WorldWideScience

Sample records for integrated tank system

  1. Tank waste remediation system integrated technology plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-02-28

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

  2. Tank waste remediation system integrated technology plan. Revision 2

    International Nuclear Information System (INIS)

    Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P.

    1995-01-01

    The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m 3 (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program

  3. 1998 interim 242-A Evaporator tank system integrity assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-07-02

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ``dangerous waste storage or treatment tank and its ancillary equipment and containment.`` This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD.

  4. 1998 interim 242-A Evaporator tank system integrity assessment report

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1998-01-01

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) under contract to Lockheed-Martin Hanford Company (LMHC) for Waste Management Hanford (WMH), the 242-A Evaporator (facility) operations contractor for Fluor Daniel Hanford, and the US Department of Energy, the system owner. The contract specifies that FDNW perform an interim (5 year) integrity assessment of the facility and prepare a written IAR in accordance with Washington Administrative Code (WAC) 173-303-640. The WAC 173-303 defines a treatment, storage, or disposal (TSD) facility tank system as the ''dangerous waste storage or treatment tank and its ancillary equipment and containment.'' This integrity assessment evaluates the two tank systems at the facility: the evaporator vessel, C-A-1 (also called the vapor-liquid separator), and the condensate collection tank, TK-C-100. This IAR evaluates the 242-A facility tank systems up to, but not including, the last valve or flanged connection inside the facility perimeter. The initial integrity assessment performed on the facility evaluated certain subsystems not directly in contact with dangerous waste, such as the steam condensate and used raw water subsystems, to provide technical information. These subsystems were not evaluated in this IAR. The last major upgrade to the facility was project B-534. The facility modifications, as a result of project B-534, were evaluated in the 1993 facility interim integrity assessment. Since that time, the following upgrades have occurred in the facility: installation of a process condensate recycle system, and installation of a package steam boiler to provide steam for the facility. The package boiler is not within the scope of the facility TSD

  5. 2020 Vision for Tank Waste Cleanup (One System Integration) - 12506

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton; Charboneau, Stacy; Olds, Erik [US DOE (United States)

    2012-07-01

    of the WTP are not only dependent upon the successful design and construction of the WTP, but also on appropriately preparing the tank farms and waste feed delivery infrastructure to reliably and consistently deliver waste feed to the WTP for many decades. The key components of the 2020 vision are: all WTP facilities are commissioned, turned-over and operational, achieving the earliest possible hot operations of completed WTP facilities, and supplying low-activity waste (LAW) feed directly to the LAW Facility using in-tank/near tank supplemental treatment technologies. A One System Integrated Project Team (IPT) was recently formed to focus on developing and executing the programs that will be critical to successful waste feed delivery and WTP startup. The team is comprised of members from Bechtel National, Inc. (BNI), Washington River Protection Solutions LLC (WRPS), and DOE-ORP and DOE-WTP. The IPT will combine WTP and WRPS capabilities in a mission-focused model that is clearly defined, empowered and cost efficient. The genesis for this new team and much of the 2020 vision is based on the work of an earlier team that was tasked with identifying the optimum approach to startup, commissioning, and turnover of WTP facilities for operations. This team worked backwards from 2020 - a date when the project will be completed and steady-state operations will be underway - and identified success criteria to achieving safe and efficient operations of the WTP. The team was not constrained by any existing contract work scope, labor, or funding parameters. Several essential strategies were identified to effectively realize the one-system model of integrated feed stream delivery, WTP operations, and product delivery, and to accomplish the team's vision of hot operations beginning in 2016: - Use a phased startup and turnover approach that will allow WTP facilities to be transitioned to an operational state on as short a timeline as credible. - Align Tank Farm (TF) and WTP

  6. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  7. 1998 242-A interim evaporator tank system integrity assessment plan

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, C.E.

    1998-03-31

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology`s Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem.

  8. 1998 242-A interim evaporator tank system integrity assessment plan

    International Nuclear Information System (INIS)

    Jensen, C.E.

    1998-01-01

    Portions of the 242-A Evaporator on the Hanford Site must be assessed to meet the requirements of the Washington State Department of Ecology's Dangerous Waste Regulation, Washington Administrative Code (WAC) 173-303. The assessment is limited to the provisions of Section 173-303-640. This Integrity Assessment Plan (IAP) identifies tasks which will be performed during the assessment phase and describes the intended assessment techniques. The 242-A Evaporator facility processes waste solutions from most of the operating laboratories and plants of the Hanford Site. The waste solutions are concentrated in the evaporator to a slurry of liquid and crystallized salts. This concentrated slurry is returned to the Tank Farms at a significantly reduce volume. The water vapor from the evaporation process is condensed, filtered, and can be pumped through an ion exchange bed before transfer to a retention basin. The non-condensable portion of the vapor is filtered and continuously monitored before venting to the atmosphere. The 242-A Evaporator will be assessed as seven subsystems. Four of the subsystems store, transport or treat Washington State Dangerous wastes, the other three subsystems are integral parts of the process, however, they do not directly store, transfer, or treat listed dangerous wastes. The facility will be inspected, tested, and analyzed through this assessment. The seven subsystems, defined in detail in Appendix B, are: Evaporator Process and Slurry Subsystem; Vapor Condenser Subsystem; Vessel Vent Subsystem; Process Condensate Subsystem; Steam Condensate Subsystem; Raw Water Disposal Subsystem; and Building and Secondary Containment Subsystem

  9. Engineering Assessment and Certification of Integrity of the 177-R2 tank system

    International Nuclear Information System (INIS)

    Graser, D.A.; Schwartz, W.W.

    1993-10-01

    This Engineering Assessment and Certification of Integrity of retention tanks 177-R2U1, 177-R2Al, and 177-R2A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 177-R2Ul, 177-R2A1, and 177-R2A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail. This document will be kept on file by the Lawrence Livermore National Laboratory (LLNL) Environment Protection Department

  10. Engineering Assessment and Certification of Integrity of the 490-Q1 tank system

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, W.W. [Lawrence Livermore National Lab., CA (United States); Gee, C.W.; Graser, D.A. [Science Applications International Corp., San Diego, CA (US)

    1993-07-01

    This Engineering Assessment and Certification of Integrity of used freon storage tanks 490-Q1A1 and 490-Q1A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 490-Q1A1 and 490-Q1A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  11. Engineering Assessment and Certification of Integrity of the Building 943 Tank System

    Energy Technology Data Exchange (ETDEWEB)

    Abri Environmental Engineering Inc.

    2015-01-01

    This Engineering Assessment and Certification of Integrity of Building 943 (B943) Tank System has been prepared using the guidelines of 40 CFR 265.192(a) and 22 CCR 66265.192(a) for tank systems* that manage hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer. This technical assessment has been reviewed by an independent, qualified, California-registered professional engineer, who has certified the tank system for the following: • sufficient structural integrity, • acceptability for storing of hazardous waste, • compatibility with the waste, and • suitability of tank and containment system design to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  12. Dual Tank Fuel System

    Science.gov (United States)

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  13. Structural integrity assessments for the category C liquid low-level waste tank systems at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement (FFA) for the structural integrity certification of 14 Category C Liquid Low Level Waste (LLLW) Tank Systems on the Oak Ridge Reservation (ORR) in Oak Ridge, Tennessee. Within this document, each tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and ten of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily, and (3) leak testing program results. Design plans and specifications were reviewed for a general description of the tanks and associated pipelines. Information of primary significance included tank age, material of construction, tank design and construction specifications. Design plans were also reviewed for the layouts and materials of pipeline constructions, and ages of pipelines. Next, a generic corrosion assessment was conducted for each tank system. Information was gathered, when available, related to the historical use of the tank and the likely contents. The corrosion assessments included a qualitative evaluation of the walls of each tank and pipelines associated with each tank, as well as the welds and joints of the systems. A general discussion of the stainless steel types encountered is included in Section 4.0 of this report. The potential for soils to have caused corrosion is also evaluated within the sections on the individual tank systems.

  14. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    International Nuclear Information System (INIS)

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program

  15. Integrity assessment plan for PNL 300 area radioactive hazardous waste tank system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integrity assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.

  16. Numerical Modeling of an Integrated Vehicle Fluids System Loop for Pressurizing a Cryogenic Tank

    Science.gov (United States)

    LeClair, A. C.; Hedayat, A.; Majumdar, A. K.

    2017-01-01

    This paper presents a numerical model of the pressurization loop of the Integrated Vehicle Fluids (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance to reduce system weight and enhance reliability, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) conducted tests to verify the functioning of the IVF system using a flight-like tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to support the test program. This paper presents the simulation of three different test series, comparison of numerical prediction and test data and a novel method of presenting data in a dimensionless form. The paper also presents a methodology of implementing a compressor map in a system level code.

  17. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  18. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    International Nuclear Information System (INIS)

    Joyner, William Scott; Knight, Mark A.

    2013-01-01

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information

  19. Implementation of an Integrated Information Management System for the US DOE Hanford Tank Farms Project

    Energy Technology Data Exchange (ETDEWEB)

    Joyner, William Scott; Knight, Mark A.

    2013-11-14

    In its role as the Tank Operations Contractor at the U.S. Department of Energy's site in Hanford, WA, Washington River Protection Solutions, LLC is implementing an integrated document control and configuration management system. This system will combine equipment data with technical document data that currently resides in separate disconnected databases. The new system will provide integrated information, enabling users to more readily identify the documents that relate to a structure, system, or component and vice-versa. Additionally, the new system will automate engineering work processes through electronic workflows, and where practical and feasible provide integration with design authoring tools. Implementation of this system will improve configuration management of the technical baseline, increase work process efficiencies, support the efficient design of future large projects, and provide a platform for the efficient future turnover of technical baseline data and information.

  20. One System Integrated Project Team Progress in Coordinating Hanford Tank Farms and the Waste Treatment Plant

    International Nuclear Information System (INIS)

    Skwarek, Raymond J.; Harp, Ben J.; Duncan, Garth M.

    2013-01-01

    The One System Integrated Project Team (IPT) was formed at the Hanford Site in late 2011 as a way to improve coordination and itegration between the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and the Tank Operations Contractor (TOC) on interfaces between the two projects, and to eliminate duplication and exploit opportunities for synergy. The IPT is composed of jointly staffed groups that work on technical issues of mutal interest, front-end design and project definition, nuclear safety, plant engineering system integration, commissioning, planning and scheduling, and environmental, safety, health and quality (ESH&Q) areas. In the past year important progress has been made in a number of areas as the organization has matured and additional opportunities have been identified. Areas covered in this paper include: Support for development of the Office of Envirnmental Management (EM) framework document to progress the Office of River Protection's (ORP) River Protection Project (RPP) mission; Stewardship of the RPP flowsheet; Collaboration with Savannah River Site (SRS), Savannah River National Laboratory (SRNL), and Pacific Northwest National Laboratory (PNNL); Operations programs integration; and, Further development of the waste acceptance criteria

  1. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    International Nuclear Information System (INIS)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2012-01-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  2. One System Integrated Project Team: Retrieval And Delivery Of The Hanford Tank Wastes For Vitrification In The Waste Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [Department of Energy, Office of River Protection, Richland, Washington (United States); Kacich, Richard M. [Bechtel National, Inc., Richland, WA (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Richland, WA (United States)

    2012-12-20

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  3. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    International Nuclear Information System (INIS)

    Harp, Benton J.; Kacich, Richard M.; Skwarek, Raymond J.

    2013-01-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines for retrieving the tank

  4. One System Integrated Project Team: Retrieval and Delivery of Hanford Tank Wastes for Vitrification in the Waste Treatment Plant - 13234

    Energy Technology Data Exchange (ETDEWEB)

    Harp, Benton J. [U.S. Department of Energy, Office of River Protection, Post Office Box 550, Richland, Washington 99352 (United States); Kacich, Richard M. [Bechtel National, Inc., 2435 Stevens Center Place, Richland, Washington 99354 (United States); Skwarek, Raymond J. [Washington River Protection Solutions LLC, Post Office Box 850, Richland, Washington 99352 (United States)

    2013-07-01

    The One System Integrated Project Team (IPT) was formed in late 2011 as a way for improving the efficiency of delivery and treatment of highly radioactive waste stored in underground tanks at the U.S. Department of Energy's (DOE's) 586-square-mile Hanford Site in southeastern Washington State. The purpose of the One System IPT is to improve coordination and integration between the Hanford's Waste Treatment Plant (WTP) contractor and the Tank Operations Contractor (TOC). The vision statement is: One System is a WTP and TOC safety-conscious team that, through integrated management and implementation of risk-informed decision and mission-based solutions, will enable the earliest start of safe and efficient treatment of Hanford's tank waste, to protect the Columbia River, environment and public. The IPT is a formal collaboration between Bechtel National, Inc. (BNI), which manages design and construction of the WTP for the U.S. Department of Energy's Office of River Protection (DOEORP), and Washington River Protection Solutions (WRPS), which manages the TOC for ORP. More than fifty-six (56) million gallons of highly radioactive liquid waste are stored in one hundred seventy-seven (177) aging, underground tanks. Most of Hanford's waste tanks - one hundred forty-nine (149) of them - are of an old single-shell tank (SST) design built between 1944 and 1964. More than sixty (60) of these tanks have leaked in the past, releasing an estimated one million gallons of waste into the soil and threatening the nearby Columbia River. There are another twenty-eight (28) new double-shelled tanks (DSTs), built from 1968 to 1986, that provide greater protection to the environment. In 1989, DOE, the U.S. Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) signed a landmark agreement that required Hanford to comply with federal and state environmental standards. It also paved the way for agreements that set deadlines

  5. A STRUCTURAL INTEGRITY EVALUATION OF THE TANK FARM WASTE TRANSFER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.

    2006-03-09

    Radioactive supernate, salt, and/or sludge wastes (i.e., high level wastes) are confined in 49 underground storage tanks at the Savannah River Site (SRS). The waste is transported between tanks within and between the F and H area tank farms and other facilities on site via underground and a limited number of aboveground transfer lines. The Department of Energy - Savannah River Operations Office (DOE-SR) performed a comprehensive assessment of the structural integrity program for the Tank Farm waste transfer system at the SRS. This document addresses the following issues raised during the DOE assessment: (1) Inspections of failed or replaced transfer lines indicated that the wall thickness of some core and jacket piping is less than nominal; (2) No corrosion allowance is utilized in the transfer line structural qualification calculations. No basis for neglecting corrosion was provided in the calculations; (3) Wall loss due to erosion is not addressed in the transfer line structural qualification calculations; and (4) No basis is provided for neglecting intergranular stress corrosion cracking in the transfer line structural qualification calculations. The common theme in most of these issues is the need to assess the potential for occurrence of material degradation of the transfer line piping. The approach used to resolve these issues involved: (1) Review the design and specifications utilized to construct and fabricate the piping system; (2) Review degradation mechanisms for stainless steel and carbon steel and determine their relevance to the transfer line piping; (3) Review the transfer piping inspection data; (4) Life estimation calculations for the transfer lines; and (5) A Fitness-For-Service evaluation for one of the transfer line jackets. The evaluation concluded that the transfer line system piping has performed well for over fifty years. Although there have been instances of failures of the stainless steel core pipe during off-normal service, no significant

  6. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results

  7. 1996 structural integrity assessments for the Category C Liquid Low-Level Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This document provides a report of the efforts made to satisfy the Federal Facility Agreement for the structural integrity certification of ten Category C Liquid Low Level Waste (LLLW) tank systems on the Oak Ridge Reservation in Oak Ridge, Tennessee. Within this document, each Category C tank system is described including the associated pipeline segments evaluated as a part of those tank systems. A separate structural integrity assessment was conducted for each of the LLLW Tank Systems, four of which are located in Melton Valley, and six of which are located in Bethel Valley. The results of the structural integrity assessments are reported herein. The assessments are based on (1) a review of available tank design drawings, (2) a qualitative assessment of corrosion on the tank and pipelines, and primarily (3) leak testing program results.

  8. 1997 structural integrity assessments for the Category C liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report presents the results of a series of evaluations to determine if the individual Category C tank systems retain sufficient structural integrity to continue being used for liquid storage. The approach used to reach the final certification/conclusion consisted of three phases, including: (1) Review of the original engineering design drawings and construction materials to determine whether the tank and line systems were capable of containing liquids without leaking (and also to check that the construction materials were compatible with liquids that might have been placed in these systems). While drawings in this report may be of poor quality, they are copies of the best available originals. (2) A qualitative corrosion assessment conducted in 1995 that further evaluated both the potential internal corrosion effects of materials in the tank and in the potential external corrosion effects of the backfill and native soil at the Oak Ridge National Laboratory (ORNL). The ability to accurately measure or predict the amount of corrosion present on both the internal and external walls of the tanks and pipelines is extremely limited. However, when available, data were used to assess the historical tank contents and usage and the probable corrosive effects on the tank system materials of construction. (3) Performance of monthly leak tests were completed on the tanks and annual leak tests were completed on associated testable pipelines. This task was judged to be the most important criteria for determining structural integrity due to the proven performance of the technology and processes involved.

  9. 1997 structural integrity assessments for the Category C liquid low-level waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    This report presents the results of a series of evaluations to determine if the individual Category C tank systems retain sufficient structural integrity to continue being used for liquid storage. The approach used to reach the final certification/conclusion consisted of three phases, including: (1) Review of the original engineering design drawings and construction materials to determine whether the tank and line systems were capable of containing liquids without leaking (and also to check that the construction materials were compatible with liquids that might have been placed in these systems). While drawings in this report may be of poor quality, they are copies of the best available originals. (2) A qualitative corrosion assessment conducted in 1995 that further evaluated both the potential internal corrosion effects of materials in the tank and in the potential external corrosion effects of the backfill and native soil at the Oak Ridge National Laboratory (ORNL). The ability to accurately measure or predict the amount of corrosion present on both the internal and external walls of the tanks and pipelines is extremely limited. However, when available, data were used to assess the historical tank contents and usage and the probable corrosive effects on the tank system materials of construction. (3) Performance of monthly leak tests were completed on the tanks and annual leak tests were completed on associated testable pipelines. This task was judged to be the most important criteria for determining structural integrity due to the proven performance of the technology and processes involved

  10. Tank Waste Remediation System Guide

    International Nuclear Information System (INIS)

    Robershotte, M.A.; Dirks, L.L.; Seaver, D.A.; Bothers, A.J.; Madden, M.S.

    1995-06-01

    The scope, number and complexity of Tank Waste Remediation System (TWRS) decisions require an integrated, consistent, and logical approach to decision making. TWRS has adopted a seven-step decision process applicable to all decisions. Not all decisions, however, require the same degree of rigor/detail. The decision impact will dictate the appropriate required detail. In the entire process, values, both from the public as well as from the decision makers, play a key role. This document concludes with a general discussion of the implementation process that includes the roles of concerned parties

  11. 46 CFR 119.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Integral fuel tanks. 119.435 Section 119.435 Shipping... Machinery Requirements § 119.435 Integral fuel tanks. (a) Diesel fuel tanks may not be built integral with... for certification of a vessel, integral fuel tanks must withstand a hydrostatic pressure test of 35 k...

  12. Development of a multi-functional scarifier dislodger with an integral pneumatic conveyance retrieval system for single-shell tank remediation. FY93 summary report

    International Nuclear Information System (INIS)

    Bamberger, J.A.; McKinnon, M.A.; Alberts, D.A.; Steele, D.E.; Crowe, C.T.

    1994-10-01

    The Underground Storage Tank Integrated Demonstration (UST-ID) is evaluating several hydraulic dislodger concepts and retrieval technologies to develop specifications for system that can retrieve wastes from single-shell tanks. Each of the dislodgers will be evaluated sequentially to determine its ability to fracture and dislodge various waste simulants such as salt cake, sludge, and viscous liquid. The retrieval methods will be evaluated to determine their ability to convey this dislodged material from the tank. This report describes on-going research that commenced in FY93 to develop specifications for a scarifier dislodger coupled with a pneumatic conveyance retrieval system. The scarifier development is described in Section 3; pneumatic conveyance development is described in Section 4. Preliminary system specifications are listed in Section 5. FY94 plans are summarized in Section 6

  13. 46 CFR 182.435 - Integral fuel tanks.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Integral fuel tanks. 182.435 Section 182.435 Shipping...) MACHINERY INSTALLATION Specific Machinery Requirements § 182.435 Integral fuel tanks. (a) Gasoline fuel tanks must be independent of the hull. (b) Diesel fuel tanks may not be built integral with the hull of...

  14. 241-AY-101 Tank Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.

    2013-08-26

    This report provides the results of an extent of condition construction history review for tank 241-AY-101. The construction history of tank 241-AY-101 has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In tank 241-AY-101, the second double-shell tank constructed, similar issues as those with tank 241-AY-102 construction reoccurred. The overall extent of similary and affect on tank 241-AY-101 integrity is described herein.

  15. 241-AW Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Gunter, Jason R.; Reeploeg, Gretchen E.

    2013-11-19

    This report provides the results of an extent of condition construction history review for the 241-AW tank farm. The construction history of the 241-AW tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AW tank farm, the fourth double-shell tank farm constructed, similar issues as those with tank 241-AY-102 construction occured. The overall extent of similary and affect on 241-AW tank farm integrity is described herein.

  16. Double-shell tank waste transfer facilities integrity assessment plan

    International Nuclear Information System (INIS)

    Hundal, T.S.

    1998-01-01

    This document presents the integrity assessment plan for the existing double-shell tank waste transfer facilities system in the 200 East and 200 West Areas of Hanford Site. This plan identifies and proposes the integrity assessment elements and techniques to be performed for each facility. The integrity assessments of existing tank systems that stores or treats dangerous waste is required to be performed to be in compliance with the Washington State Department of Ecology Dangerous Waste Regulations, Washington Administrative Code WAC-173-303-640 requirements

  17. Fuel tank integrity research : fuel tank analyses and test plans

    Science.gov (United States)

    2013-04-15

    The Federal Railroad Administrations Office of Research : and Development is conducting research into fuel tank : crashworthiness. Fuel tank research is being performed to : determine strategies for increasing the fuel tank impact : resistance to ...

  18. Double-shell tank waste system assessment status and schedule

    International Nuclear Information System (INIS)

    Walter, E.J.

    1995-01-01

    The integrated program for completing the integrity assessments of the dangerous waste tank systems managed by the Tank Waste Remediation System (TWRS) Division of Westinghouse Hanford Company is presented in the Tank Waste Remediation System Tank System Integrity Assessments Program Plan, WHC-SD-AP017, Rev. 1. The program plan identified the assessment requirements and the general scope to which these requirements applied. Some of these assessment requirements have been met and others are either in process of completion or scheduled to be worked. To define the boundary of the double-shell tank (DST) system and the boundaries of the DST system components (or system parts) for the purpose of performing integrity assessment activities; To identify the planned activities to meet the assessment requirements for each component; Provide the status of the assessment activities; and Project a five year assessment activity schedule

  19. Integrity assessment of a storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Osorio Correa; Santos, Jose Henrique Gomes dos; Carvalho, Alexis Fernandes [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In the last internal inspection of a 5000 bbl freshwater storage tank located in a shipping terminal, widespread pitting corrosion was detected on the shell courses. In some of these pits, its depth was such that the remaining thickness was bellow the minimum thickness required according to the design code. Nevertheless, this approach is overly conservative since it does not consider the pits size, depth and spacing. Thanks to advances in stress analysis, new tools are available for the evaluation of damaged equipment widely employed in the oil industry such as pressure vessels, piping and storage tanks. In the present work, the authors present the integrity assessment performed on this tank using the Fitness for Service approach using the methods and procedures contained in the document API RP 579 (Fitness-for-service). (author)

  20. Spray sealing: A breakthrough in integral fuel tank sealing technology

    Science.gov (United States)

    Richardson, Martin D.; Zadarnowski, J. H.

    1989-11-01

    In a continuing effort to increase readiness, a new approach to sealing integral fuel tanks is being developed. The technique seals potential leak sources by spraying elastomeric materials inside the tank cavity. Laboratory evaluations project an increase in aircraft supportability and reliability, an improved maintainability, decreasing acquisition and life cycle costs. Increased usable fuel volume and lower weight than conventional bladders improve performance. Concept feasibility was demonstrated on sub-scale aircraft fuel tanks. Materials were selected by testing sprayable elastomers in a fuel tank environment. Chemical stability, mechanical properties, and dynamic durability of the elastomer are being evaluated at the laboratory level and in sub-scale and full scale aircraft component fatigue tests. The self sealing capability of sprayable materials is also under development. Ballistic tests show an improved aircraft survivability, due in part to the elastomer's mechanical properties and its ability to damp vibrations. New application equipment, system removal, and repair methods are being investigated.

  1. Integrity assessment report of tanks TK-101 and TK-102

    Energy Technology Data Exchange (ETDEWEB)

    MCSHANE, D.S.

    1999-08-25

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) for Waste Management Federal Services of Hanford, Inc., (WMH), the operations contractor; Fluor Daniel Hanford (FDH), the Hanford Site Manager; and the U. S. Department of Energy (DOE), the system owner. This IAR addresses the evaluation of Tanks 101 and 102 and other existing components located in the 219-S Waste Handling Facility. This report will be included in the Part B Permit for the 2226 Laboratory and is a portion of the integrity assessment of the overall 222-5 Laboratory radioactive liquid waste disposal system. This IAR is prepared in accordance with WAC 173-303, Dangerous Waste Regulations; Section 640(2), ''Assessment of Existing Tank Systems Integrity .''

  2. Integrity assessment report of tanks TK-101 and TK-102

    International Nuclear Information System (INIS)

    MCSHANE, D.S.

    1999-01-01

    This Integrity Assessment Report (IAR) is prepared by Fluor Daniel Northwest (FDNW) for Waste Management Federal Services of Hanford, Inc., (WMH), the operations contractor; Fluor Daniel Hanford (FDH), the Hanford Site Manager; and the U. S. Department of Energy (DOE), the system owner. This IAR addresses the evaluation of Tanks 101 and 102 and other existing components located in the 219-S Waste Handling Facility. This report will be included in the Part B Permit for the 2226 Laboratory and is a portion of the integrity assessment of the overall 222-5 Laboratory radioactive liquid waste disposal system. This IAR is prepared in accordance with WAC 173-303, Dangerous Waste Regulations; Section 640(2), ''Assessment of Existing Tank Systems Integrity .''

  3. 241-SY Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-25

    This report provides the results of an extent of condition construction history review for tanks 241-SY-101, 241-SY-102, and 241-SY-103. The construction history of the 241-SY tank farm has been reviewed to identify issues similar to those experienced during tank 241-AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank 241-AY-102 as the comparison benchmark. In the 241-SY tank farm, the third DST farm constructed, refractory quality and stress relief were improved, while similar tank and liner fabrication issues remained.

  4. 241-AZ Tank Farm Construction Extent of Condition Review for Tank Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Travis J.; Boomer, Kayle D.; Gunter, Jason R.; Venetz, Theodore J.

    2013-07-30

    This report provides the results of an extent of condition construction history review for tanks 241-AZ-101 and 241-AZ-102. The construction history of the 241-AZ tank farm has been reviewed to identify issues similar to those experienced during tank AY-102 construction. Those issues and others impacting integrity are discussed based on information found in available construction records, using tank AY-102 as the comparison benchmark. In the 241-AZ tank farm, the second DST farm constructed, both refractory quality and tank and liner fabrication were improved.

  5. An Underground Storage Tank Integrated Demonstration report

    International Nuclear Information System (INIS)

    Quadrel, M.J.; Hunter, V.L.; Young, J.K.; Lini, D.C.; Goldberg, C.

    1993-04-01

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  6. Tank waste remediation system configuration management plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Project personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents

  7. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  8. 241-AN Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AN double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  9. 241-AY Double Shell Tanks (DST) Integrity Assessment Report

    Energy Technology Data Exchange (ETDEWEB)

    JENSEN, C.E.

    1999-09-21

    This report presents the results of the integrity assessment of the 241-AY double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations. are made to ensure the continued safe operation of the tanks.

  10. 241-SY Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-SY double-shell tank farm facility located in the 200 West Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  11. 241-AZ Double-Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-A2 double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  12. 241-AW Double Shell Tanks (DST) Integrity Assessment Report

    International Nuclear Information System (INIS)

    JENSEN, C.E.

    1999-01-01

    This report presents the results of the integrity assessment of the 241-AW double-shell tank farm facility located in the 200 East Area of the Hanford Site. The assessment included the design evaluation and integrity examinations of the tanks and concluded that the facility is adequately designed, is compatible with the waste, and is fit for use. Recommendations including subsequent examinations, are made to ensure the continued safe operation of the tanks

  13. ATR/OTR-SY Tank Camera Purge System and in Tank Color Video Imaging System

    International Nuclear Information System (INIS)

    Werry, S.M.

    1995-01-01

    This procedure will document the satisfactory operation of the 101-SY tank Camera Purge System (CPS) and 101-SY in tank Color Camera Video Imaging System (CCVIS). Included in the CPRS is the nitrogen purging system safety interlock which shuts down all the color video imaging system electronics within the 101-SY tank vapor space during loss of nitrogen purge pressure

  14. Integrated heat exchanger design for a cryogenic storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  15. Hanford Site Tank Waste Remediation System

    International Nuclear Information System (INIS)

    1993-05-01

    The US Department of Energy's (DOE) Hanford Site in southeastern Washington State has the most diverse and largest amount of highly radioactive waste of any site in the US. High-level radioactive waste has been stored in large underground tanks since 1944. A Tank Waste Remediation System Program has been established within the DOE to safely manage and immobilize these wastes in anticipation of permanent disposal in a geologic repository. The Hanford Site Tank Waste Remediation System Waste Management 1993 Symposium Papers and Viewgraphs covered the following topics: Hanford Site Tank Waste Remediation System Overview; Tank Waste Retrieval Issues and Options for their Resolution; Tank Waste Pretreatment - Issues, Alternatives and Strategies for Resolution; Low-Level Waste Disposal - Grout Issue and Alternative Waste Form Technology; A Strategy for Resolving High-Priority Hanford Site Radioactive Waste Storage Tank Safety Issues; Tank Waste Chemistry - A New Understanding of Waste Aging; Recent Results from Characterization of Ferrocyanide Wastes at the Hanford Site; Resolving the Safety Issue for Radioactive Waste Tanks with High Organic Content; Technology to Support Hanford Site Tank Waste Remediation System Objectives

  16. Experimentation of a Solar Water Heater with Integrated Storage Tank

    International Nuclear Information System (INIS)

    Elhmidi, I; Frikha, N; Chaouchi, B; Gabsi, S

    2009-01-01

    An integrated collector storage (ICS) solar water heater was constructed in 2004 and studied its optical and thermal performance. It was revealed that it has some thermal shortcomings of thermal performances. The ICS system consists of one cylindrical horizontal tank properly mounted in a stationary symmetrical Compound Parabolic Concentrating (CPC) reflector trough. The main objective was to delimit the causes of these deficiencies and trying to diagnose them. A rigorous experimentation of the solar water heater has been done over its daily energetic output as well as the evolution of the nocturnal thermal losses. In fact, three successive days, including nights, of operation have permitted to obtain diagrams describing the variations of mean temperature in the tank and the thermal loss coefficient during night of our installation. The experimental results, compared with those obtained by simulation, showed a perfecting of thermal performances of system which approach from those of other models introduced on the international market

  17. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  19. Underground Storage Tank Integrated Demonstration (UST-ID)

    International Nuclear Information System (INIS)

    1994-02-01

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m 3 ) to 10 6 gallons (3785 m 3 ). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  20. Light Duty Utility Arm System applications for tank waste remediation

    International Nuclear Information System (INIS)

    Carteret, B.A.

    1994-10-01

    The Light Duty Utility Arm (LDUA) System is being developed by the US Department of Energy's (DOE's) Office of Technology Development (OTD, EM-50) to obtain information about the conditions and contents of the DOE's underground storage tanks. Many of these tanks are deteriorating and contain hazardous, radioactive waste generated over the past 50 years as a result of defense materials production at a member of DOE sites. Stabilization and remediation of these waste tanks is a high priority for the DOE's environmental restoration program. The LDUA System will provide the capability to obtain vital data needed to develop safe and cost-effective tank remediation plans, to respond to ongoing questions about tank integrity and leakage, and to quickly investigate tank events that raise safety concerns. In-tank demonstrations of the LDUA System are planned for three DOE sites in 1996 and 1997: Hanford, Idaho National Engineering Laboratory (INEL), and Oak Ridge National Laboratory (ORNL). This paper provides a general description of the system design and discusses a number of planned applications of this technology to support the DOE's environmental restoration program, as well as potential applications in other areas. Supporting papers by other authors provide additional in-depth technical information on specific areas of the system design

  1. Tank waste remediation system engineering plan

    International Nuclear Information System (INIS)

    Rifaey, S.H.

    1998-01-01

    This Engineering Plan describes the engineering process and controls that will be in place to support the Technical Baseline definition and manage its evolution and implementation to the field operations. This plan provides the vision for the engineering required to support the retrieval and disposal mission through Phase 1 and 2, which includes integrated data management of the Technical Baseline. Further, this plan describes the approach for moving from the ''as is'' condition of engineering practice, systems, and facilities to the desired ''to be'' configuration. To make this transition, Tank Waste Remediation System (TWRS) Engineering will become a center of excellence for TWRS which,will perform engineering in the most effective manner to meet the mission. TWRS engineering will process deviations from sitewide systems if necessary to meet the mission most effectively

  2. C-106 tank sluicer control system

    International Nuclear Information System (INIS)

    Bellomy, J.R.

    1997-01-01

    Acceptance Test Report for the Sluicer Control System, Project W-320 This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the C-Farm tank C-106 sluicer functions as required by the design criteria

  3. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    Science.gov (United States)

    2010-07-01

    ... tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment ENVIRONMENTAL... underground storage tank or underground storage tank system or facility or property on which an underground...

  4. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    International Nuclear Information System (INIS)

    Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-03-01

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  5. 33 CFR 183.520 - Fuel tank vent systems.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Equipment Standards § 183.520 Fuel tank vent systems. (a) Each fuel tank must have a vent system that prevents pressure in the tank from exceeding 80... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank vent systems. 183.520...

  6. Evaluation of the integrity of existing NFS waste tanks

    International Nuclear Information System (INIS)

    1977-12-01

    Various means of investigating the integrity of the existing NFS waste tanks are presented, including: visual inspection, ultrasonic testing, acoustic-emission monitoring, radiography, and forced-vibration testing. The experience that exists in performing such investigations of high-level radioactive waste tanks is documented, including: visual inspections, photography, wall-thickness measurements, and forced-vibration testing. An evaluation is made on the relative merits of the presented inspection and testing alternatives

  7. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  8. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  9. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  10. Viewing Systems for Large Underground Storage Tanks

    International Nuclear Information System (INIS)

    Heckendorn, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1996-01-01

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction

  11. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    The Tank Waste Remediation System Mission Analysis Report identifies the initial states of the system and the desired final states of the system. The Mission Analysis Report identifies target measures of success appropriate to program-level accomplishments. It also identifies program-level requirements and major system boundaries and interfaces

  12. Tank waste remediation system: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Dunford, G.L.; Honeyman, J.O.; Wodrich, D.D.

    1995-02-01

    The US Department of Energy's Hanford Site, located in southeastern Washington State, contains the largest amount and the most diverse collection of highly radioactive waste in the US. High-level radioactive waste has been stored at the Hanford Site in large, underground tanks since 1944. Approximately 217,000 M 3 (57 Mgal) of caustic liquids, slurries, saltcakes, and sludges have accumulated in 177 tanks. In addition, significant amounts of 90 Sr and 137 Cs were removed from the tank waste, converted to salts, doubly encapsulated in metal containers, and stored in water basins. The Tank Waste Remediation System Program was established by the US Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, significant progress has been made in resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  13. Tank Waste Remediation System Tank Waste Analysis Plan. FY 1995

    International Nuclear Information System (INIS)

    Haller, C.S.; Dove, T.H.

    1994-01-01

    This documents lays the groundwork for preparing the implementing the TWRS tank waste analysis planning and reporting for Fiscal Year 1995. This Tank Waste Characterization Plan meets the requirements specified in the Hanford Federal Facility Agreement and Consent Order, better known as the Tri-Party Agreement

  14. Second Order Sliding Mode Control of the Coupled Tanks System

    Directory of Open Access Journals (Sweden)

    Fayiz Abu Khadra

    2015-01-01

    Full Text Available Four classes of second order sliding mode controllers (2-SMC have been successfully applied to regulate the liquid level in the second tank of a coupled tanks system. The robustness of these classes of 2-SMC is investigated and their performances are compared with a first order controller to show the merits of these controllers. The effectiveness of these controllers is verified through computer simulations. Comparison between the controllers is based on the time domain performance measures such as rise time, settling time, and the integral absolute error. Results showed that controllers are able to regulate the liquid level with small differences in their performance.

  15. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  16. Development of simulated tank wastes for the US Department of Energy's Underground Storage Tank Integrated Demonstration

    International Nuclear Information System (INIS)

    Elmore, M.R.; Colton, N.G.; Jones, E.O.

    1992-08-01

    The purpose of the Underground Storage Tank Integrated Demonstration (USTID) is to identify and evaluate technologies that may be used to characterize, retrieve, treat, and dispose of hazardous and radioactive wastes contained in tanks on US Department of Energy sites. Simulated wastes are an essential component of the evaluation process because they provide controlled samples for technology assessment, and minimize costs and risks involved when working with radioactive wastes. Pacific Northwest Laboratory has developed a recipe to simulate Hanford single-shell tank, (SST) waste. The recipe is derived from existing process recipes, and elemental concentrations are based on characterization data from 18 SSTs. In this procedure, salt cake and metal oxide/hydroxide sludge are prepared individually, and mixed together at varying ratios depending on the specific tank, waste to be simulated or the test being conducted. Elemental and physical properties of the stimulant are comparable with analyzed tank samples, and chemical speciation in the simulant is being improved as speciation data for actual wastes become available. The nonradioactive chemical waste simulant described here is useful for testing technologies on a small scale

  17. Tank Waste Remediation System optimized processing strategy

    International Nuclear Information System (INIS)

    Slaathaug, E.J.; Boldt, A.L.; Boomer, K.D.; Galbraith, J.D.; Leach, C.E.; Waldo, T.L.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  18. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization

  19. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-05

    This program plan establishes the framework for conduct of the Tank Waste Remediation System (TWRS) Project. The plan focuses on the TWRS Retrieval and Disposal Mission and is specifically intended to support the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing firm contracts for waste immobilization.

  20. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    International Nuclear Information System (INIS)

    Johnson, C.M.

    1994-08-01

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  1. Engineering Task Plan for the Integrity Assessment Examination of Double-Contained Receiver Tanks (DCRT), Catch Tanks and Ancillary facilities

    International Nuclear Information System (INIS)

    BECKER, D.L.

    2000-01-01

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan

  2. 40 CFR 280.230 - Operating an underground storage tank or underground storage tank system.

    Science.gov (United States)

    2010-07-01

    ... underground storage tank or underground storage tank system. (a) Operating an UST or UST system prior to...) Operating an UST or UST system after foreclosure. The following provisions apply to a holder who, through..., the purchaser must decide whether to operate or close the UST or UST system in accordance with...

  3. Tank waste remediation system tank waste retrieval risk management plan

    International Nuclear Information System (INIS)

    Klimper, S.C.

    1997-01-01

    This Risk Management Plan defines the approach to be taken to manage programmatic risks in the TWRS Tank Waste Retrieval program. It provides specific instructions applicable to TWR, and is used to supplement the guidance given by the TWRS Risk Management procedure

  4. System Description for the Double Shell Tank (DST) Confinement System

    International Nuclear Information System (INIS)

    ROSSI, H.

    2000-01-01

    This document provides a description of the Double-Shell Tank (DST) Confinement System. This description will provide a basis for developing functional, performance and test requirements (i.e., subsystem specification), as necessary, for the DST Confinement System

  5. DECOUPLER DESIGN FOR AN INTERACTING TANKS SYSTEM

    Directory of Open Access Journals (Sweden)

    Duraid F. Ahmed

    2013-05-01

    Full Text Available The mathematical model forthe two interacting tanks system was derived and the dynamic behavior of thissystem was studied by introducing a step change in inlet flow rate. In thispaper, the analysis of the interaction loops between the controlled variable(liquid level and manipulated variable (inlet flow rate was carried out usingthe relative gain array. Also decoupling technique is applied to eliminate theeffect this interaction by design suitable decouplers for the system. Theresults show that the gain of each loop is cut in half when the opposite loopis closed and the gain of other loop changes sign when the opposite loop isclosed. The decoupling method show that the liquid level of tank one isconstant when the second inlet flow changes and to keep the liquid level oftank two constant the first inlet flow must be changed.

  6. Tank waste remediation system mission analysis report

    International Nuclear Information System (INIS)

    Acree, C.D.

    1998-01-01

    This document describes and analyzes the technical requirements that the Tank Waste Remediation System (TWRS) must satisfy for the mission. This document further defines the technical requirements that TWRS must satisfy to supply feed to the private contractors' facilities and to store or dispose the immobilized waste following processing in these facilities. This document uses a two phased approach to the analysis to reflect the two-phased nature of the mission

  7. 14 CFR 121.1113 - Fuel tank system maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system maintenance program. 121... Improvements § 121.1113 Fuel tank system maintenance program. (a) Except as provided in paragraph (g) of this... capacity of 7500 pounds or more. (b) For each airplane on which an auxiliary fuel tank is installed under a...

  8. 14 CFR 125.507 - Fuel tank system inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system inspection program. 125... Airworthiness and Safety Improvements § 125.507 Fuel tank system inspection program. (a) Except as provided in... fuel tank is installed under a field approval, before June 16, 2008, the certificate holder must submit...

  9. 14 CFR 129.113 - Fuel tank system maintenance program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fuel tank system maintenance program. 129... Continued Airworthiness and Safety Improvements § 129.113 Fuel tank system maintenance program. (a) Except... on which an auxiliary fuel tank is installed under a field approval, before June 16, 2008, the...

  10. 14 CFR 91.1507 - Fuel tank system inspection program.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Fuel tank system inspection program. 91... Airworthiness and Safety Improvements § 91.1507 Fuel tank system inspection program. (a) Except as provided in... fuel tank is installed under a field approval, before June 16, 2008, the operator must submit to the...

  11. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  12. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    International Nuclear Information System (INIS)

    Shelton, L.W.

    1996-01-01

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available

  13. Tank 241-C-106 in-tank imaging system operational test report

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of operational testing of the 241-C-106 In-Tank Video Camera Imaging System. This imaging system was installed as a component of Project W-320 to monitor sluicing and waste retrieval activities in Tank 241-C-106

  14. Initial Single-Shell Tank Retrieval System mission analysis report

    International Nuclear Information System (INIS)

    Hertzel, J.S.

    1996-03-01

    This document provides the mission analysis for the Initial Single-Shell Tank Retrieval System task, which supports the Single-Shell Tank Waste Retrieval Program in its commitment to remove waste from single-shell tanks for treatment and final closure

  15. Tank monitor and control system (TMACS) software configuration management plan

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) describes the methodology for control of computer software developed and supported by the Systems Development and Integration (SD and I) organization of Lockheed Martin Services, Inc. (LMSI) for the Tank Monitor and Control System (TMACS). This plan controls changes to the software and configuration files used by TMACS. The controlled software includes the Gensym software package, Gensym knowledge base files developed for TMACS, C-language programs used by TMACS, the operating system on the production machine, language compilers, and all Windows NT commands and functions which affect the operating environment. The configuration files controlled include the files downloaded to the Acromag and Westronic field instruments

  16. SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

    2012-01-25

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  17. Single-Shell Tanks Leak Integrity Elements/ SX Farm Leak Causes and Locations - 12127

    Energy Technology Data Exchange (ETDEWEB)

    Girardot, Crystal [URS- Safety Management Solutions, Richland, Washington 99352 (United States); Harlow, Don [ELR Consulting Richland, Washington 99352 (United States); Venetz, Theodore; Washenfelder, Dennis [Washington River Protection Solutions, LLC Richland, Washington 99352 (United States); Johnson, Jeremy [U.S. Department of Energy, Office of River Protection Richland, Washington 99352 (United States)

    2012-07-01

    Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-91F Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal 1-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX- 111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and dry-wells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to

  18. Advancing the US Department of Energy's Technologies through the Underground Storage Tank: Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Gates, T.E.

    1993-01-01

    The principal objective of the Underground Storage Tank -- Integrated Demonstration Program is the demonstration and continued development of technologies suitable for the remediation of waste stored in underground storage tanks. The Underground Storage Tank Integrated Demonstration Program is the most complex of the integrated demonstration programs established under the management of the Office of Technology Development. The Program has the following five participating sites: Oak Ridge, Idaho, Fernald, Savannah River, and Hanford. Activities included within the Underground Storage Tank -- Integrated Demonstration are (1) characterizating radioactive and hazardous waste constituents, (2) determining the need and methodology for improving the stability of the waste form, (3) determining the performance requirements, (4) demonstrating barrier performance by instrumented field tests, natural analog studies, and modeling, (5) determining the need and method for destroying and stabilizing hazardous waste constituents, (6) developing and evaluating methods for retrieving, processing (pretreatment and treatment), and storing the waste on an interim basis, and (7) defining and evaluating waste packages, transportation options, and ultimate closure techniques including site restoration. The eventual objective is the transfer of new technologies as a system to full-scale remediation at the US Department of Energy complexes and sites in the private sector

  19. Systems integration.

    Science.gov (United States)

    Siemieniuch, C E; Sinclair, M A

    2006-01-01

    The paper presents a view of systems integration, from an ergonomics/human factors perspective, emphasising the process of systems integration as is carried out by humans. The first section discusses some of the fundamental issues in systems integration, such as the significance of systems boundaries, systems lifecycle and systems entropy, issues arising from complexity, the implications of systems immortality, and so on. The next section outlines various generic processes for executing systems integration, to act as guides for practitioners. These address both the design of the system to be integrated and the preparation of the wider system in which the integration will occur. Then the next section outlines some of the human-specific issues that would need to be addressed in such processes; for example, indeterminacy and incompleteness, the prediction of human reliability, workload issues, extended situation awareness, and knowledge lifecycle management. For all of these, suggestions and further readings are proposed. Finally, the conclusions section reiterates in condensed form the major issues arising from the above.

  20. Tank Farm Contractor Waste Remediation System and Utilization Plan

    International Nuclear Information System (INIS)

    KIRKBRIDE, R.A.

    1999-01-01

    The Tank Waste Remediation System Operation and Utilization Plan updates the operating scenario and plans for the delivery of feed to BNFL Inc., retrieval of waste from single-shell tanks, and the overall process flowsheets for Phases I and II of the privatization of the Tank Waste Remediation System. The plans and flowsheets are updated with the most recent tank-by-tank inventory and sludge washing data. Sensitivity cases were run to evaluate the impact or benefits of proposed changes to the BNFL Inc. contract and to evaluate a risk-based SST retrieval strategy

  1. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    Energy Technology Data Exchange (ETDEWEB)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board`s view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program.

  2. Final report of the systems engineering technical advisory board for the Tank Waste Remediation Program

    International Nuclear Information System (INIS)

    Baranowski, F.P.; Goodlett, C.B.; Beard, S.J.; Duckworth, J.P.; Schneider, A.; Zahn, L.L.

    1993-03-01

    The Tank Waste Remediation System (TWRS) is one segment of the environmental restoration program at the Hanford site. The scope is to retrieve the contents of both the single shell and double shell tanks and process the wastes into forms acceptable for long term storage and/or permanent disposal. The quantity of radioactive waste in tanks is significantly larger and substantially more complex in composition than the radioactive waste stored in tanks at other DOE sites. The waste is stored in 149 single shell tanks and 28 double shell tanks. The waste was produced over a period from the mid 1940s to the present. The single shell tanks have exceeded their design life and are experiencing failures. The oldest of the double shell tanks are approaching their design life. Spar double shell tank waste volume is limited. The priorities in the Board's view are to manage safely the waste tank farms, accelerate emptying of waste tanks, provide spare tank capacity and assure a high degree of confidence in performance of the TWRS integrated program. At its present design capacity, the glass vitrification plant (HWVP) will require a period of about 15 years to empty the double shell tanks; the addition of the waste in single shell tanks adds another 100 years. There is an urgent need to initiate now a well focused and centralized development and engineering program on both larger glass melters and advanced separations processes that reduce radioactive constituents in the low-level waste (LLW). The Board presents its conclusions and has other suggestions for the management plan. The Board reviews planning schedules for accelerating the TWRS program

  3. Robotic system for remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1990-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  4. Strategy to develop and test a multi-function scarifier end effector with an integral conveyance system for waste tank remediation

    International Nuclear Information System (INIS)

    Bamberger, J.A.; Bates, J.M.; Keska, J.K.; Elmore, M.R.; Lombardo, N.J.

    1993-08-01

    This strategy plan describes a coupled analytical/experimental approach to develop a multi-functional scarifier end effector coupled with a pneumatic conveyance system to retrieve wastes from underground storage tanks. The scarifier uses ultra-high-pressure water jets to rubblize and entrain waste forms such as salt cake, sludge, and viscous liquid that can be transported pneumatically. The three waste types (hard, brittle, salt cake, viscous liquid, and deformable sludge) present increasingly complex challenges for scarification and pneumatic conveyance. Salt cake is anticipated to be the easiest to retrieve because (1) a theoretical model of hydraulic rock fracture can be applied to estimate jet performance to fracture salt cake, and (2) gas-solids transport correlations can be used to predict pneumatic transport. Deformable sludge is anticipated to be the most difficult to retrieve: no theories, correlations, or data exist to predict this performance. However order-of-magnitude gas-solid correlations indicate particulate wastes of prototypic density can be transported to a height of 20 m within allowable pressure limits provided that the volume fraction of the gaseous phase is kept above 95%. Viscous liquid is anticipated to be of intermediate complexity to retrieve. Phenomena that are expected to affect system performance are ranked. Experiments and analyses necessary to evaluate the effects of these phenomena are proposed. Subsequent strategies for experiment test plans, system deployment, and operation and control will need to be developed

  5. Tank waste remediation system risk management plan

    International Nuclear Information System (INIS)

    Zimmerman, B.D.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Risk Management Plan is to describe a consistent approach to risk management such that TWRS Project risks are identified and managed to achieve TWRS Project success. The Risk Management Plan implements the requirements of the Tank Waste Remediation System Systems Engineering Management Plan in the area of risk management. Figure ES-1 shows the relationship of the TWRS Risk Management Plan to other major TWRS Project documents. As the figure indicates, the Risk Management Plan is a tool used to develop and control TWRS Project work. It provides guidance on how TWRS Project risks will be assessed, analyzed, and handled, and it specifies format and content for the risk management lists, which are a primary product of the risk management process. In many instances, the Risk Management Plan references the TWRS Risk Management Procedure, which provides more detailed discussion of many risk management activities. The TWRS Risk Management Plan describes an ongoing program within the TWRS Project. The Risk Management Plan also provides guidance in support of the TWRS Readiness To-Proceed (RTP) assessment package

  6. Proceedings of the 2nd Annual Tank Integrity Workshop

    International Nuclear Information System (INIS)

    Edelson, M.C.; Thompson, R. Bruce

    2001-01-01

    radioactive wastes and, in many cases, these tanks are at or have already exceeded their design lives. The DOE Tanks Focus Area (TFA) was created in 1996 to help develop new technologies to, in part, measure the integrity of these tanks so that their continued safe use could be assured. In 2001, technical staff members from Oak Ridge, Savannah River, West Valley Demonstration Project, Idaho National Engineering and Environmental Laboratory, Hanford, and the Defense Nuclear Facilities Safety Board met with TFA and CMST staff at a workshop organized by the CNDE for TFA to identify significant impediments, if any, to the safe operation and management of large storage tanks at their sites. A second goal of the meeting was to establish groundwork for collaborative efforts aimed at eliminating these impediments and the improvement of networking among individuals at the various sites. The attendees found the workshop useful and a second workshop was scheduled for FY2002. Electronic copies of workshop presentations are included on this CD and hyperlinked to his text. Hard copies of the presentations are included in the bound copy of the proceedings. These presentations should be referred to for further details on the material presented below

  7. Acceptance test report for the Tank 241-C-106 in-tank imaging system

    International Nuclear Information System (INIS)

    Pedersen, L.T.

    1998-01-01

    This document presents the results of Acceptance Testing of the 241-C-106 in-tank video camera imaging system. The purpose of this imaging system is to monitor the Project W-320 sluicing of Tank 241-C-106. The objective of acceptance testing of the 241-C-106 video camera system was to verify that all equipment and components function in accordance with procurement specification requirements and original equipment manufacturer's (OEM) specifications. This document reports the results of the testing

  8. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    International Nuclear Information System (INIS)

    Gustavson, R.D.

    1995-12-01

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  9. Tank waste remediation system characterization project quality policies. Revision 1

    International Nuclear Information System (INIS)

    Trimble, D.J.

    1995-01-01

    These Quality Policies (QPs) describe the Quality Management System of the Tank Waste Characterization Project (hereafter referred to as the Characterization Project), Tank Waste Remediation System (TWRS), Westinghouse Hanford Company (WHC). The Quality Policies and quality requirements described herein are binding on all Characterization Project organizations. To achieve quality, the Characterization Project management team shall implement this Characterization Project Quality Management System

  10. 33 CFR 183.564 - Fuel tank fill system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to five...

  11. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This appendix contains the engineering design drawings for the double-shell tank system. Included are drawings of the electrical systems, structural members, piping systems, instrumentation and the many auxiliary systems. (JL)

  12. Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center

    International Nuclear Information System (INIS)

    Bryant, J.W.; Nenni, J.A.; Yoder, T.S.

    2003-01-01

    This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, ''Radioactive Waste Management Manual.'' This equipment is known collectively as the Tank Farm Facility. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility

  13. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  14. Tank waste remediation system program plan

    International Nuclear Information System (INIS)

    Powell, R.W.

    1998-01-01

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste

  15. Tank waste remediation system program plan

    Energy Technology Data Exchange (ETDEWEB)

    Powell, R.W.

    1998-01-09

    This TWRS Program plan presents the planning requirements and schedules and management strategies and policies for accomplishing the TWRS Project mission. It defines the systems and practices used to establish consistency for business practices, engineering, physical configuration and facility documentation, and to maintain this consistency throughout the program life cycle, particularly as changes are made. Specifically, this plan defines the following: Mission needs and requirements (what must be done and when must it be done); Technical objectives/approach (how well must it be done); Organizational structure and philosophy (roles, responsibilities, and interfaces); and Operational methods (objectives and how work is to be conducted in both management and technical areas). The plan focuses on the TWRS Retrieval and Disposal Mission and supports the DOE mid-1998 Readiness to Proceed with Privatized Waste Treatment evaluation for establishing contracts with private contractors for the treatment (immobilization) of Hanford tank high-level radioactive waste.

  16. Tank waste remediation system risk management list

    International Nuclear Information System (INIS)

    Collard, L.B.

    1995-01-01

    The Tank Waste Remedation System (TWRS) Risk Management List and it's subset of critical risks, the Critical Risk Management List, provide a tool to senior RL and WHC management (Level-1 and -2) to manage programmatic risks that may significantly impact the TWRS program. The programmatic risks include cost, schedule, and performance risks. Performance risk includes technical risk, supportability risk (such as maintainability and availability), and external risk (i.e., beyond program control, for example, changes in regulations). The risk information includes a description, its impacts, as evaluation of the likelihood, consequences and risk value, possible mitigating actions, and responsible RL and WHC managers. The issues that typically form the basis for the risks are presented in a separate table and the affected functions are provided on the management lists

  17. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, P.K.

    1995-01-31

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm`s tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers.

  18. Tank selection for Light Duty Utility Arm (LDUA) system hot testing in a single shell tank

    International Nuclear Information System (INIS)

    Bhatia, P.K.

    1995-01-01

    The purpose of this report is to recommend a single shell tank in which to hot test the Light Duty Utility Arm (LDUA) for the Tank Waste Remediation System (TWRS) in Fiscal Year 1996. The LDUA is designed to utilize a 12 inch riser. During hot testing, the LDUA will deploy two end effectors (a High Resolution Stereoscopic Video Camera System and a Still/Stereo Photography System mounted on the end of the arm's tool interface plate). In addition, three other systems (an Overview Video System, an Overview Stereo Video System, and a Topographic Mapping System) will be independently deployed and tested through 4 inch risers

  19. Preliminary characterization of abandoned septic tank systems. Volume 1

    International Nuclear Information System (INIS)

    1995-12-01

    This report documents the activities and findings of the Phase I Preliminary Characterization of Abandoned Septic Tank Systems. The purpose of the preliminary characterization activity was to investigate the Tiger Team abandoned septic systems (tanks and associated leachfields) for the purpose of identifying waste streams for closure at a later date. The work performed was not to fully characterize or remediate the sites. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. A total of 20 sites were investigated for the preliminary characterization of identified abandoned septic systems. Of the 20 sites, 19 were located and characterized through samples collected from each tank(s) and, where applicable, associated leachfields. The abandoned septic tank systems are located in Areas 5, 12, 15, 25, and 26 on the Nevada Test Site

  20. OPTIMISATION OF MANTLE TANKS FOR LOW FLOW SOLAR HEATING SYSTEMS

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    1996-01-01

    A model, describing the heat transfer coefficients in the mantle of a mantle tank has been developed. The model is validated by means of measurements with varying operational conditions for different designed mantle tanks. The model has been implemented in an existing detailed mathematical...... with the programme and by means of tests of three SDHW systems with different designed mantle tanks. Based on the investigations design rules for mantle tanks are proposed. The model, describing the heat transfer coefficients in the mantle is approximate. In addition, the measurements have revealed...... that a temperature stratification in the hot water tank, above the mantle is built up. This phenomenon may be important, but it is not taken into calculation in the programme. Therefore, theoretical and practical work is continuing in order to make a more precise model for the whole mantle tank....

  1. Tank waste remediation system architecture tree

    International Nuclear Information System (INIS)

    PECK, L.G.

    1999-01-01

    The TWRS Architecture Tree presented in this document is a hierarchical breakdown to support the TWRS systems engineering analysis of the TWRS physical system, including facilities, hardware and software. The purpose for this systems engineering architecture tree is to describe and communicate the system's selected and existing architecture, to provide a common structure to improve the integration of work and resulting products, and to provide a framework as a basis for TWRS Specification Tree development

  2. Tank waste remediation system architecture tree; TOPICAL

    International Nuclear Information System (INIS)

    PECK, L.G.

    1999-01-01

    The TWRS Architecture Tree presented in this document is a hierarchical breakdown to support the TWRS systems engineering analysis of the TWRS physical system, including facilities, hardware and software. The purpose for this systems engineering architecture tree is to describe and communicate the system's selected and existing architecture, to provide a common structure to improve the integration of work and resulting products, and to provide a framework as a basis for TWRS Specification Tree development

  3. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    Science.gov (United States)

    2013-11-22

    ... Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation AGENCY: Nuclear Regulatory Commission... Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and Corrosion Under Insulation.'' This LR... related to internal surface aging effects, fire water systems, atmospheric storage tanks, and corrosion...

  4. Tank waste remediation system environmental program plan

    Energy Technology Data Exchange (ETDEWEB)

    Borneman, L.E.

    1998-01-09

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996).

  5. Tank waste remediation system environmental program plan

    International Nuclear Information System (INIS)

    Borneman, L.E.

    1998-01-01

    This Environmental Program Plan has been developed in support of the Integrated Environmental, Safety and Health Management System and consistent with the goals of DOE/RL-96-50, Hanford Strategic Plan (RL 1996a), and the specifications and guidance for ANSI/ISO 14001-1996, Environmental Management Systems Specification with guidance for use (ANSI/ISO 1996)

  6. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  7. Decontamination system study for the Tank Waste Retrieval System

    International Nuclear Information System (INIS)

    Reutzel, T.; Manhardt, J.

    1994-05-01

    This report summarizes the findings of the Idaho National Engineering Laboratory's decontamination study in support of the Tank Waste Retrieval System (TWRS) development program. Problems associated with waste stored in existing single shell tanks are discussed as well as the justification for the TWRS program. The TWRS requires a decontamination system. The subsystems of the TWRS are discussed, and a list of assumptions pertinent to the TWRS decontamination system were developed. This information was used to develop the functional and operational requirements of the TWRS decontamination system. The requirements were combined with a comprehensive review of currently available decontamination techniques to produced a set of evaluation criteria. The cleaning technologies and techniques were evaluated, and the CO 2 blasting decontamination technique was chosen as the best technology for the TWRS

  8. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    International Nuclear Information System (INIS)

    Himes, D.A.

    1998-01-01

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  9. Radiological and toxicological analyses of tank 241-AY-102 and tank 241-C-106 ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Himes, D.A.

    1998-08-11

    The high heat content solids contained in Tank 241-C-106 are to be removed and transferred to Tank 241-AY-102 by sluicing operations, to be authorized under project W320. While sluicing operations are underway, the state of these tanks will be transformed from unagitated to agitated. This means that the partition fraction which describes the aerosol content of the head space will increase from IE-10 to IE-8 (see WHC-SD-WM-CN062, Rev. 2 for discussion of partition fractions). The head spare will become much more loaded with suspended material. Furthermore, the nature of this suspended material can change significantly: sluicing could bring up radioactive solids which normally would lay under many meters of liquid supernate. It is assumed that the headspace and filter aerosols in Tank 241-AY-102 are a 90/10 liquid/solid split. It is further assumed that the sluicing line, the headspace in Tank 241-C-106, and the filters on Tank 241-C-106 contain aerosols which are a 67/33 liquid/solid split. The bases of these assumptions are discussed in Section 3.0. These waste compositions (referred to as mitigated compositions) were used in Attachments 1 through 4 to calculate survey meter exposure rates per liter of inventory in the various system components. Three accident scenarios are evaluated: a high temperature event which melts or burns the HEPA filters and causes releases from other system components; an overpressure event which crushes and blows out the HEPA filters and causes releases from other system components; and an unfiltered release of tank headspace air. The initiating event for the high temperature release is a fire caused by a heater malfunction inside the exhaust dust or a fire outside the duct. The initiating event for the overpressure event could be a steam bump which over pressurizes the tank and leads to a blowout of the HEPA filters in the ventilation system. The catastrophic destruction of the HEPA filters would release a fraction of the accumulated

  10. 46 CFR 105.25-7 - Ventilation systems for cargo tank or pumping system compartment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation systems for cargo tank or pumping system... Requirements-When Cargo Tanks Are Installed Below Decks § 105.25-7 Ventilation systems for cargo tank or pumping system compartment. (a) Each compartment shall be provided with a mechanical exhaust system...

  11. Tank waste remediation system dangerous waste training plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    1999-01-01

    This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by Lockheed Martin Hanford Corporation (LMHC) Tank Waste Remediation System (TWRS) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units operated by TWRS are: the Double-Shell Tank (DST) System (including 204-AR Waste Transfer Building), the 600 Area Purgewater Storage and the Effluent Treatment Facility. TSD Units undergoing closure are: the Single-Shell Tank (SST) System, 207-A South Retention Basin, and the 216-B-63 Trench

  12. Solar combi system based on a mantle tank

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon

    2007-01-01

    A solar combisystem based on a mantle tank is investigated numerically and experimentally. Three different houses with four different radiator systems are considered for the simulations. The needed temperature for the auxiliary heater is determined for different houses and radiator systems....... The thermal performance of the solar combisystem is compared to the thermal performance of a solar domestic hot water system based on a mantle tank. In the experimental study, tank temperatures and the heat transfer coefficient for the top mantle for a discharge test is determined. The investigations showed...

  13. A computational study on the performance of a solar air-conditioning system with a partitioned storage tank

    International Nuclear Information System (INIS)

    Li, Z.F.; Sumathy, K.

    2003-01-01

    This paper reports the performance of a modified solar powered air-conditioning system, which is integrated with a partitioned storage tank. In addition, the effect of two main parameters that influence the system performance is presented and discussed. The study shows that by partitioning the storage tank, the solar cooling effect can be realized much earlier and could attain a total solar cooling COP of 12% higher compared to the conventional whole-tank mode. Simulation results also indicate that there exists an optimum ratio of storage tank volume over collector area

  14. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  15. Regulatory analysis of the Underground Storage Tank-Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Smith, E.H.

    1992-01-01

    The Underground Storage Tank-Integrated Demonstration (UST-ID) Program has been developed to identify, demonstrate, test, and evaluate technologies that will provide alternatives to the current underground storage tank remediation program. The UST-ID Program is a national program that consists of five participating US Department of Energy (DOE) sites where technologies can be developed an ultimately demonstrated. Once these technologies are demonstrated, the UST-ID Program will transfer the developed technology system to industry (governmental or industrial) for application or back to Research and Development for further evaluation and modification, as necessary. In order to ensure that the UST-ID Program proceeds without interruption, it will be necessary to identify regulatory requirements along with associated permitting and notification requirements early in the technology development process. This document serves as a baseline for identifying certain federal and state regulatory requirements that may impact the UST-ID Program and the demonstration of any identified technologies

  16. THE GROWTH OF PATIN Pangasiodon hypophthalmus IN A CLOSE SYSTEM TANK

    Directory of Open Access Journals (Sweden)

    Taufik Ahmad

    2007-06-01

    Full Text Available This experiment aimed to evaluate the possibility of using integrated recirculation production system for patin grow-out. Each of twelve concrete 2.5 m x 4.0 m x 1.0 m tanks filled to 0.73 m depth was stocked with 100 juvenile patin, 9-10g body weight. Six tanks were equipped with sand and palm (Arenga pinata fibre filters planted with vegetables, lettuce and kangkoong. A submersible pump was installed in each tank to assure continuous water recirculation at the rate of 0.4 L sec-1. The filtered water flowed into the tank at the surface (SC treatment, or at the bottom (BC treatment. In the other 6 tanks, the water flowed continuously from a concrete canal in an open culture system at a similar rate and with similar water entrance positions (SO and BO treatments. The experiment was arranged in a completely randomized design with three replicates. The fish were fed dry pelleted feed to satiation and sampled every other week for growth observation. After 90 days, the average individual weight of the fish attained the range of 80-100 g. The fish grew significantly faster (P0.05 among treatment, ranging from 99% to 100%. In terms of water usage, the closed system tanks produced fish weighing 202.38–220.05 g m-3, much more efficiently than did the open system tanks, 1.87–1.89 g/m3. The vegetables, either lettuce or water spinach, grew well on the filter. These results suggest that the integrated recirculation tank system is suitable for patin culture.

  17. Specialized video systems for use in waste tanks

    International Nuclear Information System (INIS)

    Anderson, E.K.; Robinson, C.W.; Heckendorn, F.M.

    1992-01-01

    The Robotics Development Group at the Savannah River Site is developing a remote video system for use in underground radioactive waste storage tanks at the Savannah River Site, as a portion of its site support role. Viewing of the tank interiors and their associated annular spaces is an extremely valuable tool in assessing their condition and controlling their operation. Several specialized video systems have been built that provide remote viewing and lighting, including remotely controlled tank entry and exit. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. The SRS waste tanks are nominal 4.5 million liter (1.3 million gallon) underground tanks used to store liquid high level radioactive waste generated by the site, awaiting final disposal. The typical waste tank (Figure 1) is of flattened shape (i.e. wider than high). The tanks sit in a dry secondary containment pan. The annular space between the tank wall and the secondary containment wall is continuously monitored for liquid intrusion and periodically inspected and documented. The latter was historically accomplished with remote still photography. The video systems includes camera, zoom lens, camera positioner, and vertical deployment. The assembly enters through a 125 mm (5 in) diameter opening. A special attribute of the systems is they never get larger than the entry hole during camera aiming etc. and can always be retrieved. The latest systems are easily deployable to a remote setup point and can extend down vertically 15 meters (50ft). The systems are expected to be a valuable asset to tank operations

  18. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  19. Tank waste remediation system multi-year work plan

    International Nuclear Information System (INIS)

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging open-quotes out sourcingclose quotes of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders

  20. Tank waste remediation system multi-year work plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    The Tank Waste Remediation System (TWRS) Multi-Year Work Plan (MYWP) documents the detailed total Program baseline and was constructed to guide Program execution. The TWRS MYWP is one of two elements that comprise the TWRS Program Management Plan. The TWRS MYWP fulfills the Hanford Site Management System requirement for a Multi-Year Program Plan and a Fiscal-Year Work Plan. The MYWP addresses program vision, mission, objectives, strategy, functions and requirements, risks, decisions, assumptions, constraints, structure, logic, schedule, resource requirements, and waste generation and disposition. Sections 1 through 6, Section 8, and the appendixes provide program-wide information. Section 7 includes a subsection for each of the nine program elements that comprise the TWRS Program. The foundation of any program baseline is base planning data (e.g., defendable product definition, logic, schedules, cost estimates, and bases of estimates). The TWRS Program continues to improve base data. As data improve, so will program element planning, integration between program elements, integration outside of the TWRS Program, and the overall quality of the TWRS MYWP. The MYWP establishes the TWRS baseline objectives to store, treat, and immobilize highly radioactive Hanford waste in an environmentally sound, safe, and cost-effective manner. The TWRS Program will complete the baseline mission in 2040 and will incur costs totalling approximately 40 billion dollars. The summary strategy is to meet the above objectives by using a robust systems engineering effort, placing the highest possible priority on safety and environmental protection; encouraging {open_quotes}out sourcing{close_quotes} of the work to the extent practical; and managing significant but limited resources to move toward final disposition of tank wastes, while openly communicating with all interested stakeholders.

  1. An overview of the DOE high-level waste storage tank structural integrity assessment guidelines

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    The basic elements of a structural integrity program for high-level waste storage tanks include identifying significant aging degradation mechanisms, developing programs to monitor and control these degradation processes, and developing management options and procedures to minimize impact on the environment should tank leakage develop. A Waste Tank Structural Integrity Panel (TSIP) was established by Brookhaven National Laboratory at the request of the DOE Office of Environmental Restoration and Waste Management to review these elements and prepare a set of guidelines that could be used by DOE and its contractors to manage the structural integrity of these tanks. These guidelines emphasize the identification of significant degradation mechanisms for both the steel and concrete components of the tanks, the recommended monitoring and inspection programs, and the indicated management options

  2. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  3. Engineer/constructor description of work for Tank 241-SY-102 retrieval system, project W-211, initial tank retrieval systems

    International Nuclear Information System (INIS)

    Rieck, C.A.

    1996-02-01

    This document provides a description of work for the design and construction of a waste retrieval system for Tank 241-SY-102. The description of work includes a working estimate and schedule, as well as a narrative description and sketches of the waste retrieval system. The working estimate and schedule are within the established baselines for the Tank 241-SY-102 retrieval system. The technical baseline is provided in Functional Design Criteria, WHC-SD-W211-FDC-001, Revision 2

  4. MODELLING MANTLE TANKS FOR SDHW SYSTEMS USING PIV AND CFD

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Morrison, G.L.; Behnia, Masud

    1999-01-01

    Characteristics of vertical mantle heat exchanger tanks for SDHW systems have been investigated experimentally and theoretically using particle image velocimetry (PIV) and CFD modelling. A glass model of a mantle heat exchanger tank was constructed so that the flow distribution in the mantle could...... be studied using the PIV test facility. Two transient three-dimensional CFD-models of the glass model mantle tank were developed using the CFD-programmes CFX and FLUENT.The experimental results illustrate that the mantle flow structure in the mantle is complicated and the distribution of flow in the mantle...

  5. Development of a remote tank inspection robotic system

    International Nuclear Information System (INIS)

    Knape, B.P.; Bares, L.C.

    1990-01-01

    RedZone Robotics is currently developing a remote tank inspection (RTI) robotic system for Westinghouse Idaho Nuclear Company (WINCO). WINCO intends to use the RTI robotic system at the Idaho Chemical Processing Plant, a facility that contains a tank farm of several 1,135,500-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste storage tanks. The primary purpose of the RTI robotic system is to inspect the interior of these tanks for corrosion that may have been caused by the combined effects of radiation, high temperature, and caustic by the combined effects of radiation, high temperature, and caustic chemicals present inside the tanks. The RTI robotic system features a vertical deployment unit, a robotic arm, and a remote control console and computer [located up to 30.5 m (100 ft) away from the tank site]. All actuators are high torque, electric dc brush motors that are servocontrolled with absolute position feedback. The control system uses RedZone's standardized intelligent controller for enhanced telerobotics, which provides a high speed, multitasking environment on a VME bus. Currently, the robot is controlled in a manual, job-button, control mode; however, control capability is available to develop preprogrammed, automated modes of operation

  6. Preliminary evaluation of liquid integrity monitoring methods for gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-02-01

    The Gunite and Associated Tanks (GAAT) are inactive, liquid low-level waste (LLLW) tanks located in and around the North and South Tank Farms (NTF and STF) at Oak Ridge National Laboratory (ORNL). These tanks, which contain a supernatant over a layer of radioactive sludge, are the subject of an ongoing treatability study that will determine the best way to remove the sludge and remediate the tanks. As part of this study, a preliminary assessment of liquid integrity (or ''tightness'') monitoring methods for the Gunite tanks has been conducted. Both an external and an internal liquid integrity monitoring method were evaluated, and a preliminary assessment of the liquid integrity of eight Gunite tanks was made with the internal method. The work presented in this report shows that six of the eight GAAT considered here are liquid tight and that, in the case of the other two, data quality was too poor to allow a conclusive decision. The analysis indicates that when the release detection approach described in this report is used during the upcoming treatability study, it will function as a sensitive and robust integrity monitoring system. Integrity assessments based on both the internal and external methods can be used as a means of documenting the integrity of the tanks before the initiation of in-tank operations. Assessments based on the external method can be used during these operations as a means of providing a nearly immediate indication of a release, should one occur. The external method of release detection measures the electrical conductivity of the water found in the dry wells associated with each of the tanks. This method is based on the fact that the conductivity of the liquid in the GAAT is very high, while the conductivity of the groundwater in the dry wells and the underdrain system for the GAAT is very low

  7. Underground storage tank integrated demonstration: Evaluation of pretreatment options for Hanford tank wastes

    International Nuclear Information System (INIS)

    Lumetta, G.J.; Wagner, M.J.; Colton, N.G.; Jones, E.O.

    1993-06-01

    Separation science plays a central role inn the pretreatment and disposal of nuclear wastes. The potential benefits of applying chemical separations in the pretreatment of the radioactive wastes stored at the various US Department of Energy sites cover both economic and environmental incentives. This is especially true at the Hanford Site, where the huge volume (>60 Mgal) of radioactive wastes stored in underground tanks could be partitioned into a very small volume of high-level waste (HLW) and a relatively large volume of low-level waste (LLW). The cost associated with vitrifying and disposing of just the HLW fraction in a geologic repository would be much less than those associated with vitrifying and disposing of all the wastes directly. Futhermore, the quality of the LLW form (e.g., grout) would be improved due to the lower inventory of radionuclides present in the LLW stream. In this report, we present the results of an evaluation of the pretreatment options for sludge taken from two different single-shell tanks at the Hanford Site-Tanks 241-B-110 and 241-U-110 (referred to as B-110 and U-110, respectively). The pretreatment options examined for these wastes included (1) leaching of transuranic (TRU) elements from the sludge, and (2) dissolution of the sludge followed by extraction of TRUs and 90 Sr. In addition, the TRU leaching approach was examined for a third tank waste type, neutralized cladding removal waste

  8. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1994-12-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  9. Testing and development strategy for the tank waste remediation system

    International Nuclear Information System (INIS)

    Reddick, G.W.

    1995-01-01

    This document provides a strategy for performing radioactive (hot) and nonradioactive testing to support processing tank waste. It evaluates the need for hot pilot plant(s) to support pretreatment and other processing functions and presents a strategy for performing hot test work. A strategy also is provided for nonradioactive process and equipment testing. The testing strategy supports design, construction, startup, and operation of Tank Waste Remediation System (TWRS) facilities

  10. OVERVIEW OF ENHANCED HANFORD SINGLE-SHELL TANK (SST) INTEGRITY PROJECT - 12128

    Energy Technology Data Exchange (ETDEWEB)

    VENETZ TJ; BOOMER KD; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis

  11. Overview Of Enhanced Hanford Single-Shell Tank (SST) Integrity Project - 12128

    International Nuclear Information System (INIS)

    Venetz, T.J.; Boomer, K.D.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks integrity, Washington River Protection Solutions, LLC, the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank (SST) Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The change package identified two phases of work for SST integrity. The initial phase has been focused on efforts to envelope the integrity of the tanks. The initial phase was divided into two primary areas of investigation: structural integrity and leak integrity. If necessary based on the outcome from the initial work, a second phase would be focused on further definition of the integrity of the concrete and liners. Combined these two phases are designed to support the formal integrity assessment of the Hanford SSTs in 2018 by Independent Qualified Registered Engineer. The work to further define the DOE's understanding of the structural integrity SSTs involves preparing a modern Analysis of Record using a finite element analysis program. Structural analyses of the SSTs have been conducted since 1957, but these analyses used analog calculation, less rigorous models, or focused on individual structures. As such, an integrated understanding of all of the SSTs has not been developed to modern expectations. In support of this effort, other milestones will address the visual inspection of the tank concrete and the collection of concrete core samples from the tanks for analysis of

  12. Control system design for robotic underground storage tank inspection systems

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  13. Tank waste remediation system systems engineering management plan

    International Nuclear Information System (INIS)

    Peck, L.G.

    1998-01-01

    This Systems Engineering Management Plan (SEMP) describes the Tank Waste Remediation System (TWRS) implementation of the US Department of Energy (DOE) systems engineering policy provided in 97-IMSD-193. The SEMP defines the products, process, organization, and procedures used by the TWRS Project to implement the policy. The SEMP will be used as the basis for tailoring the systems engineering applications to the development of the physical systems and processes necessary to achieve the desired end states of the program. It is a living document that will be revised as necessary to reflect changes in systems engineering guidance as the program evolves. The US Department of Energy-Headquarters has issued program management guidance, DOE Order 430. 1, Life Cycle Asset Management, and associated Good Practice Guides that include substantial systems engineering guidance

  14. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Directory of Open Access Journals (Sweden)

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  15. INITIAL SINGLE-SHELL TANK (SST) SYSTEM PERFORMANCE ASSESSMENT OF THE HANFORD SITE

    International Nuclear Information System (INIS)

    JARAYSI, M.N.

    2007-01-01

    The ''Initial Single-Shell Tank System Performance Assessment for the Hanford Site [1] (SST PA) presents the analysis of the long-term impacts of residual wastes assumed to remain after retrieval of tank waste and closure of the SST farms at the US Department of Energy (DOE) Hanford Site. The SST PA supports key elements of the closure process agreed upon in 2004 by DOE, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA). The SST PA element is defined in Appendix I of the ''Hanford Federal Facility Agreement and Consent Order'' (HFFACO) (Ecology et al. 1989) [2], the document that establishes the overall closure process for the SST and double-shell tank (DST) systems. The approach incorporated in the SST PA integrates substantive features of both hazardous and radioactive waste management regulations into a single analysis. The defense-in-depth approach used in this analysis defined two major engineering barriers (a surface barrier and the grouted tank structure) and one natural barrier (the vadose zone) that will be relied on to control waste release into the accessible environment and attain expected performance metrics. The analysis evaluates specific barrier characteristics and other site features that influence contaminant migration by the various pathways. A ''reference'' case and a suite of sensitivity/uncertainty cases are considered. The ''reference case'' evaluates environmental impacts assuming central tendency estimates of site conditions. ''Reference'' case analysis results show residual tank waste impacts on nearby groundwater, air resources; or inadvertent intruders to be well below most important performance objectives. Conversely, past releases to the soil, from previous tank farm operations, are shown to have groundwater impacts that re significantly above most performance objectives. Sensitivity/uncertainty cases examine single and multiple parameter variability along with plausible alternatives

  16. DOUBLE SHELL TANK INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION

    International Nuclear Information System (INIS)

    WASHENFELDER DJ

    2008-01-01

    The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLW until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control

  17. The Hanford Site Tank Waste Remediation System: An update

    International Nuclear Information System (INIS)

    Alumkal, W.T.; Babad, H.; Harmon, H.D.; Wodrich, D.D.

    1994-01-01

    The U.S. Department of Energy's Hanford Site, located in southeastern Washington State, has the most diverse and largest amount of highly radioactive waste in the United States. High-level radioactive waste has been stored in large underground tanks since 1944. Approximately 230,000 m 3 (61 Mgal) of caustic liquids, slurries, saltcakes, and sludges have 137 Cs accumulated in 177 tanks. In addition, significant amounts of 90 Sr and were removed from the tank waste, converted to salts, doubly encapsulated in metal containers., and stored in water basins. A Tank Waste Remediation System Program was established by the U.S. Department of Energy in 1991 to safely manage and immobilize these wastes in anticipation of permanent disposal of the high-level waste fraction in a geologic repository. Since 1991, progress has been made resolving waste tank safety issues, upgrading Tank Farm facilities and operations, and developing a new strategy for retrieving, treating, and immobilizing the waste for disposal

  18. 14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Flammability Reduction... 25—Fuel Tank System Flammability Reduction Means M25.1Fuel tank flammability exposure requirements. (a) The Fleet Average Flammability Exposure of each fuel tank, as determined in accordance with...

  19. Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project

    Energy Technology Data Exchange (ETDEWEB)

    Venetz, Theodore J. [Washington River Protection Solutions, Richland, WA (United States); Washenfelder, Dennis J. [Washington River Protection Solutions, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, Richland, WA (United States); Johnson, Jeremy M. [USDOE Office of River Protection, Richland, WA (United States); Castleberry, Jim L. [Washington River Protection Solutions, Richland, WA (United States)

    2015-01-07

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.

  20. Design of second generation Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    Edgemon, G.L.

    1998-01-01

    The Hanford Site has 177 underground waste tanks that store approximately 253 million liters of radioactive waste from 50 years of plutonium production. Twenty-eight tanks have a double shell and are constructed of welded ASTM A537-Class 1 (UNS K02400), ASTM A515-Grade 60 (UNS K02401), or ASTM A516-Grade 60 (UNS K02100) material. The inner tanks of the double-shell tanks (DSTS) were stress relieved following fabrication. One hundred and forty-nine tanks have a single shell, also constructed of welded mild steel, but not stress relieved following fabrication. Tank waste is in liquid, solid, and sludge forms. Tanks also contain a vapor space above the solid and liquid waste regions. The composition of the waste varies from tank to tank but generally has a high pH (>12) and contains sodium nitrate, sodium hydroxide, sodium nitrite, and other minor radioactive constituents resulting from plutonium separation processes. Leaks began to appear in the single-shell tanks shortly after the introduction of nitrate-based wastes in the 1950s. Leaks are now confirmed or suspected to be present in a significant number of single-shell tanks. The probable modes of corrosion failures are reported as nitrate stress corrosion cracking (SCC) and pitting. Previous efforts to monitor internal corrosion of waste tank systems have included linear polarization resistance (LPR) and electrical resistance techniques. These techniques are most effective for monitoring uniform corrosion, but are not well suited for detection of localized corrosion (pitting and SCC). The Savannah River Site (SRS) investigated the characterization of electrochemical noise (EN) for monitoring waste tank corrosion in 1993, but the tests were not conclusive. The SRS effort has recently been revived and additional testing is underway. For many years, EN has been observed during corrosion and other electrochemical reactions, and the phenomenon is well established. Typically, EN consists of low frequency (< 1 Hz) and

  1. Double-shell tank system dangerous waste permit application

    International Nuclear Information System (INIS)

    1991-06-01

    This Double-Shell Tank System Dangerous Waste Permit Application should be read in conjunction with the 242-A Evaporator Dangerous Waste Permit Application and the Liquid Effluent Retention Facility Dangerous Waste Permit Application, also submitted on June 28, 1991. Information contained in the Double-Shell Tank System permit application is referenced in the other two permit applications. The Double-Shell Tank System stores and treats mixed waste received from a variety of sources on the Hanford Site. The 242-A Evaporator treats liquid mixed waste received from the double-shell tanks. The 242-A Evaporator returns a mixed-waste slurry to the double-shell tanks and generates the dilute mixed-waste stream stored in the Liquid Effluent Retention Facility. This report contains information on the following topics: Facility Description and General Provisions; Waste Characteristics; Process Information; Groundwater Monitoring; Procedures to Prevent Hazards; Contingency Plan; Personnel Training; Exposure Information Report; Waste Minimization Plan; Closure and Postclosure Requirements; Reporting and Recordkeeping; other Relevant Laws; and Certification. 150 refs., 141 figs., 118 tabs

  2. Performance Requirements for the Double Shell Tank (DST) System

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2001-01-01

    This document identifies the upper-level Double-Shell Tank (DST) System functions and bounds the associated performance requirements. The functions and requirements are provided along with supporting bases. These functions and requirements, in turn, will be incorporated into specifications for the DST System

  3. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    The objective of DOE's Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ''demonstration'' version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing

  4. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 2: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D. [Enserch Environmental Corp., Richland, WA (United States)

    1994-08-01

    The objective of DOE`s Radioactive Waste Tank Remediation Technology Focus Area is to identify and develop new technologies that will reduce the risk and/or cost of remediating DOE underground waste storage tanks and tank contents. There are, however, many more technology investment opportunities than the current budget can support. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program. The report identifies the project objectives and provides a description of the model. Development of the first ``demonstration`` version of this model and a trial application have been completed and the results are presented. This model will continue to evolve as it undergoes additional user review and testing.

  5. Thermal stratification in storage tanks of integrated collector storage solar water heaters

    International Nuclear Information System (INIS)

    Oshchepkov, M.Y.; Frid, S.E.

    2015-01-01

    To determine the influence of the shape of the tank, the installation angle, and the magnitude of the absorbed heat flux on thermal stratification in integrated collector-storage solar water heaters, numerical simulation of thermal convection in tanks of different shapes and same volume was carried out. Idealized two-dimensional models were studied; auto model stratification profiles were obtained at the constant heat flux. The shape of the tank, the pattern of the heat flux dynamics, the adiabatic mixing on the circulation rate and the degree of stratification were shown to have significant influence. (authors)

  6. Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single household

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan

    2014-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit of deliver......In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. Thermal stratification in the tank increases the heat recovery performance as it allows existence of a temperature gradient with the benefit...... of delivering hot water for the household and returning the coldest fluid back to SOFC heat recovery heat-exchanger. A model of the SOFC system is developed to determine the energy required to meet the hourly average electric load of the residence. The model evaluates the amount of heat generated and the amount...... of heat used for thermal loads of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature gradients over the tank height. The results of the numerical simulation is used to size the SOFC system and storage heat tank to provide energy for a small...

  7. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

  8. Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-11-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented

  9. DOUBLE-SHELL TANK WASTE TRANSFER LINE ENCASEMENT INTEGRITY ASSESSMENT TECHNOLOGY STUDY

    International Nuclear Information System (INIS)

    BOWER, R.R.

    2006-01-01

    The report provides various alternative methods of performing integrity assessment inspections of buried Hanford Double Shell Tank waste transfer line encasements, and provides method recommendations as an alternative to costly encasement pneumatic leak testing. A schedule for future encasement integrity assessments is also included

  10. A systematic look at Tank Waste Remediation System privatization

    International Nuclear Information System (INIS)

    Holbrook, J.H.; Duffy, M.A.; Vieth, D.L.; Sohn, C.L.

    1996-01-01

    The mission of the Tank Waste Remediation System (TWRS) Program is to store, treat, immobilize, and dispose, or prepare for disposal, the Hanford radioactive tank waste in an environmentally sound, safe, and cost effective manner. Highly radioactive Hanford waste includes current and future tank waste plus the cesium and strontium capsules. In the TWRS program, as in other Department of Energy (DOE) clean-up activities, there is an increasing gap between the estimated funding required to enable DOE to meet all of its clean-up commitments and level of funding that is perceived to be available. Privatization is one contracting/management approach being explored by DOE as a means to achieve cost reductions and as a means to achieve a more outcome-oriented program. Privatization introduces the element of competition, a proven means of establishing true cost as well as achieving significant cost reduction

  11. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume II

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 2, provides the inventory of waste addressed in this Final Environmental Impact Statement (EIS) for the Tank Waste Remediation System, Hanford Site, Richland, Washington. The inventories consist of waste from the following four groups: (1) Tank waste; (2) Cesium (Cs) and Strontium (Sr) capsules; (3) Inactive miscellaneous underground storage tanks (MUSTs); and (4) Anticipated future tank waste additions. The major component by volume of the overall waste is the tank waste inventory (including future tank waste additions). This component accounts for more than 99 percent of the total waste volume and approximately 70 percent of the radiological activity of the four waste groups identified previously. Tank waste data are available on a tank-by-tank basis, but the accuracy of these data is suspect because they primarily are based on historical records of transfers between tanks rather than statistically based sampling and analyses programs. However, while the inventory of any specific tank may be suspect, the overall inventory for all of the tanks combined is considered more accurate. The tank waste inventory data are provided as the estimated overall chemical masses and radioactivity levels for the single-shell tanks (SSTs) and double-shell tanks (DSTs). The tank waste inventory data are broken down into tank groupings or source areas that were developed for analyzing groundwater impacts

  12. Modeling and Simulation of a Modified Quadruple Tank System

    DEFF Research Database (Denmark)

    Mohd. Azam, Sazuan Nazrah; Jørgensen, John Bagterp

    2015-01-01

    to model and control. In this paper, a modified quadruple-tank system has been described, all the important variables has been outlined and a mathematical model has been presented. We developed deterministic and stochastic models using differential equations and simulate the models using Matlab...

  13. WWTP Process Tank Modelling

    DEFF Research Database (Denmark)

    Laursen, Jesper

    The present thesis considers numerical modeling of activated sludge tanks on municipal wastewater treatment plants. Focus is aimed at integrated modeling where the detailed microbiological model the Activated Sludge Model 3 (ASM3) is combined with a detailed hydrodynamic model based on a numerical...... solution of the Navier-Stokes equations in a multiphase scheme. After a general introduction to the activated sludge tank as a system, the activated sludge tank model is gradually setup in separate stages. The individual sub-processes that are often occurring in activated sludge tanks are initially...... hydrofoil shaped propellers. These two sub-processes deliver the main part of the supplied energy to the activated sludge tank, and for this reason they are important for the mixing conditions in the tank. For other important processes occurring in the activated sludge tank, existing models and measurements...

  14. Estimation of the energy efficiency of cryogenic filled tank use in different systems and devices

    International Nuclear Information System (INIS)

    Blagin, E.V.; Dovgyallo, A.I.; Nekrasova, S.O.; Sarmin, D.V.; Uglanov, D.A.

    2016-01-01

    Highlights: • The cryogenic fueling tank is a device for storage and gasification of working fluid. • Potential energy of pressure can be converted to electricity by circuit of turbines. • It is possible to compensate up to 8% of energy consumed for liquefaction. - Abstract: This article presents a device for storage and gasification of cryogenic working fluid. This device is called cryogenic fueling tank. Working fluid pressure increases during the gasification and potential energy of this pressure can be used in different ways. The ways of integrating the cryogenic fueling tank into existing energy plants are described in this article. The estimation of the cryogenic fueling tank application in the gasification facility as well as in the onboard power system was carried out. This estimation shows that application of such tank as well as a circuit of turbines allows generating up to near 8% of energy which was consumed during gas liquefaction. The estimation of the additionally generated electric energy value was also carried out for each of the cases.

  15. Fifth Single-Shell Tank Integrity Project Expert Panel Meeting August 28-29, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Todd M. [Washington River Protection Solutions, LLC, Richland, WA (United States; Gunter, Jason R. [Washington River Protection Solutions, LLC, Richland, WA (United States); Boomer, Kayle D. [Washington River Protection Solutions, LLC, Richland, WA (United States)

    2015-01-07

    On August 28th and 29th, 2014 the Single-Shell Tank Integrity Project (SSTIP) Expert Panel (Panel) convened in Richland, Washington. This was the Panel’s first meeting since 2011 and, as a result, was focused primarily on updating the Panel on progress in response to the past recommendations (Single-Shell Tank Integrity Expert Panel Report, RPP-RPT-45921, Rev 0, May 2010). This letter documents the Panel’s discussions and feedback on Phase I activities and results.

  16. Experimental study of an aircraft fuel tank inerting system

    Directory of Open Access Journals (Sweden)

    Cai Yan

    2015-04-01

    Full Text Available In this work, a simulated aircraft fuel tank inerting system has been successfully established based on a model tank. Experiments were conducted to investigate the influences of different operating parameters on the inerting effectiveness of the system, including flow rate of the inert gas (nitrogen-enriched air, inert gas concentration, fuel load of the tank and different inerting approaches. The experimental results show that under the same operating conditions, the time span of a complete inerting process decreased as the flow rate of inert gas was increased; the time span using the inert gas with 5% oxygen concentration was much longer than that using pure nitrogen; when the fuel tank was inerted using the ullage washing approach, the time span increased as the fuel load was decreased; the ullage washing approach showed the best inerting performance when the time span of a complete inerting process was the evaluation criterion, but when the decrease of dissolved oxygen concentration in the fuel was also considered to characterize the inerting effectiveness, the approach of ullage washing and fuel scrubbing at the same time was the most effective.

  17. Tank Waste Remediation System decisions and risk assessment

    International Nuclear Information System (INIS)

    Johnson, M.E.

    1994-09-01

    The Tank Waste Remediation System (TWRS) mission is to store, treat, and immobilize the highly radioactive Hanford Site tank wastes and encapsulated cesium and strontium materials in an environmentally sound, safe, and cost effective manner. Additionally, the TWRS conducts, as part of this mission, resolution of safety issues associated with the wastes within the 177 underground radioactive waste tanks. Systems engineering principles are being applied to determine the functions and establish requirements necessary for accomplishing the TWRS mission (DOE 1994 draft). This systematic evaluation of the TWRS program has identified key decisions that must be executed to establish mission scope, determine requirements, or select a technical solution for accomplishing identified functions and requirements. Key decisions identified through the systematic evaluation of the TWRS mission are presented in this document. Potential alternative solutions to each decision are discussed. After-discussion and evaluation of each decision with effected stakeholder groups, the US Department of Energy (DOE) will select a solution from the identified alternatives for implementation. In order to proceed with the development and execution of the tank waste remediation program, the DOE has adopted a planning basis for several of these decisions, until a formal basis is established. The planning bases adopted by the DOE is continuing to be discussed with stakeholder groups to establish consensus for proceeding with proposed actions. Technical and programmatic risks associated with the planning basis adopted by the DOE are discussed

  18. Operational test report integrated system test (ventilation upgrade)

    Energy Technology Data Exchange (ETDEWEB)

    HARTY, W.M.

    1999-10-05

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, Ay102, AZ101, AZ102.

  19. Operational test report, integrated system test (ventilation upgrade)

    International Nuclear Information System (INIS)

    HARTY, W.M.

    1999-01-01

    Operational Final Test Report for Integrated Systems, Project W-030 (Phase 2 test, RECIRC and HIGH-HEAT Modes). Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks, including upgraded vapor space cooling and filtered venting of tanks AY101, AY102, AZ101, AZ102

  20. Zero boil-off methods for large-scale liquid hydrogen tanks using integrated refrigeration and storage

    Science.gov (United States)

    Notardonato, W. U.; Swanger, A. M.; E Fesmire, J.; Jumper, K. M.; Johnson, W. L.; Tomsik, T. M.

    2017-12-01

    NASA has completed a series of tests at the Kennedy Space Center to demonstrate the capability of using integrated refrigeration and storage (IRAS) to remove energy from a liquid hydrogen (LH2) tank and control the state of the propellant. A primary test objective was the keeping and storing of the liquid in a zero boil-off state, so that the total heat leak entering the tank is removed by a cryogenic refrigerator with an internal heat exchanger. The LH2 is therefore stored and kept with zero losses for an indefinite period of time. The LH2 tank is a horizontal cylindrical geometry with a vacuum-jacketed, multilayer insulation system and a capacity of 125,000 liters. The closed-loop helium refrigeration system was a Linde LR1620 capable of 390W cooling at 20K (without any liquid nitrogen pre-cooling). Three different control methods were used to obtain zero boil-off: temperature control of the helium refrigerant, refrigerator control using the tank pressure sensor, and duty cycling (on/off) of the refrigerator as needed. Summarized are the IRAS design approach, zero boil-off control methods, and results of the series of zero boil-off tests.

  1. 14 CFR Special Federal Aviation... - Fuel Tank System Fault Tolerance Evaluation Requirements

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel Tank System Fault Tolerance Evaluation..., SFAR No. 88 Special Federal Aviation Regulation No. 88—Fuel Tank System Fault Tolerance Evaluation... certificates that may affect the airplane fuel tank system, for turbine-powered transport category airplanes...

  2. Specialized video systems for use in underground storage tanks

    International Nuclear Information System (INIS)

    Heckendom, F.M.; Robinson, C.W.; Anderson, E.K.; Pardini, A.F.

    1994-01-01

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  3. Replacement inhibitors for tank farm cooling coil systems

    International Nuclear Information System (INIS)

    Hsu, T.C.

    1995-01-01

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  4. Integrated real time control of influent pumping station and primary settling tanks at WWTP Eindhoven

    NARCIS (Netherlands)

    van Daal-Rombouts, P.M.M.; de Jonge, J; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    This research deals with the design and implementation of an integrated control for the WWTP of Eindhoven. The control influences the operation of the primary settling tanks and influent pumping station to reduce reduce ammonia peaks in the WWTP effluent. The control takes into account the treatment

  5. Modernization of tank floor scanning system (TAFLOSS) software

    International Nuclear Information System (INIS)

    Mohd Fitri Abdul Rahman; Jaafar Abdullah; Susan Maria Sipaun

    2002-01-01

    Tank Floor Scanning System (TAFLOSS) is a portable nucleonic device based on the scattering and moderation phenomena of neutrons. TAFLOSS, which was developed by MINT, can precisely and non-destructively measure the gap and hydrogen content in the foundation of a gigantic industrial tank in a practical and cost-effective manner. In recording and analysing measured data, three different computer software were used. In analysing the initial data, a Disk Operating System (DOS) based software called MesTank 3.0 have been developed. The system also used commercial software such as Table Curve 2D and SURFER for graphics purposes. Table Curve 2D was used to plot and evaluate curve fitting, whereas SURFER software used to draw contours. It is not user friendly and time consuming to switch from a software to another software for different tasks of this system. Therefore, the main objective of the project is to develop new user-friendly software that combined the old and commercial software into a single package. The computer programming language that was used to develop the software is Microsoft Visual C++ ver. 6.0. The process of developing this software involved complex mathematical calculation, curve fitting and contour plot. This paper describes the initial development of a computer programme for analysing the initial data and plotting exponential curve fitting. (Author)

  6. System Description for Tank 241-AZ-101 Waste Retrieval Data Acquisition System

    International Nuclear Information System (INIS)

    ROMERO, S.G.

    2000-01-01

    The proposed activity provides the description of the Data Acquisition System for Tank 241-AZ-101. This description is documented in HNF-5572, Tank 241-AZ-101 Waste Retrieval Data Acquisition System (DAS). This activity supports the planned mixer pump tests for Tank 241-AZ-101. Tank 241-AZ-101 has been selected for the first full-scale demonstration of a mixer pump system. The tank currently holds over 960,000 gallons of neutralized current acid waste, including approximately 12.7 inches of settling solids (sludge) at the bottom of the tank. As described in Addendum 4 of the FSAR (LMHC 2000a), two 300 HP mixer pumps with associated measurement and monitoring equipment have been installed in Tank 241-AZ-101. The purpose of the Tank 241-AZ-101 retrieval system Data Acquisition System (DAS) is to provide monitoring and data acquisition of key parameters in order to confirm the effectiveness of the mixer pumps utilized for suspending solids in the tank. The suspension of solids in Tank 241-AZ-101 is necessary for pretreatment of the neutralized current acid waste and eventual disposal as glass via the Hanford Waste Vitrification Plant. HNF-5572 provides a basic description of the Tank 241-AZ-101 retrieval system DAS, including the field instrumentation and application software. The DAS is provided to fulfill requirements for data collection and monitoring. This document is not an operations procedure or is it intended to describe the mixing operation. This USQ screening provides evaluation of HNF-5572 (Revision 1) including the changes as documented on ECN 654001. The changes include (1) add information on historical trending and data backup, (2) modify DAS I/O list in Appendix E to reflect actual conditions in the field, and (3) delete IP address in Appendix F per Lockheed Martin Services, Inc. request

  7. Draft Environmental Impact Statement for the tank waste remediation system. Volume 4

    International Nuclear Information System (INIS)

    1996-04-01

    This appendix describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS)

  8. Tank waste remediation system nuclear criticality safety program management review

    International Nuclear Information System (INIS)

    BRADY RAAP, M.C.

    1999-01-01

    This document provides the results of an internal management review of the Tank Waste Remediation System (TWRS) criticality safety program, performed in advance of the DOE/RL assessment for closure of the TWRS Nuclear Criticality Safety Issue, March 1994. Resolution of the safety issue was identified as Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-40-12, due September 1999

  9. 40 CFR 267.201 - What must I do when I stop operating the tank system?

    Science.gov (United States)

    2010-07-01

    ... OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.201 What must I do when I stop operating the tank... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What must I do when I stop operating the tank system? 267.201 Section 267.201 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...

  10. Design of multi-function Hanford tank corrosion monitoring system

    International Nuclear Information System (INIS)

    EDGEMON, G.L.

    1999-01-01

    A multi-fiction corrosion monitoring system has been designed for installation into DST 241-AN-105 at the Hanford Site in fiscal year 1999. The 241-AN-105 system is the third-generation corrosion monitoring system described by TTP RLO-8-WT-21. Improvements and upgrades from the second-generation system (installed in 241-AN-102) that have been incorporated into the third-generation system include: Gasket seating surfaces utilize O-rings instead of a washer type gasket for improved seal; Probe design contains an equally spaced array of 22 thermocouples; Probe design contains an adjustable verification thermocouple; Probe design contains three ports for pressure/gas sampling; Probe design contains one set of strain gauges to monitor probe flexure if flexure occurs; Probe utilizes an adjustable collar to allow depth adjustment of probe during installation; System is capable of periodically conducting LPR scans; System is housed in a climate controlled enclosure adjacent to the riser containing the probe; System uses wireless Ethernet links to send data to Hanford Local Area Network; System uses commercial remote access software to allow remote command and control; and Above ground wiring uses driven shields to reduce external electrostatic noise in the data. These new design features have transformed what was primarily a second-generation corrosion monitoring system into a multi-function tank monitoring system that adds a great deal of functionality to the probe, provides for a better understanding of the relationship between corrosion and other tank operating parameters, and optimizes the use of the riser that houses the probe in the tank

  11. Tactical Systems Integration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Tactical Systems Integration Laboratory is used to design and integrate computer hardware and software and related electronic subsystems for tactical vehicles....

  12. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    International Nuclear Information System (INIS)

    Honeyman, J.O.

    1998-01-01

    This Management Assessment of Tank Waste Remediation System (TWRS) Contractor Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on-line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined

  13. Development of assessment system for tank earthquake-proof design (ASTEP code) installing automatic operation and knowledge database

    International Nuclear Information System (INIS)

    Maekawa, Akira; Suzuki, Michiaki; Fujii, Yuzo

    2004-01-01

    In a nuclear power station, seismic-proof design of the various tanks classified as auxiliary installation are required to follow technical guideline for the seismic-proof design of nuclear power station, which is called JEAC4601 for short in below. This guideline uses simple mechanical multi-mass model but a rather complicated evaluation method requires designers to have knowledge and experience and consumes both time and labor. On purpose to resolve those difficulties, Assessment System for Tank Earthquake-Proof Design, which is called ASTEP in short, has been developed and equipped with automated process and knowledge database. For this system, the targeted types of tank are a vertical cylindrical tank that has four supports or a skirt support, a horizontal cylindrical tank that has two saddle supports, and vertical cylindrical tank or water storage tank with a flat bottom. The system integrated all the seismic-proof design evaluation related tools and equipped with step by step menus in order of the flowchart, so enables designers to use them easily. In addition, it has a input aid that enables users to input with ease and a tool that automatically calculates input parameters. So this system reduces seismic-proof design evaluation related work load dramatically and also does not require much knowledge and experience related to this field. Further more, this system organized seismic-proof design related past statement and technical documents as a knowledge database so user could obtain the identical output as of the manual calculation results. Comparing output of ASTEP code and the manual calculation results of a typical tank that requires government approval of its design evaluation document, the error was within less than a percent so validity of the system was confirmed. This system has gained favorable comment during the trial run, and it was beyond our expectation. (author)

  14. Experience with the TRIUMF Main Tank Vacuum Control System

    International Nuclear Information System (INIS)

    Sarkar, S.; Yandon, J.C.; Sievers, W.; Bennett, P.; Gurd, D.P.; Harmer, P.; Nelson, J.

    1993-01-01

    The TRIUMF Main Tank Vacuum Control System was upgraded in 1984. The earlier system, which consisted of a collection of hardwired relay logic boxes housed in three standard instrumentation racks, was replaced with a compact and flexible microprocessor-based control system. The user interface, previously distributed over the three racks, was consolidated into a single hardwired control and mimic panel. Since 1984, the Main Tank Vacuum System has undergone a series of changes in configuration and vacuum pumping hardware with necessary changes being implemented in the control system logic. Corresponding changes to the user interface were sometimes difficult to implement and in time exhausted the spare input/output capacity which had been built into the panel. The availability of inexpensive personal computers with adequate graphics capability and the ease of modifying, or adding to a programmable user interface precipitated the retirement of the hardwired panel and its replacement by a PC-based graphics user interface. System configuration, safety considerations, the hardware and the software implementation using the open-quote C close-quote programming language are described. The evolution of the control system and its performance, both over the years and in adapting to the vacuum system changes, are discussed

  15. Power Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Power Systems Integration Laboratory Power Systems Integration Laboratory Research in the Energy System Integration Facility's Power Systems Integration Laboratory focuses on the microgrid applications. Photo of engineers testing an inverter in the Power Systems Integration Laboratory

  16. Hanford site tank waste remediation system programmatic environmental review report

    International Nuclear Information System (INIS)

    Haass, C.C.

    1998-01-01

    The US Department of Energy (DOE) committed in the Tank Waste Remediation System (TWRS) Environmental Impact Statement (EIS) Record of Decision (ROD) to perform future National Environmental Policy Act (NEPA) analysis at key points in the Program. Each review will address the potential impacts that new information may have on the environmental impacts presented in the TWRS EIS and support an assessment of whether DOE's plans for remediating the tank waste are still pursuing the appropriate plan for remediation or whether adjustments to the program are needed. In response to this commitment, DOE prepared a Supplement Analysis (SA) to support the first of these reevaluations. Subsequent to the completion of the SA, the Phase IB negotiations process with private contractors resulted in several changes to the planned approach. These changes along with other new information regarding the TWRS Program have potential implications for Phase 1 and Phase 2 of tank waste retrieval and waste storage and/or disposal that may influence the environmental impacts of the Phased Implementation alternative. This report focuses on identifying those potential environmental impacts that may require NEPA analysis prior to authorization to begin facility construction and operations

  17. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    International Nuclear Information System (INIS)

    Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

    1997-07-01

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  18. Robotic systems for the high level waste tank farm replacement project at INEL

    International Nuclear Information System (INIS)

    Berger, A.; White, D.; Thompson, B.; Christensen, M.

    1993-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is specifying and designing a new high level waste tank farm at the Idaho National Engineering Laboratory (INEL). The farm consists of four underground storage tanks, which replace the existing tanks. The new facility includes provisions for remote operations. One of the planned remote operations is robotic inspection of the tank from the interior and exterior. This paper describes the process used to design the robotic system for the inspection tasks

  19. Tank monitor and control system (TMACS) software configuration management plan; TOPICAL

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) describes the methodology for control of computer software developed and supported by the Systems Development and Integration (SD and I) organization of Lockheed Martin Services, Inc. (LMSI) for the Tank Monitor and Control System (TMACS). This plan controls changes to the software and configuration files used by TMACS. The controlled software includes the Gensym software package, Gensym knowledge base files developed for TMACS, C-language programs used by TMACS, the operating system on the production machine, language compilers, and all Windows NT commands and functions which affect the operating environment. The configuration files controlled include the files downloaded to the Acromag and Westronic field instruments

  20. Radioactive waste tank ventilation system incorporating tritium control

    Energy Technology Data Exchange (ETDEWEB)

    Rice, P.D. [ICF Kaiser Hanford Company, Richland, WA (United States)

    1997-08-01

    This paper describes the development of a ventilation system for radioactive waste tanks at the U.S. Department of Energy`s (DOE) Hanford Site in Richland, Washington. The unique design of the system is aimed at cost-effective control of tritiated water vapor. The system includes recirculation ventilation and cooling for each tank in the facility and a central exhaust air clean-up train that includes a low-temperature vapor condenser and high-efficiency mist eliminator (HEME). A one-seventh scale pilot plant was built and tested to verify predicted performance of the low-temperature tritium removal system. Tests were conducted to determine the effectiveness of the removal of condensable vapor and soluble and insoluble aerosols and to estimate the operating life of the mist eliminator. Definitive design of the ventilation system relied heavily on the test data. The unique design features of the ventilation system will result in far less release of tritium to the atmosphere than from conventional high-volume dilution systems and will greatly reduce operating costs. NESHAPs and TAPs NOC applications have been approved, and field construction is nearly complete. Start-up is scheduled for late 1996. 3 refs., 4 figs., 2 tabs.

  1. Status of containment integrity studies for continued in-tank storage of Hanford defense high-level waste

    International Nuclear Information System (INIS)

    Baca, R.G.; Beitel, G.A.; Mercier, P.F.; Moore, E.L.; Vollert, F.R.

    1978-09-01

    Information is provided on the technical studies that have been implemented for evaluating the containment integrity of the single-shell waste storage tanks. The major areas of study are an analysis of storage tank integrity, a failure mode analysis, and storage tank improvements. Evaluations of tank structural integrity include theoretical studies on static and dynamic load responses, laboratory studies on concrete durability, and experimental studies on the potential for exothermic reactions of salt cake. The structural analyses completed to date show that the tanks are in good condition and have a safety margin against overload. Environmental conditions that could cause a loss of durability are limited to the waste chemicals stored (which do not have access to the concrete). Concern that a salt cake exothermic reaction may initiate a loss of containment is not justifiable based on extensive testing completed. A failure mode analysis of a tank liner failure, a sidewall failure, and a dome collapse shows that no radiologic hazard to man results. Storage tank improvement studies completed show that support of a tank dome is achievable. Secondary containment provided by chemical grouts and bentonite clay slurry walls does not appear promising. It is now estimated that the single-shell tanks will be serviceable for the storage of salt cake waste for decades under currently established operating temperature and load limits

  2. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    International Nuclear Information System (INIS)

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  3. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  4. Insulation systems for liquid methane fuel tanks for supersonic cruise aircraft

    Science.gov (United States)

    Brady, H. F.; Delduca, D.

    1972-01-01

    Two insulation systems for tanks containing liquid methane in supersonic cruise-type aircraft were designed and tested after an extensive materials investigation. One system is an external insulation and the other is an internal wet-type insulation system. Tank volume was maximized by making the tank shape approach a rectangular parallelopiped. One tank was designed to use the external insulation and the other tank to use the internal insulation. Performance of the external insulation system was evaluated on a full-scale tank under the temperature environment of -320 F to 700 F and ambient pressures of ground-level atmospheric to 1 psia. Problems with installing the internal insulation on the test tank prevented full-scale evaluation of performance; however, small-scale testing verified thermal conductivity, temperature capability, and installed density.

  5. Load requirements for maintaining structural integrity of Hanford single-shell tanks during waste feed delivery and retrieval activities

    International Nuclear Information System (INIS)

    JULYK, L.J.

    1999-01-01

    This document provides structural load requirements and their basis for maintaining the structural integrity of the Hanford Single-Shell Tanks during waste feed delivery and retrieval activities. The requirements are based on a review of previous requirements and their basis documents as well as load histories with particular emphasis on the proposed lead transfer feed tanks for the privatized vitrification plant

  6. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    International Nuclear Information System (INIS)

    Karl Froschauer; Holger Witing; Bernhard Christ

    2006-01-01

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  7. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    International Nuclear Information System (INIS)

    Howden, G.F.

    1994-01-01

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions

  8. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    Energy Technology Data Exchange (ETDEWEB)

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  9. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  10. Hold-up monitoring system for plutonium process tanks

    International Nuclear Information System (INIS)

    Zhu Rongbao; Jin Huimin; Tan Yajun

    1994-01-01

    The development of hold-up monitoring system for plutonium process tanks and a calculation method for α activities deposited in containers and inner walls of pipe are described. The hardware of monitoring system consists of a portable HPGe detector, a φ50 mm x 60 mm NaI(Tl) detector, γ-ray tungsten collimators, ORTEC92X Spectrum Master and an AST-286 computer. The software of system includes Maestro Tm for Window3 and a PHOUP1 hold-up application software for user. The Monte-Carlo simulation calculation supported by MCNP software is performed for the probability calculation of all the unscattering γ-rays reaching to the detection positions from the source terms deposited in the complicated tanks. A measurement mean value for different positions is used to minimize the effect of heterogeneous distribution of source term. The sensitivity is better than 3.7 x 10 6 Bq/kg (steel) for a plutonium simulation source on a 3-8 mm thick steel plate surrounded by 0.8 x 10 -10 C/kg·s γ field from long-life fission products

  11. Performance requirements for the double-shell tank system: Phase 1

    International Nuclear Information System (INIS)

    Claghorn, R.D.

    1998-01-01

    This document establishes performance requirements for the double-shell tank system. These requirements, in turn, will be incorporated in the System Specification for the Double-Shell Tank System (Grenard and Claghorn 1998). This version of the document establishes requirements that are applicable to the first phase (Phase 1) of the Tank Waste Remediation System (TWRS) mission described in the TWRS Mission Analysis Report (Acree 1998). It does not specify requirements for either the Phase 2 mission or the double-shell tank system closure period

  12. Integrated security system definition

    International Nuclear Information System (INIS)

    Campbell, G.K.; Hall, J.R. II

    1985-01-01

    The objectives of an integrated security system are to detect intruders and unauthorized activities with a high degree of reliability and the to deter and delay them until effective response/engagement can be accomplished. Definition of an effective integrated security system requires proper application of a system engineering methodology. This paper summarizes a methodology and describes its application to the problem of integrated security system definition. This process includes requirements identification and analysis, allocation of identified system requirements to the subsystem level and provides a basis for identification of synergistic subsystem elements and for synthesis into an integrated system. The paper discusses how this is accomplished, emphasizing at each step how system integration and subsystem synergism is considered. The paper concludes with the product of the process: implementation of an integrated security system

  13. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    Ahmmed Saadi Ibrehem

    2011-05-01

    Full Text Available A modified model for the neutralization process of Stirred Tank Reactors (CSTR reactor is presented in this study. The model accounts for the effect of strong acid [HCL] flowrate and strong base [NaOH] flowrate with the ionic concentrations of [Cl-] and [Na+] on the Ph of the system. In this work, the effect of important reactor parameters such as ionic concentrations and acid and base flowrates on the dynamic behavior of the CSTR is investigated and the behavior of mathematical model is compared with the reported models for the McAvoy model and Jutila model. Moreover, the results of the model are compared with the experimental data in terms of pH dynamic study. A good agreement is observed between our model prediction and the actual plant data. © 2011 BCREC UNDIP. All rights reserved(Received: 1st March 2011, Revised: 28th March 2011; Accepted: 7th April 2011[How to Cite: A.S. Ibrehem. (2011. Modified Mathematical Model For Neutralization System In Stirred Tank Reactor. Bulletin of Chemical Reaction Engineering & Catalysis, 6(1: 47-52. doi:10.9767/bcrec.6.1.825.47-52][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.825.47-52 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/825 ] | View in 

  14. Recent progress of the waste processing and disposal projects within the Underground Storage Tank-Integrated Demonstration

    International Nuclear Information System (INIS)

    Hunt, R.D.; McGinnis, C.P.; Cruse, J.M.

    1994-01-01

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Remediation has created the Office of Technology Development (OTD) to provide new and improved remediation technologies for the 1 x 10 8 gal of radioactive waste in the underground storage tanks (USTs) at five DOE sites. The OTD established and the Underground Storage Tank-Integrated Demonstration (UST-ID) to perform demonstrations, tests, and evaluations on these new technologies before these processes are transferred to the tank sites for use in full-scale remediation of the USTs. The UST-ID projects are performed by the Characterization and Waste Retrieval Program or the Waste Processing and Disposal Program (WPDP). During FY 1994, the WPDP is funding 12 projects in the areas of supernate processing, sludge processing, nitrate destruction, and final waste forms. The supernate projects are primarily concerned with cesium removal. A mobile evaporator and concentrator for cesium-free supernate is also being demonstrated. The sludge projects are emphasizing sludge dissolution and the evaluation of the TRUEX and diamide solvent extraction processes for transuranic waste streams. One WPDP project is examining both supernate and sludge processes in an effort to develop a system-level plan for handling all UST waste. The other WPDP studies are concerned with nitrate and organic destruction as well as subsequent waste forms. The current status of these WPDP projects is presented

  15. Reliability centered maintenance pilot system implementation 241-AP-tank farm primary ventilation system final report

    International Nuclear Information System (INIS)

    MOORE TL

    2001-01-01

    When the Hanford Site Tank Farms' mission was safe storage of radioactive waste in underground storage tanks, maintenance activities focused on time-based preventive maintenance. Tank Farms' new mission to deliver waste to a vitrification plant where the waste will be processed into a form suitable for permanent storage requires a more efficient and proactive approach to maintenance. Systems must be maintained to ensure that they are operational and available to support waste feed delivery on schedule with a minimum of unplanned outages. This report describes the Reliability Centered Maintenance (RCM) pilot system that was implemented in the 241-AP Tank Farm Primary Ventilation System under PI-ORP-009 of the contract between the U.S. Department of Energy, Office of River Protection and CH2M HILL Hanford Group Inc. (CHG). The RCM analytical techniques focus on monitoring the condition of operating systems to predict equipment failures so that maintenance activities can be completed in time to prevent or mitigate unplanned equipment outages. This approach allows maintenance activities to be managed with minimal impact on plant operations. The pilot demonstration provided an opportunity for CHG staff-training in RCM principles and tailoring of the RCM approach to the Hanford Tank Farms' unique needs. This report details the implementation of RCM on a pilot system in Tank Farms

  16. Functions and requirements for the light duty utility arm integrated system

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  17. Functions and requirements for the Light-Duty Utility Arm Integrated System. Revision 1

    International Nuclear Information System (INIS)

    Kiebel, G.R.

    1996-01-01

    The Light Duty Utility Arm (LDUA) Integrated System is a mobile robotic system designed to remotely deploy and operate a variety of tools in uninhabitable underground radiological and hazardous waste storage tanks. The system primarily provides a means to inspect, survey, monitor, map and/or obtain specific waste and waste tank data in support of the Tank Waste Remediation System (TWRS) mission at Hanford and remediation programs at other U.S. Department of Energy (DOE) sites

  18. Frequency of deflagration in the in-tank precipitation process tanks due to loss of nitrogen purge system

    International Nuclear Information System (INIS)

    Jansen, J.M.; Mason, C.L.; Olsen, L.M.; Shapiro, B.J.; Gupta, M.K.; Britt, T.E.

    1994-01-01

    High-level liquid wastes (HLLW) from the processing of nuclear material at the Savannah River Site (SRS) are stored in large tanks in the F- and H-Area tank farms. The In-Tank Precipitation (ITP) process is one step in the processing and disposal of HLLW. The process hazards review for the ITP identified the need to implement provisions that minimize deflagration/explosion hazards associated with the process. The objective of this analysis is to determine the frequency of a deflagration in Tank 48 and/or 49 due to nitrogen purge system failures (including external events) and coincident ignition source. A fault tree of the nitrogen purge system coupled with ignition source probability is used to identify dominant system failures that contribute to the frequency of deflagration. These system failures are then used in the recovery analysis. Several human actions, recovery actions, and repair activities are identified that reduce total frequency. The actions are analyzed and quantified as part of a Human Reliability Analysis (HRA). The probabilities of failure of these actions are applied to the fault tree cutsets and the event trees

  19. Searching for integrable systems

    International Nuclear Information System (INIS)

    Cary, J.R.

    1984-01-01

    Lack of integrability leads to undesirable consequences in a number of physical systems. The lack of integrability of the magnetic field leads to enhanced particle transport in stellarators and tokamaks with tearing-mode turbulence. Limitations of the luminosity of colliding beams may be due to the onset of stochasticity. Enhanced radial transport in mirror machines caused by the lack of integrability and/or the presence of resonances may be a significant problem in future devices. To improve such systems one needs a systematic method for finding integrable systems. Of course, it is easy to find integrable systems if no restrictions are imposed; textbooks are full of such examples. The problem is to find integrable systems given a set of constraints. An example of this type of problem is that of finding integrable vacuum magnetic fields with rotational transform. The solution to this problem is relevant to the magnetic-confinement program

  20. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks

    Directory of Open Access Journals (Sweden)

    Guangwen Fan

    2015-09-01

    Full Text Available Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  1. Large-Scale Wireless Temperature Monitoring System for Liquefied Petroleum Gas Storage Tanks.

    Science.gov (United States)

    Fan, Guangwen; Shen, Yu; Hao, Xiaowei; Yuan, Zongming; Zhou, Zhi

    2015-09-18

    Temperature distribution is a critical indicator of the health condition for Liquefied Petroleum Gas (LPG) storage tanks. In this paper, we present a large-scale wireless temperature monitoring system to evaluate the safety of LPG storage tanks. The system includes wireless sensors networks, high temperature fiber-optic sensors, and monitoring software. Finally, a case study on real-world LPG storage tanks proves the feasibility of the system. The unique features of wireless transmission, automatic data acquisition and management, local and remote access make the developed system a good alternative for temperature monitoring of LPG storage tanks in practical applications.

  2. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  3. Operability test procedure [Tank] 241-SY-101 equipment removal system

    International Nuclear Information System (INIS)

    Mast, J.C.

    1994-01-01

    The 241-SY-101 equipment removal system (ERS) consists of components, equipment, instrumentation and procedures that will provide the means to disconnect, retrieve, contain, load and transport the Mitigation Pump Assembly (MPA) from waste Tank 241-SY-101 to the Central Waste Complex (CWC). The Operability Test Procedure (OTP) will test the interfaces between ERS components and will rehearse the procedure for MPA removal and transportation to the extent they can be mocked-up at the CTF (Cold Test Facility). At the conclusion of the OTP, the ERS components and equipment will be removed from the CTF, entered into the Component Based Recall System (CBRS), and stored until needed for actual MPA removal and transportation

  4. Tank waste remediation system functions and requirements document

    International Nuclear Information System (INIS)

    Carpenter, K.E

    1996-01-01

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle

  5. Tank waste remediation system functions and requirements document

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, K.E

    1996-10-03

    This is the Tank Waste Remediation System (TWRS) Functions and Requirements Document derived from the TWRS Technical Baseline. The document consists of several text sections that provide the purpose, scope, background information, and an explanation of how this document assists the application of Systems Engineering to the TWRS. The primary functions identified in the TWRS Functions and Requirements Document are identified in Figure 4.1 (Section 4.0) Currently, this document is part of the overall effort to develop the TWRS Functional Requirements Baseline, and contains the functions and requirements needed to properly define the top three TWRS function levels. TWRS Technical Baseline information (RDD-100 database) included in the appendices of the attached document contain the TWRS functions, requirements, and architecture necessary to define the TWRS Functional Requirements Baseline. Document organization and user directions are provided in the introductory text. This document will continue to be modified during the TWRS life-cycle.

  6. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  7. Management assessment of tank waste remediation system contractor readiness to proceed with phase 1B privatization

    International Nuclear Information System (INIS)

    Certa, P.J.

    1998-01-01

    Readiness to Proceed With Phase 1B Privatization documents the processes used to determine readiness to proceed with tank waste treatment technologies from private industry, now known as TWRS privatization. An overall systems approach was applied to develop action plans to support the retrieval and disposal mission of the TWRS Project. The systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. Since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farms organizational structure and configurations, work scope, and costs has become part of the culture within the TWRS Project. An analysis of the programmatic, management, and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, personnel, and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and disposal mission requirements and evaluating the readiness of the Project Hanford Management Contract (PHMC) team to support initiation of waste processing by the private contractors in June 2002 and to receive immobilized waste shortly thereafter. The Phase 1 feed delivery requirements from the private contractor Requests for Proposal were reviewed. Transfer piping routes were mapped, existing systems were evaluated, and upgrade requirements were defined

  8. Tank waste remediation system configuration management implementation plan

    International Nuclear Information System (INIS)

    Vann, J.M.

    1998-01-01

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from the life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program

  9. Tank waste remediation system programmatic risk management plan

    International Nuclear Information System (INIS)

    Seaver, D.A.

    1995-01-01

    This risk management plan defines the approach to be taken to managing risks in the Tank Waste Remediation System (TWRS) program. It defines the actions to be taken at the overall program level, and the risk management requirements for lower-level projects and other activities. The primary focus of this plan is on ''programmatic'' risks, i.e., risks with respect to the cost, schedule, and technical performance of the program. The plan defines an approach providing managers with the flexibility to manage risks according to their specific needs, yet creates. The consistency needed for effectiveness across the program. The basic risk management approach uses a risk management list for the program, each project, and additional lower-level activities. The risk management list will be regularly reviewed and updated by appropriate level of management. Each list defines key risks, their likelihood and consequences, risk management actions to be taken, responsible individuals, and other management information

  10. Risk-based systems analysis of emerging high-level waste tank remediation technologies. Volume 1: Executive summary

    International Nuclear Information System (INIS)

    Peters, B.B.; Cameron, R.J.; McCormack, W.D.

    1994-08-01

    This report describes a System Analysis Model developed under the US Department of Energy (DOE) Office of Technology Development (OTD) Underground Storage Tank-Integrated Demonstration (UST-ID) program to aid technology development funding decisions for radioactive tank waste remediation. Current technology development selection methods evaluate new technologies in isolation from other components of an overall tank waste remediation system. These methods do not show the relative effect of new technologies on tank remediation systems as a whole. Consequently, DOE may spend its resources on technologies that promise to improve a single function but have a small or possibly negative, impact on the overall system, or DOE may overlook a technology that does not address a high priority problem in the system but that does, if implemented, offer sufficient overall improvements. Systems engineering and detailed analyses often conducted under the National Environmental Policy Act (NEPA 1969) use a ''whole system'' approach but are costly, too time-consuming, and often not sufficiently focused to support the needs of the technology program decision-makers. An alternative approach is required to evaluate these systems impacts but still meet the budget and schedule needs of the technology program

  11. Integrated Reporting Information System -

    Data.gov (United States)

    Department of Transportation — The Integrated Reporting Information System (IRIS) is a flexible and scalable web-based system that supports post operational analysis and evaluation of the National...

  12. Tank waste remediation system retrieval and disposal mission initial updated baseline summary

    International Nuclear Information System (INIS)

    Swita, W.R.

    1998-01-01

    This document provides a summary of the proposed Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (scope, schedule, and cost) developed to demonstrate the Tank Waste Remediation System contractor's Readiness-to-Proceed in support of the Phase 1B mission

  13. 40 CFR 267.198 - What are the general operating requirements for my tank systems?

    Science.gov (United States)

    2010-07-01

    ... FACILITIES OPERATING UNDER A STANDARDIZED PERMIT Tank Systems § 267.198 What are the general operating... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What are the general operating requirements for my tank systems? 267.198 Section 267.198 Protection of Environment ENVIRONMENTAL PROTECTION...

  14. Decision analysis of Hanford underground storage tank waste retrieval systems

    International Nuclear Information System (INIS)

    Merkhofer, M.W.; Bitz, D.A.; Berry, D.L.; Jardine, L.J.

    1994-05-01

    A decision analysis approach has been proposed for planning the retrieval of hazardous, radioactive, and mixed wastes from underground storage tanks. This paper describes the proposed approach and illustrates its application to the single-shell storage tanks (SSTs) at Hanford, Washington

  15. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  16. Characterization of selected waste tanks from the active LLLW system

    International Nuclear Information System (INIS)

    Keller, J.M.; Giaquinto, J.M.; Griest, W.H.

    1996-08-01

    From September 1989 through January of 1990, there was a major effort to sample and analyze the Active Liquid-Low Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The purpose of this report is to summarize additional analytical data collected from some of the active waste tanks from November 1993 through February 1996. The analytical data for this report was collected for several unrelated projects which had different data requirements. The overall analyte list was similar for these projects and the level of quality assurance was the same for all work reported. the new data includes isotopic ratios for uranium and plutonium and an evaluation of the denature ratios to address criticality concerns. Also, radionuclides not previously measured in these waste tanks, including 99Tc and 237Np, are provided in this report

  17. Function integrated track system

    OpenAIRE

    Hohnecker, Eberhard

    2010-01-01

    The paper discusses a function integrated track system that focuses on the reduction of acoustic emissions from railway lines. It is shown that the combination of an embedded rail system (ERS), a sound absorbing track surface, and an integrated mini sound barrier has significant acoustic advantages compared to a standard ballast superstructure. The acoustic advantages of an embedded rail system are particularly pronounced in the case of railway bridges. Finally, it is shown that a...

  18. Tank 241-C-106 waste retrieval sluicing system process control plan

    International Nuclear Information System (INIS)

    Carothers, K.G.

    1998-01-01

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity

  19. Tank 241-C-106 waste retrieval sluicing system process control plan

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, K.G.

    1998-07-25

    Project W-320 has installed the Waste Retrieval Sluicing System at the 200 East Area on the Hanford Site to retrieve the sludge from single-shell tank 241-C-106 and transfer it into double-shell tank 241-AY-102. Operation of the WRSS process will resolve the high-heat safety issue for tank 241-C-106 and demonstrate a technology for the retrieval of single-shell tank wastes. This process control plan coordinates the technical operating requirements (primarily mass transfer, temperature, and flammable gas) for the sluicing operation and provides overall technical guidance for the retrieval activity.

  20. Design demonstrations for Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-07-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes. These wastes have been stored and transported through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA) - Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or Replacement Tank Systems with Secondary Containment; Category B -- Existing Tank Systems with Secondary Containment; Category C -- Existing Tank Systems without Secondary Containment; and Category D -- Existing Tank Systems without Secondary Containment that are; Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category ''B.'' The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Subsection C)

  1. Integrated management systems

    CERN Document Server

    Bugdol, Marek

    2015-01-01

    Examining the challenges of integrated management, this book explores the importance and potential benefits of using an integrated approach as a cross-functional concept of management. It covers not only standardized management systems (e.g. International Organization for Standardization), but also models of self-assessment, as well as different types of integration. Furthermore, it demonstrates how processes and systems can be integrated, and how management efficiency can be increased. The major part of this book focuses on management concepts which use integration as a key tool of management processes (e.g. the systematic approach, supply chain management, virtual and network organizations, processes management and total quality management). Case studies, illustrations, and tables are also provided to exemplify and illuminate the content, as well as examples of successful and failed integrations. Providing a particularly useful resource to managers and specialists involved in the improvement of organization...

  2. Integration of reusable systems

    CERN Document Server

    Rubin, Stuart

    2014-01-01

    Software reuse and integration has been described as the process of creating software systems from existing software rather than building software systems from scratch. Whereas reuse solely deals with the artifacts creation, integration focuses on how reusable artifacts interact with the already existing parts of the specified transformation. Currently, most reuse research focuses on creating and integrating adaptable components at development or at compile time. However, with the emergence of ubiquitous computing, reuse technologies that can support adaptation and reconfiguration of architectures and components at runtime are in demand. This edited book includes 15 high quality research papers written by experts in information reuse and integration to cover the most recent advances in the field. These papers are extended versions of the best papers which were presented at IEEE International Conference on Information Reuse and Integration and IEEE International Workshop on Formal Methods Integration, which wa...

  3. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-01-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD ampersand C) system was developed jointly by ORNL and participants from the TFA. The WD ampersand C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD ampersand C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD ampersand C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector

  4. Remote inspection of underground storage tanks

    International Nuclear Information System (INIS)

    Griebenow, B.L.; Martinson, L.M.

    1992-01-01

    Westinghouse Idaho Nuclear Company, Inc. (WINCO) operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy. The ICPP's mission is to process government-owned spent nuclear fuel. The process involves dissolving the fuel, extracting off uranium, and calcining the waste to a solid form for storage, Prior to calcining, WINCO temporarily stores the liquid waste from this process in eleven 1,135,600-l(300,000-gal), 15,2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior of the tanks is through risers that extend from ground level to the dome of the tanks. WINCO is replacing these tanks because of their age and the fact that they do not meet all of the current design requirements. The tanks will be replaced in two phases. WINCO is now in the Title I design stage for four new tank and vault systems to replace five of the existing systems. The integrity of the six remaining tanks must be verified to continue their use until they can be replaced in the second phase. To perform any integrity analysis, the inner surface of the tanks must be inspected. The remote tank inspection (RTI) robotic system, designed by RedZone Robotics of Pittsburgh, Pennsylvania, was developed to access the interior of the tanks and position various end effectors required to perform tank wall inspections

  5. Thermal Performance of a Large Low Flow Solar Heating System with a Highly Thermally Stratified Tank

    DEFF Research Database (Denmark)

    Furbo, Simon; Vejen, Niels Kristian; Shah, Louise Jivan

    2005-01-01

    are facing west. The collector tilt is 15° from horizontal for all collectors. Both the east-facing and the west-facing collectors have their own solar collector loop, circulation pump, external heat exchanger and control system. The external heat exchangers are used to transfer the heat from the solar......In year 2000 a 336 m² solar domestic hot water system was built in Sundparken, Elsinore, Denmark. The solar heating system is a low flow system with a 10000 l hot-water tank. Due to the orientation of the buildings half of the solar collectors are facing east, half of the solar collectors...... collector fluid to the domestic water. The domestic water is pumped from the bottom of the hot-water tank to the heat exchanger and back to the hot-water tank through stratification inlet pipes. The return flow from the DHW circulation pipe also enters the tank through stratification inlet pipes. The tank...

  6. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  7. Project Management Plan for Initial Tank Retrieval Systems, Project W-211

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    1999-01-01

    Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AP-108, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the Privatized waste processing plant and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump based retrieval system for any DST. This Project Management Plan (PMP) documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  8. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  9. Integrated radwaste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1997-10-01

    In May 1988, the West Valley Demonstration Project (WVDP) began pretreating liquid high-level radioactive waste (HLW). This HLW was produced during spent nuclear fuel reprocessing operations that took place at the Western New York Nuclear Service Center from 1966 to 1972. Original reprocessing operations used plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) processes to recover usable isotopes from spent nuclear fuel. The PUREX process produced a nitric acid-based waste stream, which was neutralized by adding sodium hydroxide to it. About two million liters of alkaline liquid HLW produced from PUREX neutralization were stored in an underground carbon steel tank identified as Tank 8D-2. The THOREX process, which was used to reprocess one core of mixed uranium-thorium fuel, resulted in about 31,000 liters of acidic waste. This acidic HLW was stored in an underground stainless steel tank identified as Tank 8D-4. Pretreatment of the HLW was carried out using the Integrated Radwaste Treatment System (IRTS), from May 1988 until May 1995. This system was designed to decontaminate the liquid HLW, remove salts from it, and encapsulate the resulting waste into a cement waste form that achieved US Nuclear Regulatory Commission (NRC) criteria for low-level waste (LLW) storage and disposal. A thorough discussion of IRTS operations, including all systems, subsystems, and components, is presented in US Department of Energy (DOE) Topical Report (DOE/NE/44139-68), Integrated Radwaste Treatment System Lessons Learned from 2 1/2 Years of Operation. This document also presents a detailed discussion of lessons learned during the first 2 1/2 years of IRTS operation. This report provides a general discussion of all phases of IRTS operation, and presents additional lessons learned during seven years of IRTS operation

  10. Energy Systems Integration Facility Videos | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility Videos Energy Systems Integration Facility Integration Facility NREL + SolarCity: Maximizing Solar Power on Electrical Grids Redefining What's Possible for Renewable Energy: Grid Integration Robot-Powered Reliability Testing at NREL's ESIF Microgrid

  11. Energy Systems Integration Laboratory | Energy Systems Integration Facility

    Science.gov (United States)

    | NREL Integration Laboratory Energy Systems Integration Laboratory Research in the Energy Systems Integration Laboratory is advancing engineering knowledge and market deployment of hydrogen technologies. Applications include microgrids, energy storage for renewables integration, and home- and station

  12. Tank vent processing system having a corrosion preventive device

    International Nuclear Information System (INIS)

    Ouchi, Shoichi; Sato, Hirofumi

    1987-01-01

    Purpose: To prevent corrosion of a tank vent processing device by injecting an oxygen gas. Constitution: Oxygen gas and phosphorous at high temperature are poured into a tank vent processing device and amorphous oxide layers optimum to the prevention of external corrosion are formed to the inner surface of the device. Since the corrosion preventive device using the oxygen gas injection can be constituted as a relatively simple device, it is more economical than constituting a relatively large tank vent processing device with corrosion resistant stainless steels. (Kamimura, M.)

  13. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume IV

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 4, describes the current safety concerns associated with the tank waste and analyzes the potential accidents and associated potential health effects that could occur under the alternatives included in this Tank Waste Remediation System (TWRS) Final Environmental Impact Statement (EIS) for the Hanford Site, Richland, Washington

  14. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, G.W.

    1997-05-07

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List.

  15. Ventilation system consequence calculations to support salt well pumping single-shell tank 241-A-101

    International Nuclear Information System (INIS)

    Ryan, G.W.

    1997-01-01

    This document presents the radiological dose and toxicological exposure calculations for an accident scenario involved with the ventilation system used to support salt well pumping single-shell tank 241-A-101. This tank has been listed on the Hydrogen Watch List

  16. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    Institute of Scientific and Technical Information of China (English)

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  17. CFM technologies for space transportation: Multipurpose hydrogen testbed system definition and tank procurement

    Science.gov (United States)

    Fox, E. C.; Kiefel, E. R.; Mcintosh, G. L.; Sharpe, J. B.; Sheahan, D. R.; Wakefield, M. E.

    1993-01-01

    The development of a test bed tank and system for evaluating cryogenic fluid management technologies in a simulated upper stage liquid hydrogen tank is covered. The tank is 10 ft long and is 10 ft in diameter, and is an ASME certified tank constructed of 5083 aluminum. The tank is insulated with a combination of sprayed on foam insulation, covered by 45 layers of double aluminized mylar separated by dacron net. The mylar is applied by a continuous wrap system adapted from commercial applications, and incorporates variable spacing between the mylar to provide more space between those layers having a high delta temperature, which minimizes heat leak. It also incorporates a unique venting system which uses fewer large holes in the mylar rather than the multitude of small holes used conventionally. This significantly reduces radiation heat transfer. The test bed consists of an existing vacuum chamber at MSFC, the test bed tank and its thermal control system, and a thermal shroud (which may be heated) surrounding the tank. Provisions are made in the tank and chamber for inclusion of a variety of cryogenic fluid management experiments.

  18. 49 CFR 180.416 - Discharge system inspection and maintenance program for cargo tanks transporting liquefied...

    Science.gov (United States)

    2010-10-01

    ... section. (v) Stainless steel flexible connectors with damaged reinforcement braid. (vi) Internal self... program for cargo tanks transporting liquefied compressed gases. 180.416 Section 180.416 Transportation... PACKAGINGS Qualification and Maintenance of Cargo Tanks § 180.416 Discharge system inspection and maintenance...

  19. Evaluation of Flammable Gas Monitoring and Ventilation System Alternatives for Double-Contained Receiver Tanks

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    1999-01-01

    This study identifies possible flammable gas monitoring and ventilation system alternatives to ensure adequate removal of flammable gases from the Double-Contained Receiver Tank (DCRT) primary tanks during temporary storage of small amounts of waste. The study evaluates and compares these alternatives to support closure of the Flammable Gas Unreviewed Safety Question (USQ TF-96-04330)

  20. Integrated inventory information system

    Digital Repository Service at National Institute of Oceanography (India)

    Sarupria, J.S.; Kunte, P.D.

    The nature of oceanographic data and the management of inventory level information are described in Integrated Inventory Information System (IIIS). It is shown how a ROSCOPO (report on observations/samples collected during oceanographic programme...

  1. Systems Integration Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-06-01

    This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstration projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.

  2. System Engineering Management and Implementation Plan for Project W-211, ''Initial Tank Retrieval Systems'' (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211

  3. System Engineering Management and Implementation Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    Energy Technology Data Exchange (ETDEWEB)

    VAN BEEK, J.E.

    2000-05-05

    This systems Engineering Management and Implementation Plan (SEMIP) describes the Project W-211 implementation of the Tank Farm Contractor Systems Engineering Management Plan (TFC SEMP). The SEMIP defines the systems engineering products and processes used by the project to comply with the TFC SEMP, and provides the basis for tailoring systems engineering processes by applying a graded approach to identify appropriate systems engineering requirements for W-211.

  4. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-01-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)--Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A--New or Replacement Tank Systems with Secondary Containment; Category B--Existing Tank Systems with Secondary Containment; Category C--Existing Tank Systems Without Secondary Containment; and Category D--Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. Three tank systems originally designated as Category B have been redesignated as Category C and one tank system originally designated as Category B has been redesignated as Category D. The design demonstration for each tank is presented in Section 2. The design demonstrations were developed using information obtained from the design drawings (as-built when available), construction specifications, and interviews with facility operators. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA

  5. Remotely Operated Vehicle (ROV) System for Horizontal Tanks. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The U.S. Department of Energy (DOE) is responsible for cleaning and closing over 300 small and large underground tanks across the DOE complex that are used for storing over 1-million gal of high- and low-level radioactive and mixed waste (HLW, LLW, and MLLW). The contents of these aging tanks must be sampled to analyze for contaminants to determine final disposition of the tank and its contents. Access to these tanks is limited to small-diameter risers that allow for sample collection at only one discrete point below this opening. To collect a more representative sample without exposing workers to tank interiors, a remote-controlled retrieval method must be used. Many of the storage tanks have access penetrations that are 18 in. in diameter and, therefore, are not suitable for deployment of large vehicle systems like the Houdini (DOE/EM-0363). Often, the tanks offer minimal headspace and are so cluttered with pipes and other vertical obstructions that deployment of long-reach manipulators becomes an impractical option. A smaller vehicle system is needed that can deploy waste retrieval, sampling, and inspection tools into these tanks. The Oak Ridge National Laboratory (ORNL), along with ROV Technologies, Inc., and The Providence Group, Inc., (Providence) has developed the Scarab III remotely operated vehicle system to meet this need. The system also includes a containment and deployment structure and a jet pump-based, waste-dislodging and conveyance system to use in these limited-access tanks. The Scarab III robot addresses the need for a vehicle-based, rugged, remote-controlled system for collection of representative samples of tank contents. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data

  6. Systems Engineering Implementation Plan for Single Shell Tanks (SST) Retrieval Projects

    Energy Technology Data Exchange (ETDEWEB)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-11-30

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor.

  7. Systems Engineering Implementation Plan for Single-Shell Tanks (SST) Retrieval Projects

    International Nuclear Information System (INIS)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-01-01

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor

  8. Where there's a tank, there's a solar system

    Energy Technology Data Exchange (ETDEWEB)

    Banse, Stephanie

    2011-07-01

    London-based consultants BRG have analysed the European market for water heating systems. The comprehensive collection of data on the storage tank market also permits conclusions to be drawn regarding the development of solar thermal systems in general. (orig.)

  9. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS, S.R.

    2000-02-25

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS.

  10. Project W-211 Initial Tank Retrieval Systems (ITRS) Description of Operations for 241-AZ-102

    International Nuclear Information System (INIS)

    BRIGGS, S.R.

    2000-01-01

    The primary purpose of the Initial Tank Retrieval Systems (ITRS) is to provide systems for retrieval of radioactive wastes stored in underground double-shell tanks (DSTs) for transfer to alternate storage, evaporation, pretreatment or treatment, while concurrently reducing risks associated with safety watch list and other DSTs. This Description of Operation (DOO) defines the control philosophy for the waste retrieval system for Tank 241-AZ-102 (AZ-102). This DOO provides a basis for the detailed design of the Project W-211 Retrieval Control System (RCS) for AZ-102 and also establishes test criteria for the RCS

  11. Theoretical comparison between solar combisystems based on bikini tanks and tank-in-tank solar combisystems

    DEFF Research Database (Denmark)

    Yazdanshenas, Eshagh; Furbo, Simon; Bales, Chris

    2008-01-01

    Theoretical investigations have shown that solar combisystems based on bikini tanks for low energy houses perform better than solar domestic hot water systems based on mantle tanks. Tank-in-tank solar combisystems are also attractive from a thermal performance point of view. In this paper......, theoretical comparisons between solar combisystems based on bikini tanks and tank-in-tank solar combisystems are presented....

  12. Application of an H-infinity based FDI and control scheme for the three tank system

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2000-01-01

    The three tank benchmark system is considered in this paper in connection with combined feedback control and fault detection and identification (FDI). The combined design problem is formulated as an H-infinity design problem by using a standard system setup......The three tank benchmark system is considered in this paper in connection with combined feedback control and fault detection and identification (FDI). The combined design problem is formulated as an H-infinity design problem by using a standard system setup...

  13. Integrate offsites management with information systems

    Energy Technology Data Exchange (ETDEWEB)

    Valleur, M. (TECHNIP, Paris (France))

    1993-11-01

    Computerized offsites management systems in oil refineries offer a unique opportunity to integrate advanced technology into a coherent refinery information system that contributes to benefits-driven optimal operations: from long-term, multirefinery linear programming (LP) models to sequential control of transfer lineups in the tank farm. There are strong incentives to automate and optimize the offsites operations, and benefits can be quantified to justify properly sized projects. The paper discusses the following: business opportunities, oil movement and advanced technology, project scoping and sizing, review of functional requirements, transfer automation, blending optimal control, on-line analyzers, oil movement and scheduling, organizational issues, and investment and benefits analysis.

  14. The integrated criticality safety evaluation for the Hanford tank waste treatment and immobilization plant

    International Nuclear Information System (INIS)

    Losey, D. C.; Miles, R. E.; Perks, M. F.

    2009-01-01

    The Criticality Safety Evaluation Report (CSER) for the Hanford Tank Waste Treatment and Immobilization Plant (WTP) has been developed as a single, integrated evaluation with a scope that covers all of the planned WTP operations. This integrated approach is atypical, as the scopes of criticality evaluations are usually more narrowly defined. Several adjustments were made in developing the WTP CSER, but the primary changes were to provide introductory overview for the criticality safety control strategy and to provide in-depth analysis of the underlying physical and chemical mechanisms that contribute to ensuring safety. The integrated approach for the CSER allowed a more consistent evaluation of safety and avoided redundancies that occur when evaluation is distributed over multiple documents. While the approach used with the WTP CSER necessitated more coordination and teamwork, it has yielded a report is that more integrated and concise than is typical. The integrated approach with the CSER produced a simple criticality control scheme that uses relatively few controls. (authors)

  15. Tank waste remediation system process engineering instruction manual

    International Nuclear Information System (INIS)

    ADAMS, M.R.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Process Engineering Instruction Manual is to provide guidance and direction to TWRS Process Engineering staff regarding conduct of business. The objective is to establish a disciplined and consistent approach to business such that the work processes within TWRS Process Engineering are safe, high quality, disciplined, efficient, and consistent with Lockheed Martin Hanford Corporation Policies and Procedures. The sections within this manual are of two types: for compliance and for guidance. For compliance sections are intended to be followed per-the-letter until such time as they are formally changed per Section 2.0 of this manual. For guidance sections are intended to be used by the staff for guidance in the conduct of work where technical judgment and discernment are required. The guidance sections shall also be changed per Section 2.0 of this manual. The required header for each manual section is illustrated in Section 2.0, Manual Change Control procedure. It is intended that this manual be used as a training and indoctrination resource for employees of the TWRS Process Engineering organization. The manual shall be required reading for all TWRS Process Engineering staff, matrixed, and subcontracted employees

  16. Engineering task plan for Tanks 241-AN-103, 104, 105 color video camera systems

    International Nuclear Information System (INIS)

    Kohlman, E.H.

    1994-01-01

    This Engineering Task Plan (ETP) describes the design, fabrication, assembly, and installation of the video camera systems into the vapor space within tanks 241-AN-103, 104, and 105. The one camera remotely operated color video systems will be used to observe and record the activities within the vapor space. Activities may include but are not limited to core sampling, auger activities, crust layer examination, monitoring of equipment installation/removal, and any other activities. The objective of this task is to provide a single camera system in each of the tanks for the Flammable Gas Tank Safety Program

  17. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Science.gov (United States)

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  18. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  19. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  20. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  1. Three dimensional system integration

    CERN Document Server

    Papanikolaou, Antonis; Radojcic, Riko

    2010-01-01

    Three-dimensional (3D) integrated circuit (IC) stacking is the next big step in electronic system integration. It enables packing more functionality, as well as integration of heterogeneous materials, devices, and signals, in the same space (volume). This results in consumer electronics (e.g., mobile, handheld devices) which can run more powerful applications, such as full-length movies and 3D games, with longer battery life. This technology is so promising that it is expected to be a mainstream technology a few years from now, less than 10-15 years from its original conception. To achieve thi

  2. The systems integration modeling system

    International Nuclear Information System (INIS)

    Danker, W.J.; Williams, J.R.

    1990-01-01

    This paper discusses the systems integration modeling system (SIMS), an analysis tool for the detailed evaluation of the structure and related performance of the Federal Waste Management System (FWMS) and its interface with waste generators. It's use for evaluations in support of system-level decisions as to FWMS configurations, the allocation, sizing, balancing and integration of functions among elements, and the establishment of system-preferred waste selection and sequencing methods and other operating strategies is presented. SIMS includes major analysis submodels which quantify the detailed characteristics of individual waste items, loaded casks and waste packages, simulate the detailed logistics of handling and processing discrete waste items and packages, and perform detailed cost evaluations

  3. Tank waste remediation system heat stress control program report, 1995

    International Nuclear Information System (INIS)

    Carls, D.R.

    1995-01-01

    Protecting employees from heat stress within tank farms during the summer months is challenging. Work constraints typically experienced in tank farms complicate the measures taken to protect employees from heat stress. TWRS-Industrial Hygiene (IH) has endeavored to control heat stress injuries by anticipating, recognizing, evaluating and controlling the factors which lead or contribute to heat stress in Tank Farms. The TWRS Heat Stress Control Program covers such areas as: employee and PIC training, communication of daily heat stress alerts to tank farm personnel, setting work/rest regimens, and the use of engineering and personal protective controls when applicable. The program has increased worker awareness of heat stress and prevention, established provisions for worker rest periods, increased drinking water availability to help ensure worker hydration, and allowed for the increased use of other protective controls to combat heat stress. The TWRS Heat Stress Control Program is the cornerstone for controlling heat stress among tank farm employees. The program has made great strides since it's inception during the summer of 1994. Some improvements can still be made to enhance the program for the summer of 1996, such as: (1) procurement and use of personal heat stress monitoring equipment to ensure appropriate application of administrative controls, (2) decrease the need for use of containment tents and anti-contamination clothing, and (3) providing a wider variety of engineering and personal protective controls for heat stress prevention

  4. Tank waste remediation system privatization infrastructure program requirements and document management process guide

    International Nuclear Information System (INIS)

    ROOT, R.W.

    1999-01-01

    This guide provides the Tank Waste Remediation System Privatization Infrastructure Program management with processes and requirements to appropriately control information and documents in accordance with the Tank Waste Remediation System Configuration Management Plan (Vann 1998b). This includes documents and information created by the program, as well as non-program generated materials submitted to the project. It provides appropriate approval/control, distribution and filing systems

  5. What Is Energy Systems Integration? | Energy Systems Integration Facility |

    Science.gov (United States)

    NREL What Is Energy Systems Integration? What Is Energy Systems Integration? Energy systems integration (ESI) is an approach to solving big energy challenges that explores ways for energy systems to Research Community NREL is a founding member of the International Institute for Energy Systems Integration

  6. Effluent migration from septic tank systems in two different lithologies, Broward County, Florida

    Science.gov (United States)

    Waller, B.G.; Howie, Barbara; Causaras, C.R.

    1987-01-01

    Two septic tank test sites, one in sand and one in limestone, in Broward County, Florida, were analyzed for effluent migration. Groundwater from shallow wells, both in background areas and hydraulically down-gradient of the septic tank system, was sampled during a 16-month period from April 1983 through August 1984. Water quality indicators were used to determine the effluent affected zone near the septic tank systems. Specific conductance levels and concentrations of chloride, sulfate, ammonium, and nitrate indicated effluent movement primarily in a vertical direction with abrupt dilution as it moved down-gradient. Effluent was detected in the sand to a depth more than 20 ft below the septic tank outlet, but was diluted to near background conditions 50 ft down-gradient from the tank. Effluent in the limestone was detected in all three observation wells to depths exceeding 25 ft below the septic tank outlet and was diluted, but still detectable, 40 ft down-gradient. The primary controls on effluent movement from septic tank systems in Broward County are the lithology and layering of the geologic materials, hydraulic gradients, and the volume and type of use the system receives. (Author 's abstract)

  7. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    International Nuclear Information System (INIS)

    Calmus, D.B.

    1994-01-01

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferred from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length

  8. ADDRESS SYSTEM INTEGRATION BUSINESS

    Directory of Open Access Journals (Sweden)

    Lionel Manuel Carbonell-Zamora

    2016-01-01

    Full Text Available The Integrated Strategic Direction constitutes a superior stage of Direction that expresses the coordinated system of external and internal relations with full participation in order to reach the vision of the organization. It can be insured by the use of the Strategic Direction model for the integration of the Company Direction System. This model has been applied in several companies. Recently, it was applied in the Inspection State Unit of MICONS in Santiago de Cuba through the investigation thesis for master degree developed during 18 months which objective was to validate its effectiveness in a budgeted unit, obtaining positive results when the levels of integration in the direction system increased in their external and internal relations expressed in a 37 % and 15 % respectively, which impacted the increment of the efficiency and effectiveness of all processes of the organization. 

  9. Integral consideration of integrated management systems

    International Nuclear Information System (INIS)

    Frauenknecht, Stefan; Schmitz, Hans

    2010-01-01

    Aim of the project for the NPPs Kruemmel and Brunsbuettel (Vattenfall) is the integral view of the business process as basis for the implementation and operation of management systems in the domains quality, safety and environment. The authors describe the integral view of the business processes in the frame of integrated management systems with the focus nuclear safety, lessons learned in the past, the concept of a process-based controlling system and experiences from the practical realization.

  10. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  11. High-level waste tank remediation technology integration summary. Revision 1

    International Nuclear Information System (INIS)

    DeLannoy, C.R.; Susiene, C.; Fowler, K.M.; Robson, W.M.; Cruse, J.M.

    1994-07-01

    The U.S. Department of Energy's Environmental Restoration and Waste Management and Technology Development Programs are engaged in a number of projects to develop, demonstrate, test, and evaluate new technologies to support the cleanup and site remediation of more than 300 underground storage tanks containing over 381,000 m 3 (100 million gal) of liquid radioactive mixed waste at the Hanford Reservation. Significant development is needed within primary functions and in determining an overall bounding strategy. This document is an update of continuing work to summarize the overall strategy and to provide data regarding technology development activities within the strategy. It is intended to serve as an information resource to support understanding, decision making, and integration of multiple program technology development activities. Recipients are encouraged to provide comments and input to the authors for incorporation in future revisions

  12. Tank vapor sampling and analysis data package for tank 241-C-106 waste retrieval sluicing system process test phase III

    Energy Technology Data Exchange (ETDEWEB)

    LOCKREM, L.L.

    1999-08-13

    This data package presents sampling data and analytical results from the March 28, 1999, vapor sampling of Hanford Site single-shell tank 241-C-106 during active sluicing. Samples were obtained from the 296-C-006 ventilation system stack and ambient air at several locations. Characterization Project Operations (CPO) was responsible for the collection of all SUMMATM canister samples. The Special Analytical Support (SAS) vapor team was responsible for the collection of all triple sorbent trap (TST), sorbent tube train (STT), polyurethane foam (PUF), and particulate filter samples collected at the 296-C-006 stack. The SAS vapor team used the non-electrical vapor sampling (NEVS) system to collect samples of the air, gases, and vapors from the 296-C-006 stack. The SAS vapor team collected and analyzed these samples for Lockheed Martin Hanford Corporation (LMHC) and Tank Waste Remediation System (TWRS) in accordance with the sampling and analytical requirements specified in the Waste Retrieval Sluicing System Vapor Sampling and Analysis Plan (SAP) for Evaluation of Organic Emissions, Process Test Phase III, HNF-4212, Rev. 0-A, (LMHC, 1999). All samples were stored in a secured Radioactive Materials Area (RMA) until the samples were radiologically released and received by SAS for analysis. The Waste Sampling and Characterization Facility (WSCF) performed the radiological analyses. The samples were received on April 5, 1999.

  13. Remotely controlled reagent feed system for mixed waste treatment Tank Farm

    International Nuclear Information System (INIS)

    Dennison, D.K.; Bowers, J.S.; Reed, R.K.

    1995-02-01

    LLNL has developed and installed a large-scale. remotely controlled, reagent feed system for use at its existing aqueous low-level radioactive and mixed waste treatment facility (Tank Farm). LLNL's Tank Farm is used to treat aqueous low-level and mixed wastes prior to vacuum filtration and to remove the hazardous and radioactive components before it is discharged to the City of Livermore Water Reclamation Plant (LWRP) via the sanitary sewer in accordance with established limits. This reagent feed system was installed to improve operational safety and process efficiency by eliminating the need for manual handling of various reagents used in the aqueous waste treatment processes. This was done by installing a delivery system that is controlled either remotely or locally via a programmable logic controller (PLC). The system consists of a pumping station, four sets of piping to each of six 6,800-L (1,800-gal) treatment tanks, air-actuated discharge valves at each tank, a pH/temperature probe at each tank, and the PLC-based control and monitoring system. During operation, the reagents are slowly added to the tanks in a preprogrammed and controlled manner while the pH, temperature, and liquid level are continuously monitored by the PLC. This paper presents the purpose of this reagent feed system, provides background related to LLNL's low-level/mixed waste treatment processes, describes the major system components, outlines system operation, and discusses current status and plans

  14. Public values related to decisions in the Tank Waste Remediation System Program

    International Nuclear Information System (INIS)

    Armacost, L.L.; Robershotte, M.; von Winterfeldt, D.; Creighton, J.

    1994-10-01

    Managers of the Tank Waste Remediation System (TWRS) Program have to make numerous decisions, ranging from the strategic decisions on the fundamental tank cleanup goals to technical decisions on which types of equipment to use in mechanical retrieval of wastes. Furthermore, many of these decisions have to be made repeatedly (e.g., the annual allocation of research and development funds to TWRS activities). These decisions have many potential consequences in terms of risks to workers, risks to the public, environmental impacts, and economic development and cost. Because these consequences affect the values of many parties, the consequences need to be evaluated in terms that are accepted and understood by the interested parties. Therefore, an effort needs to be made to incorporate public concerns and values into the TWRS decision-making process. The purpose of this report is to review and integrate this past work on values and to create a maser list of values in order to create a consistent value framework for the numerous TWRS decisions; efficiently and effectively use public values in the decision-making process by updating this report on a regular basis to ensure that the information represents the public's current views; provide guidance about using values in technical TWRS decisions

  15. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  16. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Boardman, Richard Doin; Lamb, Kenneth Mitchel; Matejka, Leon Anthony; Nenni, Joseph A

    2002-02-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5.

  17. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory; ANNUAL

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  18. NWCF Evaporator Tank System 2001 Offgas Emissions Inventory

    International Nuclear Information System (INIS)

    Boardman, R.D.; Lamb, K.M.; Matejka, L.A.; Nenni, J.A.

    2002-01-01

    An offgas emissions inventory and liquid stream characterization of the Idaho New Waste Calcining Facility (NWCF) Evaporator Tank System (ETS), formerly known as the High Level Liquid Waste Evaporator (HLLWE), has been completed. The emissions rates of volatile and semi-volatile organic compounds, multiple metals, particulate, and hydrochloric acid were measured in accordance with an approved Quality Assurance Project Plan (QAPjP) and Test Plan that invoked U.S. Environmental Protection Agency (EPA) standard sample collection and analysis procedures. Offgas samples were collected during the start up and at the end of evaporator batches when it was hypothesized the emissions would be at peak rates. Corresponding collection of samples from the evaporator feed overhead condensate, and bottoms was made at approximately the same time as the emissions inventory to support material balance determinations for the evaporator process. The data indicate that organic compound emissions are slightly higher at the beginning of the batch while metals emissions, including mercury, are slightly higher at the end of the evaporator batch. The maximum emissions concentrations are low for all constituents of primary concern. Mercury emissions were less than 5 ppbv, while the sum of HCl and Cl2 emissions was less than 1 ppmv. The sum of all organic emissions also was less than 1 ppmv. The estimated hazardous quotient (HQ) for the evaporator was 6.2e-6 as compared to 0.25 for the EPA target criteria. The cancer risk was 1.3e-10 compared to an EPA target of le-5

  19. Systems integration (automation system). System integration (automation system)

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, K; Komori, T; Fukuma, Y; Oikawa, M [Nippon Steal Corp., Tokyo (Japan)

    1991-09-26

    This paper introduces business activities on an automation systems integration (SI) started by a company in July,1988, and describes the SI concepts. The business activities include, with the CIM (unified production carried out on computers) and AMENITY (living environment) as the mainstays, a single responsibility construction ranging from consultation on structuring optimal systems for processing and assembling industries and intelligent buildings to system design, installation and after-sales services. With an SI standing on users {prime} position taken most importantly, the business starts from a planning and consultation under close coordination. On the conceptual basis of structuring optimal systems using the ompany {prime}s affluent know-hows and tools and adapting and applying with multi-vendors, open networks, centralized and distributed systems, the business is promoted with the accumulated technologies capable of realizing artificial intelligence and neural networks in its background, and supported with highly valuable business results in the past. 10 figs., 1 tab.

  20. Engineering task plan for development, fabrication, and deployment of nested, fixed depth fluidic sampling and at-tank analysis systems

    International Nuclear Information System (INIS)

    REICH, F.R.

    1999-01-01

    An engineering task plan was developed that presents the resources, responsibilities, and schedules for the development, test, and deployment of the nested, fixed-depth fluidic sampling and at-tank analysis system. The sampling system, deployed in the privatization contract double-shell tank feed tank, will provide waste samples for assuring the readiness of the tank for shipment to the privatization contractor for vitrification. The at-tank analysis system will provide ''real-time'' assessments of the sampled wastes' chemical and physical properties. These systems support the Hanford Phase 1B Privatization Contract

  1. Federal Facility Agreement plans and schedules for liquid low-level radioactive waste tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-03-01

    Although the Federal Facility Agreement (FFA) addresses the entire Oak Ridge Reservation, specific requirements are set forth for the liquid low-level radioactive waste (LLLW) storage tanks and their associated piping and equipment, tank systems, at ORNL. The stated objected of the FFA as it relates to these tank systems is to ensure that structural integrity, containment and detection of releases, and source control are maintained pending final remedial action at the site. The FFA requires that leaking LLLW tank systems be immediately removed from service. It also requires the LLLW tank systems that do not meet the design and performance requirements established for secondary containment and leak detection be either upgraded or replaced. The FFA establishes a procedural framework for implementing the environmental laws. For the LLLW tank systems, this framework requires the specified plans and schedules be submitted to EPA and TDEC for approval within 60 days, or in some cases, within 90 days, of the effective date of the agreement

  2. Discrete systems and integrability

    CERN Document Server

    Hietarinta, J; Nijhoff, F W

    2016-01-01

    This first introductory text to discrete integrable systems introduces key notions of integrability from the vantage point of discrete systems, also making connections with the continuous theory where relevant. While treating the material at an elementary level, the book also highlights many recent developments. Topics include: Darboux and Bäcklund transformations; difference equations and special functions; multidimensional consistency of integrable lattice equations; associated linear problems (Lax pairs); connections with Padé approximants and convergence algorithms; singularities and geometry; Hirota's bilinear formalism for lattices; intriguing properties of discrete Painlevé equations; and the novel theory of Lagrangian multiforms. The book builds the material in an organic way, emphasizing interconnections between the various approaches, while the exposition is mostly done through explicit computations on key examples. Written by respected experts in the field, the numerous exercises and the thoroug...

  3. Flammable gas deflagration consequence calculations for the tank waste remediation system basis for interim operation

    Energy Technology Data Exchange (ETDEWEB)

    Van Vleet, R.J., Westinghouse Hanford

    1996-08-13

    This paper calculates the radiological dose consequences and the toxic exposures for deflagration accidents at various Tank Waste Remediation System facilities. These will be used in support of the Tank Waste Remediation System Basis for Interim Operation.The attached SD documents the originator`s analysis only. It shall not be used as the final or sole document for effecting changes to an authorization basis or safety basis for a facility or activity.

  4. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    International Nuclear Information System (INIS)

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs

  5. 33 CFR 183.550 - Fuel tanks: Installation.

    Science.gov (United States)

    2010-07-01

    ...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.550 Fuel tanks: Installation. (a) Each fuel tank must not be integral with any boat structure or mounted on an engine. (b) Each... the top surface of each metallic fuel tank when the boat is in its static floating position. (e) Each...

  6. Low cost anaerobic system for Indonesia: single baffled septic tank.

    Science.gov (United States)

    Wibisono, G; Mathew, K; Ho, Goen

    2003-01-01

    The insertion of a single baffle into a laboratory septic tank to mix incoming feed with sludge has been shown to improve anaerobic degradation of the feed. This is particularly true of soluble organic matter such as glucose. Oil or cellulose fed separately does not undergo degradation. It is expected however that a balanced feed such as sewage will be better degraded.

  7. Integrated management systems

    DEFF Research Database (Denmark)

    Jørgensen, Tine Herreborg; Remmen, Arne; Mellado, M. Dolores

    2006-01-01

    Different approaches to integration of management systems (ISO 9001, ISO 14001, OHSAS 18001 and SA 8000) with various levels of ambition have emerged. The tendency of increased compatibility between these standards has paved the road for discussions of, how to understand the different aspects of ...

  8. Integrable and superintegrable systems

    CERN Document Server

    1990-01-01

    Some of the most active practitioners in the field of integrable systems have been asked to describe what they think of as the problems and results which seem to be most interesting and important now and are likely to influence future directions. The papers in this collection, representing their authors' responses, offer a broad panorama of the subject as it enters the 1990's.

  9. Numerical simulation on stir system of jet ballast in high level liquid waste storage tank

    International Nuclear Information System (INIS)

    Lu Yingchun

    2012-01-01

    The stir system of jet ballast in high level liquid waste storage tank was simulation object. Gas, liquid and solid were air, sodium nitrate liquor and titanium whitening, respectively. The mathematic model based on three-fluid model and the kinetic theory of particles was established for the stir system of jet ballast in high level liquid waste storage tank. The CFD commercial software was used for solving this model. The detail flow parameters as three phase velocity, pressure and phase loadings were gained. The calculated results agree with the experimental results, so they can well define the flow behavior in the tank. And this offers a basic method for the scale-up and optimization design of the stir system of jet ballast in high level liquid waste storage tank. (author)

  10. Performance of hybrid constructed wetland systems for treating septic tank effluent.

    Science.gov (United States)

    Cui, Li-hua; Liu, Wen; Zhu, Xi-zhen; Ma, Mei; Huang, Xi-hua; Xia, Yan-yang

    2006-01-01

    The integrated wetland systems were constructed by combining horizontal-flow and vertical-flow bed, and their purification efficiencies for septic tank effluent were detected when the hydraulic retention time (HRT) was 1 d, 3 d, 5 d under different seasons. The results showed that the removal efficiencies of the organics, phosphorus were steady in the hybrid systems, but the removal efficiency of total nitrogen was not steady due to high total nitrogen concentration in the septic tank effluent. The average removal rates of COD (chemical oxygen demand) were 89%, 87%, 83%, and 86% in summer, autumn, winter and spring, respectively, and it was up to 88%, 85%, 73%, and 74% for BOD5 (5 d biochemical oxygen demand) removal rate in four seasons. The average removal rates of TP (total phosphorous) could reach up to 97%, 98%, 95%, 98% in four seasons, but the removal rate of TN (total nitrogen) was very low. The results of this study also indicated that the capability of purification was the worst in winter. Cultivating with plants could improve the treated effluent quality from the hybrid systems. The results of the operation of the horizontal-flow and vertical-flow cells (hybrid systems) showed that the removal efficiencies of the organics, TP and TN in horizontal-flow and vertical-flow cells were improved significantly with the extension of HRT under the same season. The removal rate of 3 d HRT was obviously higher than that of 1 d HRT, and the removal rate of 5 d HRT was better than that of 3 d HRT, but the removal efficiency was not very obvious with the increment of HRT. Therefore, 3 d HRT might be recommended in the actual operation of the hybrid systems for economic and technical reasons.

  11. Development of integrated CAD system PV-1

    International Nuclear Information System (INIS)

    Miyamoto, Hitoshi; Ogawa, Kazuya; Shibata, Masayoshi.

    1997-01-01

    An integrated CAD system for pressure vessels, such as heat exchangers, drums, towers, jacketed vessels, and tanks, has been developed. The system is operated by MS-DOS personal computers combined in a LAN. Pressure vessel designers can work watching using the computer display because the system automatically manages design work, on a common data base. The project team members in other sections, such as production, cost control, and design, have the same data concurrently. Personal computers unite the 3D CAD system, and the generated design with detail dimensions and shapes is stored in the 3D CAD system automatically. The system has promoted higher design quality and greatly reduced design cost. (author)

  12. Integration of Environmental Restoration and Waste Management Activities for a More Cost-Effective Tank Remediation Program Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Brill, A.; Clark, R.; Stewart, R.

    1998-01-01

    This paper presents plans and strategies for remediation of the liquid low-level radioactive waste (LLLW) tanks that have been removed from service (also known as inactive tanks) at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee. Much of the LLLW system at ORNL was installed more than 50 years ago. The overall objective of the Inactive Tank Program is to remediate all LLLW tanks that have been removed from service to the extent practicable in accordance with the regulatory requirements

  13. Tank waste remediation system retrieval and disposal mission phase 1 financial analysis

    International Nuclear Information System (INIS)

    Wells, M.W.

    1998-01-01

    The purpose of the Tank Waste Remediation System (TWRS) Retrieval and Disposal Mission Phase 1 Financial Analysis is to provide a quantitative and qualitative cost and schedule risk analysis of HNF-1946, Tank Waste Remediation System Retrieval and Disposal Mission Initial Updated Baseline (Swita et al. 1998). The Updated Baseline (Section 3.0) is compared to the current TWRS Project Multi-Year Work Plan (MYWP) for fiscal year (FY) 1998 and target budgets for FY 1999 through FY 2011 (Section 4.1). The analysis then evaluates the executability of HNF-1946 (Sections 4.2 through 4.5) and recommends a path forward for risk mitigation (Sections 4.6, 4.7, and 5.0). A sound systems engineering approach was applied to understand and analyze the Phase 1B Retrieval and Disposal mission. Program and Level 1 Logics were decomposed to Level 8 of the Work Breakdown Structure (WBS) where logic was detailed, scope was defined, detail durations and estimates prepared, and resource loaded schedules developed. Technical Basis Review (TBR) packages were prepared which include this information and, in addition, defined the enabling assumptions for each task, and the risks associated with performance. This process is discussed in Section 2.1. Detailed reviews at the subactivity within the Level 1 Logic TBR levels were conducted to provide the recommended solution to the Phase 1B Retrieval and Disposal Mission. Independent cost analysis and risk assessments were performed by members of the Lockheed Martin Hanford Corporation (LMHC) Business Management and Chief Financial Officer organization along with specialists in risk analysis from TRW, Inc. and Lockheed Martin Energy Systems. The process evaluated technical, schedule, and cost risk by category (program specific fixed and variable, integrated program, and programmatic) based on risk certainly from high probability well defined to very low probability that is not bounded or priceable as discussed in Section 2.2. The results have been

  14. Integrated material accountancy system

    International Nuclear Information System (INIS)

    Calabozo, M.; Buiza, A.

    1991-01-01

    In this paper we present the system that we are actually using for Nuclear Material Accounting and Manufacturing Management in our UO 2 Fuel Fabrication Plant located at Juzbado, Salamanca, Spain. The system is based mainly on a real time data base which gather data for all the operations performed in our factory from UO 2 powder reception to fuel assemblies shipment to the customers. The accountancy is just an important part of the whole integrated system covering all the aspects related to manufacturing: planning, traceability, Q.C. analysis, production control and accounting data

  15. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Science.gov (United States)

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  16. Experimental Study of an On-board Fuel Tank Inerting System

    Science.gov (United States)

    Wu, Fei; Lin, Guiping; Zeng, Yu; Pan, Rui; Sun, Haoyang

    2017-03-01

    A simulated aircraft fuel tank inerting system was established and experiments were conducted to investigate the performance of the system. The system uses hollow fiber membrane which is widely used in aircraft as the air separation device and a simplified 20% scale multi compartment fuel tank as the inerting object. Experiments were carried out to investigate the influences of different operating parameters on the inerting effectiveness of the system, including NEA (nitrogen-enriched air) flow rate, NEA oxygen concentration, NEA distribution, pressure of bleeding air and fuel load of the tank. Results showed that for the multi compartment fuel tank, concentrated flow washing inerting would cause great differences throughout the distribution of oxygen concentration in the fuel tank, and inerting dead zone would exist. The inerting effectiveness was greatly improved and the ullage oxygen concentration of the tank would reduce to 12% successfully when NEA entered three compartments evenly. The time span of a complete inerting process reduced obviously with increasing NEA flow rate and decreasing NEA concentration, but the trend became weaker gradually. However, the reduction of NEA concentration will decrease the utilization efficiency of the bleeding air. In addition, the time span can also be reduced by raising the pressure of bleeding air, which will improve the bleeding air utilization efficiency at the same time. The time span decreases linearly as the fuel load increases.

  17. Design demonstrations for the remaining 19 Category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1993-06-01

    This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). ORNL has conducted research in energy related fields since 1943. The facilities used to conduct the research include nuclear reactors, chemical pilot plants, research laboratories, radioisotope production laboratories, and support facilities. These facilities have produced a variety of radioactive and/or hazardous wastes that have been transported and stored through an extensive network of piping and tankage. Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the EPA (United States Environmental Protection Agency)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tank systems: Category A-New or Replacement Tank Systems with Secondary Containment; Category B-Existing Tank Systems with Secondary Containment; Category C-Existing Tank Systems Without Secondary Containment, and Category D-Existing Tank Systems Without Secondary Containment That are Removed from Service. This document provides a design demonstration of the secondary containment and ancillary equipment of 19 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented in Section 2. The assessments assume that each tank system was constructed in accordance with the design drawings and construction specifications for that system unless specified otherwise. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C)

  18. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    SEDERBURG, J.P.

    1999-09-30

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed.

  19. Nuclear reactor equipped with a flooding tank and a residual heat removal and emergency cooling system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Winkler, F.

    1975-01-01

    A description is given of a nuclear reactor such as a pressurized-water reactor or the like which is equipped with a flooding tank and a residual heat removal and emergency cooling system. The flooding tank is arranged within the containment shell at an elevation above the upper edge of the reactor core and contains a liquid for flooding the reactor core in the event of a loss of coolant

  20. Alternatives generation and analysis for double-shell tank primary ventilation systems emissions control and monitoring

    International Nuclear Information System (INIS)

    SEDERBURG, J.P.

    1999-01-01

    This AGA addresses the question: ''What equipment upgrades, operational changes, and/or other actions are required relative to the DST tanks farms' ventilation systems to support retrieval, staging (including feed sampling), and delivery of tank waste to the Phase I private contractor?'' Issues and options for the various components within the ventilation subsystem affect each other. Recommended design requirements are presented and the preferred alternatives are detailed

  1. Configuration management plan for waste tank farms and the 242-A evaporator of tank waste remediation system

    International Nuclear Information System (INIS)

    Laney, T.

    1994-01-01

    The configuration management architecture presented in this Configuration Management Plan is based on the functional model established by DOE-STD-1073-93, ''Guide for Operational Configuration Management Program.'' The DOE Standard defines the configuration management program by the five basic program elements of ''program management,'' ''design requirements,'' ''document control,'' ''change control,'' and ''assessments,'' and the two adjunct recovery programs of ''design reconstitution,'' and ''material condition and aging management.'' The CM model of five elements and two adjunct programs strengthen the necessary technical and administrative control to establish and maintain a consistent technical relationship among the requirements, physical configuration, and documentation. Although the DOE Standard was originally developed for the operational phase of nuclear facilities, this plan has the flexibility to be adapted and applied to all life-cycle phases of both nuclear and non-nuclear facilities. The configuration management criteria presented in this plan endorses the DOE Standard and has been tailored specifically to address the technical relationship of requirements, physical configuration, and documentation during the full life cycle of the Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System

  2. Tank waste remediation system vadose zone program plan

    International Nuclear Information System (INIS)

    Fredenburg, E.A.

    1998-01-01

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities

  3. Tank waste remediation system vadose zone program plan

    Energy Technology Data Exchange (ETDEWEB)

    Fredenburg, E.A.

    1998-07-27

    The objective of the vadose zone characterization under this program is to develop a better conceptual geohydrologic model of identified tank farms which will be characterized so that threats to human health and the environment from past leaks and spills, intentional liquid discharges, potential future leaks during retrieval, and from residual contaminants that may remain in tank farms at closure can be explicitly addressed in decision processes. This model will include geologic, hydrologic, and hydrochemical parameters as defined by the requirements of each of the TWRS programs identified here. The intent of this TWRS Vadose Zone Program Plan is to provide justification and an implementation plan for the following activities: Develop a sufficient understanding of subsurface conditions and transport processes to support decisions on management, cleanup, and containment of past leaks, spills, and intentional liquid discharges; Develop a sufficient understanding of transport processes to support decisions on controlling potential retrieval leaks; Develop a sufficient understanding of transport processes to support decisions on tank farm closure, including allowable residual waste that may remain at closure; and Provide new information on geotechnical properties in the 200 Area to supplement data used for design and performance assessment for immobilized low-activity waste disposal facilities.

  4. Systems Integration | Photovoltaic Research | NREL

    Science.gov (United States)

    Integration Systems Integration The National Center for Photovoltaics (NCPV) at NREL provides grid integration support, system-level testing, and systems analysis for the Department of Energy's solar distributed grid integration projects supported by the SunShot Initiative. These projects address technical

  5. The relation of collector and storage tank size in solar heating systems

    International Nuclear Information System (INIS)

    Çomaklı, Kemal; Çakır, Uğur; Kaya, Mehmet; Bakirci, Kadir

    2012-01-01

    Highlights: ► A storage tank is used in many solar water heating systems for the storage of hot water. ► Using larger storage tanks decrease the efficiency and increases the cost of the system. ► The optimum tank size for the collector area is very important for economic solar heating systems. ► The optimum sizes of the collectors and the storage tank are determined. - Abstract: The most popular method to benefit from the solar energy is to use solar water heating systems since it is one of the cheapest way to benefit from the solar energy. The investment cost of a solar water heating system is very low, and the maintenance costs are nearly zero. Using the solar energy for solar water heating (SWH) technology has been greatly improved during the past century. A storage tank is used in many solar water heating systems for the conservation of heat energy or hot water for use when some need it. In addition, domestic hot water consumption is strongly variable in many buildings. It depends on the geographical situation, also on the country customs, and of course on the type of building usage. Above all, it depends on the inhabitants’ specific lifestyle. For that reason, to provide the hot water for consumption at the desirable temperature whenever inhabitants require it, there must be a good relevance between the collectors and storage tank. In this paper, the optimum sizes of the collectors and the storage tank are determined to design more economic and efficient solar water heating systems. A program has been developed and validated with the experimental study and environmental data. The environmental data were obtained through a whole year of operation for Erzurum, Turkey.

  6. Technical specification for transferring tank construction data to the Oak Ridge Environmental Information System (OREIS)

    International Nuclear Information System (INIS)

    1996-06-01

    The primary goal of this technical specification is to meet the consolidated environmental data requirements defined by the Federal Facility Agreement (FFA) and the Tennessee Oversight Agreement as they pertain to tank construction data maintained in Oak Ridge, Tennessee, by the US Department of Energy's Maintenance and Operations contractor Lockheed Martin Energy Systems, Inc., and prime contractors to the Department of Energy. This technical specification describes the organizational responsibilities for loading tank construction data into OREIS, describes the logical and physical data transfer files, addresses business rules and submission rules, addresses configuration control of this technical specification, and addresses required changes to the current OREIS data base structure based on site requirements. This technical specification addresses the tank construction data maintained by the Y-12, K-25, and ORNL sites that will be sent to OREIS. The initial submission of data will include only inactive Environmental Restoration tanks as specified by the FFA

  7. TNKVNT: A model of the Tank 48 purge/ventilation exhaust system. Revision 1

    International Nuclear Information System (INIS)

    Shadday, M.A. Jr.

    1996-04-01

    The waste tank purge ventilation system for Tank 48 is designed to prevent dangerous concentrations of hydrogen or benzene from accumulating in the gas space of the tank. Fans pull the gas/water vapor mixture from the tank gas space and pass it sequentially through a demister, a condenser, a reheater, and HEPA filters before discharging to the environment. Proper operation of the HEPA filters requires that the gas mixture passing through them has a low relative humidity. The ventilation system has been modified by increasing the capacity of the fans and changing the condenser from a two-pass heat exchanger to a single-pass heat exchanger. It is important to understand the impact of these modifications on the operation of the system. A hydraulic model of the ventilation exhaust system has been developed. This model predicts the properties of the air throughout the system and the flowrate through the system, as functions of the tank gas space and environmental conditions. This document serves as a Software Design Report, a Software Coding report, and a User's Manual. All of the information required for understanding and using this code is herein contained: the governing equations are fully developed, the numerical algorithms are described in detail, and an extensively commented code listing is included. This updated version of the code models the entire purge ventilation system, and is therefore more general in its potential applications

  8. Implementation of Recommendations from the One System Comparative Evaluation of the Hanford Tank Farms and Waste Treatment Plant Safety Bases

    International Nuclear Information System (INIS)

    Garrett, Richard L.; Niemi, Belinda J.; Paik, Ingle K.; Buczek, Jeffrey A.; Lietzow, J.; McCoy, F.; Beranek, F.; Gupta, M.

    2013-01-01

    A Comparative Evaluation was conducted for One System Integrated Project Team to compare the safety bases for the Hanford Waste Treatment and Immobilization Plant Project (WTP) and Tank Operations Contract (TOC) (i.e., Tank Farms) by an Expert Review Team. The evaluation had an overarching purpose to facilitate effective integration between WTP and TOC safety bases. It was to provide One System management with an objective evaluation of identified differences in safety basis process requirements, guidance, direction, procedures, and products (including safety controls, key safety basis inputs and assumptions, and consequence calculation methodologies) between WTP and TOC. The evaluation identified 25 recommendations (Opportunities for Integration). The resolution of these recommendations resulted in 16 implementation plans. The completion of these implementation plans will help ensure consistent safety bases for WTP and TOC along with consistent safety basis processes. procedures, and analyses. and should increase the likelihood of a successful startup of the WTP. This early integration will result in long-term cost savings and significant operational improvements. In addition, the implementation plans lead to the development of eight new safety analysis methodologies that can be used at other U.S. Department of Energy (US DOE) complex sites where URS Corporation is involved

  9. Hanford tanks initiative - test implementation plan for demonstration of in-tank retrieval technology

    International Nuclear Information System (INIS)

    Schaus, P.S.

    1997-01-01

    This document presents a Systems Engineering approach for performing the series of tests associated with demonstrating in-tank retrieval technologies. The testing ranges from cold testing of individual components at the vendor's facility to the final fully integrated demonstration of the retrieval system's ability to remove hard heel high-level waste from the bottom of a Hanford single-shell tank

  10. Energy Systems Integration Facility News | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Energy Systems Integration Facility News Energy Systems Integration Facility Energy Dataset A massive amount of wind data was recently made accessible online, greatly expanding the Energy's National Renewable Energy Laboratory (NREL) has completed technology validation testing for Go

  11. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  12. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  13. Integrated management system

    International Nuclear Information System (INIS)

    Florescu, N.

    2003-01-01

    A management system is developed in order to reflect the needs of the business and to ensure that the objectives of the organization will be achieved. The process model and each individual process within the system then needs to identify the drives or requirements from external customers and stakeholders, regulations, and standards such as ISO and 50-C-Q. The processes are then developed to address these drivers. Developing the process in this way makes it fully integrated and capable of incorporating any new requirements. The International Standard (ISO 9000:2000) promotes the adoption of a process approach when developing, implementing and improving the effectiveness of a quality management system to enhance customer satisfaction by meeting customer requirements. The IAEA Code recognizes that the entire work is a process which can be planned, assessed and improved. For an organization to function effectively, numerous linked activities have to be identified and managed. By definition a process is an activity that using resources and taking into account all the constraints imposed executes the necessary operations which transform the inputs in outcomes. Running a system of processes within an organization, identification of the interaction between the processes and their management can be referred to as a 'process approach'. The advantage of such an approach is the ensuring of the ongoing control over the linkage between the individual processes composing the system as well as over their combination and interaction. Developing a management system implies: identification of the process which delivers Critical Success Factor (CSFs) of the business; identifying the support processes enabling the CSFs to be accomplished; identifying the processes that deliver the business fundamentals. An integrated management system should include all activities not only those related to Quality, Health and Safety. When developing an IMS it is necessary to identify all of the drivers

  14. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly date on the latest energy systems integration (ESI) developments at NREL and worldwide. Have an item

  15. Project Specific Quality Assurance Plan Project (QAPP) W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    HALL, L.R.

    2000-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Project Hanford Quality Assurance Program is implemented by CH2M HILL Hanford Group Inc (CHG) for managing the Initial Tank Retrieval Systems (ITRS), Project W-211. This QAPP is responsive to the CHG Quality Assurance Program Description (QAPD) (LMH-MP-599) which provides direction for compliance to 10 CFR 830 120, ''Nuclear Safety Management, Quality Assurance Requirements'', and DOE Order 5700 6C, ''Quality Assurance'' Project W-211 modifies existing facilities and provides systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. This project includes the design, procurement, construction, startup and turnover of these retrieval systems This QAPP identifies organizational structures and responsibilities. Implementing procedures used by CHG project management can be found in the CHG Quality Assurance Program (CHG QAP) Implementation Matrix located in HNF-IP-0842, Volume XI, Attachment Proposed verification and inspection activities for critical items within the scope of project W-211 are identified in Attachment 1 W-211. Project participants will identify the implementing procedures used by their organization within their QAF'Ps. This project specific QAPP is used to identify requirements in addition to the QAPD and provide, by reference, additional information to other project documents

  16. Engineering Task Plan for a vapor treatment system on Tank 241-C-103

    International Nuclear Information System (INIS)

    Conrad, R.B.

    1995-01-01

    This Engineering Task Plan describes tasks and responsibilities for the design, fabrication, test, and installation of a vapor treatment system (mixing system) on Tank 241-C-103. The mixing system is to be installed downstream of the breather filter and will use a mixing blower to reduce the chemical concentrations to below allowable levels

  17. Numerical simulation of the hydrodynamics within octagonal tanks in recirculating aquaculture systems

    Science.gov (United States)

    Liu, Yao; Liu, Baoliang; Lei, Jilin; Guan, Changtao; Huang, Bin

    2017-07-01

    A three-dimensional numerical model was established to simulate the hydrodynamics within an octagonal tank of a recirculating aquaculture system. The realizable k- ɛ turbulence model was applied to describe the flow, the discrete phase model (DPM) was applied to generate particle trajectories, and the governing equations are solved using the finite volume method. To validate this model, the numerical results were compared with data obtained from a full-scale physical model. The results show that: (1) the realizable k- ɛ model applied for turbulence modeling describes well the flow pattern in octagonal tanks, giving an average relative error of velocities between simulated and measured values of 18% from contour maps of velocity magnitudes; (2) the DPM was applied to obtain particle trajectories and to simulate the rate of particle removal from the tank. The average relative error of the removal rates between simulated and measured values was 11%. The DPM can be used to assess the self-cleaning capability of an octagonal tank; (3) a comprehensive account of the hydrodynamics within an octagonal tank can be assessed from simulations. The velocity distribution was uniform with an average velocity of 15 cm/s; the velocity reached 0.8 m/s near the inlet pipe, which can result in energy losses and cause wall abrasion; the velocity in tank corners was more than 15 cm/s, which suggests good water mixing, and there was no particle sedimentation. The percentage of particle removal for octagonal tanks was 90% with the exception of a little accumulation of ≤ 5 mm particle in the area between the inlet pipe and the wall. This study demonstrated a consistent numerical model of the hydrodynamics within octagonal tanks that can be further used in their design and optimization as well as promote the wide use of computational fluid dynamics in aquaculture engineering.

  18. NET system integration

    International Nuclear Information System (INIS)

    Farfaletti-Casali, F.; Mitchell, N.; Salpietro, E.; Buzzi, U.; Gritzmann, P.

    1985-01-01

    The NET system integration procedure is the process by which the requirements of the various Tokamak machine design areas are brought together to form a compatible machine layout. Each design area produces requirements which generally allow components to be built at minimum cost and operate with minimum technical risk, and the final machine assembly should be achieved with minimum departure from these optimum designs. This is carried out in NET by allowing flexibility in the maintenance and access methods to the machine internal components which must be regularly replaced by remote handling, in segmentation of these internal components and in the number of toroidal field coils

  19. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final Environmental Impact Statement. Volume I

    International Nuclear Information System (INIS)

    1996-08-01

    This document, Volume 1 of the Final Environmental Impact Statement, analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  20. LH2 tank pressure control by thermodynamic vent system (TVS) at zero gravity

    Science.gov (United States)

    Wang, B.; Huang, Y. H.; Chen, Z. C.; Wu, J. Y.; Li, P.; Sun, P. J.

    2017-02-01

    Thermodynamic vent system (TVS) is employed for pressure control of propellant tanks at zero gravity. An analytical lumped parameter model is developed to predict pressure variation in an 18.09 m3 liquid hydrogen tank equipped with TVS. Mathematical simulations are carried out assuming tank is filled up to 75% volume (liquid mass equals to 945 kg) and is subjected to heat flux of 0.76 W/m2. Tank pressure controls at 165.5-172.4, 165.5-179.3 and 165.5-182.2 kPa are compared with reference to number of vent cycles, vent duration per cycle and loss of hydrogen. Analysis results indicate that the number of vent cycles significantly decreases from 62 to 21 when tank pressure control increases from 6.9 to 20.4 kPa. Also, duration of vent cycle increases from 63 to 152 and cycle duration decreases from 3920 to 3200 s. Further, the analysis result suggests that LH2 evaporation loss per day decreases from 0.17 to 0.14%. Based on the results of analysis, TVS is found effective in controlling the propellant tank pressure in zero gravity.

  1. Tank Waste Remediation System, Hanford Site, Richland, Washington. Final environmental impact statement. Summary

    International Nuclear Information System (INIS)

    1996-08-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, Ex Situ/In Situ Combination 1, and Ex Situ/In Situ Combination 2. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. The DOE and Ecology preferred alternative for the cesium and strontium capsules is the No Action alternative

  2. Draft Environmental Impact Statement for the tank waste remediation system. Volume 1

    International Nuclear Information System (INIS)

    1996-04-01

    This document analyzes the potential environmental consequences related to the Hanford Site Tank Waste Remediation System (TWRS) alternatives for management and disposal of radioactive, hazardous, and mixed waste. This waste is currently or projected to be stored in 177 underground storage tanks and approximately 60 miscellaneous underground storage tanks, and the management and disposal of approximately 1,930 cesium and strontium capsules located at the Hanford Site. This document analyzes the following alternatives for remediating the tank waste: No Action, Long-Term Management, In Situ Fill and Cap, In Situ Vitrification, Ex Situ Intermediate Separations, Ex Situ No Separations, Ex Situ Extensive Separations, and Ex Situ/In Situ Combination. This document also addresses a Phased Implementation alternative (the DOE and Ecology preferred alternative for remediation of tank waste). Alternatives analyzed for the cesium and strontium capsules include: No Action, Onsite Disposal, Overpack and Ship, and Vitrify with Tank Waste. At this time, DOE and Ecology do not have a preferred alternative for the cesium and strontium capsules

  3. TCR industrial system integration strategy

    CERN Document Server

    Bartolomé, R; Sollander, P; Martini, R; Vercoutter, B; Trebulle, M

    1999-01-01

    New turnkey data acquisition systems purchased from industry are being integrated into CERN's Technical Data Server. The short time available for system integration and the large amount of data per system require a standard and modular design. Four different integration layers have been defined in order to easily 'plug in' industrial systems. The first layer allows the integration of the equipment at the digital I/O port or fieldbus (Profibus-DP) level. A second layer permits the integration of PLCs (Siemens S5, S7 and Telemecanique); a third layer integrates equipment drivers. The fourth layer integrates turnkey mimic diagrams in the TCR operator console. The second and third layers use two new event-driven protocols based on TCP/IP. Using this structure, new systems are integrated in the data transmission chain, the layer at which they are integrated depending only on their integration capabilities.

  4. Tanks focus area. Annual report 1997

    International Nuclear Information System (INIS)

    Frey, J.

    1997-01-01

    The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM's technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE's four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program

  5. Radon integral measurement system

    International Nuclear Information System (INIS)

    Garcia H, J.M.

    1994-01-01

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  6. TANK 241-AN-102 MULTI-PROBE CORROSION MONITORING SYSTEM PROJECT LESSONS LEARNED

    International Nuclear Information System (INIS)

    TAYLOR T; HAGENSEN A; KIRCH NW

    2008-01-01

    During 2007 and 2008, a new Multi-Probe Corrosion Monitoring System (MPCMS) was designed and fabricated for use in double-shell tank 241-AN-102. The system was successfully installed in the tank on May 1, 2008. The 241-AN-102 MPCMS consists of one 'fixed' in-tank probe containing primary and secondary reference electrodes, tank material electrodes, Electrical Resistance (ER) sensors, and stressed and unstressed corrosion coupons. In addition to the fixed probe, the 241-AN-102 MPCMS also contains four standalone coupon racks, or 'removable' probes. Each rack contains stressed and unstressed coupons made of American Society of Testing and Materials A537 CL1 steel, heat-treated to closely match the chemical and mechanical characteristics of the 241-AN-102 tank wall. These coupon racks can be removed periodically to facilitate examination of the attached coupons for corrosion damage. Along the way to successful system deployment and operation, the system design, fabrication, and testing activities presented a number of challenges. This document discusses these challenges and lessons learned, which when applied to future efforts, should improve overall project efficiency

  7. Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks

    International Nuclear Information System (INIS)

    Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E.; Van Hoesen, S.D.

    1995-01-01

    As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated

  8. PSO-tuned PID controller for coupled tank system via priority-based fitness scheme

    Science.gov (United States)

    Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal

    2015-05-01

    The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.

  9. Test plan for evaluating the performance of the in-tank fluidic sampling system

    International Nuclear Information System (INIS)

    BOGER, R.M.

    1999-01-01

    The PHMC will provide Low Activity Wastes (LAW) tank wastes for final treatment by a privatization contractor from double-shell feed tanks, 241-AP-102 and 241-AP-104, Concerns about the inability of the baseline ''grab'' sampling to provide large volume samples within time constraints has led to the development of a conceptual sampling system that would be deployed in a feed tank riser, This sampling system will provide large volume, representative samples without the environmental, radiation exposure, and sample volume impacts of the current base-line ''grab'' sampling method. This test plan identifies ''proof-of-principle'' cold tests for the conceptual sampling system using simulant materials. The need for additional testing was identified as a result of completing tests described in the revision test plan document, Revision 1 outlines tests that will evaluate the performance and ability to provide samples that are representative of a tanks' content within a 95 percent confidence interval, to recovery from plugging, to sample supernatant wastes with over 25 wt% solids content, and to evaluate the impact of sampling at different heights within the feed tank. The test plan also identifies operating parameters that will optimize the performance of the sampling system

  10. Tank-connected food waste disposer systems--current status and potential improvements.

    Science.gov (United States)

    Bernstad, A; Davidsson, A; Tsai, J; Persson, E; Bissmont, M; la Cour Jansen, J

    2013-01-01

    An unconventional system for separate collection of food waste was investigated through evaluation of three full-scale systems in the city of Malmö, Sweden. Ground food waste is led to a separate settling tank where food waste sludge is collected regularly with a tank-vehicle. These tank-connected systems can be seen as a promising method for separate collection of food waste from both households and restaurants. Ground food waste collected from these systems is rich in fat and has a high methane potential when compared to food waste collected in conventional bag systems. The content of heavy metals is low. The concentrations of N-tot and P-tot in sludge collected from sedimentation tanks were on average 46.2 and 3.9 g/kg TS, equalling an estimated 0.48 and 0.05 kg N-tot and P-tot respectively per year and household connected to the food waste disposer system. Detergents in low concentrations can result in increased degradation rates and biogas production, while higher concentrations can result in temporary inhibition of methane production. Concentrations of COD and fat in effluent from full-scale tanks reached an average of 1068 mg/l and 149 mg/l respectively over the five month long evaluation period. Hydrolysis of the ground material is initiated between sludge collection occasions (30 days). Older food waste sludge increases the degradation rate and the risks of fugitive emissions of methane from tanks between collection occasions. Increased particle size decreases hydrolysis rate and could thus decrease losses of carbon and nutrients in the sewerage system, but further studies in full-scale systems are needed to confirm this. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Thermal Behavior of the Coolant in the Emergency Cooldown Tank for an Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Seok; Kim, Woo Shik; Jung, Seo Yoon; Kim, Young In [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Residual Heat Removal System (PRHRS) is one of the passive safety systems which should be activated after an accident to remove the residual heat from the core and the sensible heat of the reactor coolant system (RCS) through the steam generators until the safe shutdown conditions are reached. In the previous study presented at the last KNS Autumn Meeting, transient behavior of the RCS temperature and the cooling performance of the PRHRS were investigated numerically by using newly developed in-house code based on MATLAB software. By using the program, the steady-state and transient (quasi-steady state) characteristics during the operation of the PRHRS had been reported. In this program, the temperature of the coolant in the Emergency Cooldown Tank (ECT) was assumed to be constant at saturated state and pool boiling heat transfer mechanism was applied through the entire time domain. The coolant of the ECT reached at a saturated state in early time. It was revealed that the assumption made in the previous study was reasonable.

  12. Integrated real-time control strategy in multi-tank A2O process for biological nutrient removal treating real domestic wastewater

    Directory of Open Access Journals (Sweden)

    Saad Abualhail

    2017-02-01

    Full Text Available An integrated real-time anaerobic–anoxic/oxic (A2O operated with multi-tank called IMT–A2O process was designed and operated with fluctuating influent loads for biological nutrient removal for treating real domestic wastewater. IMT–A2O process, a “phased isolation tank” technology, varies both aeration pattern and flow path in a continuous flow multi-tank system to force fluctuation of organic and nutrient concentrations in process reactors. Using an eight-phase cycle, desired biochemical transformations, are accomplished at different times in the same tank. On-line sensors (pH, ORP, and DO were used as real-time control parameters to adjust the duration of each operational phase in the IMT–A2O process. The control system is an algorithm that automatically adjusts the cycle length to the influent wastewater characteristics according to the end points. It was found that on-line sensor values of pH, ORP, and DO were somehow related with the dynamic behaviors of nutrient concentrations in IMT–A2O. The algorithm acts in the reaction phases of the IMT–A2O cycle using ORP and pH break points of tank one to distinguish the end of denitrification and the beginning of phosphorus release, pH break point of tank two to control the end of denitrification and beginning of phosphorus release and a sudden increase in DO pattern, pH break point and ORP to control phosphorus uptake and the end of the nitrification process. Although the fluctuations in raw wastewater concentration are extreme; an influent with a low C/N ratio is deficient in organic carbon, and a low carbon source level can limit the overall biological denitrification process, the average removal efficiencies achieved for COD, ammonia–nitrogen, total nitrogen and total phosphorus were not less than 76.11%, 87.78%, 76.45% and 83.75%, respectively, using the integrated real-time control strategy. The integrated IMT–A2O exhibited a better performance in nutrient removal than the

  13. Design demonstrations for Category B tank systems piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-12-01

    Demonstration of the design of the piping systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency (EPA)-Region IV, the Tennessee Department of Environment and Conservation (TDEC), and the U.S. Department of Energy (DOE). This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems designated in the FFA as Category B (i.e., existing tank systems with secondary containment). Based on the findings of the Design Demonstrations for the Remaining 19 Category B Tank Systems, (DOE/OR/03-1150 ampersand D2), three tank systems originally designated as Category B have been redesignated as Category C (i.e., existing tank systems without secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system and presented in Table 2.0-1

  14. Preliminary safety equipment list for Tank 241-C-106 Manipulator Retrieval System, Project W-340

    International Nuclear Information System (INIS)

    Guthrie, R.L.

    1994-01-01

    This document identifies the anticipated safety classification of the estimated major subsystems, based on the projected major functions, that will be used as guidance for the development of the conceptual design of the Manipulator Retrieval System for Tank 241-C-106. This document is intended to be updated as the design of the Manipulator Retrieval System evolves through the conceptual and definitive design phases. The Manipulator Retrieval System is to be capable of removing the hardened sludge heel at the bottom of single shell Tank 241-C-106 and to perform an overall clean out of the tank that leaves a maximum of 360 ft 3 (TPA milestone M-45-00). The thickness of the heel prior to initiation of waste retrieval with the Manipulator Retrieval System is estimated to be 1- to 2-ft. The Manipulator Retrieval System is currently in the pre-conceptual phase with no definitive systems or subsystems. The anticipated retrieval functions for the Manipulator Retrieval System is based on Table 6-2 of WHC-SD-W340-ES-001, Rev. 1. Projected equipment to accomplish these functions were based on the following systems and equipment: Rotary Mode Core Sampling Equipment (WHC-SD-WM-SEL-032); Light Duty Utility Arm System Equipment (WHC-SD-WM-SEL-034); Single Shell Tanks Equipment (WHC-SD-WM-SEL-020)

  15. Choosing the Right Systems Integration

    Directory of Open Access Journals (Sweden)

    Péči Matúš

    2014-12-01

    Full Text Available The paper examines systems integration and its main levels at higher levels of control. At present, the systems integration is one of the main aspects participating in the consolidation processes and financial flows of a company. Systems Integration is a complicated emotionconsuming process and it is often a problem to choose the right approach and level of integration. The research focused on four levels of integration, while each of them is characterized by specific conditions. At each level, there is a summary of recommendations and practical experience. The paper also discusses systems integration between the information and MES levels. The main part includes user-level integration where we describe an example of such integration. Finally, we list recommendations and also possible predictions of the systems integration as one of the important factors in the future.

  16. Energy Systems Integration News - October 2016 | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL October 2016 Energy Systems Integration News A monthly recap of the latest energy systems integration (ESI) developments at NREL and around the world. Subscribe Archives October Integration Facility's main control room. OMNETRIC Group Demonstrates a Distributed Control Hierarchy for

  17. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    International Nuclear Information System (INIS)

    WERRY, S.M.

    2000-01-01

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151

  18. 241-AZ-101 Waste Tank Color Video Camera System Shop Acceptance Test Report

    Energy Technology Data Exchange (ETDEWEB)

    WERRY, S.M.

    2000-03-23

    This report includes shop acceptance test results. The test was performed prior to installation at tank AZ-101. Both the camera system and camera purge system were originally sought and procured as a part of initial waste retrieval project W-151.

  19. Test bed control center design concept for Tank Waste Retrieval Manipulator Systems

    International Nuclear Information System (INIS)

    Sundstrom, E.; Draper, J.V.; Fausz, A.

    1995-01-01

    This paper describes the design concept for the control center for the Single Shell Tank Waste Retrieval Manipulator System test bed and the design process behind the concept. The design concept supports all phases of the test bed mission, including technology demonstration, comprehensive system testing, and comparative evaluation for further development and refinement of the TWRMS for field operations

  20. System integration for radiation records

    International Nuclear Information System (INIS)

    Lawson, B.J.; Farrell, L.; Meacham, C.; Tapio, J.

    1994-01-01

    System integration is the process where through networking and/or software development, necessary business information is available in a common computing environment. System integration is becoming an important objective for many businesses. System integration can improve productivity and efficiency, reduce redundant stored information and errors, and improve availability of information. This paper will discuss the information flow in a radiation health environment, and how system integration can help. Information handled includes external dosimetry and internal dosimetry. The paper will focus on an ORACLE based system integration software product

  1. Tank waste remediation system retrieval and disposal mission key enabling assumptions

    International Nuclear Information System (INIS)

    Baldwin, J.H.

    1998-01-01

    An overall systems approach has been applied to develop action plans to support the retrieval and immobilization waste disposal mission. The review concluded that the systems and infrastructure required to support the mission are known. Required systems are either in place or plans have been developed to ensure they exist when needed. The review showed that since October 1996 a robust system engineering approach to establishing integrated Technical Baselines, work breakdown structures, tank farm structure and configurations and work scope and costs has been established itself as part of the culture within TWRS. An analysis of the programmatic, management and technical activities necessary to declare readiness to proceed with execution of the mission demonstrates that the system, people and hardware will be on line and ready to support the private contractors. The systems approach included defining the retrieval and immobilized waste disposal mission requirements and evaluating the readiness of the TWRS contractor to supply waste feed to the private contractors in June 2OO2. The Phase 1 feed delivery requirements from the Private Contractor Request for Proposals were reviewed. Transfer piping routes were mapped out, existing systems were evaluated, and upgrade requirements were defined. Technical Basis Reviews were completed to define work scope in greater detail, cost estimates and associated year by year financial analyses were completed. TWRS personnel training, qualifications, management systems and procedures were reviewed and shown to be in place and ready to support the Phase 1B mission. Key assumptions and risks that could negatively impact mission success were evaluated and appropriate mitigative actions plans were planned and scheduled

  2. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  3. Digital integrated protection system

    International Nuclear Information System (INIS)

    Savornin, M.; Furet, M.

    1978-01-01

    As a result of technological progress it is now possible to achieve more elaborate protection functions able to follow more closely the phenomena to be supervised. For this reason the CEA, Framatome and Merlin/Gerin/CERCI have undertaken in commonn to develop a Digital Integrated Protection System (D.I.P.S.). This system is designed with the following aims: to improve the safety of the station, . to improve its availability, . to facilitate installation, . to facilitate tests and maintenance. The main characteristics adopted are: . possibilities of obtaining more elaborate monitoring and protection algorithm treatments, . order 4 redundancy of transducers, associated instruments and signal processing, . possibility of inhibiting part of the protection system, . standardisation of equipment, physical and electrical separation of redundant units, . use of multiplexed connections, . automation of tests. Four flow charts are presented: - DIPS with four APUP (Acquisition and Processing Unit for Protection) - APUP - LSU (Logic Safeguard Unit), number LSU corresponding to number fluidic safeguard circuits, - structure of a function unit, - main functions of the APUP [fr

  4. Advanced Integrated Traction System

    Energy Technology Data Exchange (ETDEWEB)

    Greg Smith; Charles Gough

    2011-08-31

    The United States Department of Energy elaborates the compelling need for a commercialized competitively priced electric traction drive system to proliferate the acceptance of HEVs, PHEVs, and FCVs in the market. The desired end result is a technically and commercially verified integrated ETS (Electric Traction System) product design that can be manufactured and distributed through a broad network of competitive suppliers to all auto manufacturers. The objectives of this FCVT program are to develop advanced technologies for an integrated ETS capable of 55kW peak power for 18 seconds and 30kW of continuous power. Additionally, to accommodate a variety of automotive platforms the ETS design should be scalable to 120kW peak power for 18 seconds and 65kW of continuous power. The ETS (exclusive of the DC/DC Converter) is to cost no more than $660 (55kW at $12/kW) to produce in quantities of 100,000 units per year, should have a total weight less than 46kg, and have a volume less than 16 liters. The cost target for the optional Bi-Directional DC/DC Converter is $375. The goal is to achieve these targets with the use of engine coolant at a nominal temperature of 105C. The system efficiency should exceed 90% at 20% of rated torque over 10% to 100% of maximum speed. The nominal operating system voltage is to be 325V, with consideration for higher voltages. This project investigated a wide range of technologies, including ETS topologies, components, and interconnects. Each technology and its validity for automotive use were verified and then these technologies were integrated into a high temperature ETS design that would support a wide variety of applications (fuel cell, hybrids, electrics, and plug-ins). This ETS met all the DOE 2010 objectives of cost, weight, volume and efficiency, and the specific power and power density 2015 objectives. Additionally a bi-directional converter was developed that provides charging and electric power take-off which is the first step

  5. Treatment of septic tank effluents by a full-scale capillary seepage soil biofiltration system.

    Science.gov (United States)

    Fan, Chihhao; Chang, Fang-Chih; Ko, Chun-Han; Teng, Chia-Ji; Chang, Tzi-Chin; Sheu, Yiong-Shing

    2009-03-01

    The purpose of this study is to evaluate the efficiency of septic tank effluent treatment by an underground capillary seepage soil biofiltration system in a suburban area of Taipei, Taiwan. In contrast to traditional subsurface wastewater infiltration systems, capillary seepage soil biofiltration systems initially draw incoming influent upwards from the distribution pipe by capillary and siphonage actions, then spread influent throughout the soil biofiltration bed. The underground capillary seepage soil biofiltration system consists of a train of underground treatment units, including one wastewater distribution tank, two capillary seepage soil biofiltration units in series, and a discharge tank. Each capillary seepage soil biofiltration unit contains one facultative digestion tank and one set of biofiltration beds. At the flow rate of 50 m3/day, average influent concentrations of biochemical oxygen demand (BOD), suspended solid (SS), ammonia nitrogen (NH3-N), and total phosphates (TP), were 36.15 mg/L, 29.14 mg/L, 16.05 mg/L, and 1.75 mg/L, respectively. After 1.5 years of system operation, the measured influent and effluent results show that the treatment efficiencies of the soil biofiltration system for BOD, SS, NH3-N, TP, and total coliforms are 82.96%, 60.95%, 67.17%, 74.86%, and 99.99%, respectively.

  6. Integrative radiation systems biology

    International Nuclear Information System (INIS)

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer” of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology

  7. Scoring methods and results for qualitative evaluation of public health impacts from the Hanford high-level waste tanks. Integrated Risk Assessment Program

    International Nuclear Information System (INIS)

    Buck, J.W.; Gelston, G.M.; Farris, W.T.

    1995-09-01

    The objective of this analysis is to qualitatively rank the Hanford Site high-level waste (HLW) tanks according to their potential public health impacts through various (groundwater, surface water, and atmospheric) exposure pathways. Data from all 149 single-shell tanks (SSTs) and 23 of the 28 double-shell tanks (DSTs) in the Tank Waste Remediation System (TWRS) Program were analyzed for chemical and radiological carcinogenic as well as chemical noncarcinogenic health impacts. The preliminary aggregate score (PAS) ranking system was used to generate information from various release scenarios. Results based on the PAS ranking values should be considered relative health impacts rather than absolute risk values

  8. Tank Waste Remediation System retrieval and disposal mission technical baseline summary description

    International Nuclear Information System (INIS)

    McLaughlin, T.J.

    1998-01-01

    This document is prepared in order to support the US Department of Energy's evaluation of readiness-to-proceed for the Waste Retrieval and Disposal Mission at the Hanford Site. The Waste Retrieval and Disposal Mission is one of three primary missions under the Tank Waste Remediation System (TWRS) Project. The other two include programs to characterize tank waste and to provide for safe storage of the waste while it awaits treatment and disposal. The Waste Retrieval and Disposal Mission includes the programs necessary to support tank waste retrieval, wastefeed, delivery, storage and disposal of immobilized waste, and closure of tank farms. This mission will enable the tank farms to be closed and turned over for final remediation. The Technical Baseline is defined as the set of science and engineering, equipment, facilities, materials, qualified staff, and enabling documentation needed to start up and complete the mission objectives. The primary purposes of this document are (1) to identify the important technical information and factors that should be used by contributors to the mission and (2) to serve as a basis for configuration management of the technical information and factors

  9. Robotic system for decommissioning the Gunite tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Chesser, J.B.; Evans, J.H.; Norman, R.E.; Peishel, F.L.; Ruppel, F.R.

    1992-01-01

    Robotic systems and equipment to facilitate removal of the contents of the Oak Ridge National Laboratory (ORNL) Gunite Waste Tanks as well as the tanks themselves are one of several options being considered for this site. The technology described consists of proven remote systems and equipment or remote adaptations of proven industrial concepts. The proposed robotic system would be housed in a portable containment structure, fabricated from steel plate, and reinforced with structural shapes. The structure would be cylindrical and have a domed head. The containment structure would be sized to cover one tank. The tanks are in two sizes: 60 ft and 35 ft diameters. The structures would be supported on driven steel piles and would have an earthen berm around the base to enhance the effectiveness of the containment. Internal to the containment structure, a polar crane bridge equipped with a pair of trolley-mounted telescoping masts would be utilized to support and manipulate the systems, tools, etc., which would perform the individual tasks. The bridge and mast control system and the manipulator control system would provide both teleoperated and robotic modes to support either manual or preprogrammed operations. Equipment mounted at the end of the mast would include servomanipulators, water jet cutter, or a clam shell bucket. The mast would feature an interface plate allowing remote changeout of most mounted equipment. The operating system would be required to have the capability to decontaminate the dome and its equipment to the degree necessary to allow it to be relocated. Viewing would be provided by commercial closed-circuit TV (CCTV). It is believed that the systems described herein represent a feasible approach to removing the contents from the ORNL gunite tanks and implementing remediation of the site

  10. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  11. Project W-340 tank 241-C-106 manipulator system closeout summary

    International Nuclear Information System (INIS)

    McDaniel, L.B.

    1995-02-01

    This document summarizes the work that was ongoing when Project W-340 was put on hold. Project W-340: Tank 241-C-106 Manipulator Retrieval System, was a candidate FY98 Major System Acquisition. The project was to develop, procure and deploy a Long Reach Manipulator (LRM) waste retrieval system to provide an alternate method to completing the in-tank demonstration of Single Shell Tank waste retrieval technology. The need for enhanced capabilities derives from (1) the inability of the baseline technology to retrieve certain hard waste forms; (2) uncertainty in the quantity of leakage which will be allowed. Numerous studies over the years have identified an arm architecture as a promising retrieval technology to overcome these concerns. The W340 project was intended to further develop and demonstrate this alternative, as part of selecting the best approach for all tanks. Prior to completing the effort, it was determined that an LRM system was too architecture specific and was envisioned to be too expensive for a one time demonstration of retrieval technology. At the time the work was stopped, an effort was underway to broaden the project scope to allow alternatives to an arm-based system

  12. Common Systems Integration Lab (CSIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Common Systems Integration Lab (CSIL)supports the PMA-209 Air Combat Electronics Program Office. CSIL also supports development, test, integration and life cycle...

  13. Human-Systems Integration Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to baseline a Human-Systems Integration Processes (HSIP) document as a companion to the NASA-STD-3001 and Human Integration Design...

  14. Preliminary characterization of abandoned septic tank systems. Volume 2: Appendix D

    International Nuclear Information System (INIS)

    1995-12-01

    In an effort to support remedial investigations of abandoned septic tanks by US DOE, this report contains the results of chemical analyses of the contents of these abandoned tanks. Analytical data are presented for the following: volatile/TCLP volatile organics; semivolatile/TCLP semivolatile organics; PCB organics; total petroleum hydrocarbons; and total metals. The abandoned systems potentially received wastes or effluent from buildings which could have discharged non-domestic, petroleum hydrocarbons, hazardous, radioactive and/or mixed wastes. The 20 sites investigated are located on the Nevada Test Site

  15. Tank waste remediation system optimized processing strategy with an altered treatment scheme

    International Nuclear Information System (INIS)

    Slaathaug, E.J.

    1996-03-01

    This report provides an alternative strategy evolved from the current Hanford Site Tank Waste Remediation System (TWRS) programmatic baseline for accomplishing the treatment and disposal of the Hanford Site tank wastes. This optimized processing strategy with an altered treatment scheme performs the major elements of the TWRS Program, but modifies the deployment of selected treatment technologies to reduce the program cost. The present program for development of waste retrieval, pretreatment, and vitrification technologies continues, but the optimized processing strategy reuses a single facility to accomplish the separations/low-activity waste (LAW) vitrification and the high-level waste (HLW) vitrification processes sequentially, thereby eliminating the need for a separate HLW vitrification facility

  16. Project W-211, initial tank retrieval systems, retrieval control system software configuration management plan

    International Nuclear Information System (INIS)

    RIECK, C.A.

    1999-01-01

    This Software Configuration Management Plan (SCMP) provides the instructions for change control of the W-211 Project, Retrieval Control System (RCS) software after initial approval/release but prior to the transfer of custody to the waste tank operations contractor. This plan applies to the W-211 system software developed by the project, consisting of the computer human-machine interface (HMI) and programmable logic controller (PLC) software source and executable code, for production use by the waste tank operations contractor. The plan encompasses that portion of the W-211 RCS software represented on project-specific AUTOCAD drawings that are released as part of the C1 definitive design package (these drawings are identified on the drawing list associated with each C-1 package), and the associated software code. Implementation of the plan is required for formal acceptance testing and production release. The software configuration management plan does not apply to reports and data generated by the software except where specifically identified. Control of information produced by the software once it has been transferred for operation is the responsibility of the receiving organization

  17. Integrated Main Propulsion System Performance Reconstruction Process/Models

    Science.gov (United States)

    Lopez, Eduardo; Elliott, Katie; Snell, Steven; Evans, Michael

    2013-01-01

    The Integrated Main Propulsion System (MPS) Performance Reconstruction process provides the MPS post-flight data files needed for postflight reporting to the project integration management and key customers to verify flight performance. This process/model was used as the baseline for the currently ongoing Space Launch System (SLS) work. The process utilizes several methodologies, including multiple software programs, to model integrated propulsion system performance through space shuttle ascent. It is used to evaluate integrated propulsion systems, including propellant tanks, feed systems, rocket engine, and pressurization systems performance throughout ascent based on flight pressure and temperature data. The latest revision incorporates new methods based on main engine power balance model updates to model higher mixture ratio operation at lower engine power levels.

  18. Tank Riser Pit Decontamination System (Pit Viper) Return on Investment and Break-Even Analysis

    International Nuclear Information System (INIS)

    Young, Joan K.; Weimar, Mark R.; Balducci, Patrick J.; Fassbender, Linda L.; Hernandez, Melissa

    2003-01-01

    This study assessed the cost benefit of Pit Viper deployment for 80 tank farm pits between October 1, 2003 and September 30, 2012 under the technical baseline for applicable double-shell tank (DST) and single-shell tank (SST) projects. After this assessment had been completed, the U.S. Department of Energy (DOE) Richland Operations Office (RL) and Office of River Protection (ORP) published the Hanford Performance Management Plan (August 2003), which accelerated the schedule for SST retrieval. Then, DOE/CH2M HILL contract modification M064 (October 2002) and The Integrated Mission Acceleration Plan (March 2003) further accelerated SST retrieval and closure schedules. Twenty-six to 40 tanks must be retrieved by 2006. Thus the schedule for SST pit entries is accelerated and the number of SST pit entries is increased. This study estimates the return on investment (ROI) and the number of pits where Pit Viper deployment would break even or save money over current manual practices. The results of the analysis indicate a positive return on the federal investment for deployment of the Pit Viper provided it is used on a sufficient number of pits

  19. Calculation notes in support of ammonia releases from waste tank ventilation systems

    International Nuclear Information System (INIS)

    Wojdac, L.F.

    1996-01-01

    Ammonia is generated in waste tanks via the degradation of nitrogen compounds. The ammonia is released from the liquids by a mechanism which is dependent on temperature, pH, ionic strength and ammonia concentration. The release of ammonia to the environment occurs via diffusion of ammonia through a stagnant air mass and into the ventilation system

  20. Tank waste remediation system nuclear criticality safety inspection and assessment plan

    International Nuclear Information System (INIS)

    VAIL, T.S.

    1999-01-01

    This plan provides a management approved procedure for inspections and assessments of sufficient depth to validate that the Tank Waste Remediation System (TWRS) facility complies with the requirements of the Project Hanford criticality safety program, NHF-PRO-334, ''Criticality Safety General, Requirements''

  1. Double-Shell Tanks System Maintenance and Recovery Needs Report

    International Nuclear Information System (INIS)

    SMITH, D.F.

    2002-01-01

    This report represents an initial effort to identify maintenance equipment needed to support critical components used for delivery of waste feed to the Waste Isolation and Treatment Plant (WTP). Rough estimates of cost benefits for selected maintenance capabilities are provided. A follow-on to this report should include a detailed cost analysis showing cost benefits and tradeoffs in selection and development of specific maintenance capabilities. Critical component failures during delivery of waste feed from the DSTs to the WTP have the potential to idle WTP facilities if the duration of the recovery operations are long enough to allow the WTP to exhaust a planned 60-day lag storage capacity for waste feed. If a critical component within the transfer route fails, current planning does not provide for an alternative HLW feed source. Critical components with relatively high failure frequencies and recovery times are identified, along with a summary of documentation regarding historical maintenance and recovery operations and planning. Components, such as mixer pumps and transfer pumps, are estimated to have relatively long recovery times due, in part, to the current practice of sending spare pumps, when needed, off-site to a remote location, for vendor refurbishment and testing prior to installation in a tank. No capability is provided on-site for pump ''run-in''. As neither the spare pumps in storage, installed pumps, or other critical components are subjected to periodic preventive maintenance, and these critical components are planned to be operated intermittently over a long period of time, component failures are to be expected. Recommendations are made for further analysis to identify specific equipment cost benefits, development costs, and tradeoffs in selection of alternatives. This new equipment will provide capabilities for component storage and maintenance in line with vendor recommendations, reduce the duration of recovery operations, and support personnel

  2. Integrated system checkout report

    International Nuclear Information System (INIS)

    1991-01-01

    The planning and preparation phase of the Integrated Systems Checkout Program (ISCP) was conducted from October 1989 to July 1991. A copy of the ISCP, DOE-WIPP 90--002, is included in this report as an appendix. The final phase of the Checkout was conducted from July 10, 1991, to July 23, 1991. This phase exercised all the procedures and equipment required to receive, emplace, and retrieve contact handled transuranium (CH TRU) waste filled dry bins. In addition, abnormal events were introduced to simulate various equipment failures, loose surface radioactive contamination events, and personnel injury. This report provides a detailed summary of each days activities during this period. Qualification of personnel to safely conduct the tasks identified in the procedures and the abnormal events were verified by observers familiar with the Bin-Scale CH TRU Waste Test requirements. These observers were members of the staffs of Westinghouse WID Engineering, QA, Training, Health Physics, Safety, and SNL. Observers representing a number of DOE departments, the state of new Mexico, and the Defense Nuclear Facilities Safety Board observed those Checkout activities conducted during the period from July 17, 1991, to July 23, 1991. Observer comments described in this report are those obtained from the staff member observers. 1 figs., 1 tab

  3. Design demonstrations for Category B tank system piping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-02-01

    Demonstration of the design of the tank systems described in this report is stipulated by the Federal Facility Agreement (FFA) between the U.S. Environmental Protection Agency-Region IV, the Tennessee Department of Environment and Conservation, and the U.S. Department of Energy. This report provides a design demonstration of the secondary containment and ancillary equipment of 30 piping systems listed in the FFA as Category B (i.e., existing tank systems with secondary containment). The design demonstrations were developed using information obtained from design drawings (as-built when available), construction specifications, and interviews with facility operators. Each design demonstration addresses system conformance to the requirements of the FFA (Appendix F, Section C). Deficiencies or restrictions regarding the ability to demonstrate that each of the containment systems conforms to FFA requirements are noted in the discussion of each piping system

  4. 46 CFR 154.420 - Tank design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Tank design. 154.420 Section 154.420 Shipping COAST... SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Integral Tanks § 154.420 Tank design. (a) The structure of an integral tank must meet the deep tank scantling standards...

  5. An Integrated Biological Control System At Hanford

    International Nuclear Information System (INIS)

    Johnson, A.R.; Caudill, J.G.; Giddings, R.F.; Rodriguez, J.M.; Roos, R.C.; Wilde, J.W.

    2010-01-01

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimate spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  6. AN INTEGRATED BIOLOGICAL CONTROL SYSTEM AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON AR; CAUDILL JG; GIDDINGS RF; RODRIGUEZ JM; ROOS RC; WILDE JW

    2010-02-11

    In 1999 an integrated biological control system was instituted at the U.S. Department of Energy's Hanford Site. Successes and changes to the program needed to be communicated to a large and diverse mix of organizations and individuals. Efforts at communication are directed toward the following: Hanford Contractors (Liquid or Tank Waste, Solid Waste, Environmental Restoration, Science and Technology, Site Infrastructure), General Hanford Employees, and Hanford Advisory Board (Native American Tribes, Environmental Groups, Local Citizens, Washington State and Oregon State regulatory agencies). Communication was done through direct interface meetings, individual communication, where appropriate, and broadly sharing program reports. The objectives of the communication efforts was to have the program well coordinated with Hanford contractors, and to have the program understood well enough that all stakeholders would have confidence in the work performed by the program to reduce or elimated spread of radioactive contamination by biotic vectors. Communication of successes and changes to an integrated biological control system instituted in 1999 at the Department of Energy's Hanford Site have required regular interfaces with not only a diverse group of Hanford contractors (i.e., those responsible for liquid or tank waste, solid wastes, environmental restoration, science and technology, and site infrastructure), and general Hanford employees, but also with a consortium of designated stake holders organized as the Hanford Advisory Board (i.e., Native American tribes, various environmental groups, local citizens, Washington state and Oregon regulatory agencies, etc.). Direct interface meetings, individual communication where appropriate, and transparency of the biological control program were the methods and outcome of this effort.

  7. Seven Operation Modes and Simulation Models of Solar Heating System with PCM Storage Tank

    Directory of Open Access Journals (Sweden)

    Juan Zhao

    2017-12-01

    Full Text Available A physical model and dynamic simulation models of a solar phase-change heat storage heating system with a plate solar collector, phase-change material (PCM storage tank, plate heat exchanger, and auxiliary heat sources were established. A control strategy and numerical models for each of seven different operation modes that cover the entire heating season of the system were developed for the first time. The seven proposed operation modes are Mode 1: free cooling; Mode 2: reservation of heat absorbed by the solar collector in the PCM storage tank when there is no heating demand; Mode 3: direct supply of the heating demand by the solar collector; Mode 4: use of the heat absorbed by the solar collector to meet the heating demands, with the excess heat stored in the PCM storage tank; Mode 5: use of heat stored in the PCM storage tank to meet the heating demands, Mode 6: combined use of heat stored in the PCM storage tank and the auxiliary heating sources to meet the heating demands; and Mode 7: exclusive use of the auxiliary heat sources in order to meet the heating demands. Mathematical models were established for each of the above seven operation modes, taking into consideration the effects of the outdoor meteorological parameters and terminal load on the heating system. The real-time parameters for the entire heating season of the system with respect to the different operation modes can be obtained by solving the simulation models, and used as reference for the optimal design and operation of the actual system.

  8. The Auto control System Based on InTouch Configuration software for High-gravity Oil Railway Tank Feeding

    Directory of Open Access Journals (Sweden)

    Xu De-Kai

    2015-01-01

    Full Text Available This paper provides automatic design for high-gravity oil railway tank feeding system of some refinery uses distributive control system. The system adopts the automatic system of Modicon TSX Quantum or PLC as monitor and control level and uses a PC-based plat form as principal computer running on the Microsoft Windows2000. An automatic control system is developed in the environment of InTouch configuration software. This system implements automatic high-gravity oil tank feeding with pump controlling function. And it combines automatic oil feeding controlling, pump controlling and tank monitoring function to implement the automation of oil feeding with rations and automatic control.

  9. Performance Assessment of the Waste Dislodging Conveyance System During the Gunite And Associated Tanks Remediation Project

    International Nuclear Information System (INIS)

    Lloyd, P.D.

    2001-01-01

    The Waste Dislodging and Conveyance System (WD and CS) and other components of the Tank Waste Retrieval System (TWRS) were developed to address the need for removal of hazardous wastes from underground storage tanks (USTs) in which radiation levels and access limitations make traditional waste retrieval methods impractical. Specifically, these systems were developed for cleanup of the Gunite and Associated Tanks (GAAT) Operable Unit (OU) at the Oak Ridge National Laboratory (ORNL). The WD and CS is comprised of a number of different components. The three primary hardware subsystems are the Hose Management System (HMS), the Confined Sluicing End-Effector (CSEE), and the Flow Control Equipment and Containment Box (FCE/CB). In addition, a Decontamination Spray Ring (DSR) and a control system were developed for the system. The WD and CS is not a stand-alone system; rather, it is designed for deployment with either a long-reach manipulator like the Modified Light Duty Utility Arm (MLDUA) or a remotely operated vehicle system such as the Houdinitrademark. The HMS was designed to act as a pipeline for the transfer of dislodged waste; as a hose-positioning and tether-management system; and as a housing for process equipment such as the water-powered jet pump that provides the necessary suction to vacuum slurried waste from the UST. The HMS was designed to facilitate positioning of an end-effector at any point within the 25-ft- or 50-ft-diameter USTs in the GAAT OU

  10. Software configuration management plan, 241-AY and 241-AZ tank farm MICON automation system

    International Nuclear Information System (INIS)

    Hill, L.F.

    1997-01-01

    This document establishes a Computer Software Configuration Management Plan (CSCM) for controlling software for the MICON Distributed Control System (DCS) located at the 241-AY and 241-AZ Aging Waste Tank Farm facilities in the 200 East Area. The MICON DCS software controls and monitors the instrumentation and equipment associated with plant systems and processes. A CSCM identifies and defines the configuration items in a system (section 3.1), controls the release and change of these items throughout the system life cycle (section 3.2), records and reports the status of configuration items and change requests (section 3.3), and verifies the completeness and correctness of the items (section 3.4). All software development before initial release, or before software is baselined, is considered developmental. This plan does not apply to developmental software. This plan applies to software that has been baselined and released. The MICON software will monitor and control the related instrumentation and equipment of the 241-AY and 241-AZ Tank Farm ventilation systems. Eventually, this software may also assume the monitoring and control of the tank sludge washing equipment and other systems as they are brought on line. This plan applies to the System Cognizant Manager and MICON Cognizant Engineer (who is also referred to herein as the system administrator) responsible for the software/hardware and administration of the MICON system. This document also applies to any other organizations within Tank Farms which are currently active on the system including system cognizant engineers, nuclear operators, technicians, and control room supervisors

  11. Tank 241-BY-108 tank characterization plan

    International Nuclear Information System (INIS)

    Carpenter, B.C.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQOs identity information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for tank BY-108 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given. Single-shell tank BY-108 is classified as a Ferrocyanide Watch List tank. The tank was declared an assumed leaker and removed from service in 1972; interim stabilized was completed in February 1985. Although not officially an Organic Watch List tank, restrictions have been placed on intrusive operations by Standing Order number-sign 94-16 (dated 09/08/94) since the tank is suspected to contain or to have contained a floating organic layer

  12. Automatic drafting system for lined tanks used for nuclear power plants

    International Nuclear Information System (INIS)

    Sasaki, Ryoichi; Kikuchi, Nobuo

    1981-01-01

    The concrete vessels lined with metallic sheets are used widely in chemical and food industries and nuclear power plants. Especially in nuclear power plants, rectangular lined tanks have been adopted mainly to store radioactive liquid and solid wastes recently, because of the good volume efficiency. Though the basic structure of the lined tanks is the same, the volume and the form change according to the kinds of stored matters and the positions of pipe connections, and the form of individual lining sheets diversifies. As much labor and time are consumed for the drawing, automatic drafting was planned, and the conditions of application were studied. As for the conditions of application, the following metters are conceivable: the standardized method of design of equipments, the handling of figures numerically or by mathematical formulas, troublesome calculation, the works likely to cause mistake, many drawings for production and so on. The lined tanks almost satisfy these conditions, therefore the automatic drafting was promoted, and good results were obtained. the range of application of the automatic drafting system, the standardization of the form of lined tanks, the size of lining sheets, part number and welding number, the composition of the automatic drafting system, the outline of the program, and the effectiveness of automatic drafting are described. (Kako, I.)

  13. Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters.

    Science.gov (United States)

    Withers, P J A; Jarvie, H P; Stoate, C

    2011-04-01

    Septic tank systems (STS) are a potential source of nutrient emissions to surface waters but few data exist in the UK to quantify their significance for eutrophication. We monitored the impact of STS on nutrient concentrations in a stream network around a typical English village over a 1-year period. Septic tank effluent discharging via a pipe directly into one stream was highly concentrated in soluble N (8-63mgL(-1)) and P (septic tank systems. The very high concentrations, intercorrelation and dilution patterns of SRP, NH(4)-N and the effluent markers Na and B suggested that soakaways in the heavy clay catchment soils were not retaining and treating the septic tank effluents efficiently, with profound implications for stream biodiversity. Water companies, water regulators and rural communities therefore need to be made more aware of the potential impacts of STS on water quality so that their management can be optimised to reduce the risk of potential eutrophication and toxicity to aquatic ecosystems during summer low flow periods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Demand-Based Optimal Design of Storage Tank with Inerter System

    Directory of Open Access Journals (Sweden)

    Shiming Zhang

    2017-01-01

    Full Text Available A parameter optimal design method for a tank with an inerter system is proposed in this study based on the requirements of tank vibration control to improve the effectiveness and efficiency of vibration control. Moreover, a response indicator and a cost control indicator are selected based on the control targets for liquid storage tanks for simultaneously minimizing the dynamic response and controlling costs. These indicators are reformulated through a random vibration analysis under virtual excitation. The problem is then transformed from a multiobjective optimization problem to a single-objective nonlinear problem using the ε-constraint method, which is consistent with the demand-based method. White noise excitation can be used to design the tank with the inerter system under seismic excitation to simplify the calculation. Subsequently, a MATLAB-based calculation program is compiled, and several optimization cases are examined under different excitation conditions. The effectiveness of the demand-based method is proven through a time history analysis. The results show that specific vibration control requirements can be met at the lowest cost with a simultaneous reduction in base shears and overturning base moments.

  15. Experimental integrated photovoltaic systems

    International Nuclear Information System (INIS)

    Pop-Jordanov, Jordan; Markovska, Natasha; Dimitrov, D.; Kocev, K.; Dimitrovski, D.

    2000-01-01

    Recently, the interest in building-integrated photovoltaic installations has started to increase within governmental and municipality authorities, as well as some industrial companies. To serve a national public-awareness program of solar electricity promotion and education, the indigenous solar energy potential, optimization of possible PV installation, and three test cases of building-integrated grid-connected experimental facilities have been studied. The results showed the feasibility and performance of the proposed concepts. (Original)

  16. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    International Nuclear Information System (INIS)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-01-01

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy

  17. Evaluation Of The Integrated Solubility Model, A Graded Approach For Predicting Phase Distribution In Hanford Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Pierson, Kayla L.; Belsher, Jeremy D.; Seniow, Kendra R.

    2012-10-19

    The mission of the DOE River Protection Project (RPP) is to store, retrieve, treat and dispose of Hanford's tank waste. Waste is retrieved from the underground tanks and delivered to the Waste Treatment and Immobilization Plant (WTP). Waste is processed through a pretreatment facility where it is separated into low activity waste (LAW), which is primarily liquid, and high level waste (HLW), which is primarily solid. The LAW and HLW are sent to two different vitrification facilities and glass canisters are then disposed of onsite (for LAW) or shipped off-site (for HLW). The RPP mission is modeled by the Hanford Tank Waste Operations Simulator (HTWOS), a dynamic flowsheet simulator and mass balance model that is used for mission analysis and strategic planning. The integrated solubility model (ISM) was developed to improve the chemistry basis in HTWOS and better predict the outcome of the RPP mission. The ISM uses a graded approach to focus on the components that have the greatest impact to the mission while building the infrastructure for continued future improvement and expansion. Components in the ISM are grouped depending upon their relative solubility and impact to the RPP mission. The solubility of each group of components is characterized by sub-models of varying levels of complexity, ranging from simplified correlations to a set of Pitzer equations used for the minimization of Gibbs Energy.

  18. Replacement of the level control of draining tanks MSRS and powered water heaters with the OVATION system in Asco NPP

    International Nuclear Information System (INIS)

    Serrano Jimenez, J.

    2012-01-01

    The current MSR drains and heaters tanks level control is local control individual, pneumatic and without action from Control room. The system has level switches for the generation of alarms, isolations and shots of bombs. Single control room operators have level alarms, final race of valves of control and indication of temperature and pressure of some tanks.

  19. Analysis of the dynamic behaviour of the low-pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    1999-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  20. Analysis of the dynamic behaviour of the low pressure emergency core cooling system tank at Paks NPP

    International Nuclear Information System (INIS)

    Tamas, K.

    2001-01-01

    The low pressure emergency core cooling system tanks (LP ECCS) at WWER-440/V213 units have unique worm-shaped geometry. Analytical and experimental investigations were performed to make an adequate basis for seismic assessment of the worm-shaped tank. The full scale dynamic tests results are presented in comparison with shaking table model experiments and analytical studies. (author)

  1. Performance testing of a system for remote ultrasonic examination of the Hanford double-shell waste storage tanks

    International Nuclear Information System (INIS)

    Pfluger, D.C.; Somers, T.; Berger, A.D.

    1995-02-01

    A mobile robotic inspection system is being developed for remote ultrasonic examination of the double wall waste storage tanks at Hanford. Performance testing of the system includes demonstrating robot mobility within the tank annulus, evaluating the accuracy of the vision based navigation process, and verifying ultrasonic and video system performance. This paper briefly describes the system and presents a summary of the plan for performance testing of the ultrasonic testing system. Performance test results will be presented at the conference

  2. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1990-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MWday.t -1 . A distillation apparatus was designed to operate with small volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 0 C, the total fraction of volatilized ruthenium reaches 12%, in the presence of H 2 0, HN0 3 , N0 x and 0 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  3. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Mercier, J.P.; Gue, J.P.

    1991-01-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MW day·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: ruthenium is only volatilized in the final phase of evaporation, just before desiccation; for a final temperature limited to 160 degree C, the total fraction of volatilized ruthenium reaches 12%; in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  4. Fabrication of a Sludge-Conditioning System for processing legacy wastes from the Gunite and Associated Tanks

    International Nuclear Information System (INIS)

    Randolph, J.D.; Lewis, B.E.; Farmer, J.R.; Johnson, M.A.

    2000-01-01

    The Sludge Conditioning System (SCS) for the Gunite and Associated Tanks (GAATs) is designed to receive, monitor, characterize and process legacy waste materials from the South Tank Farm tanks in preparation for final transfer of the wastes to the Melton Valley Storage Tanks (MVSTs), which are located at Oak Ridge National Laboratory. The SCS includes (1) a Primary Conditioning System (PCS) Enclosure for sampling and particle size classification, (2) a Solids Monitoring Test Loop (SMTL) for slurry characterization, (3) a Waste Transfer Pump to retrieve and transfer waste materials from GAAT consolidation tank W-9 to the MVSTs, (4) a PulsAir Mixing System to provide mixing of consolidated sludges for ease of retrieval, and (5) the interconnecting piping and valving. This report presents the design, fabrication, cost, and fabrication schedule information for the SCS

  5. Tank waste remediation system characterization project quality policies

    International Nuclear Information System (INIS)

    Board, D.C.

    1997-01-01

    This quality plan describes the system used by Characterization Project management to achieve quality. This plan is comprised of eleven quality policies which, when taken together, form a management system deployed to achieve quality. This quality management system is based on the customer's quality requirements known as the 'RULE', 10 CFR 830.120, Quality Assurance

  6. Evaluation of AY/AZ tank farm ventilation system during aging waste retrieval operations

    International Nuclear Information System (INIS)

    Wong, J.J.; Waters, E.D.

    1995-01-01

    Waste Management is currently planning to demonstrate mobilization of radioactive waste sludges in Tank 101-AZ beginning in October 1991. The retrieval system being designed will utilize mixer pumps that generate high-velocity, high-volume submerged liquid jets to mobilize settled solids. There is concern that these jets may also generate radioactive aerosols, some of which may be carried into the tank Ventilation system. The purpose of this study is to determine if the current AY/AZ ventilation system or the proposed ventilation system upgrade (Project W-030) will provide adequate deentrainment of liquid and solid aerosols during mixer pump operations, or if the radioactive aerosols will overload the HEPA filters

  7. Modeling the system dynamics for nutrient removal in an innovative septic tank media filter.

    Science.gov (United States)

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin

    2012-05-01

    A next generation septic tank media filter to replace or enhance the current on-site wastewater treatment drainfields was proposed in this study. Unit operation with known treatment efficiencies, flow pattern identification, and system dynamics modeling was cohesively concatenated in order to prove the concept of a newly developed media filter. A multicompartmental model addressing system dynamics and feedbacks based on our assumed microbiological processes accounting for aerobic, anoxic, and anaerobic conditions in the media filter was constructed and calibrated with the aid of in situ measurements and the understanding of the flow patterns. Such a calibrated system dynamics model was then applied for a sensitivity analysis under changing inflow conditions based on the rates of nitrification and denitrification characterized through the field-scale testing. This advancement may contribute to design such a drainfield media filter in household septic tank systems in the future.

  8. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    International Nuclear Information System (INIS)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.

    1996-03-01

    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles

  9. Removal of Airborne Contaminants from a Surface Tank by a Push-Pull System

    DEFF Research Database (Denmark)

    Heiselberg, Per; Topp, Claus

    Open surface tanks are used in many industrial processes, and local exhaust systems are often designed to capture and remove toxic fumes diffused from materials in the tanks prior to their escape into the workplace environment. The push-pull system seems to be the most efficient local exhaust...... system, but proper design is required to ensure health and safety of the workers and, furthermore, it is very desirable from an energy conservation point of view to determine an optimum and -an efficient design of push-pull hoods which can exhaust all contaminants with a minimum quantity of volume flow....... The paper describes and discusses different design methods and compares designed values with results from a measurement series of push-pull system efficiency....

  10. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    International Nuclear Information System (INIS)

    Philippe, M.; Gue, J.P.; Mercier, J.P.

    1990-12-01

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t -1 . A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H 2 O, HNO 3 , NO x and O 2 , the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO 2 ) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay

  11. Integrated systems innovations and applications

    CERN Document Server

    2015-01-01

    This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.

  12. Integrated RIS-PACS system

    International Nuclear Information System (INIS)

    Nishihara, Eitaro; Kura, Hiroyuki; Fukushima, Yuki

    1994-01-01

    We have developed an integrated RIS-PACS (radiology information system-picture archiving and communication system) system which supports examination, interpretation, and management in the diagnostic imaging department. The system was introduced in the Toshiba Hospital in May 1993, concurrently with the renewal of the hospital facilities. The integrated RIS-PACS system consists of a radiology information management system, and an image management system. The system supports wet (immediate) reading and chronological comparative reading using viewing workstation, enables routine operations to be performed in the diagnostic imaging department without film transportation, and contributes to the improvement of management efficiency in the department. (author)

  13. Duality for discrete integrable systems

    International Nuclear Information System (INIS)

    Quispel, G R W; Capel, H W; Roberts, J A G

    2005-01-01

    A new class of discrete dynamical systems is introduced via a duality relation for discrete dynamical systems with a number of explicitly known integrals. The dual equation can be defined via the difference of an arbitrary linear combination of integrals and its upshifted version. We give an example of an integrable mapping with two parameters and four integrals leading to a (four-dimensional) dual mapping with four parameters and two integrals. We also consider a more general class of higher-dimensional mappings arising via a travelling-wave reduction from the (integrable) MKdV partial-difference equation. By differencing the trace of the monodromy matrix we obtain a class of novel dual mappings which is shown to be integrable as level-set-dependent versions of the original ones

  14. Fuzzy logic controller for crude oil levels at Escravos Tank Farm ...

    African Journals Online (AJOL)

    Fuzzy logic controller (FLC) for crude oil flow rates and tank levels was designed for monitoring flow and tank level management at Escravos Tank Farm in Nigeria. The fuzzy control system incorporated essence of expert knowledge required to handle the tasks. Proportional Integral Derivative (PID) control of crude flow ...

  15. Assessment of vadose zone radionuclide contamination around Single Shell Tank 241-C-103

    International Nuclear Information System (INIS)

    Kos, S.E.

    1995-12-01

    Five drywells surrounding single shell tank 241-C-103 were logged with the high-purity germanium logging system to investigate possible leakage of radioactive contamination from the tank. The investigation included integration of the drywell survey results with several other data sources. There is no conclusive evidence showing indications that the 241-C-103 tank has leaked

  16. Implications of access hole size on tank waste retrieval system design and cost

    International Nuclear Information System (INIS)

    Babcock, S.M.; Kwon, D.S.; Burks, B.L.; Stoughton, R.S.; Evans, M.S.

    1994-05-01

    The DOE Environmental Restoration and Waste Management Robotics Technology Development Program has been investigating the application of robotics technology to the retrieval of waste from single-shell storage tanks for several years. The use of a large, ''long-reach'' manipulator to position and orient a variety of tools and other equipment has been recommended. The objective of this study is to determine the appropriate access hole size for the tank waste retrieval system installation. Previous reports on the impact of access hole size on manipulator performance are summarized. In addition, the practical limitation for access hole size based on structural limitations of the waste storage tanks, the state-of-the-art size limitations for the installation of new risers, the radiation safety implications of various access hole sizes, and overall system cost implications are considered. Basic conclusions include: (1) overall cost of remediation will; be dominated by the costs of the balance of plant and time required to perform the task rather than the cost of manipulator hardware or the cost of installing a riser, (2) the most desirable solution from a manipulator controls point of view is to make the manipulator as stiff as possible and have as high as possible a natural frequency, which implies a large access hole diameter, (3) beyond some diameter; simple, uniform cross-section elements become less advantageous from a weight standpoint and alternative structures should be considered, and (4) additional shielding and contamination control measures would be required for larger holes. Parametric studies summarized in this report considered 3,790,000 1 (1,000,000 gal) tanks, while initial applications are likely to be for 2,840,000 1 (750,000 gal) tanks. Therefore, the calculations should be somewhat conservative, recognizing the limitations of the specific conditions considered

  17. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    HOLM, M.J.

    1999-01-01

    This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver devices. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  18. Tank Monitor and Control System sensor acceptance test procedure. Revision 5

    International Nuclear Information System (INIS)

    Scaief, C.C. III.

    1994-01-01

    The purpose of this acceptance test procedure (ATP) is to verify the correct reading of sensor elements connected to the Tank Monitor and Control System (TMACS). This ATP is intended to be used for testing of the connection of existing temperature sensors, new temperature sensors, pressure sensing equipment, new Engraf level gauges, sensors that generate a current output, and discrete (on/off) inputs. It is intended that this ATP will be used each time sensors are added to the system. As a result, the data sheets have been designed to be generic. The TMACS has been designed in response to recommendations from the Defense Nuclear Facilities Safety Board primarily for improved monitoring of waste tank temperatures. The system has been designed with the capability to monitor other types of sensor input as well

  19. Tank 241-BY-111 tank characterization plan

    International Nuclear Information System (INIS)

    Homi, C.S.

    1994-01-01

    The sampling and analytical needs associated with the 51 Hanford Site underground storage tanks classified on one or more of the four Watch Lists (ferrocyanide, organic, flammable gas, and high heat), and the safety screening of all 177 tanks have been identified through the Data Quality Objective (DQO) process. DQO's identify information needed by a program group in the Tank Waste Remediation System concerned with safety issues, regulatory requirements, or the transporting and processing of tank waste. This Tank Characterization Plan will identify characterization objectives for Tank BY-111 pertaining to sample collection, sample preparation and analysis, and laboratory analytical evaluation and reporting requirements. In addition, an estimate of the current contents and status of the tank is given

  20. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    BARNES, D.A.

    2000-06-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab.

  1. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    BARNES, D.A.

    2000-01-01

    The purpose of this document is to describe tests performed to validate Revision 12.0 of the TMACS Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be communicating to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  2. Tank Monitoring and Control System (TMACS) Acceptance Test Procedure

    International Nuclear Information System (INIS)

    WANDLING, R.R.

    1999-01-01

    The purpose of this document is to describe tests performed to validate Revision 11.2 of the TMACS Monitor and Control System (TMCACS) and verify that the software functions as intended by design. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  3. Evaluation of waste temperatures in AWF tanks for bypass mode operation of the 702-AZ ventilation system (Project W-030)

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1997-01-01

    This report describes the results of thermal hydraulic analysis performed to provide data in support of Project W-030 to startup new 702-AZ Primary Ventilation System. During the startup of W-030 system, the ventilation system will be operating in bypass mode. In bypass made of operation, the system is capable of supplying 1000 cfm total flow for all four AWF doubleshell tanks. The design of the W-030 system is based on the assumption that both the recirculation loop of the primary ventilation system and the secondary ventilation which provides cooling would be operating. However, during the startup neither the recirculation system nor the secondary ventilation system will be operating. A minimum flow of 100 cfm is required to prevent any flammable gas associated risk. The remaining 600 cfm flow can be divided among the four tanks as necessary to keep the peak sludge temperatures below the operating temperature limit. For the purpose of determining the minimum flow required for cooling each tank, the thermal hydraulic analysis is performed to predict the peak sludge temperatures in AY/AZ tanks under different ventilation flows. The heat load for AZ farm tanks is taken from characterization reports and for the AY farm tanks, the heat load was estimated by thermal analysis using the measured waste temperatures and the waste liquid evaporation rates. The tank 241-AZ-101 and the tank 241-AZ-102 have heat loads of 241,600 and 199,500 Btu/hr respectively. The tank 241-AY-101 and tank 241-AY-102 have heat loads of 41,000 and 33,000 Btu/hr respectively. Using the ambient meteorological conditions of temperature and relative humidity for the air and tank, some soil surface and the sludge levels reported in recent documents, the peak sludge and supernatant temperatures were predicted for various primary ventilation flows ranging from 100 to 400 cfm for AZ tanks and 100 and 150 cfm for AY tanks. The results of these thermal hydraulic analyses are presented. Based on the

  4. Smart systems integration and simulation

    CERN Document Server

    Poncino, Massimo; Pravadelli, Graziano

    2016-01-01

    This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction l...

  5. Methane emissions from sugarcane vinasse storage and transportation systems: Comparison between open channels and tanks

    Science.gov (United States)

    Oliveira, Bruna Gonçalves; Carvalho, João Luís Nunes; Chagas, Mateus Ferreira; Cerri, Carlos Eduardo Pellegrino; Cerri, Carlos Clemente; Feigl, Brigitte Josefine

    2017-06-01

    Over the last few years the brazilian sugarcane sector has produced an average of 23.5 million liters of ethanol annually. This scale of production generates large amounts of vinasse, which depending on the manner that is disposed, can result significant greenhouse gas emissions. This study aimed to quantify the methane (CH4) emissions associated with the two most widespread systems of vinasse storage and transportation used in Brazil; open channel and those comprising of tanks and pipes. Additionally, a laboratory incubation study was performed with the aim of isolating the effects of vinasse, sediment and the interaction between these factors on CH4 emissions. We observed significant differences in CH4 emissions between the sampling points along the channels during both years of evaluation (2012-2013). In the channel system, around 80% of CH4 emissions were recorded from uncoated sections. Overall, the average CH4 emission intensity was 1.36 kg CO2eq m-3 of vinasse transported in open channels, which was 620 times higher than vinasse transported through a system of tanks and closed pipes. The laboratory incubation corroborated field results, suggesting that vinasse alone does not contribute significant emissions of CH4. Higher CH4 emissions were observed when vinasse and sediment were incubated together. In summary, our findings demonstrate that CH4 emissions originate through the anaerobic decomposition of organic material deposited on the bottom of channels and tanks. The adoption of coated channels as a substitute to uncoated channels offers the potential for an effective and affordable means of reducing CH4 emissions. Ultimately, the modernization of vinasse storage and transportation systems through the adoption of tank and closed pipe systems will provide an effective strategy for mitigating CH4 emissions generated during the disposal phase of the sugarcane ethanol production process.

  6. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  7. Radioactivity Monitoring System for TRIGA 2000 Reactor Water Tank with On-Line Gamma Spectrometer

    International Nuclear Information System (INIS)

    Prasetyo Basuki; Sudjatmi KA

    2009-01-01

    One of the requirements in radiological safety in the operating condition of research reactor are the absence of radionuclide from fission product released to reactor cooling water and environment. Early detection of fission product that released from fuel element can be done by monitoring radioactivity level on primary cooling water.Reactor cooling water can be used as an important indicator in detecting radioactivity level of material fission product, when the leakage occurs. Therefore, it needs to build a monitoring system for measuring radioactivity level of cooling water directly and simple. The idea of this system is counting radioactivity water flow from reactor tank to the marinelli cube that attached to the HPGe detector on gamma spectrometer. Cooling water from tank aimed on plastic pipe to the marinelli cube. Water flows in gravitational driven to the marinelli cube, with volume flow rate 5.1 liters/minute in the inlet and 2.2 liters/minute in output. (author)

  8. Value-based performance measures for Hanford Tank Waste Remedition System (TWRS) Program

    International Nuclear Information System (INIS)

    Keeney, R.L.; von Winterfeldt, D.

    1996-01-01

    The Tank Waste Remediation Systems (TWRS) Program is responsible for the safe storage, retrieval, treatment, and preparation for disposal of high-level waste currently stored in underground storage tanks at the Hanford site in Richland. The TWRS program has adopted a logical approach to decision making that is based on systems engineering and decision analysis (Westinghouse Hanford Company, 1995). This approach involves the explicit consideration of stakeholder values and an evaluation of the TWRS alternatives in terms of these values. Such evaluations need to be consistent across decisions. Thus, an effort was undertaken to develop a consistent, quantifiable set of measures that can be used by TVVRS to assess alternatives against the stakeholder values. The measures developed also met two additional requirements: 1) the number of measure should be relatively small; and 2) performance with respect to the measures should be relatively easy to estimate

  9. Dynamic modeling of а heating system using geothermal energy and storage tank

    Directory of Open Access Journals (Sweden)

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  10. Functions and requirements for a waste dislodging and conveyance system for the Gunite and Associated Tanks Treatability Study at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Potter, J.D.; Mullen, O.D.

    1995-09-01

    Functions and requirements for the Waste Dislodging and Conveyance System to be deployed in Gunite and Associated Tanks (GAAT) and tested and evaluated as a candidate tank waste retrieval technology by the GAAT Treatability Study (GAAT TS)

  11. An integrated CANDU system

    International Nuclear Information System (INIS)

    Donnelly, J.

    1982-09-01

    Twenty years of experience have shown that the early choices of heavy water as moderator and natural uranium as fuel imposed a discipline on CANDU design that has led to outstanding performance. The integrated structure of the industry in Canada, incorporating development, design, supply, manufacturing, and operation functions, has reinforced this performance and has provided a basis on which to continue development in the future. These same fundamental characteristics of the CANDU program open up propsects for further improvements in economy and resource utilization through increased reactor size and the development of the thorium fuel cycle

  12. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Kelly, S.E.; Haass, C.C.; Kovach, J.L.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through out the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  13. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    International Nuclear Information System (INIS)

    Haas, C.C.; Kovach, J.L.; Kelly, S.E.; Turner, D.A.

    2010-01-01

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  14. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS (TBACT) DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEM SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    KELLY SE; HAASS CC; KOVACH JL; TURNER DA

    2010-06-03

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste throught the DST storage system to the Waste Treatment and Immobilization Plant (WTP).

  15. EVALUATION OF BEST AVAILABLE CONTROL TECHNOLOGY FOR TOXICS -TBACT- DOUBLE SHELL TANK FARMS PRIMARY VENTILATION SYSTEMS SUPPORTING WASTE TRANSFER OPERATIONS

    Energy Technology Data Exchange (ETDEWEB)

    HAAS CC; KOVACH JL; KELLY SE; TURNER DA

    2010-06-24

    This report is an evaluation of Best Available Control Technology for Toxics (tBACT) for installation and operation of the Hanford double shell (DST) tank primary ventilation systems. The DST primary ventilation systems are being modified to support Hanford's waste retrieval, mixing, and delivery of single shell tank (SST) and DST waste through the DST storage system to the Waste Treatment and Immobilizaiton Plant (WTP).

  16. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  17. Secure integrated circuits and systems

    CERN Document Server

    Verbauwhede, Ingrid MR

    2010-01-01

    On any advanced integrated circuit or 'system-on-chip' there is a need for security. In many applications the actual implementation has become the weakest link in security rather than the algorithms or protocols. The purpose of the book is to give the integrated circuits and systems designer an insight into the basics of security and cryptography from the implementation point of view. As a designer of integrated circuits and systems it is important to know both the state-of-the-art attacks as well as the countermeasures. Optimizing for security is different from optimizations for speed, area,

  18. Sensor and Actuator Fault-Hiding Reconfigurable Control Design for a Four-Tank System Benchmark

    DEFF Research Database (Denmark)

    Hameed, Ibrahim; El-Madbouly, Esam I; Abdo, Mohamed I

    2015-01-01

    Invariant (LTI) system where virtual sensors and virtual actuators are used to correct faulty performance through the use of a pre-fault performance. Simulation results showed that the developed approach can handle different types of faults and able to completely and instantly recover the original system......Fault detection and compensation plays a key role to fulfill high demands for performance and security in today's technological systems. In this paper, a fault-hiding (i.e., tolerant) control scheme that detects and compensates for actuator and sensor faults in a four-tank system benchmark...

  19. Radioactive tank waste remediation focus area

    International Nuclear Information System (INIS)

    1996-08-01

    EM's Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form

  20. Radioactive tank waste remediation focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    EM`s Office of Science and Technology has established the Tank Focus Area (TFA) to manage and carry out an integrated national program of technology development for tank waste remediation. The TFA is responsible for the development, testing, evaluation, and deployment of remediation technologies within a system architecture to characterize, retrieve, treat, concentrate, and dispose of radioactive waste stored in the underground stabilize and close the tanks. The goal is to provide safe and cost-effective solutions that are acceptable to both the public and regulators. Within the DOE complex, 335 underground storage tanks have been used to process and store radioactive and chemical mixed waste generated from weapon materials production and manufacturing. Collectively, thes tanks hold over 90 million gallons of high-level and low-level radioactive liquid waste in sludge, saltcake, and as supernate and vapor. Very little has been treated and/or disposed or in final form.

  1. Integrated Risk Information System (IRIS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA?s Integrated Risk Information System (IRIS) is a compilation of electronic reports on specific substances found in the environment and their potential to cause...

  2. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Minteer, D.J.

    1995-01-23

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude.

  3. Uncertainties in the measured quantities of water leaving waste Tank 241-C-106 via the ventilation system

    International Nuclear Information System (INIS)

    Minteer, D.J.

    1995-01-01

    The purpose of this analysis is to estimate the uncertainty in the measured quantity of water which typically leaves Tank 241-C-106 via the ventilation system each month. Such measurements are essential for heat removal estimation and tank liquid level verification purposes. The uncertainty associated with the current, infrequent, manual method of measurement (involves various psychrometric and pressure measurements) is suspected to be unreasonably high. Thus, the possible reduction of this uncertainty using a continuous, automated method of measurement will also be estimated. There are three major conclusions as a result of this analysis: (1) the uncertainties associated with the current (infrequent, manual) method of measuring the water which typically leaves Tank 241-C-106 per month via the ventilation system are indeed quite high (80% to 120%); (2) given the current psychrometric and pressure measurement methods and any tank which loses considerable moisture through active ventilation, such as Tank 241-C-106, significant quantities of liquid can actually leak from the tank before a leak can be positively identified via liquid level measurement; (3) using improved (continuous, automated) methods of taking the psychrometric and pressure measurements, the uncertainty in the measured quantity of water leaving Tank 241-C-106 via the ventilation system can be reduced by approximately an order of magnitude

  4. PC driven integrated vacuum system

    International Nuclear Information System (INIS)

    Curuia, M.; Culcer, M.; Brandea, I.; Anghel, M.

    2001-01-01

    The paper presents a integrated vacuum system which was designed and manufactured in our institute. The main parts of this system are the power supply unit for turbo-melecular pumps and the vacuummeter. Both parts of the system are driven by means of a personal computer using a serial communication, according to the RS 232 hardware standard.(author)

  5. An Integrated Knowledge Management System

    Directory of Open Access Journals (Sweden)

    Vasile Mazilescu

    2014-11-01

    Full Text Available The aim of this paper is to present a Knowledge Management System based on Fuzzy Logic (FLKMS, a real-time expert system to meet the challenges of the dynamic environment. The main feature of our integrated shell FLKMS is that it models and integrates the temporal relationships between the dynamic of the evolution of an economic process with some fuzzy inferential methods, using a knowledge model for control, embedded within the expert system’s operational knowledge base.

  6. Permitting plan for project W-320 tank 241-C-106 waste retrieval sluicing system (WRSS)

    International Nuclear Information System (INIS)

    Symons, G.A.

    1997-01-01

    This document describes the permitting plan for Project W-320, Tank 241-C-106 Waste Retrieval Sluicing System (WRSS). A comprehensive review of environmental regulations have indicated that several environmental reviews [e.g. National Environmental Policy Act (NEPA), State Environmental Policy Act (SEPA)], permits, and approvals are required prior to construction or operation of the facility. The environmental reviews, permits and approvals, as well the regulatory authority, potentially applicable to the Tank 241-C-106 WRSS include the following: for NEPA - U.S. Department of Energy-Headquarters: Action Description Memorandum, Environmental Assessment, Categorical Exclusion, and Environmental Impact Statement; and for SEPA - State of Washington Department of Ecology (Ecology) Determination of Nonsignificance, Mitigated Determination of Nonsignificance, Determination of Significance, and SEPA Environmental Checklist

  7. Fracture Toughness Evaluation of Space Shuttle External Tank Thermal Protection System Polyurethane Foam Insulation Materials

    Science.gov (United States)

    McGill, Preston; Wells, Doug; Morgan, Kristin

    2006-01-01

    Experimental evaluation of the basic fracture properties of Thermal Protection System (TPS) polyurethane foam insulation materials was conducted to validate the methodology used in estimating critical defect sizes in TPS applications on the Space Shuttle External Fuel Tank. The polyurethane foam found on the External Tank (ET) is manufactured by mixing liquid constituents and allowing them to react and expand upwards - a process which creates component cells that are generally elongated in the foam rise direction and gives rise to mechanical anisotropy. Similarly, the application of successive foam layers to the ET produces cohesive foam interfaces (knitlines) which may lead to local variations in mechanical properties. This study reports the fracture toughness of BX-265, NCFI 24-124, and PDL-1034 closed-cell polyurethane foam as a function of ambient and cryogenic temperatures and knitline/cellular orientation at ambient pressure.

  8. The Evolution of Nondestructive Evaluation Methods for the Space Shuttle External Tank Thermal Protection System

    Science.gov (United States)

    Walker, James L.; Richter, Joel D.

    2006-01-01

    Three nondestructive evaluation methods are being developed to identify defects in the foam thermal protection system (TPS) of the Space Shuttle External Tank (ET). Shearography is being developed to identify shallow delaminations, shallow voids and crush damage in the foam while terahertz imaging and backscatter radiography are being developed to identify voids and cracks in thick foam regions. The basic theory of operation along with factors affecting the results of these methods will be described. Also, the evolution of these methods from lab tools to implementation on the ET will be discussed. Results from both test panels and flight tank inspections will be provided to show the range in defect sizes and types that can be readily detected.

  9. Double-Shell Tank (DST) Ventilation System Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    SASAKI, L.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples from the primary ventilation systems of the AN, AP, AW, and AY/AZ tank farms. Sampling will be performed in accordance with Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Air DQO) (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications. Vapor samples will be obtained from tank farm ventilation systems, downstream from the tanks and upstream of any filtration. Samples taken in support of the DQO will consist of SUMMA(trademark) canisters, triple sorbent traps (TSTs), sorbent tube trains (STTs), polyurethane foam (PUF) samples. Particulate filter samples and tritium traps will be taken for radiation screening to allow the release of the samples for analysis. The following sections provide the general methodology and procedures to be used in the preparation, retrieval, transport, analysis, and reporting of results from the vapor samples

  10. Characterisation of the Rota Wewa tank cascade system in the vicinity of Anuradhapura, Sri Lanka

    Directory of Open Access Journals (Sweden)

    Schütt, Brigitta

    2013-09-01

    Full Text Available A complex and sustainable watershed management strategy was implemented in Sri Lanka during the ancient Anuradhapura period, from the 5th century BC to the 11th century AD. Like modern watershed management strategies, it focused on flood prevention, soil erosion control, water quality control and water storage for irrigation. Tank cascade systems were the key element of these ancient watershed management installations. The wewas investigated were constructed in valleys characterised by fluvial accumulation. Sedimentological analyses of these tank cascade systems show that a precise age determination and the reconstruction of sediment and water f luxes as triggered by human-environment interactions are difficult. This is caused by the shallow character of the wewas leading to the steady redeposition of the tank sediments by wave motions during the wet season and agricultural use of the desiccated wewas during the dry season. Beyond, the sediments analysed allow to distinguish between the weathered parent bedrock and the overlying sediments. A differentiation between wewa deposits and the underlying fluvial deposits remains challenging.

  11. STRONTIUM & TRANSURANIC (TRU) SEPARATION PROCESS IN THE DOUBLE SHELL TANK (DST) SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON; SWANSON; BOECHLER

    2005-06-10

    The supernatants stored in tanks 241-AN-102 (AN-102) and 241-AN-107 (AN-107) contain soluble strontium-90 ({sup 90}Sr) and transuranic (TRU) elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant (WTP) immobilized low-activity waste (ILAW) specification and with the 1997 agreement with the Nuclear Regulatory Commission on incidental waste. A precipitation process has been developed and tested with tank waste samples and simulants using strontium nitrate (Sr(NO{sub 3}){sub 2}) and sodium permanganate (NaMnO{sub 4}) to separate {sup 90}Sr and TRU from these wastes. This report evaluates removing Sr/TRU from AN-102 and AN-107 supernates in the DST system before delivery to the WTP. The in-tank precipitation is a direct alternative to the baseline WTP process, using the same chemical separations. Implementing the Sr/TRU separation in the DST system beginning in 2012 provides {approx}6 month schedule advantage to the overall mission, without impacting the mission end date or planned SST retrievals.

  12. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    Energy Technology Data Exchange (ETDEWEB)

    GLASSCOCK, J.A.

    2000-01-27

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions.

  13. Tank Monitoring and Document control System (TMACS) As Built Software Design Document

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    2000-01-01

    This document describes the software design for the Tank Monitor and Control System (TMACS). This document captures the existing as-built design of TMACS as of November 1999. It will be used as a reference document to the system maintainers who will be maintaining and modifying the TMACS functions as necessary. The heart of the TMACS system is the ''point-processing'' functionality where a sample value is received from the field sensors and the value is analyzed, logged, or alarmed as required. This Software Design Document focuses on the point-processing functions

  14. Tank monitor and control system (TMACS) revision 11 acceptance test procedure

    International Nuclear Information System (INIS)

    HOLM, M.J.

    1999-01-01

    The purpose of this document is to describe tests performed to validate Revision 11 of the Tank Monitor and Control System (TMACS) and verify that the software functions as intended by design. This document is intended to test the software portion of TMACS. The tests will be performed on the development system. The software to be tested is the TMACS knowledge bases (KB) and the I/O driver/services. The development system will not be talking to field equipment; instead, the field equipment is simulated using emulators or multiplexers in the lab

  15. [Ocular surface system integrity].

    Science.gov (United States)

    Safonova, T N; Pateyuk, L S

    2015-01-01

    The interplay of different structures belonging to either the anterior segment of the eye or its accessory visual apparatus, which all share common embryological, anatomical, functional, and physiological features, is discussed. Explanation of such terms, as ocular surface, lacrimal functional unit, and ocular surface system, is provided.

  16. Integrated turbine bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.H.; Dickenson, R.J.; Parry, W.T.; Retzlaff, K.M.

    1982-07-01

    Turbine steam-flow bypasses have been used for years in various sizes and applications. Because of differing system requirements, their use has been more predominant in Europe than in the United States. Recently, some utilities and consulting engineers have been re-evaluating their need for various types of bypass operation in fossil-fuelled power plants.

  17. Integrated system reliability analysis

    DEFF Research Database (Denmark)

    Gintautas, Tomas; Sørensen, John Dalsgaard

    Specific targets: 1) The report shall describe the state of the art of reliability and risk-based assessment of wind turbine components. 2) Development of methodology for reliability and risk-based assessment of the wind turbine at system level. 3) Describe quantitative and qualitative measures...

  18. Tank Waste Remediation System fiscal year 1996 multi-year program plan WBS 1.1. Revision 1, Appendix A

    International Nuclear Information System (INIS)

    1995-09-01

    This document is a compilation of data relating to the Tank Waste Remediation System Multi-Year Program. Topics discussed include: management systems; waste volume, transfer and evaporation management; transition of 200 East and West areas; ferricyanide, volatile organic vapor, and flammable gas management; waste characterization; retrieval from SSTs and DSTs; heat management; interim storage; low-level and high-level radioactive waste management; and tank farm closure

  19. Integrating pretreatment and retrieval: Results from the July 1997 Tanks Focus Area workshop

    International Nuclear Information System (INIS)

    1998-07-01

    If scientists and researchers working to solve the tank waste challenges, technical program office managers at the tank sites, and others understand the connection between retrieval and pretreatment activities, more efficient processes and reduced costs can be achieved. To make this possible, researchers involved in retrieval and pretreatment activities met at the Conference Center in Richland, Washington, on July 16 and 17, 1997, to discuss the connections between these activities. The purpose of the workshop was to help participants (1) gain a better understanding of retrieval and pretreatment process needs and experiences; (2) gain practical knowledge of the applications, capabilities, and requirements of retrieval and pretreatment technologies being developed and deployed; and (3) focus on identifying and troubleshooting interface issues and problems. The end product of this meeting was to create a checklist of retrieval and pretreatment parameters to consider when developing new technologies or managing work at the sites in these areas. For convenience, the information is also organized by pretreatment parameter and retrieval-pretreatment parameter in Section 5.0

  20. Leak testing plan for the Oak Ridge National Laboratory liquid low- level waste system (active tanks)

    International Nuclear Information System (INIS)

    Douglas, D.G.; Wise, R.F.; Starr, J.W.; Maresca, J.W. Jr.

    1992-06-01

    A leak testing plan for a portion of the Liquid Low-Level Waste (LLLW) system at the Oak Ridge National Laboratory (ORNL) is provided in the two volumes that form this document. This plan was prepared in response to the requirements of the Federal Facilities Agreement (FFA) between the US Department of Energy and two other agencies, the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC). The effective date of this agreement was 1 January 1992. The LLLW system is an interconnected complex of tanks and pipelines. The FFA distinguishes four different categories of tank and pipeline systems within this complex: new systems (Category A), doubly contained systems (Category B), singly contained systems (Category C), and inactive systems (Category D). The FFA's specific requirements for leak testing of the Category C systems is addressed in this plan. The plan also addresses leak testing of the Category B portions of the LLLW system. Leak testing of the Category B components was brought into the plan to supplement the secondary containment design demonstration effort that is under way for these components

  1. Intelligent Integrated System Health Management

    Science.gov (United States)

    Figueroa, Fernando

    2012-01-01

    Intelligent Integrated System Health Management (ISHM) is the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system (Management: storage, distribution, sharing, maintenance, processing, reasoning, and presentation). Presentation discusses: (1) ISHM Capability Development. (1a) ISHM Knowledge Model. (1b) Standards for ISHM Implementation. (1c) ISHM Domain Models (ISHM-DM's). (1d) Intelligent Sensors and Components. (2) ISHM in Systems Design, Engineering, and Integration. (3) Intelligent Control for ISHM-Enabled Systems

  2. High priority tank sampling and analysis report

    International Nuclear Information System (INIS)

    Brown, T.M.

    1998-01-01

    or grab sampled and used. A total of condensed phase samples from 144 tanks were used. Vapor samples for 82 of the tanks were used to address questions needing vapor analysis results. Additional High Priority and other tanks used to address specific questions provided comparable information to that expected from the original plan. Simultaneously, a robust systems integrated approach for establishing near term sampling requirements has been established as part of the Tank Waste Remediation System's culture. No further sampling and analysis will be conducted for the sole purpose of addressing the 12 questions in the Implementation Plan. Characterization sampling and analysis will continue in support of other requirements and decision making as identified through application of the systems integrated approach

  3. Improving of Mixing by Submerged Rotary Jet (SRJ) System in a Large Industrial Storage Tank by CFD Techniques

    Science.gov (United States)

    Barekatain, H.; Hashemabadi, S. H.

    2011-09-01

    This paper reports the result of a CFD (Computational Fluid Dynamics) study on the Submerged Rotary Jet (SRJ) mixing system in a large industrial crude oil storage tank (one million barrels). This system has been installed on the tank just for reduction of sludge, but improper installation causes more accumulation of sludge on one side of tank. The main question is: How can we improve the mixing operation in this tank? For the purpose, a three dimensional modeling is carried out using an in-house CFD code and RNG k-ɛ model for turbulence prediction. The results show that pump suction location and crude oil velocity in tank are most effective factors on the sludge amount. Then, different ways such as increasing of jet flow rate, increasing and decreasing of tank height and reducing of nozzle diameter have been investigated. Finally, in this case, the results show the sedimentation of sludge in whole tank can be removed by 20% increasing of jet flow rate.

  4. Integrated Project Management System description

    International Nuclear Information System (INIS)

    1987-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is a Department of Energy (DOE) designated Major System Acquisition (MSA). To execute and manage the Project mission successfully and to comply with the MSA requirements, the UMTRA Project Office (''Project Office'') has implemented and operates an Integrated Project Management System (IPMS). The Project Office is assisted by the Technical Assistance Contractor's (TAC) Project Integration and Control (PIC) Group in system operation. Each participant, in turn, provides critical input to system operation and reporting requirements. The IPMS provides a uniform structured approach for integrating the work of Project participants. It serves as a tool for planning and control, workload management, performance measurement, and specialized reporting within a standardized format. This system description presents the guidance for its operation. Appendices 1 and 2 contain definitions of commonly used terms and abbreviations and acronyms, respectively. 17 figs., 5 tabs

  5. Radiation oncology systems integration

    International Nuclear Information System (INIS)

    Ragan, D.P.

    1991-01-01

    ROLE7 is intended as a complementary addition to the HL7 Standard and not as an alternative standard. Attempt should be made to mould data elements which are specific to radiation therapy with existing HL7 elements. This can be accomplished by introducing additional values to some element's table-of-options. Those elements which might be specific to radiation therapy could from new segments to be added to the Ancillary Data Reporting set. In order to accomplish ROLE7, consensus groups need be formed to identify the various functions related to radiation oncology that might motivate information exchange. For each of these functions, the specific data elements and their format must be identified. HL7 is organized with a number of applications which communicate asynchronously. Implementation of ROLE7 would allow uniform access to information across vendors and functions. It would provide improved flexibility in system selection. It would allow a more flexible and affordable upgrade path as systems in radiation oncology improve. (author). 5 refs

  6. Tank waste remediation system (TWRS) privatization contractor samples waste envelope D material 241-C-106

    Energy Technology Data Exchange (ETDEWEB)

    Esch, R.A.

    1997-04-14

    This report represents the Final Analytical Report on Tank Waste Remediation System (TWRS) Privatization Contractor Samples for Waste Envelope D. All work was conducted in accordance with ''Addendum 1 of the Letter of Instruction (LOI) for TWRS Privatization Contractor Samples Addressing Waste Envelope D Materials - Revision 0, Revision 1, and Revision 2.'' (Jones 1996, Wiemers 1996a, Wiemers 1996b) Tank 241-C-1 06 (C-106) was selected by TWRS Privatization for the Part 1A Envelope D high-level waste demonstration. Twenty bottles of Tank C-106 material were collected by Westinghouse Hanford Company using a grab sampling technique and transferred to the 325 building for processing by the Pacific Northwest National Laboratory (PNNL). At the 325 building, the contents of the twenty bottles were combined into a single Initial Composite Material. This composite was subsampled for the laboratory-scale screening test and characterization testing, and the remainder was transferred to the 324 building for bench-scale preparation of the Privatization Contractor samples.

  7. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  8. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  9. Nationwide survey, assessment, and replacement designs of tank systems at 430 emergency broadcast stations

    International Nuclear Information System (INIS)

    Maraj, R.; Whitaker-Sheppard, L.

    1994-01-01

    The Federal Emergency Management Agency (FEMA), acting on behalf of the Federal Communications Commission (FCC), undertook a program to bring into compliance federally-owned underground storage tanks (USTs) at radio and television stations, which are part of the Broadcast Station Protection Program (BSPP) of the Emergency Broadcast System (EBS). These USTs supply fuel (diesel and gasoline) to emergency generators and are located on private property. Woodward-Clyde Federal Services is under contract with FEMA to provide assistance in all phases of the program. The BSPP is designed to protect selected stations that are participants in the EBS, which support emergency preparedness and response operations. Technical standards for installation, spill and overfill protection, corrosion protection, and leak detection for underground storage tanks (UST) were promulgated by the EPA, as described in 53 Federal Register 37082 (September 23, 1988). December 1998 was established as a compliance data for corrosion protection and spill/overfill protection. A compliance period of December 1989 to December 1993 was established for leak detection devices, depending on the UST installation date. Several states have promulgated underground storage tank regulations that are more stringent than the federal requirements. Local agencies in several states may have additional UST requirements. All federal, state, and local UST requirements must be satisfied under a compliance program. The approach and methodology employed by FEMA are presented

  10. Soil-structure interaction effects for laterally excited liquid-tank system

    International Nuclear Information System (INIS)

    Tang, Yu; Veletsos, A.S.

    1992-01-01

    Following a brief review of the mechanical model for liquid-storage tanks which permits consideration of the effects of tank and ground flexibility, and lateral and rocking base excitations, the effects of both kinematic and inertia interaction effects on the response of the tank-liquid system are examined and elucidated. The free-field motion is defined by a power spectral density function and an incoherence function, which characterizes the spatial variability of the ground motion due to the vertically incident incoherence waves. The quantities examined are the ensemble means of the peak values of the response. The results are compared with those obtained for no soil-structure interaction and for kinematic interaction to elucidate the nature and relative importance of the two interactions. Only the impulsive actions are examined, the convective actions are for all practical purposes unaffected by both kinematic and inertia interactions. It is shown that the major reduction of the response is attributed to inertia interaction. 20 refs

  11. An integrated system for pipeline condition monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Strong, Andrew P.; Lees, Gareth; Hartog, Arthur; Twohig, Richard; Kader, Kamal; Hilton, Graeme; Mullens, Stephen; Khlybov, Artem [Schlumberger, Southampton (United Kingdom); Sanderson, Norman [BP Exploration, Sunbury (United Kingdom)

    2009-07-01

    In this paper we present the unique and innovative 'Integriti' pipeline and flow line integrity monitoring system developed by Schlumberger in collaboration with BP. The system uses optical fiber distributed sensors to provide simultaneous distributed measurements of temperature, strain and vibration for the detection, monitoring, and location of events including: Third Party Interference (TPI), including multiple simultaneous disturbances; geo-hazards and landslides; gas and oil leaks; permafrost protection. The Integriti technology also provides a unique means for tracking the progress of cleaning and instrumented pigs using existing optical telecom and data communications cables buried close to pipelines. The Integriti solution provides a unique and proactive approach to pipeline integrity management. It performs analysis of a combination of measurands to provide the pipeline operator with an event recognition and location capability, in effect providing a hazard warning system, and offering the operator the potential to take early action to prevent loss. Through the use of remote, optically powered amplification, an unprecedented detection range of 100 km is possible without the need for any electronics and therefore remote power in the field. A system can thus monitor 200 km of pipeline when configured to monitor 100 km upstream and downstream from a single location. As well as detecting conditions and events leading to leaks, this fully integrated system provides a means of detecting and locating small leaks in gas pipelines below the threshold of present online leak detection systems based on monitoring flow parameters. Other significant benefits include: potential reductions in construction costs; enhancement of the operator's existing integrity management program; potential reductions in surveillance costs and HSE risks. In addition to onshore pipeline systems this combination of functionality and range is available for practicable

  12. Technical evaluation of a tank-connected food waste disposer system for biogas production and nutrient recovery.

    Science.gov (United States)

    Davidsson, Å; Bernstad Saraiva, A; Magnusson, N; Bissmont, M

    2017-07-01

    In this study, a tank-connected food waste disposer system with the objective to optimise biogas production and nutrient recovery from food waste in Malmö was evaluated. The project investigated the source-separation ratio of food waste through waste composition analyses, determined the potential biogas production in ground food waste, analysed the organic matter content and the limiting components in ground food waste and analysed outlet samples to calculate food waste losses from the separation tank. It can be concluded that the tank-connected food waste disposer system in Malmö can be used for energy recovery and optimisation of biogas production. The organic content of the collected waste is very high and contains a lot of energy rich fat and protein, and the methane potential is high. The results showed that approximately 38% of the food waste dry matter is collected in the tank. The remaining food waste is either found in residual waste (34% of the dry matter) or passes the tank and goes through the outlet to the sewer (28%). The relatively high dry matter content in the collected fraction (3-5% DM) indicates that the separation tank can thicken the waste substantially. The potential for nutrient recovery is rather limited considering the tank content. Only small fractions of the phosphorus (15%) and nitrogen (21%) are recyclable by the collected waste in the tank. The quality of the outlet indicates a satisfactory separation of particulate organic matter and fat. The organic content and nutrients, which are in dissolved form, cannot be retained in the tank and are rather led to the sewage via the outlet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Melter system technology testing for Hanford Site low-level tank waste vitrification

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1996-01-01

    Following revisions to the Tri-Party Agreement for Hanford Site cleanup, which specified vitrification for Complete melter feasibility and system operability immobilization of the low-level waste (LLW) tests, select reference melter(s), and establish reference derived from retrieval and pretreatment of the radioactive LLW glass formulation that meets complete systems defense wastes stored in 177 underground tanks, commercial requirements (June 1996). Available melter technologies were tested during 1994 to 1995 as part of a multiphase program to select reference Submit conceptual design and initiate definitive design technologies for the new LLW vitrification mission

  14. Simulation analysis of control strategies for a tank waste retrieval manipulator system

    International Nuclear Information System (INIS)

    Schryver, J.C.; Draper, J.V.

    1995-01-01

    A network simulation model was developed for the Tank Waste Retrieval Manipulator System, incorporating two distinct levels of control: teleoperation and supervisory control. The model included six error modes, an attentional resource model, and a battery of timing variables. A survey questionnaire administered to subject matter experts provided data for estimating timing distributions for level of control-critical tasks. Simulation studies were performed to evaluate system behavior as a function of control level and error modes. The results provide important insights for development of waste retrieval manipulators

  15. Tank 244A tank characterization plan

    International Nuclear Information System (INIS)

    Schreiber, R.D.

    1994-01-01

    The Double-Shell Tank (DST) System currently receives waste from the Single-Shell Tank (SST) System in support of SST stabilization efforts or from other on-site facilities which generate or store waste. Waste is also transferred between individual DSTs. The mixing or commingling of potentially incompatible waste types at the Hanford Site must be addressed prior to any waste transfers into the DSTs. The primary goal of the Waste Compatibility Program is to prevent the formation of an Unreviewed Safety Question (USQ) as a result of improper waste management. Tank 244A is a Double Contained Receiver Tank (DCRT) which serves as any overflow tank for the East Area Farms. Waste material is able to flow freely between the underground storage tanks and tank 244A. Therefore, it is necessary to test the waste in tank 244A for compatibility purposes. Two issues related to the overall problem of waste compatibility must be evaluated: Assurance of continued operability during waste transfer and waste concentration and Assurance that safety problems are not created as a result of commingling wastes under interim storage. The results of the grab sampling activity prescribed by this Tank Characterization Plan shall help determine the potential for four kinds of safety problems: criticality, flammable gas accumulation, energetics, and corrosion and leakage

  16. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  17. DKIST facility management system integration

    Science.gov (United States)

    White, Charles R.; Phelps, LeEllen

    2016-07-01

    The Daniel K. Inouye Solar Telescope (DKIST) Observatory is under construction at Haleakalā, Maui, Hawai'i. When complete, the DKIST will be the largest solar telescope in the world. The Facility Management System (FMS) is a subsystem of the high-level Facility Control System (FCS) and directly controls the Facility Thermal System (FTS). The FMS receives operational mode information from the FCS while making process data available to the FCS and includes hardware and software to integrate and control all aspects of the FTS including the Carousel Cooling System, the Telescope Chamber Environmental Control Systems, and the Temperature Monitoring System. In addition it will integrate the Power Energy Management System and several service systems such as heating, ventilation, and air conditioning (HVAC), the Domestic Water Distribution System, and the Vacuum System. All of these subsystems must operate in coordination to provide the best possible observing conditions and overall building management. Further, the FMS must actively react to varying weather conditions and observational requirements. The physical impact of the facility must not interfere with neighboring installations while operating in a very environmentally and culturally sensitive area. The FMS system will be comprised of five Programmable Automation Controllers (PACs). We present a pre-build overview of the functional plan to integrate all of the FMS subsystems.

  18. Development and Deployment of the Extended Reach Sluicing System (ERSS) for Retrieval of Hanford Single Shell Tank Waste. Draft

    International Nuclear Information System (INIS)

    Bauer, Roger E.; Figley, Reed R.; Innes, A. G.

    2013-01-01

    A history of the evolution and the design development of Extended Reach Sluicer System (ERSS) is presented. Several challenges are described that had to be overcome to create a machine that went beyond the capabilities of prior generation sluicers to mobilize waste in Single Shell Tanks for pumping into Double Shell Tank receiver tanks. Off-the-shelf technology and traditional hydraulic fluid power systems were combined with the custom-engineered components to create the additional functionality of the ERSS, while still enabling it to fit within very tight entry envelope into the SST. Problems and challenges inevitably were encountered and overcome in ways that enhance the state of the art of fluid power applications in such constrained environments. Future enhancements to the ERSS design are explored for retrieval of tanks with different dimensions and internal obstacles

  19. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals

    International Nuclear Information System (INIS)

    Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C.

    2011-01-01

    Rural point sources of phosphorus (P), including septic tank systems, provide a small part of the overall phosphorus budget to surface waters in agricultural catchments but can have a disproportionate impact on the low flow P concentration of receiving rivers. This has particular importance as the discharges are approximately constant into receiving waters and these have restricted dilution capacity during ecologically sensitive summer periods. In this study, a number of identified high impact septic systems were replaced with modern sequential batch reactors in three rural catchments during a monitoring period of 4 years. Sub-hourly P monitoring was conducted using bankside-analysers. Results show that strategic replacement of defective septic tank systems with modern systems and polishing filters decreased the low flow P concentration of one catchment stream by 0.032 mg TP L −1 (0.018 mg TRP L −1 ) over the 4 years. However two of the catchment mitigation efforts were offset by continued new-builds that increased the density of septic systems from 3.4 km −2 to 4.6 km −2 and 13.8 km −2 to 17.2 km −2 and subsequently increased low flow P concentrations. Future considerations for septic system mitigation should include catchment carrying capacity as well as technology changes.

  20. Science and technology needs: Integrated research and development, the path to gaining a defensible understanding on ''watch list'' tank risk and interim stabilization needs

    International Nuclear Information System (INIS)

    Johnson, B.M.; Mellinger, G.; Strachan, D.; Hallen, R.

    1991-09-01

    The ''watch list'' waste tanks at the Hanford Site in Washington state are those that the Secretary of the Department of Energy reports upon to the Congress because of the unresolved safety question. As such, they are subject to intense surveillance and an enhanced list of controls and safety procedures. The objective of the Waste Tank Safety Program is to mitigate the safety concerns with respect to these tanks, thereby removing them from the ''watch list.'' The essential step in this process is the development of a defensible position that reduce the risk of these tanks to an acceptable level. An integrated research and development (R ampersand D) program is believed to be the most cost-effective means of achieving the information required to mitigate the safety concern and to resolve the safety issues. This program uses chemical and physical modeling studies of synthetic waste, is substantiated with limited field data and radioactive samples from a tank, and uses numerical modeling to extrapolate results to actual tank-scale operations. 3 refs., 4 figs

  1. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    International Nuclear Information System (INIS)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-01-01

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy's Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m"3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  2. Determination of Erosion/Corrosion Rates in Hanford Tank Farms Radioactive Waste Transfer System Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Washenfelder, D. J.; Girardot, C. L.; Wilson, E. R.; Page, J. A.; Engeman, J. K.; Gunter, J. R.; Johnson, J. M.; Baide, D. G.; Cooke, G. A.; Larson, J. D.; Castleberry, J. L.; Boomer, K. D.

    2015-11-05

    The twenty-eight double-shell underground radioactive waste storage tanks at the U. S. Department of Energy’s Hanford Site near Richland, WA are interconnected by the Waste Transfer System network of buried steel encased pipelines and pipe jumpers in below-grade pits. The pipeline material is stainless steel or carbon steel in 51 mm to 152 mm (2 in. to 6 in.) sizes. The pipelines carry slurries ranging up to 20 volume percent solids and supernatants with less than one volume percent solids at velocities necessary to prevent settling. The pipelines, installed between 1976 and 2011, were originally intended to last until the 2028 completion of the double-shell tank storage mission. The mission has been subsequently extended. In 2010 the Tank Operating Contractor began a systematic evaluation of the Waste Transfer System pipeline conditions applying guidelines from API 579-1/ASME FFS-1 (2007), Fitness-For-Service. Between 2010 and 2014 Fitness-for-Service examinations of the Waste Transfer System pipeline materials, sizes, and components were completed. In parallel, waste throughput histories were prepared allowing side-by-side pipeline wall thinning rate comparisons between carbon and stainless steel, slurries and supernatants and throughput volumes. The work showed that for transfer volumes up to 6.1E+05 m3 (161 million gallons), the highest throughput of any pipeline segment examined, there has been no detectable wall thinning in either stainless or carbon steel pipeline material regardless of waste fluid characteristics or throughput. The paper describes the field and laboratory evaluation methods used for the Fitness-for-Service examinations, the results of the examinations, and the data reduction methodologies used to support Hanford Waste Transfer System pipeline wall thinning conclusions.

  3. Start-up phase assessment of a UASB-Septic tank system treating domestic septage

    International Nuclear Information System (INIS)

    Ali, M.; Al-Saed, R.; Mahmoud, N.

    2007-01-01

    About 65% of the annual domestic waste water in Palestine is currently collected in cesspits, where inadequate disposal might cause cumulative public health risks and annual environmental degradation. This research presents the preliminary results for the start-up period of a pilot-scale UASB-septic tank system treating domestic septage of Birzet town. Under different operational conditions, the performance of the pretreatment system for the removal of organic matter and nutrients was evaluated. Initial results showed that organic pollutants removal was mainly due to biophysical processes including sedimentation and microbial degradation. During start-up phase, the system attained removal efficiency for COD total of about 80% compared to removal for COD col, and COD dis of 71% and 43% respectively. Similarly, the continuous operation mode demonstrated that the system was quite effective in removing organic pollutants. Operational experience from the initial results revealed that seeding the USAB reactor with activated sludge during the start up period was not practical. Finally, the advantage of USAB-septic tank application appeared to be achievable if adequate system operation and control over a long monitoring period were maintained. (author)

  4. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov (United States)

    , utilities can operate more efficiently and profitably. That can increase the use of renewable energy sources challenge to utility companies, grid operators, and other stakeholders involved in wind energy integration recording is available from the July 16 webinar "Smart Grid Research at NREL's Energy Systems

  5. Application of a Reliability Model Generator to a Pressure Tank System

    Institute of Scientific and Technical Information of China (English)

    Kathryn Stockwell; Sarah Dunnett

    2013-01-01

    A number of mathematical modelling techniques exist which are used to measure the performance of a given system,by assessing each individual component within the system.This can be used to determine the failure frequency or probability of the system.Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models.The process of generating these models is time consuming and reduces the impact of the model on the system design.One way to improve this would be to generate the model automatically.In this work,the procedure to automatically construct a model,based on Petri nets,for systems undergoing a phased-mission is applied to a pressure tank system,undertaking a four phase mission.

  6. Cost reduction through system integration

    International Nuclear Information System (INIS)

    Helsing, P.

    1994-01-01

    In resent years cost reduction has been a key issue in the petroleum industry. Several findings are not economically attractive at the current cost level, and for this and other reasons some of the major oil companies require the suppliers to have implemented a cost reduction programme to prequalify for projects. The present paper addresses cost reduction through system design and integration in both product development and working methods. This is to be obtained by the combination of contracts by reducing unnecessary coordination and allow re-use of proven interface designs, improve subsystem integration by ''top down'' system design, and improve communication and exchange of experience. 3 figs

  7. Electrical and electronic subsystems of a nuclear waste tank annulus inspection system

    International Nuclear Information System (INIS)

    Evenson, R.J.

    1981-06-01

    The nuclear waste tank annulus inspection system is designed specifically for use at the Nuclear Regulatory Commission's Nuclear Fuel Services Facility at West Valley, New York. This system sends a television and photographic camera into the space between the walls of a double-shell nuclear waste tank to obtain images of the inner and outer walls at precisely known locations. The system is capable of inspecting a wall section 14 ft wide by 27 ft high. Due to the high temperature and radiation of the annulus environment, the operating life for the inspection device is uncertain, but is expected to be at least 100 h, with 1000 R/h at 82 0 C. The film camera is shielded with 1/2 in. of lead to minimize radiation fogging of the film during a 25-min picture taking excursion. The operation of the inspection system is semiautomated with remote manual prepositioning of the camera, followed by a computer controlled wall scan. This apparatus is currently set up to take an array of contiguous pictures, but is adaptable to other modes of operation

  8. Interface Control Document Between the Double Shell Tanks (DST) System and the Plutonium Finishing Plan (PFP)

    International Nuclear Information System (INIS)

    MAY, T.H.

    1999-01-01

    This document identifies the requirements and responsibilities for all parties to support waste transfer from the Plutonium Finishing Plant (PFP) facility to the Double-Shell Tank (DST) System of the River Protection Project (RPP). This Interface Control Document (ICD) will not attempt to control the physical portion of this interface because the physical equipment making up this interface, and any associated interface requirements, are already in place, operational and governed by existing operating specifications and other documentation. The PFP and DST Systems have a direct physical interface (the waste transfer pipeline) that travels between the 241-2 Building (TK-D5) and DST SY-102 via 244-TX double-contained receiver tank (DCRT). The purpose of the ICD process is to formalize working agreements between the RPP DST System and organization/companies internal and external to RPP. This ICD has been developed as part of the requirements basis for design of the DST System to support the Phase I Privatization effort

  9. Slurry feed variability in West Valley's melter feed tank and sampling system

    International Nuclear Information System (INIS)

    Fow, C.L.; Kurath, D.E.; Pulsipher, B.A.; Bauer, B.P.

    1989-04-01

    The present plan for disposal of high-level wastes at West Valley is to vitrify the wastes for disposal in deep geologic repository. The vitrification process involves mixing the high-level wastes with glass-forming chemicals and feeding the resulting slurry to a liquid-fed ceramic melter. Maintaining the quality of the glass product and proficient melter operation depends on the ability of the melter feed system to produce and maintain a homogeneous mixture of waste and glass-former materials. To investigate the mixing properties of the melter feed preparation system at West Valley, a statistically designed experiment was conducted using synthetic melter feed slurry over a range of concentrations. On the basis of the statistical data analysis, it was found that (1) a homogeneous slurry is produced in the melter feed tank, (2) the liquid-sampling system provides slurry samples that are statistically different from the slurry in the tank, and (3) analytical measurements are the major source of variability. A statistical quality control program for the analytical laboratory and a characterization test of the actual sampling system is recommended. 1 ref., 5 figs., 1 tab

  10. Multiloop integral system test (MIST)

    International Nuclear Information System (INIS)

    Gloudemans, J.R.

    1989-07-01

    The multiloop integral system test (MIST) was part of a multiphase program started in 1983 to address small-break loss-of-coolant accidents (SBLOCAs) specific to Babcock and Wilcox-designed plants. MIST was sponsored by the US Nuclear Regulatory Commission, the Babcock and Wilcox Owners Group, the Electric Power Research Institute, and Babcock and Wilcox. The unique features of the Babcock and Wilcox design, specifically the hot leg U-bends and steam generators, prevented the use of existing integral system data or existing integral system facilities to address the thermal-hydraulic SBLOCA questions. MIST and two other supporting facilities were specifically designed and constructed for this program, and an existing facility -- the once-through integral system (OTIS) -- was also used. Data from MIST and the other facilities will be used to benchmark the adequacy of system codes, such as RELAP5 and TRAC, for predicting abnormal plant transients. The individual tests are described in detail in Volumes 2 through 8 and Volume 11, and are summarized in Volume 1. Inter-group comparisons are addressed in this document, Volume 9. These comparisons are grouped as follows: mapping versus SBLOCA transients, SBLOCA, pump effects, and the effects of noncondensible gases. Appendix A provides an index and description of the microfiched plots for each test, which are enclosed with the corresponding Volumes 2 through 8. 147 figs., 5 tabs

  11. Implementation of integrated management system

    International Nuclear Information System (INIS)

    Gaspar Junior, Joao Carlos A.; Fonseca, Victor Zidan da

    2007-01-01

    In present day exist quality assurance system, environment, occupational health and safety such as ISO9001, ISO14001 and OHSAS18001 and others standards will can create. These standards can be implemented and certified they guarantee one record system, quality assurance, documents control, operational control, responsibility definition, training, preparing and serve to emergency, monitoring, internal audit, corrective action, continual improvement, prevent of pollution, write procedure, reduce costs, impact assessment, risk assessment , standard, decree, legal requirements of municipal, state, federal and local scope. These procedure and systems when isolate applied cause many management systems and bureaucracy. Integration Management System reduce to bureaucracy, excess of documents, documents storage and conflict documents and easy to others standards implementation in future. The Integrated Management System (IMS) will be implemented in 2007. INB created a management group for implementation, this group decides planing, works, policy and advertisement. Legal requirements were surveyed, internal audits, pre-audits and audits were realized. INB is partially in accordance with ISO14001, OSHAS18001 standards. But very soon, it will be totally in accordance with this norms. Many studies and works were contracted to deal with legal requirements. This work have intention of show implementation process of ISO14001, OHSAS18001 and Integrated Management System on INB. (author)

  12. Tanks focus area multiyear program plan FY97-FY99

    International Nuclear Information System (INIS)

    1996-08-01

    The U.S. Department of Energy (DOE) continues to face a major tank remediation problem with approximately 332 tanks storing over 378,000 ml of high-level waste (HLW) and transuranic (TRU) waste across the DOE complex. Most of the tanks have significantly exceeded their life spans. Approximately 90 tanks across the DOE complex are known or assumed to have leaked. Some of the tank contents are potentially explosive. These tanks must be remediated and made safe. How- ever, regulatory drivers are more ambitious than baseline technologies and budgets will support. Therefore, the Tanks Focus Area (TFA) began operation in October 1994. The focus area manages, coordinates, and leverages technology development to provide integrated solutions to remediate problems that will accelerate safe and cost-effective cleanup and closure of DOE's national tank system. The TFA is responsible for technology development to support DOE's four major tank sites: Hanford Site (Washington), INEL (Idaho), Oak Ridge Reservation (ORR) (Tennessee), and Savannah River Site (SRS) (South Carolina). Its technical scope covers the major functions that comprise a complete tank remediation system: safety, characterization, retrieval, pretreatment, immobilization, and closure

  13. Basis for Selection of a Residual Waste Retrieval System for Gunite and Associated Tank W-9 at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.E

    2000-10-23

    Waste retrieval and transfer operations at the Gunite{trademark} and Associated Tanks (GAATs) Remediation Project have been successfully accomplished using the Tank Waste Retrieval System. This system is composed of the Modified Light-Duty Utility Arm, Houdini Vehicle, Waste Dislodging and Conveyance System, Hose Management Arm, and Sludge Conditioning System. GAAT W-9 has been used as a waste-consolidation and batch-transfer tank during the retrieval of sludges and supernatants from the seven Gunite tanks in the North and South tank farms at Oak Ridge National Laboratory. Tank W-9 was used as a staging tank for the transfers to the Melton Valley Storage Tanks (MVSTs). A total of 18 waste transfers from W-9 occurred between May 25, 1999, and March 30, 2000. Most of these transfers were accomplished using the PulsAir Mixer to mobilize and mix the slurry and a submersible retrieval-transfer pump to transfer the slurry through the Sludge Conditioning System and the {approx}1-mile long, 2-in.-diam waste-transfer line to the MVSTs. The transfers from W-9 have consisted of low-solids-content slurries with solids contents ranging from {approx}2.8 to 6.8 mg/L. Of the initial {approx}88,000 gal of wet sludge estimated in the GAATs, a total of {approx}60,451 gal have been transferred to the MVSTs via tank W-9 as of March 30, 2000. Once the waste-consolidation operations and transfers from W-9 to the MVSTs are completed, the remaining material in W-9 will be mobilized and transferred to the active waste system, Bethel Valley Evaporator Service Tank W-23. Tank W-23 will serve as a batch tank for the final waste transfers from tank W-9 to the MVSTs. This report provides a summary of the requirements and recommendations for the final waste retrieval system for tank W-9, a compilation of the sample analysis data for the sludge in W-9, and brief descriptions of the various waste-retrieval system concepts that were considered for this task. The recommended residual waste retrieval

  14. Integrated Systems Health Management for Intelligent Systems

    Science.gov (United States)

    Figueroa, Fernando; Melcher, Kevin

    2011-01-01

    The implementation of an integrated system health management (ISHM) capability is fundamentally linked to the management of data, information, and knowledge (DIaK) with the purposeful objective of determining the health of a system. It is akin to having a team of experts who are all individually and collectively observing and analyzing a complex system, and communicating effectively with each other in order to arrive at an accurate and reliable assessment of its health. In this paper, concepts, procedures, and approaches are presented as a foundation for implementing an intelligent systems ]relevant ISHM capability. The capability stresses integration of DIaK from all elements of a system. Both ground-based (remote) and on-board ISHM capabilities are compared and contrasted. The information presented is the result of many years of research, development, and maturation of technologies, and of prototype implementations in operational systems.

  15. Integrated logistic support analysis system

    International Nuclear Information System (INIS)

    Carnicero Iniguez, E.J.; Garcia de la Sen, R.

    1993-01-01

    Integrating logic support into a system results in a large volume of information having to be managed which can only be achieved with the help of computer applications. Both past experience and growing needs in such tasks have led Emperesarios Agrupados to undertake an ambitious development project which is described in this paper. (author)

  16. Semiclassical geometry of integrable systems

    Science.gov (United States)

    Reshetikhin, Nicolai

    2018-04-01

    The main result of this paper is a formula for the scalar product of semiclassical eigenvectors of two integrable systems on the same symplectic manifold. An important application of this formula is the Ponzano–Regge type of asymptotic of Racah–Wigner coefficients. Dedicated to the memory of P P Kulish.

  17. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    Science.gov (United States)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  18. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  19. Farming in a fish tank.

    Science.gov (United States)

    Youth, H

    1992-01-01

    Water, fish, and vegetables are all things that most developing countries do not have enough of. There is a method of food production called aquaculture that integrates fish and vegetable growing and conserves and purifies water at the same time. A working system that grows vegetables and fish for regional supermarkets in Massachusetts is a gravity fed system. At the top of the system is a 3,000 gallon fish rearing tank that measures 12 feet in diameter. Water trickles out of the tank and fish wastes are captured which can be composted and used in farm fields. The water goes into a bio filter that contains bacteria which convert harmful ammonia generated from fish waste into beneficial nitrate. Then the water flows into 100 foot long hydroponic tanks where lettuce grows. A 1/6 horsepower pump return the purified water to the fish tank and completes the cycle. The key to success is maintaining a balance between the fish nutrients and waste and the plants nutrients and waste. The system is estimated to produce 35,000 heads of lettuce and 2 tons of fish annually which translates into $23,500. The system could be adapted to developing countries with several modifications to reduce the start up cost.

  20. Acceptance/Operational Test Report for Tank 241-AN-104 camera and camera purge control system

    International Nuclear Information System (INIS)

    Castleberry, J.L.

    1995-11-01

    This Acceptance/Operational Test Procedure (ATP/OTP) will document the satisfactory operation of the camera purge panel, purge control panel, color camera system and associated control components destined for installation. The final acceptance of the complete system will be performed in the field. The purge panel and purge control panel will be tested for its safety interlock which shuts down the camera and pan-and-tilt inside the tank vapor space during loss of purge pressure and that the correct purge volume exchanges are performed as required by NFPA 496. This procedure is separated into seven sections. This Acceptance/Operational Test Report documents the successful acceptance and operability testing of the 241-AN-104 camera system and camera purge control system