows and graph databases for transcriptome data analysis

    Directory of Open Access Journals (Sweden)

    Raquel L. Costa

    2017-07-01

    Full Text Available There are many steps in analyzing transcriptome data, from the acquisition of raw data to the selection of a subset of representative genes that explain a scientific hypothesis. The data produced can be represented as networks of interactions among genes and these may additionally be integrated with other biological databases, such as Protein-Protein Interactions, transcription factors and gene annotation. However, the results of these analyses remain fragmented, imposing difficulties, either for posterior inspection of results, or for meta-analysis by the incorporation of new related data. Integrating databases and tools into scientific workflows, orchestrating their execution, and managing the resulting data and its respective metadata are challenging tasks. Additionally, a great amount of effort is equally required to run in-silico experiments to structure and compose the information as needed for analysis. Different programs may need to be applied and different files are produced during the experiment cycle. In this context, the availability of a platform supporting experiment execution is paramount. We present GeNNet, an integrated transcriptome analysis platform that unifies scientific workflows with graph databases for selecting relevant genes according to the evaluated biological systems. It includes GeNNet-Wf, a scientific workflow that pre-loads biological data, pre-processes raw microarray data and conducts a series of analyses including normalization, differential expression inference, clusterization and gene set enrichment analysis. A user-friendly web interface, GeNNet-Web, allows for setting parameters, executing, and visualizing the results of GeNNet-Wf executions. To demonstrate the features of GeNNet, we performed case studies with data retrieved from GEO, particularly using a single-factor experiment in different analysis scenarios. As a result, we obtained differentially expressed genes for which biological functions were

  17. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    Science.gov (United States)

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  18. Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle.

    Science.gov (United States)

    Sharifi, Somayeh; Pakdel, Abbas; Ebrahimi, Mansour; Reecy, James M; Fazeli Farsani, Samaneh; Ebrahimie, Esmaeil

    2018-01-01

    Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the main agents that cause severe mastitis disease with clinical signs in dairy cattle. Rapid detection of this disease is so important in order to prevent transmission to other cows and helps to reduce inappropriate use of antibiotics. With the rapid progress in high-throughput technologies, and accumulation of various kinds of '-omics' data in public repositories, there is an opportunity to retrieve, integrate, and reanalyze these resources to improve the diagnosis and treatment of different diseases and to provide mechanistic insights into host resistance in an efficient way. Meta-analysis is a relatively inexpensive option with good potential to increase the statistical power and generalizability of single-study analysis. In the current meta-analysis research, six microarray-based studies that investigate the transcriptome profile of mammary gland tissue after induced mastitis by E. coli infection were used. This meta-analysis not only reinforced the findings in individual studies, but also several novel terms including responses to hypoxia, response to drug, anti-apoptosis and positive regulation of transcription from RNA polymerase II promoter enriched by up-regulated genes. Finally, in order to identify the small sets of genes that are sufficiently informative in E. coli mastitis, the differentially expressed gene introduced by meta-analysis were prioritized by using ten different attribute weighting algorithms. Twelve meta-genes were detected by the majority of attribute weighting algorithms (with weight above 0.7) as most informative genes including CXCL8 (IL8), NFKBIZ, HP, ZC3H12A, PDE4B, CASP4, CXCL2, CCL20, GRO1(CXCL1), CFB, S100A9, and S100A8. Interestingly, the results have been demonstrated that all of these genes are the key genes in the immune response, inflammation or mastitis. The Decision tree models efficiently discovered the best combination of the meta-genes as

  19. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L. Lam].

    Directory of Open Access Journals (Sweden)

    Xiang Tao

    Full Text Available BACKGROUND: Sweet potato (Ipomoea batatas L. [Lam.] ranks among the top six most important food crops in the world. It is widely grown throughout the world with high and stable yield, strong adaptability, rich nutrient content, and multiple uses. However, little is known about the molecular biology of this important non-model organism due to lack of genomic resources. Hence, studies based on high-throughput sequencing technologies are needed to get a comprehensive and integrated genomic resource and better understanding of gene expression patterns in different tissues and at various developmental stages. METHODOLOGY/PRINCIPAL FINDINGS: Illumina paired-end (PE RNA-Sequencing was performed, and generated 48.7 million of 75 bp PE reads. These reads were de novo assembled into 128,052 transcripts (≥ 100 bp, which correspond to 41.1 million base pairs, by using a combined assembly strategy. Transcripts were annotated by Blast2GO and 51,763 transcripts got BLASTX hits, in which 39,677 transcripts have GO terms and 14,117 have ECs that are associated with 147 KEGG pathways. Furthermore, transcriptome differences of seven tissues were analyzed by using Illumina digital gene expression (DGE tag profiling and numerous differentially and specifically expressed transcripts were identified. Moreover, the expression characteristics of genes involved in viral genomes, starch metabolism and potential stress tolerance and insect resistance were also identified. CONCLUSIONS/SIGNIFICANCE: The combined de novo transcriptome assembly strategy can be applied to other organisms whose reference genomes are not available. The data provided here represent the most comprehensive and integrated genomic resources for cloning and identifying genes of interest in sweet potato. Characterization of sweet potato transcriptome provides an effective tool for better understanding the molecular mechanisms of cellular processes including development of leaves and storage roots

  20. Integrative Analysis Using Proteome and Transcriptome Data From Yeast to Unravel Regulatory Patterns at Post-Transcriptional Level

    DEFF Research Database (Denmark)

    Olivares Hernandez, Roberto; Usaite, Renata; Nielsen, Jens

    2010-01-01

    In this stud) we combined proteome and transcriptome data from six different published dataset to identify patterns that can provide new insight into the reasons for these deviations By using a categorization method and integrating genome-scale information we found that the relation between protein and mRNA...... is related to the gene function We could further identify that for genes belonging to amino acid biosynthetic pathways there is no translational regulation, meaning that there is generally a good correlation between mRNA and protein levels We also found that there is generally translational control for large...... proteins and there also evidence for a role of conserved motifs m the 3' untranslated regions in the mRNA-protein correlation, probably by controlling the level of mRNA Biotechnol Bioeng 2010,107 865-875...

  1. Integrated analysis of 454 and Illumina transcriptomic sequencing characterizes carbon flux and energy source for fatty acid synthesis in developing Lindera glauca fruits for woody biodiesel.

    Science.gov (United States)

    Lin, Zixin; An, Jiyong; Wang, Jia; Niu, Jun; Ma, Chao; Wang, Libing; Yuan, Guanshen; Shi, Lingling; Liu, Lili; Zhang, Jinsong; Zhang, Zhixiang; Qi, Ji; Lin, Shanzhi

    2017-01-01

    Lindera glauca fruit with high quality and quantity of oil has emerged as a novel potential source of biodiesel in China, but the molecular regulatory mechanism of carbon flux and energy source for oil biosynthesis in developing fruits is still unknown. To better develop fruit oils of L. glauca as woody biodiesel, a combination of two different sequencing platforms (454 and Illumina) and qRT-PCR analysis was used to define a minimal reference transcriptome of developing L. glauca fruits, and to construct carbon and energy metabolic model for regulation of carbon partitioning and energy supply for FA biosynthesis and oil accumulation. We first analyzed the dynamic patterns of growth tendency, oil content, FA compositions, biodiesel properties, and the contents of ATP and pyridine nucleotide of L. glauca fruits from seven different developing stages. Comprehensive characterization of transcriptome of the developing L. glauca fruit was performed using a combination of two different next-generation sequencing platforms, of which three representative fruit samples (50, 125, and 150 DAF) and one mixed sample from seven developing stages were selected for Illumina and 454 sequencing, respectively. The unigenes separately obtained from long and short reads (201, and 259, respectively, in total) were reconciled using TGICL software, resulting in a total of 60,031 unigenes (mean length = 1061.95 bp) to describe a transcriptome for developing L. glauca fruits. Notably, 198 genes were annotated for photosynthesis, sucrose cleavage, carbon allocation, metabolite transport, acetyl-CoA formation, oil synthesis, and energy metabolism, among which some specific transporters, transcription factors, and enzymes were identified to be implicated in carbon partitioning and energy source for oil synthesis by an integrated analysis of transcriptomic sequencing and qRT-PCR. Importantly, the carbon and energy metabolic model was well established for oil biosynthesis of developing L

  2. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    Science.gov (United States)

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  3. Integration of transcriptomics and metabonomics

    DEFF Research Database (Denmark)

    Bjerrum, Jacob Tveiten; Rantalainen, Mattias; Wang, Yulan

    2014-01-01

    performance was evaluated using nested Monte Carlo cross-validation. The prediction performance of the merged data sets and that of relative small (... profiles were generated using (1)H Nuclear magnetic resonance spectroscopy (Bruker 600 MHz, Bruker BioSpin, Rheinstetten, Germany). Data were analyzed with the use of orthogonal-projection to latent structure-discriminant analysis and a multivariate logistic regression model fitted by lasso. Prediction...

  4. Integrated Analysis of the Transcriptome and Metabolome of Corynebacterium glutamicum during Penicillin-Induced Glutamic Acid Production.

    Science.gov (United States)

    Hirasawa, Takashi; Saito, Masaki; Yoshikawa, Katsunori; Furusawa, Chikara; Shmizu, Hiroshi

    2018-05-01

    Corynebacterium glutamicum is known for its ability to produce glutamic acid and has been utilized for the fermentative production of various amino acids. Glutamic acid production in C. glutamicum is induced by penicillin. In this study, the transcriptome and metabolome of C. glutamicum is analyzed to understand the mechanism of penicillin-induced glutamic acid production. Transcriptomic analysis with DNA microarray revealed that expression of some glycolysis- and TCA cycle-related genes, which include those encoding the enzymes involved in conversion of glucose to 2-oxoglutaric acid, is upregulated after penicillin addition. Meanwhile, expression of some TCA cycle-related genes, encoding the enzymes for conversion of 2-oxoglutaric acid to oxaloacetic acid, and the anaplerotic reactions decreased. In addition, expression of NCgl1221 and odhI, encoding proteins involved in glutamic acid excretion and inhibition of the 2-oxoglutarate dehydrogenase, respectively, is upregulated. Functional category enrichment analysis of genes upregulated and downregulated after penicillin addition revealed that genes for signal transduction systems are enriched among upregulated genes, whereas those for energy production and carbohydrate and amino acid metabolisms are enriched among the downregulated genes. As for the metabolomic analysis using capillary electrophoresis time-of-flight mass spectrometry, the intracellular content of most metabolites of the glycolysis and the TCA cycle decreased dramatically after penicillin addition. Overall, these results indicate that the cellular metabolism and glutamic acid excretion are mainly optimized at the transcription level during penicillin-induced glutamic acid production by C. glutamicum. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integrative systems analysis of diet-induced obesity identified a critical transition in the transcriptomes of the murine liver and epididymal white adipose tissue.

    Science.gov (United States)

    Kim, J; Kwon, E-Y; Park, S; Kim, J-R; Choi, S-W; Choi, M-S; Kim, S-J

    2016-02-01

    It is well known that high-fat diet (HFD) can cause immune system-related pathological alterations after a significant body weight gain. The mechanisms of the delayed pathological alterations during the development of diet-induced obesity (DIO) are not fully understood. To elucidate the mechanisms underlying DIO development, we analyzed time-course microarray data obtained from a previous study. First, differentially expressed genes (DEGs) were identified at each time point by comparing the hepatic transcriptome of mice fed HFD with that of mice fed normal diet. Next, we clustered the union of DEGs and identified annotations related to each cluster. Finally, we constructed an 'integrated obesity-associated gene regulatory network (GRN) in murine liver'. We analyzed the epididymal white adipose tissue (eWAT) transcriptome usig the same procedure. Based on time-course microarray data, we found that the genes associated with immune responses were upregulated with an oscillating expression pattern between weeks 2 and 8, relatively downregulated between weeks 12 and 16, and eventually upregulated after week 20 in the liver of the mice fed HFD. The genes associated with immune responses were also upregulated at late stage, in the eWAT of the mice fed HFD. These results suggested that a critical transition occurred in the immune system-related transcriptomes of the liver and eWAT around week 16 of the DIO development, and this may be associated with the delayed pathological alterations. The GRN analysis suggested that Maff may be a key transcription factor for the immune system-related critical transition thatoccurred at week 16. We found that transcription factors associated with immune responses were centrally located in the integrated obesity-associated GRN in the liver. In this study, systems analysis identified regulatory network modules underlying the delayed immune system-related pathological changes during the development of DIO and could suggest possible

  6. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas.

    Science.gov (United States)

    Assou, Said; Le Carrour, Tanguy; Tondeur, Sylvie; Ström, Susanne; Gabelle, Audrey; Marty, Sophie; Nadal, Laure; Pantesco, Véronique; Réme, Thierry; Hugnot, Jean-Philippe; Gasca, Stéphan; Hovatta, Outi; Hamamah, Samir; Klein, Bernard; De Vos, John

    2007-04-01

    Microarray technology provides a unique opportunity to examine gene expression patterns in human embryonic stem cells (hESCs). We performed a meta-analysis of 38 original studies reporting on the transcriptome of hESCs. We determined that 1,076 genes were found to be overexpressed in hESCs by at least three studies when compared to differentiated cell types, thus composing a "consensus hESC gene list." Only one gene was reported by all studies: the homeodomain transcription factor POU5F1/OCT3/4. The list comprised other genes critical for pluripotency such as the transcription factors NANOG and SOX2, and the growth factors TDGF1/CRIPTO and Galanin. We show that CD24 and SEMA6A, two cell surface protein-coding genes from the top of the consensus hESC gene list, display a strong and specific membrane protein expression on hESCs. Moreover, CD24 labeling permits the purification by flow cytometry of hESCs cocultured on human fibroblasts. The consensus hESC gene list also included the FZD7 WNT receptor, the G protein-coupled receptor GPR19, and the HELLS helicase, which could play an important role in hESCs biology. Conversely, we identified 783 genes downregulated in hESCs and reported in at least three studies. This "consensus differentiation gene list" included the IL6ST/GP130 LIF receptor. We created an online hESC expression atlas, http://amazonia.montp.inserm.fr, to provide an easy access to this public transcriptome dataset. Expression histograms comparing hESCs to a broad collection of fetal and adult tissues can be retrieved with this web tool for more than 15,000 genes.

  7. Integrated network analysis identifies fight-club nodes as a class of hubs encompassing key putative switch genes that induce major transcriptome reprogramming during grapevine development.

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-12-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named "fight-club hubs" characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named "switch genes" was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. © 2014 American Society of Plant Biologists. All rights reserved.

  8. PIVOT: platform for interactive analysis and visualization of transcriptomics data.

    Science.gov (United States)

    Zhu, Qin; Fisher, Stephen A; Dueck, Hannah; Middleton, Sarah; Khaladkar, Mugdha; Kim, Junhyong

    2018-01-05

    Many R packages have been developed for transcriptome analysis but their use often requires familiarity with R and integrating results of different packages requires scripts to wrangle the datatypes. Furthermore, exploratory data analyses often generate multiple derived datasets such as data subsets or data transformations, which can be difficult to track. Here we present PIVOT, an R-based platform that wraps open source transcriptome analysis packages with a uniform user interface and graphical data management that allows non-programmers to interactively explore transcriptomics data. PIVOT supports more than 40 popular open source packages for transcriptome analysis and provides an extensive set of tools for statistical data manipulations. A graph-based visual interface is used to represent the links between derived datasets, allowing easy tracking of data versions. PIVOT further supports automatic report generation, publication-quality plots, and program/data state saving, such that all analysis can be saved, shared and reproduced. PIVOT will allow researchers with broad background to easily access sophisticated transcriptome analysis tools and interactively explore transcriptome datasets.

  9. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence. PMID:25523176

  10. A comprehensive transcriptome analysis of silique development and dehiscence in Arabidopsis and Brassica integrating genotypic, interspecies and developmental comparisons.

    Science.gov (United States)

    Jaradat, Masrur R; Ruegger, Max; Bowling, Andrew; Butler, Holly; Cutler, Adrian J

    2014-01-01

    Asynchronous flowering of Brassica napus (canola) leads to seeds and siliques at varying stages of maturity as harvest approaches. This range of maturation can result in premature silique dehiscence (pod shattering), resulting in yield losses, which may be worsened by environmental stresses. Therefore, a goal for canola crop improvement is to reduce shattering in order to maximize yield. We performed a comprehensive transcriptome analysis on the dehiscence zone (DZ) and valve of Arabidopsis and Brassica siliques in shatter resistant and sensitive genotypes at several developmental stages. Among known Arabidopsis dehiscence genes, we confirmed that homologs of SHP1/2, FUL, ADPG1, NST1/3 and IND were associated with shattering in B. juncea and B. napus. We noted a correlation between reduced pectin degradation genes and shatter-resistance. Tension between lignified and non-lignified cells in the silique DZ plays a major role in dehiscence. Light microscopy revealed a smaller non-lignified separation layer in relatively shatter-resistant B. juncea relative to B. napus and this corresponded to increased expression of peroxidases involved in monolignol polymerization. Sustained repression of auxin biosynthesis, transport and signaling in B. juncea relative to B. napus may cause differences in dehiscence zone structure and cell wall constituents. Tension on the dehiscence zone is a consequence of shrinkage and loss of flexibility in the valves, which is caused by senescence and desiccation. Reduced shattering was generally associated with upregulation of ABA signaling and down-regulation of ethylene and jasmonate signaling, corresponding to more pronounced stress responses and reduced senescence and photosynthesis. Overall, we identified 124 cell wall related genes and 103 transcription factors potentially involved in silique dehiscence.

  11. Transcriptome, carbohydrate, and phytohormone analysis of Petunia hybrida reveals a complex disturbance of plant functional integrity under mild chilling stress

    Science.gov (United States)

    Bauerfeind, Martin Andreas; Winkelmann, Traud; Franken, Philipp; Druege, Uwe

    2015-01-01

    Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12°C vs. 16°C) affect growth of the sensitive Petunia hybrida cultivar ‘SweetSunshine Williams’, the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars

  12. Integration analysis of quantitative proteomics and transcriptomics data identifies potential targets of frizzled-8 protein-related antiproliferative factor in vivo.

    Science.gov (United States)

    Yang, Wei; Kim, Yongsoo; Kim, Taek-Kyun; Keay, Susan K; Kim, Kwang Pyo; Steen, Hanno; Freeman, Michael R; Hwang, Daehee; Kim, Jayoung

    2012-12-01

    What's known on the subject? and What does the study add? Interstitial cystitis (IC) is a prevalent and debilitating pelvic disorder generally accompanied by chronic pain combined with chronic urinating problems. Over one million Americans are affected, especially middle-aged women. However, its aetiology or mechanism remains unclear. No efficient drug has been provided to patients. Several urinary biomarker candidates have been identified for IC; among the most promising is antiproliferative factor (APF), whose biological activity is detectable in urine specimens from >94% of patients with both ulcerative and non-ulcerative IC. The present study identified several important mediators of the effect of APF on bladder cell physiology, suggesting several candidate drug targets against IC. In an attempt to identify potential proteins and genes regulated by APF in vivo, and to possibly expand the APF-regulated network identified by stable isotope labelling by amino acids in cell culture (SILAC), we performed an integration analysis of our own SILAC data and the microarray data of Gamper et al. (2009) BMC Genomics 10: 199. Notably, two of the proteins (i.e. MAPKSP1 and GSPT1) that are down-regulated by APF are involved in the activation of mTORC1, suggesting that the mammalian target of rapamycin (mTOR) pathway is potentially a critical pathway regulated by APF in vivo. Several components of the mTOR pathway are currently being studied as potential therapeutic targets in other diseases. Our analysis suggests that this pathway might also be relevant in the design of diagnostic tools and medications targeting IC. • To enhance our understanding of the interstitial cystitis urine biomarker antiproliferative factor (APF), as well as interstitial cystitis biology more generally at the systems level, we reanalyzed recently published large-scale quantitative proteomics and in vivo transcriptomics data sets using an integration analysis tool that we have developed. • To

  13. Strategic and Operational Plan for Integrating Transcriptomics ...

    Science.gov (United States)

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  14. Integrative Bioinformatic Analysis of Transcriptomic Data Identifies Conserved Molecular Pathways Underlying Ionizing Radiation-Induced Bystander Effects (RIBE

    Directory of Open Access Journals (Sweden)

    Constantinos Yeles

    2017-11-01

    Full Text Available Ionizing radiation-induced bystander effects (RIBE encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR, something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization, and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies, revealed discrete biological processes, at the cellular level. For example, the negative regulation of growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles and carbon-ions.

  15. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling

    Science.gov (United States)

    Medina, Ignacio; Carbonell, José; Pulido, Luis; Madeira, Sara C.; Goetz, Stefan; Conesa, Ana; Tárraga, Joaquín; Pascual-Montano, Alberto; Nogales-Cadenas, Ruben; Santoyo, Javier; García, Francisco; Marbà, Martina; Montaner, David; Dopazo, Joaquín

    2010-01-01

    Babelomics is a response to the growing necessity of integrating and analyzing different types of genomic data in an environment that allows an easy functional interpretation of the results. Babelomics includes a complete suite of methods for the analysis of gene expression data that include normalization (covering most commercial platforms), pre-processing, differential gene expression (case-controls, multiclass, survival or continuous values), predictors, clustering; large-scale genotyping assays (case controls and TDTs, and allows population stratification analysis and correction). All these genomic data analysis facilities are integrated and connected to multiple options for the functional interpretation of the experiments. Different methods of functional enrichment or gene set enrichment can be used to understand the functional basis of the experiment analyzed. Many sources of biological information, which include functional (GO, KEGG, Biocarta, Reactome, etc.), regulatory (Transfac, Jaspar, ORegAnno, miRNAs, etc.), text-mining or protein–protein interaction modules can be used for this purpose. Finally a tool for the de novo functional annotation of sequences has been included in the system. This provides support for the functional analysis of non-model species. Mirrors of Babelomics or command line execution of their individual components are now possible. Babelomics is available at http://www.babelomics.org. PMID:20478823

  16. Integrated transcriptome and binding sites analysis implicates E2F in the regulation of self-renewal in human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Hock Chuan Yeo

    Full Text Available Rapid cellular growth and multiplication, limited replicative senescence, calibrated sensitivity to apoptosis, and a capacity to differentiate into almost any cell type are major properties that underline the self-renewal capabilities of human pluripotent stem cells (hPSCs. We developed an integrated bioinformatics pipeline to understand the gene regulation and functions involved in maintaining such self-renewal properties of hPSCs compared to matched fibroblasts. An initial genome-wide screening of transcription factor activity using in silico binding-site and gene expression microarray data newly identified E2F as one of major candidate factors, revealing their significant regulation of the transcriptome. This is underscored by an elevated level of its transcription factor activity and expression in all tested pluripotent stem cell lines. Subsequent analysis of functional gene groups demonstrated the importance of the TFs to self-renewal in the pluripotency-coupled context; E2F directly targets the global signaling (e.g. self-renewal associated WNT and FGF pathways and metabolic network (e.g. energy generation pathways, molecular transports and fatty acid metabolism to promote its canonical functions that are driving the self-renewal of hPSCs. In addition, we proposed a core self-renewal module of regulatory interplay between E2F and, WNT and FGF pathways in these cells. Thus, we conclude that E2F plays a significant role in influencing the self-renewal capabilities of hPSCs.

  17. Integrative Analysis of the microRNAome and Transcriptome Illuminates the Response of Susceptible Rice Plants to Rice Stripe Virus.

    Directory of Open Access Journals (Sweden)

    Jian Yang

    Full Text Available Rice stripe virus (RSV is one of the most serious rice viruses in East Asia. To investigate how rice responds to RSV infection, we integrated miRNA expression with parallel mRNA transcription profiling by deep sequencing. A total of 570 miRNAs were identified of which 69 miRNAs (56 up-regulated and 13 down-regulated were significantly modified by RSV infection. Digital gene expression (DGE analysis showed that 1274 mRNAs (431 up-regulated and 843 down-regulated genes were differentially expressed as a result of RSV infection. The differential expression of selected miRNAs and mRNAs was confirmed by qRT-PCR. Gene ontology (GO and pathway enrichment analysis showed that a complex set of miRNA and mRNA networks were selectively regulated by RSV infection. In particular, 63 differentially expressed miRNAs were found to be significantly and negatively correlated with 160 target mRNAs. Interestingly, 22 up-regulated miRNAs were negatively correlated with 24 down-regulated mRNAs encoding disease resistance-related proteins, indicating that the host defense responses were selectively suppressed by RSV infection. The suppression of both osa-miR1423-5p- and osa-miR1870-5p-mediated resistance pathways was further confirmed by qRT-PCR. Chloroplast functions were also targeted by RSV, especially the zeaxanthin cycle, which would affect the stability of thylakoid membranes and the biosynthesis of ABA. All these modifications may contribute to viral symptom development and provide new insights into the pathogenicity mechanisms of RSV.

  18. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  19. Transcriptome

    Science.gov (United States)

    ... Also: Talking Glossary of Genetic Terms Definitions for genetic terms used on this page En Español: Transcriptoma Transcriptome What is a transcriptome? What can a transcriptome tell us? How can transcriptome data be used to explore gene function? What is ...

  20. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data

    Directory of Open Access Journals (Sweden)

    Katharina Stoecker

    2017-03-01

    Full Text Available The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA. To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA–mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA–mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

  1. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe......-regimes caused significant differences in both quantity and quality of the storage proteins transcripts. Principal Component Analysis of the amino acid (AA) profiles also indicated dissimilarity in individual AA percentages, correlated to hordein content. The abundance values of proteins of interest confirmed...

  2. Global meta-analysis of transcriptomics studies.

    Directory of Open Access Journals (Sweden)

    José Caldas

    Full Text Available Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy, based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.

  3. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon.

    Science.gov (United States)

    Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A

    2017-10-18

    Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b

  4. Colorectal cancer stages transcriptome analysis.

    Directory of Open Access Journals (Sweden)

    Tianyao Huo

    Full Text Available Colorectal cancer (CRC is the third most common cancer and the second leading cause of cancer-related deaths in the United States. The purpose of this study was to evaluate the gene expression differences in different stages of CRC. Gene expression data on 433 CRC patient samples were obtained from The Cancer Genome Atlas (TCGA. Gene expression differences were evaluated across CRC stages using linear regression. Genes with p≤0.001 in expression differences were evaluated further in principal component analysis and genes with p≤0.0001 were evaluated further in gene set enrichment analysis. A total of 377 patients with gene expression data in 20,532 genes were included in the final analysis. The numbers of patients in stage I through IV were 59, 147, 116 and 55, respectively. NEK4 gene, which encodes for NIMA related kinase 4, was differentially expressed across the four stages of CRC. The stage I patients had the highest expression of NEK4 genes, while the stage IV patients had the lowest expressions (p = 9*10-6. Ten other genes (RNF34, HIST3H2BB, NUDT6, LRCh4, GLB1L, HIST2H4A, TMEM79, AMIGO2, C20orf135 and SPSB3 had p value of 0.0001 in the differential expression analysis. Principal component analysis indicated that the patients from the 4 clinical stages do not appear to have distinct gene expression pattern. Network-based and pathway-based gene set enrichment analyses showed that these 11 genes map to multiple pathways such as meiotic synapsis and packaging of telomere ends, etc. Ten of these 11 genes were linked to Gene Ontology terms such as nucleosome, DNA packaging complex and protein-DNA interactions. The protein complex-based gene set analysis showed that four genes were involved in H2AX complex II. This study identified a small number of genes that might be associated with clinical stages of CRC. Our analysis was not able to find a molecular basis for the current clinical staging for CRC based on the gene expression patterns.

  5. Integrated transcriptomic and proteomic evaluation of gentamicin nephrotoxicity in rats

    International Nuclear Information System (INIS)

    Com, Emmanuelle; Boitier, Eric; Marchandeau, Jean-Pierre; Brandenburg, Arnd; Schroeder, Susanne; Hoffmann, Dana; Mally, Angela; Gautier, Jean-Charles

    2012-01-01

    Gentamicin is an aminoglycoside antibiotic, which induces renal tubular necrosis in rats. In the context of the European InnoMed PredTox project, transcriptomic and proteomic studies were performed to provide new insights into the molecular mechanisms of gentamicin-induced nephrotoxicity. Male Wistar rats were treated with 25 and 75 mg/kg/day subcutaneously for 1, 3 and 14 days. Histopathology observations showed mild tubular degeneration/necrosis and regeneration and moderate mononuclear cell infiltrate after long-term treatment. Transcriptomic data indicated a strong treatment-related gene expression modulation in kidney and blood cells at the high dose after 14 days of treatment, with the regulation of 463 and 3241 genes, respectively. Of note, the induction of NF-kappa B pathway via the p38 MAPK cascade in the kidney, together with the activation of T-cell receptor signaling in blood cells were suggestive of inflammatory processes in relation with the recruitment of mononuclear cells in the kidney. Proteomic results showed a regulation of 163 proteins in kidney at the high dose after 14 days of treatment. These protein modulations were suggestive of a mitochondrial dysfunction with impairment of cellular energy production, induction of oxidative stress, an effect on protein biosynthesis and on cellular assembly and organization. Proteomic results also provided clues for potential nephrotoxicity biomarkers such as AGAT and PRBP4 which were strongly modulated in the kidney. Transcriptomic and proteomic data turned out to be complementary and their integration gave a more comprehensive insight into the putative mode of nephrotoxicity of gentamicin which was in accordance with histopathological findings. -- Highlights: ► Gentamicin induces renal tubular necrosis in rats. ► The mechanisms of gentamicin nephrotoxicity remain still elusive. ► Transcriptomic and proteomic analyses were performed to study this toxicity in rats. ► Transcriptomic and proteomic

  6. Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development[W][OPEN

    Science.gov (United States)

    Palumbo, Maria Concetta; Zenoni, Sara; Fasoli, Marianna; Massonnet, Mélanie; Farina, Lorenzo; Castiglione, Filippo; Pezzotti, Mario; Paci, Paola

    2014-01-01

    We developed an approach that integrates different network-based methods to analyze the correlation network arising from large-scale gene expression data. By studying grapevine (Vitis vinifera) and tomato (Solanum lycopersicum) gene expression atlases and a grapevine berry transcriptomic data set during the transition from immature to mature growth, we identified a category named “fight-club hubs” characterized by a marked negative correlation with the expression profiles of neighboring genes in the network. A special subset named “switch genes” was identified, with the additional property of many significant negative correlations outside their own group in the network. Switch genes are involved in multiple processes and include transcription factors that may be considered master regulators of the previously reported transcriptome remodeling that marks the developmental shift from immature to mature growth. All switch genes, expressed at low levels in vegetative/green tissues, showed a significant increase in mature/woody organs, suggesting a potential regulatory role during the developmental transition. Finally, our analysis of tomato gene expression data sets showed that wild-type switch genes are downregulated in ripening-deficient mutants. The identification of known master regulators of tomato fruit maturation suggests our method is suitable for the detection of key regulators of organ development in different fleshy fruit crops. PMID:25490918

  7. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics.

    Directory of Open Access Journals (Sweden)

    Mohit Verma

    Full Text Available Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB, which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology search and comparative gene expression analysis. The current release of CTDB (v2.0 hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.

  8. HOXD-AS1 is a novel lncRNA encoded in HOXD cluster and a marker of neuroblastoma progression revealed via integrative analysis of noncoding transcriptome

    Science.gov (United States)

    2014-01-01

    Background Long noncoding RNAs (lncRNAs) constitute a major, but poorly characterized part of human transcriptome. Recent evidence indicates that many lncRNAs are involved in cancer and can be used as predictive and prognostic biomarkers. Significant fraction of lncRNAs is represented on widely used microarray platforms, however they have usually been ignored in cancer studies. Results We developed a computational pipeline to annotate lncRNAs on popular Affymetrix U133 microarrays, creating a resource allowing measurement of expression of 1581 lncRNAs. This resource can be utilized to interrogate existing microarray datasets for various lncRNA studies. We found that these lncRNAs fall into three distinct classes according to their statistical distribution by length. Remarkably, these three classes of lncRNAs were co-localized with protein coding genes exhibiting distinct gene ontology groups. This annotation was applied to microarray analysis which identified a 159 lncRNA signature that discriminates between localized and metastatic stages of neuroblastoma. Analysis of an independent patient cohort revealed that this signature differentiates also relapsing from non-relapsing primary tumors. This is the first example of the signature developed via the analysis of expression of lncRNAs solely. One of these lncRNAs, termed HOXD-AS1, is encoded in HOXD cluster. HOXD-AS1 is evolutionary conserved among hominids and has all bona fide features of a gene. Studying retinoid acid (RA) response of SH-SY5Y cell line, a model of human metastatic neuroblastoma, we found that HOXD-AS1 is a subject to morphogenic regulation, is activated by PI3K/Akt pathway and itself is involved in control of RA-induced cell differentiation. Knock-down experiments revealed that HOXD-AS1 controls expression levels of clinically significant protein-coding genes involved in angiogenesis and inflammation, the hallmarks of metastatic cancer. Conclusions Our findings greatly extend the number of

  9. Transcriptome analysis of zebrafish embryogenesis using microarrays.

    Directory of Open Access Journals (Sweden)

    Sinnakaruppan Mathavan

    2005-08-01

    Full Text Available Zebrafish (Danio rerio is a well-recognized model for the study of vertebrate developmental genetics, yet at the same time little is known about the transcriptional events that underlie zebrafish embryogenesis. Here we have employed microarray analysis to study the temporal activity of developmentally regulated genes during zebrafish embryogenesis. Transcriptome analysis at 12 different embryonic time points covering five different developmental stages (maternal, blastula, gastrula, segmentation, and pharyngula revealed a highly dynamic transcriptional profile. Hierarchical clustering, stage-specific clustering, and algorithms to detect onset and peak of gene expression revealed clearly demarcated transcript clusters with maximum gene activity at distinct developmental stages as well as co-regulated expression of gene groups involved in dedicated functions such as organogenesis. Our study also revealed a previously unidentified cohort of genes that are transcribed prior to the mid-blastula transition, a time point earlier than when the zygotic genome was traditionally thought to become active. Here we provide, for the first time to our knowledge, a comprehensive list of developmentally regulated zebrafish genes and their expression profiles during embryogenesis, including novel information on the temporal expression of several thousand previously uncharacterized genes. The expression data generated from this study are accessible to all interested scientists from our institute resource database (http://giscompute.gis.a-star.edu.sg/~govind/zebrafish/data_download.html.

  10. Transcriptome analysis of Haloquadratum walsbyi: vanity is but the surface.

    Science.gov (United States)

    Bolhuis, Henk; Martín-Cuadrado, Ana Belén; Rosselli, Riccardo; Pašić, Lejla; Rodriguez-Valera, Francisco

    2017-07-03

    Haloquadratum walsbyi dominates saturated thalassic lakes worldwide where they can constitute up to 80-90% of the total prokaryotic community. Despite the abundance of the enigmatic square-flattened cells, only 7 isolates are currently known with 2 genomes fully sequenced and annotated due to difficulties to grow them under laboratory conditions. We have performed a transcriptomic analysis of one of these isolates, the Spanish strain HBSQ001 in order to investigate gene transcription under light and dark conditions. Despite a potential advantage for light as additional source of energy, no significant differences were found between light and dark expressed genes. Constitutive high gene expression was observed in genes encoding surface glycoproteins, light mediated proton pumping by bacteriorhodopsin, several nutrient uptake systems, buoyancy and storage of excess carbon. Two low expressed regions of the genome were characterized by a lower codon adaptation index, low GC content and high incidence of hypothetical genes. Under the extant cultivation conditions, the square hyperhalophile devoted most of its transcriptome towards processes maintaining cell integrity and exploiting solar energy. Surface glycoproteins are essential for maintaining the large surface to volume ratio that facilitates light and organic nutrient harvesting whereas constitutive expression of bacteriorhodopsin warrants an immediate source of energy when light becomes available.

  11. Integration of metabolomics and transcriptomics in nanotoxicity studies.

    Science.gov (United States)

    Shin, Tae Hwan; Lee, Da Yeon; Lee, Hyeon-Seong; Park, Hyung Jin; Jin, Moon Suk; Paik, Man-Jeong; Manavalan, Balachandran; Mo, Jung-Soon; Lee, Gwang

    2018-01-01

    Biomedical research involving nanoparticles has produced useful products with medical applications. However, the potential toxicity of nanoparticles in biofluids, cells, tissues, and organisms is a major challenge. The '-omics' analyses provide molecular profiles of multifactorial biological systems instead of focusing on a single molecule. The 'omics' approaches are necessary to evaluate nanotoxicity because classical methods for the detection of nanotoxicity have limited ability in detecting miniscule variations within a cell and do not accurately reflect the actual levels of nanotoxicity. In addition, the 'omics' approaches allow analyses of in-depth changes and compensate for the differences associated with high-throughput technologies between actual nanotoxicity and results from traditional cytotoxic evaluations. However, compared with a single omics approach, integrated omics provides precise and sensitive information by integrating complex biological conditions. Thus, these technologies contribute to extended safety evaluations of nanotoxicity and allow the accurate diagnoses of diseases far earlier than was once possible in the nanotechnology era. Here, we review a novel approach for evaluating nanotoxicity by integrating metabolomics with metabolomic profiling and transcriptomics, which is termed "metabotranscriptomics". [BMB Reports 2018; 51(1): 14-20].

  12. Transcriptome analysis of Anopheles stephensi embryo using ...

    Indian Academy of Sciences (India)

    Germ band retraction (GBR) stage is one of the important stages during insect development. It is associated with an extensive epithelial morphogenesis and may also be pivotal in generation of morphological diversity in insects. Despite its importance, only a handful of studies report the transcriptome repertoire of this stage ...

  13. f-divergence cutoff index to simultaneously identify differential expression in the integrated transcriptome and proteome

    OpenAIRE

    Tang, Shaojun; Hemberg, Martin; Cansizoglu, Ertugrul; Belin, Stephane; Kosik, Kenneth; Kreiman, Gabriel; Steen, Hanno; Steen, Judith

    2016-01-01

    The ability to integrate 'omics' (i.e., transcriptomics and proteomics) is becoming increasingly important to the understanding of regulatory mechanisms. There are currently no tools available to identify differentially expressed genes (DEGs)across different 'omics'data types or multi-dimensional data including time courses. We present a model capable of simultaneously identifying DEGs from continuous and discrete transcriptomic, proteomic and integrated proteogenomic data. We show that...

  14. Allopatric integrations selectively change host transcriptomes, leading to varied expression efficiencies of exotic genes in Myxococcus xanthus.

    Science.gov (United States)

    Zhu, Li-Ping; Yue, Xin-Jing; Han, Kui; Li, Zhi-Feng; Zheng, Lian-Shuai; Yi, Xiu-Nan; Wang, Hai-Long; Zhang, You-Ming; Li, Yue-Zhong

    2015-07-22

    Exotic genes, especially clustered multiple-genes for a complex pathway, are normally integrated into chromosome for heterologous expression. The influences of insertion sites on heterologous expression and allotropic expressions of exotic genes on host remain mostly unclear. We compared the integration and expression efficiencies of single and multiple exotic genes that were inserted into Myxococcus xanthus genome by transposition and attB-site-directed recombination. While the site-directed integration had a rather stable chloramphenicol acetyl transferase (CAT) activity, the transposition produced varied CAT enzyme activities. We attempted to integrate the 56-kb gene cluster for the biosynthesis of antitumor polyketides epothilones into M. xanthus genome by site-direction but failed, which was determined to be due to the insertion size limitation at the attB site. The transposition technique produced many recombinants with varied production capabilities of epothilones, which, however, were not paralleled to the transcriptional characteristics of the local sites where the genes were integrated. Comparative transcriptomics analysis demonstrated that the allopatric integrations caused selective changes of host transcriptomes, leading to varied expressions of epothilone genes in different mutants. With the increase of insertion fragment size, transposition is a more practicable integration method for the expression of exotic genes. Allopatric integrations selectively change host transcriptomes, which lead to varied expression efficiencies of exotic genes.

  15. Transcriptome sequencing and comparative transcriptome analysis of the scleroglucan producer Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Stahl Ulf

    2010-05-01

    Full Text Available Abstract Background The plant pathogenic basidiomycete Sclerotium rolfsii produces the industrially exploited exopolysaccharide scleroglucan, a polymer that consists of (1 → 3-β-linked glucose with a (1 → 6-β-glycosyl branch on every third unit. Although the physicochemical properties of scleroglucan are well understood, almost nothing is known about the genetics of scleroglucan biosynthesis. Similarly, the biosynthetic pathway of oxalate, the main by-product during scleroglucan production, has not been elucidated yet. In order to provide a basis for genetic and metabolic engineering approaches, we studied scleroglucan and oxalate biosynthesis in S. rolfsii using different transcriptomic approaches. Results Two S. rolfsii transcriptomes obtained from scleroglucan-producing and scleroglucan-nonproducing conditions were pooled and sequenced using the 454 pyrosequencing technique yielding ~350,000 reads. These could be assembled into 21,937 contigs and 171,833 singletons, for which 6,951 had significant matches in public protein data bases. Sequence data were used to obtain first insights into the genomics of scleroglucan and oxalate production and to predict putative proteins involved in the synthesis of both metabolites. Using comparative transcriptomics, namely Agilent microarray hybridization and suppression subtractive hybridization, we identified ~800 unigenes which are differently expressed under scleroglucan-producing and non-producing conditions. From these, candidate genes were identified which could represent potential leads for targeted modification of the S. rolfsii metabolism for increased scleroglucan yields. Conclusions The results presented in this paper provide for the first time genomic and transcriptomic data about S. rolfsii and demonstrate the power and usefulness of combined transcriptome sequencing and comparative microarray analysis. The data obtained allowed us to predict the biosynthetic pathways of scleroglucan and

  16. Analysis of the Citrullus colocynthis transcriptome during water deficit stress.

    Directory of Open Access Journals (Sweden)

    Zhuoyu Wang

    Full Text Available Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus, an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.

  17. TRAM (Transcriptome Mapper: database-driven creation and analysis of transcriptome maps from multiple sources

    Directory of Open Access Journals (Sweden)

    Danieli Gian

    2011-02-01

    Full Text Available Abstract Background Several tools have been developed to perform global gene expression profile data analysis, to search for specific chromosomal regions whose features meet defined criteria as well as to study neighbouring gene expression. However, most of these tools are tailored for a specific use in a particular context (e.g. they are species-specific, or limited to a particular data format and they typically accept only gene lists as input. Results TRAM (Transcriptome Mapper is a new general tool that allows the simple generation and analysis of quantitative transcriptome maps, starting from any source listing gene expression values for a given gene set (e.g. expression microarrays, implemented as a relational database. It includes a parser able to assign univocal and updated gene symbols to gene identifiers from different data sources. Moreover, TRAM is able to perform intra-sample and inter-sample data normalization, including an original variant of quantile normalization (scaled quantile, useful to normalize data from platforms with highly different numbers of investigated genes. When in 'Map' mode, the software generates a quantitative representation of the transcriptome of a sample (or of a pool of samples and identifies if segments of defined lengths are over/under-expressed compared to the desired threshold. When in 'Cluster' mode, the software searches for a set of over/under-expressed consecutive genes. Statistical significance for all results is calculated with respect to genes localized on the same chromosome or to all genome genes. Transcriptome maps, showing differential expression between two sample groups, relative to two different biological conditions, may be easily generated. We present the results of a biological model test, based on a meta-analysis comparison between a sample pool of human CD34+ hematopoietic progenitor cells and a sample pool of megakaryocytic cells. Biologically relevant chromosomal segments and gene

  18. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    Science.gov (United States)

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  19. Comparative Analysis of the Arabidopsis Pollen Transcriptome

    Czech Academy of Sciences Publication Activity Database

    Honys, David; Twell, D.

    2003-01-01

    Roč. 132, - (2003), s. 640ů652 ISSN 0032-0889 R&D Projects: GA AV ČR IAA5038207 Grant - others:Royal Society(GB) NATO Postdoctoral Fellowship (to D.H.) Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 113100003 Keywords : transcriptome profiling * Arabidopsis pollen * male gametophyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.634, year: 2003

  20. Integrated analysis of miRNAs and transcriptomes in Aedes albopictus midgut reveals the differential expression profiles of immune-related genes during dengue virus serotype-2 infection.

    Science.gov (United States)

    Liu, Yan-Xia; Li, Fen-Xiang; Liu, Zhuan-Zhuan; Jia, Zhi-Rong; Zhou, Yan-He; Zhang, Hao; Yan, Hui; Zhou, Xian-Qiang; Chen, Xiao-Guang

    2016-06-01

    Mosquito microRNAs (miRNAs) are involved in host-virus interaction, and have been reported to be altered by dengue virus (DENV) infection in Aedes albopictus (Diptera: Culicidae). However, little is known about the molecular mechanisms of Aedes albopictus midgut-the first organ to interact with DENV-involved in its resistance to DENV. Here we used high-throughput sequencing to characterize miRNA and messenger RNA (mRNA) expression patterns in Aedes albopictus midgut in response to dengue virus serotype 2. A total of three miRNAs and 777 mRNAs were identified to be differentially expressed upon DENV infection. For the mRNAs, we identified 198 immune-related genes and 31 of them were differentially expressed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses also showed that the differentially expressed immune-related genes were involved in immune response. Then the differential expression patterns of six immune-related genes and three miRNAs were confirmed by real-time reverse transcription polymerase chain reaction. Furthermore, seven known miRNA-mRNA interaction pairs were identified by aligning our two datasets. These analyses of miRNA and mRNA transcriptomes provide valuable information for uncovering the DENV response genes and provide a basis for future study of the resistance mechanisms in Aedes albopictus midgut. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  1. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics

    OpenAIRE

    Verma, Mohit; Kumar, Vinay; Patel, Ravi K.; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database fea...

  2. Transcriptome analysis of monocyte-HIV interactions

    Directory of Open Access Journals (Sweden)

    Tran Huyen

    2010-06-01

    /macrophage dysfunction is involved may only now be emerging or remain yet to be discovered, in particular in view of the limited number of studies focussing on the monocyte response to ART 32. In order to generate novel hypotheses rather than test pre-existing ones in the context of monocyte-HIV interactions, we performed a transcriptome analysis on monocyte samples from patients in different stages of HIV infection and/or combination ART treatment, using a parallel approach of genome-wide microarray analysis and focused gene expression profiling to identify broad areas of monocyte dysfunction and to pinpoint genes which are potentially involved in one or several of these dysfunctions. In particular the factors which are exploited by the monocyte/macrophage to communicate with and/or modulate other immune cells were of interest, as they represent a particularly relevant population 3334 which is a primary target for intervention.

  3. Analysis of a human brain transcriptome map

    Directory of Open Access Journals (Sweden)

    Greene Jonathan R

    2002-04-01

    Full Text Available Abstract Background Genome wide transcriptome maps can provide tools to identify candidate genes that are over-expressed or silenced in certain disease tissue and increase our understanding of the structure and organization of the genome. Expressed Sequence Tags (ESTs from the public dbEST and proprietary Incyte LifeSeq databases were used to derive a transcript map in conjunction with the working draft assembly of the human genome sequence. Results Examination of ESTs derived from brain tissues (excluding brain tumor tissues suggests that these genes are distributed on chromosomes in a non-random fashion. Some regions on the genome are dense with brain-enriched genes while some regions lack brain-enriched genes, suggesting a significant correlation between distribution of genes along the chromosome and tissue type. ESTs from brain tumor tissues have also been mapped to the human genome working draft. We reveal that some regions enriched in brain genes show a significant decrease in gene expression in brain tumors, and, conversely that some regions lacking in brain genes show an increased level of gene expression in brain tumors. Conclusions This report demonstrates a novel approach for tissue specific transcriptome mapping using EST-based quantitative assessment.

  4. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells

    OpenAIRE

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S.; Woollard, John R.; Tang, Hui; Dasari, Surendra; Lerman, Amir; van Wijnen, Andre J.; Lerman, Lilach O.

    2017-01-01

    Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of m...

  5. Transcriptomic analysis of Salmonella desiccation resistance.

    Science.gov (United States)

    Li, Haiping; Bhaskara, Anuhya; Megalis, Christina; Tortorello, Mary Lou

    2012-12-01

    The survival of Salmonella in low moisture foods and processing environments remains a great challenge for the food industry and public health. To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using Salmonella Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h of air-drying at 11% equilibrated relative humidity, approximately one-fourth of the open reading frames (ORFs) in the Tennessee genome and one-fifth in LT2 were differentially expressed (>2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51% and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation. The accumulation of the osmolyte trehalose was significantly induced by desiccation in Tennessee, but no increase was detectable in LT2, which is consistent with the expression patterns of the entire trehalose biosynthesis and degradation pathways in both strains. Results from this study present a global view of the dynamic desiccation responses in Salmonella, which will guide future research efforts to control Salmonella in low moisture environments.

  6. Integration of metabolomic and transcriptomic networks in pregnant women reveals biological pathways and predictive signatures associated with preeclampsia.

    Science.gov (United States)

    Kelly, Rachel S; Croteau-Chonka, Damien C; Dahlin, Amber; Mirzakhani, Hooman; Wu, Ann C; Wan, Emily S; McGeachie, Michael J; Qiu, Weiliang; Sordillo, Joanne E; Al-Garawi, Amal; Gray, Kathryn J; McElrath, Thomas F; Carey, Vincent J; Clish, Clary B; Litonjua, Augusto A; Weiss, Scott T; Lasky-Su, Jessica A

    2017-01-01

    Preeclampsia is a leading cause of maternal and fetal mortality worldwide, yet its exact pathogenesis remains elusive. This study, nested within the Vitamin D Antenatal Asthma Reduction Trial (VDAART), aimed to develop integrated omics models of preeclampsia that have utility in both prediction and in the elucidation of underlying biological mechanisms. Metabolomic profiling was performed on first trimester plasma samples of 47 pregnant women from VDAART who subsequently developed preeclampsia and 62 controls with healthy pregnancies, using liquid-chromatography tandem mass-spectrometry. Metabolomic profiles were generated based on logistic regression models and assessed using Received Operator Characteristic Curve analysis. These profiles were compared to profiles from generated using third trimester samples. The first trimester metabolite profile was then integrated with a pre-existing transcriptomic profile using network methods. In total, 72 (0.9%) metabolite features were associated (pIntegration with the transcriptomic signature refined these results suggesting a particular role for lipid imbalance, immune function and the circulatory system. These findings suggest it is possible to develop a predictive metabolomic profile of preeclampsia. This profile is characterized by changes in lipid and amino acid metabolism and dysregulation of immune response and can be refined through interaction with transcriptomic data. However validation in larger and more diverse populations is required.

  7. Novel insights into iron metabolism by integrating deletome and transcriptome analysis in an iron deficiency model of the yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Arkin Adam P

    2009-03-01

    Full Text Available Abstract Background Iron-deficiency anemia is the most prevalent form of anemia world-wide. The yeast Saccharomyces cerevisiae has been used as a model of cellular iron deficiency, in part because many of its cellular pathways are conserved. To better understand how cells respond to changes in iron availability, we profiled the yeast genome with a parallel analysis of homozygous deletion mutants to identify essential components and cellular processes required for optimal growth under iron-limited conditions. To complement this analysis, we compared those genes identified as important for fitness to those that were differentially-expressed in the same conditions. The resulting analysis provides a global perspective on the cellular processes involved in iron metabolism. Results Using functional profiling, we identified several genes known to be involved in high affinity iron uptake, in addition to novel genes that may play a role in iron metabolism. Our results provide support for the primary involvement in iron homeostasis of vacuolar and endosomal compartments, as well as vesicular transport to and from these compartments. We also observed an unexpected importance of the peroxisome for growth in iron-limited media. Although these components were essential for growth in low-iron conditions, most of them were not differentially-expressed. Genes with altered expression in iron deficiency were mainly associated with iron uptake and transport mechanisms, with little overlap with those that were functionally required. To better understand this relationship, we used expression-profiling of selected mutants that exhibited slow growth in iron-deficient conditions, and as a result, obtained additional insight into the roles of CTI6, DAP1, MRS4 and YHR045W in iron metabolism. Conclusion Comparison between functional and gene expression data in iron deficiency highlighted the complementary utility of these two approaches to identify important functional

  8. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.

    Science.gov (United States)

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-31

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed that the bacterial infection enhanced specifically genes involved in sugar alcohol metabolism. Brassinosteroids were upregulated by fungal pathogens while ethylene was highly affected by Erwinia amylovora. Gibberellins and jasmonates were strongly repressed by fungal and viral infections. The protein-protein interaction network highlighted the role of WRKYs in responses to the studied pathogens. In summary, our meta-analysis provides a better understanding of the Malus X domestica transcriptome responses to different biotic stress conditions; we anticipate that these insights will assist in the development of genetic resistance and acute therapeutic strategies. This work would be an example for next meta-analysis works aiming at identifying specific common molecular features linked with biotic stress responses in other specialty crops.

  9. Histological and Transcriptomic Analysis during Bulbil Formation in Lilium lancifolium

    Directory of Open Access Journals (Sweden)

    Panpan Yang

    2017-08-01

    Full Text Available Aerial bulbils are an important propagative organ, playing an important role in population expansion. However, the detailed gene regulatory patterns and molecular mechanism underlying bulbil formation remain unclear. Triploid Lilium lancifolium, which develops many aerial bulbils on the leaf axils of middle-upper stem, is a useful species for investigating bulbil formation. To investigate the mechanism of bulbil formation in triploid L. lancifolium, we performed histological and transcriptomic analyses using samples of leaf axils located in the upper and lower stem of triploid L. lancifolium during bulbil formation. Histological results indicated that the bulbils of triploid L. lancifolium are derived from axillary meristems that initiate de novo from cells on the adaxial side of the petiole base. Transcriptomic analysis generated ~650 million high-quality reads and 11,871 differentially expressed genes (DEGs. Functional analysis showed that the DEGs were significantly enriched in starch and sucrose metabolism and plant hormone signal transduction. Starch synthesis and accumulation likely promoted the initiation of upper bulbils in triploid L. lancifolium. Hormone-associated pathways exhibited distinct patterns of change in each sample. Auxin likely promoted the initiation of bulbils and then inhibited further bulbil formation. High biosynthesis and low degradation of cytokinin might have led to bulbil formation in the upper leaf axil. The present study achieved a global transcriptomic analysis focused on gene expression changes and pathways' enrichment during upper bulbil formation in triploid L. lancifolium, laying a solid foundation for future molecular studies on bulbil formation.

  10. Utility of RNA Sequencing for Analysis of Maize Reproductive Transcriptomes

    Directory of Open Access Journals (Sweden)

    Rebecca M. Davidson

    2011-11-01

    Full Text Available Transcriptome sequencing is a powerful method for studying global expression patterns in large, complex genomes. Evaluation of sequence-based expression profiles during reproductive development would provide functional annotation to genes underlying agronomic traits. We generated transcriptome profiles for 12 diverse maize ( L. reproductive tissues representing male, female, developing seed, and leaf tissues using high throughput transcriptome sequencing. Overall, ∼80% of annotated genes were expressed. Comparative analysis between sequence and hybridization-based methods demonstrated the utility of ribonucleic acid sequencing (RNA-seq for expression determination and differentiation of paralagous genes (∼85% of maize genes. Analysis of 4975 gene families across reproductive tissues revealed expression divergence is proportional to family size. In all pairwise comparisons between tissues, 7 (pre- vs. postemergence cobs to 48% (pollen vs. ovule of genes were differentially expressed. Genes with expression restricted to a single tissue within this study were identified with the highest numbers observed in leaves, endosperm, and pollen. Coexpression network analysis identified 17 gene modules with complex and shared expression patterns containing many previously described maize genes. The data and analyses in this study provide valuable tools through improved gene annotation, gene family characterization, and a core set of candidate genes to further characterize maize reproductive development and improve grain yield potential.

  11. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Pradhan, Seema; Bandhiwal, Nitesh; Shah, Niraj; Kant, Chandra; Gaur, Rashmi; Bhatia, Sabhyata

    2014-01-01

    Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  12. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  13. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics

    NARCIS (Netherlands)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic Y; Jennings, Paul

    2015-01-01

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to

  14. Analysis of the salivary gland transcriptome of Frankliniella occidentalis.

    Directory of Open Access Journals (Sweden)

    Candice A Stafford-Banks

    Full Text Available Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande (the western flower thrips is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E-6 to known proteins, whereas a high percentage (61.24% of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the

  15. MassTRIX reloaded: combined analysis and visualization of transcriptome and metabolome data.

    Directory of Open Access Journals (Sweden)

    Brigitte Wägele

    Full Text Available Systems Biology is a field in biological science that focuses on the combination of several or all "omics"-approaches in order to find out how genes, transcripts, proteins and metabolites act together in the network of life. Metabolomics as analog to genomics, transcriptomics and proteomics is more and more integrated into biological studies and often transcriptomic and metabolomic experiments are combined in one setup. At a first glance both data types seem to be completely different, but both produce information on biological entities, either transcripts or metabolites. Both types can be overlaid on metabolic pathways to obtain biological information on the studied system. For the joint analysis of both data types the MassTRIX webserver was updated. MassTRIX is freely available at www.masstrix.org.

  16. [SSR loci information analysis in transcriptome of Andrographis paniculata].

    Science.gov (United States)

    Li, Jun-Ren; Chen, Xiu-Zhen; Tang, Xiao-Ting; He, Rui; Zhan, Ruo-Ting

    2018-06-01

    To study the SSR loci information and develop molecular markers, a total of 43 683 Unigenes in transcriptome of Andrographis paniculata were used to explore SSR. The distribution frequency of SSR and the basic characteristics of repeat motifs were analyzed using MicroSAtellite software, SSR primers were designed by Primer 3.0 software and then validated by PCR. Moreover, the gene function analysis of SSR Unigene was obtained by Blast. The results showed that 14 135 SSR loci were found in the transcriptome of A. paniculata, which distributed in 9 973 Unigenes with a distribution frequency of 32.36%. Di-nucleotide and Tri-nucleotide repeat were the main types, accounted for 75.54% of all SSRs. The repeat motifs of AT/AT and CCG/CGG were the predominant repeat types of Di-nucleotide and Tri-nucleotide, respectively. A total of 4 740 pairs of SSR primers with the potential to produce polymorphism were designed for maker development. Ten pairs of primers in 20 pairs of randomly picked primers produced fragments with expected molecular size. The gene function of Unigenes containing SSR were mostly related to the basic metabolism function of A. paniculata. The SSR markers in transcriptome of A. paniculata show rich type, strong specificity and high potential of polymorphism, which will benefit the candidate gene mining and marker-assisted breeding. Copyright© by the Chinese Pharmaceutical Association.

  17. Transcriptome analysis of the Asian honey bee Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Zi Long Wang

    Full Text Available BACKGROUND: The Eastern hive honey bee, Apis cerana cerana is a native and widely bred honey bee species in China. Molecular biology research about this honey bee species is scarce, and genomic information for A. c. cerana is not currently available. Transcriptome and expression profiling data for this species are therefore important resources needed to better understand the biological mechanisms of A. c. cerana. In this study, we obtained the transcriptome information of A. c. cerana by RNA-sequencing and compared gene expression differences between queens and workers of A. c. cerana by digital gene expression (DGE analysis. RESULTS: Using high-throughput Illumina RNA sequencing we obtained 51,581,510 clean reads corresponding to 4.64 Gb total nucleotides from a single run. These reads were assembled into 46,999 unigenes with a mean length of 676 bp. Based on a sequence similarity search against the five public databases (NR, Swissport, GO, COG, KEGG with a cut-off E-value of 10(-5 using BLASTX, a total of 24,630 unigenes were annotated with gene descriptions, gene ontology terms, or metabolic pathways. Using these transcriptome data as references we analyzed the gene expression differences between the queens and workers of A. c. cerana using a tag-based digital gene expression method. We obtained 5.96 and 5.66 million clean tags from the queen and worker samples, respectively. A total of 414 genes were differentially expressed between them, with 189 up-regulated and 225 down-regulated in queens. CONCLUSIONS: Our transcriptome data provide a comprehensive sequence resource for future A. c. cerana study, establishing an important public information platform for functional genomic studies in A. c. cerana. Furthermore, the DGE data provide comprehensive gene expression information for the queens and workers, which will facilitate our understanding of the molecular mechanisms of the different physiological aspects of the two castes.

  18. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits.

    Science.gov (United States)

    Wu, Hong-xia; Jia, Hui-min; Ma, Xiao-wei; Wang, Song-biao; Yao, Quan-sheng; Xu, Wen-tian; Zhou, Yi-gang; Gao, Zhong-shan; Zhan, Ru-lin

    2014-06-13

    Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transcriptome analysis of adiposity in domestic ducks by transcriptomic comparison with their wild counterparts.

    Science.gov (United States)

    Chen, L; Luo, J; Li, J X; Li, J J; Wang, D Q; Tian, Y; Lu, L Z

    2015-06-01

    Excessive adiposity is a major problem in the duck industry, but its molecular mechanisms remain unknown. Genetic comparisons between domestic and wild animals have contributed to the exploration of genetic mechanisms responsible for many phenotypic traits. Significant differences in body fat mass have been detected between domestic and wild ducks. In this study, we used the Peking duck and Anas platyrhynchos as the domestic breed and wild counterpart respectively and performed a transcriptomic comparison of abdominal fat between the two breeds to comprehensively analyze the transcriptome basis of adiposity in ducks. We obtained approximately 350 million clean reads; assembled 61 250 transcripts, including 23 699 novel ones; and identified alternative 5' splice sites, alternative 3' splice sites, skipped exons and retained intron as the main alternative splicing events. A differential expression analysis between the two breeds showed that 753 genes exhibited differential expression. In Peking ducks, some lipid metabolism-related genes (IGF2, FABP5, BMP7, etc.) and oncogenes (RRM2, AURKA, CYR61, etc.) were upregulated, whereas genes related to tumor suppression and immunity (TNFRSF19, TNFAIP6, IGSF21, NCF1, etc.) were downregulated, suggesting adiposity might closely associate with tumorigenesis in ducks. Furthermore, 280 576 single-nucleotide variations were found differentiated between the two breeds, including 8641 non-synonymous ones, and some of the non-synonymous ones were found enriched in genes involved in lipid-associated and immune-associated pathways, suggesting abdominal fat of the duck undertakes both a metabolic function and immune-related function. These datasets enlarge our genetic information of ducks and provide valuable resources for analyzing mechanisms underlying adiposity in ducks. © 2015 Stichting International Foundation for Animal Genetics.

  20. Mechanism of cisplatin proximal tubule toxicity revealed by integrating transcriptomics, proteomics, metabolomics and biokinetics.

    Science.gov (United States)

    Wilmes, Anja; Bielow, Chris; Ranninger, Christina; Bellwon, Patricia; Aschauer, Lydia; Limonciel, Alice; Chassaigne, Hubert; Kristl, Theresa; Aiche, Stephan; Huber, Christian G; Guillou, Claude; Hewitt, Philipp; Leonard, Martin O; Dekant, Wolfgang; Bois, Frederic; Jennings, Paul

    2015-12-25

    Cisplatin is one of the most widely used chemotherapeutic agents for the treatment of solid tumours. The major dose-limiting factor is nephrotoxicity, in particular in the proximal tubule. Here, we use an integrated omics approach, including transcriptomics, proteomics and metabolomics coupled to biokinetics to identify cell stress response pathways induced by cisplatin. The human renal proximal tubular cell line RPTEC/TERT1 was treated with sub-cytotoxic concentrations of cisplatin (0.5 and 2 μM) in a daily repeat dose treating regime for up to 14 days. Biokinetic analysis showed that cisplatin was taken up from the basolateral compartment, transported to the apical compartment, and accumulated in cells over time. This is in line with basolateral uptake of cisplatin via organic cation transporter 2 and bioactivation via gamma-glutamyl transpeptidase located on the apical side of proximal tubular cells. Cisplatin affected several pathways including, p53 signalling, Nrf2 mediated oxidative stress response, mitochondrial processes, mTOR and AMPK signalling. In addition, we identified novel pathways changed by cisplatin, including eIF2 signalling, actin nucleation via the ARP/WASP complex and regulation of cell polarization. In conclusion, using an integrated omic approach together with biokinetics we have identified both novel and established mechanisms of cisplatin toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.

    Science.gov (United States)

    Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan

    2015-02-06

    Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Transcriptomic analysis of flower development in wintersweet (Chimonanthus praecox).

    Science.gov (United States)

    Liu, Daofeng; Sui, Shunzhao; Ma, Jing; Li, Zhineng; Guo, Yulong; Luo, Dengpan; Yang, Jianfeng; Li, Mingyang

    2014-01-01

    Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data

  3. Leading edge analysis of transcriptomic changes during pseudorabies virus infection

    Directory of Open Access Journals (Sweden)

    Damarius S. Fleming

    2016-12-01

    Full Text Available Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO (GSE74473 database.

  4. Leading edge analysis of transcriptomic changes during pseudorabies virus infection.

    Science.gov (United States)

    Fleming, Damarius S; Miller, Laura C

    2016-12-01

    Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each library prior to being analyzed using Illumina Digital Gene Expression Tag Profiling sequences (DGETP) which were used as the downstream measure of differential expression. Analyzed tags consisted of 21 base pair sequences taken from time points 1, 3, 6, and 14 days' post infection (dpi) that generated 1,927,547 unique tag sequences. Tag sequences were analyzed for differential transcript expression and gene set enrichment analysis (GSEA) to uncover transcriptomic changes related to PRV pathology progression. In conjunction with the DGETP and GSEA, the study also incorporated use of leading edge analysis to help link the TBLN transcriptome data to clinical progression of PRV at each of the sampled time points. The purpose of this manuscript is to provide useful background on applying the leading edge analysis to GSEA and expression data to help identify genes considered to be of high biological interest. The data in the form of fastq files has been uploaded to the NCBI Gene Expression Omnibus (GEO) (GSE74473) database.

  5. CBrowse: a SAM/BAM-based contig browser for transcriptome assembly visualization and analysis.

    Science.gov (United States)

    Li, Pei; Ji, Guoli; Dong, Min; Schmidt, Emily; Lenox, Douglas; Chen, Liangliang; Liu, Qi; Liu, Lin; Zhang, Jie; Liang, Chun

    2012-09-15

    To address the impending need for exploring rapidly increased transcriptomics data generated for non-model organisms, we developed CBrowse, an AJAX-based web browser for visualizing and analyzing transcriptome assemblies and contigs. Designed in a standard three-tier architecture with a data pre-processing pipeline, CBrowse is essentially a Rich Internet Application that offers many seamlessly integrated web interfaces and allows users to navigate, sort, filter, search and visualize data smoothly. The pre-processing pipeline takes the contig sequence file in FASTA format and its relevant SAM/BAM file as the input; detects putative polymorphisms, simple sequence repeats and sequencing errors in contigs and generates image, JSON and database-compatible CSV text files that are directly utilized by different web interfaces. CBowse is a generic visualization and analysis tool that facilitates close examination of assembly quality, genetic polymorphisms, sequence repeats and/or sequencing errors in transcriptome sequencing projects. CBrowse is distributed under the GNU General Public License, available at http://bioinfolab.muohio.edu/CBrowse/ liangc@muohio.edu or liangc.mu@gmail.com; glji@xmu.edu.cn Supplementary data are available at Bioinformatics online.

  6. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies

    Science.gov (United States)

    Wu, Nan; Song, Yu-Long; Wang, Bei; Zhang, Xiang-Yang; Zhang, Xu-Jie; Wang, Ya-Li; Cheng, Ying-Yin; Chen, Dan-Dan; Xia, Xiao-Qin; Lu, Yi-Shan; Zhang, Yong-An

    2016-11-01

    The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.

  7. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.

  8. Differential Transcriptome Analysis between Paulownia fortunei and Its Synthesized Autopolyploid

    Directory of Open Access Journals (Sweden)

    Xiaoshen Zhang

    2014-03-01

    Full Text Available Paulownia fortunei is an ecologically and economically important tree species that is widely used as timber and chemical pulp. Its autotetraploid, which carries a number of valuable traits, was successfully induced with colchicine. To identify differences in gene expression between P. fortunei and its synthesized autotetraploid, we performed transcriptome sequencing using an Illumina Genome Analyzer IIx (GAIIx. About 94.8 million reads were generated and assembled into 383,056 transcripts, including 18,984 transcripts with a complete open reading frame. A conducted Basic Local Alignment Search Tool (BLAST search indicated that 16,004 complete transcripts had significant hits in the National Center for Biotechnology Information (NCBI non-redundant database. The complete transcripts were given functional assignments using three public protein databases. One thousand one hundred fifty eight differentially expressed complete transcripts were screened through a digital abundance analysis, including transcripts involved in energy metabolism and epigenetic regulation. Finally, the expression levels of several transcripts were confirmed by quantitative real-time PCR. Our results suggested that polyploidization caused epigenetic-related changes, which subsequently resulted in gene expression variation between diploid and autotetraploid P. fortunei. This might be the main mechanism affected by the polyploidization. Our results represent an extensive survey of the P. fortunei transcriptome and will facilitate subsequent functional genomics research in P. fortunei. Moreover, the gene expression profiles of P. fortunei and its autopolyploid will provide a valuable resource for the study of polyploidization.

  9. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.

    Science.gov (United States)

    Kusko, Rebecca L; Brothers, John F; Tedrow, John; Pandit, Kusum; Huleihel, Luai; Perdomo, Catalina; Liu, Gang; Juan-Guardela, Brenda; Kass, Daniel; Zhang, Sherry; Lenburg, Marc; Martinez, Fernando; Quackenbush, John; Sciurba, Frank; Limper, Andrew; Geraci, Mark; Yang, Ivana; Schwartz, David A; Beane, Jennifer; Spira, Avrum; Kaminski, Naftali

    2016-10-15

    Despite shared environmental exposures, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease are usually studied in isolation, and the presence of shared molecular mechanisms is unknown. We applied an integrative genomic approach to identify convergent transcriptomic pathways in emphysema and IPF. We defined the transcriptional repertoire of chronic obstructive pulmonary disease, IPF, or normal histology lungs using RNA-seq (n = 87). Genes increased in both emphysema and IPF relative to control were enriched for the p53/hypoxia pathway, a finding confirmed in an independent cohort using both gene expression arrays and the nCounter Analysis System (n = 193). Immunohistochemistry confirmed overexpression of HIF1A, MDM2, and NFKBIB members of this pathway in tissues from patients with emphysema or IPF. Using reads aligned across splice junctions, we determined that alternative splicing of p53/hypoxia pathway-associated molecules NUMB and PDGFA occurred more frequently in IPF or emphysema compared with control and validated these findings by quantitative polymerase chain reaction and the nCounter Analysis System on an independent sample set (n = 193). Finally, by integrating parallel microRNA and mRNA-Seq data on the same samples, we identified MIR96 as a key novel regulatory hub in the p53/hypoxia gene-expression network and confirmed that modulation of MIR96 in vitro recapitulates the disease-associated gene-expression network. Our results suggest convergent transcriptional regulatory hubs in diseases as varied phenotypically as chronic obstructive pulmonary disease and IPF and suggest that these hubs may represent shared key responses of the lung to environmental stresses.

  10. Transcriptome analysis of epithelial and stromal contributions to mammogenesis in three week prepartum cows.

    Directory of Open Access Journals (Sweden)

    Theresa Casey

    Full Text Available Transcriptome analysis of bovine mammary development has provided insight into regulation of mammogenesis. However, previous studies primarily examined expression of epithelial and stromal tissues combined, and consequently did not account for tissue specific contribution to mammary development. Our objective was to identify differences in gene expression in epithelial and intralobular stromal compartments. Tissue was biopsied from non-lactating dairy cows 3 weeks prepartum, cut into explants and incubated for 2 hr with insulin and hydrocortisone. Epithelial and intralobular stromal tissues were isolated with laser capture microdissection. Global gene expression was measured with Bovine Affymetrix GeneChips, and data were preprocessed using RMA method. Moderated t-tests from gene-specific linear model analysis with cell type as a fixed effect showed more than 3,000 genes were differentially expressed between tissues (P<0.05; FDR<0.17. Analysis of epithelial and stromal transcriptomes using Database for Annotation, Visualization and Integrated Discovery (DAVID and Ingenuity Pathways Analysis (IPA showed that epithelial and stromal cells contributed distinct molecular signatures. Epithelial signatures were enriched with gene sets for protein synthesis, metabolism and secretion. Stromal signatures were enriched with genes that encoded molecules important to signaling, extracellular matrix composition and remodeling. Transcriptome differences also showed evidence for paracrine interactions between tissues in stimulation of IGF1 signaling pathway, stromal reaction, angiogenesis, neurogenesis, and immune response. Molecular signatures point to the dynamic role the stroma plays in prepartum mammogenesis and highlight the importance of examining the roles of cell types within the mammary gland when targeting therapies and studying mechanisms that affect milk production.

  11. Preliminary analysis of Psoroptes ovis transcriptome in different developmental stages

    Directory of Open Access Journals (Sweden)

    Man-Li He

    2016-11-01

    Full Text Available Abstract Background Psoroptic mange is a chronic, refractory, contagious and infectious disease mainly caused by the mange mite Psoroptes ovis, which can infect horses, sheep, buffaloes, rabbits, other domestic animals, deer, wild camels, foxes, minks, lemurs, alpacas, elks and other wild animals. Features of the disease include intense pruritus and dermatitis, depilation and hyperkeratosis, which ultimately result in emaciation or death caused by secondary bacterial infections. The infestation is usually transmitted by close contact between animals. Psoroptic mange is widespread in the world. In this paper, the transcriptome of P. ovis is described following sequencing and analysis of transcripts from samples of larvae (i.e. the Pso_L group and nymphs and adults (i.e. the Pso_N_A group. The study describes differentially expressed genes (DEGs and genes encoding allergens, which help understanding the biology of P. ovis and lay foundations for the development of vaccine antigens and drug target screening. Methods The transcriptome of P. ovis was assembled and analyzed using bioinformatic tools. The unigenes of P. ovis from each developmental stage and the unigenes differentially between developmental stages were compared with allergen protein sequences contained in the allergen database website to predict potential allergens. Results We identified 38,836 unigenes, whose mean length was 825 bp. On the basis of sequence similarity with seven databases, a total of 17,366 unigenes were annotated. A total of 1,316 DEGs were identified, including 496 upregulated and 820 downregulated in the Pso_L group compared with the Pso_N_A group. We predicted 205 allergens genes in the two developmental stages similar to genes from other mites and ticks, of these, 14 were among the upregulated DEGs and 26 among the downregulated DEGs. Conclusion This study provides a reference transcriptome of P. ovis in absence of a reference genome. The analysis of DEGs and

  12. Ruminant Metabolic Systems Biology: Reconstruction and Integration of Transcriptome Dynamics Underlying Functional Responses of Tissues to Nutrition and Physiological Statea

    Science.gov (United States)

    Bionaz, Massimo; Loor, Juan J.

    2012-01-01

    High-throughput ‘omics’ data analysis via bioinformatics is one key component of the systems biology approach. The systems approach is particularly well-suited for the study of the interactions between nutrition and physiological state with tissue metabolism and functions during key life stages of organisms such as the transition from pregnancy to lactation in mammals, ie, the peripartal period. In modern dairy cows with an unprecedented genetic potential for milk synthesis, the nature of the physiologic and metabolic adaptations during the peripartal period is multifaceted and involves key tissues such as liver, adipose, and mammary. In order to understand such adaptation, we have reviewed several works performed in our and other labs. In addition, we have used a novel bioinformatics approach, Dynamic Impact Approach (DIA), in combination with partly previously published data to help interpret longitudinal biological adaptations of bovine liver, adipose, and mammary tissue to lactation using transcriptomics datasets. Use of DIA with transcriptomic data from those tissues during normal physiological adaptations and in animals fed different levels of energy prepartum allowed visualization and integration of most-impacted metabolic pathways around the time of parturition. The DIA is a suitable tool for applying the integrative systems biology approach. The ultimate goal is to visualize the complexity of the systems at study and uncover key molecular players involved in the tissue’s adaptations to physiological state or nutrition. PMID:22807626

  13. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  14. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Directory of Open Access Journals (Sweden)

    Yufeng Jane Tseng

    2013-05-01

    Full Text Available Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  15. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, I-Lin [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Kuo, Tien-Chueh [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Ho, Tsung-Jung [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Harn, Yeu-Chern [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Graduate Institute of Networking and Multimedia, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Wang, San-Yuan [The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China); Fu, Wen-Mei [Department of Pharmacology, National Taiwan University, 11 F No. 1 Sec. 1, Ren-ai Rd., Taipei 10051, Taiwan (China); Kuo, Ching-Hua, E-mail: kuoch@ntu.edu.tw [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Tseng, Yufeng Jane, E-mail: kuoch@ntu.edu.tw [Department of Pharmacy, National Taiwan University, No. 1, Jen-Ai Road, Section 1 Taipei 10051, Taiwan (China); The Metabolomics Group, National Taiwan University, Taipei 106, Taiwan (China); Center for Genomic Medicine, National Taiwan University, Taipei 10051, Taiwan (China); Graduate Institute of Biomedical Electronic and Bioinformatics, National Taiwan University, Room 410 BL Building, No. 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (China)

    2013-05-03

    Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis.

  16. Metabolomic Dynamic Analysis of Hypoxia in MDA-MB-231 and the Comparison with Inferred Metabolites from Transcriptomics Data

    International Nuclear Information System (INIS)

    Tsai, I-Lin; Kuo, Tien-Chueh; Ho, Tsung-Jung; Harn, Yeu-Chern; Wang, San-Yuan; Fu, Wen-Mei; Kuo, Ching-Hua; Tseng, Yufeng Jane

    2013-01-01

    Hypoxia affects the tumor microenvironment and is considered important to metastasis progression and therapy resistance. Thus far, the majority of global analyses of tumor hypoxia responses have been limited to just a single omics level. Combining multiple omics data can broaden our understanding of tumor hypoxia. Here, we investigate the temporal change of the metabolite composition with gene expression data from literature to provide a more comprehensive insight into the system level in response to hypoxia. Nuclear magnetic resonance spectroscopy was used to perform metabolomic profiling on the MDA-MB-231 breast cancer cell line under hypoxic conditions. Multivariate statistical analysis revealed that the metabolic difference between hypoxia and normoxia was similar over 24 h, but became distinct over 48 h. Time dependent microarray data from the same cell line in the literature displayed different gene expressions under hypoxic and normoxic conditions mostly at 12 h or earlier. The direct metabolomic profiles show a large overlap with theoretical metabolic profiles deduced from previous transcriptomic studies. Consistent pathways are glycolysis/gluconeogenesis, pyruvate, purine and arginine and proline metabolism. Ten metabolic pathways revealed by metabolomics were not covered by the downstream of the known transcriptomic profiles, suggesting new metabolic phenotypes. These results confirm previous transcriptomics understanding and expand the knowledge from existing models on correlation and co-regulation between transcriptomic and metabolomics profiles, which demonstrates the power of integrated omics analysis

  17. Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle.

    Science.gov (United States)

    Moisá, Sonia J; Shike, Daniel W; Graugnard, Daniel E; Rodriguez-Zas, Sandra L; Everts, Robin E; Lewin, Harris A; Faulkner, Dan B; Berger, Larry L; Loor, Juan J

    2013-01-01

    Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.

  18. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum transcriptome.

    Directory of Open Access Journals (Sweden)

    Silvan Oulion

    Full Text Available BACKGROUND: The basally divergent phylogenetic position of amphioxus (Cephalochordata, as well as its conserved morphology, development and genetics, make it the best proxy for the chordate ancestor. Particularly, studies using the amphioxus model help our understanding of vertebrate evolution and development. Thus, interest for the amphioxus model led to the characterization of both the transcriptome and complete genome sequence of the American species, Branchiostoma floridae. However, recent technical improvements allowing induction of spawning in the laboratory during the breeding season on a daily basis with the Mediterranean species Branchiostoma lanceolatum have encouraged European Evo-Devo researchers to adopt this species as a model even though no genomic or transcriptomic data have been available. To fill this need we used the pyrosequencing method to characterize the B. lanceolatum transcriptome and then compared our results with the published transcriptome of B. floridae. RESULTS: Starting with total RNA from nine different developmental stages of B. lanceolatum, a normalized cDNA library was constructed and sequenced on Roche GS FLX (Titanium mode. Around 1.4 million of reads were produced and assembled into 70,530 contigs (average length of 490 bp. Overall 37% of the assembled sequences were annotated by BlastX and their Gene Ontology terms were determined. These results were then compared to genomic and transcriptomic data of B. floridae to assess similarities and specificities of each species. CONCLUSION: We obtained a high-quality amphioxus (B. lanceolatum reference transcriptome using a high throughput sequencing approach. We found that 83% of the predicted genes in the B. floridae complete genome sequence are also found in the B. lanceolatum transcriptome, while only 41% were found in the B. floridae transcriptome obtained with traditional Sanger based sequencing. Therefore, given the high degree of sequence conservation

  19. Transcriptome analysis of female and male flower buds of Idesia polycarpa Maxim. var. vestita Diels

    Directory of Open Access Journals (Sweden)

    Lanju Mei

    2017-09-01

    Conclusion: This work provides the first detailed transcriptome analysis of female and male flower of I. polycarpa and lays foundations for future studies on the molecular mechanisms underlying flower bud development of I. polycarpa.

  20. Improvement of Lactobacillus plantarum aerobic growth as directed by comprehensive transcriptome analysis

    NARCIS (Netherlands)

    Stevens, Marc J. A.; Wiersma, Anne; de Vos, Willern M.; Kuipers, Oscar P.; Smid, Eddy J.; Molenaar, Douwe; Kleerebezem, Michiel; Vos, Willem M. de

    An aerobic Lactobacillus plantarum culture displayed growth stagnation during early growth. Transcriptome analysis revealed that resumption of growth after stagnation correlated with activation of CO(2)-producing pathways, suggesting that a limiting CO(2) concentration induced the stagnation.

  1. Illumina–based de novo transcriptome sequencing and analysis of ...

    Indian Academy of Sciences (India)

    Administrator

    2017-10-25

    Oct 25, 2017 ... (Shanghai, China) following manufacturer's protocols (Illumina, San .... suggests that pathways involved in musk production are expressed at a ..... Strickler S. R., Aureliano B. and Mueller L. A. 2012 Designing a transcriptome.

  2. Transcriptome analysis of Pinus massoniana Lamb. microstrobili during sexual reversal

    Directory of Open Access Journals (Sweden)

    Feng Xiao

    2018-04-01

    Full Text Available The normal megastrobilli and microstrobilli before and after the sexual reversal in Pinus massoniana Lamb. were studied and classified using a transcriptomic approach. In the analysis, a total of 190,023 unigenes were obtained with an average length of 595 bp. The annotated unigenes were divided into 56 functional groups and 130 metabolic pathways involved in the physiological and biochemical processes related to ribosome biogenesis, carbon metabolism, and amino acid biosynthesis. Analysis revealed 4,758 differentially expressed genes (DEGs between the mega- and microstrobili from the polycone twig. The DEGs between the mega- and microstrobili from the normal twig were 5,550. In the polycone twig, 1,188 DEGs were identified between the microstrobili and the sexually reversed megastrobili. Concerning plant hormone signal transduction pathways, the DEGs from both the normal and polycone twigs displayed distinct male or female associated expression patterns. There were 36 common hormone-related DEGs from the two types of twigs of P. massoniana. Interestingly, expression of these DEGs was up-regulated in the bisexual strobili, which underwent the sexual reversal. A portion of MADS-box genes in the bisexual strobili were up-regulated relative to expression in microstrobili.

  3. Transcriptome sequencing and positive selected genes analysis of Bombyx mandarina.

    Directory of Open Access Journals (Sweden)

    Tingcai Cheng

    Full Text Available The wild silkworm Bombyx mandarina is widely believed to be an ancestor of the domesticated silkworm, Bombyx mori. Silkworms are often used as a model for studying the mechanism of species domestication. Here, we performed transcriptome sequencing of the wild silkworm using an Illumina HiSeq2000 platform. We produced 100,004,078 high-quality reads and assembled them into 50,773 contigs with an N50 length of 1764 bp and a mean length of 941.62 bp. A total of 33,759 unigenes were identified, with 12,805 annotated in the Nr database, 8273 in the Pfam database, and 9093 in the Swiss-Prot database. Expression profile analysis found significant differential expression of 1308 unigenes between the middle silk gland (MSG and posterior silk gland (PSG. Three sericin genes (sericin 1, sericin 2, and sericin 3 were expressed specifically in the MSG and three fibroin genes (fibroin-H, fibroin-L, and fibroin/P25 were expressed specifically in the PSG. In addition, 32,297 Single-nucleotide polymorphisms (SNPs and 361 insertion-deletions (INDELs were detected. Comparison with the domesticated silkworm p50/Dazao identified 5,295 orthologous genes, among which 400 might have experienced or to be experiencing positive selection by Ka/Ks analysis. These data and analyses presented here provide insights into silkworm domestication and an invaluable resource for wild silkworm genomics research.

  4. Identification of Genes Involved in Chemoreception in Plutella xyllostella by Antennal Transcriptome Analysis.

    Science.gov (United States)

    Yang, Shiyong; Cao, Depan; Wang, Guirong; Liu, Yang

    2017-09-20

    Perception of environmental and habitat cues is of significance for insect survival and reproduction. Odor detection in insects is mediated by a number of proteins in antennae such as odorant receptors (ORs), ionotropic receptors (IRs), odorant binding proteins (OBPs), chemosensory proteins (CSPs), sensory neuron membrane proteins (SNMPs) and odorant degrading enzymes. In this study, we sequenced and assembled the adult male and female antennal transcriptomes of a destructive agricultural pest, the diamondback moth Plutella xyllostella. In these transcriptomes, we identified transcripts belonging to 6 chemoreception gene families related to ordor detection, including 54 ORs, 16 IRs, 7 gustatory receptors (GRs), 15 CSPs, 24 OBPs and 2 SNMPs. Semi-quantitative reverse transcription PCR analysis of expression patterns indicated that some of these ORs and IRs have clear sex-biased and tissue-specific expression patterns. Our results lay the foundation for future characterization of the functions of these P. xyllostella chemosensory receptors at the molecular level and development of novel semiochemicals for integrated control of this agricultural pest.

  5. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    KAUST Repository

    Casas, Laura

    2016-10-17

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  6. Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study

    OpenAIRE

    Balan, Bipin; Marra, Francesco Paolo; Caruso, Tiziano; Martinelli, Federico

    2018-01-01

    RNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an...

  7. Integration of transcriptome and whole genomic resequencing data to identify key genes affecting swine fat deposition.

    Directory of Open Access Journals (Sweden)

    Kai Xing

    Full Text Available Fat deposition is highly correlated with the growth, meat quality, reproductive performance and immunity of pigs. Fatty acid synthesis takes place mainly in the adipose tissue of pigs; therefore, in this study, a high-throughput massively parallel sequencing approach was used to generate adipose tissue transcriptomes from two groups of Songliao black pigs that had opposite backfat thickness phenotypes. The total number of paired-end reads produced for each sample was in the range of 39.29-49.36 millions. Approximately 188 genes were differentially expressed in adipose tissue and were enriched for metabolic processes, such as fatty acid biosynthesis, lipid synthesis, metabolism of fatty acids, etinol, caffeine and arachidonic acid and immunity. Additionally, many genetic variations were detected between the two groups through pooled whole-genome resequencing. Integration of transcriptome and whole-genome resequencing data revealed important genomic variations among the differentially expressed genes for fat deposition, for example, the lipogenic genes. Further studies are required to investigate the roles of candidate genes in fat deposition to improve pig breeding programs.

  8. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    Directory of Open Access Journals (Sweden)

    Schriemer David C

    2010-11-01

    Full Text Available Abstract Background Papaver somniferum (opium poppy is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a

  9. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures.

    Science.gov (United States)

    Desgagné-Penix, Isabel; Khan, Morgan F; Schriemer, David C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2010-11-18

    Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates

  10. Integrated proteomic and transcriptomic investigation of the acetaminophen toxicity in liver microfluidic biochip.

    Directory of Open Access Journals (Sweden)

    Jean Matthieu Prot

    Full Text Available Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes. These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations.

  11. Analysis of Saprolegnia parasitica Transcriptome following Treatment with Copper Sulfate.

    Directory of Open Access Journals (Sweden)

    Kun Hu

    Full Text Available Massive infection caused by oomycete fungus Saprolegnia parasitica is detrimental to freshwater fish. Recently, we showed that copper sulfate demonstrated good efficacy for controlling S. parasitica infection in grass carp. In this study, we investigated the mechanism of inhibition of S. parasitica growth by copper sulfate by analyzing the transcriptome of copper sulfate-treated S. parasitica. To examine the mechanism of copper sulfate inhibiting S. parasitica, we utilized RNA-seq technology to compare differential gene expression in S. parasitica treated with or without copper sulfate.The total mapped rates of the reads with the reference genome were 90.50% in the control group and 73.50% in the experimental group. In the control group, annotated splice junctions, partial novel splice junctions and complete novel splice junctions were about 83%, 3% and 14%, respectively. In the treatment group, the corresponding values were about 75%, 6% and 19%. Following copper sulfate treatment, a total 310 genes were markedly upregulated and 556 genes were markedly downregulated in S. parasitica. Material metabolism related GO terms including cofactor binding (33 genes, 1,3-beta-D-glucan synthase complex (4 genes, carboxylic acid metabolic process (40 genes were the most significantly enriched. KEGG pathway analysis also determined that the metabolism-related biological pathways were significantly enriched, including the metabolic pathways (98 genes, biosynthesis of secondary metabolites pathways (42 genes, fatty acid metabolism (13 genes, phenylalanine metabolism (7 genes, starch and sucrose metabolism pathway (12 genes. The qRT-PCR results were largely consistent with the RNA-Seq results.Our results indicate that copper sulfate inhibits S. parasitica growth by affecting multiple biological functions, including protein synthesis, energy biogenesis, and metabolism.

  12. Autism spectrum disorders: Integration of the genome, transcriptome and the environment.

    Science.gov (United States)

    Vijayakumar, N Thushara; Judy, M V

    2016-05-15

    Autism spectrum disorders denote a series of lifelong neurodevelopmental conditions characterized by an impaired social communication profile and often repetitive, stereotyped behavior. Recent years have seen the complex genetic architecture of the disease being progressively unraveled with advancements in gene finding technology and next generation sequencing methods. However, a complete elucidation of the molecular mechanisms behind autism is necessary for potential diagnostic and therapeutic applications. A multidisciplinary approach should be adopted where the focus is not only on the 'genetics' of autism but also on the combinational roles of epigenetics, transcriptomics, immune system disruption and environmental factors that could all influence the etiopathogenesis of the disease. ASD is a clinically heterogeneous disorder with great genetic complexity; only through an integrated multidimensional effort can modern autism research progress further. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas.

    Science.gov (United States)

    Li, Busu; Song, Kai; Meng, Jie; Li, Li; Zhang, Guofan

    2017-09-11

    The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with

  14. Transcriptome and genome size analysis of the venus flytrap

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Vogt, Josef Korbinian; Bressendorff, Simon

    2015-01-01

    . muscipula flowers and traps. Using the Oases transcriptome assembler 79,165,657 quality trimmed reads were assembled into 80,806 cDNA contigs, with an average length of 679 bp and an N50 length of 1,051 bp. A total of 17,047 unique proteins were identified, and assigned to Gene Ontology (GO) and classified...

  15. Illumina-based de novo transcriptome sequencing and analysis

    Indian Academy of Sciences (India)

    In the present study, we used Illumina HiSeq technology to perform de novo assembly of heart and musk gland transcriptomes from the Chinese forest musk deer. A total of 239,383 transcripts and 176,450 unigenes were obtained, of which 37,329 unigenes were matched to known sequences in the NCBI nonredundant ...

  16. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    Science.gov (United States)

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Integrated Metabolo-Transcriptomics Reveals Fusarium Head Blight Candidate Resistance Genes in Wheat QTL-Fhb2.

    Directory of Open Access Journals (Sweden)

    Dhananjay Dhokane

    Full Text Available Fusarium head blight (FHB caused by Fusarium graminearum not only causes severe losses in yield, but also reduces quality of wheat grain by accumulating mycotoxins. Breeding for host plant resistance is considered as the best strategy to manage FHB. Resistance in wheat to FHB is quantitative in nature, involving cumulative effects of many genes governing resistance. The poor understanding of genetics and lack of precise phenotyping has hindered the development of FHB resistant cultivars. Though more than 100 QTLs imparting FHB resistance have been reported, none discovered the specific genes localized within the QTL region, nor the underlying mechanisms of resistance.In our study recombinant inbred lines (RILs carrying resistant (R-RIL and susceptible (S-RIL alleles of QTL-Fhb2 were subjected to metabolome and transcriptome profiling to discover the candidate genes. Metabolome profiling detected a higher abundance of metabolites belonging to phenylpropanoid, lignin, glycerophospholipid, flavonoid, fatty acid, and terpenoid biosynthetic pathways in R-RIL than in S-RIL. Transcriptome analysis revealed up-regulation of several receptor kinases, transcription factors, signaling, mycotoxin detoxification and resistance related genes. The dissection of QTL-Fhb2 using flanking marker sequences, integrating metabolomic and transcriptomic datasets, identified 4-Coumarate: CoA ligase (4CL, callose synthase (CS, basic Helix Loop Helix (bHLH041 transcription factor, glutathione S-transferase (GST, ABC transporter-4 (ABC4 and cinnamyl alcohol dehydrogenase (CAD as putative resistance genes localized within the QTL-Fhb2 region.Some of the identified genes within the QTL region are associated with structural resistance through cell wall reinforcement, reducing the spread of pathogen through rachis within a spike and few other genes that detoxify DON, the virulence factor, thus eventually reducing disease severity. In conclusion, we report that the wheat

  18. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study

    Science.gov (United States)

    Ross-Adams, H.; Lamb, A.D.; Dunning, M.J.; Halim, S.; Lindberg, J.; Massie, C.M.; Egevad, L.A.; Russell, R.; Ramos-Montoya, A.; Vowler, S.L.; Sharma, N.L.; Kay, J.; Whitaker, H.; Clark, J.; Hurst, R.; Gnanapragasam, V.J.; Shah, N.C.; Warren, A.Y.; Cooper, C.S.; Lynch, A.G.; Stark, R.; Mills, I.G.; Grönberg, H.; Neal, D.E.

    2015-01-01

    Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene

  19. Transcriptomic meta-analysis identifies gene expression characteristics in various samples of HIV-infected patients with nonprogressive disease.

    Science.gov (United States)

    Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong

    2017-09-12

    A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.

  20. Establishment and analysis of a reference transcriptome for Spodoptera frugiperda.

    Science.gov (United States)

    Legeai, Fabrice; Gimenez, Sylvie; Duvic, Bernard; Escoubas, Jean-Michel; Gosselin Grenet, Anne-Sophie; Blanc, Florence; Cousserans, François; Séninet, Imène; Bretaudeau, Anthony; Mutuel, Doriane; Girard, Pierre-Alain; Monsempes, Christelle; Magdelenat, Ghislaine; Hilliou, Frédérique; Feyereisen, René; Ogliastro, Mylène; Volkoff, Anne-Nathalie; Jacquin-Joly, Emmanuelle; d'Alençon, Emmanuelle; Nègre, Nicolas; Fournier, Philippe

    2014-08-23

    Spodoptera frugiperda (Noctuidae) is a major agricultural pest throughout the American continent. The highly polyphagous larvae are frequently devastating crops of importance such as corn, sorghum, cotton and grass. In addition, the Sf9 cell line, widely used in biochemistry for in vitro protein production, is derived from S. frugiperda tissues. Many research groups are using S. frugiperda as a model organism to investigate questions such as plant adaptation, pest behavior or resistance to pesticides. In this study, we constructed a reference transcriptome assembly (Sf_TR2012b) of RNA sequences obtained from more than 35 S. frugiperda developmental time-points and tissue samples. We assessed the quality of this reference transcriptome by annotating a ubiquitous gene family--ribosomal proteins--as well as gene families that have a more constrained spatio-temporal expression and are involved in development, immunity and olfaction. We also provide a time-course of expression that we used to characterize the transcriptional regulation of the gene families studied. We conclude that the Sf_TR2012b transcriptome is a valid reference transcriptome. While its reliability decreases for the detection and annotation of genes under strong transcriptional constraint we still recover a fair percentage of tissue-specific transcripts. That allowed us to explore the spatial and temporal expression of genes and to observe that some olfactory receptors are expressed in antennae and palps but also in other non related tissues such as fat bodies. Similarly, we observed an interesting interplay of gene families involved in immunity between fat bodies and antennae.

  1. Transcriptome Analysis of the Response of Burmese Python to Digestion

    OpenAIRE

    Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J.; Schierup, Mikkel Heide; Wang, Tobias

    2017-01-01

    Abstract Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of...

  2. Transcriptome analysis of the response of Burmese python to digestion.

    Science.gov (United States)

    Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J; Schierup, Mikkel Heide; Wang, Tobias

    2017-08-01

    Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. © The Authors 2017. Published by Oxford University Press.

  3. Massively parallel sequencing and analysis of the Necator americanus transcriptome.

    Directory of Open Access Journals (Sweden)

    Cinzia Cantacessi

    2010-05-01

    Full Text Available The blood-feeding hookworm Necator americanus infects hundreds of millions of people worldwide. In order to elucidate fundamental molecular biological aspects of this hookworm, the transcriptome of the adult stage of Necator americanus was explored using next-generation sequencing and bioinformatic analyses.A total of 19,997 contigs were assembled from the sequence data; 6,771 of these contigs had known orthologues in the free-living nematode Caenorhabditis elegans, and most of them encoded proteins with WD40 repeats (10.6%, proteinase inhibitors (7.8% or calcium-binding EF-hand proteins (6.7%. Bioinformatic analyses inferred that the C. elegans homologues are involved mainly in biological pathways linked to ribosome biogenesis (70%, oxidative phosphorylation (63% and/or proteases (60%; most of these molecules were predicted to be involved in more than one biological pathway. Comparative analyses of the transcriptomes of N. americanus and the canine hookworm, Ancylostoma caninum, revealed qualitative and quantitative differences. For instance, proteinase inhibitors were inferred to be highly represented in the former species, whereas SCP/Tpx-1/Ag5/PR-1/Sc7 proteins ( = SCP/TAPS or Ancylostoma-secreted proteins were predominant in the latter. In N. americanus, essential molecules were predicted using a combination of orthology mapping and functional data available for C. elegans. Further analyses allowed the prioritization of 18 predicted drug targets which did not have homologues in the human host. These candidate targets were inferred to be linked to mitochondrial (e.g., processing proteins or amino acid metabolism (e.g., asparagine t-RNA synthetase.This study has provided detailed insights into the transcriptome of the adult stage of N. americanus and examines similarities and differences between this species and A. caninum. Future efforts should focus on comparative transcriptomic and proteomic investigations of the other predominant human

  4. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress.

    Directory of Open Access Journals (Sweden)

    Gyoungju Nah

    Full Text Available Prairie cordgrass (Spartina pectinata, a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY. The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation.

  5. Transcriptome Analysis of Sucrose Metabolism during Bulb Swelling and Development in Onion (Allium cepa L.

    Directory of Open Access Journals (Sweden)

    Yi Liang

    2016-09-01

    Full Text Available Allium cepa L. is a widely cultivated and economically significant vegetable crop worldwide, with beneficial dietary and health-related properties, but its sucrose metabolism is still poorly understood. To analyze sucrose metabolism during bulb swelling, and the development of sweet taste in onion, a global transcriptome profile of onion bulbs was undertaken at three different developmental stages, using RNA-seq. A total of 79,376 unigenes, with a mean length of 678 bp, was obtained. In total, 7% of annotated Clusters of Orthologous Groups (COG were involved in carbohydrate transport and metabolism. In the Kyoto Encyclopedia of Genes and Genomes (KEGG database, starch and sucrose metabolism (147, 2.40% constituted the primary metabolism pathway in the integrated library. The expression of sucrose transporter genes was greatest during the early-swelling stage, suggesting that sucrose transporters participated in sucrose metabolism mainly at an early stage of bulb development. A gene-expression analysis of the key enzymes of sucrose metabolism suggested that sucrose synthase, cell wall invertase and invertase were all likely to participate in the hydrolysis of sucrose, generating glucose and fructose. In addition, trehalose was hydrolyzed to two molecules of glucose by trehalase. From 15 to 40 days after swelling (DAS, both the glucose and fructose contents of bulbs increased, whereas the sucrose content decreased. The growth rate between 15 and 30 DAS was slower than that between 30 and 40 DAS, suggesting that the latter was a period of rapid expansion. The dataset generated by our transcriptome profiling will provide valuable information for further research.

  6. Systematic Evaluation of Methods for Integration of Transcriptomic Data into Constraint-Based Models of Metabolism

    DEFF Research Database (Denmark)

    Machado, Daniel; Herrgard, Markus

    2014-01-01

    of these methods has not been critically evaluated and compared. This work presents a survey of recently published methods that use transcript levels to try to improve metabolic flux predictions either by generating flux distributions or by creating context-specific models. A subset of these methods...... is then systematically evaluated using published data from three different case studies in E. coli and S. cerevisiae. The flux predictions made by different methods using transcriptomic data are compared against experimentally determined extracellular and intracellular fluxes (from 13C-labeling data). The sensitivity...... of the results to method-specific parameters is also evaluated, as well as their robustness to noise in the data. The results show that none of the methods outperforms the others for all cases. Also, it is observed that for many conditions, the predictions obtained by simple flux balance analysis using growth...

  7. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi

    Science.gov (United States)

    Chibucos, Marcus C.; Soliman, Sameh; Gebremariam, Teclegiorgis; Lee, Hongkyu; Daugherty, Sean; Orvis, Joshua; Shetty, Amol C.; Crabtree, Jonathan; Hazen, Tracy H.; Etienne, Kizee A.; Kumari, Priti; O'Connor, Timothy D.; Rasko, David A.; Filler, Scott G.; Fraser, Claire M.; Lockhart, Shawn R.; Skory, Christopher D.; Ibrahim, Ashraf S.; Bruno, Vincent M.

    2016-01-01

    Mucormycosis is a life-threatening infection caused by Mucorales fungi. Here we sequence 30 fungal genomes, and perform transcriptomics with three representative Rhizopus and Mucor strains and with human airway epithelial cells during fungal invasion, to reveal key host and fungal determinants contributing to pathogenesis. Analysis of the host transcriptional response to Mucorales reveals platelet-derived growth factor receptor B (PDGFRB) signaling as part of a core response to divergent pathogenic fungi; inhibition of PDGFRB reduces Mucorales-induced damage to host cells. The unique presence of CotH invasins in all invasive Mucorales, and the correlation between CotH gene copy number and clinical prevalence, are consistent with an important role for these proteins in mucormycosis pathogenesis. Our work provides insight into the evolution of this medically and economically important group of fungi, and identifies several molecular pathways that might be exploited as potential therapeutic targets. PMID:27447865

  8. Transcriptomic network analysis of micronuclei-related genes: a case study

    DEFF Research Database (Denmark)

    van Leeuwen, D. M.; Pedersen, Marie; Knudsen, Lisbeth E.

    2011-01-01

    checkpoint and aneuploidy. The MN-related gene network was tested against a transcriptomics case study associated with MN measurements. In this case study, transcriptomic data from children and adults differentially exposed to ambient air pollution in the Czech Republic were analysed and visualised......Mechanistically relevant information on responses of humans to xenobiotic exposure in relation to chemically induced biological effects, such as micronuclei (MN) formation can be obtained through large-scale transcriptomics studies. Network analysis may enhance the analysis and visualisation...... of such data. Therefore, this study aimed to develop a 'MN formation' network based on a priori knowledge, by using the pathway tool MetaCore. The gene network contained 27 genes and three gene complexes that are related to processes involved in MN formation, e.g. spindle assembly checkpoint, cell cycle...

  9. Analysis of Pigeon (Columba) Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation

    Science.gov (United States)

    Wang, Ying; Ding, Jia-tong; Yang, Hai-ming; Yan, Zheng-jie; Cao, Wei; Li, Yang-bai

    2015-01-01

    Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp) were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species. PMID:26599806

  10. Analysis of Pigeon (Columba Ovary Transcriptomes to Identify Genes Involved in Blue Light Regulation.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Monochromatic light is widely applied to promote poultry reproductive performance, yet little is currently known regarding the mechanism by which light wavelengths affect pigeon reproduction. Recently, high-throughput sequencing technologies have been used to provide genomic information for solving this problem. In this study, we employed Illumina Hiseq 2000 to identify differentially expressed genes in ovary tissue from pigeons under blue and white light conditions and de novo transcriptome assembly to construct a comprehensive sequence database containing information on the mechanisms of follicle development. A total of 157,774 unigenes (mean length: 790 bp were obtained by the Trinity program, and 35.83% of these unigenes were matched to genes in a non-redundant protein database. Gene description, gene ontology, and the clustering of orthologous group terms were performed to annotate the transcriptome assembly. Differentially expressed genes between blue and white light conditions included those related to oocyte maturation, hormone biosynthesis, and circadian rhythm. Furthermore, 17,574 SSRs and 533,887 potential SNPs were identified in this transcriptome assembly. This work is the first transcriptome analysis of the Columba ovary using Illumina technology, and the resulting transcriptome and differentially expressed gene data can facilitate further investigations into the molecular mechanism of the effect of blue light on follicle development and reproduction in pigeons and other bird species.

  11. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.

    OpenAIRE

    Feldmesser, Ester; Rosenwasser, Shilo; Vardi, Assaf; Ben-Dor, Shifra

    2014-01-01

    Background The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly whe...

  12. Transcriptomic Analysis of Young and Old Erythrocytes of Fish

    Directory of Open Access Journals (Sweden)

    Miriam Götting

    2017-12-01

    Full Text Available Understanding gene expression changes over the lifespan of cells is of fundamental interest and gives important insights into processes related to maturation and aging. This study was undertaken to understand the global transcriptome changes associated with aging in fish erythrocytes. Fish erythrocytes retain their nuclei throughout their lifetime and they are transcriptionally and translationally active. However, they lose important functions during their lifespan in the circulation. We separated rainbow trout (Oncorhynchus mykiss erythrocytes into young and old fractions using fixed angle-centrifugation and analyzed transcriptome changes using RNA sequencing (RNA-seq technology and quantitative real-time PCR. We found 930 differentially expressed between young and old erythrocyte fractions; 889 of these showed higher transcript levels in young, while only 34 protein-coding genes had higher transcript levels in old erythrocytes. In particular genes involved in ion binding, signal transduction, membrane transport, and those encoding various enzyme classes are affected in old erythrocytes. The transcripts with higher levels in old erythrocytes were associated with seven different GO terms within biological processes and nine within molecular functions and cellular components, respectively. Our study furthermore found several highly abundant transcripts as well as a number of differentially expressed genes (DEGs for which the protein products are currently not known revealing the gaps of knowledge in most non-mammalian vertebrates. Our data provide the first insight into changes involved in aging on the transcriptional level and thus opens new perspectives for the study of maturation processes in fish erythrocytes.

  13. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 14579

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  14. Comparative transcriptome analysis of biofilm and planktonic cells of Bacillus cereus ATCC 10987

    NARCIS (Netherlands)

    Wijman, Janneke; Mols, M.; Tempelaars, Marcel; Abee, Tjakko

    2015-01-01

    Planktonic and biofilm cells of Bacillus cereus ATCC 14579 and ATCC 10987 were studied using microscopy and transcriptome analysis. By microscopy, clear differences could be observed between biofilm and planktonic cells as well as between the two strains. By using hierarchical clustering of the

  15. Improving production of ?-lactam antibiotics by Penicillium chrysogenum : Metabolic engineering based on transcriptome analysis

    NARCIS (Netherlands)

    Veiga, T.

    2012-01-01

    In Chapters 2-5 of this thesis, the applicability of transcriptome analysis to guide metabolic engineering strategies in P. chrysogenum is explored by investigating four cellular processes that are of potential relevance for industrial production of ?-lactam antibiotics: - Regulation of secondary

  16. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice

    NARCIS (Netherlands)

    Lu, Y.; Boekschoten, M.V.; Wopereis, S.; Muller, M.R.; Kersten, A.H.

    2011-01-01

    Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 wk

  17. Comparative transcriptomics and metabolomic analysis of fenofibrate and fish oil treatments in mice

    NARCIS (Netherlands)

    Lu Yingchang (Kevin), Y.; Boekschoten, Mark; Wopereis, Suzan; Muller, Michael; Kersten, Sander

    2011-01-01

    Elevated circulating triglycerides, which are considered a risk factor for cardiovascular disease, can be targeted by treatment with fenofibrate or fish oil. To gain insight into underlying mechanisms, we carried out a comparative transcriptomics and metabolomics analysis of the effect of 2 week

  18. Transcriptome analysis during ripening of table grape berry cv. Thompson Seedless.

    Directory of Open Access Journals (Sweden)

    Iván Balic

    Full Text Available Ripening is one of the key processes associated with the development of major organoleptic characteristics of the fruit. This process has been extensively characterized in climacteric fruit, in contrast with non-climacteric fruit such as grape, where the process is less understood. With the aim of studying changes in gene expression during ripening of non-climacteric fruit, an Illumina based RNA-Seq transcriptome analysis was performed on four developmental stages, between veraison and harvest, on table grapes berries cv Thompson Seedless. Functional analysis showed a transcriptional increase in genes related with degradation processes of chlorophyll, lipids, macromolecules recycling and nucleosomes organization; accompanied by a decrease in genes related with chloroplasts integrity and amino acid synthesis pathways. It was possible to identify several processes described during leaf senescence, particularly close to harvest. Before this point, the results suggest a high transcriptional activity associated with the regulation of gene expression, cytoskeletal organization and cell wall metabolism, which can be related to growth of berries and firmness loss characteristic to this stage of development. This high metabolic activity could be associated with an increase in the transcription of genes related with glycolysis and respiration, unexpected for a non-climacteric fruit ripening.

  19. Transcriptome analysis in cotton boll weevil (Anthonomus grandis and RNA interference in insect pests.

    Directory of Open Access Journals (Sweden)

    Alexandre Augusto Pereira Firmino

    Full Text Available Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  20. Transcriptome analysis in cotton boll weevil (Anthonomus grandis) and RNA interference in insect pests.

    Science.gov (United States)

    Firmino, Alexandre Augusto Pereira; Fonseca, Fernando Campos de Assis; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; Antonino de Souza, José Dijair; Togawa, Roberto Coiti; Silva-Junior, Orzenil Bonfim; Pappas, Georgios Joannis; da Silva, Maria Cristina Mattar; Engler, Gilbert; Grossi-de-Sa, Maria Fatima

    2013-01-01

    Cotton plants are subjected to the attack of several insect pests. In Brazil, the cotton boll weevil, Anthonomus grandis, is the most important cotton pest. The use of insecticidal proteins and gene silencing by interference RNA (RNAi) as techniques for insect control are promising strategies, which has been applied in the last few years. For this insect, there are not much available molecular information on databases. Using 454-pyrosequencing methodology, the transcriptome of all developmental stages of the insect pest, A. grandis, was analyzed. The A. grandis transcriptome analysis resulted in more than 500.000 reads and a data set of high quality 20,841 contigs. After sequence assembly and annotation, around 10,600 contigs had at least one BLAST hit against NCBI non-redundant protein database and 65.7% was similar to Tribolium castaneum sequences. A comparison of A. grandis, Drosophila melanogaster and Bombyx mori protein families' data showed higher similarity to dipteran than to lepidopteran sequences. Several contigs of genes encoding proteins involved in RNAi mechanism were found. PAZ Domains sequences extracted from the transcriptome showed high similarity and conservation for the most important functional and structural motifs when compared to PAZ Domains from 5 species. Two SID-like contigs were phylogenetically analyzed and grouped with T. castaneum SID-like proteins. No RdRP gene was found. A contig matching chitin synthase 1 was mined from the transcriptome. dsRNA microinjection of a chitin synthase gene to A. grandis female adults resulted in normal oviposition of unviable eggs and malformed alive larvae that were unable to develop in artificial diet. This is the first study that characterizes the transcriptome of the coleopteran, A. grandis. A new and representative transcriptome database for this insect pest is now available. All data support the state of the art of RNAi mechanism in insects.

  1. Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer.

    Science.gov (United States)

    Michaut, Magali; Chin, Suet-Feung; Majewski, Ian; Severson, Tesa M; Bismeijer, Tycho; de Koning, Leanne; Peeters, Justine K; Schouten, Philip C; Rueda, Oscar M; Bosma, Astrid J; Tarrant, Finbarr; Fan, Yue; He, Beilei; Xue, Zheng; Mittempergher, Lorenza; Kluin, Roelof J C; Heijmans, Jeroen; Snel, Mireille; Pereira, Bernard; Schlicker, Andreas; Provenzano, Elena; Ali, Hamid Raza; Gaber, Alexander; O'Hurley, Gillian; Lehn, Sophie; Muris, Jettie J F; Wesseling, Jelle; Kay, Elaine; Sammut, Stephen John; Bardwell, Helen A; Barbet, Aurélie S; Bard, Floriane; Lecerf, Caroline; O'Connor, Darran P; Vis, Daniël J; Benes, Cyril H; McDermott, Ultan; Garnett, Mathew J; Simon, Iris M; Jirström, Karin; Dubois, Thierry; Linn, Sabine C; Gallagher, William M; Wessels, Lodewyk F A; Caldas, Carlos; Bernards, Rene

    2016-01-05

    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies.

  2. Integrated genetic analysis microsystems

    International Nuclear Information System (INIS)

    Lagally, Eric T; Mathies, Richard A

    2004-01-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices. (topical review)

  3. Transcriptome Analysis and Comparison of Marmota monax and Marmota himalayana.

    Directory of Open Access Journals (Sweden)

    Yanan Liu

    Full Text Available The Eastern woodchuck (Marmota monax is a classical animal model for studying hepatitis B virus (HBV infection and hepatocellular carcinoma (HCC in humans. Recently, we found that Marmota himalayana, an Asian animal species closely related to Marmota monax, is susceptible to woodchuck hepatitis virus (WHV infection and can be used as a new mammalian model for HBV infection. However, the lack of genomic sequence information of both Marmota models strongly limited their application breadth and depth. To address this major obstacle of the Marmota models, we utilized Illumina RNA-Seq technology to sequence the cDNA libraries of liver and spleen samples of two Marmota monax and four Marmota himalayana. In total, over 13 billion nucleotide bases were sequenced and approximately 1.5 billion clean reads were obtained. Following assembly, 106,496 consensus sequences of Marmota monax and 78,483 consensus sequences of Marmota himalayana were detected. For functional annotation, in total 73,603 Unigenes of Marmota monax and 78,483 Unigenes of Marmota himalayana were identified using different databases (NR, NT, Swiss-Prot, KEGG, COG, GO. The Unigenes were aligned by blastx to protein databases to decide the coding DNA sequences (CDS and in total 41,247 CDS of Marmota monax and 34,033 CDS of Marmota himalayana were predicted. The single nucleotide polymorphisms (SNPs and the simple sequence repeats (SSRs were also analyzed for all Unigenes obtained. Moreover, a large-scale transcriptome comparison was performed and revealed a high similarity in transcriptome sequences between the two marmota species. Our study provides an extensive amount of novel sequence information for Marmota monax and Marmota himalayana. This information may serve as a valuable genomics resource for further molecular, developmental and comparative evolutionary studies, as well as for the identification and characterization of functional genes that are involved in WHV infection and HCC

  4. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses

    Science.gov (United States)

    Eom, Hyun-Jeong; Liu, Yuedan; Kwak, Gyu-Suk; Heo, Muyoung; Song, Kyung Seuk; Chung, Yun Doo; Chon, Tae-Soo; Choi, Jinhee

    2017-06-01

    We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.

  5. The integrative epigenomic-transcriptomic landscape of ER positive breast cancer.

    Science.gov (United States)

    Gao, Yang; Jones, Allison; Fasching, Peter A; Ruebner, Matthias; Beckmann, Matthias W; Widschwendter, Martin; Teschendorff, Andrew E

    2015-01-01

    While recent integrative analyses of copy number and gene expression data in breast cancer have revealed a complex molecular landscape with multiple subtypes and many oncogenic/tumour suppressor driver events, much less is known about the role of DNA methylation in shaping breast cancer taxonomy and defining driver events. Here, we applied a powerful integrative network algorithm to matched DNA methylation and RNA-Seq data for 724 estrogen receptor (ER)-positive (ER+) breast cancers and 111 normal adjacent tissue specimens from The Cancer Genome Atlas (TCGA) project, in order to identify putative epigenetic driver events and to explore the resulting molecular taxonomy. This revealed the existence of nine functionally deregulated epigenetic hotspots encompassing a total of 146 genes, which we were able to validate in independent data sets encompassing over 1000 ER+ breast cancers. Integrative clustering of the matched messenger RNA (mRNA) and DNA methylation data over these genes resulted in only two clusters, which correlated very strongly with the luminal-A and luminal B subtypes. Overall, luminal-A and luminal-B breast cancers shared the same epigenetically deregulated hotspots but with luminal-B cancers exhibiting increased aberrant DNA methylation patterns relative to normal tissue. We show that increased levels of DNA methylation and mRNA expression deviation from the normal state define a marker of poor prognosis. Our data further implicates epigenetic silencing of WNT signalling antagonists and bone morphogenetic proteins (BMP) as key events underlying both luminal subtypes but specially of luminal-B breast cancer. Finally, we show that DNA methylation changes within the identified epigenetic interactome hotspots do not exhibit mutually exclusive patterns within the same cancer sample, instead exhibiting coordinated changes within the sample. Our results indicate that the integrative DNA methylation and transcriptomic landscape of ER+ breast cancer is

  6. Integrated Network Analysis and Effective Tools in Plant Systems Biology

    Directory of Open Access Journals (Sweden)

    Atsushi eFukushima

    2014-11-01

    Full Text Available One of the ultimate goals in plant systems biology is to elucidate the genotype-phenotype relationship in plant cellular systems. Integrated network analysis that combines omics data with mathematical models has received particular attention. Here we focus on the latest cutting-edge computational advances that facilitate their combination. We highlight (1 network visualization tools, (2 pathway analyses, (3 genome-scale metabolic reconstruction, and (4 the integration of high-throughput experimental data and mathematical models. Multi-omics data that contain the genome, transcriptome, proteome, and metabolome and mathematical models are expected to integrate and expand our knowledge of complex plant metabolisms.

  7. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    Science.gov (United States)

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were

  8. Transcriptome Analysis of Dendrobium officinale and its Application to the Identification of Genes Associated with Polysaccharide Synthesis

    Science.gov (United States)

    Zhang, Jianxia; He, Chunmei; Wu, Kunlin; Teixeira da Silva, Jaime A.; Zeng, Songjun; Zhang, Xinhua; Yu, Zhenming; Xia, Haoqiang; Duan, Jun

    2016-01-01

    Dendrobium officinale is one of the most important Chinese medicinal herbs. Polysaccharides are one of the main active ingredients of D. officinale. To identify the genes that maybe related to polysaccharides synthesis, two cDNA libraries were prepared from juvenile and adult D. officinale, and were named Dendrobium-1 and Dendrobium-2, respectively. Illumina sequencing for Dendrobium-1 generated 102 million high quality reads that were assembled into 93,881 unigenes with an average sequence length of 790 base pairs. The sequencing for Dendrobium-2 generated 86 million reads that were assembled into 114,098 unigenes with an average sequence length of 695 base pairs. Two transcriptome databases were integrated and assembled into a total of 145,791 unigenes. Among them, 17,281 unigenes were assigned to 126 KEGG pathways while 135 unigenes were involved in fructose and mannose metabolism. Gene Ontology analysis revealed that the majority of genes were associated with metabolic and cellular processes. Furthermore, 430 glycosyltransferase and 89 cellulose synthase genes were identified. Comparative analysis of both transcriptome databases revealed a total of 32,794 differential expression genes (DEGs), including 22,051 up-regulated and 10,743 down-regulated genes in Dendrobium-2 compared to Dendrobium-1. Furthermore, a total of 1142 and 7918 unigenes showed unique expression in Dendrobium-1 and Dendrobium-2, respectively. These DEGs were mainly correlated with metabolic pathways and the biosynthesis of secondary metabolites. In addition, 170 DEGs belonged to glycosyltransferase genes, 37 DEGs were related to cellulose synthase genes and 627 DEGs encoded transcription factors. This study substantially expands the transcriptome information for D. officinale and provides valuable clues for identifying candidate genes involved in polysaccharide biosynthesis and elucidating the mechanism of polysaccharide biosynthesis. PMID:26904032

  9. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  10. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Science.gov (United States)

    Li, Yuanjun; Gou, Junbo; Chen, Fangfang; Li, Changfu; Zhang, Yansheng

    2016-01-01

    Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones (STLs), which include the xanthanolides. To date, the biogenesis of xanthanolides, especially their downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that are highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of STLs are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  11. Comparative Transcriptome Analysis Identifies Putative Genes Involved in the Biosynthesis of Xanthanolides in Xanthium strumarium L.

    Directory of Open Access Journals (Sweden)

    Yuanjun Li

    2016-08-01

    Full Text Available Xanthium strumarium L. is a traditional Chinese herb belonging to the Asteraceae family. The major bioactive components of this plant are sesquiterpene lactones, which include the xanthanolides. To date, the biogenesis of xanthanolides, especiallytheir downstream pathway, remains largely unknown. In X. strumarium, xanthanolides primarily accumulate in its glandular trichomes. To identify putative gene candidates involved in the biosynthesis of xanthanolides, three X. strumarium transcriptomes, which were derived from the young leaves of two different cultivars and the purified glandular trichomes from one of the cultivars, were constructed in this study. In total, 157 million clean reads were generated and assembled into 91,861 unigenes, of which 59,858 unigenes were successfully annotated. All the genes coding for known enzymes in the upstream pathway to the biosynthesis of xanthanolides were present in the X. strumarium transcriptomes. From a comparative analysis of the X. strumarium transcriptomes, this study identified a number of gene candidates that are putatively involved in the downstream pathway to the synthesis of xanthanolides, such as four unigenes encoding CYP71 P450s, 50 unigenes for dehydrogenases, and 27 genes for acetyltransferases. The possible functions of these four CYP71 candidates are extensively discussed. In addition, 116 transcription factors that were highly expressed in X. strumarium glandular trichomes were also identified. Their possible regulatory roles in the biosynthesis of sesquiterpene lactones are discussed. The global transcriptomic data for X. strumarium should provide a valuable resource for further research into the biosynthesis of xanthanolides.

  12. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    Science.gov (United States)

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  13. Determining the optimal number of independent components for reproducible transcriptomic data analysis.

    Science.gov (United States)

    Kairov, Ulykbek; Cantini, Laura; Greco, Alessandro; Molkenov, Askhat; Czerwinska, Urszula; Barillot, Emmanuel; Zinovyev, Andrei

    2017-09-11

    Independent Component Analysis (ICA) is a method that models gene expression data as an action of a set of statistically independent hidden factors. The output of ICA depends on a fundamental parameter: the number of components (factors) to compute. The optimal choice of this parameter, related to determining the effective data dimension, remains an open question in the application of blind source separation techniques to transcriptomic data. Here we address the question of optimizing the number of statistically independent components in the analysis of transcriptomic data for reproducibility of the components in multiple runs of ICA (within the same or within varying effective dimensions) and in multiple independent datasets. To this end, we introduce ranking of independent components based on their stability in multiple ICA computation runs and define a distinguished number of components (Most Stable Transcriptome Dimension, MSTD) corresponding to the point of the qualitative change of the stability profile. Based on a large body of data, we demonstrate that a sufficient number of dimensions is required for biological interpretability of the ICA decomposition and that the most stable components with ranks below MSTD have more chances to be reproduced in independent studies compared to the less stable ones. At the same time, we show that a transcriptomics dataset can be reduced to a relatively high number of dimensions without losing the interpretability of ICA, even though higher dimensions give rise to components driven by small gene sets. We suggest a protocol of ICA application to transcriptomics data with a possibility of prioritizing components with respect to their reproducibility that strengthens the biological interpretation. Computing too few components (much less than MSTD) is not optimal for interpretability of the results. The components ranked within MSTD range have more chances to be reproduced in independent studies.

  14. De novo analysis of transcriptome dynamics in the migratory locust during the development of phase traits.

    Directory of Open Access Journals (Sweden)

    Shuang Chen

    Full Text Available Locusts exhibit remarkable density-dependent phenotype (phase changes from the solitary to the gregarious, making them one of the most destructive agricultural pests. This phenotype polyphenism arises from a single genome and diverse transcriptomes in different conditions. Here we report a de novo transcriptome for the migratory locust and a comprehensive, representative core gene set. We carried out assembly of 21.5 Gb Illumina reads, generated 72,977 transcripts with N50 2,275 bp and identified 11,490 locust protein-coding genes. Comparative genomics analysis with eight other sequenced insects was carried out to identify the genomic divergence between hemimetabolous and holometabolous insects for the first time and 18 genes relevant to development was found. We further utilized the quantitative feature of RNA-seq to measure and compare gene expression among libraries. We first discovered how divergence in gene expression between two phases progresses as locusts develop and identified 242 transcripts as candidates for phase marker genes. Together with the detailed analysis of deep sequencing data of the 4(th instar, we discovered a phase-dependent divergence of biological investment in the molecular level. Solitary locusts have higher activity in biosynthetic pathways while gregarious locusts show higher activity in environmental interaction, in which genes and pathways associated with regulation of neurotransmitter activities, such as neurotransmitter receptors, synthetase, transporters, and GPCR signaling pathways, are strongly involved. Our study, as the largest de novo transcriptome to date, with optimization of sequencing and assembly strategy, can further facilitate the application of de novo transcriptome. The locust transcriptome enriches genetic resources for hemimetabolous insects and our understanding of the origin of insect metamorphosis. Most importantly, we identified genes and pathways that might be involved in locust development

  15. A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Nookaew, Intawat; Papini, Marta; Pornputtapong, Natapol

    2012-01-01

    RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated with the I......RNA-seq, has recently become an attractive method of choice in the studies of transcriptomes, promising several advantages compared with microarrays. In this study, we sought to assess the contribution of the different analytical steps involved in the analysis of RNA-seq data generated...... gene expression identification derived from the different statistical methods, as well as their integrated analysis results based on gene ontology annotation are in good agreement. Overall, our study provides a useful and comprehensive comparison between the two platforms (RNA-seq and microrrays...

  16. Improving transcriptome construction in non-model organisms: integrating manual and automated gene definition in Emiliania huxleyi.

    Science.gov (United States)

    Feldmesser, Ester; Rosenwasser, Shilo; Vardi, Assaf; Ben-Dor, Shifra

    2014-02-22

    The advent of Next Generation Sequencing technologies and corresponding bioinformatics tools allows the definition of transcriptomes in non-model organisms. Non-model organisms are of great ecological and biotechnological significance, and consequently the understanding of their unique metabolic pathways is essential. Several methods that integrate de novo assembly with genome-based assembly have been proposed. Yet, there are many open challenges in defining genes, particularly where genomes are not available or incomplete. Despite the large numbers of transcriptome assemblies that have been performed, quality control of the transcript building process, particularly on the protein level, is rarely performed if ever. To test and improve the quality of the automated transcriptome reconstruction, we used manually defined and curated genes, several of them experimentally validated. Several approaches to transcript construction were utilized, based on the available data: a draft genome, high quality RNAseq reads, and ESTs. In order to maximize the contribution of the various data, we integrated methods including de novo and genome based assembly, as well as EST clustering. After each step a set of manually curated genes was used for quality assessment of the transcripts. The interplay between the automated pipeline and the quality control indicated which additional processes were required to improve the transcriptome reconstruction. We discovered that E. huxleyi has a very high percentage of non-canonical splice junctions, and relatively high rates of intron retention, which caused unique issues with the currently available tools. While individual tools missed genes and artificially joined overlapping transcripts, combining the results of several tools improved the completeness and quality considerably. The final collection, created from the integration of several quality control and improvement rounds, was compared to the manually defined set both on the DNA and

  17. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development

    KAUST Repository

    Wong, Yue Him

    2014-10-10

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.

  18. Comparative de novo transcriptome analysis of male and female Sea buckthorn.

    Science.gov (United States)

    Bansal, Ankush; Salaria, Mehul; Sharma, Tashil; Stobdan, Tsering; Kant, Anil

    2018-02-01

    Sea buckthorn is a dioecious medicinal plant found at high altitude. The plant has both male and female reproductive organs in separate individuals. In this article, whole transcriptome de novo assemblies of male and female flower bud samples were carried out using Illumina NextSeq 500 platform to determine the role of the genes involved in sex determination. Moreover, genes with differential expression in male and female transcriptomes were identified to understand the underlying sex determination mechanism. The current study showed 63,904 and 62,272 coding sequences (CDS) in female and male transcriptome data sets, respectively. 16,831 common CDS were screened out from both transcriptomes, out of which 625 were upregulated and 491 were found to be downregulated. To understand the potential regulatory roles of differentially expressed genes in metabolic networks and biosynthetic pathways: KEGG mapping, gene ontology, and co-expression network analysis were performed. Comparison with Flowering Interactive Database (FLOR-ID) resulted in eight differentially expressed genes viz. CHD3-type chromatin-remodeling factor PICKLE ( PKL ), phytochrome-associated serine/threonine-protein phosphatase ( FYPP ), protein TOPLESS ( TPL ), sensitive to freezing 6 ( SFR6 ), lysine-specific histone demethylase 1 homolog 1 ( LDL1 ), pre-mRNA-processing-splicing factor 8A ( PRP8A ), sucrose synthase 4 ( SUS4 ), ubiquitin carboxyl-terminal hydrolase 12 ( UBP12 ), known to be broadly involved in flowering, photoperiodism, embryo development, and cold response pathways. Male and female flower bud transcriptome data of Sea buckthorn may provide comprehensive information at genomic level for the identification of genetic regulation involved in sex determination.

  19. Characterization of Liaoning cashmere goat transcriptome: sequencing, de novo assembly, functional annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Hongliang Liu

    Full Text Available Liaoning cashmere goat is a famous goat breed for cashmere wool. In order to increase the transcriptome data and accelerate genetic improvement for this breed, we performed de novo transcriptome sequencing to generate the first expressed sequence tag dataset for the Liaoning cashmere goat, using next-generation sequencing technology.Transcriptome sequencing of Liaoning cashmere goat on a Roche 454 platform yielded 804,601 high-quality reads. Clustering and assembly of these reads produced a non-redundant set of 117,854 unigenes, comprising 13,194 isotigs and 104,660 singletons. Based on similarity searches with known proteins, 17,356 unigenes were assigned to 6,700 GO categories, and the terms were summarized into three main GO categories and 59 sub-categories. 3,548 and 46,778 unigenes had significant similarity to existing sequences in the KEGG and COG databases, respectively. Comparative analysis revealed that 42,254 unigenes were aligned to 17,532 different sequences in NCBI non-redundant nucleotide databases. 97,236 (82.51% unigenes were mapped to the 30 goat chromosomes. 35,551 (30.17% unigenes were matched to 11,438 reported goat protein-coding genes. The remaining non-matched unigenes were further compared with cattle and human reference genes, 67 putative new goat genes were discovered. Additionally, 2,781 potential simple sequence repeats were initially identified from all unigenes.The transcriptome of Liaoning cashmere goat was deep sequenced, de novo assembled, and annotated, providing abundant data to better understand the Liaoning cashmere goat transcriptome. The potential simple sequence repeats provide a material basis for future genetic linkage and quantitative trait loci analyses.

  20. A microRNA activity map of human mesenchymal tumors: connections to oncogenic pathways; an integrative transcriptomic study

    Directory of Open Access Journals (Sweden)

    Fountzilas Elena

    2012-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are nucleic acid regulators of many human mRNAs, and are associated with many tumorigenic processes. miRNA expression levels have been used in profiling studies, but some evidence suggests that expression levels do not fully capture miRNA regulatory activity. In this study we integrate multiple gene expression datasets to determine miRNA activity patterns associated with cancer phenotypes and oncogenic pathways in mesenchymal tumors – a very heterogeneous class of malignancies. Results Using a computational method, we identified differentially activated miRNAs between 77 normal tissue specimens and 135 sarcomas and we validated many of these findings with microarray interrogation of an independent, paraffin-based cohort of 18 tumors. We also showed that miRNA activity is imperfectly correlated with miRNA expression levels. Using next-generation miRNA sequencing we identified potential base sequence alterations which may explain differential activity. We then analyzed miRNA activity changes related to the RAS-pathway and found 21 miRNAs that switch from silenced to activated status in parallel with RAS activation. Importantly, nearly half of these 21 miRNAs were predicted to regulate integral parts of the miRNA processing machinery, and our gene expression analysis revealed significant reductions of these transcripts in RAS-active tumors. These results suggest an association between RAS signaling and miRNA processing in which miRNAs may attenuate their own biogenesis. Conclusions Our study represents the first gene expression-based investigation of miRNA regulatory activity in human sarcomas, and our findings indicate that miRNA activity patterns derived from integrated transcriptomic data are reproducible and biologically informative in cancer. We identified an association between RAS signaling and miRNA processing, and demonstrated sequence alterations as plausible causes for differential miRNA activity

  1. Visual analysis of transcriptome data in the context of anatomical structures and biological networks

    Directory of Open Access Journals (Sweden)

    Astrid eJunker

    2012-11-01

    Full Text Available The complexity and temporal as well as spatial resolution of transcriptome datasets is constantly increasing due to extensive technological developments. Here we present methods for advanced visualization and intuitive exploration of transcriptomics data as necessary prerequisites in order to facilitate the gain of biological knowledge. Color-coding of structural images based on the expression level enables a fast visual data analysis in the background of the examined biological system. The network-based exploration of these visualizations allows for comparative analysis of genes with specific transcript patterns and supports the extraction of functional relationships even from large datasets. In order to illustrate the presented methods, the tool HIVE was applied for visualization and exploration of database-retrieved expression data for master regulators of Arabidopsis thaliana flower and seed development in the context of corresponding tissue-specific regulatory networks.

  2. Transcriptome analysis and metabolic profiling of green and red kale (Brassica oleracea var. acephala) seedlings.

    Science.gov (United States)

    Jeon, Jin; Kim, Jae Kwang; Kim, HyeRan; Kim, Yeon Jeong; Park, Yun Ji; Kim, Sun Ju; Kim, Changsoo; Park, Sang Un

    2018-02-15

    Kale (Brassica oleracea var. acephala) is a rich source of numerous health-benefiting compounds, including vitamins, glucosinolates, phenolic compounds, and carotenoids. However, the genetic resources for exploiting the phyto-nutritional traits of kales are limited. To acquire precise information on secondary metabolites in kales, we performed a comprehensive analysis of the transcriptome and metabolome of green and red kale seedlings. Kale transcriptome datasets revealed 37,149 annotated genes and several secondary metabolite biosynthetic genes. HPLC analysis revealed 14 glucosinolates, 20 anthocyanins, 3 phenylpropanoids, and 6 carotenoids in the kale seedlings that were examined. Red kale contained more glucosinolates, anthocyanins, and phenylpropanoids than green kale, whereas the carotenoid contents were much higher in green kale than in red kale. Ultimately, our data will be a valuable resource for future research on kale bio-engineering and will provide basic information to define gene-to-metabolite networks in kale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Science.gov (United States)

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance

  4. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening

    OpenAIRE

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Zhu, Zicheng; Amanullah, Sikandar; Davis, Angela R.; Luan, Feishi

    2017-01-01

    Background Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important crop with an attractive ripe fruit that has colorful flesh. Fruit ripening is a complex, genetically programmed process. Results In this study, a comparative transcriptome analysis was performed to identify the regulators and pathways that are involved in the fruit ripening of pale-yellow-flesh cultivated watermelon (COS) and red-flesh cultivated watermelon (LSW177). We first identified 797 novel g...

  5. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    Directory of Open Access Journals (Sweden)

    Haibo Wang

    Full Text Available BACKGROUND: Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. RESULTS: In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. CONCLUSIONS: This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of

  6. Transcriptomic Analysis of (Group I) Clostridium botulinum ATCC 3502 Cold Shock Response

    OpenAIRE

    Dahlsten, Elias; Isokallio, Marita; Somervuo, Panu; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon t...

  7. Analysis of the Macaca mulatta transcriptome and the sequence divergence between Macaca and human.

    Science.gov (United States)

    Magness, Charles L; Fellin, P Campion; Thomas, Matthew J; Korth, Marcus J; Agy, Michael B; Proll, Sean C; Fitzgibbon, Matthew; Scherer, Christina A; Miner, Douglas G; Katze, Michael G; Iadonato, Shawn P

    2005-01-01

    We report the initial sequencing and comparative analysis of the Macaca mulatta transcriptome. Cloned sequences from 11 tissues, nine animals, and three species (M. mulatta, M. fascicularis, and M. nemestrina) were sampled, resulting in the generation of 48,642 sequence reads. These data represent an initial sampling of the putative rhesus orthologs for 6,216 human genes. Mean nucleotide diversity within M. mulatta and sequence divergence among M. fascicularis, M. nemestrina, and M. mulatta are also reported.

  8. Transcriptome Analysis of Maize Immature Embryos Reveals the Roles of Cysteine in Improving Agrobacterium Infection Efficiency

    Science.gov (United States)

    Liu, Yan; Zhang, Zhiqiang; Fu, Junjie; Wang, Guoying; Wang, Jianhua; Liu, Yunjun

    2017-01-01

    Maize Agrobacterium-mediated transformation efficiency has been greatly improved in recent years. Antioxidants, such as, cysteine, can significantly improve maize transformation frequency through improving the Agrobacterium infection efficiency. However, the mechanism underlying the transformation improvement after cysteine exposure has not been elucidated. In this study, we showed that the addition of cysteine to the co-cultivation medium significantly increased the Agrobacterium infection efficiency of hybrid HiII and inbred line Z31 maize embryos. Reactive oxygen species contents were higher in embryos treated with cysteine than that without cysteine. We further investigated the mechanism behind cysteine-related infection efficiency increase using transcriptome analysis. The results showed that the cysteine treatment up-regulated 939 genes and down-regulated 549 genes in both Z31 and HiII. Additionally, more differentially expressed genes were found in HiII embryos than those in Z31 embryos, suggesting that HiII was more sensitive to the cysteine treatment than Z31. GO analysis showed that the up-regulated genes were mainly involved in the oxidation reduction process. The up-regulation of these genes could help maize embryos to cope with the oxidative stress stimulated by Agrobacterium infection. The down-regulated genes were mainly involved in the cell wall and membrane metabolism, such as, aquaporin and expansin genes. Decreased expression of these cell wall integrity genes could loosen the cell wall, thereby improving the entry of Agrobacterium into plant cells. This study offers insight into the role of cysteine in improving Agrobacterium-mediated transformation of maize immature embryos. PMID:29089955

  9. Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.).

    Science.gov (United States)

    Kamenetsky, Rina; Faigenboim, Adi; Shemesh Mayer, Einat; Ben Michael, Tomer; Gershberg, Chen; Kimhi, Sagie; Esquira, Itzhak; Rohkin Shalom, Sarit; Eshel, Dani; Rabinowitch, Haim D; Sherman, Amir

    2015-01-22

    Garlic is cultivated and consumed worldwide as a popular condiment and green vegetable with medicinal and neutraceutical properties. Garlic cultivars do not produce seeds, and therefore, this plant has not been the subject of either classical breeding or genetic studies. However, recent achievements in fertility restoration in a number of genotypes have led to flowering and seed production, thus enabling genetic studies and breeding in garlic. A transcriptome catalogue of fertile garlic was produced from multiplexed gene libraries, using RNA collected from various plant organs, including inflorescences and flowers. Over 32 million 250-bp paired-end reads were assembled into an extensive transcriptome of 240,000 contigs. An abundant transcriptome assembled separately from 102,000 highly expressed contigs was annotated and analyzed for gene ontology and metabolic pathways. Organ-specific analysis showed significant variation of gene expression between plant organs, with the highest number of specific reads in inflorescences and flowers. Analysis of the enriched biological processes and molecular functions revealed characteristic patterns for stress response, flower development and photosynthetic activity. Orthologues of key flowering genes were differentially expressed, not only in reproductive tissues, but also in leaves and bulbs, suggesting their role in flower-signal transduction and the bulbing process. More than 100 variants and isoforms of enzymes involved in organosulfur metabolism were differentially expressed and had organ-specific patterns. In addition to plant genes, viral RNA of at least four garlic viruses was detected, mostly in the roots and cloves, whereas only 1-4% of the reads were found in the foliage leaves. The de novo transcriptome of fertile garlic represents a new resource for research and breeding of this important crop, as well as for the development of effective molecular markers for useful traits, including fertility and seed production

  10. Transcriptome analysis on the exoskeleton formation in early developmetal stages and reconstruction scenario in growth-moulting in Litopenaeus vannamei.

    Science.gov (United States)

    Gao, Yi; Wei, Jiankai; Yuan, Jianbo; Zhang, Xiaojun; Li, Fuhua; Xiang, Jianhai

    2017-04-24

    Exoskeleton construction is an important issue in shrimp. To better understand the molecular mechanism of exoskeleton formation, development and reconstruction, the transcriptome of the entire developmental process in Litopenaeus vannamei, including nine early developmental stages and eight adult-moulting stages, was sequenced and analysed using Illumina RNA-seq technology. A total of 117,539 unigenes were obtained, with 41.2% unigenes predicting the full-length coding sequence. Gene Ontology, Clusters of Orthologous Group (COG), the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and functional annotation of all unigenes gave a better understanding of the exoskeleton developmental process in L. vannamei. As a result, more than six hundred unigenes related to exoskeleton development were identified both in the early developmental stages and adult-moulting. A cascade of sequential expression events of exoskeleton-related genes were summarized, including exoskeleton formation, regulation, synthesis, degradation, mineral absorption/reabsorption, calcification and hardening. This new insight on major transcriptional events provide a deep understanding for exoskeleton formation and reconstruction in L. vannamei. In conclusion, this is the first study that characterized the integrated transcriptomic profiles cover the entire exoskeleton development from zygote to adult-moulting in a crustacean, and these findings will serve as significant references for exoskeleton developmental biology and aquaculture research.

  11. Combined Venom Gland Transcriptomic and Venom Peptidomic Analysis of the Predatory Ant Odontomachus monticola

    Directory of Open Access Journals (Sweden)

    Kohei Kazuma

    2017-10-01

    Full Text Available Ants (hymenoptera: Formicidae have adapted to many different environments and have become some of the most prolific and successful insects. To date, 13,258 ant species have been reported. They have been classified into 333 genera and 17 subfamilies. Except for a few Formicinae, Dolichoderinae, and members of other subfamilies, most ant species have a sting with venom. The venoms are composed of formic acid, alkaloids, hydrocarbons, amines, peptides, and proteins. Unlike the venoms of other animals such as snakes and spiders, ant venoms have seldom been analyzed comprehensively, and their compositions are not yet completely known. In this study, we used both transcriptomic and peptidomic analyses to study the composition of the venom produced by the predatory ant species Odontomachus monticola. The transcriptome analysis yielded 49,639 contigs, of which 92 encoded toxin-like peptides and proteins with 18,106,338 mapped reads. We identified six pilosulin-like peptides by transcriptomic analysis in the venom gland. Further, we found intact pilosulin-like peptide 1 and truncated pilosulin-like peptides 2 and 3 by peptidomic analysis in the venom. Our findings related to ant venom peptides and proteins may lead the way towards development and application of novel pharmaceutical and biopesticidal resources.

  12. A novel joint analysis framework improves identification of differentially expressed genes in cross disease transcriptomic analysis

    Directory of Open Access Journals (Sweden)

    Wenyi Qin

    2018-02-01

    Full Text Available Abstract Motivation Detecting differentially expressed (DE genes between disease and normal control group is one of the most common analyses in genome-wide transcriptomic data. Since most studies don’t have a lot of samples, researchers have used meta-analysis to group different datasets for the same disease. Even then, in many cases the statistical power is still not enough. Taking into account the fact that many diseases share the same disease genes, it is desirable to design a statistical framework that can identify diseases’ common and specific DE genes simultaneously to improve the identification power. Results We developed a novel empirical Bayes based mixture model to identify DE genes in specific study by leveraging the shared information across multiple different disease expression data sets. The effectiveness of joint analysis was demonstrated through comprehensive simulation studies and two real data applications. The simulation results showed that our method consistently outperformed single data set analysis and two other meta-analysis methods in identification power. In real data analysis, overall our method demonstrated better identification power in detecting DE genes and prioritized more disease related genes and disease related pathways than single data set analysis. Over 150% more disease related genes are identified by our method in application to Huntington’s disease. We expect that our method would provide researchers a new way of utilizing available data sets from different diseases when sample size of the focused disease is limited.

  13. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  14. Transcriptome analysis in non-model species: a new method for the analysis of heterologous hybridization on microarrays

    Directory of Open Access Journals (Sweden)

    Jouventin Pierre

    2010-05-01

    Full Text Available Abstract Background Recent developments in high-throughput methods of analyzing transcriptomic profiles are promising for many areas of biology, including ecophysiology. However, although commercial microarrays are available for most common laboratory models, transcriptome analysis in non-traditional model species still remains a challenge. Indeed, the signal resulting from heterologous hybridization is low and difficult to interpret because of the weak complementarity between probe and target sequences, especially when no microarray dedicated to a genetically close species is available. Results We show here that transcriptome analysis in a species genetically distant from laboratory models is made possible by using MAXRS, a new method of analyzing heterologous hybridization on microarrays. This method takes advantage of the design of several commercial microarrays, with different probes targeting the same transcript. To illustrate and test this method, we analyzed the transcriptome of king penguin pectoralis muscle hybridized to Affymetrix chicken microarrays, two organisms separated by an evolutionary distance of approximately 100 million years. The differential gene expression observed between different physiological situations computed by MAXRS was confirmed by real-time PCR on 10 genes out of 11 tested. Conclusions MAXRS appears to be an appropriate method for gene expression analysis under heterologous hybridization conditions.

  15. A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi.

    Directory of Open Access Journals (Sweden)

    Timothy T Perkins

    2009-07-01

    Full Text Available High-density, strand-specific cDNA sequencing (ssRNA-seq was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi. By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3'- or 5'-untranslated regions (UTR. An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA-seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA-seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.

  16. Transcriptome Profiling and In Silico Analysis of the Antimicrobial Peptides of the Grasshopper Oxya chinensis sinuosa.

    Science.gov (United States)

    Kim, In-Woo; Markkandan, Kesavan; Lee, Joon Ha; Subramaniyam, Sathiyamoorthy; Yoo, Seungil; Park, Junhyung; Hwang, Jae Sam

    2016-11-28

    Antimicrobial peptides/proteins (AMPs) are present in all types of organisms, from microbes and plants to vertebrates and invertebrates such as insects. The grasshopper Oxya chinensis sinuosa is an insect species that is widely consumed around the world for its broad medicinal value. However, the lack of available genetic information for this species is an obstacle to understanding the full potential of its AMPs. Analysis of the O. chinensis sinuosa transcriptome and expression profile is essential for extending the available genetic information resources. In this study, we determined the whole-body transcriptome of O. chinensis sinuosa and analyzed the potential AMPs induced by bacterial immunization. A high-throughput RNA-Seq approach generated 94,348 contigs and 66,555 unigenes. Of these unigenes, 36,032 (54.14%) matched known proteins in the NCBI database in a BLAST search. Functional analysis demonstrated that 38,219 unigenes were clustered into 5,499 gene ontology terms. In addition, 26 cDNAs encoding novel AMPs were identified by an in silico approach using public databases. Our transcriptome dataset and AMP profile greatly improve our understanding of O. chinensis sinuosa genetics and provide a huge number of gene sequences for further study, including genes of known importance and genes of unknown function.

  17. Transcriptome Analysis of Two Different Developmental Stages of Paeonia lactiflora Seeds

    Directory of Open Access Journals (Sweden)

    Yonglei Ma

    2017-01-01

    Full Text Available Paeonia lactiflora is a herbaceous flower in the family Paeoniaceae with both hypocotyl and epicotyl dormant seeds. We used high-throughput transcriptome sequencing on two different developmental stages of P. lactiflora seeds to identify seed dormancy and germination-related genes. We performed de novo assembly and annotated a total of 123,577 unigenes, which encoded 24,688 putative proteins with 47 GO categories. A total of 10,714 unigenes were annotated in the KEGG database, and 258 pathways were involved in the annotations. A total of 1795 genes were differentially expressed in the functional enrichment analysis. The key genes for seed germination and dormancy, such as GAI1 and ARF, were confirmed by quantitative reverse transcription-polymerase chain reaction analysis. This is the first report of sequencing the P. lactiflora seed transcriptome. Our results provide fundamental frame work and technical support for further selective breeding and cultivation of Paeonia. Our transcriptomic data also serves as the basis for future genetics and genomics research on Paeonia and its closely related species.

  18. Deep Sequencing of Porphyromonas gingivalis and comparative transcriptome analysis of a LuxS mutant

    Directory of Open Access Journals (Sweden)

    Takanoi eHirano

    2012-06-01

    Full Text Available Porphyromonas gingivalis is a major etiological agent and chronic and aggressive forms of periodontal disease. The organism is an assacharolytic anaerobe and is a constituent of mixed species biofilms in a variety of microenvironments in the oral cavity. P. gingivalis expresses a range of virulence factors over which it exerts tight control. High-throughput sequencing technologies provide the opportunity to relate functional genomics to basic biology. In this study we report qualitative and quantitative RNA-Seq analysis of the transcriptome of P. gingivalis. We have also applied RNA-Seq to the transcriptome of a ΔluxS mutant of P. gingivalis deficient in AI-2-mediated bacterial communication. The transcriptome analysis confirmed the expression of all predicted ORFs for strain ATCC 33277, including 854 hypothetical proteins, and allowed the identification of hitherto unknown transcriptional units. Twelve noncoding RNAs were identified, including 11 small RNAs and one cobalamine riboswitch. Fifty seven genes were differentially regulated in the LuxS mutant. Addition of exogenous synthetic 4,5-dihydroxy-2,3-pentanedione (DPD, AI-2 precursor to the ΔluxS mutant culture complemented expression of a subset of genes, indicating that LuxS is involved in both AI-2 signaling and non-signaling dependent systems in P. gingivalis. This work provides an important dataset for future study of P. gingivalis pathophysiology and further defines the LuxS regulon in this oral pathogen.

  19. Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis.

    Science.gov (United States)

    Song, Minyan; He, Yanghua; Zhou, Huangkai; Zhang, Yi; Li, Xizhi; Yu, Ying

    2016-07-14

    Subclinical mastitis is a widely spread disease of lactating cows. Its major pathogen is Staphylococcus aureus (S. aureus). In this study, we performed genome-wide integrative analysis of DNA methylation and transcriptional expression to identify candidate genes and pathways relevant to bovine S. aureus subclinical mastitis. The genome-scale DNA methylation profiles of peripheral blood lymphocytes in cows with S. aureus subclinical mastitis (SA group) and healthy controls (CK) were generated by methylated DNA immunoprecipitation combined with microarrays. We identified 1078 differentially methylated genes in SA cows compared with the controls. By integrating DNA methylation and transcriptome data, 58 differentially methylated genes were shared with differently expressed genes, in which 20.7% distinctly hypermethylated genes showed down-regulated expression in SA versus CK, whereas 14.3% dramatically hypomethylated genes showed up-regulated expression. Integrated pathway analysis suggested that these genes were related to inflammation, ErbB signalling pathway and mismatch repair. Further functional analysis revealed that three genes, NRG1, MST1 and NAT9, were strongly correlated with the progression of S. aureus subclinical mastitis and could be used as powerful biomarkers for the improvement of bovine mastitis resistance. Our studies lay the groundwork for epigenetic modification and mechanistic studies on susceptibility of bovine mastitis.

  20. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    Science.gov (United States)

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome

  1. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus.

    Directory of Open Access Journals (Sweden)

    Bethany A Stahl

    Full Text Available Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual, and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment.

  2. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  3. Transcriptome sequencing and De Novo analysis of Youngia japonica using the illumina platform.

    Directory of Open Access Journals (Sweden)

    Yulan Peng

    Full Text Available Youngia japonica, a weed species distributed worldwide, has been widely used in traditional Chinese medicine. It is an ideal plant for studying the evolution of Asteraceae plants because of its short life history and abundant source. However, little is known about its evolution and genetic diversity. In this study, de novo transcriptome sequencing was conducted for the first time for the comprehensive analysis of the genetic diversity of Y. japonica. The Y. japonica transcriptome was sequenced using Illumina paired-end sequencing technology. We produced 21,847,909 high-quality reads for Y. japonica and assembled them into contigs. A total of 51,850 unigenes were identified, among which 46,087 were annotated in the NCBI non-redundant protein database and 41,752 were annotated in the Swiss-Prot database. We mapped 9,125 unigenes onto 163 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database. In addition, 3,648 simple sequence repeats (SSRs were detected. Our data provide the most comprehensive transcriptome resource currently available for Y. japonica. C4 photosynthesis unigenes were found in the biological process of Y. japonica. There were 5596 unigenes related to defense response and 1344 ungienes related to signal transduction mechanisms (10.95%. These data provide insights into the genetic diversity of Y. japonica. Numerous SSRs contributed to the development of novel markers. These data may serve as a new valuable resource for genomic studies on Youngia and, more generally, Cichoraceae.

  4. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    Science.gov (United States)

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  5. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.

    Science.gov (United States)

    Li, Shi-Weng; Shi, Rui-Fang; Leng, Yan

    2015-01-01

    Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77%) were annotated using BLASTx. Among them, 28,225 (35.75%) and 28,119 (35.62%) unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr) databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2) during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3%) with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles reveal

  6. De Novo Characterization of the Mung Bean Transcriptome and Transcriptomic Analysis of Adventitious Rooting in Seedlings Using RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Shi-Weng Li

    Full Text Available Adventitious rooting is the most important mechanism underlying vegetative propagation and an important strategy for plant propagation under environmental stress. The present study was conducted to obtain transcriptomic data and examine gene expression using RNA-Seq and bioinformatics analysis, thereby providing a foundation for understanding the molecular mechanisms controlling adventitious rooting. Three cDNA libraries constructed from mRNA samples from mung bean hypocotyls during adventitious rooting were sequenced. These three samples generated a total of 73 million, 60 million, and 59 million 100-bp reads, respectively. These reads were assembled into 78,697 unigenes with an average length of 832 bp, totaling 65 Mb. The unigenes were aligned against six public protein databases, and 29,029 unigenes (36.77% were annotated using BLASTx. Among them, 28,225 (35.75% and 28,119 (35.62% unigenes had homologs in the TrEMBL and NCBI non-redundant (Nr databases, respectively. Of these unigenes, 21,140 were assigned to gene ontology classes, and a total of 11,990 unigenes were classified into 25 KOG functional categories. A total of 7,357 unigenes were annotated to 4,524 KOs, and 4,651 unigenes were mapped onto 342 KEGG pathways using BLAST comparison against the KEGG database. A total of 11,717 unigenes were differentially expressed (fold change>2 during the root induction stage, with 8,772 unigenes down-regulated and 2,945 unigenes up-regulated. A total of 12,737 unigenes were differentially expressed during the root initiation stage, with 9,303 unigenes down-regulated and 3,434 unigenes up-regulated. A total of 5,334 unigenes were differentially expressed between the root induction and initiation stage, with 2,167 unigenes down-regulated and 3,167 unigenes up-regulated. qRT-PCR validation of the 39 genes with known functions indicated a strong correlation (92.3% with the RNA-Seq data. The GO enrichment, pathway mapping, and gene expression profiles

  7. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation

    Directory of Open Access Journals (Sweden)

    Rismani-Yazdi Hamid

    2012-09-01

    Full Text Available Abstract Background The lack of sequenced genomes for oleaginous microalgae limits our understanding of the mechanisms these organisms utilize to become enriched in triglycerides. Here we report the de novo transcriptome assembly and quantitative gene expression analysis of the oleaginous microalga Neochloris oleoabundans, with a focus on the complex interaction of pathways associated with the production of the triacylglycerol (TAG biofuel precursor. Results After growth under nitrogen replete and nitrogen limiting conditions, we quantified the cellular content of major biomolecules including total lipids, triacylglycerides, starch, protein, and chlorophyll. Transcribed genes were sequenced, the transcriptome was assembled de novo, and the expression of major functional categories, relevant pathways, and important genes was quantified through the mapping of reads to the transcriptome. Over 87 million, 77 base pair high quality reads were produced on the Illumina HiSeq sequencing platform. Metabolite measurements supported by genes and pathway expression results indicated that under the nitrogen-limiting condition, carbon is partitioned toward triglyceride production, which increased fivefold over the nitrogen-replete control. In addition to the observed overexpression of the fatty acid synthesis pathway, TAG production during nitrogen limitation was bolstered by repression of the β-oxidation pathway, up-regulation of genes encoding for the pyruvate dehydrogenase complex which funnels acetyl-CoA to lipid biosynthesis, activation of the pentose phosphate pathway to supply reducing equivalents to inorganic nitrogen assimilation and fatty acid biosynthesis, and the up-regulation of lipases—presumably to reconstruct cell membranes in order to supply additional fatty acids for TAG biosynthesis. Conclusions Our quantitative transcriptome study reveals a broad overview of how nitrogen stress results in excess TAG production in N. oleoabundans, and

  8. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    Science.gov (United States)

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels

  9. Transcriptomic Analysis and Meta-Analysis of Human Granulosa and Cumulus Cells.

    Directory of Open Access Journals (Sweden)

    Tanja Burnik Papler

    Full Text Available Specific gene expression in oocytes and its surrounding cumulus (CC and granulosa (GC cells is needed for successful folliculogenesis and oocyte maturation. The aim of the present study was to compare genome-wide gene expression and biological functions of human GC and CC. Individual GC and CC were derived from 37 women undergoing IVF procedures. Gene expression analysis was performed using microarrays, followed by a meta-analysis. Results were validated using quantitative real-time PCR. There were 6029 differentially expressed genes (q < 10-4; of which 650 genes had a log2 FC ≥ 2. After the meta-analysis there were 3156 genes differentially expressed. Among these there were genes that have previously not been reported in human somatic follicular cells, like prokineticin 2 (PROK2, higher expressed in GC, and pregnancy up-regulated nonubiquitous CaM kinase (PNCK, higher expressed in CC. Pathways like inflammatory response and angiogenesis were enriched in GC, whereas in CC, cell differentiation and multicellular organismal development were among enriched pathways. In conclusion, transcriptomes of GC and CC as well as biological functions, are distinctive for each cell subpopulation. By describing novel genes like PROK2 and PNCK, expressed in GC and CC, we upgraded the existing data on human follicular biology.

  10. Integrative biological analysis for neuropsychopharmacology.

    Science.gov (United States)

    Emmett, Mark R; Kroes, Roger A; Moskal, Joseph R; Conrad, Charles A; Priebe, Waldemar; Laezza, Fernanda; Meyer-Baese, Anke; Nilsson, Carol L

    2014-01-01

    Although advances in psychotherapy have been made in recent years, drug discovery for brain diseases such as schizophrenia and mood disorders has stagnated. The need for new biomarkers and validated therapeutic targets in the field of neuropsychopharmacology is widely unmet. The brain is the most complex part of human anatomy from the standpoint of number and types of cells, their interconnections, and circuitry. To better meet patient needs, improved methods to approach brain studies by understanding functional networks that interact with the genome are being developed. The integrated biological approaches--proteomics, transcriptomics, metabolomics, and glycomics--have a strong record in several areas of biomedicine, including neurochemistry and neuro-oncology. Published applications of an integrated approach to projects of neurological, psychiatric, and pharmacological natures are still few but show promise to provide deep biological knowledge derived from cells, animal models, and clinical materials. Future studies that yield insights based on integrated analyses promise to deliver new therapeutic targets and biomarkers for personalized medicine.

  11. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-01-01

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  12. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-11-25

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  13. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Sun, Jin; Mok, FloraSy; Liu, Lingli; Qiu, Jianwen; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  14. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-03-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  15. Transcriptome analysis of feline infectious peritonitis virus infection.

    Science.gov (United States)

    Mehrbod, Parvaneh; Harun, Mohammad Syamsul Reza; Shuid, Ahmad Naqib; Omar, Abdul Rahman

    2015-01-01

    Feline infectious peritonitis (FIP) is a lethal systemic disease caused by FIP virus (FIPV). There are no effective vaccines or treatment available, and the virus virulence determinants and pathogenesis are not fully understood. Here, we describe the sequencing of RNA extracted from Crandell Rees Feline Kidney (CRFK) cells infected with FIPV using the Illumina next-generation sequencing approach. Bioinformatics analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench is used to map both control and infected cells. Kal's Z test statistical analysis is used to analyze the differentially expressed genes from the infected CRFK cells. In addition, RT-qPCR analysis is used for further transcriptional profiling of selected genes in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diagnosed cats.

  16. Transcriptome Analysis of Chlorantraniliprole Resistance Development in the Diamondback Moth Plutella xylostella

    Science.gov (United States)

    Hu, Zhendi; Chen, Huanyu; Yin, Fei; Li, Zhenyu; Dong, Xiaolin; Zhang, Deyong; Ren, Shunxiang; Feng, Xia

    2013-01-01

    Background The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella’s resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. Principal Findings To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE) system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS) provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp), which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated) were gradient differentially expressed among the susceptible strain (SS) and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA), moderate resistance (LZA) and high resistance strains (HZA). A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. Conclusions The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data provide

  17. Transcriptome analysis of chlorantraniliprole resistance development in the diamondback moth Plutella xylostella.

    Directory of Open Access Journals (Sweden)

    Qingsheng Lin

    Full Text Available BACKGROUND: The diamondback moth Plutella xyllostella has developed a high level of resistance to the latest insecticide chlorantraniliprole. A better understanding of P. xylostella's resistance mechanism to chlorantraniliprole is needed to develop effective approaches for insecticide resistance management. PRINCIPAL FINDINGS: To provide a comprehensive insight into the resistance mechanisms of P. xylostella to chlorantraniliprole, transcriptome assembly and tag-based digital gene expression (DGE system were performed using Illumina HiSeq™ 2000. The transcriptome analysis of the susceptible strain (SS provided 45,231 unigenes (with the size ranging from 200 bp to 13,799 bp, which would be efficient for analyzing the differences in different chlorantraniliprole-resistant P. xylostella stains. DGE analysis indicated that a total of 1215 genes (189 up-regulated and 1026 down-regulated were gradient differentially expressed among the susceptible strain (SS and different chlorantraniliprole-resistant P. xylostella strains, including low-level resistance (GXA, moderate resistance (LZA and high resistance strains (HZA. A detailed analysis of gradient differentially expressed genes elucidated the existence of a phase-dependent divergence of biological investment at the molecular level. The genes related to insecticide resistance, such as P450, GST, the ryanodine receptor, and connectin, had different expression profiles in the different chlorantraniliprole-resistant DGE libraries, suggesting that the genes related to insecticide resistance are involved in P. xylostella resistance development against chlorantraniliprole. To confirm the results from the DGE, the expressional profiles of 4 genes related to insecticide resistance were further validated by qRT-PCR analysis. CONCLUSIONS: The obtained transcriptome information provides large gene resources available for further studying the resistance development of P. xylostella to pesticides. The DGE data

  18. Transcriptomic and genetic analysis of direct interspecies electron transfer

    DEFF Research Database (Denmark)

    Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M

    2013-01-01

    The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....

  19. Rice Transcriptome Analysis to Identify Possible Herbicide Quinclorac Detoxification Genes

    Directory of Open Access Journals (Sweden)

    Wenying eXu

    2015-09-01

    Full Text Available Quinclorac is a highly selective auxin-type herbicide, and is widely used in the effective control of barnyard grass in paddy rice fields, improving the world’s rice yield. The herbicide mode of action of quinclorac has been proposed and hormone interactions affect quinclorac signaling. Because of widespread use, quinclorac may be transported outside rice fields with the drainage waters, leading to soil and water pollution and environmental health problems.In this study, we used 57K Affymetrix rice whole-genome array to identify quinclorac signaling response genes to study the molecular mechanisms of action and detoxification of quinclorac in rice plants. Overall, 637 probe sets were identified with differential expression levels under either 6 or 24 h of quinclorac treatment. Auxin-related genes such as GH3 and OsIAAs responded to quinclorac treatment. Gene Ontology analysis showed that genes of detoxification-related family genes were significantly enriched, including cytochrome P450, GST, UGT, and ABC and drug transporter genes. Moreover, real-time RT-PCR analysis showed that top candidate P450 families such as CYP81, CYP709C and CYP72A genes were universally induced by different herbicides. Some Arabidopsis genes for the same P450 family were up-regulated under quinclorac treatment.We conduct rice whole-genome GeneChip analysis and the first global identification of quinclorac response genes. This work may provide potential markers for detoxification of quinclorac and biomonitors of environmental chemical pollution.

  20. Comparative transcriptome analysis of ginger variety Suprabha from two different agro-climatic zones of Odisha.

    Science.gov (United States)

    Gaur, Mahendra; Das, Aradhana; Sahoo, Rajesh Kumar; Mohanty, Sujata; Joshi, Raj Kumar; Subudhi, Enketeswara

    2016-09-01

    Ginger (Zingiber officinale Rosc.), a well-known member of family Zingiberaceae, is bestowed with number of medicinal properties which is because of the secondary metabolites, essential oil and oleoresin, it contains in its rhizome. The drug yielding potential is known to depend on agro-climatic conditions prevailing at the place cultivation. Present study deals with comparative transcriptome analysis of two sample of elite ginger variety Suprabha collected from two different agro-climatic zones of Odisha. Transcriptome assembly for both the samples was done using next generation sequencing methodology. The raw data of size 10.8 and 11.8 GB obtained from analysis of two rhizomes S1Z4 and S2Z5 collected from Bhubaneswar and Koraput and are available in NCBI accession number SAMN03761169 and SAMN03761176 respectively. We identified 60,452 and 54,748 transcripts using trinity tool respectively from ginger rhizome of S1Z4 and S2Z5. The transcript length varied from 300 bp to 15,213 bp and 8988 bp and N50 value of 1415 bp and 1334 bp respectively for S1Z4 and S2Z5. To the best of our knowledge, this is the first comparative transcriptome analysis of elite ginger cultivars Suprabha from two different agro-climatic conditions of Odisha, India which will help to understand the effect of agro-climatic conditions on differential expression of secondary metabolites.

  1. An integrated study of natural hydroxyapatite-induced osteogenic differentiation of mesenchymal stem cells using transcriptomics, proteomics and microRNA analyses

    International Nuclear Information System (INIS)

    Zhang, Zhiwei; Wang, Jiandan; Lü, Xiaoying

    2014-01-01

    This work combined transcriptomics, proteomics, and microRNA (miRNA) analyses to elucidate the mechanism of natural hydroxyapatite (NHA)-induced osteogenic differentiation of mesenchymal stem cells (MSCs). First, NHA powder was obtained from pig bones and fabricated into disc-shaped samples. Subsequently, the proliferation and osteogenic differentiation of MSCs cultured on NHA were investigated. Then, proteomics was employed to detect the protein expression profiles of MSCs cultured on NHA, and the effect of NHA on MSCs was analyzed through an integrated pathway analysis (including proteomics and previous transcriptomics data) in which specific NHA-induced differentiation pathways were analyzed. The pathway nodes with expression data at both the mRNA and protein levels (mRNA–protein pairs) were filtered in differentiation-related pathways. miRNAs corresponding to these target mRNA–protein pairs were predicted, screened and tested, and the regulatory effects of miRNAs on mRNA–protein pairs were analyzed. Finally, the NHA-induced osteogenic pathways were verified. The results of an MTT assay and alkaline phosphatase (ALP) staining showed that the cell proliferation rate decreased and the osteogenic performance improved in the presence of NHA. By integrating transcriptomics and proteomics, the genes and proteins involved in 89 pathways were shown to be differentially expressed. Among them, 5 differentiation-associated pathways, in which 9 miRNAs and 8 regulated-target mRNA–protein zby inhibiting the target mRNA–protein pair HSPA8 in the MAPK signaling pathway, and miR-26a and miR-26b might inhibit adipogenic differentiation by repressing the target mRNA–protein pair HMGA1 in the adipogenesis pathway. A verification experiment for the osteogenic pathway indicated that the ERK1/2 or JNK MAPK pathways might play an important role in NHA-induced osteogenic differentiation. In conclusion, NHA affected MSCs at both the transcriptional and translational levels

  2. Transcriptomic analysis of the entomopathogenic nematode Heterorhabditis bacteriophora TTO1

    Directory of Open Access Journals (Sweden)

    Spieth John

    2009-04-01

    Full Text Available Abstract Background The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora. Results A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci. Conclusion A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis.

  3. A generic Transcriptomics Reporting Framework (TRF) for 'omics data processing and analysis.

    Science.gov (United States)

    Gant, Timothy W; Sauer, Ursula G; Zhang, Shu-Dong; Chorley, Brian N; Hackermüller, Jörg; Perdichizzi, Stefania; Tollefsen, Knut E; van Ravenzwaay, Ben; Yauk, Carole; Tong, Weida; Poole, Alan

    2017-12-01

    A generic Transcriptomics Reporting Framework (TRF) is presented that lists parameters that should be reported in 'omics studies used in a regulatory context. The TRF encompasses the processes from transcriptome profiling from data generation to a processed list of differentially expressed genes (DEGs) ready for interpretation. Included within the TRF is a reference baseline analysis (RBA) that encompasses raw data selection; data normalisation; recognition of outliers; and statistical analysis. The TRF itself does not dictate the methodology for data processing, but deals with what should be reported. Its principles are also applicable to sequencing data and other 'omics. In contrast, the RBA specifies a simple data processing and analysis methodology that is designed to provide a comparison point for other approaches and is exemplified here by a case study. By providing transparency on the steps applied during 'omics data processing and analysis, the TRF will increase confidence processing of 'omics data, and regulatory use. Applicability of the TRF is ensured by its simplicity and generality. The TRF can be applied to all types of regulatory 'omics studies, and it can be executed using different commonly available software tools. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  4. Global transcriptome analysis of Halolamina sp. to decipher the salt tolerance in extremely halophilic archaea.

    Science.gov (United States)

    Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer

    2017-02-15

    Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Transcriptome tomography for brain analysis in the web-accessible anatomical space.

    Directory of Open Access Journals (Sweden)

    Yuko Okamura-Oho

    Full Text Available Increased information on the encoded mammalian genome is expected to facilitate an integrated understanding of complex anatomical structure and function based on the knowledge of gene products. Determination of gene expression-anatomy associations is crucial for this understanding. To elicit the association in the three-dimensional (3D space, we introduce a novel technique for comprehensive mapping of endogenous gene expression into a web-accessible standard space: Transcriptome Tomography. The technique is based on conjugation of sequential tissue-block sectioning, all fractions of which are used for molecular measurements of gene expression densities, and the block- face imaging, which are used for 3D reconstruction of the fractions. To generate a 3D map, tissues are serially sectioned in each of three orthogonal planes and the expression density data are mapped using a tomographic technique. This rapid and unbiased mapping technique using a relatively small number of original data points allows researchers to create their own expression maps in the broad anatomical context of the space. In the first instance we generated a dataset of 36,000 maps, reconstructed from data of 61 fractions measured with microarray, covering the whole mouse brain (ViBrism: http://vibrism.riken.jp/3dviewer/ex/index.html in one month. After computational estimation of the mapping accuracy we validated the dataset against existing data with respect to the expression location and density. To demonstrate the relevance of the framework, we showed disease related expression of Huntington's disease gene and Bdnf. Our tomographic approach is applicable to analysis of any biological molecules derived from frozen tissues, organs and whole embryos, and the maps are spatially isotropic and well suited to the analysis in the standard space (e.g. Waxholm Space for brain-atlas databases. This will facilitate research creating and using open-standards for a molecular

  6. Comparative Genomics and Transcriptomic Analysis of Mycobacterium Kansasii

    KAUST Repository

    Alzahid, Yara

    2014-04-01

    The group of Mycobacteria is one of the most intensively studied bacterial taxa, as they cause the two historical and worldwide known diseases: leprosy and tuberculosis. Mycobacteria not identified as tuberculosis or leprosy complex, have been referred to by ‘environmental mycobacteria’ or ‘Nontuberculous mycobacteria (NTM). Mycobacterium kansasii (M. kansasii) is one of the most frequent NTM pathogens, as it causes pulmonary disease in immuno-competent patients and pulmonary, and disseminated disease in patients with various immuno-deficiencies. There have been five documented subtypes of this bacterium, by different molecular typing methods, showing that type I causes tuberculosis-like disease in healthy individuals, and type II in immune-compromised individuals. The remaining types are said to be environmental, thereby, not causing any diseases. The aim of this project was to conduct a comparative genomic study of M. kansasii types I-V and investigating the gene expression level of those types. From various comparative genomics analysis, provided genomics evidence on why M. kansasii type I is considered pathogenic, by focusing on three key elements that are involved in virulence of Mycobacteria: ESX secretion system, Phospholipase c (plcb) and Mammalian cell entry (Mce) operons. The results showed the lack of the espA operon in types II-V, which renders the ESX- 1 operon dysfunctional, as espA is one of the key factors that control this secretion system. However, gene expression analysis showed this operon to be deleted in types II, III and IV. Furthermore, plcB was found to be truncated in types III and IV. Analysis of Mce operons (1-4) show that mce-1 operon is duplicated, mce-2 is absent and mce-3 and mce-4 is present in one copy in M. kansasii types I-V. Gene expression profiles of type I-IV, showed that the secreted proteins of ESX-1 were slightly upregulated in types II-IV when compared to type I and the secreted forms of ESX-5 were highly down

  7. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae.

    Science.gov (United States)

    Veneman, Wouter J; Spaink, Herman P; Brun, Nadja R; Bosker, Thijs; Vijver, Martina G

    2017-09-01

    Microplastics are a contaminant of emergent concern in the environment, however, to date there is a limited understanding on their movement within organisms and the response of organisms. In the current study zebrafish embryos at different development stages were exposed to 700nm fluorescent polystyrene (PS) particles and the response pathway after exposure was investigated using imaging and transcriptomics. Our results show limited spreading of particles within the larvae after injection during the blastula stage. This is in contrast to injection of PS particles in the yolk of 2-day old embryos, which resulted in redistribution of the PS particles throughout the bloodstream, and accumulation in the heart region. Although injection was local, the transcriptome profiling showed strong responses of zebrafish embryos exposed to PS particle, indicating a systemic response. We found several biological pathways activated which are related to an immune response in the PS exposed zebrafish larvae. Most notably the complement system was enriched as indicated by upregulation of genes in the alternative complement pathway (e.g. cfhl3, cfhl4, cfb and c9). The fact that complement pathway is activated indicates that plastic microparticles are integrated in immunological recognition processes. This was supported by fluorescence microscopy results, in which we observed co-localisation of neutrophils and macrophages around the PS particles. Identifying these key events can be a first building block to the development of an adverse outcome pathway (AOP). These data subsequently can be used within ecological and human risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Transcriptome Analysis in Sheepgrass (Leymus chinensis). A Dominant Perennial Grass of the Eurasian Steppe

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuangyan [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing; Huang, Xin [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing; Yang, Xiaohan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Gongshe [Chinese Academy of Sciences (CAS), Institute of Botany (IB), Beijing

    2013-07-04

    BACKGROUND: Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. RESULTS: The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. CONCLUSIONS: This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  9. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Directory of Open Access Journals (Sweden)

    Cornman R

    2012-06-01

    Full Text Available Abstract Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.

  10. Transcriptome analysis of the honey bee fungal pathogen, Ascosphaera apis: implications for host pathogenesis

    Science.gov (United States)

    2012-01-01

    Background We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. Results We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. Conclusions This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management. PMID:22747707

  11. Transcriptome analysis in sheepgrass (Leymus chinensis): a dominant perennial grass of the Eurasian Steppe.

    Science.gov (United States)

    Chen, Shuangyan; Huang, Xin; Yan, Xueqing; Liang, Ye; Wang, Yuezhu; Li, Xiaofeng; Peng, Xianjun; Ma, Xingyong; Zhang, Lexin; Cai, Yueyue; Ma, Tian; Cheng, Liqin; Qi, Dongmei; Zheng, Huajun; Yang, Xiaohan; Li, Xiaoxia; Liu, Gongshe

    2013-01-01

    Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is an important perennial forage grass across the Eurasian Steppe and is known for its adaptability to various environmental conditions. However, insufficient data resources in public databases for sheepgrass limited our understanding of the mechanism of environmental adaptations, gene discovery and molecular marker development. The transcriptome of sheepgrass was sequenced using Roche 454 pyrosequencing technology. We assembled 952,328 high-quality reads into 87,214 unigenes, including 32,416 contigs and 54,798 singletons. There were 15,450 contigs over 500 bp in length. BLAST searches of our database against Swiss-Prot and NCBI non-redundant protein sequences (nr) databases resulted in the annotation of 54,584 (62.6%) of the unigenes. Gene Ontology (GO) analysis assigned 89,129 GO term annotations for 17,463 unigenes. We identified 11,675 core Poaceae-specific and 12,811 putative sheepgrass-specific unigenes by BLAST searches against all plant genome and transcriptome databases. A total of 2,979 specific freezing-responsive unigenes were found from this RNAseq dataset. We identified 3,818 EST-SSRs in 3,597 unigenes, and some SSRs contained unigenes that were also candidates for freezing-response genes. Characterizations of nucleotide repeats and dominant motifs of SSRs in sheepgrass were also performed. Similarity and phylogenetic analysis indicated that sheepgrass is closely related to barley and wheat. This research has greatly enriched sheepgrass transcriptome resources. The identified stress-related genes will help us to decipher the genetic basis of the environmental and ecological adaptations of this species and will be used to improve wheat and barley crops through hybridization or genetic transformation. The EST-SSRs reported here will be a valuable resource for future gene-phenotype studies and for the molecular breeding of sheepgrass and other Poaceae species.

  12. Transcriptome analysis of a petal anthocyanin polymorphism in the arctic mustard, Parrya nudicaulis.

    Directory of Open Access Journals (Sweden)

    Timothy Butler

    Full Text Available Angiosperms are renown for their diversity of flower colors. Often considered adaptations to pollinators, the most common underlying pigments, anthocyanins, are also involved in plants' stress response. Although the anthocyanin biosynthetic pathway is well characterized across many angiosperms and is composed of a few candidate genes, the consequences of blocking this pathway and producing white flowers has not been investigated at the transcriptome scale. We take a transcriptome-wide approach to compare expression differences between purple and white petal buds in the arctic mustard, Parrya nudicaulis, to determine which genes' expression are consistently correlated with flower color. Using mRNA-Seq and de novo transcriptome assembly, we assembled an average of 722 bp per gene (49.81% coding sequence based on the A. thaliana homolog for 12,795 genes from the petal buds of a pair of purple and white samples. Our results correlate strongly with qRT-PCR analysis of nine candidate genes in the anthocyanin biosynthetic pathway where chalcone synthase has the greatest difference in expression between color morphs (P/W = ∼7×. Among the most consistently differentially expressed genes between purple and white samples, we found 3× more genes with higher expression in white petals than in purple petals. These include four unknown genes, two drought-response genes (CDSP32, ERD5, a cold-response gene (GR-RBP2, and a pathogen defense gene (DND1. Gene ontology analysis of the top 2% of genes with greater expression in white relative to purple petals revealed enrichment in genes associated with stress responses including cold, drought and pathogen defense. Unlike the uniform downregulation of chalcone synthase that may be directly involved in the loss of petal anthocyanins, the variable expression of several genes with greater expression in white petals suggest that the physiological and ecological consequences of having white petals may be

  13. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Science.gov (United States)

    Lee, Jungeun; Kang, Yoonjee; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok

    2014-01-01

    Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp) and small (SSC: 12,519 bp) single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp). It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers understand the characteristics of the chloroplast

  14. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Science.gov (United States)

    Fonseca, Fernando Campos de Assis; Firmino, Alexandre Augusto Pereira; de Macedo, Leonardo Lima Pepino; Coelho, Roberta Ramos; de Souza Júnior, José Dijair Antonino; de Sousa Júnior, José Dijair Antonino; Silva-Junior, Orzenil Bonfim; Togawa, Roberto Coiti; Pappas, Georgios Joannis; de Góis, Luiz Avelar Brandão; da Silva, Maria Cristina Mattar; Grossi-de-Sá, Maria Fátima

    2015-01-01

    Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus), a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB) transcriptome, a number of aminopeptidase N (APN) cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  15. Sugarcane giant borer transcriptome analysis and identification of genes related to digestion.

    Directory of Open Access Journals (Sweden)

    Fernando Campos de Assis Fonseca

    Full Text Available Sugarcane is a widely cultivated plant that serves primarily as a source of sugar and ethanol. Its annual yield can be significantly reduced by the action of several insect pests including the sugarcane giant borer (Telchin licus licus, a lepidopteran that presents a long life cycle and which efforts to control it using pesticides have been inefficient. Although its economical relevance, only a few DNA sequences are available for this species in the GenBank. Pyrosequencing technology was used to investigate the transcriptome of several developmental stages of the insect. To maximize transcript diversity, a pool of total RNA was extracted from whole body insects and used to construct a normalized cDNA database. Sequencing produced over 650,000 reads, which were de novo assembled to generate a reference library of 23,824 contigs. After quality score and annotation, 43% of the contigs had at least one BLAST hit against the NCBI non-redundant database, and 40% showed similarities with the lepidopteran Bombyx mori. In a further analysis, we conducted a comparison with Manduca sexta midgut sequences to identify transcripts of genes involved in digestion. Of these transcripts, many presented an expansion or depletion in gene number, compared to B. mori genome. From the sugarcane giant borer (SGB transcriptome, a number of aminopeptidase N (APN cDNAs were characterized based on homology to those reported as Cry toxin receptors. This is the first report that provides a large-scale EST database for the species. Transcriptome analysis will certainly be useful to identify novel developmental genes, to better understand the insect's biology and to guide the development of new strategies for insect-pest control.

  16. Comparative analysis of proteome and transcriptome variation in mouse.

    Directory of Open Access Journals (Sweden)

    Anatole Ghazalpour

    2011-06-01

    Full Text Available The relationships between the levels of transcripts and the levels of the proteins they encode have not been examined comprehensively in mammals, although previous work in plants and yeast suggest a surprisingly modest correlation. We have examined this issue using a genetic approach in which natural variations were used to perturb both transcript levels and protein levels among inbred strains of mice. We quantified over 5,000 peptides and over 22,000 transcripts in livers of 97 inbred and recombinant inbred strains and focused on the 7,185 most heritable transcripts and 486 most reliable proteins. The transcript levels were quantified by microarray analysis in three replicates and the proteins were quantified by Liquid Chromatography-Mass Spectrometry using O(18-reference-based isotope labeling approach. We show that the levels of transcripts and proteins correlate significantly for only about half of the genes tested, with an average correlation of 0.27, and the correlations of transcripts and proteins varied depending on the cellular location and biological function of the gene. We examined technical and biological factors that could contribute to the modest correlation. For example, differential splicing clearly affects the analyses for certain genes; but, based on deep sequencing, this does not substantially contribute to the overall estimate of the correlation. We also employed genome-wide association analyses to map loci controlling both transcript and protein levels. Surprisingly, little overlap was observed between the protein- and transcript-mapped loci. We have typed numerous clinically relevant traits among the strains, including adiposity, lipoprotein levels, and tissue parameters. Using correlation analysis, we found that a low number of clinical trait relationships are preserved between the protein and mRNA gene products and that the majority of such relationships are specific to either the protein levels or transcript levels

  17. Transcriptome analysis of the ependymal barrier during murine neurocysticercosis

    Directory of Open Access Journals (Sweden)

    Mishra Pramod

    2012-06-01

    Full Text Available Abstract Background Central nervous system (CNS barriers play a pivotal role in the protection and homeostasis of the CNS by enabling the exchange of metabolites while restricting the entry of xenobiotics, blood cells and blood-borne macromolecules. While the blood–brain barrier and blood-cerebrospinal fluid barrier (CSF control the interface between the blood and CNS, the ependyma acts as a barrier between the CSF and parenchyma, and regulates hydrocephalic pressure and metabolic toxicity. Neurocysticercosis (NCC is an infection of the CNS caused by the metacestode (larva of Taenia solium and a major cause of acquired epilepsy worldwide. The common clinical manifestations of NCC are seizures, hydrocephalus and symptoms due to increased intracranial pressure. The majority of the associated pathogenesis is attributed to the immune response against the parasite. The properties of the CNS barriers, including the ependyma, are affected during infection, resulting in disrupted homeostasis and infiltration of leukocytes, which correlates with the pathology and disease symptoms of NCC patients. Results In order to characterize the role of the ependymal barrier in the immunopathogenesis of NCC, we isolated ependymal cells using laser capture microdissection from mice infected or mock-infected with the closely related parasite Mesocestoides corti, and analyzed the genes that were differentially expressed using microarray analysis. The expression of 382 genes was altered. Immune response-related genes were verified by real-time RT-PCR. Ingenuity Pathway Analysis (IPA software was used to analyze the biological significance of the differentially expressed genes, and revealed that genes known to participate in innate immune responses, antigen presentation and leukocyte infiltration were affected along with the genes involved in carbohydrate, lipid and small molecule biochemistry. Further, MHC class II molecules and chemokines, including CCL12, were found

  18. Comparative transcriptomic analysis of roots of contrasting Gossypium herbaceum genotypes revealing adaptation to drought

    Directory of Open Access Journals (Sweden)

    Ranjan Alok

    2012-11-01

    Full Text Available Abstract Background Root length and its architecture govern the adaptability of plants to various stress conditions, including drought stress. Genetic variations in root growth, length, and architecture are genotypes dependent. In this study, we compared the drought-induced transcriptome of four genotypes of Gossypium herbaceum that differed in their drought tolerance adaptability. Three different methodologies, namely, microarray, pyrosequencing, and qRT–PCR, were used for transcriptome analysis and validation. Results The variations in root length and growth were found among four genotypes of G.herbaceum when exposed to mannitol-induced osmotic stress. Under osmotic stress, the drought tolerant genotypes Vagad and GujCot-21 showed a longer root length than did by drought sensitive RAHS-14 and RAHS-IPS-187. Further, the gene expression patterns in the root tissue of all genotypes were analyzed. We obtained a total of 794 differentially expressed genes by microarray and 104928 high-quality reads representing 53195 unigenes from the root transcriptome. The Vagad and GujCot-21 respond to water stress by inducing various genes and pathways such as response to stresses, response to water deprivation, and flavonoid pathways. Some key regulatory genes involved in abiotic stress such as AP2 EREBP, MYB, WRKY, ERF, ERD9, and LEA were highly expressed in Vagad and GujCot-21. The genes RHD3, NAP1, LBD, and transcription factor WRKY75, known for root development under various stress conditions, were expressed specifically in Vagad and GujCot-21. The genes related to peroxidases, transporters, cell wall-modifying enzymes, and compatible solutes (amino acids, amino sugars, betaine, sugars, or sugar alcohols were also highly expressed in Vagad and Gujcot-21. Conclusion Our analysis highlights changes in the expression pattern of genes and depicts a small but highly specific set of drought responsive genes induced in response to drought stress. Some of these

  19. Transcriptomic Analysis of Flower Bud Differentiation in Magnolia sinostellata

    Directory of Open Access Journals (Sweden)

    Lijie Fan

    2018-04-01

    Full Text Available Magnolias are widely cultivated for their beautiful flowers, but despite their popularity, the molecular mechanisms regulating flower bud differentiation have not been elucidated. Here, we used paraffin sections and RNA-seq to study the process of flower bud differentiation in Magnolia sinostellata. Flower bud development occurred between 28 April and 30 May 2017 and was divided into five stages: undifferentiated, early flower bud differentiation, petal primordium differentiation, stamen primordium differentiation, and pistil primordium differentiation. A total of 52,441 expressed genes were identified, of which 11,592 were significantly differentially expressed in the five bud development stages. Of these, 82 genes were involved in the flowering. In addition, MADS-box and AP2 family genes play critical roles in the formation of flower organs and 20 differentially expressed genes associated with flower bud differentiation were identified in M. sinostellata. A qRT-PCR analysis verified that the MADS-box and AP2 family genes were expressed at high levels during flower bud differentiation. Consequently, this study provides a theoretical basis for the genetic regulation of flowering in M. sinostellata, which lays a foundation for further research into flowering genes and may facilitate the development of new cultivars.

  20. Meta-analysis of cancer transcriptomes: A new approach to uncover molecular pathological events in different cancer tissues

    Directory of Open Access Journals (Sweden)

    Sundus Iqbal

    2014-03-01

    Full Text Available To explore secrets of metastatic cancers, individual expression of true sets of respective genes must spread across the tissue. In this study, meta-analysis for transcriptional profiles of oncogenes was carried out to hunt critical genes or networks helping in metastasizing cancers. For this, transcriptomic analysis of different cancerous tissues causing leukemia, lung, liver, spleen, colorectal, colon, breast, bladder, and kidney cancers was performed by extracting microarray expression data from online resource; Gene Expression Omnibus. A newly developed bioinformatics technique; Dynamic Impact Approach (DIA was applied for enrichment analysis of transcriptional profiles using Database for Annotation Visualization and Integrated Discovery (DAVID. Furthermore, oPOSSUM (v. 2.0 and Cytoscape (v. 2.8.2 were used for in-depth analysis of transcription factors and regulatory gene networks respectively. DAVID analysis uncovered the most significantly enriched pathways in molecular functions that were 'Ubiquitin thiolesterase activity' up regulated in blood, breast, bladder, colorectal, lung, spleen, prostrate cancer. 'Transforming growth factor beta receptor activity' was inhibited in all cancers except leukemia, colon and liver cancer. oPOSSUM further revealed highly over-represented Transcription Factors (TFs; Broad-complex_3, Broad-complex_4, and Foxd3 except for leukemia and bladder cancer. From these findings, it is possible to target genes and networks, play a crucial role in the development of cancer. In the future, these transcription factors can serve as potential candidates for the therapeutic drug targets which can impede the deadly spread.

  1. Quantitative and qualitative proteome characteristics extracted from in-depth integrated genomics and proteomics analysis

    NARCIS (Netherlands)

    Low, T.Y.; van Heesch, S.; van den Toorn, H.; Giansanti, P.; Cristobal, A.; Toonen, P.; Schafer, S.; Hubner, N.; van Breukelen, B.; Mohammed, S.; Cuppen, E.; Heck, A.J.R.; Guryev, V.

    2013-01-01

    Quantitative and qualitative protein characteristics are regulated at genomic, transcriptomic, and posttranscriptional levels. Here, we integrated in-depth transcriptome and proteome analyses of liver tissues from two rat strains to unravel the interactions within and between these layers. We

  2. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development.

    Science.gov (United States)

    Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen

    2017-07-11

    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.

  3. Transcriptome analysis of Nicotiana tabacum infected by Cucumber mosaic virus during systemic symptom development.

    Directory of Open Access Journals (Sweden)

    Jie Lu

    Full Text Available Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc induced by infection with the M strain of Cucumber mosaic virus (M-CMV. Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection.

  4. Transcriptome Analysis of Manganese-deficient Chlamydomonas reinhardtii Provides Insight on the Chlorophyll Biosynthesis Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, Ainsley; Zvenigorodsky, Natasha; Pedraza, Mary Ann; Lindquist, Erika

    2011-08-11

    The biosynthesis of chlorophyll and other tetrapyrroles is a vital but poorly understood process. Recent genomic advances with the unicellular green algae Chlamydomonas reinhardtii have created opportunity to more closely examine the mechanisms of the chlorophyll biosynthesis pathway via transcriptome analysis. Manganese is a nutrient of interest for complex reactions because of its multiple stable oxidation states and role in molecular oxygen coordination. C. reinhardtii was cultured in Manganese-deplete Tris-acetate-phosphate (TAP) media for 24 hours and used to create cDNA libraries for sequencing using Illumina TruSeq technology. Transcriptome analysis provided intriguing insight on possible regulatory mechanisms in the pathway. Evidence supports similarities of GTR (Glutamyl-tRNA synthase) to its Chlorella vulgaris homolog in terms of Mn requirements. Data was also suggestive of Mn-related compensatory up-regulation for pathway proteins CHLH1 (Manganese Chelatase), GUN4 (Magnesium chelatase activating protein), and POR1 (Light-dependent protochlorophyllide reductase). Intriguingly, data suggests possible reciprocal expression of oxygen dependent CPX1 (coproporphyrinogen III oxidase) and oxygen independent CPX2. Further analysis using RT-PCR could provide compelling evidence for several novel regulatory mechanisms in the chlorophyll biosynthesis pathway.

  5. Transcriptomic analysis of salt stress responsive genes in Rhazya stricta.

    Directory of Open Access Journals (Sweden)

    Nahid H Hajrah

    Full Text Available Rhazya stricta is an evergreen shrub that is widely distributed across Western and South Asia, and like many other members of the Apocynaceae produces monoterpene indole alkaloids that have anti-cancer properties. This species is adapted to very harsh desert conditions making it an excellent system for studying tolerance to high temperatures and salinity. RNA-Seq analysis was performed on R. stricta exposed to severe salt stress (500 mM NaCl across four time intervals (0, 2, 12 and 24 h to examine mechanisms of salt tolerance. A large number of transcripts including genes encoding tetrapyrroles and pentatricopeptide repeat (PPR proteins were regulated only after 12 h of stress of seedlings grown in controlled greenhouse conditions. Mechanisms of salt tolerance in R. stricta may involve the upregulation of genes encoding chaperone protein Dnaj6, UDP-glucosyl transferase 85a2, protein transparent testa 12 and respiratory burst oxidase homolog protein b. Many of the highly-expressed genes act on protecting protein folding during salt stress and the production of flavonoids, key secondary metabolites in stress tolerance. Other regulated genes encode enzymes in the porphyrin and chlorophyll metabolic pathway with important roles during plant growth, photosynthesis, hormone signaling and abiotic responses. Heme biosynthesis in R. stricta leaves might add to the level of salt stress tolerance by maintaining appropriate levels of photosynthesis and normal plant growth as well as by the participation in reactive oxygen species (ROS production under stress. We speculate that the high expression levels of PPR genes may be dependent on expression levels of their targeted editing genes. Although the results of PPR gene family indicated regulation of a large number of transcripts under salt stress, PPR actions were independent of the salt stress because their RNA editing patterns were unchanged.

  6. Global transcriptome analysis of the heat shock response ofshewanella oneidensis

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Haichun; Wang, Sarah; Liu, Xueduan; Yan, Tinfeng; Wu, Liyou; Alm, Eric; Arkin, Adam P.; Thompson, Dorothea K.; Zhou, Jizhong

    2004-04-30

    Shewanella oneidensis is an important model organism for bioremediation studies because of its diverse respiratory capabilities. However, the genetic basis and regulatory mechanisms underlying the ability of S. oneidensis to survive and adapt to various environmentally relevant stresses is poorly understood. To define this organism's molecular response to elevated growth temperatures, temporal gene expression profiles were examined in cells subjected to heat stress using whole-genome DNA microarrays for S. oneidensis MR-1. Approximately 15 percent (711) of the predicted S. oneidensis genes represented on the microarray were significantly up- or down-regulated (P < 0.05) over a 25-min period following shift to the heat shock temperature (42 C). As expected, the majority of S. oneidensis genes exhibiting homology to known chaperones and heat shock proteins (Hsps) were highly and transiently induced. In addition, a number of predicted genes encoding enzymes in glycolys is and the pentose cycle, [NiFe] dehydrogenase, serine proteases, transcriptional regulators (MerR, LysR, and TetR families), histidine kinases, and hypothetical proteins were induced in response to heat stress. Genes encoding membrane proteins were differentially expressed, suggesting that cells possibly alter their membrane composition or structure in response to variations in growth temperature. A substantial number of the genes encoding ribosomal proteins displayed down-regulated co-expression patterns in response to heat stress, as did genes encoding prophage and flagellar proteins. Finally, based on computational comparative analysis of the upstream promoter regions of S.oneidensis heat-inducible genes, a putative regulatory motif, showing high conservation to the Escherichia coli sigma 32-binding consensus sequence, was identified.

  7. Integrating single-cell transcriptomic data across different conditions, technologies, and species.

    Science.gov (United States)

    Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul

    2018-06-01

    Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

  8. Identification and analysis of common bean (Phaseolus vulgaris L. transcriptomes by massively parallel pyrosequencing

    Directory of Open Access Journals (Sweden)

    Thimmapuram Jyothi

    2011-10-01

    Full Text Available Abstract Background Common bean (Phaseolus vulgaris is the most important food legume in the world. Although this crop is very important to both the developed and developing world as a means of dietary protein supply, resources available in common bean are limited. Global transcriptome analysis is important to better understand gene expression, genetic variation, and gene structure annotation in addition to other important features. However, the number and description of common bean sequences are very limited, which greatly inhibits genome and transcriptome research. Here we used 454 pyrosequencing to obtain a substantial transcriptome dataset for common bean. Results We obtained 1,692,972 reads with an average read length of 207 nucleotides (nt. These reads were assembled into 59,295 unigenes including 39,572 contigs and 19,723 singletons, in addition to 35,328 singletons less than 100 bp. Comparing the unigenes to common bean ESTs deposited in GenBank, we found that 53.40% or 31,664 of these unigenes had no matches to this dataset and can be considered as new common bean transcripts. Functional annotation of the unigenes carried out by Gene Ontology assignments from hits to Arabidopsis and soybean indicated coverage of a broad range of GO categories. The common bean unigenes were also compared to the bean bacterial artificial chromosome (BAC end sequences, and a total of 21% of the unigenes (12,724 including 9,199 contigs and 3,256 singletons match to the 8,823 BAC-end sequences. In addition, a large number of simple sequence repeats (SSRs and transcription factors were also identified in this study. Conclusions This work provides the first large scale identification of the common bean transcriptome derived by 454 pyrosequencing. This research has resulted in a 150% increase in the number of Phaseolus vulgaris ESTs. The dataset obtained through this analysis will provide a platform for functional genomics in common bean and related legumes and

  9. Thyroid transcriptome analysis reveals different adaptive responses to cold environmental conditions between two chicken breeds.

    Science.gov (United States)

    Xie, Shanshan; Yang, Xukai; Wang, Dehe; Zhu, Feng; Yang, Ning; Hou, Zhuocheng; Ning, Zhonghua

    2018-01-01

    Selection for cold tolerance in chickens is important for improving production performance and animal welfare. The identification of chicken breeds with higher cold tolerance and production performance will help to target candidates for the selection. The thyroid gland plays important roles in thermal adaptation, and its function is influenced by breed differences and transcriptional plasticity, both of which remain largely unknown in the chicken thyroid transcriptome. In this study, we subjected Bashang Long-tail (BS) and Rhode Island Red (RIR) chickens to either cold or warm environments for 21 weeks and investigated egg production performance, body weight changes, serum thyroid hormone concentrations, and thyroid gland transcriptome profiles. RIR chickens had higher egg production than BS chickens under warm conditions, but BS chickens produced more eggs than RIRs under cold conditions. Furthermore, BS chickens showed stable body weight gain under cold conditions while RIRs did not. These results suggested that BS breed is a preferable candidate for cold-tolerance selection and that the cold adaptability of RIRs should be improved in the future. BS chickens had higher serum thyroid hormone concentrations than RIRs under both environments. RNA-Seq generated 344.3 million paired-end reads from 16 sequencing libraries, and about 90% of the processed reads were concordantly mapped to the chicken reference genome. Differential expression analysis identified 46-1,211 genes in the respective comparisons. With regard to breed differences in the thyroid transcriptome, BS chickens showed higher cell replication and development, and immune response-related activity, while RIR chickens showed higher carbohydrate and protein metabolism activity. The cold environment reduced breed differences in the thyroid transcriptome compared with the warm environment. Transcriptional plasticity analysis revealed different adaptive responses in BS and RIR chickens to cope with the cold

  10. Transcriptome analysis of yellow horn (Xanthoceras sorbifolia Bunge: a potential oil-rich seed tree for biodiesel in China.

    Directory of Open Access Journals (Sweden)

    Yulin Liu

    Full Text Available BACKGROUND: Yellow horn (Xanthoceras sorbifolia Bunge is an oil-rich seed shrub that grows well in cold, barren environments and has great potential for biodiesel production in China. However, the limited genetic data means that little information about the key genes involved in oil biosynthesis is available, which limits further improvement of this species. In this study, we describe sequencing and de novo transcriptome assembly to produce the first comprehensive and integrated genomic resource for yellow horn and identify the pathways and key genes related to oil accumulation. In addition, potential molecular markers were identified and compiled. METHODOLOGY/PRINCIPAL FINDINGS: Total RNA was isolated from 30 plants from two regions, including buds, leaves, flowers and seeds. Equal quantities of RNA from these tissues were pooled to construct a cDNA library for 454 pyrosequencing. A total of 1,147,624 high-quality reads with total and average lengths of 530.6 Mb and 462 bp, respectively, were generated. These reads were assembled into 51,867 unigenes, corresponding to a total of 36.1 Mb with a mean length, N50 and median of 696, 928 and 570 bp, respectively. Of the unigenes, 17,541 (33.82% were unmatched in any public protein databases. We identified 281 unigenes that may be involved in de novo fatty acid (FA and triacylglycerol (TAG biosynthesis and metabolism. Furthermore, 6,707 SSRs, 16,925 SNPs and 6,201 InDels with high-confidence were also identified in this study. CONCLUSIONS: This transcriptome represents a new functional genomics resource and a foundation for further studies on the metabolic engineering of yellow horn to increase oil content and modify oil composition. The potential molecular markers identified in this study provide a basis for polymorphism analysis of Xanthoceras, and even Sapindaceae; they will also accelerate the process of breeding new varieties with better agronomic characteristics.

  11. Expansion of the SOS regulon of Vibrio cholerae through extensive transcriptome analysis and experimental validation.

    Science.gov (United States)

    Krin, Evelyne; Pierlé, Sebastian Aguilar; Sismeiro, Odile; Jagla, Bernd; Dillies, Marie-Agnès; Varet, Hugo; Irazoki, Oihane; Campoy, Susana; Rouy, Zoé; Cruveiller, Stéphane; Médigue, Claudine; Coppée, Jean-Yves; Mazel, Didier

    2018-05-21

    The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment. Comprehensive transcriptional profiling allowed us to define the full landscape of promoters and transcripts active in V. cholerae. We performed extensive transcription start site (TSS) mapping as well as detection/quantification of the coding and non-coding RNA (ncRNA) repertoire in strain N16961. To improve TSS detection, we developed a new technique to treat RNA extracted from cells grown in various conditions. This allowed for identification of 3078 TSSs with an average 5'UTR of 116 nucleotides, and peak distribution between 16 and 64 nucleotides; as well as 629 ncRNAs. Mitomycin C treatment induced transcription of 737 genes and 28 ncRNAs at least 2 fold, while it repressed 231 genes and 17 ncRNAs. Data analysis revealed that in addition to the core genes known to integrate the SOS regulon, several metabolic pathways were induced. This study allowed for expansion of the Vibrio SOS regulon, as twelve genes (ubiEJB, tatABC, smpA, cep, VC0091, VC1190, VC1369-1370) were found to be co-induced with their adjacent canonical SOS regulon gene(s), through transcriptional read-through. Characterization of UV and mitomycin C susceptibility for mutants of these newly identified SOS regulon genes and other highly induced genes and ncRNAs confirmed their role in DNA damage rescue and protection. We show that genotoxic stress induces a pervasive transcriptional response, affecting almost 20% of the V. cholerae genes. We also demonstrate that the SOS regulon is larger than previously known, and its syntenic organization is

  12. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jo, Jihoon; Park, Jongsun; Lee, Hyun-Gwan; Kern, Elizabeth M A; Cheon, Seongmin; Jin, Soyeong; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-08-01

    The sea cucumber Apostichopus japonicus Selenka 1867 represents an important resource in biomedical research, traditional medicine, and the seafood industry. Much of the commercial value of A. japonicus is determined by dorsal/ventral color variation (red, green, and black), yet the taxonomic relationships between these color variants are not clearly understood. We performed the first comparative analysis of de novo assembled transcriptome data from three color variants of A. japonicus. Using the Illumina platform, we sequenced nearly 177,596,774 clean reads representing a total of 18.2Gbp of sea cucumber transcriptome. A comparison of over 0.3 million transcript scaffolds against the Uniprot/Swiss-Prot database yielded 8513, 8602, and 8588 positive matches for green, red, and black body color transcriptomes, respectively. Using the Panther gene classification system, we assessed an extensive and diverse set of expressed genes in three color variants and found that (1) among the three color variants of A. japonicus, genes associated with RNA binding protein, oxidoreductase, nucleic acid binding, transferase, and KRAB box transcription factor were most commonly expressed; and (2) the main protein functional classes are differently regulated in all three color variants (extracellular matrix protein and phosphatase for green color, transporter and potassium channel for red color, and G-protein modulator and enzyme modulator for black color). This work will assist in the discovery and annotation of novel genes that play significant morphological and physiological roles in color variants of A. japonicus, and these sequence data will provide a useful set of resources for the rapidly growing sea cucumber aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. RNA-seq analysis and de novo transcriptome assembly of Jerusalem artichoke (Helianthus tuberosus Linne).

    Science.gov (United States)

    Jung, Won Yong; Lee, Sang Sook; Kim, Chul Wook; Kim, Hyun-Soon; Min, Sung Ran; Moon, Jae Sun; Kwon, Suk-Yoon; Jeon, Jae-Heung; Cho, Hye Sun

    2014-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has long been cultivated as a vegetable and as a source of fructans (inulin) for pharmaceutical applications in diabetes and obesity prevention. However, transcriptomic and genomic data for Jerusalem artichoke remain scarce. In this study, Illumina RNA sequencing (RNA-Seq) was performed on samples from Jerusalem artichoke leaves, roots, stems and two different tuber tissues (early and late tuber development). Data were used for de novo assembly and characterization of the transcriptome. In total 206,215,632 paired-end reads were generated. These were assembled into 66,322 loci with 272,548 transcripts. Loci were annotated by querying against the NCBI non-redundant, Phytozome and UniProt databases, and 40,215 loci were homologous to existing database sequences. Gene Ontology terms were assigned to 19,848 loci, 15,434 loci were matched to 25 Clusters of Eukaryotic Orthologous Groups classifications, and 11,844 loci were classified into 142 Kyoto Encyclopedia of Genes and Genomes pathways. The assembled loci also contained 10,778 potential simple sequence repeats. The newly assembled transcriptome was used to identify loci with tissue-specific differential expression patterns. In total, 670 loci exhibited tissue-specific expression, and a subset of these were confirmed using RT-PCR and qRT-PCR. Gene expression related to inulin biosynthesis in tuber tissue was also investigated. Exsiting genetic and genomic data for H. tuberosus are scarce. The sequence resources developed in this study will enable the analysis of thousands of transcripts and will thus accelerate marker-assisted breeding studies and studies of inulin biosynthesis in Jerusalem artichoke.

  14. Transcriptome-wide analysis supports environmental adaptations of two Pinus pinaster populations from contrasting habitats.

    Science.gov (United States)

    Cañas, Rafael A; Feito, Isabel; Fuente-Maqueda, José Francisco; Ávila, Concepción; Majada, Juan; Cánovas, Francisco M

    2015-11-06

    Maritime pine (Pinus pinaster Aiton) grows in a range of different climates in the southwestern Mediterranean region and the existence of a variety of latitudinal ecotypes or provenances is well established. In this study, we have conducted a deep analysis of the transcriptome in needles from two P. pinaster provenances, Leiria (Portugal) and Tamrabta (Morocco), which were grown in northern Spain under the same conditions. An oligonucleotide microarray (PINARRAY3) and RNA-Seq were used for whole-transcriptome analyses, and we found that 90.95% of the data were concordant between the two platforms. Furthermore, the two methods identified very similar percentages of differentially expressed genes with values of 5.5% for PINARRAY3 and 5.7% for RNA-Seq. In total, 6,023 transcripts were shared and 88 differentially expressed genes overlapped in the two platforms. Among the differentially expressed genes, all transport related genes except aquaporins were expressed at higher levels in Tamrabta than in Leiria. In contrast, genes involved in secondary metabolism were expressed at higher levels in Tamrabta, and photosynthesis-related genes were expressed more highly in Leiria. The genes involved in light sensing in plants were well represented in the differentially expressed groups of genes. In addition, increased levels of hormones such as abscisic acid, gibberellins, jasmonic and salicylic acid were observed in Leiria. Both transcriptome platforms have proven to be useful resources, showing complementary and reliable results. The results presented here highlight the different abilities of the two maritime pine populations to sense environmental conditions and reveal one type of regulation that can be ascribed to different genetic and epigenetic backgrounds.

  15. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar

    Full Text Available The cereal cyst nematode (CCN, Heterodera avenae is a major pest of wheat (Triticum spp that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy revealed fewer glycoside hydrolases (GHs but more glycosyl transferases (GTs and carbohydrate esterases (CEs when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  16. Transcriptomic analysis of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta and its microbiome

    Directory of Open Access Journals (Sweden)

    de Oliveira Louisi

    2012-09-01

    Full Text Available Abstract Background Seaweeds of the Laurencia genus have a broad geographic distribution and are largely recognized as important sources of secondary metabolites, mainly halogenated compounds exhibiting diverse potential pharmacological activities and relevant ecological role as anti-epibiosis. Host-microbe interaction is a driving force for co-evolution in the marine environment, but molecular studies of seaweed-associated microbial communities are still rare. Despite the large amount of research describing the chemical compositions of Laurencia species, the genetic knowledge regarding this genus is currently restricted to taxonomic markers and general genome features. In this work we analyze the transcriptomic profile of L. dendroidea J. Agardh, unveil the genes involved on the biosynthesis of terpenoid compounds in this seaweed and explore the interactions between this host and its associated microbiome. Results A total of 6 transcriptomes were obtained from specimens of L. dendroidea sampled in three different coastal locations of the Rio de Janeiro state. Functional annotations revealed predominantly basic cellular metabolic pathways. Bacteria was the dominant active group in the microbiome of L. dendroidea, standing out nitrogen fixing Cyanobacteria and aerobic heterotrophic Proteobacteria. The analysis of the relative contribution of each domain highlighted bacterial features related to glycolysis, lipid and polysaccharide breakdown, and also recognition of seaweed surface and establishment of biofilm. Eukaryotic transcripts, on the other hand, were associated with photosynthesis, synthesis of carbohydrate reserves, and defense mechanisms, including the biosynthesis of terpenoids through the mevalonate-independent pathway. Conclusions This work describes the first transcriptomic profile of the red seaweed L. dendroidea, increasing the knowledge about ESTs from the Florideophyceae algal class. Our data suggest an important role for L

  17. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae.

    Science.gov (United States)

    Kumar, Mukesh; Gantasala, Nagavara Prasad; Roychowdhury, Tanmoy; Thakur, Prasoon Kumar; Banakar, Prakash; Shukla, Rohit N; Jones, Michael G K; Rao, Uma

    2014-01-01

    The cereal cyst nematode (CCN, Heterodera avenae) is a major pest of wheat (Triticum spp) that reduces crop yields in many countries. Cyst nematodes are obligate sedentary endoparasites that reproduce by amphimixis. Here, we report the first transcriptome analysis of two stages of H. avenae. After sequencing extracted RNA from pre parasitic infective juvenile and adult stages of the life cycle, 131 million Illumina high quality paired end reads were obtained which generated 27,765 contigs with N50 of 1,028 base pairs, of which 10,452 were annotated. Comparative analyses were undertaken to evaluate H. avenae sequences with those of other plant, animal and free living nematodes to identify differences in expressed genes. There were 4,431 transcripts common to H. avenae and the free living nematode Caenorhabditis elegans, and 9,462 in common with more closely related potato cyst nematode, Globodera pallida. Annotation of H. avenae carbohydrate active enzymes (CAZy) revealed fewer glycoside hydrolases (GHs) but more glycosyl transferases (GTs) and carbohydrate esterases (CEs) when compared to M. incognita. 1,280 transcripts were found to have secretory signature, presence of signal peptide and absence of transmembrane. In a comparison of genes expressed in the pre-parasitic juvenile and feeding female stages, expression levels of 30 genes with high RPKM (reads per base per kilo million) value, were analysed by qRT-PCR which confirmed the observed differences in their levels of expression levels. In addition, we have also developed a user-friendly resource, Heterodera transcriptome database (HATdb) for public access of the data generated in this study. The new data provided on the transcriptome of H. avenae adds to the genetic resources available to study plant parasitic nematodes and provides an opportunity to seek new effectors that are specifically involved in the H. avenae-cereal host interaction.

  18. Transcriptomic and proteomic analysis of Oenococcus oeni adaptation to wine stress conditions

    Directory of Open Access Journals (Sweden)

    Mar Margalef-Català

    2016-09-01

    Full Text Available Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to

  19. Transcriptome Analysis of Syringa oblata Lindl. Inflorescence Identifies Genes Associated with Pigment Biosynthesis and Scent Metabolism.

    Directory of Open Access Journals (Sweden)

    Jian Zheng

    Full Text Available Syringa oblata Lindl. is a woody ornamental plant with high economic value and characteristics that include early flowering, multiple flower colors, and strong fragrance. Despite a long history of cultivation, the genetics and molecular biology of S. oblata are poorly understood. Transcriptome and expression profiling data are needed to identify genes and to better understand the biological mechanisms of floral pigments and scents in this species. Nine cDNA libraries were obtained from three replicates of three developmental stages: inflorescence with enlarged flower buds not protruded, inflorescence with corolla lobes not displayed, and inflorescence with flowers fully opened and emitting strong fragrance. Using the Illumina RNA-Seq technique, 319,425,972 clean reads were obtained and were assembled into 104,691 final unigenes (average length of 853 bp, 41.75% of which were annotated in the NCBI non-redundant protein database. Among the annotated unigenes, 36,967 were assigned to gene ontology categories and 19,956 were assigned to eukaryoticorthologous groups. Using the Kyoto Encyclopedia of Genes and Genomes pathway database, 12,388 unigenes were sorted into 286 pathways. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at different flower stages and that were related to floral pigment biosynthesis and fragrance metabolism. This comprehensive transcriptomic analysis provides fundamental information on the genes and pathways involved in flower secondary metabolism and development in S. oblata, providing a useful database for further research on S. oblata and other plants of genus Syringa.

  20. Analysis of Litopenaeus vannamei transcriptome using the next-generation DNA sequencing technique.

    Directory of Open Access Journals (Sweden)

    Chaozheng Li

    Full Text Available BACKGROUND: Pacific white shrimp (Litopenaeus vannamei, the major species of farmed shrimps in the world, has been attracting extensive studies, which require more and more genome background knowledge. The now available transcriptome data of L. vannamei are insufficient for research requirements, and have not been adequately assembled and annotated. METHODOLOGY/PRINCIPAL FINDINGS: This is the first study that used a next-generation high-throughput DNA sequencing technique, the Solexa/Illumina GA II method, to analyze the transcriptome from whole bodies of L. vannamei larvae. More than 2.4 Gb of raw data were generated, and 109,169 unigenes with a mean length of 396 bp were assembled using the SOAP denovo software. 73,505 unigenes (>200 bp with good quality sequences were selected and subjected to annotation analysis, among which 37.80% can be matched in NCBI Nr database, 37.3% matched in Swissprot, and 44.1% matched in TrEMBL. Using BLAST and BLAST2Go softwares, 11,153 unigenes were classified into 25 Clusters of Orthologous Groups of proteins (COG categories, 8171 unigenes were assigned into 51 Gene ontology (GO functional groups, and 18,154 unigenes were divided into 220 Kyoto Encyclopedia of Genes and Genomes (KEGG pathways. To primarily verify part of the results of assembly and annotations, 12 assembled unigenes that are homologous to many embryo development-related genes were chosen and subjected to RT-PCR for electrophoresis and Sanger sequencing analyses, and to real-time PCR for expression profile analyses during embryo development. CONCLUSIONS/SIGNIFICANCE: The L. vannamei transcriptome analyzed using the next-generation sequencing technique enriches the information of L. vannamei genes, which will facilitate our understanding of the genome background of crustaceans, and promote the studies on L. vannamei.

  1. Deep Insight into the Ganoderma lucidum by Comprehensive Analysis of Its Transcriptome

    Science.gov (United States)

    Yu, Guo-Jun; Wang, Man; Huang, Jie; Yin, Ya-Lin; Chen, Yi-Jie; Jiang, Shuai; Jin, Yan-Xia; Lan, Xian-Qing; Wong, Barry Hon Cheung; Liang, Yi; Sun, Hui

    2012-01-01

    Background Ganoderma lucidum is a basidiomycete white rot fungus and is of medicinal importance in China, Japan and other countries in the Asiatic region. To date, much research has been performed in identifying the medicinal ingredients in Ganoderma lucidum. Despite its important therapeutic effects in disease, little is known about Ganoderma lucidum at the genomic level. In order to gain a molecular understanding of this fungus, we utilized Illumina high-throughput technology to sequence and analyze the transcriptome of Ganoderma lucidum. Methodology/Principal Findings We obtained 6,439,690 and 6,416,670 high-quality reads from the mycelium and fruiting body of Ganoderma lucidum, and these were assembled to form 18,892 and 27,408 unigenes, respectively. A similarity search was performed against the NCBI non-redundant nucleotide database and a customized database composed of five fungal genomes. 11,098 and 8, 775 unigenes were matched to the NCBI non-redundant nucleotide database and our customized database, respectively. All unigenes were subjected to annotation by Gene Ontology, Eukaryotic Orthologous Group terms and Kyoto Encyclopedia of Genes and Genomes. Differentially expressed genes from the Ganoderma lucidum mycelium and fruiting body stage were analyzed, resulting in the identification of 13 unigenes which are involved in the terpenoid backbone biosynthesis pathway. Quantitative real-time PCR was used to confirm the expression levels of these unigenes. Ganoderma lucidum was also studied for wood degrading activity and a total of 22 putative FOLymes (fungal oxidative lignin enzymes) and 120 CAZymes (carbohydrate-active enzymes) were predicted from our Ganoderma lucidum transcriptome. Conclusions Our study provides comprehensive gene expression information on Ganoderma lucidum at the transcriptional level, which will form the foundation for functional genomics studies in this fungus. The use of Illumina sequencing technology has made de novo transcriptome

  2. Transcriptome Analysis of the Preterm Rabbit Lung after Seven Days of Hyperoxic Exposure.

    Directory of Open Access Journals (Sweden)

    Thomas Salaets

    Full Text Available The neonatal management of preterm born infants often results in damage to the developing lung and subsequent morbidity, referred to as bronchopulmonary dysplasia (BPD. Animal models may help in understanding the molecular processes involved in this condition and define therapeutic targets. Our goal was to identify molecular pathways using the earlier described preterm rabbit model of hyperoxia induced lung-injury. Transcriptome analysis by mRNA-sequencing was performed on lungs from preterm rabbit pups born at day 28 of gestation (term: 31 days and kept in hyperoxia (95% O2 for 7 days. Controls were preterm pups kept in normoxia. Transcriptomic data were analyzed using Array Studio and Ingenuity Pathway Analysis (IPA, in order to identify the central molecules responsible for the observed transcriptional changes. We detected 2217 significantly dysregulated transcripts following hyperoxia, of which 90% could be identified. Major pathophysiological dysregulations were found in inflammation, lung development, vascular development and reactive oxygen species (ROS metabolism. To conclude, amongst the many dysregulated transcripts, major changes were found in the inflammatory, oxidative stress and lung developmental pathways. This information may be used for the generation of new treatment hypotheses for hyperoxia-induced lung injury and BPD.

  3. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan

    2017-04-05

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  4. Transcriptome analysis of thermogenic Arum concinnatum reveals the molecular components of floral scent production.

    Science.gov (United States)

    Onda, Yoshihiko; Mochida, Keiichi; Yoshida, Takuhiro; Sakurai, Tetsuya; Seymour, Roger S; Umekawa, Yui; Pirintsos, Stergios Arg; Shinozaki, Kazuo; Ito, Kikukatsu

    2015-03-04

    Several plant species can generate enough heat to increase their internal floral temperature above ambient temperature. Among thermogenic plants, Arum concinnatum shows the highest respiration activity during thermogenesis. However, an overall understanding of the genes related to plant thermogenesis has not yet been achieved. In this study, we performed de novo transcriptome analysis of flower organs in A. concinnatum. The de novo transcriptome assembly represented, in total, 158,490 non-redundant transcripts, and 53,315 of those showed significant homology with known genes. To explore genes associated with thermogenesis, we filtered 1266 transcripts that showed a significant correlation between expression pattern and the temperature trend of each sample. We confirmed five putative alternative oxidase transcripts were included in filtered transcripts as expected. An enrichment analysis of the Gene Ontology terms for the filtered transcripts suggested over-representation of genes involved in 1-deoxy-D-xylulose-5-phosphate synthase (DXS) activity. The expression profiles of DXS transcripts in the methyl-D-erythritol 4-phosphate (MEP) pathway were significantly correlated with thermogenic levels. Our results suggest that the MEP pathway is the main biosynthesis route for producing scent monoterpenes. To our knowledge, this is the first report describing the candidate pathway and the key enzyme for floral scent production in thermogenic plants.

  5. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus using RNA-sequencing

    Directory of Open Access Journals (Sweden)

    Yong Huang

    2017-12-01

    Full Text Available The Chinese giant salamander (Andrias davidianus is an economically important animal on academic value. However, the genomic information of this species has been less studied. In our study, the transcripts of A. davidianus were obtained by RNA-seq to conduct a transcriptomic analysis. In total 132,912 unigenes were generated with an average length of 690 bp and N50 of 1263 bp by de novo assembly using Trinity software. Using a sequence similarity search against the nine public databases (CDD, KOG, NR, NT, PFAM, Swiss-prot, TrEMBL, GO and KEGG databases, a total of 24,049, 18,406, 36,711, 15,858, 20,500, 27,515, 36,705, 28,879 and 10,958 unigenes were annotated in databases, respectively. Of these, 6323 unigenes were annotated in all database and 39,672 unigenes were annotated in at least one database. Blasted with KEGG pathway, 10,958 unigenes were annotated, and it was divided into 343 categories according to different pathways. In addition, we also identified 29,790 SSRs. This study provided a valuable resource for understanding transcriptomic information of A. davidianus and laid a foundation for further research on functional gene cloning, genomics, genetic diversity analysis and molecular marker exploitation in A. davidianus.

  6. Comparative Transcriptome Analysis Identifies Putative Genes Involved in Steroid Biosynthesis in Euphorbia tirucalli

    Directory of Open Access Journals (Sweden)

    Weibo Qiao

    2018-01-01

    Full Text Available Phytochemical analysis of different Euphorbia tirucalli tissues revealed a contrasting tissue-specificity for the biosynthesis of euphol and β-sitosterol, which represent the two pharmaceutically active steroids in E. tirucalli. To uncover the molecular mechanism underlying this tissue-specificity for phytochemicals, a comprehensive E. tirucalli transcriptome derived from its root, stem, leaf and latex was constructed, and a total of 91,619 unigenes were generated with 51.08% being successfully annotated against the non-redundant (Nr protein database. A comparison of the transcriptome from different tissues discovered members of unigenes in the upstream steps of sterol backbone biosynthesis leading to this tissue-specific sterol biosynthesis. Among them, the putative oxidosqualene cyclase (OSC encoding genes involved in euphol synthesis were notably identified, and their expressions were significantly up-regulated in the latex. In addition, genome-wide differentially expressed genes (DEGs in the different E. tirucalli tissues were identified. The cluster analysis of those DEGs showed a unique expression pattern in the latex compared with other tissues. The DEGs identified in this study would enrich the insights of sterol biosynthesis and the regulation mechanism of this latex-specificity.

  7. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing

    KAUST Repository

    Zhang, Runxuan; Calixto, Cristiane  P.  G.; Marquez, Yamile; Venhuizen, Peter; Tzioutziou, Nikoleta A.; Guo, Wenbin; Spensley, Mark; Entizne, Juan Carlos; Lewandowska, Dominika; ten  Have, Sara; Frei  dit  Frey, Nicolas; Hirt, Heribert; James, Allan B.; Nimmo, Hugh G.; Barta, Andrea; Kalyna, Maria; Brown, John  W.  S.

    2017-01-01

    Alternative splicing generates multiple transcript and protein isoforms from the same gene and thus is important in gene expression regulation. To date, RNA-sequencing (RNA-seq) is the standard method for quantifying changes in alternative splicing on a genome-wide scale. Understanding the current limitations of RNA-seq is crucial for reliable analysis and the lack of high quality, comprehensive transcriptomes for most species, including model organisms such as Arabidopsis, is a major constraint in accurate quantification of transcript isoforms. To address this, we designed a novel pipeline with stringent filters and assembled a comprehensive Reference Transcript Dataset for Arabidopsis (AtRTD2) containing 82,190 non-redundant transcripts from 34 212 genes. Extensive experimental validation showed that AtRTD2 and its modified version, AtRTD2-QUASI, for use in Quantification of Alternatively Spliced Isoforms, outperform other available transcriptomes in RNA-seq analysis. This strategy can be implemented in other species to build a pipeline for transcript-level expression and alternative splicing analyses.

  8. Transcriptome analysis in Concholepas concholepas (Gastropoda, Muricidae): mining and characterization of new genomic and molecular markers.

    Science.gov (United States)

    Cárdenas, Leyla; Sánchez, Roland; Gomez, Daniela; Fuenzalida, Gonzalo; Gallardo-Escárate, Cristián; Tanguy, Arnaud

    2011-09-01

    The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Deep analysis of cellular transcriptomes – LongSAGE versus classic MPSS

    Directory of Open Access Journals (Sweden)

    Davis Simon J

    2007-09-01

    Full Text Available Abstract Background Deep transcriptome analysis will underpin a large fraction of post-genomic biology. 'Closed' technologies, such as microarray analysis, only detect the set of transcripts chosen for analysis, whereas 'open' e.g. tag-based technologies are capable of identifying all possible transcripts, including those that were previously uncharacterized. Although new technologies are now emerging, at present the major resources for open-type analysis are the many publicly available SAGE (serial analysis of gene expression and MPSS (massively parallel signature sequencing libraries. These technologies have never been compared for their utility in the context of deep transcriptome mining. Results We used a single LongSAGE library of 503,431 tags and a "classic" MPSS library of 1,744,173 tags, both prepared from the same T cell-derived RNA sample, to compare the ability of each method to probe, at considerable depth, a human cellular transcriptome. We show that even though LongSAGE is more error-prone than MPSS, our LongSAGE library nevertheless generated 6.3-fold more genome-matching (and therefore likely error-free tags than the MPSS library. An analysis of a set of 8,132 known genes detectable by both methods, and for which there is no ambiguity about tag matching, shows that MPSS detects only half (54% the number of transcripts identified by SAGE (3,617 versus 1,955. Analysis of two additional MPSS libraries shows that each library samples a different subset of transcripts, and that in combination the three MPSS libraries (4,274,992 tags in total still only detect 73% of the genes identified in our test set using SAGE. The fraction of transcripts detected by MPSS is likely to be even lower for uncharacterized transcripts, which tend to be more weakly expressed. The source of the loss of complexity in MPSS libraries compared to SAGE is unclear, but its effects become more severe with each sequencing cycle (i.e. as MPSS tag length increases

  10. Transcriptomic Analysis and the Expression of Disease-Resistant Genes in Oryza meyeriana under Native Condition.

    Directory of Open Access Journals (Sweden)

    Bin He

    Full Text Available Oryza meyeriana (O. meyeriana, with a GG genome type (2n = 24, accumulated plentiful excellent characteristics with respect to resistance to many diseases such as rice shade and blast, even immunity to bacterial blight. It is very important to know if the diseases-resistant genes exist and express in this wild rice under native conditions. However, limited genomic or transcriptomic data of O. meyeriana are currently available. In this study, we present the first comprehensive characterization of the O. meyeriana transcriptome using RNA-seq and obtained 185,323 contigs with an average length of 1,692 bp and an N50 of 2,391 bp. Through differential expression analysis, it was found that there were most tissue-specifically expressed genes in roots, and next to stems and leaves. By similarity search against protein databases, 146,450 had at least a significant alignment to existed gene models. Comparison with the Oryza sativa (japonica-type Nipponbare and indica-type 93-11 genomes revealed that 13% of the O. meyeriana contigs had not been detected in O. sativa. Many diseases-resistant genes, such as bacterial blight resistant, blast resistant, rust resistant, fusarium resistant, cyst nematode resistant and downy mildew gene, were mined from the transcriptomic database. There are two kinds of rice bacterial blight-resistant genes (Xa1 and Xa26 differentially or specifically expressed in O. meyeriana. The 4 Xa1 contigs were all only expressed in root, while three of Xa26 contigs have the highest expression level in leaves, two of Xa26 contigs have the highest expression profile in stems and one of Xa26 contigs was expressed dominantly in roots. The transcriptomic database of O. meyeriana has been constructed and many diseases-resistant genes were found to express under native condition, which provides a foundation for future discovery of a number of novel genes and provides a basis for studying the molecular mechanisms associated with disease

  11. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    Full Text Available Abstract Background New methods are needed for genomic-scale analysis of emerging model organisms that exemplify important biological questions but lack fully sequenced genomes. For example, there is an urgent need to understand the potential for corals to adapt to climate change, but few molecular resources are available for studying these processes in reef-building corals. To facilitate genomics studies in corals and other non-model systems, we describe methods for transcriptome sequencing using 454, as well as strategies for assembling a useful catalog of genes from the output. We have applied these methods to sequence the transcriptome of planulae larvae from the coral Acropora millepora. Results More than 600,000 reads produced in a single 454 sequencing run were assembled into ~40,000 contigs with five-fold average sequencing coverage. Based on sequence similarity with known proteins, these analyses identified ~11,000 different genes expressed in a range of conditions including thermal stress and settlement induction. Assembled sequences were annotated with gene names, conserved domains, and Gene Ontology terms. Targeted searches using these annotations identified the majority of genes associated with essential metabolic pathways and conserved signaling pathways, as well as novel candidate genes for stress-related processes. Comparisons with the genome of the anemone Nematostella vectensis revealed ~8,500 pairs of orthologs and ~100 candidate coral-specific genes. More than 30,000 SNPs were detected in the coral sequences, and a subset of these validated by re-sequencing. Conclusion The methods described here for deep sequencing of the transcriptome should be widely applicable to generate catalogs of genes and genetic markers in emerging model organisms. Our data provide the most comprehensive sequence resource currently available for reef-building corals, and include an extensive collection of potential genetic markers for association and

  12. Transcriptome Analysis of the Small Brown Planthopper, Laodelphax striatellus Carrying Rice stripe virus

    Directory of Open Access Journals (Sweden)

    Joo Hyun Lee

    2013-09-01

    Full Text Available Rice stripe virus (RSV, the type member of the genus Tenuivirus, transmits by the feeding behavior of small brown planthopper (SBPH, Laodelphax striatellus. To investigate the interactions between the virus and vector insect, total RNA was extracted from RSV-viruliferous SBPH (RVLS and non-viruliferous SBPH (NVLS adults to construct expressed sequence tag databases for comparative transcriptome analysis. Over 30 million bases were sequenced by 454 pyrosequencing to construct 1,538 and 953 of isotigs from the mRNA of RVLS and NVLS, respectively. The gene ontology (GO analysis demonstrated that both libraries have similar GO structures, however, the gene expression pattern analysis revealed that 17.8% and 16.8% of isotigs were up- and down-regulated significantly in the RVLS, respectively. These RSV-dependently regulated genes possibly have important roles in the physiology of SBPH, transmission of RSV, and RSV and SBPH interaction.

  13. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    Directory of Open Access Journals (Sweden)

    Lingling Zhang

    Full Text Available Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  14. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction

    Directory of Open Access Journals (Sweden)

    Jiaping Zhao

    2017-10-01

    differential expressed genes, expression analysis gave similar values to Cufflinks output. The methods described here provide an alternative pathway for the normalization of transcriptome data, a process that is essential for integrating analyses of transcriptome data across environments, laboratories, sequencing platforms, and species.

  15. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  16. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Science.gov (United States)

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  17. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    Directory of Open Access Journals (Sweden)

    Miranda van Uitert

    Full Text Available Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite and protein-protein associations (STRING. This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome. The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300 and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  18. Comparative proteome and transcriptome analysis of lager brewer's yeast in the autolysis process.

    Science.gov (United States)

    Xu, Weina; Wang, Jinjing; Li, Qi

    2014-12-01

    The autolysis of brewer's yeast during beer production has a significant effect on the quality of the final product. In this work, we performed proteome and transcriptome studies on brewer's yeast to examine changes in protein and mRNA levels in the process of autolysis. Protein and RNA samples of the strain Qing2 at two different autolysis stages were obtained for further study. In all, 49 kinds of proteins were considered to be involved in the autolysis response, eight of which were up-regulated and 41 down-regulated. Seven new kinds of proteins emerged during autolysis. Results of comparative analyses showed that important changes had taken place as an adaptive response to autolysis. Functional analysis showed that carbohydrate and energy metabolism, cellular amino acid metabolic processes, cell response to various stresses (such as oxidative stress, salt stress, and osmotic stress), translation and transcription were repressed by the down-regulation of the corresponding proteins, and starvation and DNA damage responses could be induced. The comparison of data on transcriptomes with proteomes demonstrated that most autolysis-response proteins as well as new proteins showed a general correlation between mRNA and protein levels. Thus these proteins were thought to be transcriptionally regulated. These findings provide important information about how brewer's yeast acts to cope with autolysis at molecular levels, which might enhance global understanding of the autolysis process. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  20. Whole transcriptome analysis reveals potential novel mechanisms of low-level linezolid resistance in Enterococcus faecalis.

    Science.gov (United States)

    Hua, Ruoyi; Xia, Yun; Wu, Wenyao; Yan, Jia; Yang, Mi

    2018-03-20

    Linezolid is an oxazolidinone antibiotic commonly used to treat serious infections caused by vancomycin-resistant enterococcus. Recently, low-level linezolid resistant Enterococcus faecalis strains have emerged worldwide, but the resistant mechanisms remain undefined. Whole-transcriptome profiling was performed on an E. faecalis strain P10748 with low-level linezolid resistance in comparison with a linezolid-susceptible strain 3138 and the standard control strain ATCC29212. The functions of differentially expressed genes (DEGs) were predicted, with some DEGs potentially involved in drug resistance were validated by PCR and quantitative PCR (qPCR). RNA-Seq on three E. faecalis strains generated 1920 unigenes, with 98% of them assigned to various function groups. A total of 150 DEGs were identified in the linezolid resistant strain P10748 compared to the linezolid susceptible strains 3138 and ATCC29212. Functional analysis indicated a significant transcriptomic shift to membrane transportation and biofilm formation in strain P10748, with three significantly up-regulated DEGs predicted to be associated with drug resistance through active efflux pumps and biofilm formation. The existence of these three DEGs was further confirmed by PCR and qPCR. The significant upregulation of genes associated with efflux pumps and biofilm formation in the linezolid resistant strain suggests their roles in low-level resistance to linezolid in E. faecalis. Copyright © 2018. Published by Elsevier B.V.

  1. Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes

    Science.gov (United States)

    Rowley, Jesse W.; Oler, Andrew J.; Tolley, Neal D.; Hunter, Benjamin N.; Low, Elizabeth N.; Nix, David A.; Yost, Christian C.; Zimmerman, Guy A.

    2011-01-01

    Inbred mice are a useful tool for studying the in vivo functions of platelets. Nonetheless, the mRNA signature of mouse platelets is not known. Here, we use paired-end next-generation RNA sequencing (RNA-seq) to characterize the polyadenylated transcriptomes of human and mouse platelets. We report that RNA-seq provides unprecedented resolution of mRNAs that are expressed across the entire human and mouse genomes. Transcript expression and abundance are often conserved between the 2 species. Several mRNAs, however, are differentially expressed in human and mouse platelets. Moreover, previously described functional disparities between mouse and human platelets are reflected in differences at the transcript level, including protease activated receptor-1, protease activated receptor-3, platelet activating factor receptor, and factor V. This suggests that RNA-seq is a useful tool for predicting differences in platelet function between mice and humans. Our next-generation sequencing analysis provides new insights into the human and murine platelet transcriptomes. The sequencing dataset will be useful in the design of mouse models of hemostasis and a catalyst for discovery of new functions of platelets. Access to the dataset is found in the “Introduction.” PMID:21596849

  2. Data set for transcriptome analysis of the Chinese giant salamander (Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xuemei Jiang

    2016-03-01

    Full Text Available The Chinese giant salamander (Andrias davidianus occupies a seat at the phylogenetic and species evolution process, which makes it an invaluable model for genetics; however, the genetic information and gene sequences about the Chinese giant salamander in public databases are scanty. Hence, we aimed to perform transcriptome analysis with the help of high-throughput sequencing. In this data, 61,317,940 raw reads were acquired from Chinese giant salamander mRNA using Illumina paired-end sequencing platform. After de novo assembly, a total of 72,072 unigenes were gained, in which 33,834 (46.95% and 29,479 (40.91% transcripts exhibited homology to sequences in the Nr database and Swiss-Prot database, (E-value <10−5, respectively. In the obtained unigenes, 18,019 (25% transcripts were assigned with at least one Gene Ontology term, of which 1218 (6.8% transcripts were assigned to immune system processes. In addition, a total of 17,572 assembled sequences were assigned into 241 predicted KEGG metabolic pathways. Among these, 2552 (14.5% transcripts were assigned to the immune system relevant pathway and 5 transcripts were identified as potential antimicrobial peptides (AMPs. Keywords: Andrias davidianus, Transcriptome

  3. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  4. SSR marker development and intraspecific genetic divergence exploration of Chrysanthemum indicum based on transcriptome analysis.

    Science.gov (United States)

    Han, Zhengzhou; Ma, Xinye; Wei, Min; Zhao, Tong; Zhan, Ruoting; Chen, Weiwen

    2018-04-25

    Chrysanthemum indicum L., an important ancestral species of the flowering plant chrysanthemum, can be used as medicine and for functional food development. Due to the lack of hereditary information for this species and the difficulty of germplasm identification, we herein provide new genetic insight from the perspective of intraspecific transcriptome comparison and present single sequence repeat (SSR) molecular marker recognition technology. Through the study of a diploid germplasm (DIWNT) and a tetraploid germplasm (DIWT), the following outcome were obtained. (1) A significant difference in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations for specific homologous genes was observed using the OrthoMCL method for the identification of homologous gene families between the two cytotypes. Ka/Ks analysis of common, single-copy homologous family members also revealed a greater difference among genes that experienced positive selection than among those experiencing positive selection. (2) Of more practical value, 2575 SSR markers were predicted and partly verified. We used TaxonGap as a visual tool to inspect genotype uniqueness and screen for high-performance molecular loci; we recommend four primers of 65 randomly selected primers with a combined identification success rate of 88.6% as priorities for further development of DNA fingerprinting of C. indicum germplasm. The SSR technology based on next-generation sequencing was proved to be successful in the identification of C. indicum germplasms. And the information on the intraspecfic genetic divergence generated by transcriptome comparison deepened the understanding of this complex species' nature.

  5. Transcriptome analysis of Gossypium hirsutum flower buds infested by cotton boll weevil (Anthonomus grandis) larvae.

    Science.gov (United States)

    Artico, Sinara; Ribeiro-Alves, Marcelo; Oliveira-Neto, Osmundo Brilhante; de Macedo, Leonardo Lima Pepino; Silveira, Sylvia; Grossi-de-Sa, Maria Fátima; Martinelli, Adriana Pinheiro; Alves-Ferreira, Marcio

    2014-10-04

    Cotton is a major fibre crop grown worldwide that suffers extensive damage from chewing insects, including the cotton boll weevil larvae (Anthonomus grandis). Transcriptome analysis was performed to understand the molecular interactions between Gossypium hirsutum L. and cotton boll weevil larvae. The Illumina HiSeq 2000 platform was used to sequence the transcriptome of cotton flower buds infested with boll weevil larvae. The analysis generated a total of 327,489,418 sequence reads that were aligned to the G. hirsutum reference transcriptome. The total number of expressed genes was over 21,697 per sample with an average length of 1,063 bp. The DEGseq analysis identified 443 differentially expressed genes (DEG) in cotton flower buds infected with boll weevil larvae. Among them, 402 (90.7%) were up-regulated, 41 (9.3%) were down-regulated and 432 (97.5%) were identified as orthologues of A. thaliana genes using Blastx. Mapman analysis of DEG indicated that many genes were involved in the biotic stress response spanning a range of functions, from a gene encoding a receptor-like kinase to genes involved in triggering defensive responses such as MAPK, transcription factors (WRKY and ERF) and signalling by ethylene (ET) and jasmonic acid (JA) hormones. Furthermore, the spatial expression pattern of 32 of the genes responsive to boll weevil larvae feeding was determined by "in situ" qPCR analysis from RNA isolated from two flower structures, the stamen and the carpel, by laser microdissection (LMD). A large number of cotton transcripts were significantly altered upon infestation by larvae. Among the changes in gene expression, we highlighted the transcription of receptors/sensors that recognise chitin or insect oral secretions; the altered regulation of transcripts encoding enzymes related to kinase cascades, transcription factors, Ca2+ influxes, and reactive oxygen species; and the modulation of transcripts encoding enzymes from phytohormone signalling pathways. These

  6. Genome and transcriptome analysis of the food-yeast Candida utilis.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Tomita

    Full Text Available The industrially important food-yeast Candida utilis is a Crabtree effect-negative yeast used to produce valuable chemicals and recombinant proteins. In the present study, we conducted whole genome sequencing and phylogenetic analysis of C. utilis, which showed that this yeast diverged long before the formation of the CUG and Saccharomyces/Kluyveromyces clades. In addition, we performed comparative genome and transcriptome analyses using next-generation sequencing, which resulted in the identification of genes important for characteristic phenotypes of C. utilis such as those involved in nitrate assimilation, in addition to the gene encoding the functional hexose transporter. We also found that an antisense transcript of the alcohol dehydrogenase gene, which in silico analysis did not predict to be a functional gene, was transcribed in the stationary-phase, suggesting a novel system of repression of ethanol production. These findings should facilitate the development of more sophisticated systems for the production of useful reagents using C. utilis.

  7. Transcriptome analysis of grey mullet (Mugil cephalus) after challenge with Lactococcus garvieae.

    Science.gov (United States)

    Byadgi, Omkar; Chen, Yao-Chung; Barnes, Andrew C; Tsai, Ming-An; Wang, Pei-Chyi; Chen, Shih-Chu

    2016-11-01

    Grey mullet (Mugil cephalus) is an economically important fish species in Taiwan mariculture industry. Moreover, grey mullet are common hosts of a bacterial infection by Lactococcus garvieae. However, until now the information related to the immune system of grey mullet is unclear. Therefore, to understand the molecular basis underlying the host immune response to L. garvieae infection, Illumina HiSeq™ 2000 was used to analyse the head kidney and spleen transcriptome of infected grey mullet. De novo assembly of paired-end reads yielded 55,203 unigenes. Comparative analysis of the expression profiles between bacterial challenge fish and control fish identified a total of 7192 from head kidney and 7280 in spleen differentially expressed genes (P grey mullet to Lactococcus garvieae, carrying out detailed functional analysis of these genes and developing strategies for efficient immune protection against infections in grey mullet. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  8. De novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana.

    Directory of Open Access Journals (Sweden)

    Guodong Rao

    Full Text Available Salix matsudana Koidz. is a deciduous, rapidly growing, and drought resistant tree and is one of the most widely distributed and commonly cultivated willow species in China. Currently little transcriptomic and small RNAomic data are available to reveal the genes involve in the stress resistant in S. matsudana. Here, we report the RNA-seq analysis results of both transcriptome and small RNAome data using Illumina deep sequencing of shoot tips from two willow variants(Salix. matsudana and Salix matsudana Koidz. cultivar 'Tortuosa'. De novo gene assembly was used to generate the consensus transcriptome and small RNAome, which contained 106,403 unique transcripts with an average length of 944 bp and a total length of 100.45 MB, and 166 known miRNAs representing 35 miRNA families. Comparison of transcriptomes and small RNAomes combined with quantitative real-time PCR from the two Salix libraries revealed a total of 292 different expressed genes(DEGs and 36 different expressed miRNAs (DEMs. Among the DEGs and DEMs, 196 genes and 24 miRNAs were up regulated, 96 genes and 12 miRNA were down regulated in S. matsudana. Functional analysis of DEGs and miRNA targets showed that many genes were involved in stress resistance in S. matsudana. Our global gene expression profiling presents a comprehensive view of the transcriptome and small RNAome which provide valuable information and sequence resources for uncovering the stress response genes in S. matsudana. Moreover the transcriptome and small RNAome data provide a basis for future study of genetic resistance in Salix.

  9. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus.

    Science.gov (United States)

    Zhou, Xiaoxu; Cui, Jun; Liu, Shikai; Kong, Derong; Sun, He; Gu, Chenlei; Wang, Hongdi; Qiu, Xuemei; Chang, Yaqing; Liu, Zhanjiang; Wang, Xiuli

    2016-01-01

    Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus) in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO) analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.

  10. Comparative transcriptome analysis of papilla and skin in the sea cucumber, Apostichopus japonicus

    Directory of Open Access Journals (Sweden)

    Xiaoxu Zhou

    2016-03-01

    Full Text Available Papilla and skin are two important organs of the sea cucumber. Both tissues have ectodermic origin, but they are morphologically and functionally very different. In the present study, we performed comparative transcriptome analysis of the papilla and skin from the sea cucumber (Apostichopus japonicus in order to identify and characterize gene expression profiles by using RNA-Seq technology. We generated 30.6 and 36.4 million clean reads from the papilla and skin and de novo assembled in 156,501 transcripts. The Gene Ontology (GO analysis indicated that cell part, metabolic process and catalytic activity were the most abundant GO category in cell component, biological process and molecular funcation, respectively. Comparative transcriptome analysis between the papilla and skin allowed the identification of 1,059 differentially expressed genes, of which 739 genes were expressed at higher levels in papilla, while 320 were expressed at higher levels in skin. In addition, 236 differentially expressed unigenes were not annotated with any database, 160 of which were apparently expressed at higher levels in papilla, 76 were expressed at higher levels in skin. We identified a total of 288 papilla-specific genes, 171 skin-specific genes and 600 co-expressed genes. Also, 40 genes in papilla-specific were not annotated with any database, 2 in skin-specific. Development-related genes were also enriched, such as fibroblast growth factor, transforming growth factor-β, collagen-α2 and Integrin-α2, which may be related to the formation of the papilla and skin in sea cucumber. Further pathway analysis identified ten KEGG pathways that were differently enriched between the papilla and skin. The findings on expression profiles between two key organs of the sea cucumber should be valuable to reveal molecular mechanisms involved in the development of organs that are related but with morphological differences in the sea cucumber.

  11. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis.

    Science.gov (United States)

    Yin, Kaifeng; Hacia, Joseph G; Zhong, Zhe; Paine, Michael L

    2014-11-19

    In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential

  12. Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens.

    Science.gov (United States)

    Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng

    2017-03-01

    Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.

  13. Meta-analysis of global transcriptomics reveals conserved genetic pathways of Quercetin and Tannic acid mediated longevity in C. elegans

    Directory of Open Access Journals (Sweden)

    Kerstin ePietsch

    2012-04-01

    Full Text Available Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of C. elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to Quercetin or Tannic acid concentrations that are non-effective (in lifespan extension, lifespan extending or toxic. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published data sets derived from i longevity mutants or ii infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the formulation of mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling and the p38 MAPK pathway and Tannic acid’s impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, therefore seems to be a crucial regulator for both polyphenols.

  14. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    Science.gov (United States)

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  15. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  16. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Science.gov (United States)

    Santos, Jansen Rodrigo Pereira; Ndeve, Arsenio Daniel; Huynh, Bao-Lam; Matthews, William Charles; Roberts, Philip Alan

    2018-01-01

    Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN). Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL) population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL) were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  17. QTL mapping and transcriptome analysis of cowpea reveals candidate genes for root-knot nematode resistance.

    Directory of Open Access Journals (Sweden)

    Jansen Rodrigo Pereira Santos

    Full Text Available Cowpea is one of the most important food and forage legumes in drier regions of the tropics and subtropics. However, cowpea yield worldwide is markedly below the known potential due to abiotic and biotic stresses, including parasitism by root-knot nematodes (Meloidogyne spp., RKN. Two resistance genes with dominant effect, Rk and Rk2, have been reported to provide resistance against RKN in cowpea. Despite their description and use in breeding for resistance to RKN and particularly genetic mapping of the Rk locus, the exact genes conferring resistance to RKN remain unknown. In the present work, QTL mapping using recombinant inbred line (RIL population 524B x IT84S-2049 segregating for a newly mapped locus and analysis of the transcriptome changes in two cowpea near-isogenic lines (NIL were used to identify candidate genes for Rk and the newly mapped locus. A major QTL, designated QRk-vu9.1, associated with resistance to Meloidogyne javanica reproduction, was detected and mapped on linkage group LG9 at position 13.37 cM using egg production data. Transcriptome analysis on resistant and susceptible NILs 3 and 9 days after inoculation revealed up-regulation of 109 and 98 genes and down-regulation of 110 and 89 genes, respectively, out of 19,922 unique genes mapped to the common bean reference genome. Among the differentially expressed genes, four and nine genes were found within the QRk-vu9.1 and QRk-vu11.1 QTL intervals, respectively. Six of these genes belong to the TIR-NBS-LRR family of resistance genes and three were upregulated at one or more time-points. Quantitative RT-PCR validated gene expression to be positively correlated with RNA-seq expression pattern for eight genes. Future functional analysis of these cowpea genes will enhance our understanding of Rk-mediated resistance and identify the specific gene responsible for the resistance.

  18. Comparative Transcriptome Analysis of Cultivated and Wild Watermelon during Fruit Development.

    Science.gov (United States)

    Guo, Shaogui; Sun, Honghe; Zhang, Haiying; Liu, Jingan; Ren, Yi; Gong, Guoyi; Jiao, Chen; Zheng, Yi; Yang, Wencai; Fei, Zhangjun; Xu, Yong

    2015-01-01

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an important vegetable crop world-wide. Watermelon fruit quality is a complex trait determined by various factors such as sugar content, flesh color and flesh texture. Fruit quality and developmental process of cultivated and wild watermelon are highly different. To systematically understand the molecular basis of these differences, we compared transcriptome profiles of fruit tissues of cultivated watermelon 97103 and wild watermelon PI296341-FR. We identified 2,452, 826 and 322 differentially expressed genes in cultivated flesh, cultivated mesocarp and wild flesh, respectively, during fruit development. Gene ontology enrichment analysis of these genes indicated that biological processes and metabolic pathways related to fruit quality such as sweetness and flavor were significantly changed only in the flesh of 97103 during fruit development, while those related to abiotic stress response were changed mainly in the flesh of PI296341-FR. Our comparative transcriptome profiling analysis identified critical genes potentially involved in controlling fruit quality traits including α-galactosidase, invertase, UDP-galactose/glucose pyrophosphorylase and sugar transporter genes involved in the determination of fruit sugar content, phytoene synthase, β-carotene hydroxylase, 9-cis-epoxycarotenoid dioxygenase and carotenoid cleavage dioxygenase genes involved in carotenoid metabolism, and 4-coumarate:coenzyme A ligase, cellulose synthase, pectinesterase, pectinesterase inhibitor, polygalacturonase inhibitor and α-mannosidase genes involved in the regulation of flesh texture. In addition, we found that genes in the ethylene biosynthesis and signaling pathway including ACC oxidase, ethylene receptor and ethylene responsive factor showed highly ripening-associated expression patterns, indicating a possible role of ethylene in fruit development and ripening of watermelon, a non-climacteric fruit. Our analysis provides

  19. First Transcriptome and Digital Gene Expression Analysis in Neuroptera with an Emphasis on Chemoreception Genes in Chrysopa pallens (Rambur)

    OpenAIRE

    Li, Zhao-Qun; Zhang, Shuai; Ma, Yan; Luo, Jun-Yu; Wang, Chun-Yi; Lv, Li-Min; Dong, Shuang-Lin; Cui, Jin-Jie

    2013-01-01

    Background Chrysopa pallens (Rambur) are the most important natural enemies and predators of various agricultural pests. Understanding the sophisticated olfactory system in insect antennae is crucial for studying the physiological bases of olfaction and also could lead to effective applications of C. pallens in integrated pest management. However no transcriptome information is available for Neuroptera, and sequence data for C. pallens are scarce, so obtaining more sequence data is a priority...

  20. Looking for biomarkers of Hg exposure by transcriptome analysis in the aquatic plant Elodea nuttallii

    Directory of Open Access Journals (Sweden)

    Regier N.

    2013-04-01

    Full Text Available Recently developed genomics tools have a promising potential to identify early biomarkers of exposure to toxicants. In the present work we used transcriptome analysis (RNA-seq of Elodea nuttallii –an invasive rooted macrophyte that is able to accumulate large amounts of metals- to identify biomarkers of Hg exposure. RNA-seq allowed identification of genes affected by Hg exposure and also unraveled plant response to the toxic metal: a change in energy/reserve metabolism caused by the inhibition of photosynthesis, and an adaptation of homeostasis networks to control accumulation of Hg. Data were validated by RT-qPCR and selected genes were further tested as biomarkers. Samples exposed in the field and to natural contaminated sediments clustered well with samples exposed to low metal concentrations under laboratory conditions. Our data suggest that this plant and/or this approach could be useful to develop new tests for water and sediment quality assessment.

  1. Lessons from single-cell transcriptome analysis of oxygen-sensing cells.

    Science.gov (United States)

    Zhou, Ting; Matsunami, Hiroaki

    2018-05-01

    The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.

  2. A microarray analysis of the rice transcriptome and its comparison to Arabidopsis

    DEFF Research Database (Denmark)

    Ma, Ligeng; Chen, Chen; Liu, Xigang

    2005-01-01

    Arabidopsis and rice are the only two model plants whose finished phase genome sequence has been completed. Here we report the construction of an oligomer microarray based on the presently known and predicted gene models in the rice genome. This microarray was used to analyze the transcriptional...... with similar genome-wide surveys of the Arabidopsis transcriptome, our results indicate that similar proportions of the two genomes are expressed in their corresponding organ types. A large percentage of the rice gene models that lack significant Arabidopsis homologs are expressed. Furthermore, the expression...... patterns of rice and Arabidopsis best-matched homologous genes in distinct functional groups indicate dramatic differences in their degree of conservation between the two species. Thus, this initial comparative analysis reveals some basic similarities and differences between the Arabidopsis and rice...

  3. Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome

    DEFF Research Database (Denmark)

    Peng, Zhiyu; Cheng, Yanbing; Tan, Bertrand Chin-Ming

    2012-01-01

    a computational pipeline that carefully controls for false positives while calling RNA editing events from genome and whole-transcriptome data of the same individual. We identified 22,688 RNA editing events in noncoding genes and introns, untranslated regions and coding sequences of protein-coding genes. Most......RNA editing is a post-transcriptional event that recodes hereditary information. Here we describe a comprehensive profile of the RNA editome of a male Han Chinese individual based on analysis of ∼767 million sequencing reads from poly(A)(+), poly(A)(-) and small RNA samples. We developed...... changes (∼93%) converted A to I(G), consistent with known editing mechanisms based on adenosine deaminase acting on RNA (ADAR). We also found evidence of other types of nucleotide changes; however, these were validated at lower rates. We found 44 editing sites in microRNAs (miRNAs), suggesting a potential...

  4. Comparative genomics and transcriptome analysis of Aspergillus niger and metabolic engineering for citrate production

    Science.gov (United States)

    Yin, Xian; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Liu, Long; Chen, Jian

    2017-01-01

    Despite a long and successful history of citrate production in Aspergillus niger, the molecular mechanism of citrate accumulation is only partially understood. In this study, we used comparative genomics and transcriptome analysis of citrate-producing strains—namely, A. niger H915-1 (citrate titer: 157 g L−1), A1 (117 g L−1), and L2 (76 g L−1)—to gain a genome-wide view of the mechanism of citrate accumulation. Compared with A. niger A1 and L2, A. niger H915-1 contained 92 mutated genes, including a succinate-semialdehyde dehydrogenase in the γ-aminobutyric acid shunt pathway and an aconitase family protein involved in citrate synthesis. Furthermore, transcriptome analysis of A. niger H915-1 revealed that the transcription levels of 479 genes changed between the cell growth stage (6 h) and the citrate synthesis stage (12 h, 24 h, 36 h, and 48 h). In the glycolysis pathway, triosephosphate isomerase was up-regulated, whereas pyruvate kinase was down-regulated. Two cytosol ATP-citrate lyases, which take part in the cycle of citrate synthesis, were up-regulated, and may coordinate with the alternative oxidases in the alternative respiratory pathway for energy balance. Finally, deletion of the oxaloacetate acetylhydrolase gene in H915-1 eliminated oxalate formation but neither influence on pH decrease nor difference in citrate production were observed. PMID:28106122

  5. High-resolution analysis of the 5'-end transcriptome using a next generation DNA sequencer.

    Directory of Open Access Journals (Sweden)

    Shin-ichi Hashimoto

    Full Text Available Massively parallel, tag-based sequencing systems, such as the SOLiD system, hold the promise of revolutionizing the study of whole genome gene expression due to the number of data points that can be generated in a simple and cost-effective manner. We describe the development of a 5'-end transcriptome workflow for the SOLiD system and demonstrate the advantages in sensitivity and dynamic range offered by this tag-based application over traditional approaches for the study of whole genome gene expression. 5'-end transcriptome analysis was used to study whole genome gene expression within a colon cancer cell line, HT-29, treated with the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5Aza. More than 20 million 25-base 5'-end tags were obtained from untreated and 5Aza-treated cells and matched to sequences within the human genome. Seventy three percent of the mapped unique tags were associated with RefSeq cDNA sequences, corresponding to approximately 14,000 different protein-coding genes in this single cell type. The level of expression of these genes ranged from 0.02 to 4,704 transcripts per cell. The sensitivity of a single sequence run of the SOLiD platform was 100-1,000 fold greater than that observed from 5'end SAGE data generated from the analysis of 70,000 tags obtained by Sanger sequencing. The high-resolution 5'end gene expression profiling presented in this study will not only provide novel insight into the transcriptional machinery but should also serve as a basis for a better understanding of cell biology.

  6. Transcriptome Analysis of the Hepatopancreas in the Pacific White Shrimp (Litopenaeus vannamei) under Acute Ammonia Stress

    Science.gov (United States)

    Lu, Xia; Kong, Jie; Luan, Sheng; Dai, Ping; Meng, Xianhong; Cao, Baoxiang; Luo, Kun

    2016-01-01

    In the practical farming of Litopenaeus vannamei, the intensive culture system and environmental pollution usually results in a high concentration of ammonia, which usually brings large detrimental effects to shrimp, such as increasing the susceptibility to pathogens, reducing growth, decreasing osmoregulatory capacity, increasing the molting frequency, and even causing high mortality. However, little information is available on the molecular mechanisms of the detrimental effects of ammonia stress in shrimp. In this study, we performed comparative transcriptome analysis between ammonia-challenged and control groups from the same family of L. vannamei to identify the key genes and pathways response to ammonia stress. The comparative transcriptome analysis identified 136 significantly differentially expressed genes that have high homologies with the known proteins in aquatic species, among which 94 genes are reported potentially related to immune function, and the rest of the genes are involved in apoptosis, growth, molting, and osmoregulation. Fourteen GO terms and 6 KEGG pathways were identified to be significantly changed by ammonia stress. In these GO terms, 13 genes have been studied in aquatic species, and 11 of them were reported potentially involved in immune defense and two genes were related to molting. In the significantly changed KEGG pathways, all the 7 significantly changed genes have been reported in shrimp, and four of them were potentially involved in immune defense and the other three were related to molting, defending toxicity, and osmoregulation, respectively. In addition, majority of the significantly changed genes involved in nitrogen metabolisms that play an important role in reducing ammonia toxicity failed to perform the protection function. The present results have supplied molecular level support for the previous founding of the detrimental effects of ammonia stress in shrimp, which is a prerequisite for better understanding the molecular

  7. Comparative transcriptome analysis of the Asteraceae halophyte Karelinia caspica under salt stress.

    Science.gov (United States)

    Zhang, Xia; Liao, Maoseng; Chang, Dan; Zhang, Fuchun

    2014-12-17

    Much attention has been given to the potential of halophytes as sources of tolerance traits for introduction into cereals. However, a great deal remains unknown about the diverse mechanisms employed by halophytes to cope with salinity. To characterize salt tolerance mechanisms underlying Karelinia caspica, an Asteraceae halophyte, we performed Large-scale transcriptomic analysis using a high-throughput Illumina sequencing platform. Comparative gene expression analysis was performed to correlate the effects of salt stress and ABA regulation at the molecular level. Total sequence reads generated by pyrosequencing were assembled into 287,185 non-redundant transcripts with an average length of 652 bp. Using the BLAST function in the Swiss-Prot, NCBI nr, GO, KEGG, and KOG databases, a total of 216,416 coding sequences associated with known proteins were annotated. Among these, 35,533 unigenes were classified into 69 gene ontology categories, and 18,378 unigenes were classified into 202 known pathways. Based on the fold changes observed when comparing the salt stress and control samples, 60,127 unigenes were differentially expressed, with 38,122 and 22,005 up- and down-regulated, respectively. Several of the differentially expressed genes are known to be involved in the signaling pathway of the plant hormone ABA, including ABA metabolism, transport, and sensing as well as the ABA signaling cascade. Transcriptome profiling of K. caspica contribute to a comprehensive understanding of K. caspica at the molecular level. Moreover, the global survey of differentially expressed genes in this species under salt stress and analyses of the effects of salt stress and ABA regulation will contribute to the identification and characterization of genes and molecular mechanisms underlying salt stress responses in Asteraceae plants.

  8. Comparative transcriptome analysis reveals differentially expressed genes associated with sex expression in garden asparagus (Asparagus officinalis).

    Science.gov (United States)

    Li, Shu-Fen; Zhang, Guo-Jun; Zhang, Xue-Jin; Yuan, Jin-Hong; Deng, Chuan-Liang; Gao, Wu-Jun

    2017-08-22

    Garden asparagus (Asparagus officinalis) is a highly valuable vegetable crop of commercial and nutritional interest. It is also commonly used to investigate the mechanisms of sex determination and differentiation in plants. However, the sex expression mechanisms in asparagus remain poorly understood. De novo transcriptome sequencing via Illumina paired-end sequencing revealed more than 26 billion bases of high-quality sequence data from male and female asparagus flower buds. A total of 72,626 unigenes with an average length of 979 bp were assembled. In comparative transcriptome analysis, 4876 differentially expressed genes (DEGs) were identified in the possible sex-determining stage of female and male/supermale flower buds. Of these DEGs, 433, including 285 male/supermale-biased and 149 female-biased genes, were annotated as flower related. Of the male/supermale-biased flower-related genes, 102 were probably involved in anther development. In addition, 43 DEGs implicated in hormone response and biosynthesis putatively associated with sex expression and reproduction were discovered. Moreover, 128 transcription factor (TF)-related genes belonging to various families were found to be differentially expressed, and this finding implied the essential roles of TF in sex determination or differentiation in asparagus. Correlation analysis indicated that miRNA-DEG pairs were also implicated in asparagus sexual development. Our study identified a large number of DEGs involved in the sex expression and reproduction of asparagus, including known genes participating in plant reproduction, plant hormone signaling, TF encoding, and genes with unclear functions. We also found that miRNAs might be involved in the sex differentiation process. Our study could provide a valuable basis for further investigations on the regulatory networks of sex determination and differentiation in asparagus and facilitate further genetic and genomic studies on this dioecious species.

  9. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  10. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied.In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains.In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  11. Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp.

    Science.gov (United States)

    Jiang, Yanliang; Zhang, Songhao; Xu, Jian; Feng, Jianxin; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2014-01-01

    The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.

  12. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury).

    Science.gov (United States)

    Zhang, Long-Wa; Kang, Ke; Jiang, Shi-Chang; Zhang, Ya-Nan; Wang, Tian-Tian; Zhang, Jing; Sun, Long; Yang, Yun-Qiu; Huang, Chang-Chun; Jiang, Li-Ya; Ding, De-Gui

    2016-01-01

    Hyphantria cunea (Drury) (Lepidoptera: Arctiidae) is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO) annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs), 17 chemosensory proteins (CSPs), 52 odorant receptors (ORs), 14 ionotropic receptors (IRs), nine gustatory receptors (GRs) and two sensory neuron membrane proteins (SNMPs). We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR) with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  13. Analysis of the Antennal Transcriptome and Insights into Olfactory Genes in Hyphantria cunea (Drury.

    Directory of Open Access Journals (Sweden)

    Long-Wa Zhang

    Full Text Available Hyphantria cunea (Drury (Lepidoptera: Arctiidae is an invasive insect pest which, in China, causes unprecedented damage and economic losses due to its extreme fecundity and wide host range, including forest and shade trees, and even crops. Compared to the better known lepidopteran species which use Type-I pheromones, little is known at the molecular level about the olfactory mechanisms of host location and mate choice in H. cunea, a species using Type-II lepidopteran pheromones. In the present study, the H. cunea antennal transcriptome was constructed by Illumina Hiseq 2500TM sequencing, with the aim of discovering olfaction-related genes. We obtained 64,020,776 clean reads, and 59,243 unigenes from the analysis of the transcriptome, and the putative gene functions were annotated using gene ontology (GO annotation. We further identified 124 putative chemosensory unigenes based on homology searches and phylogenetic analysis, including 30 odorant binding proteins (OBPs, 17 chemosensory proteins (CSPs, 52 odorant receptors (ORs, 14 ionotropic receptors (IRs, nine gustatory receptors (GRs and two sensory neuron membrane proteins (SNMPs. We also found many conserved motif patterns of OBPs and CSPs using a MEME system. Moreover, we systematically analyzed expression patterns of OBPs and CSPs based on reverse transcription PCR and quantitative real time PCR (RT-qPCR with RNA extracted from different tissues and life stages of both sexes in H. cunea. The antennae-biased expression may provide a deeper further understanding of olfactory processing in H. cunea. The first ever identification of olfactory genes in H. cunea may provide new leads for control of this major pest.

  14. Transcriptome Analysis of Chemically-Induced Sensory Neuron Ablation in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Jane A Cox

    Full Text Available Peripheral glia are known to have a critical role in the initial response to axon damage and degeneration. However, little is known about the cellular responses of non-myelinating glia to nerve injury. In this study, we analyzed the transcriptomes of wild-type and mutant (lacking peripheral glia zebrafish larvae that were treated with metronidazole. This treatment allowed us to conditionally and selectively ablate cranial sensory neurons whose axons are ensheathed only by non-myelinating glia. While transcripts representing over 27,000 genes were detected by RNAseq, only a small fraction (~1% of genes were found to be differentially expressed in response to neuronal degeneration in either line at either 2 hrs or 5 hrs of metronidazole treatment. Analysis revealed that most expression changes (332 out of the total of 458 differentially expressed genes occurred over a continuous period (from 2 to 5 hrs of metronidazole exposure, with a small number of genes showing changes limited to only the 2 hr (55 genes or 5 hr (71 genes time points. For genes with continuous alterations in expression, some of the most meaningful sets of enriched categories in the wild-type line were those involving the inflammatory TNF-alpha and IL6 signaling pathways, oxidoreductase activities and response to stress. Intriguingly, these changes were not observed in the mutant line. Indeed, cluster analysis indicated that the effects of metronidazole treatment on gene expression was heavily influenced by the presence or absence of glia, indicating that the peripheral non-myelinating glia play a significant role in the transcriptional response to sensory neuron degeneration. This is the first transcriptome study of metronidazole-induced neuronal death in zebrafish and the response of non-myelinating glia to sensory neuron degeneration. We believe this study provides important insight into the mechanisms by which non-myelinating glia react to neuronal death and degeneration in

  15. The use of Open Reading frame ESTs (ORESTES for analysis of the honey bee transcriptome

    Directory of Open Access Journals (Sweden)

    Soares Ademilson EE

    2004-11-01

    Full Text Available Abstract Background The ongoing efforts to sequence the honey bee genome require additional initiatives to define its transcriptome. Towards this end, we employed the Open Reading frame ESTs (ORESTES strategy to generate profiles for the life cycle of Apis mellifera workers. Results Of the 5,021 ORESTES, 35.2% matched with previously deposited Apis ESTs. The analysis of the remaining sequences defined a set of putative orthologs whose majority had their best-match hits with Anopheles and Drosophila genes. CAP3 assembly of the Apis ORESTES with the already existing 15,500 Apis ESTs generated 3,408 contigs. BLASTX comparison of these contigs with protein sets of organisms representing distinct phylogenetic clades revealed a total of 1,629 contigs that Apis mellifera shares with different taxa. Most (41% represent genes that are in common to all taxa, another 21% are shared between metazoans (Bilateria, and 16% are shared only within the Insecta clade. A set of 23 putative genes presented a best match with human genes, many of which encode factors related to cell signaling/signal transduction. 1,779 contigs (52% did not match any known sequence. Applying a correction factor deduced from a parallel analysis performed with Drosophila melanogaster ORESTES, we estimate that approximately half of these no-match ESTs contigs (22% should represent Apis-specific genes. Conclusions The versatile and cost-efficient ORESTES approach produced minilibraries for honey bee life cycle stages. Such information on central gene regions contributes to genome annotation and also lends itself to cross-transcriptome comparisons to reveal evolutionary trends in insect genomes.

  16. Transcriptome analysis of hexaploid hulless oat in response to salinity stress.

    Directory of Open Access Journals (Sweden)

    Bin Wu

    Full Text Available Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq.Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat.Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes.

  17. Transcriptome analysis reveals key differentially expressed genes involved in wheat grain development

    Directory of Open Access Journals (Sweden)

    Yonglong Yu

    2016-04-01

    Full Text Available Wheat seed development is an important physiological process of seed maturation and directly affects wheat yield and quality. In this study, we performed dynamic transcriptome microarray analysis of an elite Chinese bread wheat cultivar (Jimai 20 during grain development using the GeneChip Wheat Genome Array. Grain morphology and scanning electron microscope observations showed that the period of 11–15 days post-anthesis (DPA was a key stage for the synthesis and accumulation of seed starch. Genome-wide transcriptional profiling and significance analysis of microarrays revealed that the period from 11 to 15 DPA was more important than the 15–20 DPA stage for the synthesis and accumulation of nutritive reserves. Series test of cluster analysis of differential genes revealed five statistically significant gene expression profiles. Gene ontology annotation and enrichment analysis gave further information about differentially expressed genes, and MapMan analysis revealed expression changes within functional groups during seed development. Metabolic pathway network analysis showed that major and minor metabolic pathways regulate one another to ensure regular seed development and nutritive reserve accumulation. We performed gene co-expression network analysis to identify genes that play vital roles in seed development and identified several key genes involved in important metabolic pathways. The transcriptional expression of eight key genes involved in starch and protein synthesis and stress defense was further validated by qRT-PCR. Our results provide new insight into the molecular mechanisms of wheat seed development and the determinants of yield and quality.

  18. Transcriptome analysis of the model protozoan, Tetrahymena thermophila, using Deep RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Jie Xiong

    Full Text Available BACKGROUND: The ciliated protozoan Tetrahymena thermophila is a well-studied single-celled eukaryote model organism for cellular and molecular biology. However, the lack of extensive T. thermophila cDNA libraries or a large expressed sequence tag (EST database limited the quality of the original genome annotation. METHODOLOGY/PRINCIPAL FINDINGS: This RNA-seq study describes the first deep sequencing analysis of the T. thermophila transcriptome during the three major stages of the life cycle: growth, starvation and conjugation. Uniquely mapped reads covered more than 96% of the 24,725 predicted gene models in the somatic genome. More than 1,000 new transcribed regions were identified. The great dynamic range of RNA-seq allowed detection of a nearly six order-of-magnitude range of measurable gene expression orchestrated by this cell. RNA-seq also allowed the first prediction of transcript untranslated regions (UTRs and an updated (larger size estimate of the T. thermophila transcriptome: 57 Mb, or about 55% of the somatic genome. Our study identified nearly 1,500 alternative splicing (AS events distributed over 5.2% of T. thermophila genes. This percentage represents a two order-of-magnitude increase over previous EST-based estimates in Tetrahymena. Evidence of stage-specific regulation of alternative splicing was also obtained. Finally, our study allowed us to completely confirm about 26.8% of the genes originally predicted by the gene finder, to correct coding sequence boundaries and intron-exon junctions for about a third, and to reassign microarray probes and correct earlier microarray data. CONCLUSIONS/SIGNIFICANCE: RNA-seq data significantly improve the genome annotation and provide a fully comprehensive view of the global transcriptome of T. thermophila. To our knowledge, 5.2% of T. thermophila genes with AS is the highest percentage of genes showing AS reported in a unicellular eukaryote. Tetrahymena thus becomes an excellent unicellular

  19. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae.

    Science.gov (United States)

    Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian

    2016-02-01

    Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study

  20. Blood transcriptomics and metabolomics for personalized medicine.

    Science.gov (United States)

    Li, Shuzhao; Todor, Andrei; Luo, Ruiyan

    2016-01-01

    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

  1. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    Science.gov (United States)

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  2. A whole-blood transcriptome meta-analysis identifies gene expression signatures of cigarette smoking

    NARCIS (Netherlands)

    Huan, T. (Tianxiao); R. Joehanes (Roby); C. Schurmann (Claudia); K. Schramm (Katharina); L.C. Pilling (Luke); M.J. Peters (Marjolein); R. Mägi (Reedik); D.L. Demeo (Dawn L.); G.T. O'Connor (George); L. Ferrucci (Luigi); A. Teumer (Alexander); G. Homuth (Georg); R. Biffar (Reiner); U. Völker (Uwe); C. Herder (Christian); M. Waldenberger (Melanie); A. Peters (Annette); S. Zeilinger (Sonja); A. Metspalu (Andres); A. Hofman (Albert); A.G. Uitterlinden (André); D.G. Hernandez (Dena); A. Singleton (Andrew); S. Bandinelli (Stefania); P.J. Munson (Peter); H. Lin (Honghuang); E.J. Benjamin (Emelia); T. Esko (Tõnu); H.J. Grabe (Hans Jörgen); H. Prokisch (Holger); J.B.J. van Meurs (Joyce); D. Melzer (David); D. Levy (Daniel)

    2016-01-01

    textabstractCigarette smoking is a leading modifiable cause of death worldwide. We hypothesized that cigarette smoking induces extensive transcriptomic changes that lead to target-organ damage and smoking-related diseases. We performed a metaanalysis of transcriptome-wide gene expression using whole

  3. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri investigated by deepSuperSAGE analysis

    Science.gov (United States)

    Almeida, Nuno F.; Krezdorn, Nicolas; Rotter, Björn; Winter, Peter; Rubiales, Diego; Vaz Patto, Maria C.

    2015-01-01

    Lathyrus sativus (grass pea) is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding. PMID:25852725

  4. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii.

    Directory of Open Access Journals (Sweden)

    John Fosu-Nyarko

    Full Text Available The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668 with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.. Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.

  5. Comprehensive Transcriptome Analysis of Response to Nickel Stress in White Birch (Betula papyrifera.

    Directory of Open Access Journals (Sweden)

    Gabriel Theriault

    Full Text Available White birch (Betula papyrifera is a dominant tree species of the Boreal Forest. Recent studies have shown that it is fairly resistant to heavy metal contamination, specifically to nickel. Knowledge of regulation of genes associated with metal resistance in higher plants is very sketchy. Availability and annotation of the dwarf birch (B. nana enables the use of high throughout sequencing approaches to understanding responses to environmental challenges in other Betula species such as B. papyrifera. The main objectives of this study are to 1 develop and characterize the B. papyrifera transcriptome, 2 assess gene expression dynamics of B. papyrifera in response to nickel stress, and 3 describe gene function based on ontology. Nickel resistant and susceptible genotypes were selected and used for transcriptome analysis. A total of 208,058 trinity genes were identified and were assembled to 275,545 total trinity transcripts. The transcripts were mapped to protein sequences and based on best match; we annotated the B. papyrifera genes and assigned gene ontology. In total, 215,700 transcripts were annotated and were compared to the published B. nana genome. Overall, a genomic match for 61% transcripts with the reference genome was found. Expression profiles were generated and 62,587 genes were found to be significantly differentially expressed among the nickel resistant, susceptible, and untreated libraries. The main nickel resistance mechanism in B. papyrifera is a downregulation of genes associated with translation (in ribosome, binding, and transporter activities. Five candidate genes associated to nickel resistance were identified. They include Glutathione S-transferase, thioredoxin family protein, putative transmembrane protein and two Nramp transporters. These genes could be useful for genetic engineering of birch trees.

  6. Lathyrus sativus transcriptome resistance response to Ascochyta lathyri as reviewed by deepSuperSAGE analysis

    Directory of Open Access Journals (Sweden)

    Nuno Felipe Almeida

    2015-03-01

    Full Text Available Lathyrus sativus (grass pea is a temperate grain legume crop with a great potential for expansion in dry areas or zones that are becoming more drought-prone. It is also recognized as a potential source of resistance to several important diseases in legumes, such as ascochyta blight. Nevertheless, the lack of detailed genomic and/or transcriptomic information hampers further exploitation of grass pea resistance-related genes in precision breeding. To elucidate the pathways differentially regulated during ascochyta-grass pea interaction and to identify resistance candidate genes, we compared the early response of the leaf gene expression profile of a resistant L. sativus genotype to Ascochyta lathyri infection with a non-inoculated control sample from the same genotype employing deepSuperSAGE. This analysis generated 14.387 UniTags of which 95.7% mapped to a reference grass pea/rust interaction transcriptome. From the total mapped UniTags, 738 were significantly differentially expressed between control and inoculated leaves. The results indicate that several gene classes acting in different phases of the plant/pathogen interaction are involved in the L. sativus response to A. lathyri infection. Most notably a clear up-regulation of defense-related genes involved in and/or regulated by the ethylene pathway was observed. There was also evidence of alterations in cell wall metabolism indicated by overexpression of cellulose synthase and lignin biosynthesis genes. This first genome-wide overview of the gene expression profile of the L. sativus response to ascochyta infection delivered a valuable set of candidate resistance genes for future use in precision breeding.

  7. De novo transcriptome assembly and positive selection analysis of an individual deep-sea fish.

    Science.gov (United States)

    Lan, Yi; Sun, Jin; Xu, Ting; Chen, Chong; Tian, Renmao; Qiu, Jian-Wen; Qian, Pei-Yuan

    2018-05-24

    High hydrostatic pressure and low temperatures make the deep sea a harsh environment for life forms. Actin organization and microtubules assembly, which are essential for intracellular transport and cell motility, can be disrupted by high hydrostatic pressure. High hydrostatic pressure can also damage DNA. Nucleic acids exposed to low temperatures can form secondary structures that hinder genetic information processing. To study how deep-sea creatures adapt to such a hostile environment, one of the most straightforward ways is to sequence and compare their genes with those of their shallow-water relatives. We captured an individual of the fish species Aldrovandia affinis, which is a typical deep-sea inhabitant, from the Okinawa Trough at a depth of 1550 m using a remotely operated vehicle (ROV). We sequenced its transcriptome and analyzed its molecular adaptation. We obtained 27,633 protein coding sequences using an Illumina platform and compared them with those of several shallow-water fish species. Analysis of 4918 single-copy orthologs identified 138 positively selected genes in A. affinis, including genes involved in microtubule regulation. Particularly, functional domains related to cold shock as well as DNA repair are exposed to positive selection pressure in both deep-sea fish and hadal amphipod. Overall, we have identified a set of positively selected genes related to cytoskeleton structures, DNA repair and genetic information processing, which shed light on molecular adaptation to the deep sea. These results suggest that amino acid substitutions of these positively selected genes may contribute crucially to the adaptation of deep-sea animals. Additionally, we provide a high-quality transcriptome of a deep-sea fish for future deep-sea studies.

  8. Genome-wide binding and transcriptome analysis of human farnesoid X receptor in primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Le Zhan

    Full Text Available Farnesoid X receptor (FXR, NR1H4 is a ligand-activated transcription factor, belonging to the nuclear receptor superfamily. FXR is highly expressed in the liver and is essential in regulating bile acid homeostasis. FXR deficiency is implicated in numerous liver diseases and mice with modulation of FXR have been used as animal models to study liver physiology and pathology. We have reported genome-wide binding of FXR in mice by chromatin immunoprecipitation - deep sequencing (ChIP-seq, with results indicating that FXR may be involved in regulating diverse pathways in liver. However, limited information exists for the functions of human FXR and the suitability of using murine models to study human FXR functions.In the current study, we performed ChIP-seq in primary human hepatocytes (PHHs treated with a synthetic FXR agonist, GW4064 or DMSO control. In parallel, RNA deep sequencing (RNA-seq and RNA microarray were performed for GW4064 or control treated PHHs and wild type mouse livers, respectively.ChIP-seq showed similar profiles of genome-wide FXR binding in humans and mice in terms of motif analysis and pathway prediction. However, RNA-seq and microarray showed more different transcriptome profiles between PHHs and mouse livers upon GW4064 treatment.In summary, we have established genome-wide human FXR binding and transcriptome profiles. These results will aid in determining the human FXR functions, as well as judging to what level the mouse models could be used to study human FXR functions.

  9. Transcriptome analysis of artificial hybrid pufferfish Jiyan-1 and its parental species: implications for pufferfish heterosis.

    Directory of Open Access Journals (Sweden)

    Yang Gao

    Full Text Available Jiyan-1 puffer, the F1 hybrid of Takifugu rubripes and Takifugu flavidus, displays obvious heterosis in the growth performance, flavor and stress tolerance. In the present study, comparative analysis for the transcriptomes of T. rubripes, T. flavidus and Jiyan-1 was performed aiming to reveal the possible mechanisms of heterosis in pufferfish. Whole transcriptomes were sequenced using the SOLiD4 platform, and a total of 44,305 transcripts corresponding to 18,164 genes were identified collectively. A total of 14,148 transcripts were differentially expressed. By comparing the gene expression patterns of the three samples, the coexistence of overdominance, dominance, underdominance and additivity was observed in the gene action modes of Jiyan-1. There were 2,237 transcripts in the intersection of the differentially expressed transcripts from Jiyan-1 versus T. rubripes and Jiyan-1 versus T. flavidus, among which 213 transcripts were also in the T. rubripes versus T. flavidus. The potential functions of the remaining 2,024 transcripts were mainly associated with metabolic process, nucleotide binding and catalytic activity. The enrichment results indicated metabolism was the most activated biological function in the heterosis. In addition, 35 KEGG pathways were retrieved as affiliated with more than three differentially expressed transcripts and 8,579 potentially novel transcript isoforms were identified for Jiyan-1. The present study revealed the coexistence of multiple gene actions in the hybrid puffer, indicated the importance of metabolism, ion binding function and kinase activity, as well as provided a list of candidate genes and pathways for heterosis. It could be helpful for the better understanding of the determination and regulation mechanisms of heterosis.

  10. Transcriptome analysis of Sacha Inchi (Plukenetia volubilis L. seeds at two developmental stages

    Directory of Open Access Journals (Sweden)

    Wang Xiaojuan

    2012-12-01

    Full Text Available Abstract Background Sacha Inchi (Plukenetia volubilis L., Euphorbiaceae is a potential oilseed crop because the seeds of this plant are rich in unsaturated fatty acids (FAs. In particular, the fatty acid composition of its seed oil differs markedly in containing large quantities of α-linolenic acid (18C:3, a kind of ω-3 FAs. However, little is known about the molecular mechanisms responsible for biosynthesis of unsaturated fatty acids in the developing seeds of this species. Transcriptome data are needed to better understand these mechanisms. Results In this study, de novo transcriptome assembly and gene expression analysis were performed using Illumina sequencing technology. A total of 52.6 million 90-bp paired-end reads were generated from two libraries constructed at the initial stage and fast oil accumulation stage of seed development. These reads were assembled into 70,392 unigenes; 22,179 unigenes showed a 2-fold or greater expression difference between the two libraries. Using this data we identified unigenes that may be involved in de novo FA and triacylglycerol biosynthesis. In particular, a number of unigenes encoding desaturase for formation of unsaturated fatty acids with high expression levels in the fast oil accumulation stage compared with the initial stage of seed development were identified. Conclusions This study provides the first comprehensive dataset characterizing Sacha Inchi gene expression at the transcriptional level. These data provide the foundation for further studies on molecular mechanisms underlying oil accumulation and PUFA biosynthesis in Sacha Inchi seeds. Our analyses facilitate understanding of the molecular mechanisms responsible for the high unsaturated fatty acids (especially α-linolenic acid accumulation in Sacha Inchi seeds.

  11. Comparative transcriptomic analysis provides insights into antibacterial mechanisms of Branchiostoma belcheri under Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Zhang, Qi-Lin; Zhu, Qian-Hua; Liang, Ming-Zhong; Wang, Feng; Guo, Jun; Deng, Xian-Yu; Chen, Jun-Yuan; Wang, Yu-Jun; Lin, Lian-Bing

    2018-05-01

    Amphioxus, a basal chordate, is widely considered to be an existing proxy of the invertebrate ancestor of vertebrates, and it exhibits susceptibility to various pathogen infections and pathogenic mimic challenges. Here, in order to understand more clearly its antibacterial mechanisms, we analyzed the ribosomal RNA (rRNA)-depleted transcriptome of Chinese amphioxus (Branchiostoma belcheri) infected with Vibrio parahaemolyticus (V. p.) via next-generation deep sequencing technology (RNA-seq). We identified a total of 3214 differentially expressed genes (DEGs) by comparing V. p.-infected and control transcriptome libraries, including 2219 significantly up-regulated and 995 significantly down-regulated DEGs in V. p.-infected amphioxus. The DEGs with the top 10 most dramatic expression fold changes after V. p. infection, as well as 53 immune-related DEGs (IRDs) belonging to four primary categories of innate immunity were analyzed further. Through gene ontology (GO) and pathway enrichment analysis, DEGs were found to be primarily related to immune processes, apoptosis, catabolic and metabolic processes, binding and enzyme activity, while pathways involving bacterial infection, immune signaling, immune response, cancer, and apoptosis were overrepresented. We validated the RNA-seq results by detecting the expression levels of 10 IRDs using qRT-PCR, and we surveyed the dynamic variation in gene expression for these IRDs at 0, 6, 12, 24, and 48 h after V. p. Subsequently, according to the RNA-seq results, the presence of a primitive Toll-like receptor (TLR)-mediated antibacterial immune signaling pathway was predicted in B. belcheri. This study provides valuable information regarding antibacterial immunity for further research into the evolution of immunity in vertebrates and broadens our understanding of the innate immune response against bacterial invasion in amphioxus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Exploratory transcriptomic analysis in muscle tissue of broilers fed a phytase-supplemented diet.

    Science.gov (United States)

    Schmeisser, J; Séon, A-A; Aureli, R; Friedel, A; Guggenbuhl, P; Duval, S; Cowieson, A J; Fru-Nji, F

    2017-06-01

    The effect of phytase on phosphorus retention, broiler (Gallus gallus) performance and bone mineralization in diets with reduced inorganic phosphate concentration is well documented. Furthermore, so-called 'extra-phosphoric' effects of phytase have been described in the literature that may be associated with changes in mineral and amino acid partitioning and requirements per se. In particular, the role of myo-inositol in phytase responses is implied but not well elucidated. It was the purpose of the experiment reported herein to explore the effect of phytase on broiler growth, nutrient digestibility, blood biochemistry and gene expression. A 5-week broiler floor pen trial was conducted to evaluate the effect of supplementation of a moderately phosphorus-deficient diet with 1000 U/kg of a 6-microbial phytase. Parameters measured were growth performance, phosphorus (P), calcium (Ca) and myo-inositol plasma concentrations, apparent ileal P digestibility, bone mineralization, breast meat weight and Pectoralis major muscle transcriptome. Supplementation of the diet with phytase improved weight gain during the starter period (18%) and the whole period (24%) compared with animals that received the control diet (p phytase. The transcriptomic analysis revealed that some differentially expressed genes (DEG) in broilers, receiving phytase in comparison with animals fed reduced phosphorus diet without phytase, were part of pathways involved in muscle development, via calmodulin/calcineurin and insulin-like growth factor. Microarray data confirmation was performed on six genes by quantitative PCR (qPCR): PI3K regulatory and catalytic subunit, Phospholipase C beta, Myocyte Enhancer Factors 2A and 2C, and calcineurin A. The results suggested that dietary supplementation with this phytase could generate low molecular weight phytate esters and indirectly myo-inositol, and could help us to understand how muscle metabolism may be affected at a gene level. Journal of Animal

  13. Integration of the Pokeweed miRNA and mRNA Transcriptomes Reveals Targeting of Jasmonic Acid-Responsive Genes

    Directory of Open Access Journals (Sweden)

    Kira C. M. Neller

    2018-05-01

    Full Text Available The American pokeweed plant, Phytolacca americana, displays broad-spectrum resistance to plant viruses and is a heavy metal hyperaccumulator. However, little is known about the regulation of biotic and abiotic stress responses in this non-model plant. To investigate the control of miRNAs in gene expression, we sequenced the small RNA transcriptome of pokeweed treated with jasmonic acid (JA, a hormone that mediates pathogen defense and stress tolerance. We predicted 145 miRNAs responsive to JA, most of which were unique to pokeweed. These miRNAs were low in abundance and condition-specific, with discrete expression change. Integration of paired mRNA-Seq expression data enabled us to identify correlated, novel JA-responsive targets that mediate hormone biosynthesis, signal transduction, and pathogen defense. The expression of approximately half the pairs was positively correlated, an uncommon finding that we functionally validated by mRNA cleavage. Importantly, we report that a pokeweed-specific miRNA targets the transcript of OPR3, novel evidence that a miRNA regulates a JA biosynthesis enzyme. This first large-scale small RNA study of a Phytolaccaceae family member shows that miRNA-mediated control is a significant component of the JA response, associated with widespread changes in expression of genes required for stress adaptation.

  14. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    Directory of Open Access Journals (Sweden)

    Zixi Chen

    2017-09-01

    Full Text Available Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS, and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented.

  15. Gene coexpression network analysis of fruit transcriptomes uncovers a possible mechanistically distinct class of sugar/acid ratio-associated genes in sweet orange.

    Science.gov (United States)

    Qiao, Liang; Cao, Minghao; Zheng, Jian; Zhao, Yihong; Zheng, Zhi-Liang

    2017-10-30

    The ratio of sugars to organic acids, two of the major metabolites in fleshy fruits, has been considered the most important contributor to fruit sweetness. Although accumulation of sugars and acids have been extensively studied, whether plants evolve a mechanism to maintain, sense or respond to the fruit sugar/acid ratio remains a mystery. In a prior study, we used an integrated systems biology tool to identify a group of 39 acid-associated genes from the fruit transcriptomes in four sweet orange varieties (Citrus sinensis L. Osbeck) with varying fruit acidity, Succari (acidless), Bingtang (low acid), and Newhall and Xinhui (normal acid). We reanalyzed the prior sweet orange fruit transcriptome data, leading to the identification of 72 genes highly correlated with the fruit sugar/acid ratio. The majority of these sugar/acid ratio-related genes are predicted to be involved in regulatory functions such as transport, signaling and transcription or encode enzymes involved in metabolism. Surprisingly, only three of these sugar/acid ratio-correlated genes are weakly correlated with sugar level and none of them overlaps with the acid-associated genes. Weighted Gene Coexpression Network Analysis (WGCNA) has revealed that these genes belong to four modules, Blue, Grey, Brown and Turquoise, with the former two modules being unique to the sugar/acid ratio control. Our results indicate that orange fruits contain a possible mechanistically distinct class of genes that may potentially be involved in maintaining fruit sugar/acid ratios and/or responding to the cellular sugar/acid ratio status. Therefore, our analysis of orange transcriptomes provides an intriguing insight into the potentially novel genetic or molecular mechanisms controlling the sugar/acid ratio in fruits.

  16. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    Science.gov (United States)

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  17. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    Science.gov (United States)

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions.

    Directory of Open Access Journals (Sweden)

    Xuelin Zhao

    Full Text Available Environmental salinity creates a key barrier to limit the distribution of most aquatic organisms. Adaptation to osmotic fluctuation is believed to be a factor facilitating species diversification. Adaptive evolution often involves beneficial mutations at more than one locus. Bivalves hold great interest, with numerous species living in waters, as osmoconformers, who maintain the osmotic pressure balance mostly by free amino acids. In this study, 107,076,589 reads from two groups of Crassostrea hongkongensis were produced and the assembled into 130,629 contigs. Transcripts putatively involved in stress-response, innate immunity and cell processes were identified according to Gene ontology and KEGG pathway analyses. Comparing with the transcriptome of C. gigas to characterize the diversity of transcripts between species with osmotic divergence, we identified 182,806 high-quality single nucleotide polymorphisms (SNPs for C. hongkongensis, and 196,779 SNPs for C. gigas. Comparison of 11,602 pairs of putative orthologs allowed for identification of 14 protein-coding genes that experienced strong positive selection (Ka/Ks>1. In addition, 45 genes that may show signs of moderate positive selection (1 ≥ Ka/Ks>0.5 were also identified. Based on Ks ratios and divergence time between the two species published previously, we estimated a neutral transcriptome-wide substitution mutation rate of 1.39 × 10(-9 per site per year. Several genes were differentially expressed across the control and treated groups of each species. This is the first time to sequence the transcriptome of C. hongkongensis and provide the most comprehensive transcriptomic resource available for it. The increasing amount of transcriptome data on Crassostrea provides an excellent resource for phylogenetic analysis. A large number of SNPs identified in this work are expected to provide valuable resources for future marker and genotyping assay development. The analysis of natural

  19. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens populations with different virulence levels in rice.

    Directory of Open Access Journals (Sweden)

    Haixin Yu

    Full Text Available BACKGROUND: The brown planthopper (BPH, Nilaparvata lugens (Stål, one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population and Mudgo (M population. In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. CONCLUSIONS/SIGNIFICANCE: This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies

  20. Transcriptome Analysis of Fat Bodies from Two Brown Planthopper (Nilaparvata lugens) Populations with Different Virulence Levels in Rice

    Science.gov (United States)

    Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    Background The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. Methodology/Principal Findings In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. Conclusions/Significance This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful

  1. Transcriptome analysis of fat bodies from two brown planthopper (Nilaparvata lugens) populations with different virulence levels in rice.

    Science.gov (United States)

    Yu, Haixin; Ji, Rui; Ye, Wenfeng; Chen, Hongdan; Lai, Wenxiang; Fu, Qiang; Lou, Yonggen

    2014-01-01

    The brown planthopper (BPH), Nilaparvata lugens (Stål), one of the most serious rice insect pests in Asia, can quickly overcome rice resistance by evolving new virulent populations. The insect fat body plays essential roles in the life cycles of insects and in plant-insect interactions. However, whether differences in fat body transcriptomes exist between insect populations with different virulence levels and whether the transcriptomic differences are related to insect virulence remain largely unknown. In this study, we performed transcriptome-wide analyses on the fat bodies of two BPH populations with different virulence levels in rice. The populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 33,776 and 32,332 unigenes from the fat bodies of TN1 and M populations, respectively, were generated using Illumina technology. Gene ontology annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology classifications indicated that genes related to metabolism and immunity were significantly active in the fat bodies. In addition, a total of 339 unigenes showed homology to genes of yeast-like symbionts (YLSs) from 12 genera and endosymbiotic bacteria Wolbachia. A comparative analysis of the two transcriptomes generated 7,860 differentially expressed genes. GO annotations and enrichment analysis of KEGG pathways indicated these differentially expressed transcripts might be involved in metabolism and immunity. Finally, 105 differentially expressed genes from YLSs and Wolbachia were identified, genes which might be associated with the formation of different virulent populations. This study was the first to compare the fat-body transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our findings provide a molecular resource for future investigations of fat bodies and will be useful in examining the interactions between the fat body and virulence

  2. Transcriptomic analysis highlights epigenetic and transcriptional regulation during zygotic embryo development of Pinus pinaster.

    Science.gov (United States)

    de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M

    2013-08-30

    It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in

  3. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  4. Single-cell analysis of targeted transcriptome predicts drug sensitivity of single cells within human myeloma tumors.

    Science.gov (United States)

    Mitra, A K; Mukherjee, U K; Harding, T; Jang, J S; Stessman, H; Li, Y; Abyzov, A; Jen, J; Kumar, S; Rajkumar, V; Van Ness, B

    2016-05-01

    Multiple myeloma (MM) is characterized by significant genetic diversity at subclonal levels that have a defining role in the heterogeneity of tumor progression, clinical aggressiveness and drug sensitivity. Although genome profiling studies have demonstrated heterogeneity in subclonal architecture that may ultimately lead to relapse, a gene expression-based prediction program that can identify, distinguish and quantify drug response in sub-populations within a bulk population of myeloma cells is lacking. In this study, we performed targeted transcriptome analysis on 528 pre-treatment single cells from 11 myeloma cell lines and 418 single cells from 8 drug-naïve MM patients, followed by intensive bioinformatics and statistical analysis for prediction of proteasome inhibitor sensitivity in individual cells. Using our previously reported drug response gene expression profile signature at the single-cell level, we developed an R Statistical analysis package available at https://github.com/bvnlabSCATTome, SCATTome (single-cell analysis of targeted transcriptome), that restructures the data obtained from Fluidigm single-cell quantitative real-time-PCR analysis run, filters missing data, performs scaling of filtered data, builds classification models and predicts drug response of individual cells based on targeted transcriptome using an assortment of machine learning methods. Application of SCATT should contribute to clinically relevant analysis of intratumor heterogeneity, and better inform drug choices based on subclonal cellular responses.

  5. Integrative Transcriptomic and Metabonomic Molecular Profiling of Colonic Mucosal Biopsies Indicates a Unique Molecular Phenotype for Ulcerative Colitis

    DEFF Research Database (Denmark)

    Rantalainen, Mattias; Bjerrum, Jacob Tveiten; Olsen, Jørgen

    2015-01-01

    characterized the molecular phenotype of ulcerative colitis through transcriptomic and metabonomic profiling of colonic mucosal biopsies from patients and controls. We have characterized the extent to which metabonomic and transcriptomic molecular phenotypes are associated with ulcerative colitis versus...... transcriptomic and metabonomic data have previously been shown to predict the clinical course of ulcerative colitis and related clinical phenotypes, indicating that molecular phenotypes reveal molecular changes associated with the disease. Our analyses indicate that variables of both transcriptomics...... and metabonomics are associated with disease case and control status, that a large proportion of transcripts are associated with at least one metabolite in mucosal colonic biopsies, and that multiple pathways are connected to disease-related metabolites and transcripts....

  6. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Science.gov (United States)

    Philipp, Oliver; Hamann, Andrea; Servos, Jörg; Werner, Alexandra; Koch, Ina; Osiewacz, Heinz D

    2013-01-01

    Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression). A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i) present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii) suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii) present testable predictions for subsequent experimental investigations.

  7. Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to plum pox virus infection.

    Science.gov (United States)

    Rodamilans, Bernardo; San León, David; Mühlberger, Louisa; Candresse, Thierry; Neumüller, Michael; Oliveros, Juan Carlos; García, Juan Antonio

    2014-01-01

    Plum pox virus (PPV) infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named 'Jojo', develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected 'Jojo' trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01). Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.

  8. A genome-wide longitudinal transcriptome analysis of the aging model Podospora anserina.

    Directory of Open Access Journals (Sweden)

    Oliver Philipp

    Full Text Available Aging of biological systems is controlled by various processes which have a potential impact on gene expression. Here we report a genome-wide transcriptome analysis of the fungal aging model Podospora anserina. Total RNA of three individuals of defined age were pooled and analyzed by SuperSAGE (serial analysis of gene expression. A bioinformatics analysis identified different molecular pathways to be affected during aging. While the abundance of transcripts linked to ribosomes and to the proteasome quality control system were found to decrease during aging, those associated with autophagy increase, suggesting that autophagy may act as a compensatory quality control pathway. Transcript profiles associated with the energy metabolism including mitochondrial functions were identified to fluctuate during aging. Comparison of wild-type transcripts, which are continuously down-regulated during aging, with those down-regulated in the long-lived, copper-uptake mutant grisea, validated the relevance of age-related changes in cellular copper metabolism. Overall, we (i present a unique age-related data set of a longitudinal study of the experimental aging model P. anserina which represents a reference resource for future investigations in a variety of organisms, (ii suggest autophagy to be a key quality control pathway that becomes active once other pathways fail, and (iii present testable predictions for subsequent experimental investigations.

  9. Transcriptomic analysis of Prunus domestica undergoing hypersensitive response to plum pox virus infection.

    Directory of Open Access Journals (Sweden)

    Bernardo Rodamilans

    Full Text Available Plum pox virus (PPV infects Prunus trees around the globe, posing serious fruit production problems and causing severe economic losses. One variety of Prunus domestica, named 'Jojo', develops a hypersensitive response to viral infection. Here we compared infected and non-infected samples using next-generation RNA sequencing to characterize the genetic complexity of the viral population in infected samples and to identify genes involved in development of the resistance response. Analysis of viral reads from the infected samples allowed reconstruction of a PPV-D consensus sequence. De novo reconstruction showed a second viral isolate of the PPV-Rec strain. RNA-seq analysis of PPV-infected 'Jojo' trees identified 2,234 and 786 unigenes that were significantly up- or downregulated, respectively (false discovery rate; FDR≤0.01. Expression of genes associated with defense was generally enhanced, while expression of those related to photosynthesis was repressed. Of the total of 3,020 differentially expressed unigenes, 154 were characterized as potential resistance genes, 10 of which were included in the NBS-LRR type. Given their possible role in plant defense, we selected 75 additional unigenes as candidates for further study. The combination of next-generation sequencing and a Prunus variety that develops a hypersensitive response to PPV infection provided an opportunity to study the factors involved in this plant defense mechanism. Transcriptomic analysis presented an overview of the changes that occur during PPV infection as a whole, and identified candidates suitable for further functional characterization.

  10. An analysis of the Athetis lepigone transcriptome from four developmental stages.

    Directory of Open Access Journals (Sweden)

    Li-Tao Li

    Full Text Available Athetis lepigone Möschler (Lepidoptera: Noctuidae has recently become an important insect pest of maize (Zea mays crops in China. In order to understand the characteristics of the different developmental stages of this pest, we used Illumina short-read sequences to perform de novo transcriptome assembly and gene expression analysis for egg, larva, pupa and adult developmental stages. We obtained 10.08 Gb of raw data from Illumina sequencing and recovered 81,356 unigenes longer than 100 bp through a de novo assembly. The total sequence length reached 49.75 Mb with 858 bp of N50 and an average unigene length of 612 bp. Annotation analysis of predicted proteins indicate that 33,736 unigenes (41.47% of total unigenes are matches to genes in the Genbank Nr database. The unigene sequences were subjected to GO, COG and KEGG functional classification. A large number of differentially expressed genes were recovered by pairwise comparison of the four developmental stages. The most dramatic differences in gene expression were found in the transitions from one stage to another stage. Some of these differentially expressed genes are related to cuticle and wing formation as well as the growth and development. We identified more than 2,500 microsatellite markers that may be used for population studies of A. lepigone. This study lays the foundation for further research on population genetics and gene function analysis in A. lepigone.

  11. Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection

    Directory of Open Access Journals (Sweden)

    Yiming Wang

    2014-12-01

    Full Text Available Rice blast disease caused by Magnaporthe oryzae is one of the most serious diseases of cultivated rice (Oryza sativa L. in most rice-growing regions of the world. In order to investigate early response genes in rice, we utilized the transcriptome analysis approach using a 300 K tilling microarray to rice leaves infected with compatible and incompatible M. oryzae strains. Prior to the microarray experiment, total RNA was validated by measuring the differential expression of rice defense-related marker genes (chitinase 2, barwin, PBZ1, and PR-10 by RT-PCR, and phytoalexins (sakuranetin and momilactone A with HPLC. Microarray analysis revealed that 231 genes were up-regulated (>2 fold change, p < 0.05 in the incompatible interaction compared to the compatible one. Highly expressed genes were functionally characterized into metabolic processes and oxidation-reduction categories. The oxidative stress response was induced in both early and later infection stages. Biotic stress overview from MapMan analysis revealed that the phytohormone ethylene as well as signaling molecules jasmonic acid and salicylic acid is important for defense gene regulation. WRKY and Myb transcription factors were also involved in signal transduction processes. Additionally, receptor-like kinases were more likely associated with the defense response, and their expression patterns were validated by RT-PCR. Our results suggest that candidate genes, including receptor-like protein kinases, may play a key role in disease resistance against M. oryzae attack.

  12. Global Transcriptome Analysis of Combined Abiotic Stress Signaling Genes Unravels Key Players in Oryza sativa L.: An In silico Approach

    Directory of Open Access Journals (Sweden)

    Pandiyan Muthuramalingam

    2017-05-01

    Full Text Available Combined abiotic stress (CAbS affects the field grown plants simultaneously. The multigenic and quantitative nature of uncontrollable abiotic stresses complicates the process of understanding the stress response by plants. Considering this, we analyzed the CAbS response of C3 model plant, Oryza sativa by meta-analysis. The datasets of commonly expressed genes by drought, salinity, submergence, metal, natural expression, biotic, and abiotic stresses were data mined through publically accessible transcriptomic abiotic stress (AbS responsive datasets. Of which 1,175, 12,821, and 42,877 genes were commonly expressed in meta differential, individual differential, and unchanged expressions respectively. Highly regulated 100 differentially expressed AbS genes were derived through integrative meta-analysis of expression data (INMEX. Of this 30 genes were identified from AbS gene families through expression atlas that were computationally analyzed for their physicochemical properties. All AbS genes were physically mapped against O. sativa genome. Comparative mapping of these genes demonstrated the orthologous relationship with related C4 panicoid genome. In silico expression analysis of these genes showed differential expression patterns in different developmental tissues. Protein–protein interaction of these genes, represented the complexity of AbS. Computational expression profiling of candidate genes in response to multiple stresses suggested the putative involvement of OS05G0350900, OS02G0612700, OS05G0104200, OS03G0596200, OS12G0225900, OS07G0152000, OS08G0119500, OS06G0594700, and Os01g0393100 in CAbS. These potential candidate genes need to be studied further to decipher their functional roles in AbS dynamics.

  13. RNA CoMPASS: a dual approach for pathogen and host transcriptome analysis of RNA-seq datasets.

    Directory of Open Access Journals (Sweden)

    Guorong Xu

    Full Text Available High-throughput RNA sequencing (RNA-seq has become an instrumental assay for the analysis of multiple aspects of an organism's transcriptome. Further, the analysis of a biological specimen's associated microbiome can also be performed using RNA-seq data and this application is gaining interest in the scientific community. There are many existing bioinformatics tools designed for analysis and visualization of transcriptome data. Despite the availability of an array of next generation sequencing (NGS analysis tools, the analysis of RNA-seq data sets poses a challenge for many biomedical researchers who are not familiar with command-line tools. Here we present RNA CoMPASS, a comprehensive RNA-seq analysis pipeline for the simultaneous analysis of transcriptomes and metatranscriptomes from diverse biological specimens. RNA CoMPASS leverages existing tools and parallel computing technology to facilitate the analysis of even very large datasets. RNA CoMPASS has a web-based graphical user interface with intrinsic queuing to control a distributed computational pipeline. RNA CoMPASS was evaluated by analyzing RNA-seq data sets from 45 B-cell samples. Twenty-two of these samples were derived from lymphoblastoid cell lines (LCLs generated by the infection of naïve B-cells with the Epstein Barr virus (EBV, while another 23 samples were derived from Burkitt's lymphomas (BL, some of which arose in part through infection with EBV. Appropriately, RNA CoMPASS identified EBV in all LCLs and in a fraction of the BLs. Cluster analysis of the human transcriptome component of the RNA CoMPASS output clearly separated the BLs (which have a germinal center-like phenotype from the LCLs (which have a blast-like phenotype with evidence of activated MYC signaling and lower interferon and NF-kB signaling in the BLs. Together, this analysis illustrates the utility of RNA CoMPASS in the simultaneous analysis of transcriptome and metatranscriptome data. RNA CoMPASS is freely

  14. Transcriptome analysis of bitter acid biosynthesis and precursor pathways in hop (Humulus lupulus

    Directory of Open Access Journals (Sweden)

    Clark Shawn M

    2013-01-01

    Full Text Available Abstract Background Bitter acids (e.g. humulone are prenylated polyketides synthesized in lupulin glands of the hop plant (Humulus lupulus which are important contributors to the bitter flavour and stability of beer. Bitter acids are formed from acyl-CoA precursors derived from branched-chain amino acid (BCAA degradation and C5 prenyl diphosphates from the methyl-D-erythritol 4-phosphate (MEP pathway. We used RNA sequencing (RNA-seq to obtain the transcriptomes of isolated lupulin glands, cones with glands removed and leaves from high α-acid hop cultivars, and analyzed these datasets for genes involved in bitter acid biosynthesis including the supply of major precursors. We also measured the levels of BCAAs, acyl-CoA intermediates, and bitter acids in glands, cones and leaves. Results Transcripts encoding all the enzymes of BCAA metabolism were significantly more abundant in lupulin glands, indicating that BCAA biosynthesis and subsequent degradation occurs in these specialized cells. Branched-chain acyl-CoAs and bitter acids were present at higher levels in glands compared with leaves and cones. RNA-seq analysis showed the gland-specific expression of the MEP pathway, enzymes of sucrose degradation and several transcription factors that may regulate bitter acid biosynthesis in glands. Two branched-chain aminotransferase (BCAT enzymes, HlBCAT1 and HlBCAT2, were abundant, with gene expression quantification by RNA-seq and qRT-PCR indicating that HlBCAT1 was specific to glands while HlBCAT2 was present in glands, cones and leaves. Recombinant HlBCAT1 and HlBCAT2 catalyzed forward (biosynthetic and reverse (catabolic reactions with similar kinetic parameters. HlBCAT1 is targeted to mitochondria where it likely plays a role in BCAA catabolism. HlBCAT2 is a plastidial enzyme likely involved in BCAA biosynthesis. Phylogenetic analysis of the hop BCATs and those from other plants showed that they group into distinct biosynthetic (plastidial and

  15. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    Science.gov (United States)

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  16. Transcriptome Analysis of Flower Sex Differentiation in Jatropha curcas L. Using RNA Sequencing.

    Science.gov (United States)

    Xu, Gang; Huang, Jian; Yang, Yong; Yao, Yin-an

    2016-01-01

    Jatropha curcas is thought to be a promising biofuel material, but its yield is restricted by a low ratio of instaminate/staminate flowers (1/10-1/30). Furthermore, valuable information about flower sex differentiation in this plant is scarce. To explore the mechanism of this process in J. curcas, transcriptome profiling of flower development was carried out, and certain genes related with sex differentiation were obtained through digital gene expression analysis of flower buds from different phases of floral development. After Illumina sequencing and clustering, 57,962 unigenes were identified. A total of 47,423 unigenes were annotated, with 85 being related to carpel and stamen differentiation, 126 involved in carpel and stamen development, and 592 functioning in the later development stage for the maturation of staminate or instaminate flowers. Annotation of these genes provided comprehensive information regarding the sex differentiation of flowers, including the signaling system, hormone biosynthesis and regulation, transcription regulation and ubiquitin-mediated proteolysis. A further expression pattern analysis of 15 sex-related genes using quantitative real-time PCR revealed that gibberellin-regulated protein 4-like protein and AMP-activated protein kinase are associated with stamen differentiation, whereas auxin response factor 6-like protein, AGAMOUS-like 20 protein, CLAVATA1, RING-H2 finger protein ATL3J, auxin-induced protein 22D, and r2r3-myb transcription factor contribute to embryo sac development in the instaminate flower. Cytokinin oxidase, Unigene28, auxin repressed-like protein ARP1, gibberellin receptor protein GID1 and auxin-induced protein X10A are involved in both stages mentioned above. In addition to its function in the differentiation and development of the stamens, the gibberellin signaling pathway also functions in embryo sac development for the instaminate flower. The auxin signaling pathway also participates in both stamen development

  17. Meta-Transcriptomic Analysis of a Chromate-Reducing Aquifer Microbial Community

    Science.gov (United States)

    Beller, H. R.; Brodie, E. L.; Han, R.; Karaoz, U.

    2010-12-01

    A major challenge for microbial ecology that has become more tractable in the advent of new molecular techniques is characterizing gene expression in complex microbial communities. We are using meta-transcriptomic analysis to characterize functional changes in an aquifer-derived, chromate-reducing microbial community as it transitions through various electron-accepting conditions. We inoculated anaerobic microcosms with groundwater from the Cr-contaminated Hanford 100H site and supplemented them with lactate and electron acceptors present at the site, namely, nitrate, sulfate, and Fe(III). The microcosms progressed successively through various electron-accepting conditions (e.g., denitrifying, sulfate-reducing, and ferric iron-reducing conditions, as well as nitrate-dependent, chemolithotrophic Fe(II)-oxidizing conditions). Cr(VI) was rapidly reduced initially and again upon further Cr(VI) amendments. Extensive geochemical sampling and analysis (e.g., lactate, acetate, chloride, nitrate, nitrite, sulfate, dissolved Cr(VI), total Fe(II)), RNA/DNA harvesting, and PhyloChip analyses were conducted. Methods were developed for removal of rRNA from total RNA in preparation for meta-transcriptome sequencing. To date, samples representing denitrifying and fermentative/sulfate-reducing conditions have been sequenced using 454 Titanium technology. Of the non-rRNA related reads for the denitrifying sample (which was also actively reducing chromate), ca. 8% were associated with denitrification and ca. 0.9% were associated with chromate resistance/transport, in contrast to the fermentative/sulfate-reducing sample (in which chromate had already been reduced), which had zero reads associated with either of these categories but many predicted proteins associated with sulfate-reducing bacteria. We observed sequences for key functional transcripts that were unique at the nucleotide level compared to the GenBank non-redundant database [such as L-lactate dehydrogenase (iron

  18. Global Transcriptome Analysis of Aedes aegypti Mosquitoes in Response to Zika Virus Infection.

    Science.gov (United States)

    Etebari, Kayvan; Hegde, Shivanand; Saldaña, Miguel A; Widen, Steven G; Wood, Thomas G; Asgari, Sassan; Hughes, Grant L

    2017-01-01

    Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in South America. The recent rapid spread of the virus led to its declaration as a global health emergency by the World Health Organization. The virus is transmitted mainly by the mosquito Aedes aegypti , which is also the vector of dengue virus; however, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole A. aegypti mosquitoes in response to ZIKV infection at 2, 7, and 14 days postinfection using transcriptome sequencing. Results showed changes in the abundance of a large number of transcripts at each time point following infection, with 18 transcripts commonly changed among the three time points. Gene ontology analysis revealed that most of the altered genes are involved in metabolic processes, cellular processes, and proteolysis. In addition, 486 long intergenic noncoding RNAs that were altered upon ZIKV infection were identified. Further, we found changes of a number of potential mRNA target genes correlating with those of altered host microRNAs. The outcomes provide a basic understanding of A. aegypti responses to ZIKV and help to determine host factors involved in replication or mosquito host antiviral response against the virus. IMPORTANCE Vector-borne viruses pose great risks to human health. Zika virus has recently emerged as a global threat, rapidly expanding its distribution. Understanding the interactions of the virus with mosquito vectors at the molecular level is vital for devising new approaches in inhibiting virus transmission. In this study, we embarked on analyzing the transcriptional response of Aedes aegypti mosquitoes to Zika virus infection. Results showed large changes in both coding and long noncoding RNAs. Analysis of these genes showed similarities with other flaviviruses, including

  19. Transcriptomic analysis of vulvovaginal candidiasis identifies a role for the NLRP3 inflammasome.

    Science.gov (United States)

    Bruno, Vincent M; Shetty, Amol C; Yano, Junko; Fidel, Paul L; Noverr, Mairi C; Peters, Brian M

    2015-04-21

    Treatment of vulvovaginal candidiasis (VVC), caused most frequently by Candida albicans, represents a significant unmet clinical need. C. albicans, as both a commensal and a pathogenic organism, has a complex and poorly understood interaction with the vaginal environment. Understanding the complex nature of this relationship is necessary for the development of desperately needed therapies to treat symptomatic infection. Using transcriptome sequencing (RNA-seq), we characterized the early murine vaginal and fungal transcriptomes of the organism during VVC. Network analysis of host genes that were differentially expressed between infected and naive mice predicted the activation or repression of several signaling pathways that have not been previously associated with VVC, including NLRP3 inflammasome activation. Intravaginal challenge of Nlrp3(-/-) mice with C. albicans demonstrated severely reduced levels of polymorphonuclear leukocytes (PMNs), alarmins, and inflammatory cytokines, including interleukin-1β (IL-1β) (the hallmarks of VVC immunopathogenesis) in vaginal lavage fluid. Intravaginal administration of wild-type (WT) mice with glyburide, a potent inhibitor of the NLRP3 inflammasome, reduced PMN infiltration and IL-1β to levels comparable to those observed in Nlrp3(-/-) mice. Furthermore, RNA-seq analysis of C. albicans genes indicated robust expression of hypha-associated secreted aspartyl proteinases 4, 5, and 6 (SAP4-6), which are known inflammasome activators. Despite colonization similar to that of the WT strain, ΔSAP4-6 triple and ΔSAP5 single mutants induced significantly less PMN influx and IL-1β during intravaginal challenge. Our findings demonstrate a novel role for the inflammasome in the immunopathogenesis of VVC and implicate the hypha-associated SAPs as major C. albicans virulence determinants during vulvovaginal candidiasis. Vaginitis, most commonly caused by the fungus Candida albicans, results in significant quality-of-life issues for

  20. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes

    Science.gov (United States)

    Tong, Ying; Zhang, Yang; Huang, Jiaomei; Xiao, Shu; Zhang, Yuehuan; Li, Jun; Chen, Jinhui; Yu, Ziniu

    2015-01-01

    Background The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs. Results The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.). Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs) and 1,699 simple sequence repeats (SSRs) were compiled. Conclusions Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research

  1. Transcriptomics Analysis of Crassostrea hongkongensis for the Discovery of Reproduction-Related Genes.

    Directory of Open Access Journals (Sweden)

    Ying Tong

    Full Text Available The reproductive mechanisms of mollusk species have been interesting targets in biological research because of the diverse reproductive strategies observed in this phylum. These species have also been studied for the development of fishery technologies in molluscan aquaculture. Although the molecular mechanisms underlying the reproductive process have been well studied in animal models, the relevant information from mollusks remains limited, particularly in species of great commercial interest. Crassostrea hongkongensis is the dominant oyster species that is distributed along the coast of the South China Sea and little genomic information on this species is available. Currently, high-throughput sequencing techniques have been widely used for investigating the basis of physiological processes and facilitating the establishment of adequate genetic selection programs.The C.hongkongensis transcriptome included a total of 1,595,855 reads, which were generated by 454 sequencing and were assembled into 41,472 contigs using de novo methods. Contigs were clustered into 33,920 isotigs and further grouped into 22,829 isogroups. Approximately 77.6% of the isogroups were successfully annotated by the Nr database. More than 1,910 genes were identified as being related to reproduction. Some key genes involved in germline development, sex determination and differentiation were identified for the first time in C.hongkongensis (nanos, piwi, ATRX, FoxL2, β-catenin, etc.. Gene expression analysis indicated that vasa, nanos, piwi, ATRX, FoxL2, β-catenin and SRD5A1 were highly or specifically expressed in C.hongkongensis gonads. Additionally, 94,056 single nucleotide polymorphisms (SNPs and 1,699 simple sequence repeats (SSRs were compiled.Our study significantly increased C.hongkongensis genomic information based on transcriptomics analysis. The group of reproduction-related genes identified in the present study constitutes a new tool for research on bivalve

  2. Comparative transcriptome analysis on the synthesis pathway of honey bee (Apis mellifera) mandibular gland secretions.

    Science.gov (United States)

    Wu, YuQi; Zheng, HuoQing; Corona, Miguel; Pirk, Christian; Meng, Fei; Zheng, YuFei; Hu, FuLiang

    2017-07-03

    Secretions from mandibular glands (MGs) have important caste-specific functions that are associated with the social evolution of honey bees. To gain insights into the molecular architecture underlying these caste differences, we compared the gene expression patterns of MGs from queens, queenright workers (WQRs) and queenless workers (WQLs) using high-throughput RNA-sequencing technology. In total, we identified 46 candidate genes associated with caste-specific biosynthesis of fatty acid pheromones in the MG, including members of cytochrome P450 (CYP450) family and genes involved in fatty acid β-oxidation and ω-oxidation. For further identification of the CYP450s genes involved in the biosynthesis of MG secretions, we analyzed by means of qPCR, the expression levels of six of the CYP450 genes most abundantly expressed in the transcriptome analysis across different castes, ages, tasks and tissues. Our analysis revealed that CYP6AS8 and CYP6AS11, the most abundantly expressed CYP450 genes in worker and queen MGs, respectively, are selectively expressed in the MGs of workers and queens compared to other tissues. These results suggest that these genes might be responsible for the critical bifurcated hydroxylation process in the biosynthesis pathway. Our study contributes to the description of the molecular basis for the biosynthesis of fatty acid-derived pheromones in the MGs.

  3. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Runqing Yue

    2016-08-01

    Full Text Available Cadmium (Cd is a heavy metal and is highly toxic to all plant species. However, the underlying molecular mechanism controlling the effects of auxin on the Cd stress response in maize is largely unknown. In this study, the transcriptome produced by maize ‘Zheng 58’ root responses to Cd stress was sequenced using Illumina sequencing technology. In our study, six RNA-seq libraries yielded a total of 244 million clean short reads and 30.37 Gb of sequence data. A total of 6342 differentially expressed genes (DEGs were grouped into 908 Gene Ontology (GO categories and 198 Kyoto Encyclopedia of Genes and Genomes terms. GO term enrichment analysis indicated that various auxin signaling pathway-related GO terms were significantly enriched in DEGs. Comparison of the transcript abundances for auxin biosynthesis, transport, and downstream response genes revealed a universal expression response under Cd treatment. Furthermore, our data showed that free indole-3-acetic acid (IAA levels were significantly reduced; but IAA oxidase activity was up-regulated after Cd treatment in maize roots. The analysis of Cd activity in maize roots under different Cd and auxin conditions confirmed that auxin affected Cd accumulation in maize seedlings. These results will improve our understanding of the complex molecular mechanisms underlying the response to Cd stress in maize roots.

  4. Transcriptome analysis reveals candidate genes involved in luciferin metabolism in Luciola aquatilis (Coleoptera: Lampyridae

    Directory of Open Access Journals (Sweden)

    Wanwipa Vongsangnak

    2016-10-01

    Full Text Available Bioluminescence, which living organisms such as fireflies emit light, has been studied extensively for over half a century. This intriguing reaction, having its origins in nature where glowing insects can signal things such as attraction or defense, is now widely used in biotechnology with applications of bioluminescence and chemiluminescence. Luciferase, a key enzyme in this reaction, has been well characterized; however, the enzymes involved in the biosynthetic pathway of its substrate, luciferin, remains unsolved at present. To elucidate the luciferin metabolism, we performed a de novo transcriptome analysis using larvae of the firefly species, Luciola aquatilis. Here, a comparative analysis is performed with the model coleopteran insect Tribolium casteneum to elucidate the metabolic pathways in L. aquatilis. Based on a template luciferin biosynthetic pathway, combined with a range of protein and pathway databases, and various prediction tools for functional annotation, the candidate genes, enzymes, and biochemical reactions involved in luciferin metabolism are proposed for L. aquatilis. The candidate gene expression is validated in the adult L. aquatilis using reverse transcription PCR (RT-PCR. This study provides useful information on the bio-production of luciferin in the firefly and will benefit to future applications of the valuable firefly bioluminescence system.

  5. Transcriptome Analysis of Salt Stress Responsiveness in the Seedlings of Dongxiang Wild Rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun

    2016-01-01

    Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.

  6. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Bojiang Li

    2018-04-01

    Full Text Available Intramuscular fat (IMF content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs between the higher (H and lower (L IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG enrichment analysis indicated that the DEG perilipin-1 (PLIN1 was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG level and lipid droplet (LD size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.

  7. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana).

    Science.gov (United States)

    Xu, Kai; Niu, Qingsheng; Zhao, Huiting; Du, Yali; Jiang, Yusuo

    2017-01-01

    The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs) and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  8. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    Full Text Available The biological activity and geographical distribution of honey bees is strongly temperature-dependent, due to their ectothermic physiology. In China, the endemic Apis cerana cerana exhibits stronger cold hardiness than Western honey bees, making the former species important pollinators of winter-flowering plants. Although studies have examined behavioral and physiological mechanisms underlying cold resistance in bees, data are scarce regarding the exact molecular mechanisms. Here, we investigated gene expression in A. c. cerana under two temperature treatments, using transcriptomic analysis to identify differentially expressed genes (DEGs and relevant biological processes, respectively. Across the temperature treatments, 501 DEGs were identified. A gene ontology analysis showed that DEGs were enriched in pathways related to sugar and amino acid biosynthesis and metabolism, as well as calcium ion channel activity. Additionally, heat shock proteins, zinc finger proteins, and serine/threonine-protein kinases were differentially expressed between the two treatments. The results of this study provide a general digital expression profile of thermoregulation genes responding to cold hardiness in A. c. cerana. Our data should prove valuable for future research on cold tolerance mechanisms in insects, and may be beneficial in breeding efforts to improve bee hardiness.

  9. A Key Gene, PLIN1, Can Affect Porcine Intramuscular Fat Content Based on Transcriptome Analysis.

    Science.gov (United States)

    Li, Bojiang; Weng, Qiannan; Dong, Chao; Zhang, Zengkai; Li, Rongyang; Liu, Jingge; Jiang, Aiwen; Li, Qifa; Jia, Chao; Wu, Wangjun; Liu, Honglin

    2018-04-04

    Intramuscular fat (IMF) content is an important indicator for meat quality evaluation. However, the key genes and molecular regulatory mechanisms affecting IMF deposition remain unclear. In the present study, we identified 75 differentially expressed genes (DEGs) between the higher (H) and lower (L) IMF content of pigs using transcriptome analysis, of which 27 were upregulated and 48 were downregulated. Notably, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that the DEG perilipin-1 ( PLIN1 ) was significantly enriched in the fat metabolism-related peroxisome proliferator-activated receptor (PPAR) signaling pathway. Furthermore, we determined the expression patterns and functional role of porcine PLIN1. Our results indicate that PLIN1 was highly expressed in porcine adipose tissue, and its expression level was significantly higher in the H IMF content group when compared with the L IMF content group, and expression was increased during adipocyte differentiation. Additionally, our results confirm that PLIN1 knockdown decreases the triglyceride (TG) level and lipid droplet (LD) size in porcine adipocytes. Overall, our data identify novel candidate genes affecting IMF content and provide new insight into PLIN1 in porcine IMF deposition and adipocyte differentiation.

  10. Intestinal transcriptome analysis revealed differential salinity adaptation between two tilapiine species.

    Science.gov (United States)

    Ronkin, Dana; Seroussi, Eyal; Nitzan, Tali; Doron-Faigenboim, Adi; Cnaani, Avner

    2015-03-01

    Tilapias are a group of freshwater species, which vary in their ability to adapt to high salinity water. Osmotic regulation in fish is conducted mainly in the gills, kidney, and gastrointestinal tract (GIT). The mechanisms involved in ion and water transport through the GIT is not well-characterized, with only a few described complexes. Comparing the transcriptome of the anterior and posterior intestinal sections of a freshwater and saltwater adapted fish by deep-sequencing, we examined the salinity adaptation of two tilapia species: the high salinity-tolerant Oreochromis mossambicus (Mozambique tilapia), and the less salinity-tolerant Oreochromis niloticus (Nile tilapia). This comparative analysis revealed high similarity in gene expression response to salinity change between species in the posterior intestine and large differences in the anterior intestine. Furthermore, in the anterior intestine 68 genes were saltwater up-regulated in one species and down-regulated in the other species (47 genes up-regulated in O. niloticus and down-regulated in O. mossambicus, with 21 genes showing the reverse pattern). Gene ontology (GO) analysis showed a high proportion of transporter and ion channel function among these genes. The results of this study point to a group of genes that differed in their salinity-dependent regulation pattern in the anterior intestine as potentially having a role in the differential salinity tolerance of these two closely related species. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative transcriptome analysis of sweet corn seedlings under low-temperature stress

    Directory of Open Access Journals (Sweden)

    Jihua Mao

    2017-10-01

    Full Text Available Stress induced by low temperature, which represents a widespread environmental factor, strongly affects maize growth and yield. However, the physiological characteristics and molecular regulatory mechanisms of maize seedlings in response to cold remain poorly understood. In this study, using RNA-seq, we investigated the transcriptome profiles of two sweet corn inbred lines, “Richao” (RC and C5, under cold stress. A total of 357 and 455 differentially expressed genes (DEGs were identified in the RC and C5 lines, respectively, 94 DEGs were detected as common DEGs related to cold response in both genotypes, and a total of 589 DEGs were detected as cold tolerance-associated genes. By combining protein function clustering analysis and significantly enriched Gene Ontology (GO terms analysis, we suggest that transcription factors may play a dominating role in the cold stress response and tolerance of sweet corn. Furthermore, 74 differentially expressed transcription factors were identified, of those many genes involved in the metabolism and regulation of hormones. These results expand our understanding of the complex mechanisms involved in chilling tolerance in maize, and provide a set of candidate genes for further genetic analyses.

  12. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae.

    Directory of Open Access Journals (Sweden)

    Ailton B Santa Brigida

    Full Text Available Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa, which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7 from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.

  13. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae.

    Science.gov (United States)

    Santa Brigida, Ailton B; Rojas, Cristian A; Grativol, Clícia; de Armas, Elvismary M; Entenza, Júlio O P; Thiebaut, Flávia; Lima, Marcelo de F; Farrinelli, Laurent; Hemerly, Adriana S; Lifschitz, Sérgio; Ferreira, Paulo C G

    2016-01-01

    Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.

  14. Comparative transcriptomic analysis of the response to cold acclimation in Eucalyptus dunnii.

    Directory of Open Access Journals (Sweden)

    Yiqing Liu

    Full Text Available Eucalyptus dunnii is an important macrophanerophyte with high economic value. However, low temperature stress limits its productivity and distribution. To study the cold response mechanisms of E. dunnii, 5 cDNA libraries were constructed from mRNA extracted from leaves exposed to cold stress for varying lengths of time and were evaluated by RNA-Seq analysis. The assembly of the Illumina datasets was optimized using various assembly programs and parameters. The final optimized assembly generated 205,325 transcripts with an average length of 1,701 bp and N50 of 2,627 bp, representing 349.38 Mb of the E. dunnii transcriptome. Among these transcripts, 134,358 transcripts (65.4% were annotated in the Nr database. According to the differential analysis results, most transcripts were up-regulated as the cold stress prolonging, suggesting that these transcripts may be involved in the response to cold stress. In addition, the cold-relevant GO categories, such as 'response to stress' and 'translational initiation', were the markedly enriched GO terms. The assembly of the E. dunnii gene index and the GO classification performed in this study will serve as useful genomic resources for the genetic improvement of E. dunnii and also provide insights into the molecular mechanisms of cold acclimation in E. dunnii.

  15. De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering.

    Science.gov (United States)

    Chen, Yue; Shen, Qi; Lin, Renan; Zhao, Zhuangliu; Shen, Chenjia; Sun, Chongbo

    2017-10-01

    Artificial control of flowering time is pivotal for the ornamental value of orchids including the genus Dendrobium. Although various flowering pathways have been revealed in model plants, little information is available on the genetic regualtion of flowering in Dendrobium. To identify the critical genes associated with flowering, transcriptomes from four organs (leaf, root, stem and flower) of D. officinale were analyzed in our study. In total, 2645 flower-specific transcripts were identified. Functional annotation and classification suggested that several metabolic pathways, including four sugar-related pathways and two fatty acid-related pathways, were enriched. A total of 24 flowering-related transcripts were identified in D. officinale according to the similarities to their homologous genes from Arabidopsis, suggesting that most classical flowering pathways existed in D. officinale. Furthermore, phylogenetic analysis suggested that the FLOWERING LOCUS T homologs in orchids are highly conserved during evolution process. In addition, expression changes in nine randomly-selected critical flowering-related transcripts between the vegetative stage and reproductive stage were quantified by qRT-PCR analysis. Our study provided a number of candidate genes and sequence resources for investigating the mechanisms underlying the flowering process of the Dendrobium genus. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Transcriptomic analysis of rice aleurone cells identified a novel abscisic acid response element.

    Science.gov (United States)

    Watanabe, Kenneth A; Homayouni, Arielle; Gu, Lingkun; Huang, Kuan-Ying; Ho, Tuan-Hua David; Shen, Qingxi J

    2017-09-01

    Seeds serve as a great model to study plant responses to drought stress, which is largely mediated by abscisic acid (ABA). The ABA responsive element (ABRE) is a key cis-regulatory element in ABA signalling. However, its consensus sequence (ACGTG(G/T)C) is present in the promoters of only about 40% of ABA-induced genes in rice aleurone cells, suggesting other ABREs may exist. To identify novel ABREs, RNA sequencing was performed on aleurone cells of rice seeds treated with 20 μM ABA. Gibbs sampling was used to identify enriched elements, and particle bombardment-mediated transient expression studies were performed to verify the function. Gene ontology analysis was performed to predict the roles of genes containing the novel ABREs. This study revealed 2443 ABA-inducible genes and a novel ABRE, designated as ABREN, which was experimentally verified to mediate ABA signalling in rice aleurone cells. Many of the ABREN-containing genes are predicted to be involved in stress responses and transcription. Analysis of other species suggests that the ABREN may be monocot specific. This study also revealed interesting expression patterns of genes involved in ABA metabolism and signalling. Collectively, this study advanced our understanding of diverse cis-regulatory sequences and the transcriptomes underlying ABA responses in rice aleurone cells. © 2017 John Wiley & Sons Ltd.

  17. Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy.

    Science.gov (United States)

    Galindo González, Leonardo M; El Kayal, Walid; Ju, Chelsea J-T; Allen, Carmen C G; King-Jones, Susanne; Cooke, Janice E K

    2012-04-01

    In the autumn, stems of woody perennials such as forest trees undergo a transition from active growth to dormancy. We used microarray transcriptomic profiling in combination with a proteomics analysis to elucidate processes that occur during this growth-to-dormancy transition in a conifer, white spruce (Picea glauca[Moench] Voss). Several differentially expressed genes were likely associated with the developmental transition that occurs during growth cessation in the cambial zone and the concomitant completion of cell maturation in vascular tissues. Genes encoding for cell wall and membrane biosynthetic enzymes showed transcript abundance patterns consistent with completion of cell maturation, and also of cell wall and membrane modifications potentially enabling cells to withstand the harsh conditions of winter. Several differentially expressed genes were identified that encoded putative regulators of cambial activity, cell development and of the photoperiodic pathway. Reconfiguration of carbon allocation figured centrally in the tree's overwintering preparations. For example, genes associated with carbon-based defences such as terpenoids were down-regulated, while many genes associated with protein-based defences and other stress mitigation mechanisms were up-regulated. Several of these correspond to proteins that were accumulated during the growth-to-dormancy transition, emphasizing the importance of stress protection in the tree's adaptive response to overwintering. © 2011 Blackwell Publishing Ltd.

  18. CyanoEXpress: A web database for exploration and visualisation of the integrated transcriptome of cyanobacterium Synechocystis sp. PCC6803.

    Science.gov (United States)

    Hernandez-Prieto, Miguel A; Futschik, Matthias E

    2012-01-01

    Synechocystis sp. PCC6803 is one of the best studied cyanobacteria and an important model organism for our understanding of photosynthesis. The early availability of its complete genome sequence initiated numerous transcriptome studies, which have generated a wealth of expression data. Analysis of the accumulated data can be a powerful tool to study transcription in a comprehensive manner and to reveal underlying regulatory mechanisms, as well as to annotate genes whose functions are yet unknown. However, use of divergent microarray platforms, as well as distributed data storage make meta-analyses of Synechocystis expression data highly challenging, especially for researchers with limited bioinformatic expertise and resources. To facilitate utilisation of the accumulated expression data for a wider research community, we have developed CyanoEXpress, a web database for interactive exploration and visualisation of transcriptional response patterns in Synechocystis. CyanoEXpress currently comprises expression data for 3073 genes and 178 environmental and genetic perturbations obtained in 31 independent studies. At present, CyanoEXpress constitutes the most comprehensive collection of expression data available for Synechocystis and can be freely accessed. The database is available for free at http://cyanoexpress.sysbiolab.eu.

  19. Comparison of the transcriptomic analysis between two Chinese white pear (Pyrus bretschneideri Rehd. genotypes of different stone cells contents.

    Directory of Open Access Journals (Sweden)

    Jinyun Zhang

    Full Text Available Stone cell content is thought to be one of the key determinants for fruit quality in pears. However, the molecular mechanism of stone cell development remains poorly understood. In this study, we found that the stone cell clusters (SCCs distribution and area in 'Dangshan Su' (with abundant stone cells were higher as compared to 'Lianglizaosu' (low stone cell content bud sport of 'Dangshan Su' based on the histochemical staining, and the correlations of lignin content with stone cell content and SCC area was significant. The fruits of 'Dangshan Su' and 'Lianglizaosu' at three different developmental stages (23 and 55 days after flowering and mature were sampled for comparative transcriptome analysis to explore the metabolic pathways associated with stone cell development. A total of 42444 unigenes were obtained from two varieties, among which 7203 differentially expressed genes (DEGs were identified by comparison of the six transcriptomes. Specifically, many DEGs associated with lignin biosynthesis were identified, including coumaroylquinate 3-monooxygenase (C3H, shikimate O-hydroxycinnamoyltransferase (HCT, ferulate 5-hydroxylase (F5H, cinnamyl alcohol dehydrogenase (CAD and peroxidase (POD, as well as genes related to carbon metabolism, such as sorbitol dehydrogenase-like (SDH-like and ATP-dependent 6-phosphofructokinase (ATP-PFK. At the peak of the stone cell content (55 days after flowering, the expression level of these genes in 'Dangshan Su' was significantly increased compared with 'Lianglizaosu', indicating that these genes were closely related to stone cell development. We validated the transcriptional levels of 33 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR analysis. The results were consistent with the transcriptome analysis, indicating the reliability of transcriptome data. In addition, subcellular localization analysis of three DEGs in lignin synthesis (PbC3H, PbF5H and PbPOD revealed that these proteins are

  20. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    OpenAIRE

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours after excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from stem base to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the cate...

  1. Transcriptome analysis of watermelon (Citrullus lanatus) fruits in response to Cucumber green mottle mosaic virus (CGMMV) infection

    OpenAIRE

    Li, Xiaodong; An, Mengnan; Xia, Zihao; Bai, Xiaojiao; Wu, Yuanhua

    2017-01-01

    Cucumber green mottle mosaic virus (CGMMV) belongs to the Tobamovirus genus and is a major global plant virus on cucurbit plants. It causes severe disease symptoms on infected watermelon plants (Citrullus lanatus), particularly inducing fruit decay. However, little is known about the molecular mechanism of CGMMV-induced watermelon fruit decay. For this study, comparative analysis of transcriptome profiles of CGMMV-inoculated and mock-inoculated watermelon fruits were conducted via RNA-Seq. A ...

  2. Gene expression patterns regulating embryogenesis based on the integrated de novo transcriptome assembly of the Japanese flounder.

    Science.gov (United States)

    Fu, Yuanshuai; Jia, Liang; Shi, Zhiyi; Zhang, Junling; Li, Wenjuan

    2017-06-01

    The Japanese flounder (Paralichthys olivaceus) is one of the most important commercial and biological marine fishes. However, the molecular biology involved during embryogenesis and early development of the Japanese flounder remains largely unknown due to a lack of genomic resources. A comprehensive and integrated transcriptome is necessary to study the molecular mechanisms of early development and to allow for the detailed characterization of gene expression patterns during embryogenesis; this approach is critical to understanding the processes that occur prior to mesectoderm formation during early embryonic development. In this study, more than 117.8 million 100bp PE reads were generated from pooled RNA extracted from unfertilized eggs to 41dph (days post-hatching) embryos and were sequenced using Illumina pair-end sequencing technology. In total, 121,513 transcripts (≥200bp) were obtained using de novo assembly. A sequence similarity search indicated that 52,338 transcripts show significant similarity to 22,462 known proteins from the NCBI non-redundant database and the Swiss-Prot protein database and were annotated using Blast2GO. GO terms were assigned to 44,627 transcripts with 12,006 functional terms, and 10,024 transcripts were assigned to 133 KEGG pathways. Furthermore, gene expression differences between the unfertilized egg and the gastrula embryo were analysed using Illumina RNA-Seq with single-read sequencing technology, and 24,837 differentially and specifically expressed transcripts were identified and included 5,286 annotated transcripts and 19,569 non-annotated transcripts. All of the expressed transcripts in the unfertilized egg and gastrula embryo were further classified as maternal, zygotic, or maternal-zygotic transcripts, which may help us to understand the roles of these transcripts during the embryonic development of the Japanese flounder. Thus, the results will contribute to an improved understanding of the gene expression patterns and

  3. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  4. De novo Sequencing and Analysis of Lemongrass Transcriptome Provides First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Directory of Open Access Journals (Sweden)

    Seema Meena

    2016-07-01

    Full Text Available Aromatic grasses of the genus Cymbopogon (Poaceae family represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavour, fragrance, cosmetic and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step towards understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases (TPS, pyrophosphatases (PPase, alcohol dehydrogenases (ADH, aldo-keto reductases (AKR, carotenoid cleavage dioxygenases (CCD, alcohol acetyltransferases (AAT and aldehyde dehydrogenases (ALDH, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes and acetates. Molecular modeling and docking further supported the role of identified enzymes in aroma formation in Cymbopogon. Also, simple sequence repeats (SSRs were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  5. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  6. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    Science.gov (United States)

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  7. Transcriptome assembly and analysis of Tibetan Hulless Barley (Hordeum vulgare L. var. nudum developing grains, with emphasis on quality properties.

    Directory of Open Access Journals (Sweden)

    Xin Chen

    Full Text Available BACKGROUND: Hulless barley is attracting increasing attention due to its unique nutritional value and potential health benefits. However, the molecular biology of the barley grain development and nutrient storage are not well understood. Furthermore, the genetic potential of hulless barley has not been fully tapped for breeding. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we investigated the transcriptome features during hulless barley grain development. Using Illumina paired-end RNA-Sequencing, we generated two data sets of the developing grain transcriptomes from two hulless barley landraces. A total of 13.1 and 12.9 million paired-end reads with lengths of 90 bp were generated from the two varieties and were assembled to 48,863 and 45,788 unigenes, respectively. A combined dataset of 46,485 All-Unigenes were generated from two transcriptomes with an average length of 542 bp, and 36,278 among were annotated with gene descriptions, conserved protein domains or gene ontology terms. Furthermore, sequences and expression levels of genes related to the biosynthesis of storage reserve compounds (starch, protein, and β-glucan were analyzed, and their temporal and spatial patterns were deduced from the transcriptome data of cultivated barley Morex. CONCLUSIONS/SIGNIFICANCE: We established a sequences and functional annotation integrated database and examined the expression profiles of the developing grains of Tibetan hulless barley. The characterization of genes encoding storage proteins and enzymes of starch synthesis and (1-3;1-4-β-D-glucan synthesis provided an overview of changes in gene expression associated with grain nutrition and health properties. Furthermore, the characterization of these genes provides a gene reservoir, which helps in quality improvement of hulless barley.

  8. Transcriptomic Analysis of Responses to Imbalanced Carbon: Nitrogen Availabilities in Rice Seedlings.

    Directory of Open Access Journals (Sweden)

    Aobo Huang

    Full Text Available The internal C:N balance must be tightly controlled for the normal growth and development of plants. However, the underlying mechanisms, by which plants sense and balance the intracellular C:N status correspondingly to exogenous C:N availabilities remain elusive. In this study, we use comparative gene expression analysis to identify genes that are responsive to imbalanced C:N treatments in the aerial parts of rice seedlings. Transcripts of rice seedlings treated with four C:N availabilities (1:1, 1:60, 60:1 and 60:60 were compared and two groups of genes were classified: high C:low N responsive genes and low C:high N responsive genes. Our analysis identified several functional correlated genes including chalcone synthase (CHS, chlorophyll a-b binding protein (CAB and other genes that are implicated in C:N balancing mechanism, such as alternative oxidase 1B (OsAOX1B, malate dehydrogenase (OsMDH and lysine and histidine specific transporter 1 (OsLHT1. Additionally, six jasmonate synthetic genes and key regulatory genes involved in abiotic and biotic stresses, such as OsMYB4, autoinhibited calcium ATPase 3 (OsACA3 and pleiotropic drug resistance 9 (OsPDR9, were differentially expressed under high C:low N treatment. Gene ontology analysis showed that high C:low N up-regulated genes were primarily enriched in fatty acid biosynthesis and defense responses. Coexpression network analysis of these genes identified eight jasmonate ZIM domain protein (OsJAZ genes and several defense response related regulators, suggesting that high C:low N status may act as a stress condition, which induces defense responses mediated by jasmonate signaling pathway. Our transcriptome analysis shed new light on the C:N balancing mechanisms and revealed several important regulators of C:N status in rice seedlings.

  9. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease.

    Directory of Open Access Journals (Sweden)

    Christel Cazalet

    2010-02-01

    Full Text Available Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these

  10. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    2016-12-01

    Full Text Available Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus, one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-wild or resistant near isogenic line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher

  11. A transcriptomic analysis of gene expression in the venom gland of the snake Bothrops alternatus (urutu

    Directory of Open Access Journals (Sweden)

    Menossi Marcelo

    2010-10-01

    Full Text Available Abstract Background The genus Bothrops is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of Bothrops alternatus, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay. Results A cDNA library of 5,350 expressed sequence tags (ESTs was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%, bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%, phospholipases A2 (5.6%, serine proteinases (1.9% and C-type lectins (1.5%. Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A2 were essentially acidic; no basic PLA2 were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed. Conclusions Bothrops alternatus venom gland

  12. Transcriptomic and physiological analysis of common duckweed Lemna minor responses to NH4(+) toxicity.

    Science.gov (United States)

    Wang, Wenguo; Li, Rui; Zhu, Qili; Tang, Xiaoyu; Zhao, Qi

    2016-04-18

    Plants can suffer ammonium (NH4 (+)) toxicity, particularly when NH4 (+) is supplied as the sole nitrogen source. However, our knowledge about the underlying mechanisms of NH4 (+) toxicity is still largely unknown. Lemna minor, a model duckweed species, can grow well in high NH4 (+) environment but to some extent can also suffer toxic effects. The transcriptomic and physiological analysis of L. minor responding to high NH4 (+) may provide us some interesting and useful information not only in toxic processes, but also in tolerance mechanisms. The L. minor cultured in the Hoagland solution were used as the control (NC), and in two NH4 (+) concentrations (NH4 (+) was the sole nitrogen source), 84 mg/L (A84) and 840 mg/L (A840) were used as stress treatments. The NH4 (+) toxicity could inhibit the growth of L. minor. Reactive oxygen species (ROS) and cell death were studied using stained fronds under toxic levels of NH4 (+). The malondialdehyde content and the activities of superoxide dismutase and peroxidase increased from NC to A840, rather than catalase and ascorbate peroxidase. A total of 6.62G nucleotides were generated from the three distinct libraries. A total of 14,207 differentially expressed genes (DEGs) among 70,728 unigenes were obtained. All the DEGs could be clustered into 7 profiles. Most DEGs were down-regulated under NH4 (+) toxicity. The genes required for lignin biosynthesis in phenylpropanoid biosynthesis pathway were up-regulated. ROS oxidative-related genes and programmed cell death (PCD)-related genes were also analyzed and indicated oxidative damage and PCD occurring under NH4 (+) toxicity. The first large transcriptome study in L. minor responses to NH4 (+) toxicity was reported in this work. NH4 (+) toxicity could induce ROS accumulation that causes oxidative damage and thus induce cell death in L. minor. The antioxidant enzyme system was activated under NH4 (+) toxicity for ROS scavenging. The phenylpropanoid pathway was stimulated under

  13. Brain Transcriptome Profiling Analysis of Nile Tilapia (Oreochromis niloticus Under Long-Term Hypersaline Stress

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2018-03-01

    Full Text Available The fish brain plays an important role in controlling growth, development, reproduction, and adaptation to environmental change. However, few studies stem from the perspective of whole transcriptome change in a fish brain and its response to long-term hypersaline stress. This study compares the differential transcriptomic responses of juvenile Nile tilapia (Oreochromis niloticus maintained for 8 weeks in brackish water (16 practical salinity units, psu and in freshwater. Fish brains from each treatment were collected for RNA-seq analysis to identify potential genes and pathways responding to hypersaline stress. A total of 27,089 genes were annotated, and 391 genes were expressed differently in the salinity treatment. Ten pathways containing 40 differentially expressed genes were identified in the tilapia brain. Antigen processing and presentation and phagosome were the two principally affected pathways in the immune system. Thirty-one of 40 genes were involved in various expressions associated with environmental information processing pathways such as neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction, the Jak-STAT signaling pathway, cell adhesion molecules (CAMs, and the PI3K-Akt signaling pathway, which are the upstream pathways for modulation of immunity and osmoregulation. The most-changed genes (>5-fold were all down-regulated, including four growth hormone/prolactin gene families, i.e., prolactin precursor (−10.62, prolactin-1 (−11, somatotropin (−10.15, somatolactin-like (−6.18, and two other genes [thyrotropin subunit beta (−7.73 and gonadotropin subunit beta-2 (−5.06] that stimulated prolactin release in tilapia. The downregulation pattern of these genes corroborates the decrease in tilapia immunity with increasing salinity and reveals an adaptive mechanism of tilapia to long-term hypersaline stress. Ovarian steroidogenesis, isoquinoline alkaloid biosynthesis, and phenylalanine metabolism are the

  14. Lipid profiling and transcriptomic analysis reveals a functional interplay between estradiol and growth hormone in liver.

    Directory of Open Access Journals (Sweden)

    Leandro Fernández-Pérez

    Full Text Available 17β-estradiol (E2 may interfere with endocrine, metabolic, and gender-differentiated functions in liver in both females and males. Indirect mechanisms play a crucial role because of the E2 influence on the pituitary GH secretion and the GHR-JAK2-STAT5 signaling pathway in the target tissues. E2, through its interaction with the estrogen receptor, exerts direct effects on liver. Hypothyroidism also affects endocrine and metabolic functions of the liver, rendering a metabolic phenotype with features that mimic deficiencies in E2 or GH. In this work, we combined the lipid and transcriptomic analysis to obtain comprehensive information on the molecular mechanisms of E2 effects, alone and in combination with GH, to regulate liver functions in males. We used the adult hypothyroid-orchidectomized rat model to minimize the influence of internal hormones on E2 treatment and to explore its role in male-differentiated functions. E2 influenced genes involved in metabolism of lipids and endo-xenobiotics, and the GH-regulated endocrine, metabolic, immune, and male-specific responses. E2 induced a female-pattern of gene expression and inhibited GH-regulated STAT5b targeted genes. E2 did not prevent the inhibitory effects of GH on urea and amino acid metabolism-related genes. The combination of E2 and GH decreased transcriptional immune responses. E2 decreased the hepatic content of saturated fatty acids and induced a transcriptional program that seems to be mediated by the activation of PPARα. In contrast, GH inhibited fatty acid oxidation. Both E2 and GH replacements reduced hepatic CHO levels and increased the formation of cholesterol esters and triacylglycerols. Notably, the hepatic lipid profiles were endowed with singular fingerprints that may be used to segregate the effects of different hormonal replacements. In summary, we provide in vivo evidence that E2 has a significant impact on lipid content and transcriptome in male liver and that E2 exerts a

  15. PEA: an integrated R toolkit for plant epitranscriptome analysis.

    Science.gov (United States)

    Zhai, Jingjing; Song, Jie; Cheng, Qian; Tang, Yunjia; Ma, Chuang

    2018-05-29

    The epitranscriptome, also known as chemical modifications of RNA (CMRs), is a newly discovered layer of gene regulation, the biological importance of which emerged through analysis of only a small fraction of CMRs detected by high-throughput sequencing technologies. Understanding of the epitranscriptome is hampered by the absence of computational tools for the systematic analysis of epitranscriptome sequencing data. In addition, no tools have yet been designed for accurate prediction of CMRs in plants, or to extend epitranscriptome analysis from a fraction of the transcriptome to its entirety. Here, we introduce PEA, an integrated R toolkit to facilitate the analysis of plant epitranscriptome data. The PEA toolkit contains a comprehensive collection of functions required for read mapping, CMR calling, motif scanning and discovery, and gene functional enrichment analysis. PEA also takes advantage of machine learning technologies for transcriptome-scale CMR prediction, with high prediction accuracy, using the Positive Samples Only Learning algorithm, which addresses the two-class classification problem by using only positive samples (CMRs), in the absence of negative samples (non-CMRs). Hence PEA is a versatile epitranscriptome analysis pipeline covering CMR calling, prediction, and annotation, and we describe its application to predict N6-methyladenosine (m6A) modifications in Arabidopsis thaliana. Experimental results demonstrate that the toolkit achieved 71.6% sensitivity and 73.7% specificity, which is superior to existing m6A predictors. PEA is potentially broadly applicable to the in-depth study of epitranscriptomics. PEA Docker image is available at https://hub.docker.com/r/malab/pea, source codes and user manual are available at https://github.com/cma2015/PEA. chuangma2006@gmail.com. Supplementary data are available at Bioinformatics online.

  16. Comparative transcriptomic analysis reveals similarities and dissimilarities in Saccharomyces cerevisiae wine strains response to nitrogen availability.

    Directory of Open Access Journals (Sweden)

    Catarina Barbosa

    Full Text Available Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23, under low (67 mg/L and high nitrogen (670 mg/L regimes, at three time points during fermentation (12 h, 24 h and 96 h. Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12 h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this

  17. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation

    Directory of Open Access Journals (Sweden)

    Treuner-Lange Anke

    2010-04-01

    Full Text Available Abstract Background Myxococcus xanthus is a Gram negative bacterium that can differentiate into metabolically quiescent, environmentally resistant spores. Little is known about the mechanisms involved in differentiation in part because sporulation is normally initiated at the culmination of a complex starvation-induced developmental program and only inside multicellular fruiting bodies. To obtain a broad overview of the sporulation process and to identify novel genes necessary for differentiation, we instead performed global transcriptome analysis of an artificial chemically-induced sporulation process in which addition of glycerol to vegetatively growing liquid cultures of M. xanthus leads to rapid and synchronized differentiation of nearly all cells into myxospore-like entities. Results Our analyses identified 1 486 genes whose expression was significantly regulated at least two-fold within four hours of chemical-induced differentiation. Most of the previously identified sporulation marker genes were significantly upregulated. In contrast, most genes that are required to build starvation-induced multicellular fruiting bodies, but which are not required for sporulation per se, were not significantly regulated in our analysis. Analysis of functional gene categories significantly over-represented in the regulated genes, suggested large rearrangements in core metabolic pathways, and in genes involved in protein synthesis and fate. We used the microarray data to identify a novel operon of eight genes that, when mutated, rendered cells unable to produce viable chemical- or starvation-induced spores. Importantly, these mutants displayed no defects in building fruiting bodies, suggesting these genes are necessary for the core sporulation process. Furthermore, during the starvation-induced developmental program, these genes were expressed in fruiting bodies but not in peripheral rods, a subpopulation of developing cells which do not sporulate

  18. Comparative Transcriptomic Analysis Reveals Similarities and Dissimilarities in Saccharomyces cerevisiae Wine Strains Response to Nitrogen Availability

    Science.gov (United States)

    Barbosa, Catarina; García-Martínez, José; Pérez-Ortín, José E.; Mendes-Ferreira, Ana

    2015-01-01

    Nitrogen levels in grape-juices are of major importance in winemaking ensuring adequate yeast growth and fermentation performance. Here we used a comparative transcriptome analysis to uncover wine yeasts responses to nitrogen availability during fermentation. Gene expression was assessed in three genetically and phenotypically divergent commercial wine strains (CEG, VL1 and QA23), under low (67 mg/L) and high nitrogen (670 mg/L) regimes, at three time points during fermentation (12h, 24h and 96h). Two-way ANOVA analysis of each fermentation condition led to the identification of genes whose expression was dependent on strain, fermentation stage and on the interaction of both factors. The high fermenter yeast strain QA23 was more clearly distinct from the other two strains, by differential expression of genes involved in flocculation, mitochondrial functions, energy generation and protein folding and stabilization. For all strains, higher transcriptional variability due to fermentation stage was seen in the high nitrogen fermentations. A positive correlation between maximum fermentation rate and the expression of genes involved in stress response was observed. The finding of common genes correlated with both fermentation activity and nitrogen up-take underlies the role of nitrogen on yeast fermentative fitness. The comparative analysis of genes differentially expressed between both fermentation conditions at 12h, where the main difference was the level of nitrogen available, showed the highest variability amongst strains revealing strain-specific responses. Nevertheless, we were able to identify a small set of genes whose expression profiles can quantitatively assess the common response of the yeast strains to varying nitrogen conditions. The use of three contrasting yeast strains in gene expression analysis prompts the identification of more reliable, accurate and reproducible biomarkers that will facilitate the diagnosis of deficiency of this nutrient in the grape

  19. Transcriptomic analysis of human retinal detachment reveals both inflammatory response and photoreceptor death.

    Directory of Open Access Journals (Sweden)

    Marie-Noëlle Delyfer

    Full Text Available BACKGROUND: Retinal detachment often leads to a severe and permanent loss of vision and its therapeutic management remains to this day exclusively surgical. We have used surgical specimens to perform a differential analysis of the transcriptome of human retinal tissues following detachment in order to identify new potential pharmacological targets that could be used in combination with surgery to further improve final outcome. METHODOLOGY/PRINCIPAL FINDINGS: Statistical analysis reveals major involvement of the immune response in the disease. Interestingly, using a novel approach relying on coordinated expression, the interindividual variation was monitored to unravel a second crucial aspect of the pathological process: the death of photoreceptor cells. Within the genes identified, the expression of the major histocompatibility complex I gene HLA-C enables diagnosis of the disease, while PKD2L1 and SLCO4A1 -which are both down-regulated- act synergistically to provide an estimate of the duration of the retinal detachment process. Our analysis thus reveals the two complementary cellular and molecular aspects linked to retinal detachment: an immune response and the degeneration of photoreceptor cells. We also reveal that the human specimens have a higher clinical value as compared to artificial models that point to IL6 and oxidative stress, not implicated in the surgical specimens studied here. CONCLUSIONS/SIGNIFICANCE: This systematic analysis confirmed the occurrence of both neurodegeneration and inflammation during retinal detachment, and further identifies precisely the modification of expression of the different genes implicated in these two phenomena. Our data henceforth give a new insight into the disease process and provide a rationale for therapeutic strategies aimed at limiting inflammation and photoreceptor damage associated with retinal detachment and, in turn, improving visual prognosis after retinal surgery.

  20. Transcriptomic Analysis of Gibberellin- and Paclobutrazol-Treated Rice Seedlings under Submergence

    Directory of Open Access Journals (Sweden)

    Jing Xiang

    2017-10-01

    Full Text Available Submergence stress is a limiting factor for rice growing in rainfed lowland areas of the world. It is known that the phytohormone gibberellin (GA has negative effects on submergence tolerance in rice, while its inhibitor paclobutrazol (PB does the opposite. However, the physiological and molecular basis underlying the GA- and PB-regulated submergence response remains largely unknown. In this study, we reveal that PB could significantly enhance rice seedling survival by retaining a higher level of chlorophyll content and alcohol dehydrogenase activity, and decelerating the consumption of non-structure carbohydrate when compared with the control and GA-treated samples. Further transcriptomic analysis identified 3936 differentially expressed genes (DEGs among the GA- and PB-treated samples and control, which are extensively involved in the submergence and other abiotic stress responses, phytohormone biosynthesis and signaling, photosynthesis, and nutrient metabolism. The results suggested that PB enhances rice survival under submergence through maintaining the photosynthesis capacity and reducing nutrient metabolism. Taken together, the current study provided new insight into the mechanism of phytohormone-regulated submergence response in rice.

  1. In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics

    Directory of Open Access Journals (Sweden)

    Mao Peng

    2018-05-01

    Full Text Available Aspergillus niger is one of the most widely used fungi to study the conversion of the lignocellulosic feedstocks into fermentable sugars. Understanding the sugar uptake system of A. niger is essential to improve the efficiency of the process of fungal plant biomass degradation. In this study, we report a comprehensive characterization of the sugar transportome of A. niger by combining phylogenetic and comparative transcriptomic analyses. We identified 86 putative sugar transporter (ST genes based on a conserved protein domain search. All these candidates were then classified into nine subfamilies and their functional motifs and possible sugar-specificity were annotated according to phylogenetic analysis and literature mining. Furthermore, we comparatively analyzed the ST gene expression on a large set of fungal growth conditions including mono-, di- and polysaccharides, and mutants of transcriptional regulators. This revealed that transporter genes from the same phylogenetic clade displayed very diverse expression patterns and were regulated by different transcriptional factors. The genome-wide study of STs of A. niger provides new insights into the mechanisms underlying an extremely flexible metabolism and high nutritional versatility of A. niger and will facilitate further biochemical characterization and industrial applications of these candidate STs.

  2. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis.

    Science.gov (United States)

    Li, Bojiang; Dong, Chao; Li, Pinghua; Ren, Zhuqing; Wang, Han; Yu, Fengxiang; Ning, Caibo; Liu, Kaiqing; Wei, Wei; Huang, Ruihua; Chen, Jie; Wu, Wangjun; Liu, Honglin

    2016-10-17

    Meat color is considered to be the most important indicator of meat quality, however, the molecular mechanisms underlying traits related to meat color remain mostly unknown. In this study, to elucidate the molecular basis of meat color, we constructed six cDNA libraries from biceps femoris (Bf) and soleus (Sol), which exhibit obvious differences in meat color, and analyzed the whole-transcriptome differences between Bf (white muscle) and Sol (red muscle) using high-throughput sequencing technology. Using DEseq2 method, we identified 138 differentially expressed genes (DEGs) between Bf and Sol. Using DEGseq method, we identified 770, 810, and 476 DEGs in comparisons between Bf and Sol in three separate animals. Of these DEGs, 52 were overlapping DEGs. Using these data, we determined the enriched GO terms, metabolic pathways and candidate genes associated with meat color traits. Additionally, we mapped 114 non-redundant DEGs to the meat color QTLs via a comparative analysis with the porcine quantitative trait loci (QTL) database. Overall, our data serve as a valuable resource for identifying genes whose functions are critical for meat color traits and can accelerate studies of the molecular mechanisms of meat color formation.

  3. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    Science.gov (United States)

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  4. Transcriptomic analysis of Siberian ginseng (Eleutherococcus senticosus) to discover genes involved in saponin biosynthesis.

    Science.gov (United States)

    Hwang, Hwan-Su; Lee, Hyoshin; Choi, Yong Eui

    2015-03-14

    Eleutherococcus senticosus, Siberian ginseng, is a highly valued woody medicinal plant belonging to the family Araliaceae. E. senticosus produces a rich variety of saponins such as oleanane-type, noroleanane-type, 29-hydroxyoleanan-type, and lupane-type saponins. Genomic or transcriptomic approaches have not been used to investigate the saponin biosynthetic pathway in this plant. In this study, de novo sequencing was performed to select candidate genes involved in the saponin biosynthetic pathway. A half-plate 454 pyrosequencing run produced 627,923 high-quality reads with an average sequence length of 422 bases. De novo assembly generated 72,811 unique sequences, including 15,217 contigs and 57,594 singletons. Approximately 48,300 (66.3%) unique sequences were annotated using BLAST similarity searches. All of the mevalonate pathway genes for saponin biosynthesis starting from acetyl-CoA were isolated. Moreover, 206 reads of cytochrome P450 (CYP) and 145 reads of uridine diphosphate glycosyltransferase (UGT) sequences were isolated. Based on methyl jasmonate (MeJA) treatment and real-time PCR (qPCR) analysis, 3 CYPs and 3 UGTs were finally selected as candidate genes involved in the saponin biosynthetic pathway. The identified sequences associated with saponin biosynthesis will facilitate the study of the functional genomics of saponin biosynthesis and genetic engineering of E. senticosus.

  5. Transcriptome analysis of the sea cucumber (Apostichopus japonicus) with variation in individual growth.

    Science.gov (United States)

    Gao, Lei; He, Chongbo; Bao, Xiangbo; Tian, Meilin; Ma, Zhen

    2017-01-01

    The sea cucumber (Apostichopus japonicus) is an economically important aquaculture species in China. However, the serious individual growth variation often caused financial losses to farmers and the genetic mechanisms are poorly understood. In the present study, the extensively analysis at the transcriptome level for individual growth variation in sea cucumber was carried out. A total of 118946 unigenes were assembled from 255861 transcripts, with N50 of 1700. Of all unigenes, about 23% were identified with at least one significant match to known databases. In all four pair of comparison, 1840 genes were found to be expressed differently. Global hypometabolism was found to be occurred in the slow growing population, based on which the hypothesis was raised that growth retardation in individual growth variation of sea cucumber is one type of dormancy which is used to be against to adverse circumstances. Besides, the pathways such as ECM-receptor interaction and focal adhesion were enriched in the maintenance of cell and tissue structure and communication. Further, 76645 SSRs, 765242 SNPs and 146886 ins-dels were detected in the current study providing an extensive set of data for future studies of genetic mapping and selective breeding. In summary, these results will provides deep insight into the molecular basis of individual growth variation in marine invertebrates, and be valuable for understanding the physiological differences of growth process.

  6. Transcriptome analysis of the sea cucumber (Apostichopus japonicus with variation in individual growth.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available The sea cucumber (Apostichopus japonicus is an economically important aquaculture species in China. However, the serious individual growth variation often caused financial losses to farmers and the genetic mechanisms are poorly understood. In the present study, the extensively analysis at the transcriptome level for individual growth variation in sea cucumber was carried out. A total of 118946 unigenes were assembled from 255861 transcripts, with N50 of 1700. Of all unigenes, about 23% were identified with at least one significant match to known databases. In all four pair of comparison, 1840 genes were found to be expressed differently. Global hypometabolism was found to be occurred in the slow growing population, based on which the hypothesis was raised that growth retardation in individual growth variation of sea cucumber is one type of dormancy which is used to be against to adverse circumstances. Besides, the pathways such as ECM-receptor interaction and focal adhesion were enriched in the maintenance of cell and tissue structure and communication. Further, 76645 SSRs, 765242 SNPs and 146886 ins-dels were detected in the current study providing an extensive set of data for future studies of genetic mapping and selective breeding. In summary, these results will provides deep insight into the molecular basis of individual growth variation in marine invertebrates, and be valuable for understanding the physiological differences of growth process.

  7. Transcriptome Analysis in Haematococcus pluvialis: Astaxanthin Induction by Salicylic Acid (SA) and Jasmonic Acid (JA).

    Science.gov (United States)

    Gao, Zhengquan; Li, Yan; Wu, Guanxun; Li, Guoqiang; Sun, Haifeng; Deng, Suzhen; Shen, Yicheng; Chen, Guoqiang; Zhang, Ruihao; Meng, Chunxiao; Zhang, Xiaowen

    2015-01-01

    Haematococcus pluvialis is an astaxanthin-rich microalga that can increase its astaxanthin production by salicylic acid (SA) or jasmonic acid (JA) induction. The genetic transcriptome details of astaxanthin biosynthesis were analyzed by exposing the algal cells to 25 mg/L of SA and JA for 1, 6 and 24 hours, plus to the control (no stress). Based on the RNA-seq analysis, 56,077 unigenes (51.7%) were identified with functions in response to the hormone stress. The top five identified subcategories were cell, cellular process, intracellular, catalytic activity and cytoplasm, which possessed 5600 (~9.99%), 5302 (~9.45%), 5242 (~9.35%), 4407 (~7.86%) and 4195 (~7.48%) unigenes, respectively. Furthermore, 59 unigenes were identified and assigned to 26 putative transcription factors (TFs), including 12 plant-specific TFs. They were likely associated with astaxanthin biosynthesis in Haematococcus upon SA and JA stress. In comparison, the up-regulation of differential expressed genes occurred much earlier, with higher transcript levels in the JA treatment (about 6 h later) than in the SA treatment (beyond 24 h). These results provide valuable information for directing metabolic engineering efforts to improve astaxanthin biosynthesis in H. pluvialis.

  8. Gut Transcriptome Analysis Shows Different Food Utilization Efficiency by the Grasshopper Oedaleous asiaticus (Orthoptera: Acrididae).

    Science.gov (United States)

    Huang, Xunbing; McNeill, Mark Richard; Ma, Jingchuan; Qin, Xinghu; Tu, Xiongbing; Cao, Guangchun; Wang, Guangjun; Nong, Xiangqun; Zhang, Zehua

    2017-08-01

    Oedaleus asiaticus B. Bienko is a persistent pest occurring in north Asian grasslands. We found that O. asiaticus feeding on Stipa krylovii Roshev. had higher approximate digestibility (AD), efficiency of conversion of ingested food (ECI), and efficiency of conversion of digested food (ECD), compared with cohorts feeding on Leymus chinensis (Trin.) Tzvel, Artemisia frigida Willd., or Cleistogenes squarrosa (Trin.) Keng. Although this indicated high food utilization efficiency for S. krylovii, the physiological processes and molecular mechanisms underlying these biological observations are not well understood. Transcriptome analysis was used to examine how gene expression levels in O. asiaticus gut are altered by feeding on the four plant species. Nymphs (fifth-instar female) that fed on S. krylovii had the largest variation in gene expression profiles, with a total of 88 genes significantly upregulated compared with those feeding on the other three plants, mainly including nutrition digestive genes of protein, carbohydrate, and lipid digestion. GO and KEGG enrichment also showed that feeding S. krylovii could upregulate the nutrition digestion-related molecular function, biological process, and pathways. These changes in transcripts levels indicate that the physiological processes of activating nutrition digestive enzymes and metabolism pathways can well explain the high food utilization of S. krylovii by O. asiaticus. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Transcriptome analysis of Phytolacca americana L. in response to cadmium stress.

    Directory of Open Access Journals (Sweden)

    Yongkun Chen

    Full Text Available Phytolacca americana L. (pokeweed has metal phytoremediation potential, but little is known about its metal accumulation-related genes. In this study, the de novo sequencing of total RNA produced 53.15 million reads covering 10.63 gigabases of transcriptome raw data in cadmium (Cd-treated and untreated pokeweed. Of the 97,502 assembled unigenes, 42,197 had significant matches in a public database and were annotated accordingly. An expression level comparison between the samples revealed 1515 differentially expressed genes (DEGs, 923 down- and 592 up-regulated under Cd treatment. A KEGG pathway enrichment analysis of DEGs revealed that they were involved in 72 metabolism pathways, with photosynthesis, phenylalanine metabolism, ribosome, phenylpropanoid biosynthesis, flavonoid biosynthesis and carbon fixation in photosynthetic organisms containing 24, 18, 72, 14, 7 and 15 genes, respectively. Genes related to heavy metal tolerance, absorption, transport and accumulation were also identified, including 11 expansins, 8 nicotianamine synthases, 6 aquaporins, 4 ZRT/IRT-like proteins, 3 ABC transporters and 3 metallothioneins. The gene expression results of 12 randomly selected DEGs were validated using quantitative real-time PCR, and showed different response patterns to Cd in their roots, stems and leaves. These results may be helpful in increasing our understanding of heavy metal hyperaccumulators and in future phytoremediation applications.

  10. Transcriptome analysis of Phytophthora litchii reveals pathogenicity arsenals and confirms taxonomic status.

    Science.gov (United States)

    Sun, Jinhua; Gao, Zhaoyin; Zhang, Xinchun; Zou, Xiaoxiao; Cao, Lulu; Wang, Jiabao

    2017-01-01

    Litchi downy blight, caused by Peronophythora litchii, is one of the major diseases of litchi and has caused severe economic losses. P. litchii has the unique ability to produce downy mildew like sporangiophores under artificial culture. The pathogen had been placed in a new family Peronophytophthoraceae by some authors. In this study, the whole transcriptome of P. litchii from mycelia, sporangia, and zoospores was sequenced for the first time. A set of 23637 transcripts with an average length of 1284 bp was assembled. Using six open reading frame (ORF) predictors, 19267 representative ORFs were identified and were annotated by searching against several public databases. There were 4666 conserved gene families and various sets of lineage-specific genes among P. litchii and other four closely related oomycetes. In silico analyses revealed 490 pathogen-related proteins including 128 RXLR and 22 CRN effector candidates. Based on the phylogenetic analysis of 164 single copy orthologs from 22 species, it is validated that P. litchii is in the genus Phytophthora. Our work provides valuable data to elucidate the pathogenicity basis and ascertain the taxonomic status of P. litchii.

  11. Transcriptome analysis of bone marrow mesenchymal stromal cells from patients with primary myelofibrosis

    Directory of Open Access Journals (Sweden)

    Christophe Martinaud

    2015-09-01

    Full Text Available Primary myelofibrosis (PMF is a clonal myeloproliferative neoplasm whose severity and treatment complexity are attributed to the presence of bone marrow (BM fibrosis and alterations of stroma impairing the production of normal blood cells. Despite the recently discovered mutations including the JAK2V617F mutation in about half of patients, the primitive event responsible for the clonal proliferation is still unknown. In the highly inflammatory context of PMF, the presence of fibrosis associated with a neoangiogenesis and an osteosclerosis concomitant to the myeloproliferation and to the increase number of circulating hematopoietic progenitors suggests that the crosstalk between hematopoietic and stromal cells is deregulated in the PMF BM microenvironmental niches. Within these niches, mesenchymal stromal cells (BM-MSC play a hematopoietic supportive role in the production of growth factors and extracellular matrix which regulate the proliferation, differentiation, adhesion and migration of hematopoietic stem/progenitor cells. A transcriptome analysis of BM-MSC in PMF patients will help to characterize their molecular alterations and to understand their involvement in the hematopoietic stem/progenitor cell deregulation that features PMF.

  12. Comparative transcriptome analysis of Trueperella pyogenes reveals a novel antimicrobial strategy.

    Science.gov (United States)

    Zhao, Kelei; Li, Wujiao; Huang, Ting; Song, Xuhao; Zhang, Xiuyue; Yue, Bisong

    2017-07-01

    Trueperella pyogenes is a prevalent opportunistic bacterium that normally causes diverse suppurative lesions, endometritis and pneumonia in various economically important animals. Although the genomic information of this species has been announced, little is known about its functional profiles. In this study, by performing a comparative transcriptome analysis between the highly and moderately virulent T. pyogenes isolates, we found the expression of a LuxR-type DNA-binding response regulator, PloR, was significantly up-regulated in the highly virulent T. pyogenes. Protein crystal structure prediction and primary functional assessment suggested that, the quorum-sensing signal molecules of Gram-negative bacteria such as Pseudomonas aeruginosa and Escherichia coli could significantly inhibit the growth, biofilm production and hemolysis of T. pyogenes by binding to the upstream sensor histidine kinase, PloS. Therefore, the PloS/PlosR two-component regulatory system might dominate the virulence of T. pyogenes. Our findings provide a major advance in understanding the pathogenesis of T. pyogenes, and may shed new light on the development of novel therapeutic strategies to control T. pyogenes infection.

  13. Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes

    Directory of Open Access Journals (Sweden)

    Xian-Yang Qin

    2017-10-01

    Full Text Available The acute phase protein orosomucoid-1 (Orm1 is mainly expressed by hepatocytes (HPCs under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH. Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs.

  14. Transcriptomic analysis of (group I Clostridium botulinum ATCC 3502 cold shock response.

    Directory of Open Access Journals (Sweden)

    Elias Dahlsten

    Full Text Available Profound understanding of the mechanisms foodborne pathogenic bacteria utilize in adaptation to the environmental stress they encounter during food processing and storage is of paramount importance in design of control measures. Chill temperature is a central control measure applied in minimally processed foods; however, data on the mechanisms the foodborne pathogen Clostridium botulinum activates upon cold stress are scarce. Transcriptomic analysis on the C. botulinum ATCC 3502 strain upon temperature downshift from 37°C to 15°C was performed to identify the cold-responsive gene set of this organism. Significant up- or down-regulation of 16 and 11 genes, respectively, was observed 1 h after the cold shock. At 5 h after the temperature downshift, 199 and 210 genes were up- or down-regulated, respectively. Thus, the relatively small gene set affected initially indicated a targeted acute response to cold shock, whereas extensive metabolic remodeling appeared to take place after prolonged exposure to cold. Genes related to fatty acid biosynthesis, oxidative stress response, and iron uptake and storage were induced, in addition to mechanisms previously characterized as cold-tolerance related in bacteria. Furthermore, several uncharacterized DNA-binding transcriptional regulator-encoding genes were induced, suggesting involvement of novel regulatory mechanisms in the cold shock response of C. botulinum. The role of such regulators, CBO0477 and CBO0558A, in cold tolerance of C. botulinum ATCC 3502 was demonstrated by deteriorated growth of related mutants at 17°C.

  15. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida

    Directory of Open Access Journals (Sweden)

    Gan Huang

    2017-05-01

    Full Text Available Gerbera hybrida is a cut-flower crop of global importance, and an understanding of the mechanisms underlying petal development is vital for the continued commercial development of this plant species. Brassinosteroids (BRs, a class of phytohormones, are known to play a major role in cell expansion, but their effect on petal growth in G. hybrida is largely unexplored. In this study, we found that the brassinolide (BL, the most active BR, promotes petal growth by lengthening cells in the middle and basal regions of petals, and that this effect on petal growth was greater than that of gibberellin (GA. The RNA-seq (high-throughput cDNA sequencing technique was employed to investigate the regulatory mechanisms by which BRs control petal growth. A global transcriptome analysis of the response to BRs in petals was conducted and target genes regulated by BR were identified. These differentially expressed genes (DEGs include various transcription factors (TFs that were activated during the early stage (0.5 h of BL treatment, as well as cell wall proteins whose expression was regulated at a late stage (10 h. BR-responsive DEGs are involved in multiple plant hormone signal pathways, hormone biosynthesis and biotic and abiotic stress responses, showing that the regulation of petal growth by BRs is a complex network of processes. Thus, our study provides new insights at the transcriptional level into the molecular mechanisms of BR regulation of petal growth in G. hybrida.

  16. Proteomic and Transcriptomic Analysis of Aspergillus fumigatus on Exposure to Amphotericin B▿ †

    Science.gov (United States)

    Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha

    2008-01-01

    Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development. PMID:18838595

  17. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B.

    Science.gov (United States)

    Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha

    2008-12-01

    Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development.

  18. Comparative transcriptome analysis of two contrasting watermelon genotypes during fruit development and ripening.

    Science.gov (United States)

    Zhu, Qianglong; Gao, Peng; Liu, Shi; Zhu, Zicheng; Amanullah, Sikandar; Davis, Angela R; Luan, Feishi

    2017-01-03

    Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important crop with an attractive ripe fruit that has colorful flesh. Fruit ripening is a complex, genetically programmed process. In this study, a comparative transcriptome analysis was performed to identify the regulators and pathways that are involved in the fruit ripening of pale-yellow-flesh cultivated watermelon (COS) and red-flesh cultivated watermelon (LSW177). We first identified 797 novel genes to extend the available reference gene set. Second, 3958 genes in COS and 3503 genes in LSW177 showed at least two-fold variation in expression, and a large number of these differentially expressed genes (DEGs) during fruit ripening were related to carotenoid biosynthesis, plant hormone pathways, and sugar and cell wall metabolism. Third, we noted a correlation between ripening-associated transcripts and metabolites and the key function of these metabolic pathways during fruit ripening. The results revealed several ripening-associated actions and provide novel insights into the molecular mechanisms underlying the regulation of watermelon fruit ripening.

  19. Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum.

    Science.gov (United States)

    Kenyon, Amy; Gavriouchkina, Daria; Zorman, Jernej; Napolitani, Giorgio; Cerundolo, Vincenzo; Sauka-Spengler, Tatjana

    2017-07-26

    The mechanisms governing neutrophil response to Mycobacterium tuberculosis remain poorly understood. In this study we utilise biotagging, a novel genome-wide profiling approach based on cell type-specific in vivo biotinylation in zebrafish to analyse the initial response of neutrophils to Mycobacterium marinum, a close genetic relative of M. tuberculosis used to model tuberculosis. Differential expression analysis following nuclear RNA-seq of neutrophil active transcriptomes reveals a significant upregulation in both damage-sensing and effector components of the inflammasome, including caspase b, NLRC3 ortholog (wu: fb15h11) and il1β. Crispr/Cas9-mediated knockout of caspase b, which acts by proteolytic processing of il1β, results in increased bacterial burden and less infiltration of macrophages to sites of mycobacterial infection, thus impairing granuloma development. We also show that a number of immediate early response genes (IEGs) are responsible for orchestrating the initial neutrophil response to mycobacterial infection. Further perturbation of the IEGs exposes egr3 as a key transcriptional regulator controlling il1β transcription.

  20. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis.

    Science.gov (United States)

    Sheng, Sheng; Liao, Cheng-Wu; Zheng, Yu; Zhou, Yu; Xu, Yan; Song, Wen-Miao; He, Peng; Zhang, Jian; Wu, Fu-An

    2017-06-01

    Meteorus pulchricornis is an endoparasitoid wasp which attacks the larvae of various lepidopteran pests. We present the first antennal transcriptome dataset for M. pulchricornis. A total of 48,845,072 clean reads were obtained and 34,967 unigenes were assembled. Of these, 15,458 unigenes showed a significant similarity (E-value <10 -5 ) to known proteins in the NCBI non-redundant protein database. Gene ontology (GO) and cluster of orthologous groups (COG) analyses were used to classify the functions of M. pulchricornis antennae genes. We identified 16 putative odorant-binding protein (OBP) genes, eight chemosensory protein (CSP) genes, 99 olfactory receptor (OR) genes, 19 ionotropic receptor (IR) genes and one sensory neuron membrane protein (SNMP) gene. BLASTx best hit results and phylogenetic analysis both indicated that these chemosensory genes were most closely related to those found in other hymenopteran species. Real-time quantitative PCR assays showed that 14 MpulOBP genes were antennae-specific. Of these, MpulOBP6, MpulOBP9, MpulOBP10, MpulOBP12, MpulOBP15 and MpulOBP16 were found to have greater expression in the antennae than in other body parts, while MpulOBP2 and MpulOBP3 were expressed predominately in the legs and abdomens, respectively. These results might provide a foundation for future studies of olfactory genes and chemoreception in M. pulchricornis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Transcriptome Analysis of Gelatin Seed Treatment as a Biostimulant of Cucumber Plant Growth

    Directory of Open Access Journals (Sweden)

    H. T. Wilson

    2015-01-01

    Full Text Available The beneficial effects of gelatin capsule seed treatment on enhanced plant growth and tolerance to abiotic stress have been reported in a number of crops, but the molecular mechanisms underlying such effects are poorly understood. Using mRNA sequencing based approach, transcriptomes of one- and two-week-old cucumber plants from gelatin capsule treated and nontreated seeds were characterized. The gelatin treated plants had greater total leaf area, fresh weight, frozen weight, and nitrogen content. Pairwise comparisons of the RNA-seq data identified 620 differentially expressed genes between treated and control two-week-old plants, consistent with the timing when the growth related measurements also showed the largest differences. Using weighted gene coexpression network analysis, significant coexpression gene network module of 208 of the 620 differentially expressed genes was identified, which included 16 hub genes in the blue module, a NAC transcription factor, a MYB transcription factor, an amino acid transporter, an ammonium transporter, a xenobiotic detoxifier-glutathione S-transferase, and others. Based on the putative functions of these genes, the identification of the significant WGCNA module and the hub genes provided important insights into the molecular mechanisms of gelatin seed treatment as a biostimulant to enhance plant growth.

  2. Different gene expression patterns between leaves and flowers in Lonicera japonica revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Libin eZhang

    2016-05-01

    Full Text Available The perennial and evergreen twining vine, Lonicera japonica is an important herbal medicine with great economic value. However, gene expression information for flowers and leaves of L. japonica remains elusive, which greatly impedes functional genomics research on this species. In this study, transcriptome profiles from leaves and flowers of L. japonica were examined using next-generation sequencing technology. A total of 239.41 million clean reads were used for de novo assembly with Trinity software, which generated 150,523 unigenes with N50 containing 947 bp. All the unigenes were annotated using Nr, SwissProt, COGs (Clusters of Orthologous Groups, GO (Gene Ontology and KEGG (Kyoto Encyclopedia of Genes and Genomes databases. A total of 35,327 differentially expressed genes (DEGs, P≤0.05 between leaves and flowers were detected. Among them, a total of 6,602 DEGs were assigned with important biological processes including Metabolic process, Response to stimulus, Cellular process and etc. KEGG analysis showed that three possible enzymes involved in the biosynthesis of chlorogenic acid were up-regulated in flowers. Furthermore, the TF-based regulation network in L. japonica identified three differentially expressed transcription factors between leaves and flowers, suggesting distinct regulatory roles in L. japonica. Taken together, this study has provided a global picture of differential gene expression patterns between leaves and flowers in L japonica, providing a useful genomic resource that can also be used for functional genomics research on L. japonica in the future.

  3. Application of meta-transcriptomics and –proteomics to analysis of in situ physiological state

    Directory of Open Access Journals (Sweden)

    Allan eKonopka

    2012-05-01

    Full Text Available Analysis of the growth-limiting factor or environmental stressors affecting microbes in situ is of fundamental importance but analytically difficult. Microbes can reduce in situ limiting nutrient concentrations to sub-micromolar levels, and contaminated ecosystems may contain multiple stressors. The patterns of gene or protein expression by microbes in nature can be used to infer growth limitations, because they are regulated in response to environmental conditions. Experimental studies under controlled conditions in the laboratory provide the physiological underpinnings for developing these physiological indicators. Although regulatory networks may differ among specific microbes, there are some broad principles that can be applied, related to limiting nutrient acquisition, resource allocation, and stress responses. As technologies for transcriptomics and proteomics mature, the capacity to apply these approaches to complex microbial communities will accelerate. In particular, global proteomics reflect expressed catalytic activities. Furthermore, the high mass accuracy of some proteomic approaches allows mapping back to specific microbial strains. For example, at the Rifle IFRC field site in Western Colorado, the physiological status of Fe(III-reducing populations has been tracked over time. Members of a subsurface clade within the Geobacter predominated during carbon amendment to the subsurface environment. At the functional level, proteomic identifications produced inferences regarding (i temporal changes in anabolism and catabolism of acetate, (ii the onset of N2 fixation when N became limiting, and (iii expression of phosphate transporters during periods of intense growth. The application of these approaches in situ can lead to discovery of novel physiological adaptations.

  4. A whole transcriptomal linkage analysis of gene co-regulation in insecticide resistant house flies, Musca domestica

    DEFF Research Database (Denmark)

    Li, Ming; Reid, William R; Zhang, Lee

    2013-01-01

    autosomes, especially between autosomes 2 and 5, suggesting that signaling transduction cascades controlled by GPCRs, protein kinase/phosphates and proteases may be involved in the regulation of resistance P450 gene regulation. Conclusion Taken together, our findings suggested that not only is insecticide......Background Studies suggest that not only is insecticide resistance conferred via multiple gene up-regulation, but it is mediated through the interaction of regulatory factors. However, no regulatory factors in insecticide resistance have yet been identified, and there has been no examination...... of the regulatory interaction of resistance genes. Our current study generated the first reference transcriptome from the adult house fly and conducted a whole transcriptome analysis for the multiple insecticide resistant strain ALHF (wild-type) and two insecticide susceptible strains: aabys (with morphological...

  5. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    Science.gov (United States)

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  6. Transcriptomic analysis of Portunus trituberculatus reveals a critical role for WNT4 and WNT signalling in limb regeneration.

    Science.gov (United States)

    Liu, Lei; Fu, Yuanyuan; Zhu, Fang; Mu, Changkao; Li, Ronghua; Song, Weiwei; Shi, Ce; Ye, Yangfang; Wang, Chunlin

    2018-06-05

    The swimming crab (Portunus trituberculatus) is among the most economically important seawater crustacean species in Asia. Despite its commercial importance and being well-studied status, genomic and transcriptomic data are scarce for this crab species. In the present study, limb bud tissue was collected at different developmental stages post amputation for transcriptomic analysis. Illumina RNA-sequencing was applied to characterise the limb regeneration transcriptome and identify the most characteristic genes. A total of 289,018 transcripts were obtained by clustering and assembly of clean reads, producing 150,869 unigenes with an average length of 956 bp. Subsequent analysis revealed WNT signalling as the key pathway involved in limb regeneration, with WNT4 a key mediator. Overall, limb regeneration appears to be regulated by multiple signalling pathways, with numerous cell differentiation, muscle growth, moult, metabolism, and immune-related genes upregulated, including WNT4, LAMA, FIP2, FSTL5, TNC, HUS1, SWI5, NCGL, SLC22, PLA2, Tdc2, SMOX, GDH, and SMPD4. This is the first experimental study done on regenerating claws of P. trituberculatus. These findings expand existing sequence resources for crab species, and will likely accelerate research into regeneration and development in crustaceans, particularly functional studies on genes involved in limb regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Transcriptomic data analysis and differential gene expression of antioxidant pathways in king penguin juveniles (Aptenodytes patagonicus) before and after acclimatization to marine life

    OpenAIRE

    Benjamin Rey; Cyril Dégletagne; Claude Duchamp

    2016-01-01

    In this article, we present differentially expressed gene profiles in the pectoralis muscle of wild juvenile king penguins that were either naturally acclimated to cold marine environment or experimentally immersed in cold water as compared with penguin juveniles that never experienced cold water immersion. Transcriptomic data were obtained by hybridizing penguins total cDNA on Affymetrix GeneChip Chicken Genome arrays and analyzed using maxRS algorithm, ?Transcriptome analysis in non-model s...

  8. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium.

    Science.gov (United States)

    Li, Zhanjie; Cheng, Yufeng; Cui, Jianmin; Zhang, Peipei; Zhao, Huixian; Hu, Shengwu

    2015-03-17

    Chemical hybridization agents (CHAs) are often used to induce male sterility for the production of hybrid seeds. We previously discovered that monosulfuron ester sodium (MES), an acetolactate synthase (ALS) inhibitor of the herbicide sulfonylurea family, can induce rapeseed (Brassica napus L.) male sterility at approximately 1% concentration required for its herbicidal activity. To find some clues to the mechanism of MES inducing male sterility, the ultrastructural cytology observations, comparative transcriptome analysis, and physiological analysis on carbohydrate content were carried out in leaves and anthers at different developmental stages between the MES-treated and mock-treated rapeseed plants. Cytological analysis revealed that the plastid ultrastructure was abnormal in pollen mother cells and tapetal cells in male sterility anthers induced by MES treatment, with less material accumulation in it. However, starch granules were observed in chloroplastids of the epidermis cells in male sterility anthers. Comparative transcriptome analysis identified 1501 differentially expressed transcripts (DETs) in leaves and anthers at different developmental stages, most of these DETs being localized in plastid and mitochondrion. Transcripts involved in metabolism, especially in carbohydrate and lipid metabolism, and cellular transport were differentially expressed. Pathway visualization showed that the tightly regulated gene network for metabolism was reprogrammed to respond to MES treatment. The results of cytological observation and transcriptome analysis in the MES-treated rapeseed plants were mirrored by carbohydrate content analysis. MES treatment led to decrease in soluble sugars content in leaves and early stage buds, but increase in soluble sugars content and decrease in starch content in middle stage buds. Our integrative results suggested that carbohydrate and lipid metabolism were influenced by CHA-MES treatment during rapeseed anther development, which might

  9. Identification of Putative Genes Involved in Limonoids Biosynthesis in Citrus by Comparative Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Fusheng Wang

    2017-05-01

    Full Text Available Limonoids produced by citrus are a group of highly bioactive secondary metabolites which provide health benefits for humans. Currently there is a lack of information derived from research on the genetic mechanisms controlling the biosynthesis of limonoids, which has limited the improvement of citrus for high production of limonoids. In this study, the transcriptome sequences of leaves, phloems and seeds of pummelo (Citrus grandis (L. Osbeck at different development stages with variances in limonoids contents were used for digital gene expression profiling analysis in order to identify the genes corresponding to the biosynthesis of limonoids. Pair-wise comparison of transcriptional profiles between different tissues identified 924 differentially expressed genes commonly shared between them. Expression pattern analysis suggested that 382 genes from three conjunctive groups of K-means clustering could be possibly related to the biosynthesis of limonoids. Correlation analysis with the samples from different genotypes, and different developing tissues of the citrus revealed that the expression of 15 candidate genes were highly correlated with the contents of limonoids. Among them, the cytochrome P450s (CYP450s and transcriptional factor MYB demonstrated significantly high correlation coefficients, which indicated the importance of those genes on the biosynthesis of limonoids. CiOSC gene encoding the critical enzyme oxidosqualene cyclase (OSC for biosynthesis of the precursor of triterpene scaffolds was found positively corresponding to the accumulation of limonoids during the development of seeds. Suppressing the expression of CiOSC with VIGS (Virus-induced gene silencing demonstrated that the level of gene silencing was significantly correlated to the reduction of limonoids contents. The results indicated that the CiOSC gene plays a pivotal role in biosynthesis of limonoids.

  10. Large-scale transcriptome analysis reveals arabidopsis metabolic pathways are frequently influenced by different pathogens.

    Science.gov (United States)

    Jiang, Zhenhong; He, Fei; Zhang, Ziding

    2017-07-01

    Through large-scale transcriptional data analyses, we highlighted the importance of plant metabolism in plant immunity and identified 26 metabolic pathways that were frequently influenced by the infection of 14 different pathogens. Reprogramming of plant metabolism is a common phenomenon in plant defense responses. Currently, a large number of transcriptional profiles of infected tissues in Arabidopsis (Arabidopsis thaliana) have been deposited in public databases, which provides a great opportunity to understand the expression patterns of metabolic pathways during plant defense responses at the systems level. Here, we performed a large-scale transcriptome analysis based on 135 previously published expression samples, including 14 different pathogens, to explore the expression pattern of Arabidopsis metabolic pathways. Overall, metabolic genes are significantly changed in expression during plant defense responses. Upregulated metabolic genes are enriched on defense responses, and downregulated genes are enriched on photosynthesis, fatty acid and lipid metabolic processes. Gene set enrichment analysis (GSEA) identifies 26 frequently differentially expressed metabolic pathways (FreDE_Paths) that are differentially expressed in more than 60% of infected samples. These pathways are involved in the generation of energy, fatty acid and lipid metabolism as well as secondary metabolite biosynthesis. Clustering analysis based on the expression levels of these 26 metabolic pathways clearly distinguishes infected and control samples, further suggesting the importance of these metabolic pathways in plant defense responses. By comparing with FreDE_Paths from abiotic stresses, we find that the expression patterns of 26 FreDE_Paths from biotic stresses are more consistent across different infected samples. By investigating the expression correlation between transcriptional factors (TFs) and FreDE_Paths, we identify several notable relationships. Collectively, the current study

  11. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant.

    Directory of Open Access Journals (Sweden)

    Linxu Chen

    Full Text Available Acidithiobacillus caldus (A. caldus is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox system (omitting SoxCD, non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR. The complexity of the sulfur oxidation system of A. caldus generates a big obstacle on the research of its sulfur oxidation mechanism. However, the development of genetic manipulation method for A. caldus in recent years provides powerful tools for constructing genetic mutants to study the sulfur oxidation system.An A. caldus mutant lacking the sulfur oxygenase reductase gene (sor was created and its growth abilities were measured in media using elemental sulfur (S(0 and tetrathionate (K(2S(4O(6 as the substrates, respectively. Then, comparative transcriptome analysis (microarrays and real-time quantitative PCR of the wild type and the Δsor mutant in S(0 and K(2S(4O(6 media were employed to detect the differentially expressed genes involved in sulfur oxidation. SOR was concluded to oxidize the cytoplasmic elemental sulfur, but could not couple the sulfur oxidation with the electron transfer chain or substrate-level phosphorylation. Other elemental sulfur oxidation pathways including sulfur diooxygenase (SDO and heterodisulfide reductase (HDR, the truncated Sox pathway, and the S(4I pathway for hydrolysis of tetrathionate and oxidation of thiosulfate in A. caldus are proposed according to expression patterns of sulfur oxidation genes and growth abilities of the wild type and the mutant in different substrates media.An integrated sulfur oxidation model with various sulfur oxidation pathways of A. caldus is proposed and the features of this model are summarized.

  12. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  13. Transcriptome analysis reveals regional and temporal differences in mucosal immune system development in the small intestine of neonatal calves.

    Science.gov (United States)

    Liang, Guanxiang; Malmuthuge, Nilusha; Bao, Hua; Stothard, Paul; Griebel, Philip J; Guan, Le Luo

    2016-08-11

    Postnatal development of the mammalian mucosal immune system is crucial for responding to the rapid colonization by commensal bacteria and possible exposure to pathogens. This study analyzed expression patterns for mRNAs and their relationship with microRNAs (miRNAs) in the bovine small intestine during the critical neonatal period (0 to 42 days). This analysis revealed molecular mechanisms regulating the postnatal development of the intestinal mucosal immune system. Small intestine samples (jejunum and ileum) were collected from newborn male, Holstein calves immediately post-partum (n = 3) and at 7 (n = 5), 21 (n = 5), and 42 (n = 5) days of age and the transcriptomes were profiled using RNA-Seq. When analyzing all time points collectively, greater expression of genes encoding the complement functional pathway, as well as lower expression of genes encoding Toll-like receptors and NOD-like receptors were observed in the jejunum when compared to the ileum. In addition, significant changes in the expression of immune-related genes were detected within the first week post-partum in both jejunum and ileum. For example, increased expression of genes encoding tight junction proteins (claudin 1, claudin 4 and occludin), an antimicrobial peptide (Regenerating Islet-Derived 3-γ), NOD-like receptors (NACHT, LRR and PYD domain-containing protein 3), regulatory T cell marker (forkhead box P3), and both anti-inflammatory (interleukin 10) and pro-inflammatory (interleukin 8) cytokines was observed throughout the small intestine of 7-day-old calves when compared to newborn calves. Moreover, the expression of mucosal immune-related genes were either positively or negatively correlated with total bacterial population depending on both intestinal region and age. The integrated analysis of miRNAs and mRNAs supported the conclusion that miRNAs may regulate temporal changes in the expression of genes encoding tight junction proteins (miR-335), cytokines (miR-335) and

  14. An xQTL map integrates the genetic architecture of the human brain's transcriptome and epigenome.

    Science.gov (United States)

    Ng, Bernard; White, Charles C; Klein, Hans-Ulrich; Sieberts, Solveig K; McCabe, Cristin; Patrick, Ellis; Xu, Jishu; Yu, Lei; Gaiteri, Chris; Bennett, David A; Mostafavi, Sara; De Jager, Philip L

    2017-10-01

    We report a multi-omic resource generated by applying quantitative trait locus (xQTL) analyses to RNA sequence, DNA methylation and histone acetylation data from the dorsolateral prefrontal cortex of 411 older adults who have all three data types. We identify SNPs significantly associated with gene expression, DNA methylation and histone modification levels. Many of these SNPs influence multiple molecular features, and we demonstrate that SNP effects on RNA expression are fully mediated by epigenetic features in 9% of these loci. Further, we illustrate the utility of our new resource, xQTL Serve, by using it to prioritize the cell type(s) most affected by an xQTL. We also reanalyze published genome wide association studies using an xQTL-weighted analysis approach and identify 18 new schizophrenia and 2 new bipolar susceptibility variants, which is more than double the number of loci that can be discovered with a larger blood-based expression eQTL resource.

  15. Exploring causal networks underlying fat deposition and muscularity in pigs through the integration of phenotypic, genotypic and transcriptomic data.

    Science.gov (United States)

    Peñagaricano, Francisco; Valente, Bruno D; Steibel, Juan P; Bates, Ronald O; Ernst, Catherine W; Khatib, Hasan; Rosa, Guilherme J M

    2015-09-16

    Joint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies. Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity in pigs using multi-omics data obtained from an F2 Duroc x Pietrain resource pig population. We initially explored marginal associations between genotypes and phenotypic and expression traits through whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the phenotypes, fat deposition traits negatively affected loin muscle weight. Our findings shed light on the antagonist relationship between carcass fat deposition and lean meat content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks underlying complex phenotypes.

  16. De novo assembly and analysis of the Artemisia argyi transcriptome and identification of genes involved in terpenoid biosynthesis.

    Science.gov (United States)

    Liu, Miaomiao; Zhu, Jinhang; Wu, Shengbing; Wang, Chenkai; Guo, Xingyi; Wu, Jiawen; Zhou, Meiqi

    2018-04-11

    Artemisia argyi Lev. et Vant. (A. argyi) is widely utilized for moxibustion in Chinese medicine, and the mechanism underlying terpenoid biosynthesis in its leaves is suggested to play an important role in its medicinal use. However, the A. argyi transcriptome has not been sequenced. Herein, we performed RNA sequencing for A. argyi leaf, root and stem tissues to identify as many as possible of the transcribed genes. In total, 99,807 unigenes were assembled by analysing the expression profiles generated from the three tissue types, and 67,446 of those unigenes were annotated in public databases. We further performed differential gene expression analysis to compare leaf tissue with the other two tissue types and identified numerous genes that were specifically expressed or up-regulated in leaf tissue. Specifically, we identified multiple genes encoding significant enzymes or transcription factors related to terpenoid synthesis. This study serves as a valuable resource for transcriptome information, as many transcribed genes related to terpenoid biosynthesis were identified in the A. argyi transcriptome, providing a functional genomic basis for additional studies on molecular mechanisms underlying the medicinal use of A. argyi.

  17. New approach for the study of mite reproduction: The first transcriptome analysis of a mite, Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Cabrera, Ana R; Donohue, Kevin V; Khalil, Sayed M S; Scholl, Elizabeth; Opperman, Charles; Sonenshine, Daniel E; Roe, R Michael

    2011-01-01

    Many species of mites and ticks are of agricultural and medical importance. Much can be learned from the study of transcriptomes of acarines which can generate DNA-sequence information of potential target genes for the control of acarine pests. High throughput transcriptome sequencing can also yield sequences of genes critical during physiological processes poorly understood in acarines, i.e., the regulation of female reproduction in mites. The predatory mite, Phytoseiulus persimilis, was selected to conduct a transcriptome analysis using 454 pyrosequencing. The objective of this project was to obtain DNA-sequence information of expressed genes from P. persimilis with special interest in sequences corresponding to vitellogenin (Vg) and the vitellogenin receptor (VgR). These genes are critical to the understanding of vitellogenesis, and they will facilitate the study of the regulation of mite female reproduction. A total of 12,556 contiguous sequences (contigs) were assembled with an average size of 935bp. From these sequences, the putative translated peptides of 11 contigs were similar in amino acid sequences to other arthropod Vgs, while 6 were similar to VgRs. We selected some of these sequences to conduct stage-specific expression studies to further determine their function. 2010 Elsevier Ltd. All rights reserved.

  18. Optimized Exon-Exon Junction Library and its Application on Rodents' Brain Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Tong-Hai Dou

    2017-05-01

    Full Text Available ABSTRACT Background: Alternative splicing (AS, which plays an important role in gene expression and functional regulation, has been analyzed on genome-scale by various bioinformatic approaches based on RNA-seq data. Compared with the huge number of studies on mouse, the AS researches approaching the rat, whose genome is intermedia between mouse and human, were still limited. To enrich the knowledge on AS events in rodents' brain, we perfomed a comprehensive analysis on four transcriptome libraries (mouse cerebrum, mouse cerebellum, rat cerebrum, and rat cerebellum, recruiting high-throughput sequencing technology. An optimized exon-exon junction library approach was introduced to adapt the longer RNA-seq reads and to improve mapping efficiency. Results: In total, 7,106 mouse genes and 2,734 rat genes were differentially expressed between cerebrum and cerebellum, while 7,125 mouse genes and 1,795 rat genes exhibited varieties on transcript variant level. Only half of the differentially expressed exon-exon junctions could be reflected at gene expression level. Functional cluster analysis showed that 32 pathways in mouse and 9 pathways in rat were significantly enriched, and 6 of them were in both. Interestingly, some differentially expressed transcript variants did not show difference on gene expression level, such as PLCβ1 and Kcnma1. Conclusion: Our work provided a case study of a novel exon-exon junction strategy to analyze the expression of genes and isoforms, helping us understand which transcript contributes to the overall expression and further functional change.

  19. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    Science.gov (United States)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  20. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Rodriguez-Uribe, Laura; Xu, Jiannong; Zhang, Jinfa

    2013-10-01

    A global view of differential expression of genes in CMS-D8 of cotton was presented in this study which will facilitate the understanding of cytoplasmic male sterility in cotton. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants which is incapable of producing functional pollen. However, the male fertility can be restored by one or more nuclear-encoded restorer genes. A genome-wide transcriptome analysis of CMS and restoration in cotton is currently lacking. In this study, Affymetrix GeneChips© Cotton Genome Array containing 24,132 transcripts was used to compare differentially expressed (DE) genes of flower buds at the meiosis stage between CMS and its restorer cotton plants conditioned by the D8 cytoplasm. A total of 458 (1.9 %) of DE genes including 127 up-regulated and 331 down-regulated ones were identif