WorldWideScience

Sample records for integrated steel mills

  1. Surface integrity and fatigue behaviour of electric discharged machined and milled austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lundberg, Mattias, E-mail: mattias.lundberg@liu.se; Saarimäki, Jonas; Moverare, Johan J.; Calmunger, Mattias

    2017-02-15

    Machining of austenitic stainless steels can result in different surface integrities and different machining process parameters will have a great impact on the component fatigue life. Understanding how machining processes affect the cyclic behaviour and microstructure are of outmost importance in order to improve existing and new life estimation models. Milling and electrical discharge machining (EDM) have been used to manufacture rectangular four-point bend fatigue test samples; subjected to high cycle fatigue. Before fatigue testing, surface integrity characterisation of the two surface conditions was conducted using scanning electron microscopy, surface roughness, residual stress profiles, and hardness profiles. Differences in cyclic behaviour were observed between the two surface conditions by the fatigue testing. The milled samples exhibited a fatigue limit. EDM samples did not show the same behaviour due to ratcheting. Recrystallized nano sized grains were identified at the severely plastically deformed surface of the milled samples. Large amounts of bent mechanical twins were observed ~ 5 μm below the surface. Grain shearing and subsequent grain rotation from milling bent the mechanical twins. EDM samples showed much less plastic deformation at the surface. Surface tensile residual stresses of ~ 500 MPa and ~ 200 MPa for the milled and EDM samples respectively were measured. - Highlights: •Milled samples exhibit fatigue behaviour, but not EDM samples. •Four-point bending is not suitable for materials exhibiting pronounced ratcheting. •LAGB density can be used to quantitatively measure plastic deformation. •Grain shearing and rotation result in bent mechanical twins. •Nano sized grains evolve due to the heat of the operation.

  2. Japan steel mill perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murase, K. [Kobe Steel Ltd., Tokyo (Japan)

    2004-07-01

    The international and Japan's steel industry, the coking coal market, and Japan's expectations from Canada's coal industry are discussed. Japan's steel mills are operating at full capacity. Crude steel production for the first half of 2004 was 55.8 million tons. The steel mills are profitable, but costs are high, and there are difficulties with procuring raw materials. Japan is trying to enhance the quality of coke, in order to achieve higher productivity in the production of pig iron. Economic growth is rising disproportionately in the BRICs (Brazil, Russia, India, and China), with a large increase in coking coal demand from China. On the supply side, there are several projects underway in Australia and Canada to increase production. These include new developments by Elk Valley Coal Corporation, Grande Cache Coal, Western Canadian Coal, and Northern Energy and Mining in Canada. The Elga Mine in the far eastern part of Russia is under development. But the market is expected to remain tight for some time. Japan envisions Canadian coal producers will provide a stable coal supply, expansion of production and infrastructure capabilities, and stabilization of price. 16 slides/overheads are included.

  3. Milled Die Steel Surface Roughness Correlation with Steel Sheet Friction

    DEFF Research Database (Denmark)

    Berglund, J.; Brown, C.A.; Rosén, B.-G.

    2010-01-01

    This work investigates correlations between the surface topography ofmilled steel dies and friction with steel sheet. Several die surfaces were prepared by milling. Friction was measured in bending under tension testing. Linear regression coefficients (R2) between the friction and texture...

  4. Machinability Evaluation in Hard Milling of AISI D2 Steel

    OpenAIRE

    Gaitonde, Vinayak Neelakanth; Karnik, Sulse Ramesh; Maciel, Caio Henrique Alves; Rubio, Juan Carlos Campos; Abrão, Alexandre Mendes

    2016-01-01

    Milling of hardened steel components provides considerable benefits in terms of reduced manufacturing cost and time compared to traditional machining. Temperature variation in milling is an important factor affecting the wear of cutting tools. The poor selection of milling parameters may cause excessive tool wear and increased work surface roughness. Hence, there is a need to study the machinability aspects during milling of hardened steel components. In the present work, influence of cutting...

  5. The interrelationship between environmental goals, productivity improvement, and increased energy efficiency in integrated paper and steel plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This report presents the results of an investigation into the interrelationships between plant-level productivity, energy efficiency, and environmental improvements for integrated pulp and paper mills and integrated steel mills in the US. Integrated paper and steel plants are defined as those facilities that use some form of onsite raw material to produce final products (for example, paper and paperboard or finished steel). Fully integrated pulp and paper mills produce onsite the pulp used to manufacture paper from virgin wood fiber, secondary fiber, or nonwood fiber. Fully integrated steel mills process steel from coal, iron ore, and scrap inputs and have onsite coke oven facilities.

  6. Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samaraseker; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1998-09-30

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evaluation and mechanical properties of steel strip in a hot-strip mill. This achievement results from a join research effort that is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American steel makers.

  7. Integrated chemical plants at the pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Ehtonen, P.; Hurme, M.; Jaervelaeinen, M.

    1995-12-31

    The goal of this paper is to present how the chemical plants can be integrated to the pulp mill. The integration renders possible to balance the chemical consumptions. The total mass balance of a pulp mill with the incoming fuel material and the outgoing waste and flue gases are discussed. The balance figures are presented for the chemicals of the modern fibre line, which will produce fully bleached softwood pulp with an improved effluent quality. The main benefits are lower chemical and transportation costs. The principal over-all plant process block diagrams and process descriptions are presented. The presented info system provides real time information on process and production status at overall mill and department levels. (author)

  8. Milling and Drilling Evaluation of Stainless Steel Powder Metallurgy Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, L.J.

    2001-12-10

    Near-net-shape components can be made with powder metallurgy (PM) processes. Only secondary operations such as milling and drilling are required to complete these components. In the past and currently production components are made from powder metallurgy (PM) stainless steel alloys. process engineers are unfamiliar with the difference in machining properties of wrought versus PM alloys and have had to make parts to develop the machining parameters. Design engineers are not generally aware that some PM alloy variations can be furnished with machining additives that greatly increase tool life. Specimens from a MANTEC PM alloy property study were made available. This study was undertaken to determine the machining properties of a number of stainless steel wrought and PM alloys under the same conditions so that comparisons of their machining properties could be made and relative tool life determined.

  9. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders.

    Science.gov (United States)

    Pellizzari, Massimo; Fedrizzi, Anna; Zadra, Mario

    2016-06-16

    Hot work tool steel (AISI H13) and high speed steel (AISI M3:2) powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM). Near full density samples (>99.5%) showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS). The density of the blends (20, 40, 60, 80 wt % H13) was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  10. On rolling of alloyed steels on the continuous light-section mill 250

    International Nuclear Information System (INIS)

    Grigor'ev, V.K.; Antipov, V.F.; Zamotin, V.M.; Kuznetsov, Yu.M.

    1976-01-01

    Using the method of computed ratios, the expected loads (torques) have been calculated in the rolling of alloyed steels on the light-section mill 250 of the Chelyabinsk metallurgical works. The deviation of the computed torques from those measured for steels 35GS and St5ps does not exceed -6%. Data are given on changes in torques during the rolling of alloyed steels in the different stands as compared with the actual data for the rolling of ordinary steel. Calculations show, and experimental data confirm, that, according to the torque value, it is possible to roll alloyed steels of sufficiently wide assortment on mill 250

  11. Laser milling of martensitic stainless steels using spiral trajectories

    Science.gov (United States)

    Romoli, L.; Tantussi, F.; Fuso, F.

    2017-04-01

    A laser beam with sub-picosecond pulse duration was driven in spiral trajectories to perform micro-milling of martensitic stainless steel. The geometry of the machined micro-grooves channels was investigated by a specifically conceived Scanning Probe Microscopy instrument and linked to laser parameters by using an experimental approach combining the beam energy distribution profile and the absorption phenomena in the material. Preliminary analysis shows that, despite the numerous parameters involved in the process, layer removal obtained by spiral trajectories, varying the radial overlap, allows for a controllable depth of cut combined to a flattening effect of surface roughness. Combining the developed machining strategy to a feed motion of the work stage, could represent a method to obtain three-dimensional structures with a resolution of few microns, with an areal roughness Sa below 100 nm.

  12. Tool wear analysis during duplex stainless steel trochoidal milling

    Science.gov (United States)

    Amaro, Paulo; Ferreira, Pedro; Simões, Fernando

    2018-05-01

    In this study a tool with interchangeable inserts of sintered carbides coated with AlTiN were used to mill a duplex stainless steel with trochoidal strategies. Cutting speed range from 120 to 300 m/min were used and t he evaluation of tool deterioration and tool life was made according international standard ISO 8688-1. It was observed a progressive development of a flank wear and a cumulative cyclic process of localized adhesion of the chip to the cutting edge, followed by chipping, loss of the coating and substrate exposure. The tool life reached a maximum of 35 min. for cutting speed of 120 m/min. However, it was possible to maintain a tool life of 20-25 minutes when the cutting speed was increased up to 240 m/min.

  13. 48 CFR 252.216-7000 - Economic price adjustment-basic steel, aluminum, brass, bronze, or copper mill products.

    Science.gov (United States)

    2010-10-01

    ...-basic steel, aluminum, brass, bronze, or copper mill products. 252.216-7000 Section 252.216-7000 Federal... adjustment—basic steel, aluminum, brass, bronze, or copper mill products. As prescribed in 216.203-4-70(a... Mill Products (JUL 1997) (a) Definitions. As used in this clause— Established price means a price which...

  14. Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders

    Directory of Open Access Journals (Sweden)

    Massimo Pellizzari

    2016-06-01

    Full Text Available Hot work tool steel (AISI H13 and high speed steel (AISI M3:2 powders were successfully co-sintered to produce hybrid tool steels that have properties and microstructures that can be modulated for specific applications. To promote co-sintering, which is made difficult by the various densification kinetics of the two steels, the particle sizes and structures were refined by mechanical milling (MM. Near full density samples (>99.5% showing very fine and homogeneous microstructure were obtained using spark plasma sintering (SPS. The density of the blends (20, 40, 60, 80 wt % H13 was in agreement with the linear rule of mixtures. Their hardness showed a positive deviation, which could be ascribed to the strengthening effect of the secondary particles altering the stress distribution during indentation. A toughening of the M3:2-rich blends could be explained in view of the crack deviation and crack arrest exerted by the H13 particles.

  15. The effect of intermediate stop and ball size in fabrication of recycled steel powder using ball milling from machining steel chips

    International Nuclear Information System (INIS)

    Fitri, M.W.M.; Shun, C.H.; Rizam, S.S.; Shamsul, J.B.

    2007-01-01

    A feasibility study for producing recycled steel powder from steel scrap by ball milling was carried out. Steel scrap from machining was used as a raw material and was milled using planetary ball milling. Three samples were prepared in order to study the effect of intermediate stop and ball size. Sample with intermediate stop during milling process showed finer particle size compared to the sample with continuous milling. Decrease in the temperature of the vial during the intermediate stop milling gives less ductile behaviour to the steel powder, which is then easily work-hardened and fragmented to fine powder. Mixed small and big size ball give the best production of recycled steel powder where it gives higher impact force to the scrap and accelerate the fragmentation of the steel scrap into powder. (author)

  16. An Experiment Study on Surface Roughness in High Speed Milling NAK80 Die Steel

    Directory of Open Access Journals (Sweden)

    Su Fa

    2016-01-01

    Full Text Available The paper introduces that the high speed milling experiments on NAK80 die steel was carried out on the DMU 60 mono BLOCK five axis linkage high speed CNC machining center tool by the TiAlN coated tools, in order to research the effect of milling parameters on surface roughness Ra. The results showed that the Ra value increased with the decrease of milling speed vc, increased with the axial depth of milling ap, and feed per tooth fz and radial depth of milling ae. On the basis of the single factor experiment results, the mathematics model for between surface roughness and milling parameters were established by linear regression analysis.

  17. Characterization of Tool Wear in High-Speed Milling of Hardened Powder Metallurgical Steels

    Directory of Open Access Journals (Sweden)

    Fritz Klocke

    2011-01-01

    Full Text Available In this experimental study, the cutting performance of ball-end mills in high-speed dry-hard milling of powder metallurgical steels was investigated. The cutting performance of the milling tools was mainly evaluated in terms of cutting length, tool wear, and cutting forces. Two different types of hardened steels were machined, the cold working steel HS 4-2-4 PM (K490 Microclean/66 HRC and the high speed steel HS 6-5-3 PM (S790 Microclean/64 HRC. The milling tests were performed at effective cutting speeds of 225, 300, and 400 m/min with a four fluted solid carbide ball-end mill (0 = 6, TiAlN coating. It was observed that by means of analytically optimised chipping parameters and increased cutting speed, the tool life can be drastically enhanced. Further, in machining the harder material HS 4-2-4 PM, the tool life is up to three times in regard to the less harder material HS 6-5-3 PM. Thus, it can be assumed that not only the hardness of the material to be machined plays a vital role for the high-speed dry-hard cutting performance, but also the microstructure and thermal characteristics of the investigated powder metallurgical steels in their hardened state.

  18. Microstructural evolution of 316L stainless steels with yttrium addition after mechanical milling and heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kotan, Hasan, E-mail: hasankotan@gmail.com

    2015-10-28

    Nanocrystalline 316L stainless steels with yttrium addition were prepared by mechanical milling at cryogenic temperature and subjected to annealing treatments at various temperatures up to 1200 °C. The dependence of hardness on the microstructure was utilized to study the mechanical changes in the steels occurring during annealing. The microstructural evolution of the as-milled and annealed steels was characterized by means of X-ray diffraction (XRD), focused ion beam microscopy (FIB) and transmission electron microscopy (TEM) techniques. The results have revealed that austenite in as-received powder partially transformed to martensite phase during mechanical milling whereas the annealing induced reverse transformation of martensite-to-austenite. Furthermore, while the austenite-to-martensite phase ratio increased with increasing annealing temperature, the equilibrium structure was not achieved after three hours heat treatments up to 1200 °C resulting in a dual-phased steels with around 10% martensite. The grain size of 316L steel was 19 nm after mechanical milling and remained around 116 nm at 1100 °C with yttrium addition as opposed to micron size grains of plain 316L steel at the same annealing temperature. Such microstructural features facilitate the use of these materials at elevated temperatures, as well as the development of scalable processing routes into a dense nanocrystalline compact.

  19. Carbon recovery by fermentation of CO-rich off gases - Turning steel mills into biorefineries.

    Science.gov (United States)

    Molitor, Bastian; Richter, Hanno; Martin, Michael E; Jensen, Rasmus O; Juminaga, Alex; Mihalcea, Christophe; Angenent, Largus T

    2016-09-01

    Technological solutions to reduce greenhouse gas (GHG) emissions from anthropogenic sources are required. Heavy industrial processes, such as steel making, contribute considerably to GHG emissions. Fermentation of carbon monoxide (CO)-rich off gases with wild-type acetogenic bacteria can be used to produce ethanol, acetate, and 2,3-butanediol, thereby, reducing the carbon footprint of heavy industries. Here, the processes for the production of ethanol from CO-rich off gases are discussed and a perspective on further routes towards an integrated biorefinery at a steel mill is given. Recent achievements in genetic engineering as well as integration of other biotechnology platforms to increase the product portfolio are summarized. Already, yields have been increased and the portfolio of products broadened. To develop a commercially viable process, however, the extraction from dilute product streams is a critical step and alternatives to distillation are discussed. Finally, another critical step is waste(water) treatment with the possibility to recover resources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Model for prediction of strip temperature in hot strip steel mill

    International Nuclear Information System (INIS)

    Panjkovic, Vladimir

    2007-01-01

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good

  1. Model for prediction of strip temperature in hot strip steel mill

    Energy Technology Data Exchange (ETDEWEB)

    Panjkovic, Vladimir [BlueScope Steel, TEOB, 1 Bayview Road, Hastings Vic. 3915 (Australia)]. E-mail: Vladimir.Panjkovic@BlueScopeSteel.com

    2007-10-15

    Proper functioning of set-up models in a hot strip steel mill requires reliable prediction of strip temperature. Temperature prediction is particularly important for accurate calculation of rolling force because of strong dependence of yield stress and strip microstructure on temperature. A comprehensive model was developed to replace an obsolete model in the Western Port hot strip mill of BlueScope Steel. The new model predicts the strip temperature evolution from the roughing mill exit to the finishing mill exit. It takes into account the radiative and convective heat losses, forced flow boiling and film boiling of water at strip surface, deformation heat in the roll gap, frictional sliding heat, heat of scale formation and the heat transfer between strip and work rolls through an oxide layer. The significance of phase transformation was also investigated. Model was tested with plant measurements and benchmarked against other models in the literature, and its performance was very good.

  2. Japanese steel mills update and expectations to Canadian coal industry

    International Nuclear Information System (INIS)

    Yamaguchi, I.

    2008-01-01

    Kobe Steel's (Kobelco) corporate strategy includes expanding from only-one product such as high tensile strength steel sheet, and enlarging overseas production capacity through joint ventures and technical alliances. A new steel making process from low quality iron ore and steaming coal called ITmk3 has been developed by Kobe Steel that does not require any coke, reduces carbon dioxide emissions by 20 per cent, and reduces the cost of transporting slag. This strategy and technology was presented along with the changes surrounding the Japanese steel industry and raw materials market. These changes include the rise of emerging oil-producing countries; world steel production and exports; the rise in prices of resources; and the slowdown of the United States economy. The current situation of Japanese crude steel production, pig-iron production, and coke expansion plans were also presented. The presentation also outlined expectation's of the Canadian coal industry with reference to Canadian coal imports to Japan. tabs., figs

  3. Soil Contamination with Heavy Metals around Jinja Steel Rolling Mills in Jinja Municipality, Uganda

    Directory of Open Access Journals (Sweden)

    Noel Namuhani

    2015-01-01

    Conclusions. The concentration levels of heavy metals around the steel rolling mills did not appear to be of serious concern, except for copper and cadmium, which showed moderate pollution and moderate to strong pollution, respectively. All heavy metals were within the limits of the United States Environmental Protection Agency (USEPA residential soil standards and the Dutch intervention soil standards. Overall, soils around the Jinja steel rolling mills were slightly polluted with heavy metals, and measures therefore need to be taken to prevent further soil contamination with heavy metals.

  4. A morphological evaluation of a duplex stainless steel processed by high energy Ball Mill

    International Nuclear Information System (INIS)

    Yonekubo, Ariane Emi; Cintho, Osvaldo Mitsuyuki; Aguiar, Denilson Jose Marcolino de; Capocchi, Jose Deodoro Trani

    2009-01-01

    The duplex stainless steels are formed by a ferrite and austenite mixture, giving them a combination of properties. Commercially, these steels are hot rolled, developing an anisotropic, alternated ferrite and austenite elongated lamellae microstructure. In this work, a duplex stainless steel was produced by the mixture of elementary powders with the composition Fe-19.5Cr-5Ni processed in an ATTRITOR ball mill during periods up to 15 hours. The powders obtained were compressed in specimens and were heat treated in the temperatures of 900, 1050 and 1200 °C during 1 hour and analysed by x ray diffraction, optic microscopy, scanning electron microscopy and energy dispersion spectroscopy. An optimized microstructure with ultrafine, equiaxial and regular duplex microstructure was obtained in the 15 hour milling and 1200 °C heat treatment. Afterwards, a commercially super duplex stainless steel UNS S32520 was aged at 800 °C aiming the precipitation of σ phase in order to reduce its toughness and then, milled in SPEX mill. The resulting microstructure was a very fine duplex type with irregular grain boundary morphology duo to the grain growth barrier promoted by the renascent σ phase particles during sintering process. (author)

  5. Yang-Mills correlation functions from integrable spin chains

    International Nuclear Information System (INIS)

    Roiban, Radu; Volovich, Anastasia

    2004-01-01

    The relation between the dilatation operator of N = 4 Yang-Mills theory and integrable spin chains makes it possible to compute the one-loop anomalous dimensions of all operators in the theory. In this paper we show how to apply the technology of integrable spin chains to the calculation of Yang-Mills correlation functions by expressing them in terms of matrix elements of spin operators on the corresponding spin chain. We illustrate this method with several examples in the SU(2) sector described by the XXX 1/2 chain. (author)

  6. Processing of an AISI D2 tool steel by high-energy milling

    International Nuclear Information System (INIS)

    Spagnol, N.J.R.; Araujo, G.F.; Vurobi Junior, S.; Cintho, O.M.

    2009-01-01

    Full text: Chips of machining of AISI D2 steel were processed in Spex high-energy mill. The powder obtained was analyzed by x-ray diffraction, and then compressed in the form of discs of 8mm in diameter. The samples were treated at 1200 deg C for 1 hour under vacuum atmosphere for sintering. Then specimens were subjected to annealing, quenching and tempering at 400°C and 525 deg C. Along with each disc, a sample of as-received steel was subjected to the same heat treatment to evaluate the final microstructures. After metallographic preparation, samples were etched with Berah's reagent, characterized by optical microscopy, Vickers hardness, quantitative metallography and scanning electron microscopy with micro analysis and mapping by EDS. Specimens from high energy milling had reduction in prior austenitic grain size and more refined carbides and better distributed in the microstructure of steel. (author)

  7. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling

    International Nuclear Information System (INIS)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P.; Universidade Federal do Rio Grande do Norte

    2010-01-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  8. STEFINS: a steel freezing integral simulation program

    International Nuclear Information System (INIS)

    Frank, M.V.

    1980-09-01

    STEFINS (STEel Freezing INtegral Simulation) is a computer program for the calculation of the rate of solidification of molten steel on solid steel. Such computations arize when investigating core melt accidents in fast reactors. In principle this problem involves a coupled two-dimensional thermal and hydraulic approach. However, by physically reasonable assumptions a decoupled approach has been developed. The transient solidification of molten steel on a cold wall is solved in the direction normal to the molten steel flow and independent from the solution for the molten steel temperature and Nusselt number along the direction of flow. The solutions to the applicable energy equations have been programmed in cylindrical and slab geometries. Internal gamma heating of steel is included

  9. Future CO2 removal from pulp mills - Process integration consequences

    International Nuclear Information System (INIS)

    Hektor, Erik; Berntsson, Thore

    2007-01-01

    Earlier work has shown that capturing the CO 2 from flue gases in the recovery boiler at a pulp mill can be a cost-effective way of reducing mill CO 2 emissions. However, the CO 2 capture cost is very dependent on the fuel price. In this paper, the potential for reducing the need for external fuel and thereby the possibility to reduce the cost for capturing the CO 2 are investigated. The reduction is achieved by using thermal process integration. In alternative 1, the mill processes are integrated and a steam surplus made available for CO 2 capture, but still there is a need for external fuel. In alternative 2, the integration is taken one step further, the reboiler is fed with MP steam, and the heat of absorption from the absorption unit is used for generation of LP steam needed at the mill. The avoidance costs are in both cases lower than before the process integration. The avoidance cost in alternative 1 varies between 25.4 and 30.7 EUR/tonne CO 2 depending on the energy market parameters. For alternative 2, the cost varies between 22.5 and 27.2 EUR/tonne CO 2 . With tough CO 2 reduction targets and correspondingly high CO 2 emission costs, the annual earnings can be substantial, 18.6 MEUR with alternative 1 and 21.2 MEUR with alternative 2

  10. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing

    International Nuclear Information System (INIS)

    Brocq, M.

    2010-10-01

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe 3 andFe 2 O 3 as starting reactants instead of Y 2 O 3 to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  11. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  12. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    OpenAIRE

    Huu-That Nguyen; Quang-Cherng Hsu

    2016-01-01

    Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra) in the hard milling of JIS (Japanese Industrial Standard) SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM). The cutting parameters are selected based on the structural dynamic analysis of the machine ...

  13. Refining the microstructure of an AISI M2 tool steel by high-energy milling

    International Nuclear Information System (INIS)

    Postiglioni, R.V.; Alamino, A.E; Vurobi Junior, S.

    2009-01-01

    Samples of AISI M2 steel were produced by high-energy milling from chips of machining in Spex high energy mill, compaction and sintering of the powder obtained. The powder was analyzed by X-ray diffraction, and then compressed in discs of 8mm in diameter. The specimens have sintering at 1200 deg C for 1 hour under vacuum atmosphere, followed by annealing, quenching and tempering for 1 hour at 315 deg C and 540°C. Along with each disc, a sample of as-received steel was subjected to the same heat treatments to compare the final microstructure. After standard metallographic preparation, samples were etched with Beraha's reagent, characterized by optical microscopy, quantitative metallography, scanning electron microscopy with micro analysis and mapping by EDS, besides Vickers hardness. The steel produced by high-energy milling presented more refined carbide and better distribution in the microstructure. There was also reduction in the size of prior austenitic grains. (author)

  14. Characterization of steel 70XL used in the manufacture of balls for the clinker's milling

    Directory of Open Access Journals (Sweden)

    Eider Gresesqui-Lobaina

    2017-10-01

    Full Text Available The present article deals with the wear of the balls used for the grinding of the clinker in the processes of obtaining cement. Three specimens of different steel were made: one of steel AISI 4140, with which balls are forged for the milling process; another 70XL steel (70 XL with normalized, tempered and tempered thermal treatments; and the third, of equal material that the second but without treatment. For the metallographic observation the samples were made with dimensions of 10 mm in diameter and 8 mm in thickness, revealing for AISI 4140 steel a structure of martensitic type with some presence of acicular ferrite. For the 70XL steel without heat treatment the presence of ferrite and cementite was observed, while the steel 70XL with heat treatment showed in the limits of free cementite grain in a pearly matrix, which resulted in a higher hardness (up to HRC 59 , 8 and lower gravimetric wear compared to other materials. Therefore it is recommended as the most suitable for the manufacture of balls for grinding minerals 70XL steel with heat treatment.

  15. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    Energy Technology Data Exchange (ETDEWEB)

    Loyer-Prost, M., E-mail: marie.loyer-prost@cea.fr [DEN-Service de Recherches de Métallurgie Physique, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Merot, J.-S. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Ribis, J. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Le Bouar, Y. [Laboratoire d’Etudes des Microstructures – UMR 104, CNRS/ONERA, BP72-29, Avenue de la Division Leclerc, 92 322, Châtillon (France); Chaffron, L. [DEN-Service de Recherches de Métallurgie Appliquée, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Legendre, F. [DEN-Service de la Corrosion et du Comportement des Matériaux dans leur Environnement, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2016-10-15

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) {sub bcc} iron structure. They coexist with larger crystalline spherical precipitates of 15–20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials. - Highlights: • We observed an ODS ball-milled powder by high resolution transmission microscopy. • The ODS ball-milled powder exhibits a lamellar microstructure. • Small crystalline nanoclusters were detected in the milled ODS powder. • The nanoclusters in the ODS milled powder are enriched in titanium. • Larger NCs of 15–20 nm in size are, at least, partly coherent with the matrix.

  16. Integration of micro milling highspeed spindle on a microEDM-milling machine set-up

    DEFF Research Database (Denmark)

    De Grave, Arnaud; Hansen, Hans Nørgaard; Andolfatto, Loic

    2009-01-01

    In order to cope with repositioning errors and to combine the fast removal rate of micro milling with the precision and small feature size achievable with micro EDM milling, a hybrid micro-milling and micro-EDM milling centre was built and tested. The aim was to build an affordable set-up, easy...... by micro milling. Examples of test parts are shown and used as an experimental validation....

  17. Experimental investigations on cryogenic cooling by liquid nitrogen in the end milling of hardened steel

    Science.gov (United States)

    Ravi, S.; Pradeep Kumar, M.

    2011-09-01

    Milling of hardened steel generates excessive heat during the chip formation process, which increases the temperature of cutting tool and accelerates tool wear. Application of conventional cutting fluid in milling process may not effectively control the heat generation also it has inherent health and environmental problems. To minimize health hazard and environmental problems caused by using conventional cutting fluid, a cryogenic cooling set up is developed to cool tool-chip interface using liquid nitrogen (LN 2). This paper presents results on the effect of LN 2 as a coolant on machinability of hardened AISI H13 tool steel for varying cutting speed in the range of 75-125 m/min during end milling with PVD TiAlN coated carbide inserts at a constant feed rate. The results show that machining with LN 2 lowers cutting temperature, tool flank wear, surface roughness and cutting forces as compared with dry and wet machining. With LN 2 cooling, it has been found that the cutting temperature was reduced by 57-60% and 37-42%; the tool flank wear was reduced by 29-34% and 10-12%; the surface roughness was decreased by 33-40% and 25-29% compared to dry and wet machining. The cutting forces also decreased moderately compared to dry and wet machining. This can be attributed to the fact that LN 2 machining provides better cooling and lubrication through substantial reduction in the cutting zone temperature.

  18. AISI/DOE Advanced Process Control Program Vol. 3 of 6 Microstructure Engineering in Hot Strip Mills, Part 1 of 2: Integrated Mathematical Model

    Energy Technology Data Exchange (ETDEWEB)

    J.K. Brimacombe; I.V. Samarasekera; E.B. Hawbolt; T.R. Meadowcroft; M. Militzer; W.J. Pool; D.Q. Jin

    1999-07-31

    This report describes the work of developing an integrated model used to predict the thermal history, deformation, roll forces, microstructural evolution and mechanical properties of steel strip in a hot-strip mill. This achievement results from a joint research effort that is part of the American Iron and Steel Institute's (AIS) Advanced Process Control Program, a collaboration between the U.S. DOE and fifteen North American Steelmakers.

  19. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Directory of Open Access Journals (Sweden)

    Marcos Allan Leite dos Reis

    2018-01-01

    Full Text Available Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G′-band is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  20. Surface Roughness Analysis in the Hard Milling of JIS SKD61 Alloy Steel

    Directory of Open Access Journals (Sweden)

    Huu-That Nguyen

    2016-06-01

    Full Text Available Hard machining is an efficient solution that can be used to replace the grinding operation in the mold and die manufacturing industry. In this study, an attempt is made to analyze the effect of process parameters on workpiece surface roughness (Ra in the hard milling of JIS (Japanese Industrial Standard SKD61 steel, based on a combination of the Taguchi method and response surface methodology (RSM. The cutting parameters are selected based on the structural dynamic analysis of the machine tool. A set of experiments is designed according to the Taguchi technique. The average Ra is measured by a Mitutoyo Surftest SJ-400, and then analysis of variance (ANOVA is performed to determine the influences of cutting parameters on the given Ra. Quadratic mathematical modeling is introduced for prediction of the Ra during the hard milling process. The predicted values are in reasonable agreement with the observation of experiments. In an effort to obtain the minimizing Ra, a single objective optimization is employed based on the desirability function. The result shows that the percentage error between measured and predicted values of Ra is 3.2%, which is found to be insignificant. Eventually, the milled surface roughness under the optimized machining conditions is 0.122 µm. This finding shows that grinding may be replaced by finish hard milling in the mold and die manufacturing field.

  1. Raman spectroscopy fingerprint of stainless steel-MWCNTs nanocomposite processed by ball-milling

    Science.gov (United States)

    dos Reis, Marcos Allan Leite; Barbosa Neto, Newton Martins; de Sousa, Mário Edson Santos; Araujo, Paulo T.; Simões, Sónia; Vieira, Manuel F.; Viana, Filomena; Loayza, Cristhian R. L.; Borges, Diego J. A.; Cardoso, Danyella C. S.; Assunção, Paulo D. C.; Braga, Eduardo M.

    2018-01-01

    Stainless steel 304L alloy powder and multiwalled carbon nanotubes were mixed by ball-milling under ambient atmosphere and in a broad range of milling times, which spans from 0 to 120 min. Here, we provided spectroscopic signatures for several distinct composites produced, to show that the Raman spectra present interesting splittings of the D-band feature into two main sub-bands, D-left and D-right, together with several other secondary features. The G-band feature also presents multiple splittings that are related to the outer and inner diameter distributions intrinsic to the multiwalled carbon nanotube samples. A discussion about the second order 2D-band (also known as G'-band) is also provided. The results reveal that the multiple spectral features observed in the D-band are related to an increased chemical functionalization. A lower content of amorphous carbon at 60 and 90 min of milling time is verified and the G-band frequencies associated to the tubes in the outer diameters distribution is upshifted, which suggests that doping induced by strain is taking place in the milled samples. The results indicate that Raman spectroscopy can be a powerful tool for a fast and non-destructive characterization of carbon nanocomposites used in powder metallurgy manufacturing processes.

  2. Effect of milling variables on powder character and sintering behaviour of 434L ferritic stainless steel-Al2O3 composites

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Upadhyaya, G.S.

    1985-01-01

    Ball milling of ferritic stainless steel-4 vol% Al 2 O 3 powder was carried out for the duration up to 222 ks. Attritor milling of ferritic stainless steel-6 vol% Al 2 O 3 were also carried out for the duration up to 32.4 ks. The characterization of the milled powders were performed. The sintering of ball milled powders was carried out at 1623 K for 10.8 ks in hydrogen. The premix of as received stainless steel powder and the attritor milled powder was also sintered at 1623 K for 3.6 ks in hydrogen. The results showed that an optimum ball milling period in between 58 and 173 ks was required to achieve better sintered properties. The attritor milling was more effective in grinding the powders as compared to ball milling, and the sinterability was also higher for such powders. (author)

  3. Toolpath strategy for cutter life improvement in plunge milling of AISI H13 tool steel

    Science.gov (United States)

    Adesta, E. Y. T.; Avicenna; hilmy, I.; Daud, M. R. H. C.

    2018-01-01

    Machinability of AISI H13 tool steel is a prominent issue since the material has the characteristics of high hardenability, excellent wear resistance, and hot toughness. A method of improving cutter life of AISI H13 tool steel plunge milling by alternating the toolpath and cutting conditions is proposed. Taguchi orthogonal array with L9 (3^4) resolution will be employed with one categorical factor of toolpath strategy (TS) and three numeric factors of cutting speed (Vc), radial depth of cut (ae ), and chip load (fz ). It is expected that there are significant differences for each application of toolpath strategy and each cutting condition factor toward the cutting force and tool wear mechanism of the machining process, and medial axis transform toolpath could provide a better tool life improvement by a reduction of cutting force during machining.

  4. Tool Wear and Formation Mechanism of White Layer When Hard Milling H13 Steel under Different Cooling/Lubrication Conditions

    Directory of Open Access Journals (Sweden)

    Song Zhang

    2014-04-01

    Full Text Available The present work aims at revealing the formation mechanism of white layer and understanding the effects of tool wear and cooling/lubrication condition on white layer when hard milling H13 steel with coated cutting tools. Hard milling experiments were carried out, and tool wear and its effect on formation of white layer were investigated. Compared to dry cutting condition, CMQL (cryogenic minimum quantity lubrication technique can obviously reduce tool wear and prolong tool life owing to its good cooling and lubrication properties. The optical images of the subsurface materials indicate that the formation of white layer is related to tool wear; moreover, the thickness of white layer increases with the increase of tool wear. SEM (scanning electron microscope images and XRD (X-ray diffraction analysis confirm that the formation of white layer is mainly due to the mechanical effect rather than the thermal effect. It also proves that white layer is partly decreased or can be totally eliminated by optimizing process parameters under CMQL cutting condition. CMQL technique has the potential to be used for achieving prolonged tool life and enhanced surface integrity.

  5. The Machining of Hard Mold Steel by Ultrasonic Assisted End Milling

    Directory of Open Access Journals (Sweden)

    Ming Yi Tsai

    2016-11-01

    Full Text Available This study describes the use of ultrasonic-assisted end milling to improve the quality of the machined surface of hard Stavax (modified AISI 420 mold steel and to reduce the amount of work involved in the final polishing process. The effects of input voltage, the stretch length and cutter holding force on the amplitude of the ultrasonic vibration used were measured. The effect of ultrasonic frequency (25 and 50 kHz and amplitude (0, 2.20 and 3.68 μm as well as the effect of the rake angle (6° and −6° and the cutter helix angle (25°, 35° and 45° on tool wear and quality of the workpiece surface finish were also investigated. It was found that the ultrasonic amplitude increased with cutter stretch length and input voltage, as expected. The amplitude remained constant when the cutter holding force exceeded 15 N. The experimental results showed that the ultrasonic amplitude had an optimum value with respect to surface finish. However, large amplitude ultrasonics did not necessarily improve quality. Furthermore, the cutters used for ultrasonic-assisted milling show less wear than those used for normal milling. It was also found that a positive rake angle and cutters with a large helix angle gave a better surface finish.

  6. Investigations on Surface Milling of Hardened AISI 4140 Steel with Pulse Jet MQL Applicator

    Science.gov (United States)

    Bashir, Mahmood Al; Mia, Mozammel; Dhar, Nikhil Ranjan

    2018-06-01

    In this article, an experimental investigation was performed in milling hardened AISI 4140 steel of hardness 40 HRC. The machining was performed in both dry and minimal quantity lubricant (MQL) conditions, as part of neat machining, to make a strong comparison of the undertaken machining environments. The MQL was impinged int the form of pulse jet, by using the specially developed pulse-jet-attachment, to ensure that the cutting fluid can be applied in different timed pulses and quantities at critical zones. The tool wear, cutting force and surface roughness were taken as the quality responses while cutting speed, table feed rate and flow rate of the pulse were considered as influential factors. The depth of cut was kept constant at 1.50 mm because of its less significant effects and the straight oil was adopted as cutting fluid in pulse-jet-MQL. The effects of different factors, on the quality responses, are analyzed using ANOVA. It is observed that MQL applicator system exhibits overall better performance when compared to dry milling by reducing surface roughness, cutting force and prolonging tool life but a flow rate of 150 ml/h has tremendous effects on the responses. This investigation and afterward results are expected to aid the industrial practitioner and researcher to adopt the pulse-MQL in high speed milling to prolong tool life, reduce tool wear, diminish cutting force generation and promote better surface finish.

  7. COMPARATIVE PERFORMANCE OF COATED AND UNCOATED INSERTS DURING INTERMITTENT CUT MILLING OF AISI 4340 STEEL

    Directory of Open Access Journals (Sweden)

    SARAVANAN L.

    2015-05-01

    Full Text Available Machining behaviour of TiN coated and uncoated cemented carbide tools were studied during intermittent milling operation of AISI 4340 steel. Series of orthogonal intermittent milling tests were performed subsequently to investigate the role of the selected tools and cutting parameters. Three cutting parameters namely cutting speed, feed and depth of cut with three different levels and two types of cutting tools (coated and uncoated were considered for conducting the experimental trials. Intermittent face milling was employed to study the wear behaviour of the tools and the resulting surface roughness. The cyclic load induced during the entry and exit of the tool, leads to unstable temperature at cutting zone. This unstable temperature affects the tool life badly during intermittent milling. Tool wear increases considerably with an increase in frequency of the interruption. The experimental results indicated that the coated tool out performed uncoated tool in terms of tool life and surface finish. The other interesting observation was the uncoated tool performed better than coated tool at moderate cutting parameters. Results also indicated that the fracture and chipping were the dominant tool failure modes in uncoated tool. The chipping of uncoated tool causes the surface quality to deteriorate. TiN coating ensures the toughness of the cutting tool, which leads to good surface quality during the machining process. A detailed analysis of tool wear and surface roughness was done and the results are employed to create a linear regression model. This model established the relation between the cutting parameters and the response variables. ANOVA was used to identify the influential parameters which affect the tool wear and surface roughness.

  8. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    Science.gov (United States)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  9. Integrity of Magnox reactor steel pressure vessels

    International Nuclear Information System (INIS)

    Flewitt, P.E.J.; Williams, G.H.; Wright, M.B.

    1992-01-01

    The background to the safety assessment of the steel reactor pressure vessels for Magnox power stations is reviewed. The evolved philosophy adopted for the 1991 safety cases prepared for the continued operation of four Magnox power stations operated by Nuclear Electric plc is described, together with different aspects of the multi-legged integrity argument. The main revisions to the materials mechanical property data are addressed together with the assessment methodology adopted and their implications for the overall integrity argument formulated for the continued safe operation of these reactor pressure vessels. (author)

  10. AISI/DOE Advanced Process Control Program Vol. 3 of 6: MICROSTRUCTURAL ENGINEERING IN HOT-STRIP MILLS Part 2 of 2: Constitutive Behavior Modeling of Steels Under Hot-Rolling Conditions; FINAL

    International Nuclear Information System (INIS)

    Yi-Wen Cheng; Patrick Purtscher

    1999-01-01

    This report describes the development of models for predicting (1) constitutive behaviors and (2) mechanical properties of hot-rolled steels as functions of chemical composition, microstructural features, and processing variables. The study includes the following eight steels: A36, DQSK, HSLA-V, HSLA-Nb, HSLA-50/Ti-Nb, and two interstitial-free (IF) grades. These developed models have been integrated into the Hot-Strip Mill Model (HSMM), which simulates the hot strip rolling mills and predicts the mechanical properties of hot-rolled products. The HSMM model has been developed by the University of British Columbia-Canada as a part of project on the microstructural engineering in hot-strip mills

  11. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  12. Magnetic and mechanical properties of Cu (75 wt%) – 316L grade stainless steels synthesized by ball milling and annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Bholanath, E-mail: bholanath_mondal@yahoo.co.in [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Chabri, Sumit [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sardar, Gargi [Department of Zoology, Baruipur College, South 24 Parganas, 743610 (India); Bhowmik, Nandagopal [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Sinha, Arijit, E-mail: arijitsinha2@yahoo.co.in [School of Materials Science and Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Chattopadhyay, Partha Protim [Department of Metallurgy and Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2015-05-01

    Elemental powders of Cu (75 wt%) and 316-stainless steel (25 wt%) has been subjected to ball milling upto 70 h followed by isothermal annealing at the temperature range of 350–750 °C for 1 h to investigate the microstructural evolution along with magnetic and mechanical properties. After 40 h of milling, the bcc Fe is almost dissolved in the solid solution of Cu but no significant change has been observed in the XRD pattern after 70 h of milling, Annealing of the alloy has resulted in precipitation of nanocrystalline bcc-Fe in Cu which triggers the soft ferromagnetic properties. The extensive mechanical characterization has been done at the microstructural scale by nanoindentation technique which demonstrates a hardening behavior of the compacted and annealed alloys due to possible precipitation of nanocrystalline bcc-Fe in Cu. - Highlights: • Nanocrystalline phases with partial amorphorization obtained after 70 h of milling. • Precipitation and grain coarsening of Fe and Cu after annealing as observed by XRD. • Annealing of the ball milled sample upto 550 {sup o}C has evolved ferromagnetic behavior. • Nanoindentation predicts a hardening behavior of annealed ball milled samples.

  13. Flux modeling and analysis of a linear induction motor for steel mill non-contacting conveyance system application

    International Nuclear Information System (INIS)

    Liu, C.-T.; Lin, S.-Y.; Yang, Y.-Y.

    2005-01-01

    A detailed mathematical approach for analyzing static/dynamic characteristics of a linear induction motor for steel mill non-contacting conveyance system application will be provided. The dependent reluctances among the motor secondary steel plate and primary poles have been systematically formulated; hence, the operational performance of the system can be derived conveniently. Results showed that not only the motor structure is suitable for the design objective, but also the proposed magnetic equivalent circuit can provide appropriate and convenient modeling for relative analytical investigations

  14. STUDIES ON THE SELECTED PROPERTIES OF C45 STEEL ELEMENTS SURFACE LAYER AFTER LASER CUTTING, FINISHING MILLING AND BURNISHING

    Directory of Open Access Journals (Sweden)

    Agnieszka Skoczylas

    2016-12-01

    microhardness of C45 steel elements after laser cutting, and then finishing milling or burnishing. The aim of milling was to get rid of the characteristic “striae” after laser cutting and to improve geometric accuracy. Burnishing caused hardening of C45 steel elements’ surface layer after laser cutting and improvement in surface roughness. In order to measure surface roughness, the Hommel – Etamic device T8000 RC120 – 400 with software was used. The roughness parameters that were analyzed in the article were: amplitude parameters, height parameters and Abbott - Firestone curve. The microhardness measurements were made with the use of Vicker’s hardness test with a weight of 50 g. As a result of the finishing of the surface after cutting, a decrease in surface roughness and improvements in functional qualities were noticed. In addition, hardening of the edgeside area also occurred, which is an advantageous phenomenon.

  15. An experimental study of flank wear in the end milling of AISI 316 stainless steel with coated carbide inserts

    Science.gov (United States)

    Odedeyi, P. B.; Abou-El-Hossein, K.; Liman, M.

    2017-05-01

    Stainless steel 316 is a difficult-to-machine iron-based alloys that contain minimum of about 12% of chromium commonly used in marine and aerospace industry. This paper presents an experimental study of the tool wear propagation variations in the end milling of stainless steel 316 with coated carbide inserts. The milling tests were conducted at three different cutting speeds while feed rate and depth of cut were at (0.02, 0.06 and 01) mm/rev and (1, 2 and 3) mm, respectively. The cutting tool used was TiAlN-PVD-multi-layered coated carbides. The effects of cutting speed, cutting tool coating top layer and workpiece material were investigated on the tool life. The results showed that cutting speed significantly affected the machined flank wears values. With increasing cutting speed, the flank wear values decreased. The experimental results showed that significant flank wear was the major and predominant failure mode affecting the tool life.

  16. Integrability of N=3 super Yang-Mills equations

    International Nuclear Information System (INIS)

    Devchand, C.; Ogievetsky, V.

    1993-10-01

    We describe the harmonic superspace formulation of the Witten-Manin supertwistor correspondence for N=3 extended super Yang-Mills theories. The essence in that on being sufficiently supersymmetrised (up to the N=3 extension), the Yang-Mills equations of motion can be recast in the form of Cauchy-Riemann-like holomorphicity conditions for a pair of prepotentials in the appropriate harmonic superspace. This formulation makes the explicit construction of solutions a rather more tractable proposition than previous attempts. (orig.)

  17. Native Michigan plants stimulate soil microbial species changes and PAH remediation at a legacy steel mill.

    Science.gov (United States)

    Thomas, John C; Cable, Edward; Dabkowski, Robert T; Gargala, Stephanie; McCall, Daniel; Pangrazzi, Garett; Pierson, Adam; Ripper, Mark; Russell, Donald K; Rugh, Clayton L

    2013-01-01

    A 1.3-acre phytoremediation site was constructed to mitigate polyaromatic hydrocarbon (PAH) contamination from a former steel mill in Michigan. Soil was amended with 10% (v/v) compost and 5% (v/v) poultry litter. The site was divided into twelve 11.89 m X 27.13 m plots, planted with approximately 35,000 native Michigan perennials, and soils sampled for three seasons. Soil microbial density generally increased in subplots of Eupatorium perfoliatum (boneset), Aster novae-angliae (New England aster), Andropogon gerardii (big bluestem), and Scirpus atrovirens (green bulrush) versus unplanted subplots. Using enumeration assays with root exudates, PAH degrading bacteria were greatest in soils beneath plants. Initially predominant, Arthrobacter were found capable of degrading a PAH cocktail in vitro, especially upon the addition of root exudate. Growth of some Arthrobacter isolates was stimulated by root exudate. The frequency of Arthrobacter declined in planted subplots with a concurrent increase in other species, including secondary PAH degraders Bacillus and Nocardioides. In subplots supporting only weeds, an increase in Pseudomonas density and little PAH removal were observed. This study supports the notion that a dynamic interplay between the soil, bacteria, and native plant root secretions likely contributes to in situ PAH phytoremediation.

  18. STUDIES ON SELECTED PROPERTIES OF SURFACE LAYER OF C45 STEEL OBJECTS AFTER LASER CUTTING AND MILLING

    Directory of Open Access Journals (Sweden)

    Kazimierz Zaleski

    2014-09-01

    Full Text Available The article presents the results of studying the effects of technological parameters of milling upon surface roughness and microhardness of C45 steel objects after laser cutting. The metallographic structure formed as an effect of cutting by laser was also analyzed. The milling was performed on a FV-580a vertical machining centre. Depth of cut and feed per tooth were changed within the following range: ap = 0.09–0.18 mm and fz = 0.02–0.17 mm/tooth. To measure the surface roughness a Surtronic 3+ profile graphometer was used, whereas microhardness was measured with the use of a Leco LM 700AT microhardness tester. The surface roughness was significantly improved as a result of milling. The laser beam input and output zones were eliminated. Only a part of the layer hardened by laser cutting was removed while milling, in effect of which after milling the hardness of surface layer is much higher than hardness of the core.

  19. Energy management system for an integrated steel plant

    Energy Technology Data Exchange (ETDEWEB)

    Perti, A.K.; Sankarasubramian, K.; Shivramakrishnan, J. (Bhilai Steel Plant, Bhilai (India))

    1992-09-01

    The cost of energy contributes 35 to 40% to the cost of steel production. Thus a lot of importance is being given to energy conservation in steel production. The paper outlines energy conservation measures at the Bhilai Steel Plant, India. Measures include: modifications to furnaces; partial briquetting of coal charge; and setting up an energy centre to integrate measurement and computer systems with despatches, engineers and managers of energy. 4 refs., 4 figs., 3 tabs.

  20. The Green Integrated Forest Biorefinery: An innovative concept for the pulp and paper mills

    International Nuclear Information System (INIS)

    Rafione, Tatiana; Marinova, Mariya; Montastruc, Ludovic; Paris, Jean

    2014-01-01

    The Green Integrated Forest Biorefinery (GIFBR), a new concept suitable for implementation in pulp and paper mills is characterized by low greenhouse gases emissions, reduced water consumption and production of effluents. Its fossil fuel consumption must be nil. Several challenges have to be addressed to develop a sustainable GIFBR facility. An implementation strategy by phase is proposed to schedule the total capital investment over several years and to mitigate the economic risks associated with the transformation of an existing pulp and paper mill into a GIFBR. In the first phase of the methodology, the receptor mill and the biorefinery plant are selected. An intensive energy and material integration of the two plants is performed in the second phase, then a gasification unit is implemented and, finally a polygeneration unit is installed. The methodology is illustrated by application to a case study based on a reference Canadian Kraft mill. Each phase of the implementation strategy of the GIFBR is described. - Highlights: • The Green Integrated Forest Biorefinery (GIFBR) is a new biorefinery concept. • A GIFBR includes a pulp mill, a biorefinery, a gasification and a polygeneration units. • An implementation strategy by phase is proposed to successfully develop a GIFBR. • To determine achievable level of integration between the GIFBR constituents is crucial. • GIFBR concept technically and economically feasibility for pulp and paper mills

  1. New pressure control method of mixed gas in a combined cycle power plant of a steel mill

    Science.gov (United States)

    Xie, Yudong; Wang, Yong

    2017-08-01

    The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.

  2. Nano-oxide nucleation in a 14Cr-ODS steel elaborated by reactive-inspired ball-milling: Multiscale characterizations

    International Nuclear Information System (INIS)

    Brocq, M.; Legendre, F.; Sakasegawa, H.; Radiguet, B.; Cuvilly, F.; Pareige, P.; Mathon, M.H.

    2009-01-01

    Oxide dispersion strengthened (ODS) steels are promising structural materials for both fusion and fission Generation IV reactors. Indeed, they exhibit excellent mechanical and creep properties and radiation resistance thanks to a fine and dense dispersion of complex nanometric oxides. ODS steels are usually elaborated by ball-milling iron based and yttrium oxide powders and then by thermomechanical treatments. It is expected that ball-milling dissolves yttrium oxides in the metallic matrix and that annealing induces nano-oxide precipitation. However the formation mechanism remains unclear and as a consequence the process is still uncontrolled. In this context, we proposed a new approach based on reactive ball milling of iron oxide (Fe 2 O 3 ), yttria (YFe 3 ) and iron based alloy in a dedicated instrumented ball-milling device. Also, a fine scale characterization, after each step of the process including ball-milling, is performed. A Fe-14Cr-2W-1Ti-0.8Y-0.2O (%wt) ODS steel was synthesized by reactive ball-milling and was characterized at very fine scale in both as-milled and as-annealed state. Atom Probe Tomography (APT) and Small Angle Neutron Scattering (SANS) were combined. After ballmilling, most of Y and O were, as expected, in solution in the ferritic matrix but some complex Y-Ti nano-oxides were also observed, indicating that oxide nucleation can start during ball-milling. With annealing the number of nano-oxides increases. In this presentation, experimental results of APT and SANS will be detailed and compared with what is usually observed in ODS steels elaborated by conventional ball milling. Finally, a formation mechanism of nano-oxides deduced from these results will be proposed. (author)

  3. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    International Nuclear Information System (INIS)

    Matinyan, S.G.; Prokhorenko, E.V.; Savvidy, G.K.

    1986-01-01

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. The phase space of this system is shown to have no quasi-periodic motion specific for integrable systems. In particular, the well-known Wu-Yang static solution is unstable, so its vicinity in phase is the stochasticity region

  4. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    Energy Technology Data Exchange (ETDEWEB)

    Matinyan, S G; Prokhorenko, E B; Savvidy, G K

    1988-03-07

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. It is shown that the motion of this system is ergodic, while the system itself is non-integrable, i.e. manifests dynamical chaos.

  5. Flank wear analysing of high speed end milling for hardened steel D2 using Taguchi Method

    Science.gov (United States)

    Hazza Faizi Al-Hazza, Muataz; Ibrahim, Nur Asmawiyah bt; Adesta, Erry T. Y.; Khan, Ahsan Ali; Abdullah Sidek, Atiah Bt.

    2017-03-01

    One of the main challenges for any manufacturer is how to decrease the machining cost without affecting the final quality of the product. One of the new advanced machining processes in industry is the high speed hard end milling process that merges three advanced machining processes: high speed milling, hard milling and dry milling. However, one of the most important challenges in this process is to control the flank wear rate. Therefore a analyzing the flank wear rate during machining should be investigated in order to determine the best cutting levels that will not affect the final quality of the product. In this research Taguchi method has been used to investigate the effect of cutting speed, feed rate and depth of cut and determine the best level s to minimize the flank wear rate up to total length of 0.3mm based on the ISO standard to maintain the finishing requirements.

  6. Final Environmental Impact Statement Permit Application by United States Steel Corp. Proposed Lake Front Steel Mill, Conneaut, Ohio. Volume 1,

    Science.gov (United States)

    1979-04-01

    substrate (bottom) in an aquatic environment. Biochemical Oxygen Demand (BOD) - The amount of dissolved oxygen required to meet the metabolic needs of...Furnace & Ladle Lining Removal 6 Dempster Dinosaur Diesel Scrap Box Handling 1 Lift-A-Loft Propane Maintenance Scaffold 2 Breezewagon Furnace Cooling 1...10,000 lb Electric Miscellaneous (Battery) Roll Shop 2 Dempster Dinosaur 15 cu yd - Diesel Scale Handling 30 ton (incl. Plate Mill) 3 Motor Scooter 4

  7. Final Environmental Impact Statement. Permit Application by United States Steel Corp., Proposed Lake Front Steel Mill, Conneaut, OH. Volume 4

    Science.gov (United States)

    1979-01-01

    aditin t fis an g.alim" sbl Case n limitatiom he the kind of air that is %bon all talks began regarding building of a mill in Comact, it was my peesaomly...all.. determination of relative bpp -PlC 12 w eies thO f feSW~ d U Ifom a t peroje c am~r . Luh e r r s i a e a o as- itioc. levels for *an bird species

  8. The stainless steel beneficial reuse integrated demonstration

    International Nuclear Information System (INIS)

    Boettinger, W.L.; Lutz, R.N.

    1994-01-01

    Process water heat exchangers at SRS contains over 95% 304 stainless steel which could be recycled back to DOE in a ''controlled release'' manner, that is, the radioactive scrap metal (RSM) could be reprocessed into new reusable products for return to DOE for use within the DOE Complex. In 1994, a demonstration was begun to recycle recycle contaminated stainless steel by melting 60 tons of RSM and refabricating it into containers for long-term temporary storage. The demonstration covers the entire recycle chain; the melting and the fabrication are to be done through subcontracts with private industry. Activity level of RSM to be supplied to industry is less than one curie total; the average specific activity level of the cobalt-60 which will be imbedded in the final products was estimated to be 117 pico curies per gram (4.31 becquerels/gram)

  9. harmonic load modeling: a case study of 33 kv abuja steel mill feeder

    African Journals Online (AJOL)

    HOD

    techniques are adopted. This paper studied the harmonic orders of the 33 kV Abuja Steel Feeder modeled as a ... (ETAP) software package was deployed to perform Discrete Fast Transform (DFT) while the input ... and documented in research and development articles ... network with 33kV Abuja Steel feeder as case study.

  10. Wess-Zumino and super Yang-Mills theories in D=4 integral superspace

    Science.gov (United States)

    Castellani, L.; Catenacci, R.; Grassi, P. A.

    2018-05-01

    We reconstruct the action of N = 1 , D = 4 Wess-Zumino and N = 1 , 2 , D = 4 super-Yang-Mills theories, using integral top forms on the supermanifold M^{(.4|4)} . Choosing different Picture Changing Operators, we show the equivalence of their rheonomic and superspace actions. The corresponding supergeometry and integration theory are discussed in detail. This formalism is an efficient tool for building supersymmetric models in a geometrical framework.

  11. An integrated condition-monitoring method for a milling process using reduced decomposition features

    International Nuclear Information System (INIS)

    Liu, Jie; Wu, Bo; Hu, Youmin; Wang, Yan

    2017-01-01

    Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification. (paper)

  12. Collaborative Scheduling between OSPPs and Gasholders in Steel Mill under Time-of-Use Power Price

    Directory of Open Access Journals (Sweden)

    Juxian Hao

    2017-08-01

    Full Text Available Byproduct gases generated during steel production process are the main fuels for on-site power plants (OSPPs in steel enterprises. Recently, with the implementation of time-of-use (TOU power price in China, increasing attention has been paid to the collaborative scheduling between OSPPs and gasholders. However, the load shifting potential of OSPPs has seldom been discussed in previous studies. In this paper, a mixed integer linear programming (MILP-based scheduling model is built to evaluate the load shifting potential and the corresponding economic benefits. A case study is conducted on two steel enterprises with different configurations of OSPPs, and the optimal operation strategy is also discussed.

  13. Efficient production of nanoparticle-loaded orodispersible films by process integration in a stirred media mill.

    Science.gov (United States)

    Steiner, Denise; Finke, Jan Henrik; Kwade, Arno

    2016-09-25

    Orodispersible films possess a great potential as a versatile platform for nanoparticle-loaded oral dosage forms. In this case, poorly water-soluble organic materials were ground in a stirred media mill and embedded into a polymer matrix. The aim of this study was the shortening of this manufacturing process by the integration of several process steps into a stirred media mill without facing disadvantages regarding the film quality. Furthermore, this process integration is time conserving due to the high stress intensities provided in the mill and applicable for high solids contents and high suspension viscosities. Two organic materials, the model compound Anthraquinone and the active pharmaceutical ingredient Naproxen were investigated in this study. Besides the impact of the film processing on the crystallinity of the particles in the orodispersible film, a particle load of up to 50% was investigated with the new developed processing route. Additionally, a disintegration test was developed, combining an appropriate amount of saliva substitute and a clear endpoint determination. In summary, high nanoparticle loads in orodispersible films with good particle size preservation after film redispersion in water as well as a manufacturing of the film casting mass within a few minutes in a stirred media mill was achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Toolpath Strategy and Optimum Combination of Machining Parameter during Pocket Mill Process of Plastic Mold Steels Material

    Science.gov (United States)

    Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.

    2018-02-01

    Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.

  15. Integrated process for the removal of emulsified oils from effluents in the steel industry

    Energy Technology Data Exchange (ETDEWEB)

    Benito, J.M.; Rios, G.; Gutierrez, B.; Pazos, C.; Coca, J.

    1999-11-01

    Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicated coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.

  16. Effects of Ultrasonics-Assisted Face Milling on Surface Integrity and Fatigue Life of Ni-Alloy 718

    Science.gov (United States)

    Suárez, Alfredo; Veiga, Fernando; de Lacalle, Luis N. López; Polvorosa, Roberto; Lutze, Steffen; Wretland, Anders

    2016-11-01

    This work investigates the effects of ultrasonic vibration-assisted milling on important aspects such us material surface integrity, tool wear, cutting forces and fatigue resistance. As an alternative to natural application of ultrasonic milling in brittle materials, in this study, ultrasonics have been applied to a difficult-to-cut material, Alloy 718, very common in high-temperature applications. Results show alterations in the sub-superficial part of the material which could influence fatigue resistance of the material, as it has been observed in a fatigue test campaign of specimens obtained with the application of ultrasonic milling in comparison with another batch obtained applying conventional milling. Tool wear pattern was found to be very similar for both milling technologies, concluding the study with the analysis of cutting forces, exhibiting certain improvement in case of the application of ultrasonic milling with a more stable evolution.

  17. USE OF HIGH SPEED STEEL WORK ROLLS (HSS ON APERAM STECKEL MILL

    Directory of Open Access Journals (Sweden)

    Arísio de Abreu Barbosa

    2013-12-01

    Full Text Available This paper outlines the main actions taken to reinforce the decision to use HSS work rolls on the Aperam Steckel Mill. These are: work roll cooling improvements, systematically analyzing Eddy Current and Ultrasonic non destructive tests, mechanical adjustment of work roll crown and critically examining the rolling process. These actions applied together have contributed to the success of HSS rolls state of the art application, and provide the Steckel Mill with a much improved performance. Significant results have been achieved, such as: increasing of work roll change intervals, increasing of the available production time, a yield gain, a product quality improvement, less working hours needed for the roll grinding operation, etc

  18. Using of fluidized-bed jet mill to a super fine comminution of steel composite

    Directory of Open Access Journals (Sweden)

    D. Urbaniak

    2015-01-01

    Full Text Available In many industries the demand for very fine material increases. In the metallurgical industry, for example, there is increasing use of the production of high density metal elements with the use of metallurgical powder composites. The use of powder composites requires prior their grinding. Unfortunately, the very fine grinding is not an easy process. The using for this purpose fluidized-bed jet mill was proposed in the paper. The attempts of grinding of metallurgical powder were carried out in the fluidized-bed jet mill. After the experiment analyses of particle size distribution of grinding products were performed. The results are presented in graphs. Analyses of the obtained results concluded that the grinding of very fine metallurgical composite is possible and produces positive results.

  19. Detection of milled 100Cr6 steel surface by eddy current and incremental permeance methods

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Neslušan, M.; Stupakov, Alexandr

    2017-01-01

    Roč. 87, Apr (2017), s. 15-23 ISSN 0963-8695 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Eddy currents * hard milling * incremental permeance * magnetic materials * surface characterization Subject RIV: JB - Sensors, Measurment, Regulation OBOR OECD: Electrical and electronic engineering Impact factor: 2.726, year: 2016

  20. Some New Integrable Equations from the Self-Dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Ivanova, T.A.; Popov, A.D.

    1994-01-01

    Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs

  1. harmonic load modeling: a case study of 33 kv abuja steel mill feeder

    African Journals Online (AJOL)

    HOD

    An in-depth study of the harmonic orders inherent in a power system network is required ... This paper studied the harmonic orders of the 33 kV Abuja Steel Feeder .... models for various industrial and household electrical ..... Malaysia, 2013.

  2. Integrable model of Yang-Mills theory with scalar field and quasi-instantons

    International Nuclear Information System (INIS)

    Yatsun, V.A.

    1988-01-01

    In the framework of Euclidean conformally invariant Yang-Mills theory with a scalar field a study is made of a Hamiltonian system with two degrees of freedom that is integrable for a definite relationship between the coupling constants. A particular solution of the Hamilton-Jacobi equation leads to first-order equations that ensure a nonself-dual solution of instanton type of the considered model. As generalization of the first-order equations a quasiself-dual equation that can be integrated by means of the 't Hooft ansatz and leads to quasiself-dual instantons - quasi-instantons - is proposed

  3. Integrable model of Yang-Mills theory and quasi-instantons

    International Nuclear Information System (INIS)

    Yatsun, V.A.

    1986-01-01

    Within the framework of Euclidean conformal invariant Yang-Mills theory with a scalar field, a two-dimensional Hamiltonian system integrable for a definite relation between the coupling constants is considered. A particular solution of the Hamilton-Jacobi equation leads to a system of first-order equations providing a nonself-dual instanton-like solution of the model concerned. As a generalizationof the system, a quasi-self-duality equation is suggested which is integrated by means of the 't Hooft ansatz and results in quasi-self-dual instantons (quasi-instantons). (orig.)

  4. Integrating the processes of a Kraft pulp and paper mill and its supply chain

    International Nuclear Information System (INIS)

    Mesfun, Sennai; Toffolo, Andrea

    2015-01-01

    Highlights: • A process integration model that establishes material stream connections among typical Nordic forest industries is developed. • Potential benefit of the operating the different industries in one site is studied using pinch analysis. • Different scenarios considered to assess impact of prioritization on how to utilize excess biomass. • Results indicate large potential for improved biomass resource utilization. - Abstract: This paper investigates the possibility of combining different forest industries (a pulp and paper mill, its supply chain, and a wood-pellet plant) into an integrated industrial site in which they share a common heat and power utility. Advanced process integration and optimization techniques are used to study the site from both material and energy viewpoints. An existing pulp and paper mill is used as the site core plant and its pulp and paper production rates are kept fixed as they are in reality, while the other material flow links among the plants are based on the current industrial situation in Sweden. Different scenarios are evaluated in order to reflect the two main objectives that can be pursued (increased electricity production or biomass resource saving) and the two technologies that can be considered for the shared CHP system (boilers and product gas fired gas turbines). The corresponding non-integrated (standalone) configurations are compared to these scenarios to quantify the potential benefits of the integration. Investment opportunity is also calculated for the considered scenarios as an indicator of the economic convenience

  5. Comparison of gridded versus observation data to initialize ARAC dispersion models for the Algeciras, Spain steel mill CS-137 release

    International Nuclear Information System (INIS)

    Aluzzi, F J; Pace, J C; Pobanz, B M; Vogt, P J

    1999-01-01

    On May 30, 1998 scrap metal containing radioactive Cesium-137 (Cs-137) was accidentally melted in a furnace at the Acerinox steel mill in Algeciras, Spain. Cs-137 was released from the mill's smokestack, and spread across the western Mediterranean Sea to France and Italy and beyond. The first indication of the release was radiation levels up to 1000 times background reported by Swiss, French, and Italian authorities during the following two weeks. Initially no elevated radiation levels were detected over Spain. A release of hazardous material to the atmosphere is the type of situation the Atmospheric Release Advisory Capability (ARAC) emergency response organization was designed to address. The amount and exact time of the release were unknown, though the incident was thought to have taken place during the last week in May. Using air concentration measurements supplied by colleagues of ARAC in Spain, France, Switzerland, Italy, Sweden, Russia and the European Union, ARAC meteorologists estimated the magnitude and timing of the release (Vogt, 1999). Correctly locating the downwind footprint is the most important goal of emergency response modeling. In this study, we compare predicted results for the Algeciras event based on four wind data sources: (1) US Navy Operational Global Atmospheric Prediction System (NOGAPS) data alone, (2) surface and upper air observations alone, (3) NOGAPS data together with surface and upper air observations, and (4) forecasts from ARAC's in-house execution of the U.S. Navy Operational Regional Atmospheric Prediction System (NORAPS) (without surface or upper air observations). We compare the resulting dispersion predictions from ARAC's diagnostic dispersion modeling system to the measurements supplied by our European colleagues to determine which data source produced the best results

  6. Assessment of Air Pollution and its Effects on Health of Workers of Steel Re-Rolling Mills in Hyderabad

    Directory of Open Access Journals (Sweden)

    Altaf Alam Noonari

    2016-04-01

    Full Text Available The SRRMs (Steel Re-Rolling Mills are being releasing air pollutants in the environment. In order to evaluate their effect on the health of the workers, health and safety issues were analyzed by first measuring the concentrations of SO x (OIxides of Sulphur, NO x (Oxides of Nitrogen, CO (Carbon Monoxide and O2 (Oxygen produced in the three SRRMs located in SITE area Hyderabad. The mean concentration of SO x , NO x and CO were in the order of 0.35, 0.280, 6.333 ppm, respectively, whereas the mean concentration of O 2 was 203.53 thousand ppm. As per results, the concentration ofair pollutants, including SOx and NO x were significantly higher than to the NEQS (National Environmental Quality Standards and NAAQS (National Ambient Air Quality Standards. The concentration ofCO was lower than to the NAAQS, but higher than to the NEQs, while the concentration of O2 was slightly lower than to the standard value. The workers who were exposed to these air pollutants are being suffering from chronic diseases related to breathing and allergies. Moreover, labour staff was lifting heavy loads manually, which causes them to muscular and joint problems. In all the SRRMs under study, the electrical and mechanical equipments were used without any safety. The MSDS were not displayed on the workstations, the housekeeping was inadequate and most of the workers were performing their jobs without personal protective equipment. In addition to these, the other serious issues related to the occupational health and safety were an unhygienic supply of water, higher noise level, placement of explosive cylinders in the open atmosphere and unavailability of the first aid facilities in the Mill premises.

  7. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  8. Integrated modeling and analysis of ball screw feed system and milling process with consideration of multi-excitation effect

    Science.gov (United States)

    Zhang, Xing; Zhang, Jun; Zhang, Wei; Liang, Tao; Liu, Hui; Zhao, Wanhua

    2018-01-01

    The present researches about feed drive system and milling process are almost independent with each other, and ignore the interaction between the two parts, especially the influence of nonideal motion of feed drive system on milling process. An integrated modeling method of ball screw feed system and milling process with multi-excitation effect is proposed in this paper. In the integrated model, firstly an analytical model of motor harmonic torque with consideration of asymmetrical drive circuit and asymmetrical permanent magnet is given. Then, the numerical simulation procedure of cutter/workpiece engagement during milling process with displacement fluctuation induced by harmonic torque is put forward, which is followed by the solving flow for the proposed integrated model. Based on the integrated model, a new kind of quality defect shown as contour low frequency oscillation on machined surface is studied by experiments and simulations. The results demonstrate that the forming mechanism of the contour oscillation can be ascribed to the multi-excitation effect with motor harmonic torque and milling force. Moreover, the influence of different milling conditions on the contour oscillation characteristics, particularly on surface roughness, are further discussed. The results indicate that it is necessary to explain the cause of the new kind of quality defect with a view of system integration.

  9. Influence of minimum quantity of lubricant (MQL on tool life of carbide cutting tools during milling process of steel AISI 1018

    Directory of Open Access Journals (Sweden)

    Diego Núñez

    2017-03-01

    Full Text Available Nowadays, high productivity of machining is an important issue to obtain economic benefits in the industry. This purpose could be reached with high cutting velocity and feed rate. However, the inherently behavior produce high temperatures in the interface of couple cutting tool/workpiece. Many cutting fluids have been developed to control temperature in process and increase tool life. The objective of this paper is to compare the carbide milling tool wear using different systems cutting fluids: flood and minimum quantity of lubrication (MQL. The values of carbide milling cutting tool wear was evaluate according with the standard ISO 8688-1 1989. The experimental results showed that using MQL reduces significantly (about 40% tool wear in milling AISI 1018 steel at industrial cutting conditions.

  10. Effect of milling time and annealing temperature on nanoparticles evolution for 13.5% Cr ODS ferritic steel powders by joint application of XAFS and TEM

    Science.gov (United States)

    He, P.; Hoffmann, J.; Möslang, A.

    2018-04-01

    The characteristics of strengthening nanoparticles have a major influence on the mechanical property and irradiation resistance of oxide dispersion strengthened (ODS) steels. To determine how to control nanoparticles evolution, 0.3% Ti with 0.3% Y2O3 were added in 13.5%Cr pre-alloyed steel powders via different milling and consolidation conditions, then characterized by transmission electron microscopy (TEM) and X-ray absorption fine structure (XAFS) at synchrotron irradiation facility. The dissolution of Y2O3 is greatly dependent on the milling time at fixed milling speeds. After 24 h of milling, only minor amounts of the initially added Y2O3 dissolve into the steel matrix whereas TEM results reveal nearly complete dissolution of Y2O3 in 80-h-milled powder. The annealed powder FT-A800 (at 800 °C for 1 h) exhibits a structure near to the initially added Y2O3. The slightly deviation may be accounted for considerable lattice distortion related to the presence of atomic vacancies or formation of Y-Ti-O nucleus. The annealed powders FT-A1000 and FT-A1100 contain complex mixtures of Y-O/Y-Ti-O oxides, which cannot be fitted by any single thermally stable compounds. The coordination numbers of these first two shells in the annealed powders significantly raise as a function of the annealing temperature, indicating the formation of more ordered Y-O or Y-Ti-O particles. The extended X-ray absorption fine structure (EXAFS) spectrum could not necessarily distinguish the dominant oxide species.

  11. Integrable open spin chain in Super Yang-Mills and the plane-wave/SYM duality

    International Nuclear Information System (INIS)

    Chen Bin; Wang Xiaojun; Wu Yongshi

    2004-01-01

    We investigate the integrable structures in an N = 2 superconfomal Sp(N) Yang-Mills theory with matter, which is dual to an open+closed string system. We restrict ourselves to the BMN operators that correspond to free string states. In the closed string sector, an integrable structure is inherited from its parent theory, N = 4 SYM. For the open string sector, the planar one-loop mixing matrix for gauge invariant holomorphic operators is identified with the Hamiltonian of an integrable SU(3) open spin chain. Using the K-matrix formalism we identify the integrable open-chain boundary conditions that correspond to string boundary conditions. The solutions to the algebraic Bethe ansatz equations (ABAE) with a few impurities are shown to recover the anomalous dimensions that exactly match the spectrum of free open string in the plane-wave background. We also discuss the properties of the solutions of ABAE beyond the BMN regime. (author)

  12. The Effect of Powder Ball Milling on the Microstructure and Mechanical Properties of Sintered Fe-Cr-Mo-Mn-(Cu) Steel

    Science.gov (United States)

    Kulecki, P.; Lichańska, E.

    2017-12-01

    The effect of ball milling powder mixtures of Höganäs pre-alloyed iron Astaloy CrM, low-carbon ferromanganese Elkem, elemental electrolytic Cu and C-UF graphite on the sintered structure and mechanical properties was evaluated. The mixing was conducted using Turbula mixer for 30 minutes and CDI-EM60 frequency inverter for 1 and 2 hours. Milling was performed on 150 g mixtures with (in weight %) CrM + 1% Mn, CrM + 2% Mn, CrM + 1% Mn + 1% Cu and CrM + 2% Mn + 1% Cu, all with 0.6%C. The green compacts were single pressed at 660 MPa according to PN-EN ISO 2740. Sintering was carried out in a laboratory horizontal furnace Carbolite STF 15/450 at 1250°C for 60 minutes in 5%H2 - 95%N2 atmosphere with a heating rate of 75°C/min, followed by sintering hardening at 60°C/min cooling rate. All the steels were characterized by martensitic structures. Mechanical testing revealed that steels based on milled powders have slightly higher mechanical properties compared to those only mixed and sintered. The best combination of mechanical properties, for ball milled CrM + 1% Mn + 1% Cu was UTS 1046 MPa, TRS 1336 MPa and A 1.94%.

  13. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    International Nuclear Information System (INIS)

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references

  14. Optimizing Cutting Conditions for Minimum Surface Roughness in Face Milling of High Strength Steel Using Carbide Inserts

    Directory of Open Access Journals (Sweden)

    Adel Taha Abbas

    2016-01-01

    Full Text Available A full factorial design technique is used to investigate the effect of machining parameters, namely, spindle speed (N, depth of cut (ap, and table feed rate (Vf, on the obtained surface roughness (Ra and Rt during face milling operation of high strength steel. A second-order regression model was built using least squares method depending on the factorial design results to approximate a mathematical relationship between the surface roughness and the studied process parameters. Analysis of variance was conducted to estimate the significance of each factor and interaction with respect to the surface roughness. For Ra, the results show that spindle speed, depth of cut, and table feed rate have a significant effect on the surface roughness in both linear and quadratic terms. There is also an interaction between depth of cut and feed rate. It also appears that feed rate has the greatest effect on the data variation followed by depth of cut. For Rt, the results show that the table feed rate is the most effective factor followed by the depth of cut, while the spindle speed had a significant small effect only in its quadratic term. The conditions of minimum Ra and Rt are identified through least square optimization. Moreover, multiobjective optimization for minimizing Ra and maximizing metal removal rate Q is conducted and the results are presented.

  15. Open spin chains in super Yang-Mills at higher loops: some potential problems with integrability

    International Nuclear Information System (INIS)

    Agarwal, Abhishek

    2006-01-01

    The super Yang-Mills duals of open strings attached to maximal giant gravitons are studied in perturbation theory. It is shown that non-BPS baryonic excitations of the gauge theory can be studied within the paradigm of open quantum spin chains even beyond the leading order in perturbation theory. The open spin chain describing the two loop mixing of non-BPS giant gravitons charged under an su(2) of the so(6) R symmetry group is explicitly constructed. It is also shown that although the corresponding open spin chain is integrable at the one loop order, there is a potential breakdown of integrability at two and higher loops. The study of integrability is performed using coordinate Bethe ansatz techniques

  16. The 1+1 SU(2) Yang-Mills path integral

    International Nuclear Information System (INIS)

    Swanson, Mark S

    2004-01-01

    The path integral for SU(2) invariant two-dimensional Yang-Mills theory is recast in terms of the chromoelectric field strength by integrating the gauge fields from the theory. Implementing Gauss's law as a constraint in this process induces a topological term in the action that is no longer invariant under large gauge transformations. For the case that the partition function is considered over a circular spatial degree of freedom, it is shown that the effective action of the path integral is quantum mechanically WKB exact and localizes onto a set of chromoelectric zero modes satisfying antiperiodic boundary conditions. Summing over the zero modes yields a partition function that can be reexpressed using the Poisson resummation technique, allowing an easy determination of the energy spectrum, which is found to be identical to that given by other approaches

  17. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  18. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    International Nuclear Information System (INIS)

    Kumar, Pandu Sunil; Acharyya, Swati Ghosh; Rao, S.V. Ramana; Kapoor, Komal

    2017-01-01

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl – induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl – induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl – induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl – induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  19. Distinguishing effect of buffing vs. grinding, milling and turning operations on the chloride induced SCC susceptibility of 304L austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pandu Sunil [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Acharyya, Swati Ghosh, E-mail: swati364@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Rao, S.V. Ramana; Kapoor, Komal [Nuclear Fuel Complex, Department of Atomic Energy, Government of India, Hyderabad 500062 (India)

    2017-02-27

    The study compares the effect of different surface working operations like grinding, milling, turning and buffing on the Cl{sup –} induced stress corrosion cracking (SCC) susceptibility of austenitic 304L stainless steel (SS) in a chloride environment. SS 304L was subjected to four different surface working operations namely grinding, milling, turning and buffing. The residual stress distribution of the surface as a result of machining was measured by X-ray diffraction. The Cl{sup –} induced SCC susceptibility of the different surface worked samples were determined by testing in boiling magnesium chloride as per ASTM G36 for 3 h, 9 h and 72 h. The surface and cross section of the samples both pre and post exposure to the corrosive medium was characterized using optical microscopy, scanning electron microscopy (SEM). The study revealed that grinding, milling and turning operations resulted in high tensile residual stresses on the surface together with the high density of deformation bands making these surfaces highly susceptible to Cl{sup –} induced SCC. On the other hand buffing produces compressive residual stresses on the surface with minimal plastic strain, making it more resistance to Cl{sup –} induced SCC. The study highlights that the conventional machining operations on 304L SS surfaces should be invariably followed by buffing operation to make the surfaces more resistance to SCC. - Highlights: • Grinding, milling and turning lead to tensile residual stresses and plastic strain. • Buffing leads to compressive residual stresses on the surface and minimal strain. • Grinding, milling and turning make 304L SS surface susceptible to SCC. • Buffed 304L SS surface is immune to SCC. • Grinding, milling, and turning operations should be followed by buffing operation.

  20. A study of the machining characteristics of AISI 1045 steel and Inconel 718 with a cylindrical shape in laser-assisted milling

    International Nuclear Information System (INIS)

    Woo, Wan-Sik; Lee, Choon-Man

    2015-01-01

    Laser-assisted machining (LAM) is an effective and economic technique for enhancing the machinability of materials which are difficult-to-cut, such as nickel alloys, titanium alloys and various ceramics. Recently, many researchers have studied the effectiveness of laser-assisted turning (LAT) by measuring its cutting force, tool wear, specific cutting energy and surface roughness. However, research on laser-assisted milling (LAMill) is still in progress because it is difficult to control the laser heating source and tool path to machine the varying shape of the workpiece using this method. Moreover, there have been no researches of workpieces with three-dimensional shapes. During the LAMill process, the material is softened and the mechanical strength of the material is reduced when a laser is used to irradiate the surface of the workpiece. As a result, the cutting force is reduced and the surface roughness is improved with LAMill. The purpose of this study was to develop three-dimensional LAMill and to verify the effectiveness of this approach by comparing it to the conventional machining (CM) method. A thermal analysis was also conducted in order to determine the effective depth of cut (DOC). Also, the cutting force and surface roughness of AISI 1045 steel and Inconel 718 with cylindrical shapes were measured. Measured results of machining characteristics were also analyzed according to the cutting method, i.e., up cut milling, down cut milling and milling style. - Highlights: • The materials with cylindrical shape is first applied to laser-assisted milling (LAMill). • The method determining the depth of cut through thermal analysis is proposed. • The effectiveness of LAMill is verified by comparing the conventional machining. • Down cut milling is recommended for the case of Inconel 718.

  1. EAF smelting trials of waste-carbon briquettes at Avesta Works of Outokumpu Stainless AB for recycling oily mill scale sludge from stainless steel production

    Energy Technology Data Exchange (ETDEWEB)

    Yang Qixing; Bjoerkman, Bo [Div. of Process Metallurgy, Lulea Univ. of Tech., Lulea (Sweden); Holmberg, Nils [Raw Materials Handling, Avesta Works, Outokumpu Stainless AB, Avesta (Sweden)

    2009-06-15

    The EAF steel plant of Avesta Works, Outokumpu Stainless AB, has been used to perform smelting reduction trials of briquettes consisting of oily mill scale sludge, carbon and other wastes. A total of 7 briquette smelting trials were performed. The heats were processed smoothly smelting 3 t of briquettes or 3.4 mass-% of metal charges. The quantities of FeSi powder and O{sub 2} gas injected and electric energy supplied were increased to smelt briquettes of 6 t. No impacts were found on the analyses of the crude stainless steel tapped from the EAF during the trials. The results of the briquette smelting have been evaluated by referring to the data from the reference heats and results from earlier laboratory tests. The recovery of Cr, Ni and Fe elements from the briquettes was nearly complete and was found to occur mainly through carbon reduction. The slag masses were not increased in three trials as compared with the reference heats. There were moderate increases in the slag masses in four trial heats. The increases were, nevertheless, lower by 52-69% than the slag masses generated by Si-reduction of the briquette oxides. Afterwards, by referring results from the present trials, waste-carbon briquettes amounting to 1-3 t were smelted very smoothly in many of the EAF heats at Avesta Works to recycle the oily mill scale sludge and other wastes from stainless steel production. (orig.)

  2. An experimental analysis of process parameters to manufacture micro-channels in AISI H13 tempered steel by laser micro-milling

    Science.gov (United States)

    Teixidor, D.; Ferrer, I.; Ciurana, J.

    2012-04-01

    This paper reports the characterization of laser machining (milling) process to manufacture micro-channels in order to understand the incidence of process parameters on the final features. Selection of process operational parameters is highly critical for successful laser micromachining. A set of designed experiments is carried out in a pulsed Nd:YAG laser system using AISI H13 hardened tool steel as work material. Several micro-channels have been manufactured as micro-mold cavities varying parameters such as scanning speed (SS), pulse intensity (PI) and pulse frequency (PF). Results are obtained by evaluating the dimensions and the surface finish of the micro-channel. The dimensions and shape of the micro-channels produced with laser-micro-milling process exhibit variations. In general the use of low scanning speeds increases the quality of the feature in both surface finishing and dimensional.

  3. Integration of Succinic Acid Production in a Dry Mill Ethanol Facility

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-08-01

    This project seeks to address both issues for a dry mill ethanol biorefinery by lowering the cost of sugars with the development of an advanced pretreatment process, improving the economics of succinic acid (SA), and developing a model of an ethanol dry mill to evaluate the impact of adding different products and processes to a dry mill.

  4. Reactive-inspired ball-milling synthesis of an ODS steel: study of the influence of ball-milling and annealing; Synthese et caracterisation d'un acier ODS prepare par un procede inspiredu broyage reactif: etude de l'influence des conditions de broyage et recuit

    Energy Technology Data Exchange (ETDEWEB)

    Brocq, M.

    2010-10-15

    In the context of the development of new ODS (Oxide Dispersion Strengthened) steels as core materials in future nuclear reactors, we investigated a new process inspired by reactive ball-milling which consists in using YFe{sub 3} andFe{sub 2}O{sub 3} as starting reactants instead of Y{sub 2}O{sub 3} to produce a dispersion of nano-oxides in a steel matrix and the influence of synthesis conditions on the nano-oxide characteristics were studied. For that aim, ODS steels were prepared by ball-milling and then annealed. Multi-scale characterizations were performed after each synthesis step, using notably atom probe tomography and small angle neutron scattering. The process inspired by reactive ball-milling was shown to be efficient for ODS steel synthesis, but it does not modify the nano-oxide characteristics as compared to those of oxides directly incorporated in the matrix by ball-milling. Broadly speaking, the nature of the starting oxygen bearing reactants has no influence on nano-oxide formation. Moreover, we showed that the nucleation of nano-oxides nucleation can start during milling and continues during annealing with a very fast kinetic. The final characteristics of nano-oxides formed in this way can be monitored through ball-milling parameters (intensity, temperature and atmosphere) and annealing parameters (duration and temperature). (author)

  5. Influence of structure and properties of tubular billets of the 12 Kh 18N10T steel on deformability of tubes at cold-rolling mills

    International Nuclear Information System (INIS)

    Vil'yams, O.S.; Bol'shova, N.M.; Olejnik, O.V.; Velikotnaya, E.S.

    1979-01-01

    Metallographic analysis of the defects of the ''oblique cracks'' type on the surface of hot-rolled tubes of the 12Kh18N10T steel has been carried out. Recommended is the complex of mechanical properties and the structure factors (grain size) of conversion hot-rolled tubes, providing the combination of ductility and high rapture strength during rolling at pilger mills. At a grain size not coarser than number 5, a billet must have σsub(T) 5 >=40 %. Hot-rolled coarse-grained billet is not recommended for warm rolng because of high strain hardening

  6. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  7. Evaluation of End Mill Coatings

    Energy Technology Data Exchange (ETDEWEB)

    L. J. Lazarus; R. L. Hester,

    2005-08-01

    Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

  8. Intersection of separatrices of periodical trajectories and non-integrability of the classical Yang-Mills equations

    International Nuclear Information System (INIS)

    Nikolaevskij, E.S.; Shchur, L.N.

    1983-01-01

    A perticular case of the Yang-Mills (YM) equations has been studied. For this system a transversal intersection of separatrices of unstable periodical trajectories is discovered, hence, it follows that there are no first real-analytical integrals of motion additional to the Hamiltonian. As a result, a complete set of integrals does not exist for the system describing the classical YM fields. Numerical methods of constructing separatrices, double-asymptotical solutions and of determining the angles between separatrices have been described

  9. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    Science.gov (United States)

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  10. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    Science.gov (United States)

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  11. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    International Nuclear Information System (INIS)

    El-Gohary, F.A.; Badawy, M.I.; El-Khateeb, M.A.; El-Kalliny, A.S.

    2009-01-01

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H 2 O 2 dose, Fe +2 , COD:H 2 O 2 ratio and Fe +2 :H 2 O 2 ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l -1 for ρ-hydroxy-benzaldhyde to 3.273 mg l -1 for cinnamic acid

  12. Integrability in dipole-deformed \\boldsymbol{N=4} super Yang-Mills

    Science.gov (United States)

    Guica, Monica; Levkovich Maslyuk, Fedor; Zarembo, Konstantin

    2017-09-01

    We study the null dipole deformation of N=4 super Yang-Mills theory, which is an example of a potentially solvable ‘dipole CFT’: a theory that is non-local along a null direction, has non-relativistic conformal invariance along the remaining ones, and is holographically dual to a Schrödinger space-time. We initiate the field-theoretical study of the spectrum in this model by using integrability inherited from the parent theory. The dipole deformation corresponds to a nondiagonal Drinfeld-Reshetikhin twist in the spin chain picture, which renders the traditional Bethe ansatz inapplicable from the very beginning. We use instead the Baxter equation supplemented with nontrivial asymptotics, which gives the full 1-loop spectrum in the sl(2) sector. We show that anomalous dimensions of long gauge theory operators perfectly match the string theory prediction, providing a quantitative test of Schrödinger holography. Dedicated to the memory of Petr Petrovich Kulish.

  13. Integrated assessmet of the impacts associated with uranium mining and milling

    International Nuclear Information System (INIS)

    Parzyck, D.C.; Baes, C.F. III; Berry, L.G.

    1979-07-01

    The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from 222 Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 10 4 man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 10 5 man-lung rem from domestic use of natural gas and 4.4 x 10 7 man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed

  14. Integrated assessmet of the impacts associated with uranium mining and milling

    Energy Technology Data Exchange (ETDEWEB)

    Parzyck, D.C.; Baes, C.F. III; Berry, L.G.

    1979-07-01

    The occupational health and safety impacts are assessed for domestic underground mining, open pit mining, and milling. Public health impacts are calculated for a population of 53,000 located within 88 km (55 miles) of a typical southwestern uranium mill. The collective annual dose would be 6.5 man-lung rem/year, 89% of which is from /sup 222/Rn emitted from mill tailings. The dose to the United States population is estimated to be 6 x 10/sup 4/ man-lung rem from combined mining and milling operations. This may be comparedd with 5.7 x 10/sup 5/ man-lung rem from domestic use of natural gas and 4.4 x 10/sup 7/ man-lung rem from building interiors. Unavoidable adverse environmental impacts appear to be severe in a 250 ha area surrounding a mill site but negligible in the entire potentially impacted area (500,000 ha). The contemporary uranium resource and supply industry and its institutional settings are described in relation to the socio-economic impacts likely to emerge from high levels of uranium mining and milling. Radon and radon daughter monitoring techniques associated with uranium mining and milling are discussed.

  15. Process integration study of a kraft pulp mill converted to an ethanol production plant – Part A: Potential for heat integration of thermal separation units

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore

    2012-01-01

    Energy efficiency is an important parameter for the profitability of biochemical ethanol production from lignocellulosic raw material. The yield of ethanol is generally low due to the limited amount of fermentable compounds in the raw material. Increasing energy efficiency leads to possibilities of exporting more by-products, which in turn might reduce the net production cost of ethanol. Energy efficiency is also an important issue when discussing the repurposing of kraft pulp mills to biorefineries, since the mills in question most likely will be old and inefficient. Investing in energy efficiency measures might therefore have a large effect on the economic performance. This paper discusses energy efficiency issues related to the repurposing of a kraft pulp mill into a lignocellulosic ethanol production plant. The studied process is a typical Scandinavian kraft pulp mill that has been converted to a biorefinery with ethanol as main product. A process integration study, using pinch analysis and process simulations, has been performed in order to assess alternative measures for improving the energy efficiency. The improvements found have also been related to the possibilities for by-product sales from the plant (electricity and/or lignin). In a forthcoming paper, which is the second part of this process integration study, an economic analysis based on the results from this paper will be presented. - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Advanced pinch curves used to find new integration possibilities. ► 35–40% reduction of steam demand.

  16. Water scarcity assessment of steel production in national integrated steelmaking route

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2015-01-01

    Full Text Available The main goal of the study was the assessment of the water scarcity in steel production in integrated steelmaking route in Poland. The main goal of Water footprint (WF is quantifying and mapping of direct and indirect water use in life cycle of product or technology. In the paper Water Scarcity Indicators (WSI for steel production and unit processes in integrated steelmaking route was performed.

  17. A Comparative Study of Face Milling of D2 Steel Using Al2O3 Based Nanofluid Minimum Quantity Lubrication and Minimum Quantity Lubrication

    Directory of Open Access Journals (Sweden)

    Muhammad Ahsan Ul Haq

    2018-03-01

    Full Text Available This study aims to investigate the effects of process parameters feed, depth of cut and flow rate, on the temperature during face milling of the D2 tool steel under two different lubricant conditions, Minimum Quantity Lubrication (MQL and Nanofluid Minimum Quantity Lubrication (NFMQL. Distilled water with the flow rate range 200-400 ml/hr was used in MQL. 2% by weight concentration of Al2O3 nanoparticles with distilled water as the base fluid used as NFMQL with same flow rate. Response surface methodology RSM central composite design CCD was used to design experiment run, modeling, and analysis. ANOVA was used for the adequacy and validation of the system. The comparison shows that NFMQL condition reduced more temperature during machining.

  18. Plasma sintering of ferritic steel reinforced with niobium carbide prepared by high energy milling; Sinterizacao a plasma de aco ferritico reforcado com carbeto de niobio preparado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, J.F. da; Almeida, E.O.; Gomes, U.U.; Alves Junior, C.; Messias, A.P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Materiais Ceramicos e Metais Especiais; Universidade Federal do Rio Grande do Norte (UFRN), Natal (Brazil). Lab. de Processamento de Materiais por Plasma

    2010-07-01

    Plasma is an ionized gas where ions are accelerated from anode to cathode surface, where the sample is placed. There are a lot of collisions on cathode surface by ions heating and sintering the sample. High energy milling (HEM) is often used to produce composite particles to be used on powder metallurgy. These particles can exhibit fine particles and high phase dispersion. This present work aim to study ferritic steels reinforced with 3%NbC prepared by HEM and sintered on plasma furnace. Ferritic steel and NbC powders were milled during 5 hours and characterized by SEM, XRD and laser scattering. Then, these composite powders were compacted in a cylindrical steel die and then sintered in a plasma furnace. Vickers microhardness tests and SEM and XRD analysis were performed on sintered samples. (author)

  19. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    International Nuclear Information System (INIS)

    Mohd Hadzley, A B; Wan Mohd Azahar, W M Y; Izamshah, R; Mohd Shahir, K; Mohd Amran, A; Anis Afuza, A

    2016-01-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition. (paper)

  20. Response Surface Methodology Approach on Effect of Cutting Parameter on Tool Wear during End Milling of High Thermal Conductivity Steel -150 (HTCS-150)

    Science.gov (United States)

    Mohd Hadzley, A. B.; Mohd Azahar, W. M. Y. Wan; Izamshah, R.; Mohd Shahir, K.; Mohd Amran, A.; Anis Afuza, A.

    2016-02-01

    This paper presents a study of development the tool life's mathematical model during the milling process on High Thermal Conductivity Steel 150 (HTCS-150) 56 HRC. Using response surface methodology, the mathematical models for tool life have been developed in terms of cutting speed, feed rate and depth of cut. Box-Behnken techniques is a part of Response Surface Methodology (RSM) has been used to carry out the work plan to predict, the tool wear and generate the numerical equation in relation to independent variable parameters by Design Expert software. Dry milling experiments were conducted by using two levels of cutting speed, feed rate and depth of cut. In this study, the variable for the cutting speed, feed rate and depth of cut were in the range of 484-553 m/min, 0.31-0.36 mm/tooth, and 0.1-0.5 mm, width of cut is constantly 0.01mm per passes. The tool wear was measured using tool maker microscope. The effect of input factors that on the responds were identified by using mean of ANOVA. The responds of tool wear then simultaneously optimized. The validation of the test reveals the model accuracy 5% and low tool wear under same experimental condition.

  1. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    OpenAIRE

    The-Vinh Do; Quang-Cherng Hsu

    2016-01-01

    As a successful solution applied to hard machining, the minimum quantity lubricant (MQL) has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness....

  2. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    Science.gov (United States)

    Hazza, Muataz Hazza F. Al; Adesta, Erry Y. T.; Riza, Muhammad

    2013-12-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models.

  3. Flank wears Simulation by using back propagation neural network when cutting hardened H-13 steel in CNC End Milling

    International Nuclear Information System (INIS)

    Al Hazza, Muataz Hazza F; Adesta, Erry Y T; Riza, Muhammad

    2013-01-01

    High speed milling has many advantages such as higher removal rate and high productivity. However, higher cutting speed increase the flank wear rate and thus reducing the cutting tool life. Therefore estimating and predicting the flank wear length in early stages reduces the risk of unaccepted tooling cost. This research presents a neural network model for predicting and simulating the flank wear in the CNC end milling process. A set of sparse experimental data for finish end milling on AISI H13 at hardness of 48 HRC have been conducted to measure the flank wear length. Then the measured data have been used to train the developed neural network model. Artificial neural network (ANN) was applied to predict the flank wear length. The neural network contains twenty hidden layer with feed forward back propagation hierarchical. The neural network has been designed with MATLAB Neural Network Toolbox. The results show a high correlation between the predicted and the observed flank wear which indicates the validity of the models

  4. Integrated technology selection for energy conservation and PAHs control in iron and steel industry: Methodology and case study

    International Nuclear Information System (INIS)

    Li, Li; Lu, Yonglong; Shi, Yajuan; Wang, Tieyu; Luo, Wei; Gosens, Jorrit; Chen, Peng; Li, Haiqian

    2013-01-01

    Energy conservation and PAHs (polycyclic aromatic hydrocarbon) control are two challenges for the iron and steel industry, especially where the industry has developed at high speed. How to select appropriate technologies to improve energy efficiency and control pollution from PAHs simultaneously is encountered by both the researchers and the decision makers. This study sets up a framework on technology selection and combination which integrates technology assessment, multiple objective programming and scenario analysis. It can predict proper technology combination for different emission controls, energy conservation targets and desired levels of production. An iron and steel factory in Southwestern China is cited as a case. It is shown that stricter PAHs control will drive the transformation from process control technology to alternative smelting technology. In low PAHs limit, 25% energy reduction is a threshold. Before inclusion of a restraint on energy consumption at 25% reduction, PAHs emission is the key limiting factor for the technology selection; while after inclusion of this restraint, energy consumption becomes the key limiting factor. The desired level of production will also influence the technology selection. This study can help decision makers to select appropriate technologies to meet the PAHs control objectives and energy conservation strategies in energy-intensive industries. - Highlights: ► We predict technical strategy for energy and PAHs reduction in iron and steel mill. ► With low PAHs control objectives, process control technologies are preferable. ► With medium and high PAHs control goals, alternative smelting technology is dominate. ► In low PAHs control objective, 25% energy reduction is a threshold

  5. Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Adriaan van Heiningen

    2007-06-30

    MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and

  6. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  7. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Solantausta, Y. [VTT Energy, Espoo (Finland). New Energy Technologies; Salo, K.; Horvath, A. [Carbona Inc. (Finland)

    1999-11-01

    In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million

  8. IGCC power plant integrated to a Finnish pulp and paper mill. IEA Bioenergy. Techno-economic analysis activity

    International Nuclear Information System (INIS)

    Koljonen, T.; Solantausta, Y.

    1999-01-01

    In Finland, the pulp and paper industry is the largest consumer of energy among the industries and its power demand will increase due to economical and strict environ- mental requirements. The ageing of oil and biomass boilers in Finland also represents a window of opportunity for the introduction of new environmentally sound technology with a high efficiency in power production, e.g., in biomass gasification. This site-specific study describes the technical and economic feasibility of a biomass gasification combined cycle producing heat and power for a typical Finnish pulp and paper mill. The mill produces SC (super calantered) paper 500 000 ADt/a. The paper mill employs sulphate pulp and GW (ground wood) pulp. The capacity of the pulp mill is 400 000 ADt/a (air dry ton/year) of which 120 000 ADt/a is used at the site. The heat demand of the integrate is covered by a recovery boiler and a bark boiler. A condensing steam turbine with two extractions generates electricity for the mill. The aim is to replace an old bark boiler by an IGCC (Integrated Gasification Combined Cycle) to enhance the economy and environmental performance of the power plant. The IGCC feasibility study is conducted for an pulp and paper integrate because of its suitable infrastructure for IGCC and a large amount of wood waste available at the site. For comparison, the feasibility of an IGCC integrated to a pulp mill is also assessed. The IGCC concept described is based on research and development work performed by Carbona, Inc., who acquired the rights for know-how of Enviropower, Inc. The operation and design of the IGCC concept is based on a 20 MWe gas turbine (MW151). The heat of gas turbine exhaust gas is utilised in a HRSG (Heat Recovery Steam Generator) of two pressure levels to generate steam for the pulp and paper mill and the steam turbine. The MCC power plant operates in condensing mode. The total investment cost of the IGCC plant is estimated at FIM 417 million (USD 83.4 million

  9. Evaluation of opportunities for heat integration of biomass-based Fischer–Tropsch crude production at Scandinavian kraft pulp and paper mill sites

    International Nuclear Information System (INIS)

    Ljungstedt, Hanna; Pettersson, Karin; Harvey, Simon

    2013-01-01

    This study investigates heat integrated production of FT (Fischer–Tropsch) crude, where excess heat from the FT crude plant is delivered to a typical Scandinavian pulp and paper mill that produces fine paper. The sizes of FT crude plants are quantified, when the amount of excess heat from the FT plant exactly matches the heating demand otherwise satisfied by the bark boiler at the mill, considering a number of development pathways at the mill, including various degrees of steam savings and biorefinery options, such as lignin extraction. Performance of integrated production is compared with that of an FT stand-alone plant on the basis of wood fuel-to-FT crude efficiency, GHG (greenhouse gas) emissions balances and FT crude production cost. The results show that there exists a heat integration opportunity for an FT crude plant ranging from 0 up to 350 MW (LHV) of wood fuel depending on the development pathway for the mill. The results indicate higher overall efficiency and a generally lower production cost for the heat integrated, co-located production. Heat integrated production has a larger potential to contribute to GHG emission mitigation, assuming a future generation of grid electricity emitting equal to or less than an NGCC (natural gas combined cycle) power plant. - Highlights: • We investigate opportunities for heat integrated FT crude production at a mill. • Typical kraft pulp and paper mills have a potential for heat integrated production. • We compare the heat integrated production with stand-alone FT crude production. • Higher efficiency and lower production cost for heat integrated production. • Reduction of GHG emissions is strongly dependent on grid electricity emissions

  10. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling; Obtencao de um aco inoxidavel de estrutura duplex do sistema FeMnAl processado por moagem de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Pavlak, I.E.; Cintho, O.M., E-mail: eng.igorpavlak@yahoo.com.b [Universidade Estadual de Ponta Grossa (UEPG), PR (Brazil); Capocchi, J.D.T. [Universidade de Sao Paulo (USP), SP (Brazil)

    2010-07-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  11. Integrity of austenitic stainless steel piping welds for nuclear service

    International Nuclear Information System (INIS)

    Canalini, A.; Lopes, L.R.

    1983-01-01

    A criterion applying K 1d concept was developed to determine the fracture mechanics properties of austenitic stainless steel nuclear piping welds. The critical dimensions, lenght and depth, for crack initiation were established and plotted in a chart. This study enables the dimensions of a discontinuity detected in an in-service inspection to be compared to the critical dimensions for crack initiation, and the indication can be judged critical or non-critical for the component. (author) [pt

  12. Optimization of Minimum Quantity Lubricant Conditions and Cutting Parameters in Hard Milling of AISI H13 Steel

    Directory of Open Access Journals (Sweden)

    The-Vinh Do

    2016-03-01

    Full Text Available As a successful solution applied to hard machining, the minimum quantity lubricant (MQL has already been established as an alternative to flood coolant processing. The optimization of MQL parameters and cutting parameters under MQL condition are essential and pressing. The study was divided into two parts. In the first part of this study, the Taguchi method was applied to find the optimal values of MQL condition in the hard milling of AISI H13 with consideration of reduced surface roughness. The L9 orthogonal array, the signal-to-noise (S/N ratio and analysis of variance (ANOVA were employed to analyze the effect of the performance characteristics of MQL parameters (i.e., cutting fluid type, pressure, and fluid flow on good surface finish. In the results section, lubricant and pressure of MQL condition are determined to be the most influential factors which give a statistically significant effect on machined surfaces. A verifiable experiment was conducted to demonstrate the reliability of the results. In the second section, the optimized MQL parameters were applied in a series of experiments to find out cutting parameters of hard milling. The Taguchi method was also used to optimize the cutting parameters in order to obtain the best surface roughness. The design of the experiment (DOE was implemented by using the L27 orthogonal array. Based on an analysis of the signal-to-noise response and ANOVA, the optimal values of cutting parameters (i.e., cutting speed, feed rate, depth-of-cut and hardness of workpiece were introduced. The results of the present work indicate feed rate is the factor having the most effect on surface roughness.

  13. Integrality of the monopole number in SU(2) Yang-Mills-Higgs theory on R3

    International Nuclear Information System (INIS)

    Groisser, D.

    1984-01-01

    We prove that in classical SU(2) Yang-Mills-Higgs theories on R 3 with a Higgs field in the adjoint representation, an integer-valued monopole number (magnetic charge) is canonically defined for any finite-action L 2 sub(1,loc) configuration. In particular the result is true for smooth configurations. The monopole number is shown to decompose the configuration space into path components. (orig.)

  14. Service behaviour of high speed steel rolling rolls used in hot strip mills; Comportamiento en servicio de los aceros rapidos utilizados en la fabricacion de los cilindros de trabajo de los trenes de bandas en caliente

    Energy Technology Data Exchange (ETDEWEB)

    Ziadi, A.; Belzunce, F. J.; Rodriguez, C.; Fernandez, I.

    2005-07-01

    Work rolls used in hot strip mills may be able to carry out severe actions: very high thermal stresses and wear, along with mechanical stresses due to normal rolling loads, which develop in the presence of cracks, produced by the former actions. The microstructure and the mechanical behaviour (strength and toughness) of high speed steels, which recently have been introduced in this applications, were studied in this work in comparison with high chromium cast irons. (Author) 7 refs.

  15. Replacement of steel cable with synthetic rope in mountain logging operations in Castanea sativa Mill. coppice stands

    Directory of Open Access Journals (Sweden)

    Elena Canga

    2014-12-01

    Full Text Available Aim of the study: The objective of this study was to evaluate skidding from stump area to roadside with a tracked skidder (Caterpillar 3DG XL using two different types of cable (steel or synthetic.Area of study: NW of Spain.Material and methods: A time study was performed to calculate productivity for the two types of cable and two regression models were fitted to predict the productive and cycle time of the tracked skidder.Research highlights: An increase of 12.53% in productivity (m3/SMH and improvements in working conditions using synthetic rope were found.Keywords: Chestnut; synthetic rope; time study; tracked skidder.

  16. Study on anaerobic treatment of hazardous steel-mill waste rolling oil (SmWRO) for multi-benefit disposal route.

    Science.gov (United States)

    Ma, Huanhuan; Li, Zifu; Yin, Fubin; Kao, William; Yin, Yi; Bai, Xiaofeng

    2014-01-01

    Steel-mill waste rolling oil (SmWRO) is considered as hazardous substance with high treatment and disposal fees. Anaerobic process could not only transform the hazardous substance into activated sludge, but also generate valuable biogas. This study aimed at studying the biochemical methane potential of SmWRO under inoculum to substrate VS ratios (ISRs) of 0.25, 0.5, 1, 1.5, 2 and 3 using septic tank sludge as inoculum in mesophilic and thermophilic conditions, with blank tests for control. Specific biogas yield (mL/g VS(added)), net biogas yield (mL/g VS(removed)) and VS removal were analyzed. The ANOVA results indicated great influence of ISR and temperature on studied parameters. ISR of 1.5 at 55°C and ISR of 1.5 and 2 at 35°C were suggested with the highest specific biogas yield (262-265 and 303mL/g VS(added)). Kinetic analysis showed that Gompertz model fit the experimental data best with the least RMSE and largest R(2). Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Integrated Computational Modelling of Thermochemical Surface Engineering of Stainless Steel

    DEFF Research Database (Denmark)

    Kücükyildiz, Ömer Can; Sonne, Mads Rostgaard; Thorborg, Jesper

    2017-01-01

    An implicit finite difference method (FDM) based numerical model for the prediction of composition- and stress-depth profiles developing during low temperature gas nitriding (LTGN) of 316 stainless steel is presented. The essential effects governing the kinetics of composition and coupled stress...... a plane-stress mechanical state. Huge compressive stress levels and steep stress gradients have previously been suggested to have an influence on the concentration profile. The corresponding large plastic deformation that occurs in the developing case is addressed in the model by isotropic plasticity...

  18. Geodiametris: an integrated geoinformatic approach for monitoring land pollution from the disposal of olive oil mill wastes

    Science.gov (United States)

    Alexakis, Dimitrios D.; Sarris, Apostolos; Papadopoulos, Nikos; Soupios, Pantelis; Doula, Maria; Cavvadias, Victor

    2014-08-01

    The olive-oil industry is one of the most important sectors of agricultural production in Greece, which is the third in olive-oil production country worldwide. Olive oil mill wastes (OOMW) constitute a major factor in pollution in olivegrowing regions and an important problem to be solved for the agricultural industry. The olive-oil mill wastes are normally deposited at tanks, or directly in the soil or even on adjacent torrents, rivers and lakes posing a high risk to the environmental pollution and the community health. GEODIAMETRIS project aspires to develop integrated geoinformatic methodologies for performing monitoring of land pollution from the disposal of OOMW in the island of Crete -Greece. These methodologies integrate GPS surveys, satellite remote sensing and risk assessment analysis in GIS environment, application of in situ and laboratory geophysical methodologies as well as soil and water physicochemical analysis. Concerning project's preliminary results, all the operating OOMW areas located in Crete have been already registered through extensive GPS field campaigns. Their spatial and attribute information has been stored in an integrated GIS database and an overall OOMW spectral signature database has been constructed through the analysis of multi-temporal Landsat-8 OLI satellite images. In addition, a specific OOMW area located in Alikianos village (Chania-Crete) has been selected as one of the main case study areas. Various geophysical methodologies, such as Electrical Resistivity Tomography, Induced Polarization, multifrequency electromagnetic, Self Potential measurements and Ground Penetrating Radar have been already implemented. Soil as well as liquid samples have been collected for performing physico-chemical analysis. The preliminary results have already contributed to the gradual development of an integrated environmental monitoring tool for studying and understanding environmental degradation from the disposal of OOMW.

  19. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    Science.gov (United States)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  20. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    Science.gov (United States)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  1. Comparative Investigation on Tool Wear during End Milling of AISI H13 Steel with Different Tool Path Strategies

    Science.gov (United States)

    Adesta, Erry Yulian T.; Riza, Muhammad; Avicena

    2018-03-01

    Tool wear prediction plays a significant role in machining industry for proper planning and control machining parameters and optimization of cutting conditions. This paper aims to investigate the effect of tool path strategies that are contour-in and zigzag tool path strategies applied on tool wear during pocket milling process. The experiments were carried out on CNC vertical machining centre by involving PVD coated carbide inserts. Cutting speed, feed rate and depth of cut were set to vary. In an experiment with three factors at three levels, Response Surface Method (RSM) design of experiment with a standard called Central Composite Design (CCD) was employed. Results obtained indicate that tool wear increases significantly at higher range of feed per tooth compared to cutting speed and depth of cut. This result of this experimental work is then proven statistically by developing empirical model. The prediction model for the response variable of tool wear for contour-in strategy developed in this research shows a good agreement with experimental work.

  2. Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

    Directory of Open Access Journals (Sweden)

    Ahmad A.L.

    2015-12-01

    Full Text Available This research emphasizes eloquently on membrane technology for treatment of palm oil mill effluent (POME as it is the Malaysia’s largest and most important agro based industry. Findings established significant quality improvement with an efficient recovery of water from palm oil mill via innovative membrane application. Conventional bio-methods, whilst adhering to the Department of Environment’s (DOE discharge regulations, produces brownish liquid which pales in comparison to the crystal clear water obtained through membrane treatment. The pre-treatment process consists of coagulation-flocculation using green environmental coagulant bases such as Moringa oleifera (MO seeds. The ultrafiltration polyvinylidene difluoride (PVDF and thin film composite (TFC reverse osmosis were vital for the membrane processes. The system gave 99% suspended solids reduction in suspended solid and 78% of water present was successfully recovered. This technology guarantees water recovery with drinking water quality; meeting the US Environmental Protection Agency (USEPA standard or could be recycled into the plant with sludge utilization for palm oil estates, thus enabling the concept of zero discharge to be executed in the industries. In addition, green and healthy antioxidants such as oil and beta-carotene can be recovered from POME further demonstrate. Silica gel showed better performance in separation of carotenes from oil at temperature 40°C using adsorption chromatography with 1154.55 ppm. The attractiveness of this technology, enabling the utilization of reuse of agricultural waste into potentially value added products.

  3. Investigation of Selected Surface Integrity Features of Duplex Stainless Steel (DSS) after Turning

    Czech Academy of Sciences Publication Activity Database

    Krolczyk, G.; Nieslony, P.; Legutko, S.; Hloch, Sergej; Samardžić, I.

    2015-01-01

    Roč. 54, č. 1 (2015), s. 91-94 ISSN 0543-5846 Institutional support: RVO:68145535 Keywords : duplex stainless steel * machining * turning * surface integrity * surface roughness Subject RIV: JQ - Machines ; Tools Impact factor: 0.959, year: 2014 http://hrcak.srce.hr/126702

  4. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    Andersson, E.; Harvey, S.

    2007-01-01

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO 2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO 2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO 2 -lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO 2 emissions' perspective, whereas with high CO 2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  5. Techno-economic assessment of integrating methanol or Fischer-Tropsch synthesis in a South African sugar mill.

    Science.gov (United States)

    Petersen, Abdul M; Farzad, Somayeh; Görgens, Johann F

    2015-05-01

    This study considered an average-sized sugar mill in South Africa that crushes 300 wet tonnes per hour of cane, as a host for integrating methanol and Fischer-Tropsch synthesis, through gasification of a combined flow of sugarcane trash and bagasse. Initially, it was shown that the conversion of biomass to syngas is preferably done by catalytic allothermal gasification instead of catalytic autothermal gasification. Thereafter, conventional and advanced synthesis routes for both Methanol and Fischer-Tropsch products were simulated with Aspen Plus® software and compared by technical and economic feasibility. Advanced FT synthesis satisfied the overall energy demands, but was not economically viable for a private investment. Advanced methanol synthesis is also not viable for private investment since the internal rate of return was 21.1%, because it could not provide the steam that the sugar mill required. The conventional synthesis routes had less viability than the corresponding advanced synthesis routes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy ...

    African Journals Online (AJOL)

    countries. The known alternative in such condition is ... Key words: Hollow mill, stripped screws, titanium locked plates ... used a locally manufactured stainless steel hollow mill, ... head ‑ plate hole” assembly as a mono‑block single unit. In.

  7. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  8. Palm oil mill effluent treatment using a two-stage microbial fuel cells system integrated with immobilized biological aerated filters.

    Science.gov (United States)

    Cheng, Jia; Zhu, Xiuping; Ni, Jinren; Borthwick, Alistair

    2010-04-01

    An integrated system of two-stage microbial fuel cells (MFCs) and immobilized biological aerated filters (I-BAFs) was used to treat palm oil mill effluent (POME) at laboratory scale. By replacing the conventional two-stage up-flow anaerobic sludge blanket (UASB) with a newly proposed upflow membrane-less microbial fuel cell (UML-MFC) in the integrated system, significant improvements on NH(3)-N removal were observed and direct electricity generation implemented in both MFC1 and MFC2. Moreover, the coupled iron-carbon micro-electrolysis in the cathode of MFC2 further enhanced treatment efficiency of organic compounds. The I-BAFs played a major role in further removal of NH(3)-N and COD. For influent COD and NH(3)-N of 10,000 and 125 mg/L, respectively, the final effluents COD and NH(3)-N were below 350 and 8 mg/L, with removal rates higher than 96.5% and 93.6%. The GC-MS analysis indicated that most of the contaminants were satisfactorily biodegraded by the integrated system. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M A; Hayek, B O; Al-Hmoud, N; Al-Gogazeh, L

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  10. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  11. Is Yang-Mills equation a totally integrable system. Lecture III

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  12. Investigation of the physical parameters of duplex stainless steel (DSS surface integrity after turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2015-01-01

    Full Text Available The article presents the influence of machining parameters on the microhardness of surface integrity (SI after turning by means of a coated sintered carbide wedge with a coating with ceramic intermediate layer. The investigation comprised the influence of cutting speed on the SI microhardness in dry machining. The material under investigation was duplex stainless steel with two-phase ferritic-austenitic structure. The results obtained allow for conclusions concerning the exploitation features of processed machine parts.

  13. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    International Nuclear Information System (INIS)

    Svensson, Elin; Berntsson, Thore; Stroemberg, Ann-Brith

    2009-01-01

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO 2 emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO 2 emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives

  14. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty-A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)], E-mail: elin.svensson@chalmers.se; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, (doi:10.1016/j.enpol.2008.10.023)] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives.

  15. Benefits of using an optimization methodology for identifying robust process integration investments under uncertainty. A pulp mill example

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Elin; Berntsson, Thore [Department of Energy and Environment, Division of Heat and Power Technology, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Stroemberg, Ann-Brith [Fraunhofer-Chalmers Research Centre for Industrial Mathematics, Chalmers Science Park, SE-412 88 Gothenburg (Sweden)

    2009-03-15

    This paper presents a case study on the optimization of process integration investments in a pulp mill considering uncertainties in future electricity and biofuel prices and CO{sub 2} emissions charges. The work follows the methodology described in Svensson et al. [Svensson, E., Berntsson, T., Stroemberg, A.-B., Patriksson, M., 2008b. An optimization methodology for identifying robust process integration investments under uncertainty. Energy Policy, in press, doi:10.1016/j.enpol.2008.10.023] where a scenario-based approach is proposed for the modelling of uncertainties. The results show that the proposed methodology provides a way to handle the time dependence and the uncertainties of the parameters. For the analyzed case, a robust solution is found which turns out to be a combination of two opposing investment strategies. The difference between short-term and strategic views for the investment decision is analyzed and it is found that uncertainties are increasingly important to account for as a more strategic view is employed. Furthermore, the results imply that the obvious effect of policy instruments aimed at decreasing CO{sub 2} emissions is, in applications like this, an increased profitability for all energy efficiency investments, and not as much a shift between different alternatives. (author)

  16. Pengaruh Beban Kerja dan Faktor Lingkungan Fisik Terhadap Tekanan Darah, Denyut Nadi dan Tingkat Kelelahan Pekerja Bagian ARC FURNACE dan ROLLING MILL PT. Inti General Yaja Steel Semarang

    Directory of Open Access Journals (Sweden)

    Ulfa Nurullita

    2015-12-01

    Full Text Available ABSTRACT Background: The existence of work efficiency can be reached with balancing work capacity and increase capacity in the working environment. One factor  in the  working  environment that cause work  inefficiency  is physical factor namely  heat stress, noise and lighting. The influence of physical  factors are indicated by  physical performance of the worker’s blood pressure  and fatigue level. Objective: to find out  the influence of work capacity and physical factors in the working  environment on the blood pressure, pulse, fatigue level of worker in  Arc Furnacearea  and Rolling Mill section, PT Inti General Yaja Steel Semarang. Methode: Type of the research was quasy experimental  with one group pre and post test design. The population were 178 worker  and  47 workers were  taken in this research. Confounding factors was cigarettes, cafein, drug consumption, and nutrition status. Result: There was  found differences of blood pressure before working  and after working (systole; p- Wilcoxon Sign Ranks = 0,001, diatole; p- Wilcoxon Sign Ranks, = 0,003. The average before working (systole=119,7 mmHg, diastole= 84 mmHg was higher than after working (systole=107,2 mmHg, diastole= 78,9 mmHg. There was  also  differences of  pulse rate before working  and after working  (p-paired t test= 0,001. The average of pulse before working (81,5 times/minute was lower than after working (87,5 times/minute. There was found differences of fatigue level before working and after working (p- Wilcoxon Sign Ranks=0,001. The average of fatigue level before working was measured  253,2 millisecond lower than after working  (290,7 milisecond. Conclusion: There is found  differences  of blood pressure, pulse and fatigue level before working  and after working. There are no differences of blood pressure transition, pulse transition and fatigue transition  based on heat stress, noise, lighting, work capacity, cigarettes, cafein, drug

  17. Utilisation aspects of ashes and green liquor dregs from an integrated semichemical pulp and board mill

    Energy Technology Data Exchange (ETDEWEB)

    Manskinen, K.

    2013-09-01

    This thesis investigated the properties of bottom and fly ashes originating from a bubbling fluidised bed boiler (120 MW) using two different fuel mixtures (i.e. Fuel mixture A: coal, wood and peat; and B: wood and peat) and of the green liquor dregs originating from the associated semichemical pulp and board mill in relation to the potential utilisation of these residues from various aspects. The total concentrations of As, Cd, Cr, Cu, Ni, Pb, Zn and Hg in the bottom ashes were lower than the maximum allowable concentrations for these elements in forest fertilisers. The total Ca concentrations in bottom ashes A (2.4%; d.w.) and B (3.4%; d.w.) were lower than the legal requirement of 6.0% (d.w.) for ash used as a forest fertiliser. The total Ca concentrations in fly ashes A (6.4%; d.w.) and B (11.0%; d.w.) were higher than the minimum limit value of 6.0% (d.w.), but the concentration of As in fly ashes A (46.9 mg/kg d.w.) and B (41.3 mg/kg; d.w.) exceeded the maximum limit value of 40 mg/kg (d.w.). Only bottom ash B could be used as a forest fertiliser, provided some additional Ca is used. The bottom ashes both fulfilled the Finnish regulations on waste recovery in earth construction. Due to the elevated total concentration of PAH (23 mg/kg; d.w.) and extractable concentrations of Mo (3.9 mg/kg; d.w.) and Se (0.2 mg/kg; d.w.) in fly ash A, this residue cannot be used in covered structures. Due to the elevated concentration of PAH (90 mg/kg; d.w.) in fly ash B, this residue cannot be used in covered and paved structures. However, the utilisation of these residues as an earth construction agent is still possible, but an environmental permit would be required. According to the sequential extraction studies, extractable concentrations of most of the elements in the fly ash A were higher than those in the bottom ash A. The extractability of various elements, both in the bottom and fly ashes A, varied widely. Most of the elements did not occur as readily soluble and

  18. Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    This paper presents a comparison between four gasification-based biorefineries integrated with a pulp and paper mill. It is a continuation of 'Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part A: Heat integration and system performance'. Synthesis into methanol, Fischer-Tropsch crude or synthetic natural gas, or electricity generation in a gas turbine combined cycle, were evaluated. The concepts were assessed in terms of GHG (greenhouse gas) emissions and economic performance. Net annual profits were positive for all biofuel cases for an annuity factor of 0.1 in the year 2030; however, the results are sensitive to biofuel selling prices and CO_2_,_e_q charge. Additionally, GHG emissions from grid electricity are highly influential on the results since all biofuel processes require external power. Credits for stored CO_2 might be necessary for processes to be competitive, i.e. storage of separated CO_2 from the syngas conditioning has an important role to play. Without CO_2 storage, the gas turbine case is better than, or equal to, biofuels regarding GHG emissions. Efficiency measures at the host mill prior to heat integration of a gasification process are beneficial from the perspective of GHG emissions, while having a negative impact on the economy. - Highlights: • Biomass gasification integrated with a pulp and paper mill was evaluated. • Greenhouse gas emission consequences and economic performance were assessed. • CCS has an important role to play, both in terms of emissions and economy. • Green electricity production is competitive compared to biofuel production in terms of GHG. • All biofuel cases are profitable in 2030 with assumed level of future policy instruments.

  19. Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network

    International Nuclear Information System (INIS)

    Wu, Junnian; Wang, Ruiqi; Pu, Guangying; Qi, Hang

    2016-01-01

    Highlights: • Exergy, energy and CO_2 emissions assessment of iron and steel industrial network. • Effects of industry symbiosis measures on exergy, energy and CO_2 emissions. • Exploring the environmental impact from exergy losses. • The overall performance indexes are proposed for iron and steel industrial network. • Sinter strand and the wet quenching process have the lowest exergy efficiency. - Abstract: Intensive energy consumption and high pollution emissions in the iron and steel industry have caused problems to the energy system, in the economy, and in the environment. Iron and steel industrial network as an example of energy conservation and emissions reduction, require better analysis and assessment. The present study comprehensively assesses an iron and steel industrial network and its environmental performance with respect to exergy, energy and CO_2 emissions. The results show that the sinter strand needs to be greatly improved and the wet quenching process needs to be completely redesigned. The overall exergy efficiency and energy efficiency can be improved by adopting industrial symbiosis (IS) measures. We found that adjusting the energy structure to use renewable energy and recycling solid waste can greatly reduce CO_2 emissions. Moreover, the maximum exergy losses occurred in the blast furnace with the maximum CO_2 emissions. The iron making plant exerted a strong effect on the environment based on the equivalent CO_2 emission potentials. Many performance indicators of the entire industrial network were also examined in this work. It can be seen that integrated evaluation of energy and CO_2 emissions with exergy is necessary to help to mitigate adverse environmental impacts and more effectively fulfill the goals for energy conservation and emissions reduction.

  20. Integrated treatment of olive mill wastewater (OMW) by the combination of Fenton's reaction and anaerobic treatment

    Energy Technology Data Exchange (ETDEWEB)

    El-Gohary, F.A.; Badawy, M.I. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt); El-Khateeb, M.A. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)], E-mail: elkhateebcairo@yahoo.com; El-Kalliny, A.S. [Water Pollution Department, National Research Center (NRC), Dokki, Cairo (Egypt)

    2009-03-15

    The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10 l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H{sub 2}O{sub 2} dose, Fe{sup +2}, COD:H{sub 2}O{sub 2} ratio and Fe{sup +2}:H{sub 2}O{sub 2} ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48 h (24 h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l{sup -1} for {rho}-hydroxy-benzaldhyde to 3.273 mg l{sup -1} for cinnamic acid.

  1. Integrated biovalorization of wine and olive mill by-products to produce enzymes of industrial interest and soil amendments

    Energy Technology Data Exchange (ETDEWEB)

    Reina, R.; Ullrich, R.; García-Romera, I.; Liers, C.; Aranda, E.

    2016-11-01

    An integral and affordable strategy for the simultaneous production of lignin-modifying and carbohydrate active enzymes and organic amendment, with the aid of a saprobe fungus was developed by using olive oil and wine extraction by-products. The polyporal fungus Trametes versicolor was cultivated in soy or barley media supplemented with dry olive mill residue (DOR) as well as with grape pomace and stalks (GPS) in solid state fermentation (SSF). This strategy led to a 4-fold increase in the activity of laccase, the principal enzyme produced by SFF, in DOR-soy media as compared to controls. T. versicolor managed to secrete lignin-modifying enzymes in GPS, although no stimulative effect was observed. GPS-barley media turned out to be the appropriate medium to elicit most of the carbohydrate active enzymes. The reuse of exhausted solid by-products as amendments after fermentation was also investigated. The water soluble compound polymerization profile of fermented residues was found to correlate with the effect of phytotoxic depletion. The incubation of DOR and GPS with T. versicolor not only reduced its phytotoxicity but also stimulated the plant growth. This study provides a basis for understanding the stimulation and repression of two groups of enzymes of industrial interest in the presence of different carbon and nitrogen sources from by-products, possible enzyme recovery and the final reuse as soil amendments. (Author)

  2. A preliminary analysis of incident investigation reports of an integrated steel plant: some reflection.

    Science.gov (United States)

    Verma, A; Maiti, J; Gaikwad, V N

    2018-06-01

    Large integrated steel plants employ an effective safety management system and gather a significant amount of safety-related data. This research intends to explore and visualize the rich database to find out the key factors responsible for the occurrences of incidents. The study was carried out on the data in the form of investigation reports collected from a steel plant in India. The data were processed and analysed using some of the quality management tools like Pareto chart, control chart, Ishikawa diagram, etc. Analyses showed that causes of incidents differ depending on the activities performed in a department. For example, fire/explosion and process-related incidents are more common in the departments associated with coke-making and blast furnace. Similar kind of factors were obtained, and recommendations were provided for their mitigation. Finally, the limitations of the study were discussed, and the scope of the research works was identified.

  3. Experimental investigation into effect of cutting parameters on surface integrity of hardened tool steel

    Science.gov (United States)

    Bashir, K.; Alkali, A. U.; Elmunafi, M. H. S.; Yusof, N. M.

    2018-04-01

    Recent trend in turning hardened materials have gained popularity because of its immense machinability benefits. However, several machining processes like thermal assisted machining and cryogenic machining have reveal superior machinability benefits over conventional dry turning of hardened materials. Various engineering materials have been studied. However, investigations on AISI O1 tool steel have not been widely reported. In this paper, surface finish and surface integrity dominant when hard turning AISI O1 tool steel is analysed. The study is focused on the performance of wiper coated ceramic tool with respect to surface roughness and surface integrity of hardened tool steel. Hard turned tool steel was machined at varying cutting speed of 100, 155 and 210 m/min and feed rate of 0.05, 0.125 and 0.20mm/rev. The depth of cut of 0.2mm was maintained constant throughout the machining trials. Machining was conducted using dry turning on 200E-axis CNC lathe. The experimental study revealed that the surface finish is relatively superior at higher cutting speed of 210m/min. The surface finish increases when cutting speed increases whereas surface finish is generally better at lower feed rate of 0.05mm/rev. The experimental study conducted have revealed that phenomena such as work piece vibration due to poor or improper mounting on the spindle also contributed to higher surface roughness value of 0.66Ra during turning at 0.2mm/rev. Traces of white layer was observed when viewed with optical microscope which shows evidence of cutting effects on the turned work material at feed rate of 0.2 rev/min

  4. Effect of machining parameters on surface integrity of silicon carbide ceramic using end electric discharge milling and mechanical grinding hybrid machining

    International Nuclear Information System (INIS)

    Ji, Renjie; Liu, Yonghong; Zhang, Yanzhen; Cai, Baoping; Li, Xiaopeng; Zheng, Chao

    2013-01-01

    A novel hybrid process that integrates end electric discharge (ED) milling and mechanical grinding is proposed. The process is able to effectively machine a large surface area on SiC ceramic with good surface quality and fine working environmental practice. The polarity, pulse on-time, and peak current are varied to explore their effects on the surface integrity, such as surface morphology, surface roughness, micro-cracks, and composition on the machined surface. The results show that positive tool polarity, short pulse on-time, and low peak current cause a fine surface finish. During the hybrid machining of SiC ceramic, the material is mainly removed by end ED milling at rough machining mode, whereas it is mainly removed by mechanical grinding at finish machining mode. Moreover, the material from the tool can transfer to the workpiece, and a combination reaction takes place during machining.

  5. Integrated Approach for a Knowledge-Based Process Layout for Simultaneous 5-Axis Milling of Advanced Materials

    Directory of Open Access Journals (Sweden)

    F. Klocke

    2011-01-01

    Full Text Available Advanced materials, like nickel-based alloys, gain importance in turbomachinery manufacturing, where creating complex surfaces constitute a major challenge. However, milling strategies that provide high material removal rates at acceptable tooling costs demand optimized tool geometry and process parameter selection. In this paper, a description of circular milling is given, focusing on resulting engagement conditions. Regarding this, a test bench was designed to investigate the chip formation process in an analogy milling process. Furthermore, the methodology for the approach in the analogy process was developed. Results of a first test run in Inconel 718 verify the presented approach.

  6. Investigation of selected surface integrity features of duplex stainless steel (DSS after turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2015-01-01

    Full Text Available The article presents surface roughness profiles and Abbott - Firestone curves with vertical and amplitude parameters of surface roughness after turning by means of a coated sintered carbide wedge with a coating with ceramic intermediate layer. The investigation comprised the influence of cutting speed on the selected features of surface integrity in dry machining. The material under investigation was duplex stainless steel with two-phase ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps. The obtained results allow to draw conclusions about the characteristics of surface properties of the machined parts.

  7. Assessing dust exposure in an integrated iron and steel manufacturing plant in South India.

    Science.gov (United States)

    Ravichandran, B; Krishnamurthy, V; Ravibabu, K; Raghavan, S; Rajan, B K; Rajmohan, H R

    2008-01-01

    A study to monitor and estimate respirable particulate matter (RPM), toxic trace metal concentrations in the work environment was carried out in different sections of an integrated steel manufacturing industry. The average RPM concentration observed varied according to the section blast furnace was 2.41 mg/m;{3}; energy optimization furnace, 1.87 mg/m;{3}; sintering plant, 0.98 mg/m;{3}; continuous casting machine, 1.93 mg/m;{3}. The average trace metal concentration estimated from the RPM samples like iron, manganese, lead and chromium did not exceed ACGIH prescribed levels.

  8. 7 CFR 58.419 - Curd mill and miscellaneous equipment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Curd mill and miscellaneous equipment. 58.419 Section... Service 1 Equipment and Utensils § 58.419 Curd mill and miscellaneous equipment. Knives, hand rakes... of the curd mill should be of stainless steel. All pieces of equipment shall be so constructed that...

  9. An integrated electron and optical metallographic procedure for the identification of precipitate phases in type 316 stainless steel

    International Nuclear Information System (INIS)

    Slattery, G.F.; O'Riordan, P.; Lambert, M.E.; Green, S.M.

    1981-01-01

    A sequential and integrated metallographic procedure has been developed and successfully employed to differentiate between carbide, sigma, chi, Laves and ferrite phases which are commonly encountered in type 316 austenitic steel. The experimental techniques of optical and electron microscopy to identify these phases have been outlined and provide a rapid and convenient method of characterizing the microstructure of the steel. The techniques sequence involves selective metallographic etching, Nomarski interference microscopy, scanning electron microscopy, energy dispersive microanalysis, transmission electron microscopy and electron diffraction. (author)

  10. Influence of steel implant surface microtopography on soft and hard tissue integration.

    Science.gov (United States)

    Hayes, J S; Klöppel, H; Wieling, R; Sprecher, C M; Richards, R G

    2018-02-01

    After implantation of an internal fracture fixation device, blood contacts the surface, followed by protein adsorption, resulting in either soft-tissue adhesion or matrix adhesion and mineralization. Without protein adsorption and cell adhesion under the presence of micro-motion, fibrous capsule formation can occur, often surrounding a liquid filled void at the implant-tissue interface. Clinically, fibrous capsule formation is more prevalent with electropolished stainless steel (EPSS) plates than with current commercially pure titanium (cpTi) plates. We hypothesize that this is due to lack of micro-discontinuities on the standard EPSS plates. To test our hypothesis, four EPSS experimental surfaces with varying microtopographies were produced and characterized for morphology using the scanning electron microscope, quantitative roughness analysis using laser profilometry and chemical analysis using X-ray photoelectron spectroscopy. Clinically used EPSS (smooth) and cpTi (microrough) were included as controls. Six plates of each type were randomly implanted, one on both the left and right intact tibia of 18 white New Zealand rabbits for 12 weeks, to allow for a surface interface study. The results demonstrate that the micro-discontinuities on the upper surface of internal steel fixation plates reduced the presence of liquid filled voids within soft-tissue capsules. The micro-discontinuities on the plate under-surface increased bony integration without the presence of fibrous tissue interface. These results support the hypothesis that the fibrous capsule and the liquid filled void formation occurs mainly due to lack of micro-discontinuities on the polished smooth steel plates and that bony integration is increased to surfaces with higher amounts of micro-discontinuities. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 705-715, 2018. © 2017 Wiley Periodicals, Inc.

  11. THE DEVELOPMENT OF TECHNOLOGY OF THE CORE THERMO-MECHANICALLY HARDENED REINFORC-ING STEEL OF GRADE A700HW OF DIE-ROLLED SECTION NO 12, 14, 16 PRODUCTION ACCORDING TO REQUIREMENT OF FINNISH STANDARDS SFST1216 IN CONDITIONS OF SMALL-SECTION MILL 320 OF RUP «BMZ»

    Directory of Open Access Journals (Sweden)

    A. V. Rusalenko

    2009-01-01

    Full Text Available The development of technology of the core thermomechanically hardened reinforcing steel of grade А700HW of die-rolled section No 12, 14, 16 production according to requirement of Finnish standards SFST1216 in conditions of small-section mill 320 of RUP «BMZ» is given.

  12. Comparative analysis of the influence of creep of concrete composite beams of steel - concrete model based on Volterra integral equation

    Directory of Open Access Journals (Sweden)

    Partov Doncho

    2017-01-01

    Full Text Available The paper presents analysis of the stress-strain behaviour and deflection changes due to creep in statically determinate composite steel-concrete beam according to EUROCODE 2, ACI209R-92 and Gardner&Lockman models. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann - Volterra for the concrete part considering the above mentioned models. On the basis of the theory of viscoelastic body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time 't', two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernel function in the integral equation is presented. Example with the model proposed is investigated.

  13. Research on common methods for evaluating the operation effect of integrated wastewater treatment facilities of iron and steel enterprises

    Science.gov (United States)

    Bingsheng, Xu

    2017-04-01

    Considering the large quantities of wastewater generated from iron and steel enterprises in China, this paper is aimed to research the common methods applied for evaluating the integrated wastewater treatment effect of iron and steel enterprises. Based on survey results on environmental protection performance, technological economy, resource & energy consumption, services and management, an indicator system for evaluating the operation effect of integrated wastewater treatment facilities is set up. By discussing the standards and industrial policies in and out of China, 27 key secondary indicators are further defined on the basis of investigation on main equipment and key processes for wastewater treatment, so as to determine the method for setting key quantitative and qualitative indicators for evaluation indicator system. It is also expected to satisfy the basic requirements of reasonable resource allocation, environmental protection and sustainable economic development, further improve the integrated wastewater treatment effect of iron and steel enterprises, and reduce the emission of hazardous substances and environmental impact.

  14. Development of Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.T.; Sathaye, J.; Galitsky, C.

    2010-09-30

    measures are available over time, which allows an estimation of technological change over a decade-long historical period. In particular, the report will describe new treatment of technological change in energy-climate modeling for this industry sector, i.e., assessing the changes in costs and energy-savings potentials via comparing 1994 and 2002 conservation supply curves. In this study, we compared the same set of mitigation measures for both 1994 and 2002 -- no additional mitigation measure for year 2002 was included due to unavailability of such data. Therefore, the estimated potentials in total energy savings and carbon reduction would most likely be more conservative for year 2002 in this study. Based upon the cost curves, the rate of change in the savings potential at a given cost can be evaluated and be used to estimate future rates of change that can be the input for energy-climate models. Through characterizing energy-efficiency technology costs and improvement potentials, we have developed and presented energy cost curves for energy efficiency measures applicable to the U.S. iron and steel industry for the years 1994 and 2002. The cost curves can change significantly under various scenarios: the baseline year, discount rate, energy intensity, production, industry structure (e.g., integrated versus secondary steel making and number of plants), efficiency (or mitigation) measures, share of iron and steel production to which the individual measures can be applied, and inclusion of other non-energy benefits. Inclusion of other non-energy benefits from implementing mitigation measures can reduce the costs of conserved energy significantly. In addition, costs of conserved energy (CCE) for individual mitigation measures increase with the increases in discount rates, resulting in a general increase in total cost of mitigation measures for implementation and operation with a higher discount rate. In 1994, integrated steel mills in the U.S. produced 55.

  15. Challenges in Special Steel Making

    Science.gov (United States)

    Balachandran, G.

    2018-02-01

    Special bar quality [SBQ] is a long steel product where an assured quality is delivered by the steel mill to its customer. The bars have enhanced tolerance to higher stress application and it is demanded for specialised component making. The SBQ bars are sought for component making processing units such as closed die hot forging, hot extrusion, cold forging, machining, heat treatment, welding operations. The final component quality of the secondary processing units depends on the quality maintained at the steel maker end along with quality maintained at the fabricator end. Thus, quality control is ensured at every unit process stages. The various market segments catered to by SBQ steel segment is ever growing and is reviewed. Steel mills need adequate infrastructure and technological capability to make these higher quality steels. Some of the critical stages of processing SBQ and the critical quality maintenance parameters at the steel mill in the manufacture has been brought out.

  16. Process integration study of a kraft pulp mill converted to an ethanol production plant – part B: Techno-economic analysis

    International Nuclear Information System (INIS)

    Fornell, Rickard; Berntsson, Thore; Åsblad, Anders

    2012-01-01

    In a previous study by the authors, energy efficiency measures in a conceptual kraft pulp mill converted to a lignocellulosic ethanol plant were investigated. The results suggested a number of different process designs which would give a substantial improvement in steam economy in the ethanol plant, compared to the original design. In the present study the different process designs are evaluated from an economic point-of-view, in order to determine if energy efficiency measures and increasing by-product sales decrease the production cost of ethanol from this specific process, or if the increased costs related to the implementation of these measures overshadow the benefits from increased by-product sales. The different energy efficiency measures are compared with less capital demanding alternatives (i.e. including low or no energy efficiency improvements) in order to assess the economic benefits of different strategies when converting a kraft pulp mill to ethanol production. The study indicates the economic importance of considering energy efficiency measures when repurposing a kraft pulp mill to an ethanol plant. It is also shown that, within the context of this study, a larger investment in measures will give better economic results than less capital demanding alternatives (with less improvement in energy efficiency). From an economic and energy efficiency viewpoint many of the suggested process designs will give approximately similar results, therefore the process design should be made based on other criteria (e.g. low complexity, low maintenance). - Highlights: ► Conversion of a kraft pulp mill to ethanol production. ► Heat integration of distillation/evaporation in a lignocellulosic ethanol plant. ► Energy efficiency measures lead to lower ethanol production cost. ► If capital costs and raw material prices are low the production cost could be as low as 365 €/m 3 EtOH.

  17. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-06-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  18. Experimental and Computational Investigation of Structural Integrity of Dissimilar Metal Weld Between Ferritic and Austenitic Steel

    Science.gov (United States)

    Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2018-03-01

    The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.

  19. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  20. Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance

    International Nuclear Information System (INIS)

    Smith, Stephen; Melkote, Shreyes N.; Lara-Curzio, Edgar; Watkins, Thomas R.; Allard, Larry; Riester, Laura

    2007-01-01

    This paper addresses the relationship between surface integrity and fatigue life of hard turned AISI 52100 steel (60-62 HRC), with grinding as a benchmark. The impact of superfinishing on the fatigue performance of hard turned and ground surfaces is also discussed. Specifically, the surface integrity and fatigue life of the following five distinct surface conditions are examined: hard turned with continuous white layer, hard turned with no white layer, ground, and superfinished hard turned and ground specimens. Surface integrity of the specimens is characterized via surface topography measurement, metallography, residual stress measurements, transmission electron microscopy (TEM), and nano-indentation tests. High cycle tension-tension fatigue tests show that the presence of white layer does not adversely affect fatigue life and that, on average, the hard turned surface performs as well or better than the ground surface. The effect of superfinishing is to exaggerate these differences in performance. The results obtained from this study suggest that the effect of residual stress on fatigue life is more significant than the effect of white layer. For the hard turned surfaces, the fatigue life is found to be directly proportional to both the surface compressive residual stress and the maximum compressive residual stress. Possible explanations for the observed effects are discussed

  1. SUPERFUND TREATABILITY CLEARINGHOUSE: FINAL REPORT DEMONSTRATION TEST ON-SITE PCB DESTRUCTION, SHIRCO INFRARED PORTABLE UNIT AT FLORIDA STEEL INDIANTOWN MILL SITE, INDIANTOWN, FLORIDA.

    Science.gov (United States)

    This document reports on the results of a Florida Steel Corporation study to develop and evaluate cleanup alternatives for onsite treatment of PCB contaminated soils. The results of this study aided in the selection of an approach to remediate the site. Demonstration tes...

  2. Integrity of copper/steel canisters under crystalline bedrock repository conditions

    International Nuclear Information System (INIS)

    Bowyer, W.H.; Sjoblom, R.; Trolle, M.

    1996-01-01

    In the Swedish nuclear waste disposal programme, the need to store the spent nuclear fuel safely for very long times has prompted a strategy which includes a long life canister. Technical as well as economical considerations related to design, choice of materials and manufacturing technology have lead to the selection of a reference design to be used for the continued development work. The canisters are cylindrical with a diameter close to 1 meter and a height of about 5 meters. In order to meet the need for an appropriate combination of mechanical strength, toughness, durability and corrosion resistance, the canisters comprise an inner vessel made of steel or cast iron to cope with mechanical stresses and an outer vessel made of almost pure copper to provide corrosion resistance. The Swedish nuclear industry has recently extended its development work to full-scale tests. Such experience is needed not least for the evaluation of the long-term integrity of the canister. This work has been closely followed by the Swedish Nuclear Power Inspectorate (SKI) who have also carried out independent investigations and analyses. It should be emphasized that the findings relate to a canister which is under development and cannot, in general, be expected to be relevant for the fully developed canister. Significant results of the analyses include the identification of conceivable modes of canister failures. Such failures may be related to defects, segregation, limitations in inspectability, long term creep properties, adverse mechanical load situations, etc. It is assessed that the distribution functions of these failures might have their largest uncertainties at the tails extending to comparatively short times. Specific issues related to canister manufacture, scaling and non destructive testing which have been found to warrant further investigation are: defects in the copper ingot which may transfer to the rolled copper plate; the amount of work applied during the rolling or

  3. Equipment stainless steel entire versus steels bimetallics clad or overlay; Utilizacao de equipamentos de processo construidos em aco inoxidavel integral versus acos bimetalicos cladeado ou 'overlay'

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Itamar da Silva; Lima, Jadival Carneiro de; Leal, Murilo Fonseca; Cardoso, Amauri dos Santos; Jorjan, Roberto [PETROBRAS S.A., Sao Francisco do Conde, BA (Brazil). Refinaria Landulfo Alves Mataripen (RLAM)

    2008-07-01

    This study does not recommend the use of a pressure vessel made of integral stainless steel, due to the failure mechanisms under stress corrosion assisted by chlorides or polythionic acid. Are presented case studies of literature and analysis of reports of proceedings of RLAM reactors, showing that the materials produced by bimetallic clad overlay or are more appropriate, in terms of integrity, for use in equipment that the internal environment requires austenitic stainless steel specification.

  4. Eddy-Current Testing of Welded Stainless Steel Storage Containers to Verify Integrity and Identity

    International Nuclear Information System (INIS)

    Tolk, Keith M.; Stoker, Gerald C.

    1999-01-01

    An eddy-current scanning system is being developed to allow the International Atomic Energy Agency (IAEA) to verify the integrity of nuclear material storage containers. Such a system is necessary to detect attempts to remove material from the containers in facilities where continuous surveillance of the containers is not practical. Initial tests have shown that the eddy-current system is also capable of verifying the identity of each container using the electromagnetic signature of its welds. The DOE-3013 containers proposed for use in some US facilities are made of an austenitic stainless steel alloy, which is nonmagnetic in its normal condition. When the material is cold worked by forming or by local stresses experienced in welding, it loses its austenitic grain structure and its magnetic permeability increases. This change in magnetic permeability can be measured using an eddy-current probe specifically designed for this purpose. Initial tests have shown that variations of magnetic permeability and material conductivity in and around welds can be detected, and form a pattern unique to the container. The changes in conductivity that are present around a mechanically inserted plug can also be detected. Further development of the system is currently underway to adapt the system to verifying the integrity and identity of sealable, tamper-indicating enclosures designed to prevent unauthorized access to measurement equipment used to verify international agreements

  5. Experimental investigation of various surface integrity aspects in hard turning of AISI 4340 alloy steel with coated and uncoated cermet

    Science.gov (United States)

    Das, Anshuman; Patel, S. K.; Sateesh Kumar, Ch.; Biswal, B. B.

    2018-03-01

    The newer technological developments are exerting immense pressure on domain of production. These fabrication industries are busy finding solutions to reduce the costs of cutting materials, enhance the machined parts quality and testing different materials, which can be made versatile for cutting materials, which are difficult for machining. High-speed machining has been the domain of paramount importance for mechanical engineering. In this study, the variation of surface integrity parameters of hardened AISI 4340 alloy steel was analyzed. The surface integrity parameters like surface roughness, micro hardness, machined surface morphology and white layer of hardened AISI 4340 alloy steel were compared using coated and uncoated cermet inserts under dry cutting condition. From the results, it was deduced that coated insert outperformed uncoated one in terms of different surface integrity characteristics.

  6. Project Independence: Construction of an Integrated Biorefinery for Production of Renewable Biofuels at an Existing Pulp and Paper Mill

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Douglas

    2012-06-01

    Project Independence proposed to construct a demonstration biomass-to-liquids (BTL) biorefinery in Wisconsin Rapids, isconsin. The biorefinery was to be co-located at the existing pulp and paper mill, NewPage Wisconsin System Incorporated’s Wisconsin Rapids Mill, and when in full operation would both generate renewable energy for Wisconsin Rapids Mill and produce liquid fuels from abundant and renewable lignocellulosic biomass. The biorefinery would serve to validate the thermochemical pathway and economic models for BTL production using forest residuals and wood waste, providing a basis for proliferating BTL conversion technologies throughout the United States. It was a project goal to create a compelling new business model for the pulp and paper industry, and support the nation’s goal for increasing renewable fuels production and reducing its dependence on foreign oil. NewPage Corporation planned to replicate this facility at other NewPage Corporation mills after this first demonstration scale plant was operational and had proven technical and economic feasibility. An overview of the process begins with biomass being harvested, sized, conditioned and fed into a ThermoChem Recovery International (TRI) steam reformer where it is converted to high quality synthetic gas (syngas). The syngas is then cleaned, compressed, scrubbed, polished and fed into the Fischer-Tropsch (F-T) catalytic reactors where the gas is converted into two, sulfur-free, clean crude products which will be marketed as revenue generating streams. Additionally, the Fischer-Tropsch products could be upgraded for use in automotive, aviation and chemical industries as valuable products, if desired. As the Project Independence project set out to prove forest products could be used to commercially produce biofuels, they planned to address and mitigate issues as they arose. In the early days of the Project Independence project, the plant was sized to process 500 dry tons of biomass per day but would

  7. The effect of hot strip mill processing parameters and alloy addition on low temperature toughness of API-X70 steel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Kwang Seop; Al-Shammary, Saad; Al-Butairi, Adel A. [QA and PTS, SAUDI IRON and STEEL COMAPNY, Al-Jubail, (Saudi Arabia); Al-Hajeri, Khaled F. [Saudi Basic Industries Corporation, Jubail, (Saudi Arabia)

    2010-07-01

    The design of high strength steel grade is based on stringent specifications in terms of chemistry, mechanical properties and surface requirements. This study investigated the effect of alloy addition on low temperature toughness of API X70 pipeline steel. Seven different chemical compositions have been selected for experimental testing. Ni, Cr and Cu were added in various quantities to the tested material without deteriorating the phase transformation to acicular ferrite. A tensile test, Charpy impact test, DWTT pressed notch test and microstructural observations using optical microscope and SEM were carried out. Statistical analyses were done to identify the relationship between chemical composition and DWTT shear area. The following equation showed excellent agreement with the experimental test data: Pct Shear aero of DWTT (-10 degrees C) = 954 - 0.3*SRT + 0.5*TBT - 0.4*FRT + 0.04*CT - 306*C - 60*(Mn+Ni+Cu) + 38*(Mo+Cr) - 791*(Ti+Nb+V) - 4*MA. The results showed that it is possible to design high strength API X 70 steel grades with good DWTT toughness by using the statistical equation that was developed.

  8. Integrated Assessment of Palm Oil Mill Residues to Sustainable Electricity System (POMR-SES): A Case Study from Peninsular Malaysia

    Science.gov (United States)

    Jaye, I. F. Md; Sadhukhan, J.; Murphy, R. J.

    2018-05-01

    Generating electricity from biomass are undeniably gives huge advantages to the energy security, environmental protection and the social development. Nevertheless, it always been negatively claimed as not economically competitive as compared to the conventional electricity generation system using fossil fuel. Due to the unfair subsidies given to renewable energy based fuel and the maturity of conventional electricity generation system, the commercialization of this system is rather discouraging. The uniqueness of the chemical and physical properties of the biomass and the functionality of the system are fully depending on the availability of the biomass resources, the capital expenditure of the system is relatively expensive. To remain competitive, biomass based system must be developed in their most economical form. Therefore the justification of the economies of scale of such system is become essential. This study will provide a comprehensive review of process to select an appropriate size for electricity generation plant from palm oil mill (POM) residues through the combustion of an empty fruit bunch (EFB) and biogas from the anaerobic digestion of palm oil mill effluent (POME) in Peninsular Malaysia using a mathematical model and simulation using ASPEN Plus software package. The system operated at 4 MW capacity is expected to provide a return on investment (ROI) of 20% with a payback period of 6.5 years. It is notably agreed that the correct selection of generation plant size will have a significant impact on overall economic and environmental feasibility of the system.

  9. Integrated use of residues from olive mill and winery for lipase production by solid state fermentation with Aspergillus sp.

    Science.gov (United States)

    Salgado, José Manuel; Abrunhosa, Luís; Venâncio, Armando; Domínguez, José Manuel; Belo, Isabel

    2014-02-01

    Two-phase olive mill waste (TPOMW) is presently the major waste produced by the olive mill industry. This waste has potential to be used as substrate for solid state fermentation (SSF) despite of its high concentration of phenolic compounds and low nitrogen content. In this work, it is demonstrated that mixtures of TPOMW with winery wastes support the production of lipase by Aspergillus spp. By agar plate screening, Aspergillus niger MUM 03.58, Aspergillus ibericus MUM 03.49, and Aspergillus uvarum MUM 08.01 were chosen for lipase production by SSF. Plackett-Burman experimental design was employed to evaluate the effect of substrate composition and time on lipase production. The highest amounts of lipase were produced by A. ibericus on a mixture of TPOMW, urea, and exhausted grape mark (EGM). Urea was found to be the most influent factor for the lipase production. Further optimization of lipase production by A. ibericus using a full factorial design (3(2)) conducted to optimal conditions of substrate composition (0.073 g urea/g and 25 % of EGM) achieve 18.67 U/g of lipolytic activity.

  10. Integrated Computational Materials Engineering Development of Advanced High Strength Steel for Lightweight Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Hector, Jr., Louis G. [General Motors, Warren, MI (United States); McCarty, Eric D. [United States Automotive Materials Partnership LLC (USAMP), Southfield, MI (United States)

    2017-07-31

    The goal of the ICME 3GAHSS project was to successfully demonstrate the applicability of Integrated Computational Materials Engineering (ICME) for the development and deployment of third generation advanced high strength steels (3GAHSS) for immediate weight reduction in passenger vehicles. The ICME approach integrated results from well-established computational and experimental methodologies to develop a suite of material constitutive models (deformation and failure), manufacturing process and performance simulation modules, a properties database, as well as the computational environment linking them together for both performance prediction and material optimization. This is the Final Report for the ICME 3GAHSS project, which achieved the fol-lowing objectives: 1) Developed a 3GAHSS ICME model, which includes atomistic, crystal plasticity, state variable and forming models. The 3GAHSS model was implemented in commercially available LS-DYNA and a user guide was developed to facilitate use of the model. 2) Developed and produced two 3GAHSS alloys using two different chemistries and manufacturing processes, for use in calibrating and validating the 3GAHSS ICME Model. 3) Optimized the design of an automotive subassembly by substituting 3GAHSS for AHSS yielding a design that met or exceeded all baseline performance requirements with a 30% mass savings. A technical cost model was also developed to estimate the cost per pound of weight saved when substituting 3GAHSS for AHSS. The project demonstrated the potential for 3GAHSS to achieve up to 30% weight savings in an automotive structure at a cost penalty of up to $0.32 to $1.26 per pound of weight saved. The 3GAHSS ICME Model enables the user to design 3GAHSS to desired mechanical properties in terms of strength and ductility.

  11. Comparison of hydrogen storage properties of pure Mg and milled ...

    Indian Academy of Sciences (India)

    Administrator

    increase the hydriding and dehydriding rates, pure Mg was ground under hydrogen atmosphere (reactive .... Hydrogen storage properties of pure Mg and milled pure Mg. 833. Figure 3. ... elongated and flat shapes via collisions with the steel.

  12. Investigation of the influence of the chemical composition of HSLA steel grades on the microstructure homogeneity during hot rolling in continuous rolling mills using a fast layer model

    International Nuclear Information System (INIS)

    Schmidtchen, M; Kawalla, R; Rimnac, A; Bragin, S; Linzer, B; Warczok, P; Kozeschnik, E; Bernhard, C

    2016-01-01

    The newly developed LaySiMS simulation tool provides new insight for inhomogeneous material flow and microstructure evolution in an endless strip production (ESP) plant. A deepened understanding of the influence of inhomogeneities in initial material state, temperature profile and material flow and their impact on the finished product can be reached e.g. by allowing for variable layer thickness distributions in the roll gap. Coupling temperature, deformation work and work hardening/recrystallization phenomena accounts for covering important effects in the roll gap. The underlying concept of the LaySiMS approach will be outlined and new insight gained regarding microstructural evolution, shear and inhomogeneous stress and strain states in the roll gap as well as local residual stresses will be presented. For the case of thin slab casting and direct rolling (TSDR) the interrelation of inhomogeneous initial state, micro structure evolution and dissolution state of micro alloying elements within the roughing section of an ESP line will be discussed. Special emphasis is put on the influence of the local chemical composition arising from direct charging on throughthickness homogeneity of the final product. It is concluded that, due to the specific combination of large reductions in the high reduction mills (HRM) and the highly inhomogeneous inverse temperature profile, the ESP-concept provides great opportunities for homogenizing the microstructure across the strip thickness. (paper)

  13. Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction

    Science.gov (United States)

    Sun, Yongqi; Sridhar, Seetharaman; Liu, Lili; Wang, Xidong; Zhang, Zuotai

    2015-01-01

    With the continuous urbanization and industrialization in the world, energy saving and greenhouse gas (GHG) emission reduction have been serious issues to be addressed, for which heat recovery from traditional energy-intensive industries makes up a significant strategy. Here we report a novel approach to extract the waste heat and iron from high temperature steel slags (1450–1650 oC) produced in the steel industry, i.e., integration of coal gasification and steel slag treatment. Both the thermodynamics and kinetics of the pertinent reactions were identified. It was clarified that the kinetic mechanism for gasification varied from A2 model to A4 model (Avrami-Erofeev) in the presence of slags. Most importantly, the steel slags acted not only as good heat carriers but also as effective catalysts where the apparent activation energy for char gasification got remarkably reduced from 95.7 kJ/mol to 12.1 kJ/mol (A2 model). Furthermore, the FeO in the slags was found to be oxidized into Fe3O4, with an extra energy release, which offered a potential for magnetic separation. Moreover, based on the present research results, an emerging concept, composed of multiple industrial sectors, was proposed, which could serve as an important route to deal with the severe environmental problems in modern society. PMID:26558350

  14. The design of the frame structure used in integral hosting of the nuclear island steel lining cylinder module and problems analysis

    International Nuclear Information System (INIS)

    Yu Xinian; Liu Xiao; Wang Jianguo

    2011-01-01

    The use of the steel frame in the integral hosting of nuclear island steel lining cylinder module made a breakthrough in China's nuclear power construction. The deformation of the cylinder wall is the key issue in the integral lifting process of the nuclear island steel lining. Using the frame in lifting large and thin steel cylinder, the form of frame structure and its deformation will directly affect the radial deformation of the lifted cylinder, the buckling deformation of the distal cylinder, and the cylinder's deformation surround the penetrations. The diameter of nuclear island steel liner is 44 meters. The wall of the cylinder is thin, and the total weight of the cylinder itself and its attached penetrations, walkways and lifting tools, etc. is up to 120 tons, which not only increase the difficulty of lifting, but also have some risks. To ensure the cylinder deformation within the limits, this thesis establishes the parameter structure for the lifting frame, calculates the displacement and analyzes the axial stresses, based on the ANSYS finite element analysis software. The results showed that the models and parameters for integral hosting of the steel lining cylinder modular frame structure is reasonable and feasible, and analyzing the hosting-frame data is necessary, which lay the foundation for the design of the hosting frame and the eventual implementation of the integral hosting scheme of the steel lining cylinder module. (authors)

  15. C.O.D. toughness testing of medium strength steel as a preliminary development for single specimen J integral toughness tests of SA533-B steel

    International Nuclear Information System (INIS)

    Dean, P.; Tait, R.B.; Garrett, G.G.

    1981-10-01

    The primary purpose of this project is to set up a test facility and to develop the necessary expertise to enable reliable elasto-plastic fracture toughness tests to be performed. Initially, tests are to be conducted on material similar to that used in the Koeberg pressure vessel walls, with the ultimate goal of performing single specimen J integral tests on the pressure vessel steel itself to determine through-thickness toughness variations. The project will comprise a number of stages, each one necessary for the development of the techniques used in J integral testing. These include: (i) development of an appropriate specimen design, of suitable size and shape that is applicable to both crack opening displacement (C.O.D.) and J integral tests; (ii) development, testing and calibration of the necessary associated mechanical and electrical equipment (e.g. clip gauge, amplifiers, interface unit, etc.), with (iii) an estimation of the probable errors and noise levels with a view to their elimantion, leading to (iv) perfection of the sensitivity and reproducibility of, firstly, the multiple specimen C.O.D. technique and, secondly, the multiple specimen J integral techniques. (v) Based on the above techniques, development of the single specimen J integral test method incorporating development of a computerised testing procedure. All the above procedure is to be conducted on similar, but non-Koeberg pressure vessel material ('ROQ Tough'). (vi) Finally, development and testing of both multiple specimen and single specimen J integral tests on actual SA533B material and an investigation of the through thickness toughness and fatigue crack propagation behaviour

  16. Integrated modeling of second phase precipitation in cold-worked 316 stainless steels under irradiation

    International Nuclear Information System (INIS)

    Mamivand, Mahmood; Yang, Ying; Busby, Jeremy T.; Morgan, Dane

    2017-01-01

    The current work combines the Cluster Dynamics (CD) technique and CALPHAD-based precipitation modeling to address the second phase precipitation in cold-worked (CW) 316 stainless steels (SS) under irradiation at 300–400 °C. CD provides the radiation enhanced diffusion and dislocation evolution as inputs for the precipitation model. The CALPHAD-based precipitation model treats the nucleation, growth and coarsening of precipitation processes based on classical nucleation theory and evolution equations, and simulates the composition, size and size distribution of precipitate phases. We benchmark the model against available experimental data at fast reactor conditions (9.4 × 10"–"7 dpa/s and 390 °C) and then use the model to predict the phase instability of CW 316 SS under light water reactor (LWR) extended life conditions (7 × 10"–"8 dpa/s and 275 °C). The model accurately predicts the γ' (Ni_3Si) precipitation evolution under fast reactor conditions and that the formation of this phase is dominated by radiation enhanced segregation. The model also predicts a carbide volume fraction that agrees well with available experimental data from a PWR reactor but is much higher than the volume fraction observed in fast reactors. We propose that radiation enhanced dissolution and/or carbon depletion at sinks that occurs at high flux could be the main sources of this inconsistency. The integrated model predicts ~1.2% volume fraction for carbide and ~3.0% volume fraction for γ' for typical CW 316 SS (with 0.054 wt% carbon) under LWR extended life conditions. Finally, this work provides valuable insights into the magnitudes and mechanisms of precipitation in irradiated CW 316 SS for nuclear applications.

  17. Integrative approach for utilization of olive mill wastewater and lebna's whey for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, M.A.; Hayek, B.O.; Al-Hmoud, N.; Al-Gogazeh, L.

    2009-09-15

    The industry of olive oil extraction in Jordan involves an intensive consumption of water and generates large quantities of olive mill wastewater (OMW). This wastewater has a high pollution risk with biological oxygen demand (BOD). The organic fraction of OMW includes sugars, tannins, polyphenols, polyalcohols, pectins and lipids. The presence of remarkable amounts of aromatic compounds in OMW is responsible for its phytotoxic and antimicrobial effects. The environmental problems and potential hazards caused by OMW had led olive oil producing countries to limit their discharge and to propose and develop new technologies for OMW treatments, such as physicochemical and biological treatments. In the present investigation lebna's whey a local byproduct of widely consumed local yogurt was used with OMW for ethanol production. The obtained results showed that the proteins of lebna's whey can remove substantial amounts of aromatic compounds present in OMW. This was reflected on the reduction of the intensity of black color of OMW and removal of 37% polyphenols. Moreover, the production of ethanol was ascertained in fermentation media composed of whey and in presence of various concentrations of OMW up to 20% OMW. The obtained results showed the possibility to develop a process for improvement and enhancement of ethanol production from whey and olive oil waste in mixed yeast cultures. (au)

  18. Uranium milling costs

    International Nuclear Information System (INIS)

    Coleman, R.B.

    1980-01-01

    Basic process flowsheets are reviewed for conventional milling of US ores. Capital costs are presented for various mill capacities for one of the basic processes. Operating costs are shown for various mill capacities for all of the basic process flowsheets. The number of mills using, or planning to use, a particular process is reviewed. A summary of the estimated average milling costs for all operating US mills is shown

  19. Chip formation and surface integrity in high-speed machining of hardened steel

    Science.gov (United States)

    Kishawy, Hossam Eldeen A.

    Increasing demands for high production rates as well as cost reduction have emphasized the potential for the industrial application of hard turning technology during the past few years. Machining instead of grinding hardened steel components reduces the machining sequence, the machining time, and the specific cutting energy. Hard turning Is characterized by the generation of high temperatures, the formation of saw toothed chips, and the high ratio of thrust to tangential cutting force components. Although a large volume of literature exists on hard turning, the change in machined surface physical properties represents a major challenge. Thus, a better understanding of the cutting mechanism in hard turning is still required. In particular, the chip formation process and the surface integrity of the machined surface are important issues which require further research. In this thesis, a mechanistic model for saw toothed chip formation is presented. This model is based on the concept of crack initiation on the free surface of the workpiece. The model presented explains the mechanism of chip formation. In addition, experimental investigation is conducted in order to study the chip morphology. The effect of process parameters, including edge preparation and tool wear on the chip morphology, is studied using Scanning Electron Microscopy (SEM). The dynamics of chip formation are also investigated. The surface integrity of the machined parts is also investigated. This investigation focusses on residual stresses as well as surface and sub-surface deformation. A three dimensional thermo-elasto-plastic finite element model is developed to predict the machining residual stresses. The effect of flank wear is introduced during the analysis. Although residual stresses have complicated origins and are introduced by many factors, in this model only the thermal and mechanical factors are considered. The finite element analysis demonstrates the significant effect of the heat generated

  20. High - speed steel for precise cased tools

    International Nuclear Information System (INIS)

    Karwiarz, J.; Mazur, A.

    2001-01-01

    The test results of high-vanadium high - speed steel (SWV9) for precise casted tools are presented. The face -milling cutters of NFCa80A type have been tested in industrial operating conditions. An average life - time of SWV9 steel tools was 3-10 times longer compare to the conventional high - speed milling cutters. Metallography of SWB9 precise casted steel revealed beneficial for tool properties distribution of primary vanadium carbides in the steel matrix. Presented results should be a good argument for wide application of high - vanadium high - speed steel for precise casted tools. (author)

  1. Wheat Fields, Flour Mills, and Railroads: A Web of Interdependence. Teaching with Historic Places.

    Science.gov (United States)

    Koman, Rita G.

    By 1860 much of the beauty of St. Anthony Falls in Minneapolis (Minnesota) had been destroyed, as mills on both sides of the river used the power of the falls to turn millions of bushels of wheat into flour. Steel rails linked bonanza farms hundreds of miles to the west to the mills. The mills, the farms, and the railroads depended on each other…

  2. Modelling Of Residual Stresses Induced By High Speed Milling Process

    International Nuclear Information System (INIS)

    Desmaison, Olivier; Mocellin, Katia; Jardin, Nicolas

    2011-01-01

    Maintenance processes used in heavy industries often include high speed milling operations. The reliability of the post-process material state has to be studied. Numerical simulation appears to be a very interesting way to supply an efficient residual stresses (RS) distribution prediction.Because the adiabatic shear band and the serrated chip shaping are features of the austenitic stainless steel high speed machining, a 2D high speed orthogonal cutting model is briefly presented. This finite element model, developed on Forge registered software, is based on data taken from Outeiro and al.'s paper [1]. A new behaviour law fully coupling Johnson-Cook's constitutive law and Latham and Cockcroft's damage model is detailed in this paper. It ensures results that fit those found in literature.Then, the numerical tools used on the 2D model are integrated to a 3D high speed milling model. Residual stresses distribution is analysed, on the surface and into the depth of the material. Various revolutions and passes of the two teeth hemispheric mill on the workpiece are simulated. Thus the sensitivity of the residual stresses generation to the cutting conditions can be discussed. In order to validate the 3D model, a comparison of the cutting forces measured by EDF R and D to those given by numerical simulations is achieved.

  3. Surface integrity and part accuracy in reaming and tapping stainless steel with new vegetable based cutting oils

    DEFF Research Database (Denmark)

    Belluco, Walter; De Chiffre, Leonardo

    2002-01-01

    This paper presents an investigation on the effect of new formulations of vegetable oils on surface integrity and part accuracy in reaming and tapping operations with AISI 316L stainless steel. Surface integrity was assessed with measurements of roughness, microhardness, and using metallographic...... as part accuracy. Cutting fluids based on vegetable oils showed comparable or better performance than mineral oils. ÆÉ2002 Published by Elsevier Science Ltd....... techniques, while part accuracy was measured on a coordinate measuring machine. A widely diffused commercial mineral oil was used as reference for all measurements. Cutting fluid was found to have a significant effect on surface integrity and thickness of the strain hardened layer in the sub-surface, as well...

  4. Flexible and Stretchable Microneedle Patches with Integrated Rigid Stainless Steel Microneedles for Transdermal Biointerfacing.

    Science.gov (United States)

    Rajabi, Mina; Roxhed, Niclas; Shafagh, Reza Zandi; Haraldson, Tommy; Fischer, Andreas Christin; Wijngaart, Wouter van der; Stemme, Göran; Niklaus, Frank

    2016-01-01

    This paper demonstrates flexible and stretchable microneedle patches that combine soft and flexible base substrates with hard and sharp stainless steel microneedles. An elastomeric polymer base enables conformal contact between the microneedle patch and the complex topography and texture of the underlying skin, while robust and sharp stainless steel microneedles reliably pierce the outer layers of the skin. The flexible microneedle patches have been realized by magnetically assembling short stainless steel microneedles into a flexible polymer supporting base. In our experimental investigation, the microneedle patches were applied to human skin and an excellent adaptation of the patch to the wrinkles and deformations of the skin was verified, while at the same time the microneedles reliably penetrate the surface of the skin. The unobtrusive flexible and stretchable microneedle patches have great potential for transdermal biointerfacing in a variety of emerging applications such as transdermal drug delivery, bioelectric treatments and wearable bio-electronics for health and fitness monitoring.

  5. Use of industrial isotopes in the construction of an integrated steel plant

    International Nuclear Information System (INIS)

    Narasimha Rao, Y.V.; Prasad, G.C.

    1977-01-01

    The applications of radioisotopes by industrial radiography methods in the control of quality of welding of steel structures and equipment during the construction of a steel plant are highlighted. Some of the main units that are controlled in a steel plant by the radiography methods are boilers, pressure vessels, blast furnace shells and stoves, L.D. convertors, technological pipelines etc. After briefly describing the different radioisotopes (sources) and the accessories required for radiography work, the different techniques adopted for determining the defects in the welded joints are mentioned. A mention is also made of the different types of image quality indicators (penetrameters) and their relative advantages. The norms for control and acceptance of the defects for different structures are also covered. Finally, the safety requirements that are to be followed during radiography work at the site of erection, where different agencies of construction work simultaneously are dealt with. (author)

  6. Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

    International Nuclear Information System (INIS)

    Chang, Hyun Young; Park, Heung Bae; Park, Yong Soo; Kim, Soon Tae; Kim, Young Sik; Kim, Kwang Tae; Jhang, Yoon Young

    2010-01-01

    Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical and mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld and HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(α) and austenite(γ) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants

  7. Modeling of the integrity of machining surfaces: application to the case of 15-5 PH stainless steel finish turning

    International Nuclear Information System (INIS)

    Mondelin, A.

    2012-01-01

    During machining, extreme conditions of pressure, temperature and strain appear in the cutting zone. In this thermo-mechanical context, the link between the cutting conditions (cutting speed, lubrication, feed rate, wear, tool coating...) and the machining surface integrity represents a major scientific target. This PhD study is a part of a global project called MIFSU (Modeling of the Integrity and Fatigue resistance of Machining Surfaces) and it focuses on the finish turning of the 15-5PH (a martensitic stainless steel used for parts of helicopter rotor). Firstly, material behavior has been studied in order to provide data for machining simulations. Stress-free dilatometry tests were conducted to obtain the austenitization kinetics of 15-5PH steel for high heating rates (up to 11,000 degrees C/s). Then, parameters of Leblond metallurgical model have been calibrated. In addition, dynamic compression tests (de/dt ranging from 0.01 to 80/s and e ≥ 1) have been performed to calibrate a strain-rate dependent elasto-plasticity model (for high strains). These tests also helped to highlight the dynamic recrystallization phenomena and their influence on the flow stress of the material. Thus, recrystallization model has also been implemented.In parallel, a numerical model for the prediction of machined surface integrity has been constructed. This model is based on a methodology called 'hybrid' (developed during the PhD thesis of Frederic Valiorgue for the AISI 304L steel). The method consists in replacing tool and chip modeling by equivalent loadings (obtained experimentally). A calibration step of these loadings has been carried out using orthogonal cutting and friction tests (with sensitivity studies of machining forces, friction and heat partition coefficients to cutting parameters variations).Finally, numerical simulations predictions of microstructural changes (austenitization and dynamic recrystallization) and residual stresses have been successfully compared with

  8. Studies to overcome the manufacturing problems in blast furnace tap hole clay of Integrated Steel Plants: Experimental approach

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Integrated Steel Plants commonly uses Blast Furnace route for iron production which accounts for over 60 % of the world iron output. Blast Furnace runs for ten to twenty years without repairing hearth walls and Tap Hole (TH). Tap hole is an outlet for hot metal produced in a Blast Furnace and run from the shell of the furnace into the interior allowing access to the molten material. Tapping is the term used for drilling a hole through the tap hole which allows the molten iron and slag to flow out. In Iron making process, removal of liquid iron from furnace and sending it for steel making is known as cast house practice. For tapping liquid iron and operating the tap hole requires a special type of clay. Tap hole clay (THC) used to stop the flow of liquid iron and slag from the blast furnace. Present work deals with the study on manufacturing of THC at Visakhapatnam Steel Plant and problems related to manufacturing. Experiments were conducted to solve the identified problems and results are furnished in detail. The findings can improve the manufacturing process and improve the productivity of tap hole clay.

  9. Study on Surface Integrity of AISI 1045 Carbon Steel when machined by Carbide Cutting Tool under wet conditions

    Directory of Open Access Journals (Sweden)

    Tamin N. Fauzi

    2017-01-01

    Full Text Available This paper presents the evaluation of surface roughness and roughness profiles when machining carbon steel under wet conditions with low and high cutting speeds. The workpiece materials and cutting tools selected in this research were AISI 1045 carbon steel and canela carbide inserts graded PM25, respectively. The cutting tools undergo machining tests by CNC turning operations and their performances were evaluated by their surface roughness value and observation of the surface roughness profile. The machining tests were held at varied cutting speeds of 35 to 53 m/min, feed rate of 0.15 to 0.50 mm/rev and a constant depth of cut of 1 mm. From the analysis, it was found that surface roughness increased as the feed rate increased. Varian of surface roughness was suspected due to interaction between cutting speeds and feed rates as well as nose radius conditions; whether from tool wear or the formation of a built-up edge. This study helps us understand the effect of cutting speed and feed rate on surface integrity, when machining AISI 1045 carbon steel using carbide cutting tools, under wet cutting conditions.

  10. Role of steel slags on biomass/carbon dioxide gasification integrated with recovery of high temperature heat.

    Science.gov (United States)

    Sun, Yongqi; Liu, Qianyi; Wang, Hao; Zhang, Zuotai; Wang, Xidong

    2017-01-01

    Disposal of biomass in the agriculture and steel slags in the steel industry provides a significant solution toward sustainability in China. Herein these two sectors were creatively combined as a novel method, i.e., biomass/CO 2 gasification using waste heat from hot slags where the influence of chemical compositions of steel slags, characterized as iron oxide content and basicity, on gasification thermodynamics, was systemically reported for the first time. Both the target gases of CO, H 2 and CH 4 and the polluted gases of NH 3 , NO and NO 2 were considered. It was first found that an increasing iron content and slag basicity continuously improved the CO yield at 600-1000°C and 800-1000°C, respectively; while the effect on polluted gas releases was limited. Moreover, the solid wastes after gasification could be utilized to provide nutrients and improve the soil in the agriculture, starting from which an integrated modern system was proposed herein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dielectric and diffusion barrier multilayer for Cu(In,Ga)Se{sub 2} solar cells integration on stainless steel sheet

    Energy Technology Data Exchange (ETDEWEB)

    Amouzou, Dodji, E-mail: dodji.amouzou@fundp.ac.be [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium); Guaino, Philippe; Fourdrinier, Lionel; Richir, Jean-Baptiste; Maseri, Fabrizio [CRM-Group, Boulevard de Colonster, B 57, 4000 Liège (Belgium); Sporken, Robert [Research Centre in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur (Belgium)

    2013-09-02

    For the fabrication of monolithically integrated flexible Cu(In, Ga)Se{sub 2}, CIGS modules on stainless steel, individual photovoltaic cells must be insulated from metal substrates by a barrier layer that can sustain high thermal treatments. In this work, a combination of sol–gel (organosilane-sol) and sputtered SiAlxOy forming thin diffusion barrier layers (TDBL) was prepared on stainless steel substrates. The deposition of organosilane-sol dielectric layers on the commercial stainless steel (maximal roughness, Rz = 500 nm and Root Mean Square roughness, RMS = 56 nm) induces a planarization of the surface (RMS = 16.4 nm, Rz = 176 nm). The DC leakage current through the dielectric layers was measured for the metal-insulator-metal (MIM) junctions that act as capacitors. This method allowed us to assess the quality of our TDBL insulating layer and its lateral uniformity. Indeed, evaluating a ratio of the number of valid MIM capacitors to the number of tested MIM capacitors, a yield of ∼ 95% and 50% has been reached respectively with non-annealed and annealed samples based on sol–gel double layers. A yield of 100% was achieved for sol–gel double layers reinforced with a sputtered SiAlxOy coating and a third sol–gel monolayer. Since this yield is obtained on several samples, it can be extrapolated to any substrate size. Furthermore, according to Glow Discharge Optical Emission Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy measurements, these barrier layers exhibit excellent barrier properties against the diffusion of undesired atoms which could otherwise spoil the electronic and optical properties of CIGS photovoltaic cells. - Highlights: • We functionalize steel for monolithically integrated Cu(In,Ga)Se{sub 2} solar cells • Thin dielectric and diffusion barrier layers (TDDBL) prepared on steel • Reliability and breakdown voltage of dielectric layers have been studied. • Investigation of thermal treatment effect on dielectric

  12. Economic feasibility of radioactive scrap steel recycling

    International Nuclear Information System (INIS)

    Nichols, F.; Balhiser, R.; Rosholt, D.

    1995-01-01

    In the past, government and commercial nuclear operators treated radioactive scrap steel (RSS) as a liability and disposed of it by burial; this was an accepted and economical solution at that time. Today, environmental concerns about burial are changing the waste disposal picture by (a) causing burial costs to soar rapidly, (b) creating pressure to close existing burial sites, and (c) making it difficult and expensive to open and operate burial facilities. To exacerbate the problem, planned dismantling of nuclear facilities will substantially increase volumes of RSS open-quotes wasteclose quotes over the next 30 yr. This report describes a project with the intention of integrating the current commercial mini-mill approach of recycling uncontaminated steel with radiological controls to design a system that can process contaminated metals at prices significantly below the current processors or burial costs

  13. Current status of iron and steelmaking technology at Tata Steel

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, B.D.; Poddar, M.N.; Chandra, S. [Tata Steel, Jamshedpur (India)

    2002-07-01

    Tata Steel was set up in the early years of the 20th century and over the years the plant has grown into one of the most modern steel plants in the world. The philosophy of phase-wise modernisation on a continuing basis was adopted by Tata Steel with great advantage for the modernisation of the two million tonne Jamshedpur Steel Works. Four phases of the modernisation programme have already been successfully completed and their gains consolidated. Adoption and absorption of the latest technologies, fundamental changes in the operating philosophy and setting of stretch performance targets have brought about this remarkable transformation. The recently commissioned state of the art 1.2 Mtpa Cold Rolling Mill Complex is an example of Tata Steel remaining in harmony with times. Another is the use of pulverised coal injection in blast furnaces. The paper highlights some of the important technological developments in integrated steel plants, particularly those being practiced at Tata Steel, in the areas of ironmaking, steelmaking, casting and rolling for retaining its competitive position in the global market with regard to cost, customer and change. 9 refs., 21 figs., 2 tabs.

  14. Basic survey project for joint implementation in fiscal 1998. Study of BFG mono-firing gas turbine combined cycle power plant application for the steel mill of China; 1998 nendo kyodo jisshi nado suishin kiso chosa. Chugoku seitetsu kaishamuke koro gas sensho combined cycle hatsuden setsubi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Discussions were given on application to the steel mills in China of a 1100-degree C class high-efficiency combined cycle power plant (CCPP) exclusively firing blast furnace gas developed jointly by Kawasaki Heavy Industries Ltd. of Japan and ABB Corporation of Switzerland. The CCPP can utilize the energy possessed by a fuel without waste from high temperature zones to low temperature zones, being capable of attaining high efficiency that cannot be achieved with the single cycle. The CCPP has the efficiency exceeding that of the BTGP by about 10% or more in absolute value. The investigations and discussions were given on Shougang General Corporation, Anshan Steel Corporation and Wuhan Steel Corporation. As a result, in the plan for the power plant of Shougang General Corporation on which both parties have agreed, the project implementation can be expected to result in electric power generation of 110 MW in annual average, factory air supply of about 100 tons per hour in annual average, and annual reduction of carbon dioxide of 841 kilo tons. Wuhan Steel and Anshan Steel will require implementation of further detailed investigation, but the possibility of realization is considered high (NEDO)

  15. Nanocrystalline TiAl powders synthesized by high-energy ball milling: effects of milling parameters on yield and contamination

    International Nuclear Information System (INIS)

    Bhattacharya, Prajina; Bellon, Pascal; Averback, Robert S.; Hales, Stephen J.

    2004-01-01

    High-energy ball milling was employed to produce nanocrystalline Ti-Al powders. As sticking of the powders can be sufficiently severe to result in a near zero yield, emphasis was placed on varying milling conditions so as to increase the yield, while avoiding contamination of the powders. The effects of milling parameters such as milling tools, initial state of the powders and addition of process control agents (PCA's) were investigated. Cyclohexane, stearic acid and titanium hydride were used as PCA's. Milling was conducted either in a Cr-steel vial with C-steel balls, or in a tungsten carbide (WC) vial with WC balls, using either elemental or pre-alloyed powders. Powder samples were characterized using X-ray diffraction, scanning and transmission electron microscopy. In the absence of PCA's mechanical alloying in a WC vial and attrition milling in a Cr-steel vial were shown to lead to satisfactory yields, about 65-80%, without inducing any significant contamination of the powders. The results suggest that sticking of the powders on to the milling tools is correlated with the phase evolution occurring in these powders during milling

  16. Predictability of steel containment response near failure track 3 - structural integrity, dynamic behavior, and seismic design

    International Nuclear Information System (INIS)

    Costello, J.F.; Ludwigsen, J.S.; Luk, V.K.; Hessheimer, M.F.

    2000-01-01

    The Nuclear Power Engineering Corporation of Japan and the US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, are co-sponsoring and jointly funding a Cooperative Containment Research Program at Sandia National Laboratories, Albuquerque, New Mexico, USA. As a part of this program, a steel containment vessel model and contact structure assembly was tested to failure with over pressurization at Sandia on December 11--12, 1996. The steel containment vessel model was a mixed-scale model (1:10 in geometry and 1:4 in shell thickness) of a steel containment for an improved Mark-II Boiling Water Reactor plant in Japan. The contact structure, which is a thick, bell-shaped steel shell separated at a nominally uniform distance from the model, provides a simplified representation of features of the concrete reactor shield building in the actual plant. The objective of the internal pressurization test was to provide measurement data of the structural response of the model up to its failure in order to validate analytical modeling, to find its pressure capacity, and to observe the failure model and mechanisms

  17. Building a comprehensive mill-level database for the Industrial Sectors Integrated Solutions (ISIS) model of the U.S. pulp and paper sector.

    Science.gov (United States)

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector.

  18. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Building a Comprehensive Mill-Level Database for the Industrial Sectors Integrated Solutions (ISIS) Model of the U.S. Pulp and Paper Sector

    Science.gov (United States)

    Modak, Nabanita; Spence, Kelley; Sood, Saloni; Rosati, Jacky Ann

    2015-01-01

    Air emissions from the U.S. pulp and paper sector have been federally regulated since 1978; however, regulations are periodically reviewed and revised to improve efficiency and effectiveness of existing emission standards. The Industrial Sectors Integrated Solutions (ISIS) model for the pulp and paper sector is currently under development at the U.S. Environmental Protection Agency (EPA), and can be utilized to facilitate multi-pollutant, sector-based analyses that are performed in conjunction with regulatory development. The model utilizes a multi-sector, multi-product dynamic linear modeling framework that evaluates the economic impact of emission reduction strategies for multiple air pollutants. The ISIS model considers facility-level economic, environmental, and technical parameters, as well as sector-level market data, to estimate the impacts of environmental regulations on the pulp and paper industry. Specifically, the model can be used to estimate U.S. and global market impacts of new or more stringent air regulations, such as impacts on product price, exports and imports, market demands, capital investment, and mill closures. One major challenge to developing a representative model is the need for an extensive amount of data. This article discusses the collection and processing of data for use in the model, as well as the methods used for building the ISIS pulp and paper database that facilitates the required analyses to support the air quality management of the pulp and paper sector. PMID:25806516

  20. Rough mill simulator version 3.0: an analysis tool for refining rough mill operations

    Science.gov (United States)

    Edward Thomas; Joel Weiss

    2006-01-01

    ROMI-3 is a rough mill computer simulation package designed to be used by both rip-first and chop-first rough mill operators and researchers. ROMI-3 allows users to model and examine the complex relationships among cutting bill, lumber grade mix, processing options, and their impact on rough mill yield and efficiency. Integrated into the ROMI-3 software is a new least-...

  1. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  2. A study on the surface roughness of a thin HSQ coating on a fine milled surface

    DEFF Research Database (Denmark)

    Mohaghegh, Kamran; Hansen, Hans Nørgaard; Pranov, Henrik

    2014-01-01

    The paper discusses a novel application of a thin layer coating on a metallic machined surface with particular attention to roughness of the coating compared to the original surface before coating. The coating is a nominally 1 μm film of Hydrogen Silsesquioxane (HSQ) which is commonly used in the...... in the semiconductor industry in the manufacture of integrated circuits. The work piece is a fine peripheral-milled tool steel surface which is widely used in industrial applications. Roughness improvement after the application of HSQ coating is reported....

  3. Nutritional impacts of different whole grain milling techniques : A review of milling practices and existing data

    NARCIS (Netherlands)

    Miller Jones, J.; Adams, J.; Harriman, C.; Miller, C.; Kamp, J.W. van der

    2015-01-01

    The majority of whole grain flour is produced using modern milling techniques, usually with steel rollers, in which a batch of grain is separated into multiple millstreams, sifted, and recombined. In some cases constituent millstreams are purchased and combined by a supplier or end user to achieve a

  4. Nutritional Impacts of Different Whole Grain Milling Techniques: A Review of Milling Practices and Existing Data

    NARCIS (Netherlands)

    Miller Jones, J.; Adams, J.; Harriman, C.; Miller, C.; Kamp, J.W. van der

    2015-01-01

    The majority of whole grain flour is produced using modern milling techniques, usually with steel rollers, in which a batch of grain is separated into multiple millstreams, sifted, and recombined. In some cases constituent millstreams are purchased and combined by a supplier or end user to achieve a

  5. Impact of Magnetic Stirring on Stainless Steel Integrity: Effect on Biopharmaceutical Processing.

    Science.gov (United States)

    Thompson, Christopher; Wilson, Kelly; Kim, Yoen Joo; Xie, Min; Wang, William K; Wendeler, Michaela

    2017-11-01

    Stainless steel containers are widely used in the pharmaceutical and biopharmaceutical industry for the storage of buffers, process intermediates, and purified drug substance. They are generally held to be corrosion resistant, biocompatible, and nonreactive, although it is well established that trace amounts of metal ions can leach from stainless steel equipment into biopharmaceutical products. We report here that the use of stainless steel containers in conjunction with magnetic stirring bars leads to significantly aggravated metal contamination, consisting of both metal particles and significantly elevated metal ions in solution, the degree of which is several orders of magnitude higher than described for static conditions. Metal particles are analyzed by scanning electron microscopy with electron-dispersive X-ray spectroscopy, and metal content in solution is quantitated at different time points by inductively coupled plasma-mass spectrometry. The concentration of iron, chromium, nickel, and manganese increases with increasing stirring time and speed. We describe the impact of buffer components on the extent of metal particles and ions in solution and illustrate the effect on model proteins. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. The integrity of 9Cr-1Mo to stainless steel transition joints in AGR steam generators

    International Nuclear Information System (INIS)

    James, D.W.; Neumann, P.; Soo, J.

    1982-01-01

    The metallurgical aspects of the transition joint between 9Cr-1Mo and 316 stainless steel boiler tube sections are reviewed. A large minimum superheat margin (106 0 C) between the dryout zone and the 9Cr-1Mo to stainless steel transition joint was specified in the original design to eliminate the risk of wetting the stainless steel which is susceptible to stress corrosion cracking. However, small defects were discovered in the welds between the 9Cr-1Mo and Sanicro (72%Ni-16%Cr-10%Fe) transition piece, resulting from dilution of the weld pool by nickel from the transition piece. This led to the possibility of weld failure as a result of creep crack growth in service, and any significant reduction in operating temperature would mean that the large superheat margin could not be sustained. The creep properties of the joints, together with the transition joint temperature distribution, enabled tube failure rates to be determined as a function of operating temperature. A probabilistic model was developed so that the transition joint could be operated within a temperature 'window', the lower temperature limit being determined by stress corrosion considerations and the upper limit being set by creep rate limitations. This allows full load performance from the boilers throughout the anticipated life of the plant. (author)

  7. Integration of the Mini-Sulfide Sulfite Anthraquinone (MSS-AQ) Pulping Process and Black Liquor Gasification in a Pulp Mill

    Energy Technology Data Exchange (ETDEWEB)

    Hasan Jameel, North Carolina State University; Adrianna Kirkman, North Carolina State University; Ravi Chandran,Thermochem Recovery International Brian Turk Research Triangle Institute; Brian Green, Research Triangle Institute

    2010-01-27

    As many of the recovery boilers and other pieces of large capital equipment of U.S. pulp mills are nearing the end of their useful life, the pulp and paper industry will soon need to make long-term investments in new technologies. The ability to install integrated, complete systems that are highly efficient will impact the industry’s energy use for decades to come. Developing a process for these new systems is key to the adoption of state-of-the-art technologies in the Forest Products industry. This project defined an integrated process model that combines mini-sulfide sulfite anthraquinone (MSS-AQ) pulping and black liquor gasification with a proprietary desulfurization process developed by the Research Triangle Institute. Black liquor gasification is an emerging technology that enables the use of MSS-AQ pulping, which results in higher yield, lower bleaching cost, lower sulfur emissions, and the elimination of causticization requirements. The recently developed gas cleanup/absorber technology can clean the product gas to a state suitable for use in a gas turbine and also regenerate the pulping chemicals needed to for the MSS-AQ pulping process. The combination of three advanced technologies into an integrated design will enable the pulping industry to achieve a new level of efficiency, environmental performance, and cost savings. Because the three technologies are complimentary, their adoption as a streamlined package will ensure their ability to deliver maximum energy and cost savings benefits. The process models developed by this project will enable the successful integration of new technologies into the next generation of chemical pulping mills. When compared to the Kraft reference pulp, the MSS-AQ procedures produced pulps with a 10-15 % yield benefit and the ISO brightness was 1.5-2 times greater. The pulp refined little easier and had a slightly lower apparent sheet density (In both the cases). At similar levels of tear index the MSS-AQ pulps also

  8. Pulp mill as an energy producer

    International Nuclear Information System (INIS)

    Kaulamo, O.

    1998-01-01

    The recovery boilers of pulp mills are today the most significant producers of wood energy. The power-to-heat ratio of the power plant process, i.e., power yield, is poor in existing applications. In the study, an alternative of improving the power yield of conventional pulp mills significantly was studied by applying solutions used in power plants to a pulp mill. Extensive conversion of wood energy into electricity is possible only in the recovery boiler of the pulp mill and in a large combustion boiler of bark, wood waste and wood chips integrated to this boiler. Hence, the harvest and transports of wood raw materials, i.e. pulp wood and energy wood, are integrated, and the fraction going to cook and the energy wood fraction are separated at the pulp mill. The method guarantees competitive supply of energy wood. As a result a SELLUPOWER mill was designed, where the recovery boiler combusting black liquor and the large power plant boiler combusting energy wood are integrated to one unit and constructed to a power plant process with a high power-to-heat ratio. Necessary technical solutions, project costs and economical feasibility compared to a conventional pulp mill were determined, and the effect of different production-economical parameters was also studied. (orig.)

  9. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS.

    Science.gov (United States)

    Aydi, Abdelwaheb; Abichou, Tarek; Nasr, Imen Hamdi; Louati, Mourad; Zairi, Moncef

    2016-01-01

    This paper presents a geographic information system-based multi-criteria site selection tool of an olive mill wastewater (OMW) disposal site in Sidi Bouzid Region, Tunisia. The multi-criteria decision framework integrates ten constraints and six factors that relate to environmental and economic concerns, and builds a hierarchy model for OMW disposal site suitability. The methodology is used for preliminary assessment of the most suitable OMW disposal sites by combining fuzzy set theory and analytic hierarchy process (AHP). The fuzzy set theory is used to standardize factors using different fuzzy membership functions while the AHP is used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by both environmental and economic decision criteria. The OMW disposal site suitability is achieved by applying a weighted linear combination that uses a comparison matrix to aggregate different importance scenarios associated with environmental and economic objectives. Three different scenarios generated by different weights applied to the two objectives. The scenario (a) assigns a weight of 0.75 to the environmental and 0.25 to the economic objective, scenario (b) has equal weights, and scenario (c) features weights of 0.25 and 0.75 for environmental and economic objectives, respectively. The results from this study assign the least suitable OMW disposal site of 2.5 % when environmental and economic objectives are rated equally, while a more suitable OMW disposal site of 1.0 % is generated when the economic objective is rated higher.

  10. Biomass torrefaction mill

    Science.gov (United States)

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  11. Laser based refurbishment of steel mill components

    CSIR Research Space (South Africa)

    Kazadi, P

    2006-03-01

    Full Text Available Laser refurbishment capabilities were demonstrated and promising results were obtained for repair of distance sleeves, foot rolls, descaler cassette, idler rolls. Based on the cost projections and the results of the in-situ testing, components which...

  12. Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity

    International Nuclear Information System (INIS)

    Cicero, S.; Setien, J.; Gorrochategui, I.

    2009-01-01

    This paper analyzes the thermal aging embrittlement occurred in a cast stainless steel valve, which is part of the reactor water clean-up (RWCU) system of a Spanish boiling water reactor (BWR) nuclear power plant. The aim is to estimate the current and future state of the material and the corresponding structural integrity of the valve. Given that there is no data available for the experimental characterization of the material, the evolution of the mechanical properties (fracture toughness, yield stress, flow stress and Ramberg-Osgood parameters) has been estimated using the ANL procedure. With the obtained estimations, the critical crack size has been calculated using the European procedure FITNET FFS and the ASME Code. This analysis considers not only the evolution of the mechanical properties up to now but also its future evolution in case there is a life extension of the plant until year 2029

  13. Effect of Built-Up Edge Formation during Stable State of Wear in AISI 304 Stainless Steel on Machining Performance and Surface Integrity of the Machined Part.

    Science.gov (United States)

    Ahmed, Yassmin Seid; Fox-Rabinovich, German; Paiva, Jose Mario; Wagg, Terry; Veldhuis, Stephen Clarence

    2017-10-25

    During machining of stainless steels at low cutting -speeds, workpiece material tends to adhere to the cutting tool at the tool-chip interface, forming built-up edge (BUE). BUE has a great importance in machining processes; it can significantly modify the phenomenon in the cutting zone, directly affecting the workpiece surface integrity, cutting tool forces, and chip formation. The American Iron and Steel Institute (AISI) 304 stainless steel has a high tendency to form an unstable BUE, leading to deterioration of the surface quality. Therefore, it is necessary to understand the nature of the surface integrity induced during machining operations. Although many reports have been published on the effect of tool wear during machining of AISI 304 stainless steel on surface integrity, studies on the influence of the BUE phenomenon in the stable state of wear have not been investigated so far. The main goal of the present work is to investigate the close link between the BUE formation, surface integrity and cutting forces in the stable sate of wear for uncoated cutting tool during the cutting tests of AISI 304 stainless steel. The cutting parameters were chosen to induce BUE formation during machining. X-ray diffraction (XRD) method was used for measuring superficial residual stresses of the machined surface through the stable state of wear in the cutting and feed directions. In addition, surface roughness of the machined surface was investigated using the Alicona microscope and Scanning Electron Microscopy (SEM) was used to reveal the surface distortions created during the cutting process, combined with chip undersurface analyses. The investigated BUE formation during the stable state of wear showed that the BUE can cause a significant improvement in the surface integrity and cutting forces. Moreover, it can be used to compensate for tool wear through changing the tool geometry, leading to the protection of the cutting tool from wear.

  14. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  15. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  16. Analysis of surface integrity in machining of AISI 304 stainless steel under various cooling and cutting conditions

    Science.gov (United States)

    Klocke, F.; Döbbeler, B.; Lung, S.; Seelbach, T.; Jawahir, I. S.

    2018-05-01

    Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers from low yield strength that limits its technological applications. In this paper, liquid nitrogen (LN2) as cryogenic coolant, as well as minimum quantity lubrication (MQL), was applied and investigated. As a reference, conventional flood cooling was examined. Besides the cooling conditions, the feed rate was varied in four steps. A large rounded cutting edge radius and finishing cutting parameters were chosen to increase the mechanical load on the machined surface. The surface integrity was evaluated at both, the microstructural and the topographical levels. After turning experiments, a detailed analysis of the microstructure was carried out including the imaging of the surface layer and hardness measurements at varying depths within the machined layer. Along with microstructural investigations, different topological aspects, e.g., the surface roughness, were analyzed. It was shown that the resulting microstructure strongly depends on the cooling condition. This study also shows that it was possible to increase the micro hardness in the top surface layer significantly.

  17. Mechanical and microstructural integrity of nickel-titanium and stainless steel laser joined wires

    International Nuclear Information System (INIS)

    Vannod, J.; Bornert, M.; Bidaux, J.-E.; Bataillard, L.; Karimi, A.; Drezet, J.-M.; Rappaz, M.; Hessler-Wyser, A.

    2011-01-01

    The biomedical industry shows increasing interest in the joining of dissimilar metals, especially with the aim of developing devices that combine different mechanical and corrosive properties. As an example, nickel-titanium shape memory alloys joined to stainless steel are very promising for new invasive surgery devices, such as guidewires. A fracture mechanics study of such joined wires was carried out using in situ tensile testing and scanning electron microscopy imaging combined with chemical analysis, and revealed an unusual fracture behaviour at superelastic stress. Nanoindentation was performed to determine the mechanical properties of the welded area, which were used as an input for mechanical computation in order to understand this unexpected behaviour. Automated image correlation allowed verification of the mechanical modelling and a reduced stress-strain model is proposed to explain the special fracture mechanism. This study reveals the fact that tremendous property changes at the interface between the NiTi base wire and the weld area have more impact on the ultimate tensile strength than the chemical composition variation across the welded area.

  18. Impact assessment of intermediate processes of steelmaking in electricity cogeneration of steel mill companies//Evaluación del impacto de los procesos intermedios de la producción de acero en la cogeneración de electricidad de la industria siderúrgica

    Directory of Open Access Journals (Sweden)

    Eder Quental-de-Araújo

    2015-09-01

    Full Text Available La industria siderúrgica es uno de los sectores donde se consume mayor cantidad de energia, siendo responsable por la generación de productos resultantes de procesos con un alto valor energético agregado, entre los que se destacan los gases de proceso. Esos combustibles suministran parte de la demanda térmica de la siderúrgica y, típicamente, son aprovechados para la cogeneración de electricidad. De esta forma, aún con la gran cantidad y la alta complejidad de las variables que intervienen, fue aplicada una metodología clara y accesible desarrollada por Araújo (2015, para prever y simular la cogeneración de electricidad en un proceso típico de la industria siderúrgica. El objetivo de este trabajo es el de evaluar la sensibilidad de la cogeneración a la alteración de la producción de los procesos intermedios. Fue observado que algunos procesos como coquería, el alto horno y la acería, presentan una relación directa entre el aumento de la producción y la capacidad de cogeneración y, en otros procesos como la sinterización y la laminación, el incremento de la producción provoca una disminución de la disponibilidad de combustibles para la central termoeléctrica. Palabras claves: siderúrgica, previsión, cogeneración, gases de proceso, los procesos intermedios.______________________________________________________________________________AbstractThe steel industry is one of the most energy-intensive industry sectors, accounting also for the generation of co-products with high added energy, among them stands out the process gases. These fuels supply part of thermal demand from the steel mill companies and are typically utilized for cogeneration of electricity. Thus even with all the amount and complexity of variables involved, a clear and accessible methodology developed by Araujo was applied (2015 to predict and simulate the cogeneration of electricity. Therefore this study aims to evaluate the sensitivity of the change in

  19. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  20. Understanding dental CAD/CAM for restorations - dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    The dental milling machine is an important device in the dental CAD/CAM chain. Nowadays, dental numerical controlled (NC) milling machines are available for dental surgeries (chairside solution). This article provides a mechanical engineering approach to NC milling machines to help dentists understand the involvement of technology in digital dentistry practice. First, some technical concepts and definitions associated with NC milling machines are described from a mechanical engineering viewpoint. The technical and economic criteria of four chairside dental NC milling machines that are available on the market are then described. The technical criteria are focused on the capacities of the embedded technologies of these milling machines to mill both prosthetic materials and types of shape restorations. The economic criteria are focused on investment costs and interoperability with third-party software. The clinical relevance of the technology is assessed in terms of the accuracy and integrity of the restoration.

  1. Tool Wear Analysis on Five-Axis Flank Milling for Curved Shape Part – Full Flute and Ground Shank End Mill

    Directory of Open Access Journals (Sweden)

    Syahrul Azwan Sundi

    2017-01-01

    Full Text Available This paper is a study on full flute (extra-long tool and ground shank end mill wear analysis by utilizing five-axis CNC to implement flank milling strategy on curved shape part. Five-axis machining eases the user to implement variations of strategy such as flank milling. Flank milling is different from point milling. Point milling cuts materials by using the tip of the tool whereas the flank milling uses the cutting tool body to cut material. The type of cutting tool used was end mill 10 mm diameter with High Speed Steel (HSS material. One factor at a time was utilized to analyze the overall data. Feed rate and spindle speed were the two main factors that been set up equally for both full flute and ground shank end mill. At the end of this research, the qualitative analysis based on tool wear between full flute and ground shank end mill is observed. Generally, both types of cutting tools showed almost the same failure indication such as broken edge or chipped off edge, formation of pinned hole on the surface and serration formation or built-up edge (BUE on the primary flute. However, the results obtained from the enlarged images which were captured by Optical Microscope indicated that, the ground shank end mill is better than the full flute end mill.

  2. FM Interviews: Stephanie Mills

    OpenAIRE

    Valauskas, Edward

    2002-01-01

    Stephanie Mills is an author, editor, lecturer and ecological activist who has concerned herself with the fate of the earth and humanity since 1969, when her commencement address at Mills College in Oakland, Calif., drew the attention of a nation. Her speech, which the New York Times called "perhaps the most anguished statement" of the year's crop of valedictory speeches, predicted a bleak future. According to Mills, humanity was destined for suicide, the result of overpopulation and overuse ...

  3. Steel reinforced composite silicone membranes and its integration to microfluidic oxygenators for high performance gas exchange.

    Science.gov (United States)

    Matharoo, Harpreet; Dabaghi, Mohammadhossein; Rochow, Niels; Fusch, Gerhard; Saraei, Neda; Tauhiduzzaman, Mohammed; Veldhuis, Stephen; Brash, John; Fusch, Christoph; Selvaganapathy, P Ravi

    2018-01-01

    Respiratory distress syndrome (RDS) is one of the main causes of fatality in newborn infants, particularly in neonates with low birth-weight. Commercial extracorporeal oxygenators have been used for low-birth-weight neonates in neonatal intensive care units. However, these oxygenators require high blood volumes to prime. In the last decade, microfluidics oxygenators using enriched oxygen have been developed for this purpose. Some of these oxygenators use thin polydimethylsiloxane (PDMS) membranes to facilitate gas exchange between the blood flowing in the microchannels and the ambient air outside. However, PDMS is elastic and the thin membranes exhibit significant deformation and delamination under pressure which alters the architecture of the devices causing poor oxygenation or device failure. Therefore, an alternate membrane with high stability, low deformation under pressure, and high gas exchange was desired. In this paper, we present a novel composite membrane consisting of an ultra-thin stainless-steel mesh embedded in PDMS, designed specifically for a microfluidic single oxygenator unit (SOU). In comparison to homogeneous PDMS membranes, this composite membrane demonstrated high stability, low deformation under pressure, and high gas exchange. In addition, a new design for oxygenator with sloping profile and tapered inlet configuration has been introduced to achieve the same gas exchange at lower pressure drops. SOUs were tested by bovine blood to evaluate gas exchange properties. Among all tested SOUs, the flat design SOU with composite membrane has the highest oxygen exchange of 40.32 ml/min m 2 . The superior performance of the new device with composite membrane was demonstrated by constructing a lung assist device (LAD) with a low priming volume of 10 ml. The LAD was achieved by the oxygen uptake of 0.48-0.90 ml/min and the CO 2 release of 1.05-2.27 ml/min at blood flow rates ranging between 8 and 48 ml/min. This LAD was shown to increase the

  4. Feasibility analysis of recycling radioactive scrap steel

    International Nuclear Information System (INIS)

    Nichols, F.; Balhiser, B.; Cignetti, N.

    1995-09-01

    The purpose of this study is to: (1) establish a conceptual design that integrates commercial steel mill technology with radioactive scrap metal (RSM) processing to produce carbon and stainless steel sheet and plate at a grade suitable for fabricating into radioactive waste containers; (2) determine the economic feasibility of building a micro-mill in the Western US to process 30,000 tons of RSM per year from both DOE and the nuclear utilities; and (3) provide recommendations for implementation. For purposes of defining the project, it is divided into phases: economic feasibility and conceptual design; preliminary design; detail design; construction; and operation. This study comprises the bulk of Phase 1. It is divided into four sections. Section 1 provides the reader with a complete overview extracting pertinent data, recommendations and conclusions from the remainder of the report. Section 2 defines the variables that impact the design requirements. These data form the baseline to create a preliminary conceptual design that is technically sound, economically viable, and capitalizes on economies of scale. Priorities governing the design activities are: (1) minimizing worker exposure to radionuclide hazards, (2) maximizing worker safety, (3) minimizing environmental contamination, (4) minimizing secondary wastes, and (5) establishing engineering controls to insure that the plant will be granted a license in the state selected for operation. Section 3 provides details of the preliminary conceptual design that was selected. The cost of project construction is estimated and the personnel needed to support the steel-making operation and radiological and environmental control are identified. Section 4 identifies the operational costs and supports the economic feasibility analysis. A detailed discussion of the resulting conclusions and recommendations is included in this section

  5. Integral test of KERMA data for SS304 stainless steel in the D-T fusion neutron environment

    International Nuclear Information System (INIS)

    Ikeda, Y.; Kosako, K.; Konno, C.

    1994-01-01

    The KERMA (Kinetic Energy Release Material) data play the fundamental role for estimating nuclear heating in the structural components of fusion reactors. The data are produced from the large body of nuclear data relevant to reaction channels associated with the kinetic energy release. Both contributions by neutron and gamma-ray should be addressed to arrived at the final heating products. Extensive efforts have been devoted to the neutron and γ-ray transport profile in many materials, resulting in the validation of cross section data. However, the experimental verification of KERMA data, which is a highly integrated product of neutron and γ-ray, has been limited from the lack of available experimental data. Through the JAERI/USDOE collaborative program on fusion neutronics, novel experimental technique for the direct nuclear heating due to 14 MeV neutrons has been developed based on a micro calorimetric system. The technique demonstrated excellent capability for detecting the temperature rise due to nuclear heating and pertinent verification for the calculation data and methods. This paper deals with the most recent experimental endeavor for the direct nuclear heating measurement in SS-304 stainless steel assembly, where appreciably large amounts of slow neutron and associated secondary γ-rays dominated the field. The nuclear heating up to 200 mm depth in the SS-304 assembly were derived from detected temperature rise employing large SS-304 block type probe materials

  6. Assessment of structural integrity of Monju steel liner against sodium leakage and combustion. Strain criterion of the liner material

    Energy Technology Data Exchange (ETDEWEB)

    Asayama, T.; Koi, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2001-07-01

    In a postulated condition of sodium leakage and combustion in the secondary heat transfer system of the prototype Japanese fast breeder reactor Monju, thermal stresses raise in steel liners installed to prevent sodium from contacting to concrete. Excessive strain due to the thermal stresses leads to failure of the liner. This paper proposes a strain criterion below that the mechanical integrity of liner is assured. In-plane thermal expansion causes membrane strain and out-of-plane expansion causes bending strain. Therefore, failure modes to be taken into account are tensile fracture and bending fracture. The strain criterion can be determined based on tensile and bending tests. Tensile tests and three-point bending tests were performed at the temperature range from room temperature to 1000 C. Fracture elongation was measured in both tests. Uniform elongation was also measured in tensile tests. Various factors that can affect the above experimental results, multi-axiality, environmental effects, and creep were examined. Based on the above results, the strain criterion was determined. The criterion is 10% for membrane strain and 30% for membrane plus bending strain in the temperature range of 350 C to 1000 C. For the temperatures less than 350 C, the half of those values is used. (author)

  7. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    International Nuclear Information System (INIS)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-01-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  8. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Science.gov (United States)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen; Moon, Se Youn; Hong, Bong Guen

    2014-10-01

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 °C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 °C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI).

  9. Fabrication and integrity test preparation of HIP-joined W and ferritic-martensitic steel mockups for fusion reactor development

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Won; Shin, Kyu In; Kim, Suk Kwon; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae Sung; Choi, Bo Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Moon, Se Youn; Hong, Bong Guen [Chonbuk National University, Jeonju (Korea, Republic of)

    2014-10-15

    Tungsten (W) and ferritic-martensitic steel (FMS) as armor and structural materials, respectively, are the major candidates for plasma-facing components (PFCs) such as the blanket first wall (BFW) and the divertor, in a fusion reactor. In the present study, three W/FMS mockups were successfully fabricated using a hot isostatic pressing (HIP, 900 .deg. C, 100 MPa, 1.5 hrs) with a following post-HIP heat treatment (PHHT, tempering, 750 .deg. C, 70 MPa, 2 hrs), and the W/FMS joining method was developed based on the ITER BFW and the test blanket module (TBM) development project from 2004 to the present. Using a 10-MHz-frequency flat-type probe to ultrasonically test of the joint, we found no defects in the fabricated mockups. For confirmation of the joint integrity, a high heat flux test will be performed up to the thermal lifetime of the mockup under the proper test conditions. These conditions were determined through a preliminary analysis with conventional codes such as ANSYS-CFX for thermal-hydraulic conditions considering the test facility, the Korea heat load test facility with an electron beam (KoHLT-EB), and its water coolant system at the Korea Atomic Energy Research Institute (KAERI)

  10. Determination of the Tapping Part Diameter of the Thread Mill

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'

    2015-01-01

    Full Text Available Currently, there is a tendency to increase the proportion of thread milling operations, among other ways of tapping, which is associated with increasing number of CNC machines, flexibility and versatility of the process.Developments presently existing in the RF and used in the thread mills deal, mainly, with the thread milling cutter designs, to process internal and external thread with straight flutes made from high-speed steel.The paper presents a technique to calculate and select the initial design parameters, i.e. the external diameter of the tapping part of thread milling cutter, which is chosen as a basic computational design. The analysis of directories of tool companies containing foreign de-signs of solid thread end-milling cutters has shown that most of them rep-resent the thread cutter designs made of solid carbide. There are solid and interlocking side milling cutters, which use a tapping part both as a single-disk and as a multi-disk one; chip flutes are made to be both as direct and as screw; solid designs of cutters are made from carbide with a diameter of up to 20 ... 25 mm; thread cutters can be left- and right-hand cutting; Designs of the combined thread mills are proposed; internal channels are used for coolant supply.It is shown that the purpose of the external diameter of the tapping part of the thread mill should take into account the effect of the thread mill diameter on the milling process performance, precision of thread profile received, taper thread, tool strength, and the volume of flutes.The analysis has shown that when choosing the external diameter of the thread mill it worth taking its maximum diameter to improve the char-acteristics of the process under the restrictions imposed on the accuracy of the formed thread.

  11. Manufacturing of large and integral-type steel forgings for nuclear steam supply system components

    International Nuclear Information System (INIS)

    Kawaguchi, S.; Tsukada, H.; Suzuki, K.; Sato, I.; Onodera, S.

    1986-01-01

    Forgings for the reactor pressure vessel (RPV) of the pressurized heavy water reactor (PHWR) 700 MWe, which is composed of seven major parts and nozzles totaling about 965 tons, were successfully developed. These forgings are: 1. Flanges: an outside diameter of 8440 mm and a weight of 238 tons max, requiring an ingot of 570 tons. 2. Shells and torus: an outside diameter of about 8000 mm with large height. 3. Cover dome: a diameter of 6800 mm and a thickness of 460 mm, requiring a blank forging before forming of 8000 mm in diameter and 550 m thick. The material designation is 20Mn-Mo-Ni 5 5 (equivalent to SA508, Class 3). In this paper, the manufacturing of and the properties of such large and integral forgings are discussed, including an overview of manufacturing processes for ultralarge-sized forgings over the last two decades

  12. Study of spatiotemporal variation of atmospheric mercury and its human exposure around an integrated steel plant, India

    Science.gov (United States)

    Pervez, S.; Koshle, A.; Pervez, Y.

    2010-06-01

    Mercury release by coal combustion has been significantly increased in India. Mercury content in coal has been analyzed to 0.272 ppm by Central Pollution Control Board. Toxicological effects of elemental Hg (Hg0) exposure include respiratory and renal failures, cardiac arrest, and cerebral oedema, while subclinical exposure may induce kidney, behavioral, and cognitive dysfunctions. The present work is focused on dispersion pattern and inter-phase exchange phenomena of ambient mercury between air-particulate matter evaluations of alongwith dominance of various major routes of human exposure-dose response using regression analysis around an integrated steel plant in central India. Source-downwind type stratified random sampling plan using longitudinal study design has been adopted for ambient monitoring of total mercury, while representative sampling plant has been adopted for persona exposure-dose response study In space-time framework. Control sites and subjects have been chosen from uncontaminated area (100 km away from any industrial activities). 06 ambient air monitoring stations and 17 subjects from workers, non-workers but local residents' categories and from controlled sites have been chosen for the study. Samples of mercury biomarkers (blood, breast milk and urine) have also been collected from same subjects in each month during sampling period. The sampling period was March 2005 to February 2006 . Samples of 30% acidified KMnO4 for air-Hg absorption, PM10, RPM and biological samples were analyzed for total mercury by ICP-AES using standard methods. Local soils and ground water were also monitored for total mercury content during the sampling period. Results have shown that mercury concentration is very high compared to prescribed limits in all receptors. Results of exchange phenomenon have shown the higher transfer of mercury from air to particulate during combustion in steel plant environment due to presence of huge amount of iron particles, in contrast to

  13. The structural changes of Y2O3 in ferritic ODS alloys during milling

    International Nuclear Information System (INIS)

    Hilger, I.; Tegel, M.; Gorley, M.J.; Grant, P.S.; Weißgärber, T.; Kieback, B.

    2014-01-01

    Oxide dispersion strengthened (ODS) ferritic steels are usually fabricated via mechanical alloying and subsequent consolidation via hot extrusion or hot isostatic pressing. During the individual process steps, a complex evolution of the nanoparticle structure is taking place. Powders with different Y 2 O 3 contents were milled and examined by means of X-ray diffraction (XRD) and atom probe tomography (APT). It has been observed that the Y 2 O 3 is fragmented and becomes partially amorphous upon milling due to the grain refinement of Y 2 O 3 during the milling process. There was no compelling evidence for Y 2 O 3 dissociation and dissolution into the steel matrix

  14. Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H2O2 with Lime and Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Alessio Siciliano

    2016-11-01

    Full Text Available In the Mediterranean region, the disposal of residues of olive oil industries represents an important environmental issue. In recent years, many techniques were proposed to improve the characteristics of these wastes with the aim to use them for methane generation in anaerobic digestion processes. Nevertheless, these techniques, in many cases, result costly as well as difficult to perform. In the present work, a simple and useful process that exploits H2O2 in conjunction with lime is developed to enhance the anaerobic biodegradability of wet olive mill wastes (WMOW. Several tests were performed to investigate the influence of lime amount and H2O2 addition modality. The treatment efficiency was positively affected by the increase of lime dosage and by the sequential addition of hydrogen peroxide. The developed process allows reaching phenols abatements up to 80% and volatile fatty acids productions up to 90% by using H2O2 and Ca(OH2 amounts of 0.05 gH2O2/gCOD and 35 g/L, respectively. The results of many batch anaerobic digestion tests, carried out by means of laboratory equipment, proved that the biogas production from fresh wet olive mill wastes is hardly achievable. On the contrary, organic matter abatements, around to 78%, and great methane yields, up to 0.34–0.35 LCH4/gCODremoved, were obtained on pretreated wastes.

  15. Multi-layer concept for containments in an integrated construction method by using steel composite building block modules

    International Nuclear Information System (INIS)

    Friedrich, F.

    1987-01-01

    Containments consisting of steel modules have been developed as an alternative design and solution to the double shell containments comprising two separate structures. The combination of different reinforcement layers of steel plates and round reinforcing bars in one cross section provides a high loadbearing capacity. The multiple utilization of the steel plates in the composite section as formwork in the construction state and as reinforcement and liner in the operation or damage/failure states, respectively, yields a number of advantages. The main effect is being achieved due to the high degree of prefabrication and completion (finishing) of the steel modules and the reduction of expenditure on the job site connected with same. (orig.)

  16. Auburn Steel Company radioactive contamination incident

    International Nuclear Information System (INIS)

    Bradley, F.J.; Cabasino, L.; Kelly, R.; Awai, A.; Kasyk, G.

    1986-04-01

    On February 21, 1983, workers at the Auburn Steel Company, Auburn, New York discovered that about 120 tons of steel poured that day had become contaminated with 60 Co. In addition to the steel, the air cleaning system and portions of the mill used in casting the steel were contaminated. Approximately 25 curies of 60 Co were involved. Decontamination and disposal of the contamination cost in excess of $2,200,000. This report details the discovery of the contamination, decontamination of the plant and disposal of the contamination

  17. An integrated geochemical, geophysical and mineralogical study of river sediments in alpine area and soil samples near steel plant, in Austria

    Science.gov (United States)

    Irfan, M. I.; Meisel, T.

    2012-04-01

    Concentration of nickel and chromium in any part of the ecosystem is important for environmental concerns in particular human health due to the reason that some species of them can cause health problem e.g. dermatitis and cancer. Sediment samples collected form a river Vordernberger Bach (Leoben, Austria) in an alpine region and soil samples collected in an area adjacent to steel production unit in same narrow valley were investigated. In previous studies a correlation between magnetic susceptibility values and concentration of nickel and chromium showed that a magnetic susceptibility meter can be used to point out the contaminated areas as in-situ device. The purpose of the whole study is to understand the real (point or diffuse, anthropogenic or geogenic) sources of contamination of soils, water and river sediments through heavy metal deposition. Unseparated, magnetic and non-magnetic fractions of soil samples were investigated for geochemical and mineralogical aspects with XRF, ICP-MS, EMPA, Multi-Functional Kappabridge (MFK1) and laser ablation coupled with ICP-MS. Mineralogical study of sediment samples for several sampling points with higher Ni and Cr content was performed. Sediment samples were sieved below 1.4 mm and then a concentrate of heavy minerals was prepared in the field through panning. Concentrated heavy minerals were then subjected for heavy liquid separation in the laboratory. Separated magnetic and non-magnetic fractions below 0.71/0.1 mm and density greater than 2.9 g/cm3 were selected for mineralogical investigation. The abundance of typical anthropogenic particles, e.g., spherical, tinder, roasted ores, iron and steel mill slag was observed under the microscope. Magnetite (mostly anthropogenic), maghemite, chromspinel, chromite (type I & II), (Ca,Al)-ferrite, wustite, apatite (anthropogenic), olivine mixed crystals, calcium silicate and spinel (anthropogenic) are found in magnetic fraction. Non-magnetic fractions contain hematite, siderite

  18. Structural integrity of stainless steel components exposed to neutron irradiation. Change in failure strength of cracked components due to cold working

    International Nuclear Information System (INIS)

    Kamaya, Masayuki; Hojo, Tomohiro; Mochizuki, Masahito

    2015-01-01

    Load carrying capacity of austenitic stainless steel component is increased due to hardening caused by neutron irradiation if no crack is included in the component. On the other hand, if a crack is initiated in the reactor components, the hardening may decrease the load carrying capacity due to reduction in fracture toughness. In this paper, in order to develop a failure assessment procedure of irradiated cracked components, characteristics of change in failure strength of stainless steels due to cold working were investigated. It was experimentally shown that the proof and tensile strengths were increased by the cold working, whereas the fracture toughness was decreased. The fracture strengths of a cylinder with a circumferential surface crack were analyzed using the obtained material properties. Although the cold working altered the failure mode from plastic collapse to the unsteady ductile crack growth, it did not reduce failure strengths even if 50% cold working was applied. The increase in failure strength was caused not only by increase in flow stress but also by reduction in J-integral value, which was brought by the change in stress-strain curve. It was shown that the failure strength of the hardened stainless steel components could be derived by the two-parameter method, in which the change in material properties could be reasonably considered. (author)

  19. Contamination risk of stable isotope samples during milling.

    Science.gov (United States)

    Isaac-Renton, M; Schneider, L; Treydte, K

    2016-07-15

    Isotope analysis of wood is an important tool in dendrochronology and ecophysiology. Prior to mass spectrometry analysis, wood must be homogenized, and a convenient method involves a ball mill capable of milling samples directly in sample tubes. However, sample-tube plastic can contaminate wood during milling, which could lead to biological misinterpretations. We tested possible contamination of whole wood and cellulose samples during ball-mill homogenization for carbon and oxygen isotope measurements. We used a multi-factorial design with two/three steel milling balls, two sample amounts (10 mg, 40 mg), and two milling times (5 min, 10 min). We further analyzed abrasion by milling empty tubes, and measured the isotope ratios of pure contaminants. A strong risk exists for carbon isotope bias through plastic contamination: the δ(13) C value of polypropylene deviated from the control by -6.77‰. Small fibers from PTFE filter bags used during cellulose extraction also present a risk as the δ(13) C value of this plastic deviated by -5.02‰. Low sample amounts (10 mg) showed highest contamination due to increased abrasion during milling (-1.34‰), which is further concentrated by cellulose extraction (-3.38‰). Oxygen isotope measurements were unaffected. A ball mill can be used to homogenize samples within test tubes prior to oxygen isotope analysis, but not prior to carbon or radiocarbon isotope analysis. There is still a need for a fast, simple and contamination-free sample preparation procedure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Using an equation based on flow stress to estimate structural integrity of annealed Type 304 stainless steel plate and pipes containing surface defects

    International Nuclear Information System (INIS)

    Reuter, W.G.; Place, T.A.

    1981-01-01

    An accurate assessment of the influence of defects on structural component integrity is needed. Generally accepted analytical techniques are not available for the very ductile materials used in many nuclear reactor components. Some results are presented from a test programme to obtain data by which to evaluate proposed models. Plate and pipe specimens containing surface flaws were fabricated from annealed Type 304 stainless steel and tested at room temperature. An evaluation of an empirical equation based on flow stress is presented. In essentially all instances the flow stress is not a constant but varies as a function of the size of the surface flaw. (author)

  1. The magnetic properties of mill scale-derived permanent magnet

    International Nuclear Information System (INIS)

    Woon, H.S.; Hashim, M.M.; Yahya, N.; Zakaria, A.; Lim, K.P.

    2005-01-01

    In the permanent magnet SrO-FeO-Fe 2 O 3 system, there exist several magnetically ordered compounds with a stable phase at room temperature. The most important are the M(SrFe 12 O 19 ), X(SrFe 15 O 23 ) and W(SrFe 18 O 27 ) phases with hexagonal close packed structure. In this project, M(SrFe 12 O 19 ) was prepared using mill scale, a steel-maker byproduct, as raw material. The Malaysia steel industry generates approximately 30,000 metric tons of waste products such as mill scale every year. Transportation and disposal of the byproducts are costly and the environmental regulations are becoming stricter. Hence, local steel mills are to find new ways to recycle the waste as a feedstock for the steel-making process or as a saleable product. The M(SrFe 12 O 19 ) was synthesized using the conventional ceramic process. The formation of the SrFe 12 O 19 was confirmed by X-ray diffraction. The magnetic properties such as the energy product (BH)max, coercive force (iHc) and remanence (Br) were also reported in this paper. (Author)

  2. Effect of the milling conditions on the degree of amorphization of selenium by milling in a planetary ball mill

    International Nuclear Information System (INIS)

    Ksiazek, K; Wacke, S; Gorecki, T; Gorecki, Cz

    2007-01-01

    The effect of the milling parameters (rotation speed of the milling device and duration of milling) on the phase composition of the products of milling of fully crystalline selenium has been investigated. The milling was conducted using a planetary micromill and the phase composition of the milling products was determined by differential thermal analysis. It has been found that ball milling leads to the partial amorphization of the starting crystalline material. The content of amorphous phase in the milling products depends, in a rather complicated way, on the milling parameters. At the milling parameters adopted in the present study, the milling product was never fully amorphous. The complicated way the milling parameters affect the content of amorphous phase in the milling products is a result of competition of two processes: amorphization due to deformation and refinement of grains of milled material and crystallization of the already produced amorphous material at the cost of heat evolved in the milling vial during the milling process

  3. Progress report on the influence of higher interpass temperatures on the integrity of austenitic stainless steel welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Yarmuch, M.; Choi, L. [Alberta Research Council, Edmonton, AB (Canada); Armstrong, K.; Radu, I. [PCL Industrial Constructors Inc., Nisku, AB (Canada)

    2008-07-01

    This report discussed the progress of the Welding Productivity Group (TWPG) interpass temperature assessment project (ITAP). The project was initiated to evaluate the influence of interpass temperatures on the metallurgical, corrosive, and mechanical properties of austenitic stainless steel, carbon steel, and low-alloy pressure weldments. To date, the project has conducted experiments to determine if interpass temperatures in austenitic stainless steel weldments are higher than temperatures recommended by API requirements. Elevated interpass temperatures for various base materials have been evaluated. Preliminary metallurgical, mechanical, and laboratory corrosion data from 3 experiments with 304/304L and 316/316L stainless steel weldment test specimens has shown that no significant changes occur as a result of elevated interpass temperatures. Results from side bend specimens have demonstrated that elevated interpass temperatures produce acceptable weldment ductility. No intergranular cracking was observed during oxalic acid etch tests conducted for the 316/316L samples. Huey tests performed on the 304/304L specimens indicated that elevated interpass temperatures did not adversely affect the intergranular corrosion resistance of weldments with less than 3 weld passes. Huey tests performed on the 316 specimens showed a marked increase in corrosion rates and normalized weight losses. It was concluded that rates of attack correlate with the maximum interpass temperature and not the average weld metal ferrite number. 22 refs., 11 tabs., 12 figs.

  4. Development of CMOS MEMS inductive type tactile sensor with the integration of chrome steel ball force interface

    Science.gov (United States)

    Yeh, Sheng-Kai; Chang, Heng-Chung; Fang, Weileun

    2018-04-01

    This study presents an inductive tactile sensor with a chrome steel ball sensing interface based on the commercially available standard complementary metal-oxide-semiconductor (CMOS) process (the TSMC 0.18 µm 1P6M CMOS process). The tactile senor has a deformable polymer layer as the spring of the device and no fragile suspended thin film structures are required. As a tactile force is applied on the chrome steel ball, the polymer would deform. The distance between the chrome steel ball and the sensing coil would changed. Thus, the tactile force can be detected by the inductance change of the sensing coil. In short, the chrome steel ball acts as a tactile bump as well as the sensing interface. Experimental results show that the proposed inductive tactile sensor has a sensing range of 0-1.4 N with a sensitivity of 9.22(%/N) and nonlinearity of 2%. Preliminary wireless sensing test is also demonstrated. Moreover, the influence of the process and material issues on the sensor performances have also been investigated.

  5. 77 FR 13545 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Notice of Final Results of Antidumping Duty...

    Science.gov (United States)

    2012-03-07

    ... Results. On December 1, 2011, the Department received case briefs from AMLT and petitioners, Nucor Corporation (Nucor) and Cascade Steel Rolling Mills, Inc. (Cascade Mills). On December 6, 2011, the Department received rebuttal briefs from Nucor and Cascade Mills, and ArcelorMittal USA Inc., (ArcelorMittal USA...

  6. Analytic representations of Yang–Mills amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Bourjaily, Jacob L., E-mail: bourjaily@nbi.ku.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Damgaard, Poul H. [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Feng, Bo [Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou City, 310027 (China)

    2016-12-15

    Scattering amplitudes in Yang–Mills theory can be represented in the formalism of Cachazo, He and Yuan (CHY) as integrals over an auxiliary projective space—fully localized on the support of the scattering equations. Because solving the scattering equations is difficult and summing over the solutions algebraically complex, a method of directly integrating the terms that appear in this representation has long been sought. We solve this important open problem by first rewriting the terms in a manifestly Möbius-invariant form and then using monodromy relations (inspired by analogy to string theory) to decompose terms into those for which combinatorial rules of integration are known. The result is the foundations of a systematic procedure to obtain analytic, covariant forms of Yang–Mills tree-amplitudes for any number of external legs and in any number of dimensions. As examples, we provide compact analytic expressions for amplitudes involving up to six gluons of arbitrary helicities.

  7. Methodology for the characterization and radioactive tracing of a reference to the control of radioactive material in steel mills; Metodologia para la caracterizacion y trazado radiactivo de un material de referencia para el control radiactivo en acerias

    Energy Technology Data Exchange (ETDEWEB)

    Mejuto Mendieta, M.; Crespo Vazquez, M. T.; Peyres Medina, V.; Garcia-Torano, E.; Perez del Villar, L.

    2013-07-01

    One of the tasks which corresponded you to the Laboratory of Metrology of Ionizing Radiation CIEMAT, consists of the preparation of the reference standards of a black slag from steel making drawn {sup 2}26Ra, {sup 1}37Cs, {sup 6}0Co. This work summarizes the steps followed for the preparation of the reference standards of the slag, including the physical sample preparation, chemical, mineralogical and radioactive characterization as well as the development of the method of path with the above listed radionuclides. (Author)

  8. Uranium mill tailings

    International Nuclear Information System (INIS)

    McLaren, L.H.

    1982-11-01

    This bibliography contains information on uranium mill tailings included in the Department of Energy's Energy Data Base from January 1981 through October 1982. The abstracts are grouped by subject category as shown in the table of contents. Entries in the subject index also facilitate access by subject, e.g., Mill Tailings/Radiation Hazards. Within each category the arrangement is by report number for reports, followed by nonreports in reverse chronological order. These citations are to research reports, journal articles, books, patents, theses, and conference papers from worldwide sources. Five indexes, each preceded by a brief description, are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number. (335 abstracts)

  9. Uranium mining and milling

    International Nuclear Information System (INIS)

    Floeter, W.

    1976-01-01

    In this report uranium mining and milling are reviewed. The fuel cycle, different types of uranium geological deposits, blending of ores, open cast and underground mining, the mining cost and radiation protection in mines are treated in the first part of this report. In the second part, the milling of uranium ores is treated, including process technology, acid and alkaline leaching, process design for physical and chemical treatment of the ores, and the cost. Each chapter is clarified by added figures, diagrams, tables, and flowsheets. (HK) [de

  10. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  11. Development of specimen size and test rate effects on the J-integral upper transition behavior of A533B steel

    International Nuclear Information System (INIS)

    Joyce, James A.

    1988-01-01

    During the past three years a test method has been developed for dynamic testing of fracture mechanics specimens which is specifically designed for application to the upper transition temperature range. The method uses drop tower loading rates of 2.5 m/sec and obtains a J IC or a J-R curve using an analytical key curve approach verified by initial and final crack length measurements obtained from the fracture surface. A J-R curve is obtained from each specimen and contains crack growth corrections so that it is directly comparable with static results obtained in accordance with the ASTM E1152 J-R curve test method. The test procedure has been applied to A106 steel, A533B steel and US Navy HY80 and HY100 steels at temperatures from -200F to 150F. Standard 1T three point bend specimens were used for the A533B and the HY100 steel. Static test results have shown that the J at cleavage initiation (which is presently an unstandardized quantity) is specimen a/W independent throughout the ductile to brittle transition but of course demonstrates considerable statistical scatter in the vicinity of the ductile upper shelf. Dynamic J-R tests have shown an increase in J IC with test rate for most, but not for all, materials. Separation of J into elastic and plastic components shows that the elastic J component increases with test rate in a fashion consistent with the materials tensile sensitivity to test rate but the plastic J component decreases with test rate - an apparent visco-plastic phenomena. For A106 steel the plastic J decrease exceeds the elastic J increase and the upper shelf toughness falls - while the other materials have demonstrated a relatively larger increase in the elastic J component and a smaller decrease in the plastic J component giving an overall increase in upper shelf toughness. Separation of the J integral into elastic and plastic components has demonstrated that J EL is specimen scale and geometry dependent while J PL is relatively scale and geometry

  12. Energy and materials flows in the fabrication of iron and steel semifinished products

    Energy Technology Data Exchange (ETDEWEB)

    Darby, J.B. Jr.; Arons, R.M.

    1979-08-01

    The flow of energy and materials in the fabrication of iron and steel semifinished products from molten metal is discussed. The focus is on techniques to reduce the amount of energy required to produce the typical products of integrated steel plants and iron and steel foundries. In integrated steel plants, if only 50% of the steel being cast were continuously cast, industry-wide energy consumption would be reduced by 6 to 15%. Further major energy savings could be achieved by increased use of by-product gases and regenerators in the various reheat operations. Finally, systems optimization studies to maintain the even flow of materials at full capacity should yield further improvements in energy efficiency. In foundry operations, alternate heating methods in forging operations and the use of no-bake molding and core materials should result in substantial energy savings. Studies of specific operations will suggest housekeeping changes to minimize wasted energy. These changes might include fixing heat leaks, reducing floor space requirements, improving temperature regulation, lowering working temperatures in some steel-forming operations, redesigning products, and minimizing scrap generation. There is also a need for new, energy conserving technologies. A good example would be the development of nondestructive testing to determine the existence, location, and size of defects in ingots at elevated temperatures. A second example is the need to reduce, through system studies, the large amount of scrap typical of foundry operations. Finally, computer control of steel mill operations (materials flow, furnace residence times, excessive heating or overheating, and full capacity utilization of all facilities at all times) deserves further study.

  13. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  14. Integral data evaluation of stainless steel, 239Pu, 240Pu, and H2O for homogeneous plutonium systems

    International Nuclear Information System (INIS)

    Jenquin, U.P.; Thompson, J.K.; Trapp, T.J.; Kottwitz, D.A.

    1979-08-01

    Theory-experiment correlations of plutonium-fueled systems using ENDF/B cross-section data have discrepancies which could be due to cross-section data, theoretical methods, and/or interpretation of the experiment. Analyses of homogeneous plutonium critical experiments were performed to determine where cross section deficiencies may exist. New thermal cross-section data (0.3 eV) were generated for 239 Pu and 240 Pu capture, fission, and neutrons per fission. Two scattering kernels for hydrogen bound in water were also generated. Calculated values of k/sub eff/ using these new data were compared with corresponding values using ENDF/B-IV data. The results indicate that the 240 Pu resonance data are sufficiently well known for hydrogen-moderated plutonium systems. In systems using stainless steel as structural and/or neutron control, a large fraction of the neutron absorptions occur in the stainless steel. Analyses of several systems containing stainless steel indicate that the uncertainty in calculated values of k/sub eff/ is small using current estimates of the uncertainties in the cross sections. 20 figures, 30 tables

  15. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  16. An in vitro evaluation of the integrity of stainless steel crown margins cemented with different luting agents.

    Science.gov (United States)

    Ettinger, R L; Kambhu, P P; Asmussen, C M; Damiano, P C

    1998-01-01

    The elderly population is retaining more teeth which require extensive restorations. The purpose of this study was to identify a luting agent which had the least marginal breakdown when used with stainless steel crowns. Thirty-six caries-free molars were selected, prepared for stainless steel crowns, and embedded in acrylic to support the crown and tooth. The crowns (Unitek/3M) were cemented with 4 different luting agents: (A) Fleck's Cement, (B) Ketac-Cem, (C) All-Bond C & B Cement, and (D) Panavia EX Cement. All the restored teeth were thermocycled and divided into 3 experimental groups. Twelve teeth were stained. The remaining teeth were occlusally loaded and stained. The remaining 12 teeth were thermocycled and stained again. The stainless steel crowns were then sectioned and photographed at 7.5x mag. The dye penetration was evaluated by measurement of the percentage of dye penetration from the crown margin to the cusp tip on each side. Statistical analysis found that the least dye penetration was with All-Bond C & B Cement (p = 0.0001). The most extensive penetration was observed in Ketac-Cem Occlusal loading was a significant factor (p = 0.0001) increasing the dye penetration, but the crown-tooth gap was not.

  17. Corrosion of iron and low alloyed steel within a water saturated brick of clay under anaerobic deep geological disposal conditions: An integrated experiment

    International Nuclear Information System (INIS)

    Martin, F.A.; Bataillon, C.; Schlegel, M.L.

    2008-01-01

    The aim of this study was to determine the corrosion behaviour of iron and low alloyed steels under simulated geological disposal conditions, related to long-term disposal of nuclear wastes in the site of Bure (Meuse-Haute Marne, Champagne, France). The dedicated experiment was a fully integrated set-up: three different bars of material (iron, steel or nickel) have been introduced inside a solid block of clay, which has been saturated with synthetic Bure water and maintained at 90 deg. C during 8 months. Two types of clay have been tested: first, a compacted MX80 (Wyoming, USA) and second, argilite directly taken from the Bure site (Callovo-Oxfordian). In situ electrochemistry has been performed: impedance spectra, chronopotentiometry... The samples have been analysed using a combination of techniques, such as SEM, XRD, EDS, μXAS, μRaman, gravimetry after desquamation. In both cases, the steel or the iron seemed to passivate in contact with the clay. Post-processing of the EIS determined the corrosion rates and the changes in the kinetics have been noticed. The post mortem analysis of the corrosion products showed in both cases the presence of an internal layer made of magnetite (Raman, EDX). The external layer was made of partially Ca-substituted siderite (Fe 1-x Ca x CO 3 ), which could play an extra role in the passivation. Moreover, the samples embedded in the Bure argilite presented an intermediate unique layer containing Fe, O, Na and Si. This study suggests the corrosion products started to react with the silica issued from the dissolution of the Bure clay minerals, resulting in clay minerals neo-formation and in corrosion kinetic changes

  18. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  19. The effect of product quality on the integrity of advanced surface engineering treatments applied to high speed steel circular saw blades

    International Nuclear Information System (INIS)

    Bradbury, S.R.; Sarwar, M.

    1996-01-01

    Advanced surface engineering technologies have been successfully applied to high speed steel drills and carbide single-point cutting tools, but, as yet, limited benefits have been realized when applying the same technologies to multi-point cutting tools of commercial quality. This paper discusses the factors that have limited the benefits of advanced surface engineering treatments when applied to high speed steel circular saw blades. Common manufacturing defects have been identified on the teeth of the blades. Tests which evaluate the blade performance throughout its useful life and examination by scanning electron microscopy (SEM) have shown that these defects adversely affect the performance and wear resistance of surface engineered blades. Further investigations suggest that significant improvements in coating integrity can be achieved through the careful preparation of the substrate surface and refinement of the cutting edge geometry prior to treatment. For this application, the need for refinement and enhancement of current manufacturing practices is demonstrated if the full benefits of advanced surface engineering are to be realized. (orig.)

  20. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    Directory of Open Access Journals (Sweden)

    E.Makarov

    2016-07-01

    Full Text Available A mathematical model of the thermal state of the metal in the run-out roller table continuous wide hot strip mill. The mathematical model takes into account heat generation due to the polymorphic γ → α transformation of supercooled austenite phase state and the influence of the chemical composition of the steel on the physical properties of the metal. The model allows calculation of modes of accelerated cooling strips on run-out roller table continuous wide hot strip mill. Winding temperature calculation error does not exceed 20°C for 98.5 % of strips of low-carbon and low-alloy steels

  1. Shear Roll Mill Reactivation

    Science.gov (United States)

    2012-09-13

    pneumatically operated paste dumper and belt conveyor system, the loss in weight feeder system, the hydraulically operated shear roll mill, the pellet...out feed belt conveyor , and the pack out system comprised of the metal detector, scale, and pack out empty and full drum roller conveyors . Page | 4...feed hopper and conveyor supplying the loss in weight feeder were turned on, and it was verified that these items functioned as designed . The

  2. An investigation of air emission levels from distinct iron and steel production processes with the adoption of pollution control and pollution prevention alternatives

    International Nuclear Information System (INIS)

    Costa, M.M.; Schaeffer, R.

    1999-01-01

    This paper aims to investigate environmental aspects from different iron and steel production processes. A methodology based on material flows is developed in order to verify some air emission levels attained by Pollution Control and Pollution Prevention alternatives. The data basis for modeling energy and materials flows in iron and steel production is obtained from a literature review on different technological processes, energy and materials consumption and pollutant releases to the environmental Modeling combines both process analysis and input-output techniques to simulate the different iron and steel production routes and to estimate the resulting total atmospheric pollution releases based on air emission factors for several pollutants by each production step. Processes examined include: (1) Conventional Integrated (100% ore-based and partly scrap-based); (2) Mini-mill with EAF (100% scrap-based and partly DRI-based); and (3) New Integrated based on the COREX smelting reduction process. Among the alternatives considered for air emissions reductions are those related to Pollution Control (mainly gas cleaning systems) and to Pollution Prevention (change/reduction in input materials, operational procedures and housekeeping improvements, on-site recycling and technology innovations and modifications). Results indicate higher air pollution intensity for the Conventional Integrated Route over the Mini-mill with EAF and COREX smelting reduction processes, though pointing out that final figures are strongly affected by the systems' boundaries and the different air emission levels of each production step

  3. Integration of Heat Treatment with Shot Peening of 17-4 Stainless Steel Fabricated by Direct Metal Laser Sintering

    Science.gov (United States)

    AlMangour, Bandar; Yang, Jenn-Ming

    2017-11-01

    Direct metal laser sintering (DMLS) is a promising powder-based additive manufacturing process for fabrication of near-net-shape parts. However, the typically poor fatigue performance of DMLS parts must be addressed for use in demanding industrial applications. Post-treatment can be applied to enhance the performance of such components. Earlier attempts at inducing grain refinement through severe plastic deformation of part surfaces using shot peening improved the physical and mechanical properties of metals without chemical alteration. However, heat treatment can modify the surface-hardening effects attained by shot peening. Hence, we examined the feasibility of applying shot peening combined with heat treatment to improve the performance of DMLS-fabricated 17-4 stainless steel parts through microstructural evolution studies and hardness measurements. Compared to a specimen treated only by shot peening, the sample exposed to additional heat treatment showed increased hardness due to aging of the dominant phase.

  4. 7 CFR 868.310 - Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice...

    Science.gov (United States)

    2010-01-01

    ... Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice. (See also Â... Milled Rice Principles Governing Application of Standards § 868.310 Grades and grade requirements for the classes Long Grain Milled Rice, Medium Grain Milled Rice, Short Grain Milled Rice, and Mixed Milled Rice...

  5. Optimization of Milling Parameters Employing Desirability Functions

    Science.gov (United States)

    Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.

    2011-01-01

    The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.

  6. Uranium-mill appraisal program

    International Nuclear Information System (INIS)

    Everett, R.J.; Cain, C.L.

    1982-08-01

    The results of special team appraisals at NRC-licensed uranium mills in the period May to November 1981 are reported. Since the Three Mile Island accident, NRC management has instituted a program of special team appraisals of radiation protection programs at certain NRC-licensed facilities. These appraisals were designed to identify weaknesses and strengths in NRC-licensed programs, including those areas not covered by explicit regulatory requirements. The regulatory requirements related to occupational radiation protection and environmental monitoring at uranium mills have been extensively upgraded in the past few years. In addition, there was some NRC staff concern with respect to the effectiveness of NRC licensing and inspection programs. In response to this concern and to changes in mill requirements, the NRC staff recommended that team appraisals be conducted at mills to determine the adequacy of mill programs, the effectiveness of the new requirements, and mill management implementation of programs and requirements. This report describes the appraisal scope and methodology as well as summary findings and conclusions. Significant weaknesses identified during the mill appraisals are discussed as well as recommendations for improvements in uranium mill programs and mill licensing and inspection

  7. Uranium mill tailings management

    International Nuclear Information System (INIS)

    1982-01-01

    Facilities for the disposal of uranium mill tailings will invariably be subjected to geomorphological and climatological influences in the long-term. Proceedings of a workshop discuss how the principles of geomorphology can be applied to the siting, design, construction, decommissioning and rehabilitation of disposal facilities in order to provide for long-term containment and stability of tailings. The characteristics of tailings and their behaviour after disposal influence the potential impacts which might occur in the long-term. Proceedings of another workshop examine the technologies for uranium ore processing and tailings conditioning with a view to identifying improvements that could be made in such characteristics

  8. The industrial ecology of steel

    Energy Technology Data Exchange (ETDEWEB)

    Considine, Timothy J.; Jablonowski, Christopher; Considine, Donita M.M.; Rao, Prasad G.

    2001-03-26

    This study performs an integrated assessment of new technology adoption in the steel industry. New coke, iron, and steel production technologies are discussed, and their economic and environmental characteristics are compared. Based upon detailed plant level data on cost and physical input-output relations by process, this study develops a simple mathematical optimization model of steel process choice. This model is then expanded to a life cycle context, accounting for environmental emissions generated during the production and transportation of energy and material inputs into steelmaking. This life-cycle optimization model provides a basis for evaluating the environmental impacts of existing and new iron and steel technologies. Five different plant configurations are examined, from conventional integrated steel production to completely scrap-based operations. Two cost criteria are used to evaluate technology choice: private and social cost, with the latter including the environmental damages associated with emissions. While scrap-based technologies clearly generate lower emissions in mass terms, their emissions of sulfur dioxide and nitrogen oxides are significantly higher. Using conventional damage cost estimates reported in the literature suggests that the social costs associated with scrap-based steel production are slightly higher than with integrated steel production. This suggests that adopting a life-cycle viewpoint can substantially affect environmental assessment of new technologies. Finally, this study also examines the impacts of carbon taxes on steel production costs and technology choice.

  9. Industrial recovered-materials-utilization targets for the textile-mill-products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The Congress, in the National Energy Conservation and Policy Act of 1978 (NECPA), directed the Department of Energy to establish materials recovery targets for the metals and metal products, paper and allied products, rubber, and textile-mill-products industries. The targets were developed to provide incentives for using energy-saving recorded materials and to provied a yardstick for measuring progress and improvement in this endeavor. The NECPA indicates that the targets should represent the maximum technically and economically feasible increase in the use of energy-saving recovered materials that each industry can achieve progressively by January 1, 1987. Materials affected by recovered-materials targets include and are limited to aluminum, copper, lead, zinc, iron, steel, paper and associated products, textile-mill, products, and rubber. Using information gathered from the textile-mill-products industry and from other textile-relaed sources, DOE has developed recovered materials targets for that industry. This report presents those targets and their basis and justification. Following an overview of the textile industry, the chapters are: Textile-Mill-Products Industry Operations; Economic Analysis of the Textile-Mill-Products Industry; Governmental and Regulatory Influence on the US Textile Industry; Current Mill Use of Recovered Materials in the Textile-Mill-Products Industry; Limitations on the Use of Recovered Materials in the US Textile-Mill-Products Industry; Materials-Recovery Targets; and Government and Industry Actions That Could Increase the Use of Recovered Materials.

  10. Bioassay for uranium mill tailings

    International Nuclear Information System (INIS)

    Tschaeche, A.N.

    1986-01-01

    Uranium mill tailings are composed of fine sand that contains, among other things, some uranium (U/sup 238/ primarily), and all of the uranium daughters starting with /sup 230/Th that are left behind after the usable uranium is removed in the milling process. Millions of pounds of tailings are and continue to be generated at uranium mills around the United States. Discrete uranium mill tailings piles exist near the mills. In addition, the tailings materials were used in communities situated near mill sites for such purposes as building materials, foundations for buildings, pipe runs, sand boxes, gardens, etc. The Uranium Mill Tailings Remedial Action Project (UMTRAP) is a U.S. Department of Energy Program designed with the intention of removing or stabilizing the mill tailings piles and the tailings used to communities so that individuals are not exposed above the EPA limits established for such tailings materials. This paper discusses the bioassay programs that are established for workers who remove tailings from the communities in which they are placed

  11. Indian Americans at Mille Lacs.

    Science.gov (United States)

    Holbert, Victoria L.; And Others

    The Training Center for Community Programs prepared a report on the Mille Lacs (Chippewa) Reservation in Minnesota. Data for the report were from 2 separate sources: a survey conducted by the Training Center with the assistance of the Mille Lacs community action program (1967) and an attitudinal survey conducted by Victoria Holbert during 1969.…

  12. Power supply in a wire mill; Energiefuehrungen sind schwer auf Draht

    Energy Technology Data Exchange (ETDEWEB)

    Roth-Stahl, Ingelore [Kabelschlepp GmbH, Wenden-Gerlingen (Germany). International Fairs and Public Relation

    2009-09-15

    Near Rotterdam, steel producer Ovako operates a wire mill including a coating and pickling unit. The pickling unit has a capacity of 450,000 tpa of wire and is one of the biggest of its kind. The cranes and lifting gear for transporting wire coils and operating the dipping tanks have plastic power tracks for uninterrupted operation. (orig.)

  13. Yang-Mills theory in Coulomb gauge; Yang-Mills-theorie in Coulombeichung

    Energy Technology Data Exchange (ETDEWEB)

    Feuchter, C.

    2006-07-01

    In this thesis we study the Yang-Mills vacuum structure by using the functional Schroedinger picture in Coulomb gauge. In particular we discuss the scenario of colour confinement, which was originally formulated by Gribov. After a short introduction, we recall some basic aspects of Yang-Mills theories, its canonical quantization in the Weyl gauge and the functional Schroedinger picture. We then consider the minimal Coulomb gauge and the Gribov problem of the gauge theory. The gauge fixing of the Coulomb gauge is done by using the Faddeev-Popov method, which enables the resolution of the Gauss law - the constraint on physical states. In the third chapter, we variationally solve the stationary Yang-Mills Schroedinger equation in Coulomb gauge for the vacuum state. Therefor we use a vacuum wave functional, which is strongly peaked at the Gribov horizon. The vacuum energy functional is calculated and minimized resulting in a set of coupled Schwinger-Dyson equations for the gluon energy, the ghost and Coulomb form factors and the curvature in gauge orbit space. Using the angular approximation these integral equations have been solved analytically in both the infrared and the ultraviolet regime. The asymptotic analytic solutions in the infrared and ultraviolet regime are reasonably well reproduced by the full numerical solutions of the coupled Schwinger-Dyson equations. In the fourth chapter, we investigate the dependence of the Yang-Mills wave functional in Coulomb gauge on the Faddeev-Popov determinant. (orig.)

  14. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuhiko, E-mail: suzuki.kazuhiko@jaea.go.j [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Jitsukawa, Shiro; Okubo, Nariaki [Japan Atomic Energy Agency, Nuclear Science and Engineering Directorate, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Takada, Fumiki [Japan Atomic Energy Agency, Department of JMTR Operation, Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki-ken 311-1393 (Japan)

    2010-06-15

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain epsilon{sub f} data were well correlated as epsilon{sub f} + epsilon{sub 0} = const. where epsilon{sub 0} is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as

  15. Intensely irradiated steel components: Plastic and fracture properties, and a new concept of structural design criteria for assuring the structural integrity

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Jitsukawa, Shiro; Okubo, Nariaki; Takada, Fumiki

    2010-01-01

    In order to develop a systematic and reasonable concept assuring the structural integrity of components under intense neutron irradiation, two basic tensile properties, true stress-true strain (TS-TS) curves and fracture strain, were investigated on an austenitic stainless steel and martensitic steel. Application of Swift equation is confirmed to a large plastic strain range of TS-TS curves. Fracture strain ε f data were well correlated as ε f + ε 0 = const. where ε 0 is the pre-strain representing the irradiation hardening. Based on those formulations and available experimental information, several critical issues to be dealt with in developing the concept were identified possible reduction in ductility, significant change in mechanical properties, remarkable cyclic softening and other unique cyclic properties observed during a high-cycle fatigue testing, and the redundancy of the plastic collapse concept to bending. Existing structural codes are all based on the assumption that there will be no significant changes in mechanical properties during operation, and of high ductility. Therefore, a new concept for assuring structural integrity is required for application not only to components with high ductility but also components with reduced ductility. First, potential failure modes were identified, and a new and systematic concept was proposed for preventing these modes of failure, introducing a new concept of categorizing the loadings by stability of deformation process to fracture (as type F and M loadings). Based on the basic concept, a detailed concept of how to protect against ductile fracture was given, and loading type-dependent limiting parameters were set. Finally, application of the detailed concept was presented, especially on determination of loading type (in numerical approach, the formulation of TS-TS curves and fracture strain derived above are needed), and on how to determine the limiting parameters as allowable limits. Experiments were done to

  16. Influence of elastomeric seal plate surface chemistry on interface integrity in biofouling-prone systems: Evaluation of a hydrophobic "easy-release" silicone-epoxy coating for maintaining water seal integrity of a sliding neoprene/steel interface

    Science.gov (United States)

    Andolina, Vincent L.

    Attenuated Internal Reflection (MAIR-IR) and Microscopic Infrared Spectroscopy for organic surface compositional details, light microscopy for wear area quantification, and profilometry for surface roughness estimation and wear depth quantification. Pin-on-disc dynamic Coefficient of Friction (CoF) measurements provided data relevant to forecasts of seal integrity in dry, wet and biofouling-influenced sliding contact. Actual wear of neoprene seal material against uncoated and coated steel surfaces, wet and dry, was monitored after both rotary and linear cyclic wear testing, demonstrating significant reductions in elastomer wear areas and depths (and resultant volumes) when the coating was present. Coating the steel eliminated a 270% increase in neoprene surface area wear and an 11-fold increase in seal abrasive volume loss associated with underwater rusting in rotary experiments. Linear testing results confirm coating efficacy by reducing wear area in both loading regimes by about half. No coating delamination was observed, apparently due to a differential distribution of silicone and epoxy ingredients at the air-exposed vs. steel-bonded interfaces demonstrated by IR and EDS methods. Frictional testing revealed higher Coefficients of Friction (CoF) associated with the low-speed sliding of Neoprene over coated rather than uncoated steel surfaces in a wet environment, indicating better potential seal adhesion between the hydrophobic elastomer and coating than between the elastomer and intrinsically hydrophilic uncoated steel. When zebra mussel biofouling debris was present in the articulating joints, CoF was reduced as a result of a water channel path produced between the articulating surfaces by the retained biological matter. Easier release of the biofouling from the low-CST coated surfaces restored the seal integrity more rapidly with further water rinsing. Rapid sliding diminished these biofouling-related differences, but revealed a significant advantage in reducing the Co

  17. FAILURE ANALYSIS IN TUBING OF AIR PREHEATER OF BOILER FROM A SUGARCANE MILL

    Directory of Open Access Journals (Sweden)

    Joner Oliveira Alves

    2014-10-01

    Full Text Available The increased demand for energy from sugarcane bagasse has made the sugar and alcohol mills search alternatives to reduce maintenance of the boilers, releasing more time to the production. The stainless steel use has become one of the main tools for such reduction. However, specification errors can lead to premature failures. This work reports the factors that led tubes of AISI 409 stainless steel fail after half season when applied in a air preheater of boiler from a sugarcane mill. In such application, the AISI 304 lasts about 15 seasons and the carbon steel about 3. A tube sent by the sugar mill was characterized by wet chemical analysis, optical microscopy and EDS. Results indicated chloride formation on the internal walls of the tube, which combined with the environment, accelerated the corrosion process. The carbon steel showed high lifetime due to a 70% higher thickness. Due to the work condictions is recommended the use of stainless steels with higher corrosion resistance, such as the traditional AISI 304 or the ferritic AISI 444, the last presents better thermal exchange.

  18. Synthesis of niobium carbide by a high energy milling technique of powder metallurgy

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Gonzalez, Cezar Henrique; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco

    2010-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarced in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  19. Effect of mechanical milling on barium titanate (BaTiO3) perovskite

    Science.gov (United States)

    Singh, Rajan Kumar; Sanodia, Sagar; Jain, Neha; Kumar, Ranveer

    2018-05-01

    Commercial Barium Titanate BaTiO3 (BT) is milled by planetary ball mill in acetone medium using stainless steel bowl & ball for different hours. BT is an important perovskite oxide with structure ABO3. BT has applications in electro-optic devices, energy storing devices such as photovoltaic cells, thermistors, multiceramic capacitors & DRAMs etc. BT is non-toxic & environment friendly ceramic with high dielectric and piezoelectric property so it can be used as the substitute of PZT & PbTiO3. Here, we have investigated the effect of milling time and temperature on particle size and phase transition of BT powder. We used use Raman spectroscopy for studying the spectra of BT; XRD is used for structural study. Intensity (height) of Raman spectra and XRD spectra continuously decrease with increasing the milling hours and width if these spectra increases which indicates, decrease in BT size.

  20. Synthesis of niobium carbide (NbC) by powder metallurgy high energy milling technique

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco; Gonzalez, Cezar Henrique

    2009-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarce in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  1. Improvement of deposition efficiency and control of hardness for cold-sprayed coatings using high carbon steel/mild steel mixture powder

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiro; Amao, Satoshi; Yokoyama, Nobuyuki; Ootaki, Kousuke

    2011-01-01

    In this study, in order to make high carbon steel coating by cold spray technique, spray conditions such as carrier gas temperature and pressure etc. were investigated. And also, in order to improve deposition efficiency and control coating hardness of cold-sprayed high carbon steel, high carbon and mild steel mixed powder and its mechanical milled powder were developed and were optimized. By using the cold-spray technique, particle deposition of a high carbon steel was successful. Moreover, by applying mixed and mechanical milled powders, the porosity ratio was decreased and deposition efficiency was improved. Furthermore, using these powders, it is possible to control the hardness value. Especially, when using mechanical milled powder, it is very difficult to identify the interface between the coating and the substrate. The bonding between the coating and the substrate is thus considered to be excellent. (author)

  2. Wear of micro end mills

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    This paper addresses the important issue of wear on micro end mills considering relevant metrological tools for its characterization and quantification. Investigation of wear on micro end mills is particularly difficult and no data are available in the literature. Small worn volumes cause large...... part. For this investigation 200 microns end mills are considered. Visual inspection of the micro tools requires high magnification and depth of focus. 3D reconstruction based on scanning electron microscope (SEM) images and stereo-pair technique is foreseen as a possible method for quantification...

  3. Preparation of 50Ni-45Ti-5Zr powders by high-energy ball milling and hot pressing

    Energy Technology Data Exchange (ETDEWEB)

    Marinzeck de Alcantara Abdala, Julia, E-mail: juabdala@yahoo.com.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil); Bacci Fernandes, Bruno, E-mail: brunobacci@yahoo.com.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Santos, Dalcy Roberto dos, E-mail: dalcy@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Rodrigues Henriques, Vinicius Andre, E-mail: vinicius@iae.cta.b [Instituto de Aeronautica e Espaco, Centro Tecnologico Aeroespacial, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Moura Neto, Carlos de, E-mail: mneto@ita.b [Divisao de Engenharia Mecanica, Instituto Tecnologico de Aeronautica, Praca Marechal-do-Ar Eduardo Gomes, 50, 12228-904 Sao Jose dos Campos (Brazil); Saraiva Ramos, Alfeu, E-mail: alfeu@univap.b [Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraiba, Av. Shishima Hifumi, 2911, 12244-000 Sao Jose dos Campos (Brazil)

    2010-04-16

    This study reports on the preparation of the 50Ni-45Ti-5Zr (at.%) alloy by high-energy ball milling and hot pressing. The elemental powder mixture was processed in silicon nitride and hardened steel vials, and samples were collected after different milling times. To recover the previous powders in addition wet milling isopropyl alcohol (for 20 min) was adopted. The mechanically alloyed powders were hot-pressed under vacuum at 900 {sup o}C for 1 h using pressure levels close to 200 MPa. The milled powders were characterized by means of scanning electron microscopy, X-ray diffraction, and energy dispersive spectrometry techniques. It was noted that the ductile starting powders were continuously cold-welded during ball milling. This fact was more pronounced during the processing of 50Ni-45Ti-5Zr powders in hardened steel vial. After milling for 5 h, the results suggested that amorphous and nanocrystalline structures were achieved. The complete consolidation was found after hot pressing of mechanically alloyed 50Ni-45Ti-5Zr powders, and a large amount of the B2-NiTi phase was formed mainly after processing in stainless steel balls and vial.

  4. Micromilling of hardened tool steel for mould making applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2005-01-01

    geometries as those characterizing injection moulding moulds. The realization of the micromilling process in connection with hardened tool steel as workpiece material is particularly challenging. The low strength of the miniaturized end mills implies reduction and accurate control of the chip load which...... wear. This paper presents the micromilling process applied to the manufacturing of micro injection moulding moulds in hardened tool steel, presenting experimental evidence and possible solutions to the above-mentioned issues....

  5. Microstructural evolution and some mechanical properties of nanosized yttrium oxide dispersion strengthened 13Cr steel

    International Nuclear Information System (INIS)

    Nguyen, Van Tich; Doan, Dinh Phuong; Tran, Tran BaoTrung; Luong, Van Duong; Nguyen, Van An; Phan, Anh Tu

    2010-01-01

    Oxide dispersion strengthened (ODS) steels, manufactured by a mechanical alloying method, during the past few years, appear to be promising candidates for structural applications in nuclear power plants. The purpose of this work is to elaborate the manufacturing processes of ODS 13Cr steel with the addition of 1.0 wt% yttrium oxide through the powder metallurgy route using the high energy ball mill. Microstructural analysis by scanning electron microscopy (SEM), x-ray diffraction (XRD) and hardness testing have been used to optimize the technological parameters of milling, hot isostatic pressing and heat-treatment processes. The steel hardness increases with decreasing particle size of 13Cr ODS steel. The best hardness was obtained from more than 70 h of milling in the two tanks planetary ball mill or 30 h of milling in the one tank planetary ball mill and hot isostatic pressing at 1150 °C . The particle size of the steel is less than 100 nm, and the density and hardness are about 7.3 g cm −3 and 490 HB, respectively

  6. Quantum Yang-Mills theory on arbitrary surfaces

    International Nuclear Information System (INIS)

    Blau, Matthias; Thompson, George

    1991-05-01

    Quantum Yang-Mills theory on 2-dimensional surfaces is studied. Using path integral methods general and explicit expressions are derived for the partition function and expectation values of homologically trivial and non-trivial Wilson loops on closed surfaces of any genus, as well as for the kernels on manifolds with handles and boundaries. (author). 15 refs

  7. Mill in Yin ing mine: developments and new technology application

    International Nuclear Information System (INIS)

    Chen Xiangbiao; Liu Zhicheng

    1999-01-01

    Introduces the developments and new technology application of mill in Yining Mine, concretely evaluates the characters and effects employed three kinds of technological process, and considers that there are many advantages and features in the process No.3. It's technology is integrity, practical and worth recommending

  8. 76 FR 33218 - Carbon and Certain Alloy Steel Wire Rod From Mexico: Initiation of Anti-Circumvention Inquiry of...

    Science.gov (United States)

    2011-06-08

    ... ArcelorMittal USA, et al.) and Nucor Corporation and Cascade Steel Rolling Mills, Inc. (collectively, Nucor/Cascade) requested that the Department of Commerce (the Department) initiate a scope inquiry...

  9. Evolving Logistic Roles of Steel Distributors

    OpenAIRE

    Hämäläinen, Erkki

    2003-01-01

    There are several intermediaries in an industrial supply channel from the mill to the product producer (original equipment manufacturer, OEM) that may hold title or process the material, or both. Traditionally, wholesalers and importers hold inventories of different items while OEMs, component suppliers or contract manufacturers do the processing. Steel service centers (SSCs) are relative newcomers that combine the stockholding and processing activities. The tremendous growth of the intern...

  10. Steel grinding media in production use

    International Nuclear Information System (INIS)

    Nass, D.E.

    1975-01-01

    This paper reviews the types of steel being used for grinding rods and balls by the mining industry in U. S. and Canada. Results of a Dec. 1973 grinding media survey of U. S. and Canadian mills are summarized. Common alloying elements (C, Mn, Cr, Mo, Cu, etc.) are discussed. Grinding balls and rods are discussed separately; wear tests using irradiated balls are described. Finally, defects in grinding media are discussed

  11. Uranium mill tailings stabilization

    International Nuclear Information System (INIS)

    Hartley, J.N.; Koehmstedt, P.L.; Esterl, D.J.; Freeman, H.D.

    1980-02-01

    Uranium mill tailings pose a potential radiation health hazard to the public. Therefore, stabilization or disposal of these tailings in a safe and environmentally sound way is needed to minimize radon exhalation and other environmental hazards. One of the most promising concepts for stabilizing U tailings is the use of asphalt emulsion to contain radon and other hazardous materials within uranium tailings. This approach is being investigated at the Pacific Northwest Laboratory. Results of these studies indicate that a radon flux reduction of greater than 99% can be obtained using either a poured-on/sprayed-on seal (3.0 to 7.0 mm thick) or an admixture seal (2.5 to 12.7 cm thick) containing about 18 wt % residual asphalt. A field test was carried out in June 1979 at the Grand Junction tailings pile in order to demonstrate the sealing process. A reduction in radon flux ranging from 4.5 to greater than 99% (76% average) was achieved using a 15.2-cm (6-in.) admix seal with a sprayed-on top coat. A hydrostatic stabilizer was used to apply the admix. Following compaction, a spray coat seal was applied over the admix as the final step in construction of a radon seal. Overburden was applied to provide a protective soil layer over the seal. Included in part of the overburden was a herbicide to prevent root penetration

  12. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  13. The influence of cold work on the oxidation behaviour of stainless steel

    International Nuclear Information System (INIS)

    Langevoort, J.C.

    1985-01-01

    In this thesis the study of the interaction of oxygen gas with stainless steel surfaces is described. Thermogravimetry, microscopy and ellipsometry have been used to follow the oxidation in situ, while EDX, AES and XPS have been used to determine the oxide compositions. The aim of this thesis is to reveal the influence on the oxidation behaviour of stainless steel of i) cold work (rolling, drawing, milling, polishing and Ar ion bombardment) ii) the initially formed oxide and iii) the experimental conditions. Two types of stainless steels have been used (AISI 304 (a 18/8 Cr/Ni steel) and Incoloy 800 H (a 20/30 Cr/Ni steel)). (Auth.)

  14. A Study on the Waste Water Treatment Technology for Steel Industry: Recycle And Reuse.

    OpenAIRE

    Sanjeev Kumar Sinha; Vikas Kumar Sinha; Samir Kr. Pandey; Anup Tiwari

    2016-01-01

    The steel industry is one of the most important and vital Industry of the present and the future. It is the asset of a nation. Steel plants use a tremendous amount of water for waste transfer, cooling and dust control. The steel plants have sintering mills, coke plants, blast furnaces, chemical byproducts and chemical processes, water cooled rolls, pumps, extrusion experiment, transfer lines for sludges and slurries. All these plants use a tremendous amount of water to cool the pr...

  15. Advances in stainless steels

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Saibaba, Saroja; Sivaprasad, P.V.; Shankar, P.

    2010-01-01

    This book covers a broad spectrum of topics spanning the entire life cycle of stainless steel-from alloy design and characterization to engineering design, fabrication, mechanical properties, corrosion, quality assurance of components, in-service performance assessment, life prediction and finally failure analysis of materials and components. The contents provide useful feedback for further developments aimed at effective utilization of this class of materials. The book comprises articles that bring out contemporary developments in stainless steels and is thematically classified into the following sections. 1. Component design, modelling and structural integrity, 2. Manufacturing technology, 3. Property evaluation, 4. Alloy development and applications, 5. NDE methods, 6. Corrosion and surface modification. The book commences with articles on component design and structural integrity, thus opening up the areas of challenge for researchers and academia. The articles in the book relevant to INIS are indexed separately

  16. National steel tries wheeling

    International Nuclear Information System (INIS)

    Dudak, J.R.

    1992-01-01

    In 1989, National Steel felt the need to take the next step to make its Detroit-based division, Great Lakes Steel, more competitive in the world flat-rolled steel market. In 1988, Great Lakes Steel started flowing natural gas through the first fully litigated bypass (Competitive Sourcing Option) of a local distribution company. In 1989, the second connection with the new supply route for gas transportation, Panhandle Eastern had started flowing and the LDC, Michigan Consolidated Gas Co. (MichCon) had pulled out their piping previously serving the plants. Since we had been able to structure a fully reliable supply route, storage and balancing program for gas in the face of such strong opposition by the LDC, the author felt it was time to attack the next singularly sourced major commodity, electricity. Electricity, at this major integrated steel plant, represented approximately 7% of plant cost yearly. Yet being monopolized, Great Lakes Division (GLD) could not multiple source this commodity like it does with its other 93% of costs, except for labor (25% of the 93%). Multiple sourcing is done to bring competitive pressure to suppliers and to diversify supplies and protect plant operation in the event of failure by one supplier. This paper describes National Steel's strategy to reduce the cost of power, at the minimum of capital costs, the most expedient way possible, that does not sacrifice any major long-term potential cost improvements. The results show that competitively priced power is available across the mid-west, at prices well below many state regulated electric utilities, for at least 5 to 15 years, but with major obstacles in obtaining transmission access

  17. Ecological situation at the coke plant of the Nizhnii Tagil Integrated Iron and Steel Works (according to data from an expert commission of Gosstroi USSR)

    International Nuclear Information System (INIS)

    Filippov, B.S.

    1990-01-01

    A main source of pollution is the Nizhnii Tagil Integrated Iron and Steel Works (NTMK), whose share in the total emissions of harmful substances is very significant. Thus, in 1987 the mean annual dust content in the atmosphere of the city surpassed the maximum admissible concentrations 1.3 times, phenol 2 times, ammonia 2.5 times, benzopyrene 6 times. In 1988 an even higher content of harmful substances was noted. Reconstruction of the coke plant now underway has been called upon to ensure a significant improvement in the ecological conditions together with an overall increase in its technical level. Restoration of the existing capacity of the coke batteries at domestic coke plants is being accomplished according to two variants: first - relining of the batteries with retention of the existing dimensions or with a slight very limited increase, with modernization of the designs of the ovens and chemical departments, and also machines and equipment (technical refitting); second - withdrawal from operation of the existing batteries and construction of new higher capacity coke batteries in the plant area (reconstruction). From the standpoint of ecology and economy of capital investment it would be more expedient to restore capacity at NTMK according to the first variant. However, restoration here is being carried out according to the second variant with construction of coke batteries 9 and 10 in a new area with dry coke quenching. There are plans to decommission batteries 1-4. An analysis is given of the sources of pollution from the coke plant and measures are defined to reduce pollutants

  18. Evolution of Microstructure and Mechanical Properties of Oxide Dispersion Strengthened Steels Made from Water-Atomized Ferritic Powder

    Science.gov (United States)

    Arkhurst, Barton Mensah; Kim, Jeoung Han

    2018-05-01

    Nano-structured oxide dispersion strengthened (ODS) steels produced from a 410L stainless steel powder prepared by water-atomization was studied. The influences of Ti content and milling time on the microstructure and the mechanical properties were analysed. It was found that the ODS steels made from the Si bearing 410L powder contained Y-Ti-O, Y-Ti-Si-O, Y-Si-O, and TiO2 oxides. Most nanoparticles produced after 80 h of milling were aggregated nanoparticles; however, after 160 h of milling, most aggregated nanoparticles dissociated into smaller individual nanoparticles. Perfect mixing of Y and Ti was not achieved even after the longer milling time of 160 h; instead, the longer hours of milling rather resulted in Si incorporation into the Y-Ti-O rich nanoparticles and a change in the matrix morphology from an equiaxed microstructure to a tempered martensite-like microstructure. The overall micro-hardness of the ODS steel increased with the increase of milling time. After 80 and 160 h, the microhardnesses were over 400 HV, which primarily resulted from the finer dispersed nanoparticles and in part to the formation of martensitic phases. Tensile strength of the 410L ODS steels was comparable with that of ODS steel produced from gas-atomized powder.

  19. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  20. Einstein-Yang-Mills from pure Yang-Mills amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Dhritiman; Plefka, Jan [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, D-12489 Berlin (Germany); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, D-14476 Potsdam (Germany); Wen, Congkao [I.N.F.N. Sezione di Roma Tor Vergata,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2016-10-14

    We present new relations for scattering amplitudes of color ordered gluons and gravitons in Einstein-Yang-Mills theory. Tree-level amplitudes of arbitrary multiplicities and polarizations involving up to three gravitons and up to two color traces are reduced to partial amplitudes of pure Yang-Mills theory. In fact, the double-trace identities apply to Einstein-Yang-Mills extended by a dilaton and a B-field. Our results generalize recent work of Stieberger and Taylor for the single graviton case with a single color trace. As the derivation is made in the dimension-agnostic Cachazo-He-Yuan formalism, our results are valid for external bosons in any number of spacetime dimensions. Moreover, they generalize to the superamplitudes in theories with 16 supercharges.

  1. Solvent Fermentation From Palm Oil Mill Effluent Using Clostridium acetobutylicum In Oscillatory Flow Bioreactor

    International Nuclear Information System (INIS)

    Takriff, M.S.; Masngut, N.; Kadhum, A.A.H.; Kalil, M.S.; Mohammad, A.W.

    2009-01-01

    Acetone-butanol-ethanol (ABE) fermentation from Palm Oil Mill Effluent (POME) by C. acetobutylicum NCIMB 13357 in an oscillatory flow bioreactor was investigated. Experimental works were conducted in a U-shaped stainless steel oscillatory flow bioreactor at oscillation frequency between 0.45-0.78 Hz and a constant amplitude of 12.5 mm. Fermentations were carried out for 72 hr at 35 degree Celsius using palm oil mill effluent and reinforced clostridia medium as a growth medium in batch culture. Result of this investigation showed that POME is a viable media for ABE fermentation and oscillatory flow bioreactor has an excellent potential as an alternative fermentation device. (author)

  2. Current uranium mill licensing issues

    International Nuclear Information System (INIS)

    Scarano, R.A.

    1977-01-01

    The problems encountered to insure environmentally safe mining and milling of uranium ores are reviewed. Emphasis is placed on the management of tailings resulting from milling operations. It is pointed out that although the concentration of radioactivity in the tailings is relatively low, control measures are necessary because of the large quantities involved and because of the long half-life of the parent radionuclides present. The major concerns with mill tailings are radon release to the atmosphere and isolation of the tailings from the human environment. Since it is anticipated that the amount of tailings created by the year 2000 will be more than an order of magnitude greater than the quantities that have been generated during the past 30 years, it is recommended that all mill tailings storage areas be located remote from public contact and in areas such that disruption and dispersion by natural forces and seepage of toxic materials into ground water systems are reduced to the maximum extent achievable. Technical issues that receive attention during the NRC licensing process for uranium mills and the preparation of environmental impact statements are discussed briefly

  3. Colorado's prospectus on uranium milling

    International Nuclear Information System (INIS)

    Hazle, A.J.; Franz, G.A.; Gamewell, R.

    1982-01-01

    The first part of this paper will discuss Colorado's control of uranium mill tailings under Titles I and II of the Uranium Mill Tailings Radiation Control Act of 1978. Colorado has a legacy of nine inactive mill sites requiring reclamation under Title I, and two presently active plus a number of new mill proposals which must be regulated in accordance with Title II. Past failures in siting and control on the part of federal jurisdictions have left the state with a heavy legacy requiring extensive effort to address impacts to the state's environment and population. The second part of this paper will discuss the remedial action programme authorized under Public Law 92-314 for Mesa Country, where lack of federal control led to the dispersal of several hundred thousand tons of uranium mill tailings on thousands of properties, including hundreds of homes, schools and other structures. Successful completion of the State efforts under both programmes will depend on a high level of funding and on the maintenance of adequate regulatory standards. (author)

  4. Introducing radioactivity monitoring systems in the production of steel

    International Nuclear Information System (INIS)

    Sofilic, T.; Marjanovic, T.; Rastovcan-Mioc, A.

    2005-01-01

    Over the last twenty years, a significant number of cases of radioactive pollution has been recorded in metallurgical processes. However, it is not certain whether the pollution was caused by increased uncontrolled disposal of waste containing radionuclides or whether it was the result of increased radioactivity monitoring and control of metallic scrap. Many metal producers in the world have therefore implemented systematic monitoring of radioactivity in their production processes. Special attention was given to monitoring radioactivity in steel making processes, which is still the most applied construction material with an annual output of over billion tonnes all over the world. Drawing on the experience of the best known steel producers in Europe and world, Croatian steel mills find it necessary and justified to introduce radioactivity monitoring and control systems of radioactive elements in steel scrap, semi-finished and finished products. The aim of this paper is to point out the need to introduce the radioactivity monitoring and control in steel and steel-casting production, and to inform experts in Croatian steel mills and foundries about potential solutions and current systems. At the same time, we wanted to demonstrate how implementation of monitoring equipment can improve quality management and environmental management systems. This would render Croatian products competitive on the European market both in terms of physical and chemical properties and in terms of product quality certificates and radioactivity information. Since we lack our own standards and regulations to control both domestic and imported steel scrap, semi-finished products (crude steel, hot and cold rolled strip) and finished products, we need apply current international recommendations and guidelines, until we design our own monitoring system and adopt relevant legislation on the national level. This paper describes basic types of radioactivity monitoring and control systems, the most

  5. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  6. The yang mills gravity dual

    International Nuclear Information System (INIS)

    Crooks, David E.; Evans, Nick

    2003-01-01

    We describe a ten dimensional supergravity geometry which is dual to a gauge theory that is non-supersymmetric Yang Mills in the infra-red but reverts to N=4 super Yang Mills in the ultra-violet. A brane probe of the geometry shows that the scalar potential of the gauge theory is stable. We discuss the infra-red behaviour of the solution. The geometry describes a Schroedinger equation potential that determines the glueball spectrum of the theory; there is a mass gap and a discrete spectrum. The glueball mass predictions match previous AdS/CFT Correspondence computations in the non-supersymmetric Yang Mills theory, and lattice data, at the 10% level. (author)

  7. Galilean Yang-Mills theory

    International Nuclear Information System (INIS)

    Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya

    2016-01-01

    We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU(N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D=4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D>2.

  8. Galilean Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bagchi, Arjun [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Basu, Rudranil [Saha Institute of Nuclear Physics,Block AF, Sector 1, Bidhannagar, Kolkata 700068 (India); Kakkar, Ashish [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan. Pune 411008 (India); Mehra, Aditya [Indian Institute of Science Education and Research,Dr Homi Bhabha Road, Pashan. Pune 411008 (India); Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2016-04-11

    We investigate the symmetry structure of the non-relativistic limit of Yang-Mills theories. Generalising previous results in the Galilean limit of electrodynamics, we discover that for Yang-Mills theories there are a variety of limits inside the Galilean regime. We first explicitly work with the SU(2) theory and then generalise to SU(N) for all N, systematising our notation and analysis. We discover that the whole family of limits lead to different sectors of Galilean Yang-Mills theories and the equations of motion in each sector exhibit hitherto undiscovered infinite dimensional symmetries, viz. infinite Galilean Conformal symmetries in D=4. These provide the first examples of interacting Galilean Conformal Field Theories (GCFTs) in D>2.

  9. Uranium mill tailings and radon

    International Nuclear Information System (INIS)

    Hanchey, L.A.

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100

  10. Soil Carbon 4 per mille

    Science.gov (United States)

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  11. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-04-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the United States may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  12. Uranium mill tailings and radon

    Energy Technology Data Exchange (ETDEWEB)

    Hanchey, L A

    1981-01-01

    The major health hazard from uranium mill tailings is presumed to be respiratory cancer resulting from the inhalation of radon daughter products. A review of studies on inhalation of radon and its daughters indicates that the hazard from the tailings is extremely small. If the assumptions used in the studies are correct, one or two people per year in the US may develop cancer as a result of radon exhaled from all the Uranium Mill Tailings Remedial Action Program sites. The remedial action should reduce the hazard from the tailings by a factor of about 100.

  13. Swedish Pulp Mill Biorefineries. A vision of future possibilities

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Thore (Chamers Univ. of Technology, Goeteborg (Sweden)); Axegaard, Peter; Backlund, Birgit; Samuelsson, Aasa; Berglin, Niklas; Lindgren, Karin (STFI-Packforsk, Stockholm (Sweden))

    2008-07-01

    Today, modern science could make it possible to develop techniques for refining almost the whole wood-matter, pulp mill side streams and bark compounds into platform chemicals, electricity, high quality fuels and structured feed-stock for chemicals and materials. The major challenge is to convert the state of basic scientific knowledge into industrial practise. Our definition of an integrated biorefinery is: 'Full utilization of the incoming biomass and other raw materials for simultaneous and economically optimized production of fibres, chemicals and energy'. Examples of products from a pulp mill biorefinery are: Chemicals and Materials (Phenols, adhesives, carbon fibres, activated carbon, binders, barriers, adhesives, antioxidants, surfactants, chelants, solvents, adhesives surfactants, descaling agents, specialty polymers, pharmaceuticals, nutraceuticals, cosmetics etc., Biofuels (pellets, lignin fuel, methanol, DME, ethanol etc), Electricity (BLGCC, condensing power etc.). The new or increased amounts of traditional products can be made from internal and/or external biomass. Three different levels can be identified: A high degree of energy saving in future mills, especially chemical pulp mills, will lead to large amounts of excess internal biomass which can be transferred to products mentioned above, Components in e.g. the black liquor, forest residues and bark can be upgraded to more valuable ones and the energy balance of the mill is kept through fuel import, wholly or partly depending on the level of mill energy efficiency. This imported fuel can be biomass or other types. External (imported) biomass (in some cases together with excess internal biomass) can be upgraded using synergy effects of docking this upgrading to a pulp mill. Electricity has been included as one of the possible biorefinery products. The electricity production in a mill can be increased in several ways which cannot be directly considered as biorefineries, e.g. recovery boiler

  14. How physical modelling can improve Life Cycle Inventory accuracy and allow predictive LCA: an application to the steel industry

    International Nuclear Information System (INIS)

    Mirgaux, O.; Ablitzer, D.; Iosif, A.M.

    2009-01-01

    Assessing traditional iron and steelmaking processes from an environmental point of view and developing breakthrough eco-efficient processes for the future are major challenges for the steel industry today. In the framework of the challenging European project ULCOS, which stands for Ultra Low CO 2 Steelmaking, Life Cycle Assessment (LCA) was chosen to assess breakthrough processes that could be part of the future iron and steel making landscape and to compare them to the reference classical integrated steel-mill. To carry out such a study we propose a new methodological concept which combines LCA thinking with physicochemical process modelling. Physicochemical models were developed for each processes of the classical integrated steelmaking route in order to generate the data required to draw the Life Cycle Inventory of the route. Such a method bypasses the traditional data collection and brings accuracy to the inventory by introducing rigorous mass and energy balances into the methodology. In addition it was shown that such an approach allows testing and assessing different operational practices of the processes in order to optimise the use of energy and the CO 2 emissions, which showed that it can be used as a powerful tool for eco-conception of processes. (authors)

  15. EPA's role in uranium mining and milling

    International Nuclear Information System (INIS)

    Smith, P.B.

    1980-01-01

    EPA's role and actions in regulating uranium mining and milling are reviewed and updated. Special emphasis is given to EPA's current activities under the Uranium Mill Tailings Radiation Control Act of 1978

  16. ABOUT RATIONING MAXIMUM ALLOWABLE DEFECT DEPTH ON THE SURFACE OF STEEL BILLETS IN PRODUCTION OF HOT-ROLLED STEEL

    Directory of Open Access Journals (Sweden)

    PARUSOV E. V.

    2017-01-01

    Full Text Available Formulation of the problem. Significant influence on the quality of rolled steel have various defects on its surface, which in its turn inherited from surface defects of billet and possible damage to the surface of rolled steel in the rolling mill line. One of the criteria for assessing the quality indicators of rolled steel is rationing of surface defects [1; 2; 3; 6; 7]. Current status of the issue. Analyzing the different requirements of regulations to the surface quality of the rolled high-carbon steels, we can conclude that the maximum allowable depth of defects on the surface of billet should be in the range of 2.0...5.0 mm (depending on the section of the billet, method of its production and further the destination Purpose. Develop a methodology for calculating the maximum allowable depth of defects on the steel billet surface depending on the requirements placed on the surface quality of hot-rolled steel. Results. A simplified method of calculation, allowing at the rated depth of defects on the surface of the hot-rolled steel to make operatively calculation of the maximum allowable depth of surface defects of steel billets before heating the metal in the heat deformation was developed. The findings shows that the maximum allowable depth of surface defects is reduced with increasing diameter rolled steel, reducing the initial section steel billet and degrees of oxidation of the metal in the heating furnace.

  17. Investigation of wear and tool life of coated carbide and cubic boron nitride cutting tools in high speed milling

    Czech Academy of Sciences Publication Activity Database

    Twardowski, P.; Legutko, S.; Krolczyk, G.; Hloch, Sergej

    2015-01-01

    Roč. 7, č. 6 (2015), s. 1-9 ISSN 1687-8132 Institutional support: RVO:68145535 Keywords : hardened steels * milling tools * high speed machining * tool life * wear Subject RIV: JQ - Machines ; Tools Impact factor: 0.640, year: 2015 http://ade.sagepub.com/content/7/6/1687814015590216.full.pdf+html

  18. 75 FR 71463 - Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration

    Science.gov (United States)

    2010-11-23

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,695] Woodland Mills Corporation Mill Spring, NC; Notice of Revised Determination on Reconsideration By application dated July 22... regarding the eligibility of workers and former workers of Woodland Mills Corporation, Mill Spring, North...

  19. Would John Stuart Mill have regulated pornography?

    OpenAIRE

    McGlynn, C.; Ward, I.

    2014-01-01

    John Stuart Mill dominates contemporary pornography debates where he is routinely invoked as an authoritative defence against regulation. This article, by contrast, argues that a broader understanding of Mill's ethical liberalism, his utilitarianism, and his feminism casts doubt over such an assumption. New insights into Mill's approach to sex, sexual activity, and the regulation of prostitution reveal an altogether more nuanced and activist approach. We conclude that John Stuart Mill would a...

  20. Synthesis of the Mg2Ni alloy prepared by mechanical alloying using a high energy ball mill

    International Nuclear Information System (INIS)

    Iturbe G, J. L.; Lopez M, B. E.; Garcia N, M. R.

    2010-01-01

    Mg 2 Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  1. Synthesis of the Mg{sub 2}Ni alloy prepared by mechanical alloying using a high energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Iturbe G, J. L.; Lopez M, B. E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia N, M. R., E-mail: joseluis.iturbe@inin.gob.m [UNAM, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo s/n, Esq. Fuerte de Loreto, Col. Ejercito de Oriente, 09230 Mexico D. F. (Mexico)

    2010-07-01

    Mg{sub 2}Ni was synthesized by a solid state reaction from the constituent elemental powder mixtures via mechanical alloying. The mixture was ball milled for 10 h at room temperature in an argon atmosphere. The high energy ball mill used here was fabricated at ININ. A hardened steel vial and three steel balls of 12.7 mm in diameter were used for milling. The ball to powder weight ratio was 10:1. A small amount of powder was removed at regular intervals to monitor the structural changes. All the steps were performed in a little lucite glove box under argon gas, this glove box was also constructed in our Institute. The structural evolution during milling was characterized by X-ray diffraction and scanning electron microscopy techniques. The hydrogen reaction was carried out in a micro-reactor under controlled conditions of pressure and temperature. The hydrogen storage properties of mechanically milled powders were evaluated by using a thermogravimetric analysis system. Although homogeneous refining and alloying take place efficiently by repeated forging, the process time can be reduced to one fiftieth of the time necessary for conventional mechanical milling and attrition. (Author)

  2. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  3. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  4. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0057] Bioassay at Uranium Mills AGENCY: Nuclear Regulatory..., ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions of uranium conversion facilities where the possibility of exposure...

  5. Chevron's Panna Maria mill process description

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Key features of Chevron's Uranium Mill located near Panna Maria, Texas, are described. The mill is designed to process a nominal 2500 dry tons/day of uranium bearing ore containing 15% uncombined moisture. The following operations at the mill are highlighted: ore receiving, grinding, leaching, countercurrent decantation and tailings disposal, filtering, solvent extraction, solvent stripping, precipitation, drying, and packaging

  6. Ground beetle populations near a kraft mill

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, R.; Hastings, L.; Mercer, W.R.; Smith, A.

    1973-02-01

    Twenty species of ground beetles (Family Carabidae) and one species of carrion beetle (Family Silphidae) were collected in six stations east of a kraft paper mill in Thunder Bay, Ontario, from May to August, 1971. The beetle population decreased markedly towards the mill. There was no apparent statistical difference in size variation of specimens near the mill and those further away.

  7. Modeling integrated biomass gasification business concepts

    Science.gov (United States)

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  8. The automatic lumber planing mill

    Science.gov (United States)

    Peter Koch

    1957-01-01

    It is probable that a truly automatic planning operation could be devised if some of the variables commonly present in the mill-run lumber were eliminated and the remaining variables kept under close control. This paper will deal with the more general situation faced by mostl umber manufacturing plants. In other words, it will be assumed that the incoming lumber has...

  9. Soil carbon 4 per mille

    NARCIS (Netherlands)

    Mulder, V.L.

    2017-01-01

    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  10. Massive Yang-Mills fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Reiff, J.

    1969-01-01

    Two problems are studied in the paper: (i) the relation between Lagrangian and Feynman rules if the Lagrangian contains derivative couplings and/or vector meson fields and (ii) the behaviour of certain two closed loop diagrams in the perturbation theory of Yang-Mills fields. With respect to ( i ) .

  11. 78 FR 15703 - Certain Hot-Rolled Carbon Steel Flat Products From India, Indonesia, the People's Republic of...

    Science.gov (United States)

    2013-03-12

    ... Others 20.28 Thailand Sahaviriya Steel Industries 7.35 Public Co., Ltd. Siam Strip Mill Public Co., 20.30... People's Republic of China, Taiwan, Thailand, and Ukraine; Final Results of the Expedited Second Sunset... steel flat products from India, Indonesia, the People's Republic of China (PRC), Taiwan, Thailand, and...

  12. Optimization of mechanical alloying parameters in 12YWT ferritic steel nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Rahmanifard, R., E-mail: rahmanifrd@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Advanced Materials Group, School of Materials Research, NSTRC, P.O. Box 31585-4395 Karaj (Iran, Islamic Republic of); Farhangi, H. [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Novinrooz, A.J. [Advanced Materials Group, School of Materials Research, NSTRC, P.O. Box 31585-4395 Karaj (Iran, Islamic Republic of)

    2010-10-15

    Research highlights: {yields} Detailed studies of microstructural properties of ODS steels. {yields} Investigation of effects of different mechanical alloying parameters such as milling time; milling speed; ball-to-powder weight ratio and ball diameter on the microstructural characteristics. {yields} Interpretation of the experimental data using theoretical model by X-ray diffraction line profile analysis. - Abstract: The effects of different mechanical alloying parameters on the microstructural characteristics and morphology of ODS-ferritic steel nanocomposite powders were investigated. The steady state between the welding and fracturing of the particles was obtained within about 30 h using 8 mm ball diameter and 420 rpm milling speed with the ball-to-powder weight ratio of 10:1. However, for perfect dissolution of the used alloying elements, the mechanical alloying process must be continued up to 80 h of milling. Evaluation of the microstructural characteristics calculated by X-ray diffraction profile analysis revealed that although the average crystallite size reduced more sharply at the initial milling stages under the above conditions, with further milling, it eventually reached nearly the same value in all specimens. The distribution changes of crystallite size also showed a similar behavior of crystallite size. Among the investigated mechanical alloying parameters, milling speed had a considerable effect on the dislocation density so that it was reduced by about one order of magnitude when the milling speed decreased from 420 to 300 rpm.

  13. Simulation of accelerated strip cooling on the hot rolling mill run-out roller table

    International Nuclear Information System (INIS)

    Muhin, U.; Belskij, S.; Makarov, E.; Koinov, T.

    2013-01-01

    Full text: A mathematical model of the thermal state of the metal on the run-out roller table of a continuous wide hot-strip mill is presented. The mathematical model takes into account the heat generation during the polymorphic γ → α transformation of super cooled austenite phase and the influence of chemical composition on the physical properties of the steel. The model allows the calculation of modes of accelerated cooling of strips on the run-out roller table of a continuous wide hot strip mill. Winding temperature calculation error does not exceed 20 °C for 98.5 % of the strips from low-carbon and low-alloyed steels. key words: hot rolled, wide-strip, accelerated cooling, run-out roller table, polymorphic transformation, mathematical modeling

  14. PECULIARITIES OF FORMATION OF STRUCTURE AND PROPERTIES AT THERMO-MECHANICAL PROCESSING OF ROLLED WIRE OF NICKEL-MOLYBDENUM STEEL WITH WELDING FUNCTION

    OpenAIRE

    V. A. Lutsenko

    2012-01-01

    There are results of researches of the mechanical properties and structure of the wire rod made of low-carbon nickel molybdenum steel after reduction to toughness thermomechanical treatment in the stream of high-speed wire mill.

  15. Influencing Factors and Workpiece's Microstructure in Laser-Assisted Milling of Titanium

    Science.gov (United States)

    Wiedenmann, R.; Liebl, S.; Zaeh, M. F.

    Today's lightweight components have to withstand increasing mechanical and thermal loads. Therefore, advanced materials substitute conventional materials like steel or aluminum alloys. Using these high-performance materials the associated costs become prohibitively high. This paper presents the newest fundamental investigations on the hybrid process 'laser-assisted milling' which is an innovative technique to process such materials. The focus is on the validation of a numerical database for a CAD/CAM process control unit which is calculated by using simulation. Prior to that, the influencing factors on a laser-assisted milling process are systematically investigated using Design of Experiments (DoE) to identify the main influencing parameters coming from the laser and the milling operation.

  16. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models

    Science.gov (United States)

    Zhu, Kunpeng; Wong, Yoke San; Hong, Geok Soon

    2009-02-01

    In-process monitoring of tool conditions is important in micro-machining due to the high precision requirement and high tool wear rate. Tool condition monitoring in micro-machining poses new challenges compared to conventional machining. In this paper, a multi-category classification approach is proposed for tool flank wear state identification in micro-milling. Continuous Hidden Markov models (HMMs) are adapted for modeling of the tool wear process in micro-milling, and estimation of the tool wear state given the cutting force features. For a noise-robust approach, the HMM outputs are connected via a medium filter to minimize the tool state before entry into the next state due to high noise level. A detailed study on the selection of HMM structures for tool condition monitoring (TCM) is presented. Case studies on the tool state estimation in the micro-milling of pure copper and steel demonstrate the effectiveness and potential of these methods.

  17. Coating of Ultra-Small Micro End Mills: Analysis of Performance and Suitability of Eight Different Hard-Coatings

    Directory of Open Access Journals (Sweden)

    Martin Bohley

    2018-03-01

    Full Text Available Due to the constant need for better functionalized surfaces or smaller, function integrated components, precise and efficient manufacturing processes have to be established. Micro milling with micro end mills is one of the most promising processes for this task as it combines a high geometric flexibility in a wide range of machinable materials with low set-up costs. A downside of this process is the wear of the micro end mills. Due to size effects and the relatively low cutting speed, the cutting edge is especially subjected to massive abrasive wear. One possibility to minimize this wear is coating of micro end mills. This research paper describes the performance of eight different hard coatings for micro end mills with a diameter <40 µm and discusses some properties for the best performing coating type. With this research, it is therefore possible to boost the possibilities of micro milling for the manufacture of next generation products.

  18. Yang-Mills gravity in biconformal space

    International Nuclear Information System (INIS)

    Anderson, Lara B; Wheeler, James T

    2007-01-01

    We write a gravity theory with Yang-Mills-type action using the biconformal gauging of the conformal group. We show that the resulting biconformal Yang-Mills gravity theories describe 4-dim, scale-invariant general relativity in the case of slowly changing fields. In addition, we systematically extend arbitrary 4-dim Yang-Mills theories to biconformal space, providing a new arena for studying flat-space Yang-Mills theories. By applying the biconformal extension to a 4-dim pure Yang-Mills theory with conformal symmetry, we establish a 1-1, onto mapping between a set of gravitational gauge theories and 4-dim, flat-space gauge theories

  19. Influence of heterogeneity of austenitic steel 08x18H10T on the integrity of important installations for the nuclear safety

    International Nuclear Information System (INIS)

    Dominguez, H.; Menendez, C.M.; Sendoya, F.; Herrera, V.; Rodriguez, R.

    1993-01-01

    The results of the analysis of failure due to holes occurred in austenitic steel pipes assembled in the channeling system of the special building and in the cooling system of the recharge pond of Juragua nuclear power plant are shown in this work

  20. The effect of ZrO2 grinding media on the attrition milling of FeAl with Y2O3

    International Nuclear Information System (INIS)

    Gedevanishvili, S.; Deevi, S.C.

    2004-01-01

    Attrition milling of water and gas atomized FeAl was carried out with Y 2 O 3 , where ZrO 2 was used as a grinding media in place of stainless steel balls to avoid contamination with Cr and C. Consolidation of the milled powders produced complex FeAl phases containing Zr which doubled the hardness and significantly improved the creep resistance as compared to that of unmilled and consolidated FeAl

  1. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  2. The influence of mechanical properties of workpiece material on the main cutting force in face milling

    Directory of Open Access Journals (Sweden)

    M. Sekulić

    2010-10-01

    Full Text Available The paper presents the research into cutting forces in face milling of three different materials: steel Č 4732 (EN42CrMo4, nodular cast iron NL500 (EN-GJS-500-7 and silumine AlSi10Mg (EN AC-AlSi10Mg. Obtained results show that hardness and tensile strength values of workpiece material have a significant influence on the main cutting force, and thereby on the cutting energy in machining.

  3. Hollow Mill for Extraction of Stripped Titanium Screws: An Easy, Quick, and Safe Technique

    OpenAIRE

    Gupta, Ravi; Singh, Harpreet; Singh, Amit; Garg, Sudhir

    2014-01-01

    Removal of jammed titanium screws can be difficult due to the problem of stripping of the hexagonal heads of the screws. We present a technique of extraction of stripped screws with the use of a standard 4.5 mm stainless steel hollow mill in a patient of peri-implant fracture of the radius fixed with a titanium locking plate 2 years back. The technique is quick, safe, and cost effective.

  4. Basic survey project for joint implementation and CDM. Comprehensive investigation into introduction of blast furnace gas-firing combined cycle power plant and energy balance review at Krivorozhsky State Integrated Steel and Ironworks 'Krivorozhstal' Steel Works

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Investigations and discussions were given on electric power generation facilities at the Krivorozhstal Steel Works in Ukraine with an aim of reducing the emission of global warming gases by means of the energy saving and petroleum substituting energy technologies. The discussions were made on the combined cycle power plant (CCPP) project that utilizes as fuel the blast-furnace gas being discharged into atmosphere. The project calls for starting the construction in fiscal 2003, and entering commercial operation in fiscal 2005. The total investment amount would be 160.65 million US dollars. In a case of producing steel and iron of 7,000 tons annually, profit would be obtained at 11.24%, which will make the project realization possible if low-interest finance can be obtained from Japan. The amount of carbon dioxide discharged from operating the facilities for eight years from 2005 to 2012 is estimated to be reduced by about 6.8 million tons. In addition, the project would contribute to enhancement in productivity of the factory by reducing the labor force. Furthermore, effect of reducing emission of sulfur dioxide can be expected. (NEDO)

  5. Understanding dental CAD/CAM for restorations--dental milling machines from a mechanical engineering viewpoint. Part B: labside milling machines.

    Science.gov (United States)

    Lebon, Nicolas; Tapie, Laurent; Duret, Francois; Attal, Jean-Pierre

    2016-01-01

    Nowadays, dental numerical controlled (NC) milling machines are available for dental laboratories (labside solution) and dental production centers. This article provides a mechanical engineering approach to NC milling machines to help dental technicians understand the involvement of technology in digital dentistry practice. The technical and economic criteria are described for four labside and two production center dental NC milling machines available on the market. The technical criteria are focused on the capacities of the embedded technologies of milling machines to mill prosthetic materials and various restoration shapes. The economic criteria are focused on investment cost and interoperability with third-party software. The clinical relevance of the technology is discussed through the accuracy and integrity of the restoration. It can be asserted that dental production center milling machines offer a wider range of materials and types of restoration shapes than labside solutions, while labside solutions offer a wider range than chairside solutions. The accuracy and integrity of restorations may be improved as a function of the embedded technologies provided. However, the more complex the technical solutions available, the more skilled the user must be. Investment cost and interoperability with third-party software increase according to the quality of the embedded technologies implemented. Each private dental practice may decide which fabrication option to use depending on the scope of the practice.

  6. Teaching Steel Connections Using an Interactive Virtual Steel Sculpture

    Science.gov (United States)

    Moaveni, Saeed; Chou, Karen C.

    2015-01-01

    Steel connections play important roles in the integrity of a structure, and many structural failures are attributed to connection failures. Connections are the glue that holds a structure together. The failures of the Hartford Coliseum in 1977, the Hyatt Regency Hotel in Kansas City in 1980, and the I-35W Bridge in Minneapolis in 2007 are all…

  7. Influence of milling process on efavirenz solubility

    Directory of Open Access Journals (Sweden)

    Erizal Zaini

    2017-01-01

    Full Text Available Introduction: The aim of this study was to investigate the influence of the milling process on the solubility of efavirenz. Materials and Methods: Milling process was done using Nanomilling for 30, 60, and 180 min. Intact and milled efavirenz were characterized by powder X-ray diffraction, scanning electron microscopy (SEM, spectroscopy infrared (IR, differential scanning calorimetry (DSC, and solubility test. Results: The X-ray diffractogram showed a decline on peak intensity of milled efavirenz compared to intact efavirenz. The SEM graph depicted the change from crystalline to amorphous habit after milling process. The IR spectrum showed there was no difference between intact and milled efavirenz. Thermal analysis which performed by DSC showed a reduction on endothermic peak after milling process which related to decreasing of crystallinity. Solubility test of intact and milled efavirenz was conducted in distilled water free CO2with 0.25% sodium lauryl sulfate media and measured using high-performance liquid chromatography method with acetonitrile: distilled water (80:20 as mobile phases. The solubility was significantly increased (P < 0.05 after milling processes, which the intact efavirenz was 27.12 ± 2.05, while the milled efavirenz for 30, 60, and 180 min were 75.53 ± 1.59, 82.34 ± 1.23, and 104.75 ± 0.96 μg/mL, respectively. Conclusions: Based on the results, the solubility of efavirenz improved after milling process.

  8. Dirac equations for generalised Yang-Mills systems

    International Nuclear Information System (INIS)

    Lechtenfeld, O.; Nahm, W.; Tchrakian, D.H.

    1985-06-01

    We present Dirac equations in 4p dimensions for the generalised Yang-Mills (GYM) theories introduced earlier. These Dirac equations are related to the self-duality equations of the GYM and are checked to be elliptic in a 'BPST' background. In this background these Dirac equations are integrated exactly. The possibility of imposing supersymmetry in the GYM-Dirac system is investigated, with negative results. (orig.)

  9. In-situ formation of complex oxide precipitates during processing of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Jayasankar, K.; Pandey, Abhishek; Mishra, B.K.; Das, Siddhartha

    2016-01-01

    Highlights: • Use of dual drive planetary ball mill for Bench scale (>1 kg) production. • X-ray diffraction and TEM were used to study transformations during sintering. • HIPped and rolled samples with nearly 99% density successfully produced. - Abstract: In fusion and fission reactor material development, ODS alloys are the most suitable candidate materials due to its high temperature creep properties and irradiation resistance properties. This paper describes the preparation of oxide dispersion strengthened alloy powder in large quantity (>1 kg batch) in dual drive planetary ball mill using pre-alloyed ferrtic steel powder with nano sized Y_2O_3. The consolidation of the powders was carried out in hot isostatic press (HIP) followed by hot rolling. 99% of the theoretical density was achieved by this method. The vickers hardness values of pressed and rolled samples were in the range of 380 ± 2HV and 719 ± 2HV, respectively. Samples were further investigated using X-ray diffraction particle size analyzer and electron microscope. Initial increase in particle size with milling was observed showing flattening of the particle. It was found that 5 h of milling time is sufficient to reduce the particle size to achieve the desired size. Transmission electron microscopy analysis of milled ODS steel powder revealed a uniform distribution of combustion synthesized nano-Y_2O_3 in ferritic steel matrix after a milling time of 5 h. Preliminary results demonstrated suitability of dual drive planetary ball mill for mass production of alloy within a short time due to various kinds of forces acting at a time during milling process. Fine monoclinic Y_2Si_2O_7 precipitates were also observed in the steel. This study explains the particle characteristics of nano Y_2O_3 dispersed ODS powder and formation of nano clusters in ODS ferritic alloy.

  10. The United States (U.S. Steel import crisis and the global production overcapacity till 2016

    Directory of Open Access Journals (Sweden)

    Gh. H. Popescu

    2016-07-01

    Full Text Available The aim of the present research is to examine and evaluate the swift growth in surplus steel production capacity and international supply chain integration, the effects of steel manufacturing on U.S. employment, raising imports of unfairly traded steel and steel goods, and the global steel sector’s structural overcapacity. This paper contributes to the literature by providing evidence on the mechanisms forming the foundation of the first-rate productivity growth in the U.S. steel industry, models of growth in the international steel supply chains, and the advantages of adequate trade remedy implementation for the U.S. steel sector.

  11. PULPA CUBA MILL ENERGY ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Juan Pedro Hernández Touset

    2015-10-01

    Full Text Available An energy study was performed at Pulpa Cuba Paper Mill, located in Sancti Spiritus, where an energy management system was applied according to NC: ISO 50001, in order to assess the energy system by applying energy management systems for energy and water reduction in the paper mill, in which the current steam generation, distribution and consumption system is diagnosed. The proposal of a modified energy scheme with 1 MW Backpressure Steam Turbine Generator and rehabilitation of the original boiler or installing a lower capacity boiler contributes to save financial resources by the concept of water, fuel and electricity. The implementation of four projects will save 3,095,574 CUC / y and an average payback period of about 1 year is expected.

  12. Mill Glaze: Myth or Reality?

    Science.gov (United States)

    Mark Knaebe

    2013-01-01

    Since the mid-1980s, a condition called “mill glaze” (also called planer’s glaze) has sometimes been blamed for the failure of a coating on smooth flat-grained siding and some other wood products. The exact cause of this problem has been a subject of controversy. Many people believe that the coating fails as a result of the planing and/or drying processes. They...

  13. Assessing the value of pulp mill biomass savings in a climate change conscious economy

    International Nuclear Information System (INIS)

    Adahl, Anders; Harvey, Simon; Berntsson, Thore

    2006-01-01

    Pulp mills use significant amounts of biofuels, both internal and purchased. Biofuels could contribute to reach greenhouse gas emission targets at competitive costs. Implementing process integration measures at a pulp mill in order to achieve pulp production with less use of energy (biofuels) has not only on-site consequences but also off-site consequences, such as substitution of fossil fuels elsewhere by the saved pulp mill biofuels, and less on-site electric power generation. In this paper a method, a linking model, is suggested to analyse pulp mill biofuel saving measures when carbon dioxide (CO 2 ) external costs are internalised. The linking model is based on equilibrium economics and links information from CO 2 constrained energy market future scenarios with process integration measures. Pulp mill economics and marginal energy market CO 2 response are identified. In an applied study, four process integration measures at a Swedish pulp mill were analysed using five energy market future scenarios emanating from a Nordic energy model. The investigated investment alternatives for biofuel savings all result in positive net annual savings, irrespectively of the scenario used. However, CO 2 emissions may increase or decrease depending on the future development of the Nordic energy market

  14. Bio-refinery system of DME or CH4 production from black liquor gasification in pulp mills.

    Science.gov (United States)

    Naqvi, M; Yan, J; Fröling, M

    2010-02-01

    There is great interest in developing black liquor gasification technology over recent years for efficient recovery of bio-based residues in chemical pulp mills. Two potential technologies of producing dimethyl ether (DME) and methane (CH(4)) as alternative fuels from black liquor gasification integrated with the pulp mill have been studied and compared in this paper. System performance is evaluated based on: (i) comparison with the reference pulp mill, (ii) fuel to product efficiency (FTPE) and (iii) biofuel production potential (BPP). The comparison with the reference mill shows that black liquor to biofuel route will add a highly significant new revenue stream to the pulp industry. The results indicate a large potential of DME and CH(4) production globally in terms of black liquor availability. BPP and FTPE of CH(4) production is higher than DME due to more optimized integration with the pulping process and elimination of evaporation unit in the pulp mill.

  15. Travel to Steel Warehouse Inc., Southbend, Indiana. Trip report, May 4, 1995

    International Nuclear Information System (INIS)

    Hill, N.F.

    1995-01-01

    On May 4, 1995 the author visited a steel plate and coil, cold reduction facility at Steel Warehouse Inc. located in South Bend, Indiana about 150 miles from Argonne. Some very interesting facts were learned about cold reduction of hot rolled steel during this visit. The company selected is only a cold reduction mill and buys steel from a number of steel producers. The author spent a total of about three hours with these people, and this included a tour of their pickling line, the small cold reduction mill which at present is limited to 15.5 in width maximum, and their large cold reduction mill which produces sheet and coil up to 72 in. wide. Some of the things that were learned, that will have an impact on the production of the Atlas steel plates are given here. (1) Hot rolled coils have some inherent, interesting, characteristics that must be taken into consideration when being cold reduced. (2) The monitoring of the coil thickness is only done along the center line of the coil, this has a serious impact on QC of plates cut from this coil for a number of reasons. (3) Hot rolled coils of steel in this particular instance may come from a number of different sources. This could cause problems if magnetic permeability is a serious issue. It was the author's impression that this facility is fairly typical of what one might expect from any similar facility

  16. New strategy for the optimal design and manufacture of high performance milling heads

    Directory of Open Access Journals (Sweden)

    Bustillo, A.

    2011-12-01

    Full Text Available High-performance mechanical-transmission heads are one of the most complex, costly and problematic parts of a milling machine, owing to the large amount of piping required for transporting fluids and to the high level of mechanical performance that is required from them. This study proposes a strategy for optimising the design and manufacture of head bodies by using aluminium alloys and by integrating tubular stainless steel inserts in the casting of the head. These tubular inserts that are integrated into the aluminium mass are an alternative to cooling conduits currently made by machine drilling. As demonstrated in the experimental validation of the first prototype, the new method has created a design that retains the same mechanical performance, increases its reliability and reduces the weight of the milling machine’s moving parts.

    Los cabezales de transmisión mecánica de altas prestaciones son una de las partes más complejas, costosas y problemáticas de una maquina fresadora. Esto es debido a la gran cantidad de canalizaciones para la transmisión de fluidos que deben de contener y a las altas prestaciones mecánicas que se les exigen. En este trabajo se presenta una estrategia para optimizar el diseño y la fabricación de los cuerpos de estos cabezales basada en la incorporación de aleaciones de aluminio y la inclusión de insertos tubulares de acero en la propia fundición que conforma el cabezal. Los insertos tubulares sustituyen a los canales de refrigeración realizados actualmente por taladros de mecanizado y quedan integrados en la masa de aluminio. La nueva metodología ha permitido realizar un diseño que mantiene las prestaciones mecánicas, aumenta la fiabilidad y reduce la masa de estos elementos móviles de fresadoras como ha demostrado la validación experimental de un primer prototipo.

  17. Self-dual Yang-Mills equation and deformation of surfaces

    International Nuclear Information System (INIS)

    Serikbaev, N.S.; Myrzakul, K.; Sajymbetova, S.K.; Koshkinbaev, A.D.; Myrzakulov, R.

    2003-01-01

    We show that many integrable systems and integrable spin systems in 2+1 dimensions can be obtained from the (2+1)- dimensional Gauss-Mainardi-Codazzi and Gauss-Weingarten equations, respectively. We also show that the (2+1)-dimensional Gauss-Mainardi-Codazzi equation which describes the deformation (motion) of surfaces is the exact reduction of the Yang-Mills-Higgs-Bogomolny and self-dual Yang-Mills equations. On the basis of this observation, we suggest that the (2+1)-dimensional Gauss-Mainardi-Codazzi equation is a candidate to be integrable, and the associated linear problem (Lax representation) with the spectral parameter is presented. (author)

  18. Heavy metals adsorption on rolling mill scale; Adsorcion de metales pesados sobre cascarill de laminacion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, F. A.; Martin, M. I.; Perez, C.; Lopez-Delgado, A.; Alguacil, E. J.

    2003-07-01

    A great quantity of industries are responsible for contaminating the environment with the heavy metals which are containing in their wastewaters. The recovery of these metals is both from an environmental and economical points of view of the upmost interest. A study is made of the use of mill scale-originating in the hot rolling of steel-as an adsorbent for the removal of heavy metals from liquid effluents. The adsorption of Zn''2+, Cd''2+ y Pb''2+ on the rolling mill scale was investigated by determination of adsorption isotherms. The effect of time, equilibrium temperature and concentration of metal solution on mill scale adsorption efficiency was evaluated. The adsorption process was analysed using the theories of Langmuir and Freundlich. Desorption process of metals from loaded mill scales was also studied using several doser bent at different experimental conditions. It has been proved that the mill scale is an effective adsorbent for the cations studies in aqueous solutions within the range of the working concentrations. (Author) 32 refs.

  19. Nonperturbative aspects of Yang-Mills theory

    International Nuclear Information System (INIS)

    Schleifenbaum, Wolfgang

    2008-01-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  20. Nonperturbative aspects of Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Schleifenbaum, Wolfgang

    2008-07-01

    The subject of this thesis is the theory of strong interactions of quarks and gluons, with particular emphasis on nonperturbative aspects of the gluon sector. Continuum methods are used to investigate in particular the confinement phenomenon. Confinement which states that the elementary quarks and gluons cannot be detected as free particles requires an understanding of large-scale correlations. In perturbation theory, only short-range correlations can be reliably described. A nonperturbative approach is given by the set of integral Dyson Schwinger equations involving all Green functions of the theory. A solution for the gluon propagator is obtained in the infrared and ultraviolet asymptotic limits. In chapter 1, redundant degrees of freedom of the Yang Mills gauge theory are removed by fixing the Weyl and Coulomb gauge prior to quantization. The constrained quantization in the Dirac bracket formalism is then performed explicitly to produce the quantized Yang Mills Hamiltonian. The asymptotic infrared limits of Coulomb gauge correlation functions are studied analytically in chapter 2 in the framework of the Gribov Zwanziger confinement scenario. The Coulomb potential between heavy quarks as part of the Yang Mills Hamiltonian is calculated in this limit. A connection between the infrared limits of Coulomb and Landau gauge is established. The Hamiltonian derived paves the way in chapter 3 for finding the Coulomb gauge vacuum wave functional by means of the variational principle. Numerical solutions for the propagators in this vacuum state are discussed and seen to reproduce the anticipated infrared limit. The discussion is extended to the vertex functions. The effect of the approximations on the results is examined. Chapter 4 is mainly devoted to the ultraviolet behavior of the propagators. The discussion is issued in both Coulomb and Landau gauge. A nonperturbative running coupling is defined and calculated. The ultraviolet tails of the variational solutions from

  1. Mechanosynthesis of A Ferritic ODS (Oxide Dispersion Strengthened) Steel Containing 14% Chromium and Its Characterization

    Science.gov (United States)

    Rivai, A. K.; Dimyati, A.; Adi, W. A.

    2017-05-01

    One of the advanced materials for application at high temperatures which is aggressively developed in the world is ODS (Oxide Dispersion strengthened) steel. ODS ferritic steels are one of the candidate materials for future nuclear reactors in the world (Generation IV reactors) because it is able to be used in the reactor above 600 °C. ODS ferritic steels have also been developed for the interconnect material of SOFC (Solid Oxide Fuel Cell) which will be exposed to about 800 °C of temperature. The steel is strengthened by dispersing homogeneously of oxide particles (ceramic) in nano-meter sized in the matrix of the steel. Synthesis of a ferritic ODS steel by dispersion of nano-particles of yttrium oxide (yttria: Y2O3) as the dispersion particles, and containing high-chromium i.e. 14% has been conducted. Synthesis of the ODS steels was done mechanically (mechanosynthesis) using HEM (High Energy ball Milling) technique for 40 and 100 hours. The resulted samples were characterized using SEM-EDS (Scanning Electron Microscope-Energy Dispersive Spectroscope), and XRD (X-ray diffraction) to analyze the microstructure characteristics. The results showed that the crystal grains of the sample with 100 hours milling time was much smaller than the sample with 40 hours milling time, and some amount of alloy was formed during the milling process even for 40 hours milling time. Furthermore, the structure analysis revealed that some amount of iron atom substituted by a slight amount of chromium atom as a solid solution. The quantitative analysis showed that the phase mostly consisted of FeCr solid-solution with the structure was BCC (body-centered cubic).

  2. Development of uranium milling and conversion

    International Nuclear Information System (INIS)

    Takada, Shingo; Hirono, Shuichiro.

    1983-11-01

    The development and improvement of uranium milling and refining producing uranium tetrafluoride from ores by the wet process, without producing yellowcake as an intermediate product, have been carried out for over ten years with a small pilot plant (50 t-ore/day). In the past several years, a process for converting uranium tetrafluoride into hexafluoride has been developed successfully. To develop the process further, the construction of an integrated milling and conversion pilot plant (200 t-U/year) started in 1979 and was completed in 1981. This new plant has two systems of solvent extraction using tri-noctylamine: one of the systems treats the pregnant solution (uranyl sulphate) by heap-leaching followed by ion exchange, and the other treats the uranyl sulphate solution by dissolving imported yellowcake. The uranium loading solvents from the two systems are stripped with hydrochloric acid solution to obtain the concentrated uranium solution containing 100 g-U/1. Uranyl sulphate solution from the stripping circuit is reduced to a uranous sulphate solution by the electrolytic method. In a reduction cell, uranyl sulphate solution and dilute sulphuric acid are used respectively as catholyte and anolyte, and a cation exchange membrane is used to prevent re-oxidation of the uranous sulphate. In the following hydrofluorination step, uranium tetrafluoride, UF 4 .1-1.2H 2 O (particle size: 50-100μ), is produced continuously as the precipitate in an improved reaction vessel, and this makes it possible to simplify the procedures of liquid-solid separation, drying and granulation. The uranium tetrafluoride is dehydrated by heating to 350 0 C in an inert gas flow. The complete conversion from UF 4 into UF 6 is achieved by a fluidized-bed reactor and a high value of utilization efficiency of fluorine, over 99.9 percent, is attained at about 400 0 C. (author)

  3. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  4. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  5. Microstructure and tensile properties of yttrium nitride dispersion-strengthened 14Cr–3W ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Liqing [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4067, QLD (Australia); Liu, Zuming, E-mail: lzm@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chen, Shiqi; Guo, Yang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2015-12-15

    Highlights: • Innovative nano yttrium nitride dispersion strengthened steels were fabricated. • Higher content of additives accelerate the steel-ceramic powder milling process more. • Steel with high content (3%) of YN dispersoids can obtain good performance at 500 °C. - Abstract: 14Cr–3W ferritic steel powders were mechanically milled with microscale yttrium nitride (YN) particles to fabricate particle dispersion-strengthened ferritic steels. After hot consolidation and annealing, the steel matrix was homogeneously dispersed with nano-scale YN particles. The steel containing 0.3 wt.% YN particles exhibited a yield strength of 1445 MPa at room temperature. Its total elongation was 10.3%, and the fracture surface exhibited mixed ductile and quasi-cleavage fracture morphologies. The steel with a much higher content of YN particles (3 wt.%) in its matrix was much stronger (1652 MPa) at room temperature at the cost of ductility. In particular, it exhibited a high yield strength (1350 MPa) with applicable ductility (total elongation > 10%) at 500 °C. This study has developed a new kind of reinforcement particle to fabricate high-performance ferritic steels.

  6. Counterbalance of cutting force for advanced milling operations

    Science.gov (United States)

    Tsai, Nan-Chyuan; Shih, Li-Wen; Lee, Rong-Mao

    2010-05-01

    The goal of this work is to concurrently counterbalance the dynamic cutting force and regulate the spindle position deviation under various milling conditions by integrating active magnetic bearing (AMB) technique, fuzzy logic algorithm and an adaptive self-tuning feedback loop. Since the dynamics of milling system is highly determined by a few operation conditions, such as speed of spindle, cut depth and feedrate, therefore the dynamic model for cutting process is more appropriate to be constructed by experiments, instead of using theoretical approach. The experimental data, either for idle or cutting, are utilized to establish the database of milling dynamics so that the system parameters can be on-line estimated by employing the proposed fuzzy logic algorithm as the cutting mission is engaged. Based on the estimated milling system model and preset operation conditions, i.e., spindle speed, cut depth and feedrate, the current cutting force can be numerically estimated. Once the current cutting force can be real-time estimated, the corresponding compensation force can be exerted by the equipped AMB to counterbalance the cutting force, in addition to the spindle position regulation by feedback of spindle position. On the other hand, for the magnetic force is nonlinear with respect to the applied electric current and air gap, the characteristics of the employed AMB is investigated also by experiments and a nonlinear mathematic model, in terms of air gap between spindle and electromagnetic pole and coil current, is developed. At the end, the experimental simulations on realistic milling are presented to verify the efficacy of the fuzzy controller for spindle position regulation and the capability of the dynamic cutting force counterbalance.

  7. Effect of the milling atmosphere on the microstructure and mechanical properties of a ODS Fe-14Cr model alloy

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A., E-mail: maria.auger@materials.ox.ac.uk [Department of Materials, University of Oxford, OX1 3PH Oxford (United Kingdom); Castro, V. de; Leguey, T. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Lozano-Perez, S.; Bagot, P.A.J.; Moody, M.P. [Department of Materials, University of Oxford, OX1 3PH Oxford (United Kingdom); Roberts, S.G. [Department of Materials, University of Oxford, OX1 3PH Oxford (United Kingdom); Culham Centre for Fusion Energy, Abingdon, Oxon OX14 3EA (United Kingdom)

    2016-08-01

    A systematic study has been undertaken to assess how the milling atmosphere, in the processing of an ODS steel with nominal composition Fe-14Cr-0.3Y{sub 2}O{sub 3} (wt%), will affect the microstructure and mechanical properties of the resultant alloys. Batches of the steel were manufactured by a powder metallurgy route incorporating mechanical alloying, hot isostatic pressing, forging and heat treatment. Hydrogen or helium atmospheres were used in the mechanical alloying, with all other processing parameters remaining identical. Transmission electron microscopy (TEM) and Atom Probe Tomography (APT) show that both milling atmospheres promote a homogeneous dispersion of Y-rich nanoparticles in the final alloys, being smaller when milling in H. Previously reported mechanical characterisation of these alloys shows better mechanical response at high temperature for the alloy milled in a H. This can be justified by the presence of smaller Y-rich nanoparticles together with the absence of bubbles, observed in the alloy milled in He.

  8. Evaluation of Superficial and Dimensional Quality Features in Metallic Micro-Channels Manufactured by Micro-End-Milling

    Directory of Open Access Journals (Sweden)

    Claudio Giardini

    2013-04-01

    Full Text Available Miniaturization encourages the development of new manufacturing processes capable of fabricating features, like micro-channels, in order to use them for different applications, such as in fuel cells, heat exchangers, microfluidic devices and micro-electromechanical systems (MEMS. Many studies have been conducted on heat and fluid transfer in micro-channels, and they appeared significantly deviated from conventional theory, due to measurement errors and fabrication methods. The present research, in order to deal with this opportunity, is focused on a set of experiments in the micro-milling of channels made of aluminum, titanium alloys and stainless steel, varying parameters, such as spindle speed, depth of cut per pass (ap, channel depth (d, feed per tooth (fz and coolant application. The experimental results were analyzed in terms of dimensional error, channel profile shape deviation from rectangular and surface quality (burr and roughness. The micro-milling process was capable of offering quality features required on the micro-channeled devices. Critical phenomena, like run-out, ploughing, minimum chip thickness and tool wear, were encountered as an explanation for the deviations in shape and for the surface quality of the micro-channels. The application of coolant and a low depth of cut per pass were significant to obtain better superficial quality features and a smaller dimensional error. In conclusion, the integration of superficial and geometrical features on the study of the quality of micro-channeled devices made of different metallic materials contributes to the understanding of the impact of calibrated cutting conditions in MEMS applications.

  9. Mechanical alloying and reactive milling in a high energy planetary mill

    International Nuclear Information System (INIS)

    Jiang Xianjin; Trunov, Mikhaylo A.; Schoenitz, Mirko; Dave, Rajesh N.; Dreizin, Edward L.

    2009-01-01

    Powder refinement in a planetary mill (Retsch PM 400-MA) is investigated experimentally and analyzed using discrete element modeling (DEM). Refinement is defined as the average size of the individual components in a composite powder. The specific milling dose, defined as the product of charge ratio and milling time, is used as an experimental parameter tracking the progress of the material refinement. This parameter is determined experimentally for milling of boron and titanium powders, for which the time of initiation of a self-sustained reaction is measured under different milling conditions. It is assumed that the reaction becomes self-sustaining when the same powder refinement is achieved. The DEM calculations established that the milling balls primarily roll along the milling container's perimeter. The inverse of the rate of energy dissipation resulting from this rolling motion is used as the DEM analog of the specific milling dose. The results correlate well with experimental observations.

  10. 75 FR 49524 - Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding...

    Science.gov (United States)

    2010-08-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-73,695] Woodland Mills Corporation, Mill Spring, NC; Notice of Affirmative Determination Regarding Application for Reconsideration By application dated July 22, 2010, petitioners requested administrative [[Page 49525

  11. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  12. Geometrical characterization of micro end milling tools

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo; Bissacco, Giuliano

    2005-01-01

    Performance of the milling process is directly affected by the accuracy of tool geometry. Development of methods suitable for dimensional characterization of such tools, with low measurement uncertainties is therefore of relevance. The present article focuses on the geometrical characterization...... of a flat micro end milling tool with a nominal mill diameter of 200 microns. An experimental investigation was carried out involving two different non-contact systems...

  13. Black holes with Yang-Mills hair

    International Nuclear Information System (INIS)

    Kleihaus, B.; Kunz, J.; Sood, A.; Wirschins, M.

    1998-01-01

    In Einstein-Maxwell theory black holes are uniquely determined by their mass, their charge and their angular momentum. This is no longer true in Einstein-Yang-Mills theory. We discuss sequences of neutral and charged SU(N) Einstein-Yang-Mills black holes, which are static spherically symmetric and asymptotically flat, and which carry Yang-Mills hair. Furthermore, in Einstein-Maxwell theory static black holes are spherically symmetric. We demonstrate that, in contrast, SU(2) Einstein-Yang-Mills theory possesses a sequence of black holes, which are static and only axially symmetric

  14. Focused ion beam milling of carbon fibres

    International Nuclear Information System (INIS)

    Huson, Mickey G.; Church, Jeffrey S.; Hillbrick, Linda K.; Woodhead, Andrea L.; Sridhar, Manoj; Van De Meene, Allison M.L.

    2015-01-01

    A focused ion beam has been used to mill both individual carbon fibres as well as fibres in an epoxy composite, with a view to preparing flat surfaces for nano-indentation. The milled surfaces have been assessed for damage using scanning probe microscopy nano-indentation and Raman micro-probe analysis, revealing that FIB milling damages the carbon fibre surface and covers surrounding areas with debris of disordered carbon. The debris is detected as far as 100 μm from the milling site. The energy of milling as well as the orientation of the beam was varied and shown to have an effect when assessed by Raman spectroscopy. - Highlights: • Focused ion beam (FIB) milling was used to mill flat surfaces on carbon fibres. • Raman spectroscopy showed amorphous carbon was generated during FIB milling. • The amorphous debris is detected as far as 100 μm from the milling site. • This surface degradation was confirmed by nano-indentation experiments.

  15. Particle deformation during stirred media milling

    Science.gov (United States)

    Hamey, Rhye Garrett

    Production of high aspect ratio metal flakes is an important part of the paint and coating industry. The United States Army also uses high aspect ratio metal flakes of a specific dimension in obscurant clouds to attenuate infrared radiation. The most common method for their production is by milling a metal powder. Ductile metal particles are initially flattened in the process increasing the aspect ratio. As the process continues, coldwelding of metal flakes can take place increasing the particle size and decreasing the aspect ratio. Extended milling times may also result in fracture leading to a further decrease in the particle size and aspect ratio. Both the coldwelding of the particles and the breakage of the particles are ultimately detrimental to the materials performance. This study utilized characterization techniques, such as, light scattering and image analysis to determine the change in particle size as a function of milling time and parameters. This study proved that a fundamental relationship between the milling parameters and particle deformation could be established by using Hertz's theory to calculate the stress acting on the aluminum particles. The study also demonstrated a method by which milling efficiency could be calculated, based on the amount of energy required to cause particle deformation. The study found that the particle deformation process could be an energy efficient process at short milling times with milling efficiency as high as 80%. Finally, statistical design of experiment was used to obtain a model that related particle deformation to milling parameters, such as, rotation rate and milling media size.

  16. Using CCT Diagrams to Optimize the Composition of an As-Rolled Dual-Phase Steel

    Science.gov (United States)

    Coldren, A. Phillip; Eldis, George T.

    1980-03-01

    A continuous-cooling transformation (CCT) diagram study was conducted for the purpose of optimizing the composition of a Mn-Si-Cr-Mo as-rolled dual-phase (ARDP) steel. The individual effects of chromium, molybdenum, and silicon on the allowable cooling rates were determined. On the basis of the CCT diagram study and other available information, an optimum composition was selected. Data from recent mill trials at three steel companies, involving steels with compositions in or near the newly recommended range, are presented and compared with earlier mill trial data. The comparison shows that the optimized composition is highly effective in making the steel's properties more uniform and reproducible in the as-rolled condition.

  17. Effect of intercritical heat treatment on mechanical properties of reinforcing steel bars

    International Nuclear Information System (INIS)

    Abro, M.I.; Memon, R.A.; Soomro, I.A.; Aftab, U.

    2017-01-01

    Intercritical heat treatments attempts were made to enhance the mechanical properties of reinforcing steel bars milled from scrap metal. For this, two grades of steel bars were obtained from different steel mills and their mechanical properties that include hardness, ultimate tensile strength, and percent elongation before and after intercritical heat treatment were determined. Results indicated that 25.5 and 17.6%, improvements in UTS (Ultimate Tensile Strength) and 18.8 and 14.3% improvement in percent elongation in two grades of reinforcing steel samples containing 0.17 and 0.24% carbon respectively was achieved while heating at 750 degree C for 2h. Appreciable improvement in the mechanical properties was noted due to birth of sufficient quantity of martensite along with ferrite. (author)

  18. Long term integrity of reactor pressure vessel and primary containment vessel after the severe accidents in Fukushima Daiichi Nuclear Power Station. Leaching property of spent oxide fuel segment and corrosion property of a carbon steel under artificial seawater immersion

    International Nuclear Information System (INIS)

    2014-06-01

    Primary containment vessel (PCV), reactor pressure vessel and pedestal in Fukushima Daiichi Nuclear power station units 1 through 3 have been exposed to severe thermal, chemical and mechanical conditions due to core meltdown events and seawater injections for emergent core cooling. These components will be immersed in diluted seawater with dissolved fission products under irradiation until the end of debris removal. Fresh water injected into the cores contacts with debris to cool, dissolves or erodes their constituents, mixed with retained water, and becomes 'accumulated water' with radioactive nuclides. We have focused the leaching of fission products into the accumulated water under lower temperature (323 K). FUGEN spent oxide fuel segments were immersed to determine the leaching factor of fission product and actinide elements. Since PCV made from carbon steel is one of the most important boundaries to prevent from fission products release, corrosion behavior has been paid attention to evaluate their integrity. Carbon steel specimens were immersion- and electrochemical-tested in diluted seawater with simulants of the accumulated water at 323 K in order to evaluate the effect of fission products in particular cesium and radiation. (author)

  19. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  20. KSC ADVANCED GROUND BASED FIELD MILL V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Ground Based Field Mill (AGBFM) network consists of 34 (31 operational) field mills located at Kennedy Space Center (KSC), Florida. The field mills...

  1. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  2. Water vapor effects on the corrosion of steel

    International Nuclear Information System (INIS)

    Estill, J.C.; Gdowski, G.E.

    1995-01-01

    Critical relative humidity for AISI 1020 carbon steel is 75-85% RH at 65 C. Aggressive electrochemical corrosion occurs above 85% RH, while dry oxidation occurs below 75% RH. The reddish-brown product is probably Fe2O3 or its hydrate; the black oxide layer, Fe3O4. The face surfaces had little or no corrosion, while the mill-machined edges were corroded with nonuniform reddish-brown areas

  3. NMR measurements in milled RE-TM2 compounds (RE=Gd and TM=Co, Fe)

    International Nuclear Information System (INIS)

    Tribuzy, C.V.; Guimaraes, A.P.; Biondo, A.; Larica, C.; Alves, K.M.B.

    1996-09-01

    Milled samples of the Laves phase intermetallic compounds Gd Fe 2 and Gd CO 2 were measured by NMR at 4.2 K. The milling was made from the crystalline intermetallic compounds, inside a cylindrical tool made of hard steel, under argon atmosphere, for several different time intervals. The initial compounds were produced from high purity elements in an arc furnace, under inert atmosphere. Their X-ray diffraction patterns agreed with those of the literature. The milling of Gd Fe 2 and of Gd CO 2 , induces amorphization. Above 1 hour the milling of Gd Fe 2 leads to segregation of α-Fe and formation of a Gd-Fe phase. These results are shown in the X-ray analysis. The spin-echo pulse NMR technique was utilized to study some structural and magnetic as a function of milling time. The measurements were made in a broad band pulse NMR spectrometer. The NMR spectra of the 155 Gd 157 Gd isotopes in Gd Fe 2 show a broadening and displacement of the NMR lines, reflecting the introduction of defects, some kind of disorder and also the formation of a new Gd-rich phase after 1 hour. This result is in agreement with the X-ray spectra. In both systems, the spectra of the amorphous samples show broader lines, and the measured hyperfine fields do not change much with milling. (author). 9 refs., 4 figs

  4. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness.

  5. Microstructural Evolution of Advanced Radiation-Resistant ODS Steel with Different Lengths of Mechanical Alloying Time

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Kim, Ga Eon; Kang, Suk Hoon; Kim, Tae Kyu

    2015-01-01

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/ martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, powder properties and microstructures of the ODS steel with different length of mechanical alloying time was investigated. The ODS steel milled 5h showed homogeneous grain structure with the highest hardness

  6. Radiological health aspects of uranium milling

    International Nuclear Information System (INIS)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized

  7. Airborne effluent control at uranium mills

    International Nuclear Information System (INIS)

    Sears, M.B.

    1976-01-01

    The Oak Ridge National Laboratory has made an engineering cost--environmental benefit study of radioactive waste treatment systems for decreasing the amount of radioactive materials released from uranium ore processing mills. This paper summarizes the results of the study which pertain to the control and/or abatement of airborne radioactive materials from the mill processes. The tailings area is not included. Present practices in the uranium milling industry, with particular emphasis on effluent control and waste management, have been surveyed. A questionnaire was distributed to each active mill in the United States. Replies were received from about 75 percent of the mill operators. Visits were made to six operating uranium mills that were selected because they represented the different processes in use today and the newest, most modern in mill designs. Discussions were held with members of the Region IV Office of NRC and the Grand Junction Office of ERDA. Nuclear Science Abstracts, as well as other sources, were searched for literature pertinent to uranium mill processes, effluent control, and waste management

  8. ( Rosa damascena Mill.) by microbial inoculation

    African Journals Online (AJOL)

    This study was carried out to determine the effects of microbial inoculation in breaking seed dormancy and on the germination of Rosa damascena Mill. Seeds of R. damascena Mill. are the most used scented rose species in rose oil production. The most important production centers around the world are Turkey and ...

  9. Optimisation of milling parameters using neural network

    Directory of Open Access Journals (Sweden)

    Lipski Jerzy

    2017-01-01

    Full Text Available The purpose of this study was to design and test an intelligent computer software developed with the purpose of increasing average productivity of milling not compromising the design features of the final product. The developed system generates optimal milling parameters based on the extent of tool wear. The introduced optimisation algorithm employs a multilayer model of a milling process developed in the artificial neural network. The input parameters for model training are the following: cutting speed vc, feed per tooth fz and the degree of tool wear measured by means of localised flank wear (VB3. The output parameter is the surface roughness of a machined surface Ra. Since the model in the neural network exhibits good approximation of functional relationships, it was applied to determine optimal milling parameters in changeable tool wear conditions (VB3 and stabilisation of surface roughness parameter Ra. Our solution enables constant control over surface roughness parameters and productivity of milling process after each assessment of tool condition. The recommended parameters, i.e. those which applied in milling ensure desired surface roughness and maximal productivity, are selected from all the parameters generated by the model. The developed software may constitute an expert system supporting a milling machine operator. In addition, the application may be installed on a mobile device (smartphone, connected to a tool wear diagnostics instrument and the machine tool controller in order to supply updated optimal parameters of milling. The presented solution facilitates tool life optimisation and decreasing tool change costs, particularly during prolonged operation.

  10. Radiological health aspects of uranium milling

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, D.R.; Stoetzel, G.A.

    1983-05-01

    This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

  11. Milling properties of low temperature sintered zirconia blocks for dental use

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Ting-Hsun; Wang, Chau-Hsiang [Department of Prosthodontics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China); Chen, Ker-Kong [Department of Conservation, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80728, Taiwan (China); Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan (China); Lee, Huey-Er, E-mail: huerle@kmu.edu.tw [Department of Prosthodontics, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80728, Taiwan (China)

    2017-04-01

    To investigate the milling properties of different yttria-tetragonal zirconia polycrystalline (Y-TZP) block materials by applying a dental computer numerical control (CNC) milling center. Low temperature sintering zirconia block denoted by KMUZ (experimental) with two commercial zirconia blocks for T block made in Taiwan and a G block made in Germany were compared for the milling properties. Seventy-two specimens were milled using the same CNC milling center, and properties were evaluated by measuring the weight loss (g), milling time (s), margin integrity (%) and broken diameter (μm). The crystalline phases contents were identified by X-ray diffraction and the microstructures of the sintering specimens were observed by scanning electron microscopy and transmission electron microscopy. The mean milling time of G and KMUZ were significantly shorter than T (P < 0.05). The KMUZ samples exhibited the least weight loss among the three kinds of blocks (P < 0.05). The percentages of marginal integrity after milling were high in G and KMUZ but low in T (P < 0.05). The mean broken diameters were from 90 μm to 120 μm. The phase transformation of t-ZrO{sub 2} (KMUZ: 7.4%, G: 5.9%, T: 3.2%) to m-ZrO{sub 2} when facing the milling pressure in ZrO{sub 2} blocks was observed by XRD. The result of TEM microstructure of KMUZ revealed that Y and Si were soluble in grain boundaries. The results show that the milling properties of KMUZ were better than one commercial T and near the G. The hindered grain growth, as a result of the Y{sup 3+} content in the grain boundaries, also plays a role in promoting the abnormal grain growth of 3Y-TZP. - Highlights: • The phase transformation of t-ZrO{sub 2} to m-ZrO{sub 2} affects the milling properties. • The phase content of t-ZrO2 was 100% when sintering at 1350 °C for 2 h. • The Y{sup 3+} content in the grain boundaries that hinders grain growth. • The Y{sup 3+} content in boundaries also promotes the abnormal grain growth of 3Y-TZP.

  12. Preliminary Test of Upgraded Conventional Milling Machine into PC Based CNC Milling Machine

    International Nuclear Information System (INIS)

    Abdul Hafid

    2008-01-01

    CNC (Computerized Numerical Control) milling machine yields a challenge to make an innovation in the field of machining. With an action job is machining quality equivalent to CNC milling machine, the conventional milling machine ability was improved to be based on PC CNC milling machine. Mechanically and instrumentally change. As a control replacing was conducted by servo drive and proximity were used. Computer programme was constructed to give instruction into milling machine. The program structure of consists GUI model and ladder diagram. Program was put on programming systems called RTX software. The result of up-grade is computer programming and CNC instruction job. The result was beginning step and it will be continued in next time. With upgrading ability milling machine becomes user can be done safe and optimal from accident risk. By improving performance of milling machine, the user will be more working optimal and safely against accident risk. (author)

  13. Rubber lining design for grinding mills: influence on economy and capacity

    Energy Technology Data Exchange (ETDEWEB)

    Nillson, G

    1979-11-01

    There is a difference in design parameters between steel linings and rubber linings for grinding mills. The basic design parameters for rubber are described and a comparison is made between steel and rubber in different applications. If a rubber lining is correctly designed, it will give at least the same capacity as any other type of lining. A rubber lining can often be made thinner than other types of lining and, in such cases, the increased mill diameter will increase the capacity. What has been said above regarding capacity applies equally to grinding efficiency. The grind can sometimes be changed by altering the lifter height and lifter profile. Rubber linings of the correct quality and design will always give improved lining economy, except for large primary ball mills. We trust that new designs and rubber qualities will change the picture in the future. What is said about lining economy is especially true when taking reduced downtime and maintenance into consideration. The lining must be designed to reduce sliding over the shell, which leads to heavy wear. When used for dry grinding, the adverse effects of temperature must be observed.

  14. Porous stainless steel for biomedical applications

    Directory of Open Access Journals (Sweden)

    Sabrina de Fátima Ferreira Mariotto

    2011-01-01

    Full Text Available Porous 316L austenitic stainless steel was synthesized by powder metallurgy with relative density of 0.50 and 0.30 using 15 and 30 wt. (% respectively of ammonium carbonate and ammonium bicarbonate as foaming agents. The powders were mixed in a planetary ball mill at 60 rpm for 10 minutes. The samples were uniaxially pressed at 287 MPa and subsequently vacuum heat treated in two stages, the first one at 200 ºC for 5 hours to decompose the carbonate and the second one at 1150 ºC for 2 hours to sinter the steel. The sintered samples had a close porous structure and a multimodal pore size distribution that varied with the foaming agent and its concentration. The samples obtained by addition of 30 wt. (% of foaming agents had a more homogeneous porous structure than that obtained with 15 wt. (%. The MTT cytotoxicity test (3-[4,5-dimethylthiazol]-2,5-diphenyltetrazolium bromide was used to evaluate the mitochondrial activity of L929 cells with samples for periods of 24, 48, and 72 hours. The cytotoxicity test showed that the steel foams were not toxic to fibroblast culture. The sample with the best cellular growth, therefore the most suitable for biomedical applications among those studied in this work, was produced with 30 wt. (% ammonium carbonate. In this sample, cell development was observed after 48 hours of incubation, and there was adhesion and spreading on the material after 72 hours. Electrochemical experiments using a chloride-containing medium were performed on steel foams and compared to massive steel. The massive steel had a better corrosion performance than the foams as the porosity contributes to increase the surface area exposed to the corrosive medium.

  15. Noise pollution in iron and steel industry

    International Nuclear Information System (INIS)

    Bisio, G.; Piromalli, W.; Acerbo, P.

    1999-01-01

    Iron and steel industry is characterized by high energy consumption and thus present remarkable problems from the point of view of noise pollution. The aims of this paper is to examine characteristic and acoustical emissions and immisions of some fundamentals iron and steel plants with several remarks on the possible measures to reduce noise pollution. For a large integrate iron and steel system, some surveys are shown with all devices running and, in addition, comparisons are made with other surveys when the main devices were out of service owing to great maintenance works [it

  16. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  17. Determination of the onset of ductile crack extension in 2 1/4 Cr 1 Mo steel by multi-specimen J integral testing

    International Nuclear Information System (INIS)

    Druce, S.G.

    1982-02-01

    Results obtained at AERE Harwell as part of the first phase of the European Group on Fracture round robin activity into ductile crack initiation detection are presented and discussed. Data are analysed using the current ASTM Jsub(IC) testing procedure and by an alternative procedure. Difficulties in the definition of 'initiation' are highlighted and deficiencies of the ASTM procedure exposed. The ASTM Jsub(IC) value for 2 1/4 Cr 1 Mo steel was determined as 0.21 MN/m. The alternative procedure provides a more accurate evaluation of the 'initiation' value of J, that is, at the point of crack advance in excess of that due to crack tip blunting. Using this procedure the 'initiation' value, Jsub(i), was measured as 0.14 MN/m. (author)

  18. Case study of the public relations program of U. S. Steel's Utah fluorosis program

    Energy Technology Data Exchange (ETDEWEB)

    McQuiddy, A.R.

    1958-01-01

    In the 1950s, fluoride emissions were determined to be a problem at US Steel's Geneva Steel Works in Utah. Neighboring farms were affected, in that fluorosis was found in cattle. The problem was settled in litigation, and US Steel installed state-of-the-art pollution control technology on the steel mill in order to eliminate recurrence. The investigations that led to the elucidation of fluorides as the problem, the installation of pollution control equipment, and the public relations efforts on the part of the company are described. 22 references.

  19. Experimental evaluation of tool run-out in micro milling

    Science.gov (United States)

    Attanasio, Aldo; Ceretti, Elisabetta

    2018-05-01

    This paper deals with micro milling cutting process focusing the attention on tool run-out measurement. In fact, among the effects of the scale reduction from macro to micro (i.e., size effects) tool run-out plays an important role. This research is aimed at developing an easy and reliable method to measure tool run-out in micro milling based on experimental tests and an analytical model. From an Industry 4.0 perspective this measuring strategy can be integrated into an adaptive system for controlling cutting forces, with the objective of improving the production quality, the process stability, reducing at the same time the tool wear and the machining costs. The proposed procedure estimates the tool run-out parameters from the tool diameter, the channel width, and the phase angle between the cutting edges. The cutting edge phase measurement is based on the force signal analysis. The developed procedure has been tested on data coming from micro milling experimental tests performed on a Ti6Al4V sample. The results showed that the developed procedure can be successfully used for tool run-out estimation.

  20. Long-term stabilization of uranium mill tailings

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.

    1983-01-01

    The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from the changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are: rock cover, soil and revegetation, or a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment, heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%

  1. Settlement of uranium mill tailings

    International Nuclear Information System (INIS)

    Chen, P.K.; Guros, F.B.; Keshian, B.

    1988-01-01

    Two test embankments were constructed on top of an old tailings deposit near Ambrosia Lake, New Mexico to determine settlement characteristics of hydraulically- deposited uranium mill tailings. Before construction of the embankments, properties of in-situ tailings and foundation soils were determined using data from boreholes, piezocone soundings, and laboratory tests. These properties were used to estimate post-construction settlement of a planned disposal embankment to be constructed on the tailings. However, excessive uncertainty existed in the following: field settlement rates of saturated and unsaturated tailings, degree of preconsolidation of the upper 15 feet of tailings, and the ability of an underlying silty sand foundation layer to facilitate drainage. Thus, assurance could not be provided that differential settlements of the radon barrier and erosion protection layers would be within allowable limits should the planned disposal embankment be constructed in a single-stage

  2. Environmental planning in uranium milling

    International Nuclear Information System (INIS)

    Bertello, L.F.

    1987-01-01

    Effluents from uranium milling in the Achala region in the province of Cordoba are studied. Liquids from lixiviation-recovery and from precipitation-washing of yellow-cake were analyzed. Separation of both liquids before treatment and disposal is recommended. Data of the hydric environment are presented specially for volumes of flow. The disposal criteria established by the provincial authorities are presented, and discussed. Calculations to define the effects on the environment of two types of effluents (the leaching effluent without treatment and the same after treating it) on two points of the rivers net, are given and the results discussed. A disposal policy for a treated effluent of mean composition is presented, based on two different amounts for the two phases of the river flux; the possible effects on two points of the net were also calculated. In the author's opinion, such policy will result in a disposal without a sensible damage in the receptor. (Author) [es

  3. Comparative analysis of niobium and vanadium carbide efficiency in the high energy mechanical milling of aluminum bronze alloy

    Directory of Open Access Journals (Sweden)

    Alexandre Nogueira Ottoboni Dias

    Full Text Available Abstract This study aims to analyze the efficiency of niobium and vanadium carbides in the high energy mechanical milling of aluminum bronze alloy. Two series of experiments were made following the same steps for both niobium carbide (NbC and vanadium carbide (VC additions: 30 g of chips were weighed and placed in a stainless steel jar with 3 % of carbide and 1 % of stearic acid for a mass/sphere relationship of 1:10. The milling was realized using a planetary ball mill for 10, 30 and 50 hours in an inert argon atmosphere at 300 rpm. Results shown in laser diffraction indicate a great reduction in the particle sizes of powders when VC is used. For 30 hours milling, D50 values ranged from 1580 µm with NbC to 182.3 µm with VC addition. The D50 values ranged from 251.5 µm with NbC to 52.26 µm with VC addition, for 50 hours milling. The scanning electron microscopy showed that in 10 hours of milling, the energy was not sufficient to achieve the shear of chips in both cases. For 30 hours, it's possible to observe particles with sizes between 100 µm and 800 µm with NbC addition while for the same milling time, with VC it's possible to see particles with different sizes, but with many shapes of fine particulates. For 50 hours milling, particles achieved the smaller sizes between 50 and 200 µm with NbC and ranging from 5 until 50 µm with VC addition.

  4. Prevalence of respiratory symptoms and disorders among rice mill workers in India.

    Science.gov (United States)

    Ghosh, Tirthankar; Gangopadhyay, Somnath; Das, Banibrata

    2014-05-01

    Lung function tests have become an integral part of assessment of pulmonary disease. Diseases of the respiratory system induced by occupational dusts are influenced by the duration of exposure. The aim of the study is to investigate the impairment of lung function and prevalence of respiratory symptoms among the rice mill workers. A total of 120 rice mill workers from three districts of Karnataka were included in this study. Fifty urban dwellers from the same socio-economic level were selected as controls. The study included clinical examination, assessment of respiratory symptoms, pulmonary function test, measurement of peak expiratory flow rate, absolute eosinophil count, ESR estimation, total IgE estimation and radiographic test. The present study has shown that the rice mill workers complained of several types of respiratory disorders like phlegm (40.8 %), dyspnea (44.2 %), chest tightness (26.7 %), cough (21.7 %), and nose irritation (27.5 %). Rice mill workers exposed to dust presented significantly (p workers are having significantly higher absolute eosinophil counts, total IgE and ESR than control groups. The hematological findings suggest that the harmful effects may be linked to both non-specific irritation and allergic responses to rice husk dust among rice mill workers. Dust exposure in the working environment affects the lung function values and increased the respiratory symptoms among the rice mill workers.

  5. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  6. Microstructure evolution of the oxide dispersion strengthened CLAM steel during mechanical alloying process

    Energy Technology Data Exchange (ETDEWEB)

    Song, Liangliang [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); University of Science and Technology of China, Hefei, Anhui, 230031 (China); Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China); Mao, Xiaodong [Key Laboratory of Neutronics and Radiation Safety, Institute of Nuclear Energy Safety Technology, Chinese Academy of Science, Hefei, Anhui, 230031 (China)

    2016-11-15

    Highlights: • A nano-sized oxides dispersed ODS-CLAM steel was obtained by MA and HIP. • A minimum saturated grain size of down to 30 nm was achieved by varying the milling time from 0 to 100 h. • Solution of W in the MA powder could be significantly improved by increasing MA rotation speed. - Abstracts: Oxide dispersion strengthened Ferritic/Martensitic steel is considered as one of the most potential structural material for future fusion reactor, owing to its high mechanical properties and good irradiation resistance. The oxide dispersion strengthened China Low Activation Martensitic (ODS-CLAM) steel was fabricated by mechanical alloying (MA) and hot isostatic pressing (HIP). The microstructural evolutions during the process of ball milling and subsequent consolidation were investigated by SEM, XRD and TEM. The results showed that increasing the milling time during the first 36 h milling could effectively decrease the grain size to a value of around 30 nm, over which grain sized remained nearly constant. Increasing the rotation speed promoted the solution of tungsten (W) element obviously and decreased the grain size to a certain degree. Observation on the consolidated and further heat-treated ODS-CLAM steel samples indicated that a martensite microstructure with a high density of nano-particles was achieved.

  7. Microstructural evolution of ferritic steel powder during mechanical alloying with iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Yuren; Liu, Yong; Liu, Donghua; Tang, Bei [Central South Univ., State Key Lab. of Powder Metallurgy, Changsha (China); Liu, C.T. [The Hong Kong Polytechnic Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2011-02-15

    Mechanical alloying of mixed powders is of great importance for preparing oxide dispersion strengthened ferritic steels. In this study, the microstructural evolution of ferritic steel powder mixed with TiH{sub x}, YH{sub 2} and Fe{sub 2}O{sub 3} in the process of mechanical alloying is systematically investigated by using X-ray diffraction analysis, scanning electron microscopy, transmission electron microscopy and microhardness tests. It is found that titanium, yttrium hydrides and iron oxide are completely dissolved during milling, and homogeneous element distribution can be achieved after milling for 12 h. The disintegration of the composite powder particles occurs at 24 h and reaches the balance of welding and fracturing after 36 h. The oxygen content increases sharply with the disintegration of powder particles due to the absorption of oxygen at the solid/gas interface from the milling atmosphere, which is the main source of extra oxygen in the milled powder. Grain refinement down to nanometer level occurs due to the severe plastic deformation of particles; however, the grain size does not change much with further disintegration of particles. The hardness increases with milling time and then becomes stable during further milling. The study indicates that the addition of iron oxide and hydrides may be more beneficial for the dispersion and homogenization of chemical compositions in the powder mixture, thus shortening the mechanical alloying process. (orig.)

  8. Condition monitoring of face milling tool using K-star algorithm and histogram features of vibration signal

    Directory of Open Access Journals (Sweden)

    C.K. Madhusudana

    2016-09-01

    Full Text Available This paper deals with the fault diagnosis of the face milling tool based on machine learning approach using histogram features and K-star algorithm technique. Vibration signals of the milling tool under healthy and different fault conditions are acquired during machining of steel alloy 42CrMo4. Histogram features are extracted from the acquired signals. The decision tree is used to select the salient features out of all the extracted features and these selected features are used as an input to the classifier. K-star algorithm is used as a classifier and the output of the model is utilised to study and classify the different conditions of the face milling tool. Based on the experimental results, K-star algorithm is provided a better classification accuracy in the range from 94% to 96% with histogram features and is acceptable for fault diagnosis.

  9. Feasibility study of energy conservation at Vietnam Steel Corporation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Feasibility study was conducted of the project for energy conservation and reduction in greenhouse effect gas emission by introducing the honeycomb type heat storage burner technology to heating furnaces of Vietnam Steel Corporation (VSC). Furnaces for study are the bar mill furnace at Gia Sang plant of TISCO Steelorks, bar mill furnace at Thu Duc plant of SSC Steelworks, billet furnace at new bar mill of SSC Steelworks, slab furnace at new hot strip mill that VSC is now in the planning stage. As a result of the study, the energy conservation amount is 2,900 toe/y at TISCO Steelworks, 2,130 toe/y at SSC Steelworks, and 6,000 toe/y at VSC new hot strip mill, which totaled 11,030 toe/y. The amount of greenhouse effect gas reduction is 9,000 t-CO2/y at TISCO, 6,600 t-CO2/y at SSC, and 18,600 t-CO2/y at VSC, which totaled 34,200 t/y. The total investment amount is 0.23, 0.44, 1.32 and 1.99 billion yen for each. As to the profitability, the internal earning rate is 24%, 86%, 97% and 51% for each, which are all favorable. (NEDO)

  10. Yank-Mills fields and hypersurface twistors

    International Nuclear Information System (INIS)

    Fioravanti, M.A.

    1989-01-01

    The author establishes a one-to-one correspondence between (not necessarily self-dual) solutions of the non-abelian source-free Yang-Mills equations on Minkowski space, and pairs of cohomology classes [γ], [φ]. If O(n) is the sheaf of holomorphic sections of the n th tensor power of the hyperplane line bundle over C P 1 , and g is the Lie algebra of the gauge group, [γ] var-epsilon H CR 1 (PN circumflex,g) and defines a deformation C-R(γ) of the canonical C-R structure on a principal bundle over PN circumflex, the subset of null twistor space PN, representing unscaled null geodesics in Minkowski space. [φ] var-epsilon H CR(γ) 1 (PN,O(-4) direct-product g). The spin-bundle over Minkowski space is used in the construction. This bundle is foliated by a congruence of lines; each of these lines projects into a null geodesic in Minkowski space, and corresponds to a point in N. The restriction S of the spin-bundle to a spacelike hyperplane in Minkowski space is transversal to this foliation, and PN is identified with S. [γ] encodes certain components of the Yang-Mills connection on S, and [φ] encodes the self-dual part of the field on S. They give initial values for a system of evolution equations in the spin-bundle. This system is composed by four first order ordinary differential equations along the lines in the foliation of the spin-bundle, with some of the right-hand sides given by integrals on the fiber over a point in Minkowski space, and a partial differential equation on this fiber. The evolution equations simplify largely in the case of an abelian gauge group. In the case of anti-self-dual fields, the system reduces to two ordinary differential equations along the lines in the foliation of the spin-bundle, and the differential equation on the fiber over each point in Minkowski space. He studies the modifications in the construction when sources are present

  11. An extended topological Yang-Mills theory

    International Nuclear Information System (INIS)

    Deguchi, Shinichi

    1992-01-01

    Introducing infinite number of fields, we construct an extended version of the topological Yang-Mills theory. The properties of the extended topological Yang-Mills theory (ETYMT) are discussed from standpoint of the covariant canonical quantization. It is shown that the ETYMT becomes a cohomological topological field theory or a theory equivalent to a quantum Yang-Mills theory with anti-self-dual constraint according to subsidiary conditions imposed on state-vector space. On the basis of the ETYMT, we may understand a transition from an unbroken phase to a physical phase (broken phase). (author)

  12. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  13. Environmental design of a uranium mill

    International Nuclear Information System (INIS)

    Quan, C.H.; Ring, R.J.; McNaughton, S.J.

    2002-01-01

    In the frame work of the Cleaner Technology Project for Uranium Mining and Milling, Australian Nuclear and Technology Organization (ANSTO), Environment Division of ANSTO has carried out a programme of research which seeks to identify, investigate and develop cleaner technologies that have the potential to minimize the environmental impact of uranium mining and milling. This paper describes three design options of a new uranium mill that can meet environmental, technical and economical objectives. The feasibility of such an approach was examined in the laboratory and in a pilot plant study. (author)

  14. Surface texture generation during cylindrical milling in the aspect of cutting force variations

    International Nuclear Information System (INIS)

    Wojciechowski, S; Twardowski, P; Pelic, M

    2014-01-01

    The work presented here concentrates on surface texture analysis, after cylindrical milling of hardened steel. Cutting force variations occurring in the machining process have direct influence on the cutter displacements and thus on the generated surface texture. Therefore, in these experiments, the influence of active number of teeth (z c ) on the cutting force variations was investigated. Cutting forces and cutter displacements were measured during machining process (online) using, namely piezoelectric force dynamometer and 3D laser vibrometer. Surface roughness parameters were measured using stylus surface profiler. The surface roughness model including cutting parameters (f z , D) and cutting force variations was also developed. The research revealed that in cylindrical milling process, cutting force variations have immediate influence on surface texture generation

  15. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  16. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    Science.gov (United States)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  17. Influence of Sintering Temperature on Mechanical and Physical properties of Mill Scale based Bipolar Plates for PEMFC

    Science.gov (United States)

    Khaerudini, Deni S.; Berliana, Rina; Prakoso, Gatra B.; Insiyanda, Dita R.; Alva, Sagir

    2018-03-01

    This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as bipolar plates in proton exchange membrane fuel cells (PEMFCs). On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in bipolar plate and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the aluminium source containing 30 wt.% using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at various temperatures of 400, 450 and 500 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by x-ray diffractometry, scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), microhardness measurement, and density - porosity analysis. The details of the performance variation of three different sintering conditions can be preliminary explained by the metallographic and crystallographic structure and phase analysis as well as sufficient mechanical strength of the sintered materials was presented in this report.

  18. On self-dual Yang-Mills hierarchy

    International Nuclear Information System (INIS)

    Nakamura, Yoshimasa

    1989-01-01

    In this note, motivated by the Kadomtsev-Petviashvili (KP) hierarchy of integrable nonlinear evolution equations, a GL(n,C) self-dual Yang-Mills (SDYM) hierarchy is presented; it is an infinite system of SDYM equations having an infinite number of independent variables and being outside of the KP hierarchy. A relationship between the KP hierarchy and the SDYM hierarchy is discussed. It is also shown that GL(∞) SDYM equations introduced in this note are reduced to the GL(n,C) SDYM hierarchy by imposing an algebraic constraint. (orig.)

  19. Polyakov lines in Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Austing, Peter; Wheater, John F.; Vernizzi, Graziano

    2003-01-01

    We study the Polyakov line in Yang-Mills matrix models, which include the IKKT model of IIB string theory. For the gauge group SU(2) we give the exact formulae in the form of integral representations which are convenient for finding the asymptotic behaviour. For the SU(N) bosonic models we prove upper bounds which decay as a power law at large momentum p. We argue that these capture the full asymptotic behaviour. We also indicate how to extend the results to some correlation functions of Polyakov lines. (author)

  20. Supersymmetric self-dual Yang-Mills fields

    International Nuclear Information System (INIS)

    Zhao Liu

    1994-01-01

    A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model

  1. 21 CFR 515.10 - Medicated feed mill license applications.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Medicated feed mill license applications. 515.10... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS MEDICATED FEED MILL LICENSE Applications § 515.10 Medicated feed mill license applications. (a) Medicated feed mill license applications (Forms FDA 3448) may...

  2. 40 CFR 61.142 - Standard for asbestos mills.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standard for asbestos mills. 61.142... § 61.142 Standard for asbestos mills. (a) Each owner or operator of an asbestos mill shall either discharge no visible emissions to the outside air from that asbestos mill, including fugitive sources, or...

  3. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  4. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  5. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  6. Effects of milling on functional properties of rice flour.

    Science.gov (United States)

    Kadan, R S; Bryant, R J; Miller, J A

    2008-05-01

    A commercial long-grain rice flour (CRF) and the flours made by using a pin mill and the Udy mill from the same batch of broken second-head white long-grain rice were evaluated for their particle size and functional properties. The purpose of this study was to compare the commercial rice flour milling method to the pin and Udy milling methods used in our laboratory and pilot plant. The results showed that pin milled flour had more uniform particle size than the other 2 milled flours. The chalky kernels found in broken white milled rice were pulverized more into fines in both Udy milled flour and CRF than in the pin milled flour. The excessive amount of fines in flours affected their functional properties, for example, WSI and their potential usage in the novel foods such as rice breads (RB). The RB made from CRF collapsed more than loaves made from pin milled Cypress long-grain flours.

  7. Uranium Mill and ISL Facility Database

    Data.gov (United States)

    U.S. Environmental Protection Agency — An Excel database on NRC and Agreement State licensed mills providing status, locational/operational/restoration data, maps, and environmental reports including...

  8. Two loop diagrams in Yang Mills theory

    International Nuclear Information System (INIS)

    Jones, D.R.T.

    1974-01-01

    A calculation of the renormalization constants of the Yang Mills field to 0(g 4 ) is presented. The function β(g) is hence evaluated to 0(g 5 ) and possible implications for gauge theories of the strong interactions discussed

  9. Health risks from uranium mill tailings

    International Nuclear Information System (INIS)

    Russell, J.L.

    1992-01-01

    This paper reviews the risk to public health and the environment from uranium mill tailings. The steps taken by the Environmental Protection Agency (EPA) to reduce this risk from tailing are summarized

  10. Uranium mill tailings remedial action technology

    International Nuclear Information System (INIS)

    Hartley, J.N.; Gee, G.W.

    1984-01-01

    The uranium milling process involves the hydrometallurgical extraction of uranium from ores and the resultant generation of large quantities of waste referred to as tailings. Uranium mill tailings have been identified as requiring remediation because they contain residual radioactive material that is not removed in the milling process. Potential radiation exposure can result from direct contact with the tailings, from radon gas emitted by the tailings, and from radioactive contamination of groundwater. As a result, the technology developed under the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRAP) and the US Nuclear Regulatory Commission (NRC) Uranium Recovery Program have focused on radon control, groundwater contamination and the long-term protection of the containment system. This paper briefly summarizes the UMTRAP and NRC remedial action technology development. 33 references, 9 figures, 5 tables

  11. Mineralogy and geochemistry of uranium mill tailings

    International Nuclear Information System (INIS)

    Pagel, M.; Somot, S.

    2002-01-01

    We have investigated three main types of uranium mill tailings: (1) acid mill tailings (Mounana, Gabon), (2) neutralized acid mill tailings (Ecarpiere and Jouac, France) and (3) alkaline mill tailings (Lodeve, France). We have focused especially on radium behaviour which is of major environmental concern in these tailings, but other metals were also studied. It is shown that in type 1 , trapping of 226 Ra by anglesite and barite is dominant whereas in types 2 and 3, 226 Ra is mainly or significantly scavenged by Fe- Mn oxyhydroxides. This study points out the importance of keeping conditions in which these oxyhydroxides will be stable for the long-term. Uranium would be also released during acidification of the tailings. This shows the importance to know more about the behavior of Ra during the crystallization of oxyhydroxides and during tailings diagenesis. Therefore, it is very important to study the sorption of Ra by clay minerals or late authigeneous minerals such as barite. (author)

  12. Oxidation of ultra low carbon and silicon bearing steels

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, Lucia [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: lucia.suarez@ctm.com.es; Rodriguez-Calvillo, Pablo [CTM - Technologic Centre, Materials Technology Area, Manresa, Barcelona (Spain)], E-mail: pablo.rodriguez@ctm.com.es; Houbaert, Yvan [Department of Materials Science and Engineering, University of Ghent (Belgium)], E-mail: Yvan.Houbaert@UGent.be; Colas, Rafael [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)], E-mail: rcolas@mail.uanl.mx

    2010-06-15

    Oxidation tests were carried out in samples from an ultra low carbon and two silicon bearing steels to determine the distribution and morphology of the oxide species present. The ultra low carbon steel was oxidized for short periods of time within a chamber designed to obtain thin oxide layers by controlling the atmosphere, and for longer times in an electric furnace; the silicon steels were reheated only in the electric furnace. The chamber was constructed to study the behaviour encountered during the short period of time between descaling and rolling in modern continuous mills. It was found that the oxide layers formed on the samples reheated in the electric furnace were made of different oxide species. The specimens treated in the chamber had layers made almost exclusively of wustite. Selected oxide samples were studied by scanning electron microscopy to obtain electron backscattered diffraction patterns, which were used to identify the oxide species in the layer.

  13. Perturbative Yang-Mills theory without Faddeev-Popov ghost fields

    Science.gov (United States)

    Huffel, Helmuth; Markovic, Danijel

    2018-05-01

    A modified Faddeev-Popov path integral density for the quantization of Yang-Mills theory in the Feynman gauge is discussed, where contributions of the Faddeev-Popov ghost fields are replaced by multi-point gauge field interactions. An explicit calculation to O (g2) shows the equivalence of the usual Faddeev-Popov scheme and its modified version.

  14. Contract Cheating in UK Higher Education: A Covert Investigation of Essay Mills

    Science.gov (United States)

    Medway, Dominic; Roper, Stuart; Gillooly, Leah

    2018-01-01

    Contract cheating is currently a concern for universities and the higher education (HE) sector. It has been brought into the spotlight in recent years through the growth of online essay mills, where students can easily commission and purchase written assessment responses. This study contributes to the wider literature on academic integrity in HE…

  15. Infrared finiteness in Yang--Mills theories

    International Nuclear Information System (INIS)

    Appelquist, T.; Carazzone, J.; Kluberg-Stern, H.; Roth, M.

    1976-01-01

    The infrared divergences of renormalizable theories with coupled massless fields (in particular, the Yang--Mills theory) are shown to cancel for transition probabilities corresponding to finite-energy-resolution detectors, just as in quantum electrodynamics. This result is established through lowest nontrivial order in perturbation theory for the detection of massive muons in a quantum electrodynamic theory containing massless electrons or the detection of massive quarks in a Yang--Mills theory

  16. VOC Control in Kraft Mills; FINAL

    International Nuclear Information System (INIS)

    Zhu, J.Y.; Chai, X.-S.; Edwards, L.L.; Gu, Y.; Teja, A.S.; Kirkman, A.G.; Pfromm, P.H.; Rezac, M.E.

    2001-01-01

    The formation of volatile organic compounds (VOCs), such as methanol, in kraft mills has been an environmental concern. Methanol is soluble in water and can increase the biochemical oxygen demand. Furthermore, it can also be released into atmosphere at the process temperatures of kraft mill-streams. The Cluster Rule of the EPA now requires the control of the release of methanol in pulp and paper mills. This research program was conducted to develop a computer simulation tool for mills to predict VOC air emissions. To achieve the objective of the research program, much effort was made in the development of analytical techniques for the analysis of VOC and determination of vapor liquid partitioning coefficient of VOCs in kraft mill-streams using headspace gas chromatography. With the developed analytical tool, methanol formation in alkaline pulping was studied in laboratory to provide benchmark data of the amount of methanol formation in pulping in kraft mills and for the validation of VOC formation and vapor-liquid equilibrium submodels. Several millwide air and liquid samplings were conducted using the analytical tools developed to validate the simulation tool. The VOC predictive simulation model was developed based on the basic chemical engineering concepts, i.e., reaction kinetics, vapor liquid equilibrium, combined with computerized mass and energy balances. Four kraft mill case studies (a continuous digester, two brownstock washing lines, and a pre-evaporator system) are presented and compared with mill measurements. These case studies provide valuable, technical information for issues related to MACT I and MACT II compliance, such as condensate collection and Clean-Condensate-Alternatives (CCA)

  17. Palm Oil Milling Wastes and Sustainable Development

    OpenAIRE

    A. C. Er; Abd. R.M. Nor; Katiman Rostam

    2011-01-01

    Problem statement: Palm oil milling generates solid wastes, effluent and gaseous emissions. The aim of this study is to assess the progress made in waste management by the Malaysian palm oil milling sector towards the path of sustainable development. Sustainable development is defined as the utilization of renewable resources in harmony with ecological systems. Inclusive in this definition is the transition from low value-added to higher value-added transformation of waste...

  18. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  19. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

    Science.gov (United States)

    Sutha, S; Kavitha, K; Karunakaran, G; Rajendran, V

    2013-10-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58-1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Yang Mills instantons, geometrical aspects

    International Nuclear Information System (INIS)

    Stora, R.

    1977-09-01

    The word instanton has been coined by analogy with the word soliton. They both refer to solutions of elliptic non linear field equations with boundary conditions at infinity (of euclidean space time in the first case, euclidean space in the second case) lying on the set of classical vacua in such a way that stable topological properties emerge, susceptible to survive quantum effects, if those are small. Under this assumption, instantons are believed to be relevant to the description of tunnelling effects between classical vacua and signal some characteristics of the vacuum at the quantum level, whereas solitons should be associated with particles, i.e. discrete points in the mass spectrum. In one case the euclidean action is finite, in the other case, the energy is finite. From the mathematical point of view, the geometrical phenomena associated with the existence of solitons have forced physicists to learn rudiments of algebraic topology. The study of euclidean classical Yang Mills fields involves naturally mathematical items falling under the headings: differential geometry (fibre bundles, connections); differential topology (characteristic classes, index theory) and more recently algebraic geometry. These notes are divided as follows: a first section is devoted to a description of the physicist's views; a second section is devoted to the mathematician's vie

  1. Lightweight Steel Solutions for Automotive Industry

    International Nuclear Information System (INIS)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-01-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  2. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  3. Influence of the Radiation Shield on the Temperature of Rails Rolled in the Reversing Mill

    Directory of Open Access Journals (Sweden)

    Gołdasz A.

    2015-04-01

    Full Text Available The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.

  4. Effect of temperature on the passivation behavior of steel rebar

    Science.gov (United States)

    Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke

    2014-05-01

    Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.

  5. System studies on Biofuel production via Integrated Biomass Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Jim; Lundgren, Joakim [Luleaa Univ. of Technology Bio4Energy, Luleaa (Sweden); Malek, Laura; Hulteberg, Christian [Lund Univ., Lund (Sweden); Pettersson, Karin [Chalmers Univ. of Technology, Goeteborg (Sweden); Wetterlund, Elisabeth [Linkoeping Univ. Linkoeping (Sweden)

    2013-09-01

    A large number of national and international techno-economic studies on industrially integrated gasifiers for production of biofuels have been published during the recent years. These studies comprise different types of gasifiers (fluidized bed, indirect and entrained flow) integrated in different industries for the production of various types of chemicals and transportation fuels (SNG, FT-products, methanol, DME etc.) The results are often used for techno-economic comparisons between different biorefinery concepts. One relatively common observation is that even if the applied technology and the produced biofuel are the same, the results of the techno-economic studies may differ significantly. The main objective of this project has been to perform a comprehensive review of publications regarding industrially integrated biomass gasifiers for motor fuel production. The purposes have been to identify and highlight the main reasons why similar studies differ considerably and to prepare a basis for fair techno-economic comparisons. Another objective has been to identify possible lack of industrial integration studies that may be of interest to carry out in a second phase of the project. Around 40 national and international reports and articles have been analysed and reviewed. The majority of the studies concern gasifiers installed in chemical pulp and paper mills where black liquor gasification is the dominating technology. District heating systems are also well represented. Only a few studies have been found with mechanical pulp and paper mills, steel industries and the oil refineries as case basis. Other industries have rarely, or not at all, been considered for industrial integration studies. Surprisingly, no studies regarding integration of biomass gasification neither in saw mills nor in wood pellet production industry have been found. In the published economic evaluations, it has been found that there is a large number of studies containing both integration and

  6. Effects of Dry-Milling and Wet-Milling on Chemical, Physical and Gelatinization Properties of Rice Flour

    Directory of Open Access Journals (Sweden)

    Jitranut Leewatchararongjaroen

    2016-09-01

    Full Text Available Rice flour from nine varieties, subjected to dry- and wet-milling processes, was determined for its physical and chemical properties. The results revealed that milling method had an effect on properties of flour. Wet-milling process resulted in flour with significantly lower protein and ash contents and higher carbohydrate content. Wet-milled flour also tended to have lower lipid content and higher amylose content. In addition, wet-milled rice flour contained granules with smaller average size compared to dry-milled samples. Swelling power at 90 °C of wet-milled samples was higher while solubility was significantly lower than those of dry-milled flour. Dry milling process caused the destruction of the crystalline structure and yielded flour with lower crystallinity compared to wet-milling process, which resulted in significantly lower gelatinization enthalpy.

  7. Galvanic Interaction between Chalcopyrite and Pyrite with Low Alloy and High Carbon Chromium Steel Ball

    Directory of Open Access Journals (Sweden)

    Asghar Azizi

    2013-01-01

    Full Text Available This study was aimed to investigate the galvanic interaction between pyrite and chalcopyrite with two types of grinding media (low alloy and high carbon chromium steel ball in grinding of a porphyry copper sulphide ore. Results indicated that injection of different gases into mill altered the oxidation-reduction environment during grinding. High carbon chromium steel ball under nitrogen gas has the lowest galvanic current, and low alloy steel ball under oxygen gas had the highest galvanic current. Also, results showed that the media is anodic relative to pyrite and chalcopyrite, and therefore pyrite or chalcopyrite with a higher rest potential acted as the cathode, whilst the grinding media with a lower rest potential acted as the anode, when they are electrochemically contacted. It was also found that low alloy steel under oxygen produced the highest amount of EDTA extractable iron in the slurry, whilst high carbon chromium steel under nitrogen atmosphere led to the lowest amount.

  8. Evaluation of internal fit of interim crown fabricated with CAD/CAM milling and 3D printing system.

    Science.gov (United States)

    Lee, Wan-Sun; Lee, Du-Hyeong; Lee, Kyu-Bok

    2017-08-01

    This study is to evaluate the internal fit of the crown manufactured by CAD/CAM milling method and 3D printing method. The master model was fabricated with stainless steel by using CNC machine and the work model was created from the vinyl-polysiloxane impression. After scanning the working model, the design software is used to design the crown. The saved STL file is used on the CAD/CAM milling method and two types of 3D printing method to produce 10 interim crowns per group. Internal discrepancy measurement uses the silicon replica method and the measured data are analyzed with One-way ANOVA to verify the statistic significance. The discrepancy means (standard deviation) of the 3 groups are 171.6 (97.4) µm for the crown manufactured by the milling system and 149.1 (65.9) and 91.1 (36.4) µm, respectively, for the crowns manufactured with the two types of 3D printing system. There was a statistically significant difference and the 3D printing system group showed more outstanding value than the milling system group. The marginal and internal fit of the interim restoration has more outstanding 3D printing method than the CAD/CAM milling method. Therefore, the 3D printing method is considered as applicable for not only the interim restoration production, but also in the dental prosthesis production with a higher level of completion.

  9. Optimisation of the mechanical alloying process for odsferritic steels for generation IV reactors application

    International Nuclear Information System (INIS)

    Stanciulescu, M.; Carlan, P.; Mihalache, M.; Abrudeanu, M.

    2016-01-01

    ODS ferritic steels appear as promising materials for fusion and Gen IV fission reactors, offering high temperature performance, corrosion and irradiation resistance and meeting low activation criteria. Mechanical alloying (MA) is a powder metallurgy technique efficient for fabricating advanced materials, and has been used for strengthening structural materials including Fe-Cr alloys. In this paper a high-energy ball mill is used to study the microstructural evolution of 14YW alloy during the mechanical alloying process. The elemental powders are milled at a rotation speed of 250rot/min in cycles of 10min milling and 5min pause, with a ball-to-powder ration of 10:1 and in argon protective atmosphere. After 72 hours milling, the morphology and element distribution of the MA powders is investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, respectively. It is observed that the particles size increases in the first milling stages and then decreases with the milling time. Changes in the material composition are analysed by X-ray diffraction (DRX). It seems that after milling part of the W remains non-dissolved in the Fe-Cr matrix retarding the solid solution formation. (authors)

  10. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  11. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  12. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data

    OpenAIRE

    Garc?a Nieto, Paulino Jos?; Garc?a-Gonzalo, Esperanza; Ord??ez Gal?n, Celestino; Bernardo S?nchez, Antonio

    2016-01-01

    Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC) in combination with multivariate adaptive regression splines (MARS) technique. This optimization mechanism i...

  13. Spin foam models of Yang-Mills theory coupled to gravity

    International Nuclear Information System (INIS)

    Mikovic, A

    2003-01-01

    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barrett-Crane ansatz. In the Euclidean gravity case, we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidean gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity

  14. Yang-Mills-Higgs solitons dynamics in (2+1)-dimensions

    International Nuclear Information System (INIS)

    Getmanov, B.S.; Sutcliffe, P.M.

    1998-01-01

    Dimensional reduction of the self-dual Yang-Mills (sd YM) equation in (2+2) dimensions produces an integrable Yang-Mills-Higgs-Bogomolny equation in (2+1) dimensions. For an SU(1,1) gauge group a t'Hooft-like ansatz is used to construct a monopole-like solution and an N-soliton-type solution, which describes static deformed monopoles together with exotic monopole dynamics, including transmutation. Finally, we show how our monopole solution has a surprisingly simple form in terms of the twistor construction, and make some remarks regarding multimonopole solutions

  15. UIO-based Fault Diagnosis for Hydraulic Automatic Gauge Control System of Magnesium Sheet Mill

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-02-01

    Full Text Available Hydraulic automatic gauge control system of magnesium sheet mill is a complex integrated control system, which including mechanical, hydraulic and electrical comprehensive information. The failure rate of AGC system always is high, and its fault reasons are always complex. Based on analyzing the fault of main components of the automatic gauge control system, unknown input observer is used to realize fault diagnosis and isolation. Simulation results show that the fault diagnosis method based on the unknown input observer for the hydraulic automatic gauge control system of magnesium sheet mill is effective.

  16. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    Energy Technology Data Exchange (ETDEWEB)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V., E-mail: veerajendran@gmail.com

    2013-10-15

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid.

  17. In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants

    International Nuclear Information System (INIS)

    Sutha, S.; Kavitha, K.; Karunakaran, G.; Rajendran, V.

    2013-01-01

    A simple and effective ultrasonication method was applied for the preparation of 0, 0.4, 0.8, 1.0 and 1.6 wt% silicon substituted hydroxyapatite (HAp) (SH). The Ca/P ratio of the synthesised SH nanoparticles were in the range of 1.58–1.70. Morphological changes were noticed in HAp with respect to the amount of Si from 0 to 1.6 wt%. The morphology of the particles changed from spherical shape to rod-like morphology with respect to the amount of Si which was confirmed using transmission electron microscopy. X-ray diffraction studies confirm the formation of phase pure SH nanoparticles without any secondary phase. Chitosan (CTS) blended SH nanocomposites coating on surgical grade 316 L stainless steel (316 L SS) implant was made by spin coating technique. The surface of the coated implant was characterised using scanning electron microscopy which confirms the uniform coating without cracks and pores. The increased corrosion resistance of the 1.6 wt% of SH/CTS-coated SS implant in the simulated body fluid (SBF) indicates the long-term biostability of SH composite-coated ceramics in vitro than the 0 wt% SH/CTS. The testing of SH/CTS nanocomposites with gram-positive and gram-negative bacterial strains confirms that the antibacterial ability improves with the higher substitution of Si. In addition, formation of bone-like apatite layer on the SH/CTS-coated implant in SBF was studied through SEM analysis and it confirms the ability to increase the HAp formation on the surface of 1.0 wt% SH/CTS-coated 316 L SS implant. Highlights: • Hydroxyapatite particles are prepared with various silicon concentration • Prepared composites are blended with chitosan and coated on the implant • Corrosion resistance in simulated body fluid improves its stability • Increase in silicon concentration improves the antibacterial activity • Coated plate exhibit high in-vitro bioactivity in simulated body fluid

  18. Investigation of fatigue strength of tool steels in sheet-bulk metal forming

    Science.gov (United States)

    Pilz, F.; Gröbel, D.; Merklein, M.

    2018-05-01

    To encounter trends regarding an efficient production of complex functional components in forming technology, the process class of sheet-bulk metal forming (SBMF) can be applied. SBMF is characterized by the application of bulk forming operations on sheet metal, often in combination with sheet forming operations [1]. The combination of these conventional process classes leads to locally varying load conditions. The resulting load conditions cause high tool loads, which lead to a reduced tool life, and an uncontrolled material flow. Several studies have shown that locally modified tool surfaces, so-called tailored surfaces, have the potential to control the material flow and thus to increase the die filling of functional elements [2]. A combination of these modified tool surfaces and high tool loads in SBMF is furthermore critical for the tool life and leads to fatigue. Tool fatigue is hardly predictable and due to a lack of data [3], a challenge in tool design. Thus, it is necessary to provide such data for tool steels used in SBMF. The aim of this study is the investigation of the influence of tailored surfaces on the fatigue strength of the powder metallurgical tool steel ASP2023 (1.3344, AISI M3:2), which is typically used in cold forging applications, with a hardness 60 HRC ± 1 HRC. To conduct this investigation, the rotating bending test is chosen. As tailored surfaces, a DLC-coating and a surface manufactured by a high-feed-milling process are chosen. As reference a polished surface which is typical for cold forging tools is used. Before the rotating bending test, the surface integrity is characterized by measuring topography and residual stresses. After testing, the determined values of the surface integrity are correlated with the reached fracture load cycle to derive functional relations. Based on the gained results the investigated tailored surfaces are evaluated regarding their feasibility to modify tool surfaces within SBMF.

  19. Advanced power generation using biomass wastes from palm oil mills

    International Nuclear Information System (INIS)

    Aziz, Muhammad; Kurniawan, Tedi; Oda, Takuya; Kashiwagi, Takao

    2017-01-01

    This study focuses on the energy-efficient utilization of both solid and liquid wastes from palm oil mills, particularly their use for power generation. It includes the integration of a power generation system using empty fruit bunch (EFB) and palm oil mill effluent (POME). The proposed system mainly consists of three modules: EFB gasification, POME digestion, and additional organic Rankine cycle (ORC). EFBs are dried and converted into a syngas fuel with high calorific value through integrated drying and gasification processes. In addition, POME is converted into a biogas fuel for power generation. Biogas engine-based cogenerators are used for generating both electricity and heat. The remaining unused heat is recovered by ORC module to generate electricity. The influences of three EFB gasification temperatures (800, 900 and 1000 °C) in EFB gasification module; and working fluids and pressure in ORC module are evaluated. Higher EFB gasification leads to higher generated electricity and remaining heat for ORC module. Power generation efficiency increases from 11.2 to 24.6% in case of gasification temperature is increased from 800 to 1000 °C. In addition, cyclohexane shows highest energy efficiency compared to toluene and n-heptane in ORC module. Higher pressure in ORC module also leads to higher energy efficiency. Finally, the highest total generated power and power generation efficiency obtained by the system are 8.3 MW and 30.4%, respectively.

  20. Influence of rice sample preparation and milling procedures on milling quality appraisals

    Science.gov (United States)

    The objective of this research was to investigate the effect of sample preparation and milling procedure on milling quality appraisals of rough rice. Samples of freshly harvested medium-grain rice (M202) with different initial moisture contents (MCs) ranging from 20.2% to 25.1% (w.b.) were used for...

  1. Learning Activity Packets for Milling Machines. Unit I--Introduction to Milling Machines.

    Science.gov (United States)

    Oklahoma State Board of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This learning activity packet (LAP) outlines the study activities and performance tasks covered in a related curriculum guide on milling machines. The course of study in this LAP is intended to help students learn to identify parts and attachments of vertical and horizontal milling machines, identify work-holding devices, state safety rules, and…

  2. Improving milling and production of a dust-producing unit equipped with hammer mills

    Energy Technology Data Exchange (ETDEWEB)

    Vorotnikov, Ye.G.; Nikiforov, A.A.; Rasputin, O.V.; Sukhunin, V.I.

    1982-01-01

    This paper presents generalized experience for deriving coarse ground coal dust in hammer mills by providing comparison data on improving efficiency of operation of the unit when switching to a coarser-type grind of the fuel. Need to have more precise formulas to calculate grinding potential of hammer mills when using a coarser grind is shown.

  3. Uranium mill tailings conditioning technology

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Cokal, E.J.; Wangen, L.E.; Williams, J.M.; O'Brien, P.D.; Thode, E.F.

    1982-01-01

    Conditioning of uranium mill tailings involves the physicochemical alteration of tailings to remove or immobilize mobile radionuclides and toxic trace elements before disposal in a repository. The principal immobilization approach under investigation is sintering tailings at high temperatures (1100-1200 deg. C) to radically alter the structure of tailings. This thermal stabilization at 1200 deg. C reduced radon emanation power for tailings sands by factors of 20 to 200 and for tailings fines by factors of 300 to 1100. Substantial reductions in the leachability of most contaminants have been found for thermally conditioned tailings. Obvious mineral transformations occur, including an increase in amorphous material, the conversion of gypsum to anhydrite and its subsequent decomposition, the disappearance of clay minerals, and some decrease in quartz content. A conceptual thermal stabilization process has been developed wherein obsolete coal-fired rotary cement kilns perform the sintering. An economic analysis of this conceptual process has shown that thermal stabilization can be competitive at certain tailings sites with other remedial actions requiring the excavation, transportation, and burial of tailings in a repository. An analysis of the long-term radiological hazard posed by untreated tailings and by tailings conditioned by radionuclide removal has illustrated the necessity of extracting both 226 Ra and 230 Th to achieve long-term hazard reductions. Sulphuric acid extraction of residual mineral values and important radionuclides from tailings has been investigated. Concentrated H 2 SO 4 can extract up to 80% of the 226 Ra, 70% of the Ba, and 90% of the 230 Th from tailings in a single stage extraction. An economic analysis of a sulphuric acid leach process was made to determine whether the value of minerals recovered from tailings would offset the leaching cost. For one relatively mineral-rich tailings pile, the U and V values would more than pay for the

  4. Reclamation of uranium mining and milling disturbances

    International Nuclear Information System (INIS)

    Farmer, E.E.; Schuman, G.E.

    1987-01-01

    Since 1945 the history of uranium mining and milling in the US has been a story of wide fluctuations in market prices and in mining and milling capacity. The late 1960's and the 1970's saw a sizeable reduction in the production of yellowcake because of an earlier over-supply, a leveling off of the military demand, and a failure of the nuclear electric power industry to create the anticipated commercial demand. The decline in the domestic production of yellowcake has continued through the early 1980's to the present. Today, there are five operating uranium mills in the US: one in Wyoming, two in Utah, one in New Mexico, and one in Texas. Of these five mills, three are operating on a reduced schedule, as little as three days a month. A significant portion of the current US production of uranium goes overseas to fulfill Japanese, French, and other European contracts. There is still a sizeable reclamation job to be accomplished on old uranium wastes, both tailings impoundments and overburden embankments. Before the Uranium Mill Tailings Control Act of 1978 (PL 95-604), reclamation was frequently omitted altogether, or else done in a haphazard fashion. We do not know the total area of unreclaimed, radioactive, uranium overburden wastes in the western US, but the area is large, probably several thousand hectares. Fortunately, these overburden wastes are almost entirely located in remote areas. Mill tailings are more difficult to reclaim than overburden, and tailings represent a more serious health hazards. There are approximately 25 million metric tons of unreclaimed uranium mill tailings, with variable health hazards, located in the US

  5. Decontamination effect of milling by a jet mill on bacteria in rice flour.

    Science.gov (United States)

    Sotome, Itaru; Nei, Daisuke; Tsuda, Masuko; Mohammed, Sharif Hossen; Takenaka, Makiko; Okadome, Hiroshi; Isobe, Seiichiro

    2011-06-01

    The decontamination effect of milling by a jet mill was investigated by counting the number of bacteria in brown and white rice flour with mean particle diameters of 3, 20, and 40µm prepared by the jet mill. In the jet mill, the particles are crushed and reduced in size by the mechanical impact caused by their collision. Although the brown and white rice grains were contaminated with approximately 10(6) and 10(5) CFU/g bacteria, the microbial load of the rice flour decreased as the mean particle diameter decreased, ultimately decreasing to approximately 104 and 103 CFU/g in the brown and white rice flour. The temperature and pressure changes of the sample were not considered to have an effect on reducing the bacterial count during the milling. Hence, it was thought that the rice flour was decontaminated by other effects.

  6. An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts

    Science.gov (United States)

    Grünhaupt, Lukas; von Lüpke, Uwe; Gusenkova, Daria; Skacel, Sebastian T.; Maleeva, Nataliya; Schlör, Steffen; Bilmes, Alexander; Rotzinger, Hannes; Ustinov, Alexey V.; Weides, Martin; Pop, Ioan M.

    2017-08-01

    We present an argon ion beam milling process to remove the native oxide layer forming on aluminum thin films due to their exposure to atmosphere in between lithographic steps. Our cleaning process is readily integrable with conventional fabrication of Josephson junction quantum circuits. From measurements of the internal quality factors of superconducting microwave resonators with and without contacts, we place an upper bound on the residual resistance of an ion beam milled contact of 50 mΩ μm2 at a frequency of 4.5 GHz. Resonators for which only 6% of the total foot-print was exposed to the ion beam milling, in areas of low electric and high magnetic fields, showed quality factors above 106 in the single photon regime, and no degradation compared to single layer samples. We believe these results will enable the development of increasingly complex superconducting circuits for quantum information processing.

  7. Influence of the control atmosphere and milling time on the morphology and microstructure of pure copper and copper-2.5 % lithium powders produced by mechanical alloying; Influencia de la atmosfera de control y tiempo de molienda sobre la morfologia y microestructura de polvos de cobre puro y cobre-2,5% litio producidos por aleado mecanio

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, P. A.; Alvarez, M. P.; Penaloza, A.; Zuniga, A.; Ordonez, S.

    2009-07-01

    In the present work was investigated the effect of two milling parameters, atmosphere and milling time, on the morphology and microstructure of pure copper powder and a mixture of copper-2,5 wt. % lithium. The mechanical alloying was performed in a SPEX 8000D mill, using steel containers and balls. The two control atmospheres were argon and nitrogen and the milling time was varied from 3 up to 30 hours. The microstructural changes and the phases after milling were analyzed using scanning microscopy and X ray diffraction, whereas the amount of iron was measured by atomic absorption spectroscopy and the amount of oxygen by infrared spectroscopy. The results show the effect of the milling parameters studied on the microstructure as well as on the chemical composition of the samples. (Author) 22 refs.

  8. The potential for energy savings when reducing the water consumption in a kraft pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science; Stuart, Paul [Ecole Polytechnique, Montreal (Canada). Dept. of Chemical Engineering

    2004-05-01

    In this paper an existing pulp and paper mill has been studied in a systematic way regarding the reduction of water consumption, and the resulting increased potential for energy integration. It has been found that when the mill's hot water consumption is decreased, the live steam demand for the mill also decreases. Also when decreasing the hot water consumption, the quantity and temperature of available excess heat increases. This excess heat can be used for evaporation, thereby reducing the live steam demand further by up to 1.5 GJ/t. A pinch analysis was performed at an existing mill and it was found that if pinch violations are removed, the hot water consumption is not an important factor any more. Removing all the pinch violations and using the remaining excess heat for evaporation yields a significantly larger energy savings for the mill (4.0 GJ/t). From an economic optimum perspective it is probably most profitable to do a combination of reducing water consumption, removing pinch violations, and use the remaining excess heat for evaporation.

  9. Biotechnological applications for the utilisation of wastes from palm oil mills

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, S C; Ma, A N; Ooi, L C.L.; Ong, A S.H.

    1988-05-01

    The milling of oil palm fruits produces about two-and-a-half to three times as much effluent as oil does. It also generates a large amount of lignocellulosic wastes, mainly in the form of empty fruit bunches, press cake fibres and nut shell. Research efforts at PORIM have been directed towards the utilisation of these wastes as a means to solve the problem of environmental pollution as well as for the generation of economic returns for the mills. We have studied a thermophilic contact process for the anaerobic digestion of palm oil mill effluent and its potential for generating biogas for energy uses. Our work has also shown that the condensate derived from the fruit sterilisation process during milling is amenable to fermentation for the production of single cell protein (SCP) and exo-enzymes. The enzymes produced have been applied for oil clarification, oil recovery from press cake fibers and saccharification of the fibers for the production of sugar feedstocks. This paper will also introduce the concept of integrated waste management for the palm oil mill through the implementation of these technologies.

  10. Characterization of laser metal deposited 316L stainless steel

    CSIR Research Space (South Africa)

    Bayode, A

    2016-06-01

    Full Text Available investigates the effects of laser power on the structural integrity, microstructure and microhardness of laser deposited 316L stainless steel. The result showed that the laser power has much influence on the evolving microstructure and microhardness...

  11. A comprehensive review on cold work of AISI D2 tool steel

    Science.gov (United States)

    Abdul Rahim, Mohd Aidil Shah bin; Minhat, Mohamad bin; Hussein, Nur Izan Syahriah Binti; Salleh, Mohd Shukor bin

    2017-11-01

    As a common material in mould and die application, AISI D2 cold work tool steel has proven to be a promising chosen material in the industries. However, challenges remain in using AISI D2 through a modified version with a considerable progress having been made in recent years. This paper provides a critical review of the original as-cast AISI D2 cold work tool steel up to the modified version. The main purpose is to develop an understanding of current modified tool steel trend; the machinability of AISI D2 (drilling, milling, turning, grinding and EDM/WEDM; and the microstructure evolution and mechanical properties of these cold work tool steels due to the presence of alloy materials in the steel matrix. The doping of rare earth alloy element, new steel fabrication processes, significant process parameter in machinability and surface treatment shows that there have been few empirical investigations into these cold work tool steel alloys. This study has discovered that cold work tool steel will remain to be explored in order to survive in the steel industries.

  12. Practitioner Profile: An Interview With Amanda Mills

    Directory of Open Access Journals (Sweden)

    Amanda Mills

    2012-01-01

    Full Text Available For more than 25 years, Amanda Mills has been working with arts organizations across Canada and with artists of all kinds to assist them in achieving financial sanity. She has taught business management at the University of Victoria and has prepared thousands of tax returns for writers, visual artists, choreographers, actors, filmmakers, broadcasters, and creative entrepreneurs. Ten years ago, bringing together her work on trauma, with twenty years of business management, Mills founded Loose Change Financial Therapy – the place where money and feelings meet. Mills has presented Loose Change workshops for social workers, teachers, psychotherapists, artists, anti-poverty activists, sex trade workers, women’s groups, and the general public.  She has been a guest on major Canadian radio and television broadcasts and profiled in many major Canadian newspapers and periodicals. Mills is also a crisis counselor and co-wrote a bestselling book on recovering from trauma. A tax professional and business manager, she is certified as a financial counselor under the Bankruptcy and Insolvency Act. Mills is also currently completing a certificate in mediation.

  13. GEOMETRICAL CHARACTERIZATION OF MICRO END MILLING TOOLS

    DEFF Research Database (Denmark)

    Borsetto, Francesca; Bariani, Paolo

    The milling process is one of the most common metal removal operation used in industry. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants/lubricants, ......The milling process is one of the most common metal removal operation used in industry. This machining process is well known since the beginning of last century and has experienced, along the years, many improvements of the basic technology, as concerns tools, machine tools, coolants....../lubricants, milling strategies and controls. Moreover the accuracy of tool geometry directly affects the performance of the milling process influencing the dimensional tolerances of the machined part, the surface topography, the chip formation, the cutting forces and the tool-life. The dimensions of certain...... geometrical details, as for instance the cutting edge radius, are determined by characteristics of the manufacturing process, tool material, coating etc. While for conventional size end mills the basic tool manufacturing process is well established, the reduction of the size of the tools required...

  14. Variables affecting energy efficiency and CO2 emissions in the steel industry

    International Nuclear Information System (INIS)

    Siitonen, Sari; Tuomaala, Mari; Ahtila, Pekka

    2010-01-01

    Specific energy consumption (SEC) is an energy efficiency indicator widely used in industry for measuring the energy efficiency of different processes. In this paper, the development of energy efficiency and CO 2 emissions of steelmaking is studied by analysing the energy data from a case mill. First, the specific energy consumption figures were calculated using different system boundaries, such as the process level, mill level and mill site level. Then, an energy efficiency index was developed to evaluate the development of the energy efficiency at the mill site. The effects of different production conditions on specific energy consumption and specific CO 2 emissions were studied by PLS analysis. As theory expects, the production rate of crude steel and the utilisation of recycled steel were shown to affect the development of energy efficiency at the mill site. This study shows that clearly defined system boundaries help to clarify the role of on-site energy conversion and make a difference between the final energy consumption and primary energy consumption of an industrial plant with its own energy production.

  15. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  16. Optimization of FIB milling for rapid NEMS prototyping

    DEFF Research Database (Denmark)

    Malm, Bjarke; Petersen, Dirch Hjorth; Lei, Anders

    2011-01-01

    We demonstrate an optimized milling technique to focused ion beam (FIB) milling in template silicon membranes for fast prototyping of nanoelectromechanical systems (NEMS). Using a single-pass milling strategy the highly topology dependent sputtering rate is boosted and shorter milling time...... is achieved. Drift independence is obtained for small critical features using a radial scan strategy, and a back scan routine ensures minimal line width deviation removing redeposited material. Milling a design similar to a nano four-point probe with a pitch down to 400nm we display what optimized FIB milling...

  17. The postharvest of mill olives

    Directory of Open Access Journals (Sweden)

    Yousfi, Khaled

    2006-03-01

    Full Text Available The greatest deterioration of olive oil is due to poor handling of the olives during the time between harvesting and processing. Storage of olive fruits is carried out by simple heaping in fruit piles, waiting their processing. These fruits develop all kinds of degenerative processes in a short period of time. Oils obtained from them show characteristics hydrolytic and oxidative deteriorations confirmed by their high acidity values, peroxide value or ultraviolet absorbance at 232 and 270 nm. To avoid this situation, the industry is currently reducing the interval between harvesting and processing, through an increase in milling capacity. However, the equipment necessary for preventing the accumulation of fruit in January would be unnecessary for the rest of the season. In this chapter, refrigeration of the olive fruits, or the use of physical treatments, to allow the processing of unripe fruits, are analysed as possible alternatives.El mayor deterioro del aceite de oliva es debido a la inadecuada manipulación de las aceitunas durante el tiempo que media entre su cosecha y su procesado. El almacenamiento de las aceitunas se lleva acabo mediante el simple amontonamiento del fruto, esperando su procesamiento. Estos frutos desarrollan toda clase de procesos degenerativos en un corto periodo de tiempo. Los aceites obtenidos a partir de estos frutos exhiben deterioros hidrolíticos y oxidativos característicos, confirmados por sus valores altos de acidez, de índice de peróxidos o de absorbancia en la región ultravioleta a 232 y 270 nm. Para evitar esta situación, la industria intenta reducir al máximo el intervalo entre la cosecha y el procesado del fruto, mediante un aumento de la capacidad de molturación. Sin embargo, el equipo necesario para prevenir la acumulación de fruto en Enero no se precisa para el resto de la campaña. En este capítulo, la refrigeración de las aceitunas o el uso de tratamientos físicos, que permiten el procesado

  18. Long-term stabilization of uranium mill tailings

    International Nuclear Information System (INIS)

    Voorhees, L.D.; Sale, M.J.; Webb, J.W.; Mulholland, P.J.

    1984-01-01

    The primary hazard associated with uranium mill tailings is exposure to a radioactive gas, radon-222, the concentration of which has been correlated with the occurrence of lung cancer. Previous studies on radon attenuation conclude that the placement of earthen cover materials over the tailings is the most effective technique for reducing radioactive emissions and dispersal of tailings. The success of such a plan, however, is dependent on ensuring the long-term integrity of these cover materials. Soil erosion from water and wind is the major natural cause of destabilizing earthen cover materials. Field data related to the control of soil loss are limited and only indirectly apply to the problem of isolation of uranium mill tailings over very long time periods (up to 80,000 a). However, sufficient information is available to determine benefits that will result from changes in specific design variables and to evaluate the need for different design strategies among potential disposal sites. The three major options available for stabilization of uranium mill tailings are (1) rock cover, (2) soil and revegetation, or (3) a combination of both on different portions of the tailings cover. The optimal choice among these alternatives depends on site-specific characteristics such as climate and local geomorphology and soils, and on design variables such as embankment heights and slopes, modification of upstream drainage, and revegetation practices. Generally, geomorphic evidence suggests that use of soil and vegetation alone will not be adequate to reduce erosion on slopes greater than about 5 to 9%. For these steeper slopes, the use of rock talus or riprap will be necessary to maximize the probability of long-term stability. The use of vegetation to control erosion on the flatter portions of the site may be practicable in regions of the USA with sufficient rainfall and suitable soil types, but revegetation practices must be carefully evaluated to ensure that long

  19. Higher derivative super Yang-Mills theories

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Rakowski, M.; Sezgin, E.

    1986-11-01

    The most general higher derivative Yang-Mills actions of the type (F 2 +α2F 4 ) which are globally supersymmetric up to order α 2 in six and ten dimensional spacetimes are given. The F 4 -terms turn out to occur in the combination α 2 (tr F 4 - 1/4(tr F 2 ) 2 ), where the trace is over the Lorentz indices. This result agrees with the low energy limit of the open superstring in ten dimensions, where α is the string tension. Surprisingly, the transformation rules of the Yang-Mills multiplet receive order α 2 corrections even in the off-shell formulation. For the case of Abelian Yang-Mills group, the action is expressed in Born-Infeld form with a metric generically given by (1+α 2 F 2 +...). (author)

  20. Recycling of mill scale in sintering process

    Directory of Open Access Journals (Sweden)

    El-Hussiny N.A.

    2011-01-01

    Full Text Available This investigation deals with the effect of replacing some amount of Baharia high barite iron ore concentrate by mill scale waste which was characterized by high iron oxide content on the parameters of the sintering process., and investigation the effect of different amount of coke breeze added on sintering process parameters when using 5% mill scale waste with 95% iron ore concentrate. The results of this work show that, replacement of iron ore concentrate with mill scale increases the amount of ready made sinter, sinter strength and productivity of the sinter machine and productivity at blast furnace yard. Also, the increase of coke breeze leads to an increase the ready made sinter and productivity of the sintering machine at blast furnace yard. The productivity of the sintering machine after 5% decreased slightly due to the decrease of vertical velocity.