WorldWideScience

Sample records for integrated spectral weight

  1. Real photon spectral weight functions, imaginary part of vacuum polarization and electromagnetic vertices

    International Nuclear Information System (INIS)

    Chahine, C.; College de France, 75 - Paris. Lab. de Physique Corpusculaire)

    1978-02-01

    The concept of a real photon spectral weight function for any cross-section involving charged particles is introduced as a simple approximation taking into account the soft part of photon emission to all orders in perturbation theory. The spectral weight function replaces the energy-momentum conservation delta function in the elastic cross-section. The spectral weight function is computed in closed form in space-time and in the peaking approximation in momentum space. The spectral weight function description is applied to the imaginary part of vacuum polarization ImPI and to electron-proton scattering. A spectral representation for ImPI is derived and its content compared with the known fourth order result, showing in particular the identity of the soft and peaking approximations in lowest order. The virtual photon radiative corrections are discussed in part, with emphasis on the threshold behavior of the vertex functions. A relativistic generalization of the electric non-relativistic vertex function is given, whose asymptotic behavior is approppriate to use in conjuction with the spectral weight function

  2. Temperature Dependence of Quasiparticle Spectral Weight and Coherence in High Tc Superconductors

    Science.gov (United States)

    He, Yang; Zhang, Jessie; Hoffman, Jennifer; Hoffman Lab Team

    2014-03-01

    Superconductivity arises from the Cooper pairing of quasiparticles on the Fermi surface. Understanding the formation of Cooper pairs is an essential step towards unveiling the mechanism of high Tc superconductivity. We compare scanning tunneling microscope investigations of the temperature dependence of quasiparticle spectral weight and quasiparticle interference in several families of high Tc materials. We calculate the coherent spectral weight related to superconductivity, despite the coexistence of competing orders. The relation between pairing temperature and coherent spectral weight is discussed. We acknowledge support by the New York Community Trust-George Merck Fund.

  3. A Weighted Spatial-Spectral Kernel RX Algorithm and Efficient Implementation on GPUs

    Directory of Open Access Journals (Sweden)

    Chunhui Zhao

    2017-02-01

    Full Text Available The kernel RX (KRX detector proposed by Kwon and Nasrabadi exploits a kernel function to obtain a better detection performance. However, it still has two limits that can be improved. On the one hand, reasonable integration of spatial-spectral information can be used to further improve its detection accuracy. On the other hand, parallel computing can be used to reduce the processing time in available KRX detectors. Accordingly, this paper presents a novel weighted spatial-spectral kernel RX (WSSKRX detector and its parallel implementation on graphics processing units (GPUs. The WSSKRX utilizes the spatial neighborhood resources to reconstruct the testing pixels by introducing a spectral factor and a spatial window, thereby effectively reducing the interference of background noise. Then, the kernel function is redesigned as a mapping trick in a KRX detector to implement the anomaly detection. In addition, a powerful architecture based on the GPU technique is designed to accelerate WSSKRX. To substantiate the performance of the proposed algorithm, both synthetic and real data are conducted for experiments.

  4. Spectral integration in speech and non-speech sounds

    Science.gov (United States)

    Jacewicz, Ewa

    2005-04-01

    Spectral integration (or formant averaging) was proposed in vowel perception research to account for the observation that a reduction of the intensity of one of two closely spaced formants (as in /u/) produced a predictable shift in vowel quality [Delattre et al., Word 8, 195-210 (1952)]. A related observation was reported in psychoacoustics, indicating that when the components of a two-tone periodic complex differ in amplitude and frequency, its perceived pitch is shifted toward that of the more intense tone [Helmholtz, App. XIV (1875/1948)]. Subsequent research in both fields focused on the frequency interval that separates these two spectral components, in an attempt to determine the size of the bandwidth for spectral integration to occur. This talk will review the accumulated evidence for and against spectral integration within the hypothesized limit of 3.5 Bark for static and dynamic signals in speech perception and psychoacoustics. Based on similarities in the processing of speech and non-speech sounds, it is suggested that spectral integration may reflect a general property of the auditory system. A larger frequency bandwidth, possibly close to 3.5 Bark, may be utilized in integrating acoustic information, including speech, complex signals, or sound quality of a violin.

  5. Darboux invariants of integrable equations with variable spectral parameters

    International Nuclear Information System (INIS)

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  6. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  7. Anomalous spectral weight transfer at the superconducting transition of Bi2Sr2CaCu2O8+δ

    International Nuclear Information System (INIS)

    Dessau, D.S.; Wells, B.O.; Shen, Z.; Spicer, W.E.; Arko, A.J.; List, R.S.; Mitzi, D.B.; Kapitulnik, A.

    1991-01-01

    Anomalous spectral weight transfer at the superconducting transition of single-crystalline Bi 2 Sr 2 CaCu 2 O 8+δ was observed by high-resolution angle-resolved photoemission spectroscopy. As the sample goes superconducting, not only is there spectral weight transfer from the gap region to the pileup peak as in BCS theory, but along the Γ-bar M direction there is also some spectral weight transfer from higher binding energies in the form of a dip. In addition, we note that at the superconducting transition there is a decrease (increase) in the occupied spectral weight for the spectra taken along Γ-bar M (Γ-X)

  8. Optical spectral weight anomalies and strong correlation

    International Nuclear Information System (INIS)

    Toschi, A.; Capone, M.; Ortolani, M.; Calvani, P.; Lupi, S.; Castellani, C.

    2007-01-01

    The anomalous behavior observed in the optical spectral weight (W) of the cuprates provides valuable information about the physics of these compounds. Both the doping and the temperature dependences of W are hardly explained through conventional estimates based on the f-sum rule. By computing the optical conductivity of the doped Hubbard model with the Dynamical Mean Field Theory, we point out that the strong correlation plays a key role in determining the basic features of the observed anomalies: the proximity to a Mott insulating phase accounts simultaneously for the strong temperature dependence of W and for its zero temperature value

  9. A Study of Spectral Integration and Normalization in NMR-based Metabonomic Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Lowry, David F.; Jarman, Kristin H.; Harbo, Sam J.; Meng, Quanxin; Fuciarelli, Alfred F.; Pounds, Joel G.; Lee, Monica T.

    2005-09-15

    Metabonomics involves the quantitation of the dynamic multivariate metabolic response of an organism to a pathological event or genetic modification (Nicholson, Lindon and Holmes, 1999). The analysis of these data involves the use of appropriate multivariate statistical methods. Exploratory Data Analysis (EDA) linear projection methods, primarily Principal Component Analysis (PCA), have been documented as a valuable pattern recognition technique for 1H NMR spectral data (Brindle et al., 2002, Potts et al., 2001, Robertson et al., 2000, Robosky et al., 2002). Prior to PCA the raw data is typically processed through four steps; (1) baseline correction, (2) endogenous peak removal, (3) integration over spectral regions to reduce the number of variables, and (4) normalization. The effect of the size of spectral integration regions and normalization has not been well studied. We assess the variability structure and classification accuracy on two distinctly different datasets via PCA and a leave-one-out cross-validation approach under two normalization approaches and an array of spectral integration regions. This study indicates that independent of the normalization method the classification accuracy achieved from metabonomic studies is not highly sensitive to the size of the spectral integration region. Additionally, both datasets scaled to mean zero and unity variance (auto-scaled) has higher variability within classification accuracy over spectral integration window widths than data scaled to the total intensity of the spectrum.

  10. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem

    International Nuclear Information System (INIS)

    Li Xinyue; Xu Xixiang; Zhao Qiulan

    2008-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice models are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws of the positive hierarchy, then, the integrable coupling systems of the positive hierarchy are derived from enlarging Lax pair

  11. Variable weight spectral amplitude coding for multiservice OCDMA networks

    Science.gov (United States)

    Seyedzadeh, Saleh; Rahimian, Farzad Pour; Glesk, Ivan; Kakaee, Majid H.

    2017-09-01

    The emergence of heterogeneous data traffic such as voice over IP, video streaming and online gaming have demanded networks with capability of supporting quality of service (QoS) at the physical layer with traffic prioritisation. This paper proposes a new variable-weight code based on spectral amplitude coding for optical code-division multiple-access (OCDMA) networks to support QoS differentiation. The proposed variable-weight multi-service (VW-MS) code relies on basic matrix construction. A mathematical model is developed for performance evaluation of VW-MS OCDMA networks. It is shown that the proposed code provides an optimal code length with minimum cross-correlation value when compared to other codes. Numerical results for a VW-MS OCDMA network designed for triple-play services operating at 0.622 Gb/s, 1.25 Gb/s and 2.5 Gb/s are considered.

  12. Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence

    OpenAIRE

    Chervov, A.; Talalaev, D.

    2006-01-01

    The spectral curve is the key ingredient in the modern theory of classical integrable systems. We develop a construction of the ``quantum spectral curve'' and argue that it takes the analogous structural and unifying role on the quantum level also. In the simplest, but essential case the ``quantum spectral curve'' is given by the formula "det"(L(z)-dz) [Talalaev04] (hep-th/0404153). As an easy application of our constructions we obtain the following: quite a universal receipt to define quantu...

  13. CONNJUR Workflow Builder: a software integration environment for spectral reconstruction.

    Science.gov (United States)

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O; Ellis, Heidi J C; Gryk, Michael R

    2015-07-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses.

  14. CONNJUR Workflow Builder: a software integration environment for spectral reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert [UConn Health, Department of Molecular Biology and Biophysics (United States); Martyn, Timothy O. [Rensselaer at Hartford, Department of Engineering and Science (United States); Ellis, Heidi J. C. [Western New England College, Department of Computer Science and Information Technology (United States); Gryk, Michael R., E-mail: gryk@uchc.edu [UConn Health, Department of Molecular Biology and Biophysics (United States)

    2015-07-15

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses.

  15. CONNJUR Workflow Builder: a software integration environment for spectral reconstruction

    International Nuclear Information System (INIS)

    Fenwick, Matthew; Weatherby, Gerard; Vyas, Jay; Sesanker, Colbert; Martyn, Timothy O.; Ellis, Heidi J. C.; Gryk, Michael R.

    2015-01-01

    CONNJUR Workflow Builder (WB) is an open-source software integration environment that leverages existing spectral reconstruction tools to create a synergistic, coherent platform for converting biomolecular NMR data from the time domain to the frequency domain. WB provides data integration of primary data and metadata using a relational database, and includes a library of pre-built workflows for processing time domain data. WB simplifies maximum entropy reconstruction, facilitating the processing of non-uniformly sampled time domain data. As will be shown in the paper, the unique features of WB provide it with novel abilities to enhance the quality, accuracy, and fidelity of the spectral reconstruction process. WB also provides features which promote collaboration, education, parameterization, and non-uniform data sets along with processing integrated with the Rowland NMR Toolkit (RNMRTK) and NMRPipe software packages. WB is available free of charge in perpetuity, dual-licensed under the MIT and GPL open source licenses

  16. Method for estimating effects of unknown correlations in spectral irradiance data on uncertainties of spectrally integrated colorimetric quantities

    Science.gov (United States)

    Kärhä, Petri; Vaskuri, Anna; Mäntynen, Henrik; Mikkonen, Nikke; Ikonen, Erkki

    2017-08-01

    Spectral irradiance data are often used to calculate colorimetric properties, such as color coordinates and color temperatures of light sources by integration. The spectral data may contain unknown correlations that should be accounted for in the uncertainty estimation. We propose a new method for estimating uncertainties in such cases. The method goes through all possible scenarios of deviations using Monte Carlo analysis. Varying spectral error functions are produced by combining spectral base functions, and the distorted spectra are used to calculate the colorimetric quantities. Standard deviations of the colorimetric quantities at different scenarios give uncertainties assuming no correlations, uncertainties assuming full correlation, and uncertainties for an unfavorable case of unknown correlations, which turn out to be a significant source of uncertainty. With 1% standard uncertainty in spectral irradiance, the expanded uncertainty of the correlated color temperature of a source corresponding to the CIE Standard Illuminant A may reach as high as 37.2 K in unfavorable conditions, when calculations assuming full correlation give zero uncertainty, and calculations assuming no correlations yield the expanded uncertainties of 5.6 K and 12.1 K, with wavelength steps of 1 nm and 5 nm used in spectral integrations, respectively. We also show that there is an absolute limit of 60.2 K in the error of the correlated color temperature for Standard Illuminant A when assuming 1% standard uncertainty in the spectral irradiance. A comparison of our uncorrelated uncertainties with those obtained using analytical methods by other research groups shows good agreement. We re-estimated the uncertainties for the colorimetric properties of our 1 kW photometric standard lamps using the new method. The revised uncertainty of color temperature is a factor of 2.5 higher than the uncertainty assuming no correlations.

  17. Transfer of spectral weight in spectroscopies of correlated electron systems

    International Nuclear Information System (INIS)

    Rozenberg, M.J.; Kotliar, G.; Kajueter, H.

    1996-01-01

    We study the transfer of spectral weight in the photoemission and optical spectra of strongly correlated electron systems. Within the local impurity self-consistent approximation, that becomes exact in the limit of large lattice coordination, we consider and compare two models of correlated electrons, the Hubbard model and the periodic Anderson model. The results are discussed in regard to recent experiments. In the Hubbard model, we predict an anomalous enhancement optical spectral weight as a function of temperature in the correlated metallic state which is in qualitative agreement with optical measurements in V 2 O 3 . We argue that anomalies observed in the spectroscopy of the metal are connected to the proximity to a crossover region in the phase diagram of the model. In the insulating phase, we obtain excellent agreement with the experimental data, and present a detailed discussion on the role of magnetic frustration by studying the k-resolved single-particle spectra. The results for the periodic Anderson model are discussed in connection to recent experimental data of the Kondo insulators Ce 3 Bi 4 Pt 3 and FeSi. The model can successfully explain the thermal filling of the optical gap and the corresponding changes in the photoemission density of states. The temperature dependence of the optical sum rule is obtained, and its relevance to the interpretation of the experimental data discussed. Finally, we argue that the large scattering rate measured in Kondo insulators cannot be described by the periodic Anderson model. copyright 1996 The American Physical Society

  18. In-plane optical spectral weight redistribution in the optimally doped Ba0.6 K0.4Fe2As2 superconductor

    International Nuclear Information System (INIS)

    Xu Bing; Dai Yao-Min; Xiao Hong; Qiu Xiang-Gang; Lobo, R. P. S. M.

    2014-01-01

    We performed detailed temperature-dependent optical measurements on optimally doped Ba 0.6 K 0.4 Fe 2 As 2 single crystal. We examine the changes of the in-plane optical conductivity spectral weight in the normal state and the evolution of the superconducting condensate in the superconducting state. In the normal state, the low-frequency spectral weight shows a metallic response with an arctan (T) dependence, indicating a T-linear scattering rate behavior for the carriers. A high energy spectral weight transfer associated with the Hund's coupling occurs from the low frequencies below 4000 cm −1 ∼ 5000 cm −1 to higher frequencies up to at least 10 cm −1 . Its temperature dependence analysis suggests that the Hund's coupling strength is continuously enhanced as the temperature is reduced. In the superconducting state, the FGT sum rule is conserved according to the spectral weight estimation within the conduction bands, only about 40% of the conduction bands participates in the superconducting condensate indicating that Ba 0.6 K 0.4 Fe 2 As 2 is in dirty limit. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. A correlational method to concurrently measure envelope and temporal fine structure weights: effects of age, cochlear pathology, and spectral shaping.

    Science.gov (United States)

    Fogerty, Daniel; Humes, Larry E

    2012-09-01

    The speech signal may be divided into spectral frequency-bands, each band containing temporal properties of the envelope and fine structure. This study measured the perceptual weights for the envelope and fine structure in each of three frequency bands for sentence materials in young normal-hearing listeners, older normal-hearing listeners, aided older hearing-impaired listeners, and spectrally matched young normal-hearing listeners. The availability of each acoustic property was independently varied through noisy signal extraction. Thus, the full speech stimulus was presented with noise used to mask six different auditory channels. Perceptual weights were determined by correlating a listener's performance with the signal-to-noise ratio of each acoustic property on a trial-by-trial basis. Results demonstrate that temporal fine structure perceptual weights remain stable across the four listener groups. However, a different weighting typography was observed across the listener groups for envelope cues. Results suggest that spectral shaping used to preserve the audibility of the speech stimulus may alter the allocation of perceptual resources. The relative perceptual weighting of envelope cues may also change with age. Concurrent testing of sentences repeated once on a previous day demonstrated that weighting strategies for all listener groups can change, suggesting an initial stabilization period or susceptibility to auditory training.

  20. Spectral curves in gauge/string dualities: integrability, singular sectors and regularization

    International Nuclear Information System (INIS)

    Konopelchenko, Boris; Alonso, Luis Martínez; Medina, Elena

    2013-01-01

    We study the moduli space of the spectral curves y 2 = W′(z) 2 + f(z) which characterize the vacua of N=1 U(n) supersymmetric gauge theories with an adjoint Higgs field and a polynomial tree level potential W(z). The integrable structure of the Whitham equations is used to determine the spectral curves from their moduli. An alternative characterization of the spectral curves in terms of critical points of a family of polynomial solutions W to Euler–Poisson–Darboux equations is provided. The equations for these critical points are a generalization of the planar limit equations for one-cut random matrix models. Moreover, singular spectral curves with higher order branch points turn out to be described by degenerate critical points of W. As a consequence we propose a multiple scaling limit method of regularization and show that, in the simplest cases, it leads to the Painlevè-I equation and its multi-component generalizations. (paper)

  1. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  2. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  3. Weighted estimates for the averaging integral operator

    Czech Academy of Sciences Publication Activity Database

    Opic, Bohumír; Rákosník, Jiří

    2010-01-01

    Roč. 61, č. 3 (2010), s. 253-262 ISSN 0010-0757 R&D Projects: GA ČR GA201/05/2033; GA ČR GA201/08/0383 Institutional research plan: CEZ:AV0Z10190503 Keywords : averaging integral operator * weighted Lebesgue spaces * weights Subject RIV: BA - General Mathematics Impact factor: 0.474, year: 2010 http://link.springer.com/article/10.1007%2FBF03191231

  4. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  5. Temporal and spectral interaction in loudness perception

    Science.gov (United States)

    Pedersen, Benjamin; Ellermeier, Wolfgang

    2005-04-01

    An experiment was conducted to investigate how changes in spectral content influence loudness judgments. Six listeners were asked to discriminate sounds, which were of one second duration and changing in level every 0.1 s. In one condition the first half of the sound was low-pass filtered and the second half high-pass filtered. In a second condition the opposite order was used. In a third condition no filtering was applied and the frequency spectrum was simply white noise. The results were analyzed using a statistical method, which assigns relative weights to the ten temporal segments. In this way individual weighting curves were obtained for each condition. Listeners tended to emphasize the beginning of the sound in their loudness judgments. When the frequency spectrum changed in the middle of the sound, however, the weighting of the onset of the new spectral content was emphasized as well. This outcome is inconsistent with overall temporal integration, and argues for a cognitive mechanism allocating attention to changes in an event sequence.

  6. Integrated spectral study of small angular diameter galactic open clusters

    Science.gov (United States)

    Clariá, J. J.; Ahumada, A. V.; Bica, E.; Pavani, D. B.; Parisi, M. C.

    2017-10-01

    This paper presents flux-calibrated integrated spectra obtained at Complejo Astronómico El Leoncito (CASLEO, Argentina) for a sample of 9 Galactic open clusters of small angular diameter. The spectra cover the optical range (3800-6800 Å), with a resolution of ˜14 Å. With one exception (Ruprecht 158), the selected clusters are projected into the fourth Galactic quadrant (282o evaluate their membership status. The current cluster sample complements that of 46 open clusters previously studied by our group in an effort to gather a spectral library with several clusters per age bin. The cluster spectral library that we have been building is an important tool to tie studies of resolved and unresolved stellar content.

  7. Fermi energy 5f spectral weight variation in uranium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Denlinger, J.D.; Clack, J.; Allen, J.W. [Univ. of Michigan, Ann Arbor, MI (United States)] [and others

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varying degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.

  8. Weighted Anisotropic Integral Representations of Holomorphic Functions in the Unit Ball of

    Directory of Open Access Journals (Sweden)

    Arman Karapetyan

    2010-01-01

    Full Text Available We obtain weighted integral representations for spaces of functions holomorphic in the unit ball and belonging to area-integrable weighted -classes with “anisotropic” weight function of the type ∏=1(1−|1|2−|2|2−⋯−||2, =(1,2,…,∈. The corresponding kernels of these representations are estimated, written in an integral form, and even written out in an explicit form (for =2.

  9. Selection of side-chain carbons in a high-molecular-weight, hydrophobic peptide using solid-state spectral editing methods

    International Nuclear Information System (INIS)

    Kumashiro, Kristin K.; Niemczura, Walter P.; Kim, Minna S.; Sandberg, Lawrence B.

    2000-01-01

    Solid-state spectral editing techniques have been used by others to simplify 13 C CPMAS spectra of small organic molecules, synthetic organic polymers, and coals. One approach utilizes experiments such as cross-polarization-with-polarization-inversion and cross-polarization-with-depolarization to generate subspectra. This work shows that this particular methodology is also applicable to natural-abundance 13 C CPMAS NMR studies of high-molecular-weight biopolymers. The editing experiments are demonstrated first with model peptides and then with α-elastin, a high-molecular-weight peptidyl preparation obtained from the elastic fibers in mammalian tissue. The latter has a predominance of small, nonpolar residues, which is evident in the crowded aliphatic region of typical 13 C CPMAS spectra. Spectral editing is particularly useful for simplifying the aliphatic region of the NMR spectrum of this elastin preparation

  10. Non-Commutative Integration, Zeta Functions and the Haar State for SUq(2)

    International Nuclear Information System (INIS)

    Matassa, Marco

    2015-01-01

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU q (2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU q (2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU q (2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension

  11. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  12. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  13. Ultraviolet spectral distribution and erythema-weighted irradiance from indoor tanning devices compared with solar radiation exposures.

    Science.gov (United States)

    Sola, Yolanda; Baeza, David; Gómez, Miguel; Lorente, Jerónimo

    2016-08-01

    Concern regarding the impact of indoor tanning devices on human health has led to different regulations and recommendations, which set limits on erythema-weighted irradiance. Here, we analyze spectral emissions from 52 tanning devices in Spanish facilities and compare them with surface solar irradiance for different solar zenith angles. Whereas most of the devices emitted less UV-B radiation than the midday summer sun, the unweighted UV-A irradiance was 2-6 times higher than solar radiation. Moreover, the spectral distributions of indoor devices were completely different from that of solar radiation, differing in one order of magnitude at some UV-A wavelengths, depending on the lamp characteristics. In 21% of the devices tested, the erythema-weighted irradiance exceeded 0.3Wm(-2): the limit fixed by the European standard and the Spanish regulation. Moreover, 29% of the devices fall within the UV type 4 classification, for which medical advice is required. The high variability in erythema-weighted irradiance results in a wide range of exposure times to reach 1 standard erythemal dose (SED: 100Jm(-2)), with 62% of devices requiring exposures of UV-A dose during this time period would be from 1.4 to 10.3 times more than the solar UV-A dose. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Evaluation of the Subscapularis Tendon Tears on 3T Magnetic Resonance Arthrography: Comparison of Diagnostic Performance of T1-Weighted Spectral Presaturation with Inversion-Recovery and T2-Weighted Turbo Spin-Echo Sequences.

    Science.gov (United States)

    Lee, Hoseok; Ahn, Joong Mo; Kang, Yusuhn; Oh, Joo Han; Lee, Eugene; Lee, Joon Woo; Kang, Heung Sik

    2018-01-01

    To compare the T1-weighted spectral presaturation with inversion-recovery sequences (T1 SPIR) with T2-weighted turbo spin-echo sequences (T2 TSE) on 3T magnetic resonance arthrography (MRA) in the evaluation of the subscapularis (SSC) tendon tear with arthroscopic findings as the reference standard. This retrospective study included 120 consecutive patients who had undergone MRA within 3 months between April and December 2015. Two musculoskeletal radiologists blinded to the arthroscopic results evaluated T1 SPIR and T2 TSE images in separate sessions for the integrity of the SSC tendon, examining normal/articular-surface partial-thickness tear (PTTa)/full-thickness tear (FTT). Diagnostic performance of T1 SPIR and T2 TSE was calculated with arthroscopic results as the reference standard, and sensitivity, specificity, and accuracy were compared using the McNemar test. Interobserver agreement was measured with kappa (κ) statistics. There were 74 SSC tendon tears (36 PTTa and 38 FTT) confirmed by arthroscopy. Significant differences were found in the sensitivity and accuracy between T1 SPIR and T2 TSE using the McNemar test, with respective rates of 95.9-94.6% vs. 71.6-75.7% and 90.8-91.7% vs. 79.2-83.3% for detecting tear; 55.3% vs. 31.6-34.2% and 85.8% vs. 78.3-79.2%, respectively, for FTT; and 91.7-97.2% vs. 58.3-61.1% and 89% vs. 78-79.3%, respectively, for PTTa. Interobserver agreement for T1 SPIR was almost perfect for T1 SPIR (κ = 0.839) and substantial for T2 TSE (κ = 0.769). T1-weighted spectral presaturation with inversion-recovery sequences is more sensitive and accurate compared to T2 TSE in detecting SSC tendon tear on 3T MRA.

  15. The integration of weighted gene association networks based on information entropy.

    Science.gov (United States)

    Yang, Fan; Wu, Duzhi; Lin, Limei; Yang, Jian; Yang, Tinghong; Zhao, Jing

    2017-01-01

    Constructing genome scale weighted gene association networks (WGAN) from multiple data sources is one of research hot spots in systems biology. In this paper, we employ information entropy to describe the uncertain degree of gene-gene links and propose a strategy for data integration of weighted networks. We use this method to integrate four existing human weighted gene association networks and construct a much larger WGAN, which includes richer biology information while still keeps high functional relevance between linked gene pairs. The new WGAN shows satisfactory performance in disease gene prediction, which suggests the reliability of our integration strategy. Compared with existing integration methods, our method takes the advantage of the inherent characteristics of the component networks and pays less attention to the biology background of the data. It can make full use of existing biological networks with low computational effort.

  16. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  17. Preclinical evaluation and intraoperative human retinal imaging with a high-resolution microscope-integrated spectral domain optical coherence tomography device.

    Science.gov (United States)

    Hahn, Paul; Migacz, Justin; O'Donnell, Rachelle; Day, Shelley; Lee, Annie; Lin, Phoebe; Vann, Robin; Kuo, Anthony; Fekrat, Sharon; Mruthyunjaya, Prithvi; Postel, Eric A; Izatt, Joseph A; Toth, Cynthia A

    2013-01-01

    The authors have recently developed a high-resolution microscope-integrated spectral domain optical coherence tomography (MIOCT) device designed to enable OCT acquisition simultaneous with surgical maneuvers. The purpose of this report is to describe translation of this device from preclinical testing into human intraoperative imaging. Before human imaging, surgical conditions were fully simulated for extensive preclinical MIOCT evaluation in a custom model eye system. Microscope-integrated spectral domain OCT images were then acquired in normal human volunteers and during vitreoretinal surgery in patients who consented to participate in a prospective institutional review board-approved study. Microscope-integrated spectral domain OCT images were obtained before and at pauses in surgical maneuvers and were compared based on predetermined diagnostic criteria to images obtained with a high-resolution spectral domain research handheld OCT system (HHOCT; Bioptigen, Inc) at the same time point. Cohorts of five consecutive patients were imaged. Successful end points were predefined, including ≥80% correlation in identification of pathology between MIOCT and HHOCT in ≥80% of the patients. Microscope-integrated spectral domain OCT was favorably evaluated by study surgeons and scrub nurses, all of whom responded that they would consider participating in human intraoperative imaging trials. The preclinical evaluation identified significant improvements that were made before MIOCT use during human surgery. The MIOCT transition into clinical human research was smooth. Microscope-integrated spectral domain OCT imaging in normal human volunteers demonstrated high resolution comparable to tabletop scanners. In the operating room, after an initial learning curve, surgeons successfully acquired human macular MIOCT images before and after surgical maneuvers. Microscope-integrated spectral domain OCT imaging confirmed preoperative diagnoses, such as full-thickness macular hole

  18. A mixed spectral-integration model for neutral mean wind flow over hills

    DEFF Research Database (Denmark)

    Corbett, Jean-Francois; Ott, Søren; Landberg, Lars

    2008-01-01

    equations are solved spectrally horizontally and by numerical integration vertically. Non-dimensional solutions are stored in look-up tables for quick re-use. Model results are compared to measurements, as well as other authors' flow models in three test cases. The model is implemented and tested in two...

  19. Non-Commutative Integration, Zeta Functions and the Haar State for SU{sub q}(2)

    Energy Technology Data Exchange (ETDEWEB)

    Matassa, Marco, E-mail: marco.matassa@gmail.com [SISSA (Italy)

    2015-12-15

    We study a notion of non-commutative integration, in the spirit of modular spectral triples, for the quantum group SU{sub q}(2). In particular we define the non-commutative integral as the residue at the spectral dimension of a zeta function, which is constructed using a Dirac operator and a weight. We consider the Dirac operator introduced by Kaad and Senior and a family of weights depending on two parameters, which are related to the diagonal automorphisms of SU{sub q}(2). We show that, after fixing one of the parameters, the non-commutative integral coincides with the Haar state of SU{sub q}(2). Moreover we can impose an additional condition on the zeta function, which also fixes the second parameter. For this unique choice the spectral dimension coincides with the classical dimension.

  20. The integration of weighted human gene association networks based on link prediction.

    Science.gov (United States)

    Yang, Jian; Yang, Tinghong; Wu, Duzhi; Lin, Limei; Yang, Fan; Zhao, Jing

    2017-01-31

    Physical and functional interplays between genes or proteins have important biological meaning for cellular functions. Some efforts have been made to construct weighted gene association meta-networks by integrating multiple biological resources, where the weight indicates the confidence of the interaction. However, it is found that these existing human gene association networks share only quite limited overlapped interactions, suggesting their incompleteness and noise. Here we proposed a workflow to construct a weighted human gene association network using information of six existing networks, including two weighted specific PPI networks and four gene association meta-networks. We applied link prediction algorithm to predict possible missing links of the networks, cross-validation approach to refine each network and finally integrated the refined networks to get the final integrated network. The common information among the refined networks increases notably, suggesting their higher reliability. Our final integrated network owns much more links than most of the original networks, meanwhile its links still keep high functional relevance. Being used as background network in a case study of disease gene prediction, the final integrated network presents good performance, implying its reliability and application significance. Our workflow could be insightful for integrating and refining existing gene association data.

  1. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  2. High temperature spectral emissivity measurement using integral blackbody method

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-10-01

    Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.

  3. Mechanisms of spectral and temporal integration in the mustached bat inferior colliculus

    Science.gov (United States)

    Wenstrup, Jeffrey James; Nataraj, Kiran; Sanchez, Jason Tait

    2012-01-01

    This review describes mechanisms and circuitry underlying combination-sensitive response properties in the auditory brainstem and midbrain. Combination-sensitive neurons, performing a type of auditory spectro-temporal integration, respond to specific, properly timed combinations of spectral elements in vocal signals and other acoustic stimuli. While these neurons are known to occur in the auditory forebrain of many vertebrate species, the work described here establishes their origin in the auditory brainstem and midbrain. Focusing on the mustached bat, we review several major findings: (1) Combination-sensitive responses involve facilitatory interactions, inhibitory interactions, or both when activated by distinct spectral elements in complex sounds. (2) Combination-sensitive responses are created in distinct stages: inhibition arises mainly in lateral lemniscal nuclei of the auditory brainstem, while facilitation arises in the inferior colliculus (IC) of the midbrain. (3) Spectral integration underlying combination-sensitive responses requires a low-frequency input tuned well below a neuron's characteristic frequency (ChF). Low-ChF neurons in the auditory brainstem project to high-ChF regions in brainstem or IC to create combination sensitivity. (4) At their sites of origin, both facilitatory and inhibitory combination-sensitive interactions depend on glycinergic inputs and are eliminated by glycine receptor blockade. Surprisingly, facilitatory interactions in IC depend almost exclusively on glycinergic inputs and are largely independent of glutamatergic and GABAergic inputs. (5) The medial nucleus of the trapezoid body (MNTB), the lateral lemniscal nuclei, and the IC play critical roles in creating combination-sensitive responses. We propose that these mechanisms, based on work in the mustached bat, apply to a broad range of mammals and other vertebrates that depend on temporally sensitive integration of information across the audible spectrum. PMID:23109917

  4. Measurement of high-temperature spectral emissivity using integral blackbody approach

    Science.gov (United States)

    Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter

    2016-11-01

    Spectral emissivity is one of the most critical thermophysical properties of a material for heat design and analysis. Especially in the traditional radiation thermometry, normal spectral emissivity is very important. We developed a prototype instrument based upon an integral blackbody method to measure material's spectral emissivity at elevated temperatures. An optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit was used to implemented the system. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated reference blackbody which had an effective total emissivity greater than 0.985. During the measurement, a pneumatic cylinder pushed a graphite rode and then the sample crucible to the cold opening within hundreds of microseconds. The linear pyrometer was used to monitor the brightness temperature of the sample surface, and the corresponding opto-converted voltage was fed and recorded by a digital multimeter. To evaluate the temperature drop of the sample along the pushing process, a physical model was proposed. The tube was discretized into several isothermal cylindrical rings, and the temperature of each ring was measurement. View factors between sample and rings were utilized. Then, the actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage signal and the calculated actual temperature, normal spectral emissivity under the that temperature point was obtained. Graphite sample at 1300°C was measured to prove the validity of the method.

  5. Near-IR Spectral Imaging of Semiconductor Absorption Sites in Integrated Circuits

    Directory of Open Access Journals (Sweden)

    E. C. Samson

    2004-12-01

    Full Text Available We derive spectral maps of absorption sites in integrated circuits (ICs by varying the wavelength of the optical probe within the near-IR range. This method has allowed us to improve the contrast of the acquired images by revealing structures that have a different optical absorption from neighboring sites. A false color composite image from those acquired at different wavelengths is generated from which the response of each semiconductor structure can be deduced. With the aid of the spectral maps, nonuniform absorption was also observed in a semiconductor structure located near an electrical overstress defect. This method may prove important in failure analysis of ICs by uncovering areas exhibiting anomalous absorption, which could improve localization of defective edifices in the semiconductor parts of the microchip

  6. The Mastery Matrix for Integration Praxis: The development of a rubric for integration practice in addressing weight-related public health problems.

    Science.gov (United States)

    Berge, Jerica M; Adamek, Margaret; Caspi, Caitlin; Grannon, Katherine Y; Loth, Katie A; Trofholz, Amanda; Nanney, Marilyn S

    2018-06-01

    In response to the limitations of siloed weight-related intervention approaches, scholars have called for greater integration that is intentional, strategic, and thoughtful between researchers, health care clinicians, community members, and policy makers as a way to more effectively address weight and weight-related (e.g., obesity, diabetes, cardiovascular disease, cancer) public health problems. The Mastery Matrix for Integration Praxis was developed by the Healthy Eating and Activity across the Lifespan (HEAL) team in 2017 to advance the science and praxis of integration across the domains of research, clinical practice, community, and policy to address weight-related public health problems. Integrator functions were identified and developmental stages were created to generate a rubric for measuring mastery of integration. Creating a means to systematically define and evaluate integration praxis and expertise will allow for more individuals and teams to master integration in order to work towards promoting a culture of health. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  8. Noncoherent Spectral Optical CDMA System Using 1D Active Weight Two-Code Keying Codes

    Directory of Open Access Journals (Sweden)

    Bih-Chyun Yeh

    2016-01-01

    Full Text Available We propose a new family of one-dimensional (1D active weight two-code keying (TCK in spectral amplitude coding (SAC optical code division multiple access (OCDMA networks. We use encoding and decoding transfer functions to operate the 1D active weight TCK. The proposed structure includes an optical line terminal (OLT and optical network units (ONUs to produce the encoding and decoding codes of the proposed OLT and ONUs, respectively. The proposed ONU uses the modified cross-correlation to remove interferences from other simultaneous users, that is, the multiuser interference (MUI. When the phase-induced intensity noise (PIIN is the most important noise, the modified cross-correlation suppresses the PIIN. In the numerical results, we find that the bit error rate (BER for the proposed system using the 1D active weight TCK codes outperforms that for two other systems using the 1D M-Seq codes and 1D balanced incomplete block design (BIBD codes. The effective source power for the proposed system can achieve −10 dBm, which has less power than that for the other systems.

  9. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  10. Remote Sensing Image Fusion at the Segment Level Using a Spatially-Weighted Approach: Applications for Land Cover Spectral Analysis and Mapping

    Directory of Open Access Journals (Sweden)

    Brian Johnson

    2015-01-01

    Full Text Available Segment-level image fusion involves segmenting a higher spatial resolution (HSR image to derive boundaries of land cover objects, and then extracting additional descriptors of image segments (polygons from a lower spatial resolution (LSR image. In past research, an unweighted segment-level fusion (USF approach, which extracts information from a resampled LSR image, resulted in more accurate land cover classification than the use of HSR imagery alone. However, simply fusing the LSR image with segment polygons may lead to significant errors due to the high level of noise in pixels along the segment boundaries (i.e., pixels containing multiple land cover types. To mitigate this, a spatially-weighted segment-level fusion (SWSF method was proposed for extracting descriptors (mean spectral values of segments from LSR images. SWSF reduces the weights of LSR pixels located on or near segment boundaries to reduce errors in the fusion process. Compared to the USF approach, SWSF extracted more accurate spectral properties of land cover objects when the ratio of the LSR image resolution to the HSR image resolution was greater than 2:1, and SWSF was also shown to increase classification accuracy. SWSF can be used to fuse any type of imagery at the segment level since it is insensitive to spectral differences between the LSR and HSR images (e.g., different spectral ranges of the images or different image acquisition dates.

  11. Neural substrates of reliability-weighted visual-tactile multisensory integration

    Directory of Open Access Journals (Sweden)

    Michael S Beauchamp

    2010-06-01

    Full Text Available As sensory systems deteriorate in aging or disease, the brain must relearn the appropriate weights to assign each modality during multisensory integration. Using blood-oxygen level dependent functional magnetic resonance imaging (BOLD fMRI of human subjects, we tested a model for the neural mechanisms of sensory weighting, termed “weighted connections”. This model holds that the connection weights between early and late areas vary depending on the reliability of the modality, independent of the level of early sensory cortex activity. When subjects detected viewed and felt touches to the hand, a network of brain areas was active, including visual areas in lateral occipital cortex, somatosensory areas in inferior parietal lobe, and multisensory areas in the intraparietal sulcus (IPS. In agreement with the weighted connection model, the connection weight measured with structural equation modeling between somatosensory cortex and IPS increased for somatosensory-reliable stimuli, and the connection weight between visual cortex and IPS increased for visual-reliable stimuli. This double dissociation of connection strengths was similar to the pattern of behavioral responses during incongruent multisensory stimulation, suggesting that weighted connections may be a neural mechanism for behavioral reliability weighting.for behavioral reliability weighting.

  12. A New Integrated Weighted Model in SNOW-V10: Verification of Categorical Variables

    Science.gov (United States)

    Huang, Laura X.; Isaac, George A.; Sheng, Grant

    2014-01-01

    This paper presents the verification results for nowcasts of seven categorical variables from an integrated weighted model (INTW) and the underlying numerical weather prediction (NWP) models. Nowcasting, or short range forecasting (0-6 h), over complex terrain with sufficient accuracy is highly desirable but a very challenging task. A weighting, evaluation, bias correction and integration system (WEBIS) for generating nowcasts by integrating NWP forecasts and high frequency observations was used during the Vancouver 2010 Olympic and Paralympic Winter Games as part of the Science of Nowcasting Olympic Weather for Vancouver 2010 (SNOW-V10) project. Forecast data from Canadian high-resolution deterministic NWP system with three nested grids (at 15-, 2.5- and 1-km horizontal grid-spacing) were selected as background gridded data for generating the integrated nowcasts. Seven forecast variables of temperature, relative humidity, wind speed, wind gust, visibility, ceiling and precipitation rate are treated as categorical variables for verifying the integrated weighted forecasts. By analyzing the verification of forecasts from INTW and the NWP models among 15 sites, the integrated weighted model was found to produce more accurate forecasts for the 7 selected forecast variables, regardless of location. This is based on the multi-categorical Heidke skill scores for the test period 12 February to 21 March 2010.

  13. Scaling plant ultraviolet spectral responses from laboratory action spectra to field spectral weighting factors

    International Nuclear Information System (INIS)

    Flint, S.D.; Caldwell, M.M.

    1996-01-01

    Biological spectral weighting functions (BSWF) play a key role in calculating the increase of biologically effective solar ultraviolet-B radiation (UV-BBE) due to ozone reduction, assessing current latitudinal gradients of UV-B BE . and comparing solar UV-B BE with that from lamps and filters in plant experiments. Plant UV action spectra (usually determined with monochromatic radiation in the laboratory with exposure periods on the order of hours) are often used as BSWF. The realism of such spectra for plants growing day after day in polychromatic solar radiation in the field is questionable. We tested the widely used generalized plant action spectrum since preliminary data from an action spectrum being developed with monochromatic radiation for a cultivated oat variety indicate reasonable agreement with the generalized spectrum. These tests involved exposing plants to polychromatic radiation either from a high-pressure xenon arc lamp in growth chambers or in the field under solar radiation with supplemental UV-B lamps. Different broad-spectrum combinations were achieved by truncating the spectrum at successively longer UV wavelengths with various filters. In the growth chamber experiments, the generalized plant spectrum appeared to predict plant growth responses at short (<310nm) wavelengths but not at longer wavelengths. The field experiment reinforced these conclusions, showing (in addition to the expected direct UV-B effects) both direct UV-A effects and UV-A mitigation of UV-B effects. (author)

  14. InP monolithically integrated label swapper device for spectral amplitude coded optical packet networks

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Doménech, J.D.; Rius, M.; Sancho, J.C.; Capmany, J.; Chen, L.R.; Habib, C.; Leijtens, X.J.M.; Vries, de T.; Heck, M.J.R.; Augustin, L.M.; Nötzel, R.; Robbins, D.J.

    2010-01-01

    In this paper a label swapping device, for spectral amplitude coded optical packet networks, fully integrated using InP technology is presented. Compared to previous demonstrations using discrete component assembly, the device footprint is reduced by a factor of 105 and the operation speed is

  15. Heavy carriers, non-drude optical conductivity and transfer of spectral weight in MnSi

    International Nuclear Information System (INIS)

    Mena, F.P.; Damascelli, A.; Marel, D. van der; Fath, M.; Menovsky, A.A.; Mydosh, J.A.

    2004-01-01

    The optical properties of the weak magnetic metal MnSi were determined using reflectance at 80 deg. (2-800 meV) and ellipsometry (0.8-4.5 eV). At low frequencies in the magnetic phase we observe a departure of the optical conductivity from Drude behavior: m*(ω)/m is strongly frequency dependent and 1/τ(ω) is approximately linear in frequency. In fact, we show that σ(ω)/σ(0)=(1+iω/Γ) -0.5 . Moreover, in the magnetic phase, the plasma frequency shifts to the red indicating that spectral weight is transferred to high frequencies. This is opposite to the effect recently seen in other magnetic compounds

  16. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome.

    Science.gov (United States)

    Wang, Jun; Dayem Ullah, Abu Z; Chelala, Claude

    2018-01-30

    The vast majority of germline and somatic variations occur in the noncoding part of the genome, only a small fraction of which are believed to be functional. From the tens of thousands of noncoding variations detectable in each genome, identifying and prioritizing driver candidates with putative functional significance is challenging. To address this, we implemented IW-Scoring, a new Integrative Weighted Scoring model to annotate and prioritise functionally relevant noncoding variations. We evaluate 11 scoring methods, and apply an unsupervised spectral approach for subsequent selective integration into two linear weighted functional scoring schemas for known and novel variations. IW-Scoring produces stable high-quality performance as the best predictors for three independent data sets. We demonstrate the robustness of IW-Scoring in identifying recurrent functional mutations in the TERT promoter, as well as disease SNPs in proximity to consensus motifs and with gene regulatory effects. Using follicular lymphoma as a paradigmatic cancer model, we apply IW-Scoring to locate 11 recurrently mutated noncoding regions in 14 follicular lymphoma genomes, and validate 9 of these regions in an extension cohort, including the promoter and enhancer regions of PAX5. Overall, IW-Scoring demonstrates greater versatility in identifying trait- and disease-associated noncoding variants. Scores from IW-Scoring as well as other methods are freely available from http://www.snp-nexus.org/IW-Scoring/. © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. An integration weighting method to evaluate extremum coordinates

    International Nuclear Information System (INIS)

    Ilyushchenko, V.I.

    1990-01-01

    The numerical version of the Laplace asymptotics has been used to evaluate the coordinates of extrema of multivariate continuous and discontinuous test functions. The performed computer experiments demonstrate the high efficiency of the integration method proposed. The saturating dependence of extremum coordinates on such parameters as a number of integration subregions and that of K going /theoretically/ to infinity has been studied in detail for the limitand being a ratio of two Laplace integrals with exponentiated K. The given method is an integral equivalent of that of weighted means. As opposed to the standard optimization methods of the zero, first and second order the proposed method can be successfully applied to optimize discontinuous objective functions, too. There are possibilities of applying the integration method in the cases, when the conventional techniques fail due to poor analytical properties of the objective functions near extremal points. The proposed method is efficient in searching for both local and global extrema of multimodal objective functions. 12 refs.; 4 tabs

  18. Fast spectral source integration in black hole perturbation calculations

    Science.gov (United States)

    Hopper, Seth; Forseth, Erik; Osburn, Thomas; Evans, Charles R.

    2015-08-01

    This paper presents a new technique for achieving spectral accuracy and fast computational performance in a class of black hole perturbation and gravitational self-force calculations involving extreme mass ratios and generic orbits. Called spectral source integration (SSI), this method should see widespread future use in problems that entail (i) a point-particle description of the small compact object, (ii) frequency domain decomposition, and (iii) the use of the background eccentric geodesic motion. Frequency domain approaches are widely used in both perturbation theory flux-balance calculations and in local gravitational self-force calculations. Recent self-force calculations in Lorenz gauge, using the frequency domain and method of extended homogeneous solutions, have been able to accurately reach eccentricities as high as e ≃0.7 . We show here SSI successfully applied to Lorenz gauge. In a double precision Lorenz gauge code, SSI enhances the accuracy of results and makes a factor of 3 improvement in the overall speed. The primary initial application of SSI—for us its the raison d'être—is in an arbitrary precision mathematica code that computes perturbations of eccentric orbits in the Regge-Wheeler gauge to extraordinarily high accuracy (e.g., 200 decimal places). These high-accuracy eccentric orbit calculations would not be possible without the exponential convergence of SSI. We believe the method will extend to work for inspirals on Kerr and will be the subject of a later publication. SSI borrows concepts from discrete-time signal processing and is used to calculate the mode normalization coefficients in perturbation theory via sums over modest numbers of points around an orbit. A variant of the idea is used to obtain spectral accuracy in a solution of the geodesic orbital motion.

  19. Reliability-Weighted Integration of Audiovisual Signals Can Be Modulated by Top-down Attention

    Science.gov (United States)

    Noppeney, Uta

    2018-01-01

    Abstract Behaviorally, it is well established that human observers integrate signals near-optimally weighted in proportion to their reliabilities as predicted by maximum likelihood estimation. Yet, despite abundant behavioral evidence, it is unclear how the human brain accomplishes this feat. In a spatial ventriloquist paradigm, participants were presented with auditory, visual, and audiovisual signals and reported the location of the auditory or the visual signal. Combining psychophysics, multivariate functional MRI (fMRI) decoding, and models of maximum likelihood estimation (MLE), we characterized the computational operations underlying audiovisual integration at distinct cortical levels. We estimated observers’ behavioral weights by fitting psychometric functions to participants’ localization responses. Likewise, we estimated the neural weights by fitting neurometric functions to spatial locations decoded from regional fMRI activation patterns. Our results demonstrate that low-level auditory and visual areas encode predominantly the spatial location of the signal component of a region’s preferred auditory (or visual) modality. By contrast, intraparietal sulcus forms spatial representations by integrating auditory and visual signals weighted by their reliabilities. Critically, the neural and behavioral weights and the variance of the spatial representations depended not only on the sensory reliabilities as predicted by the MLE model but also on participants’ modality-specific attention and report (i.e., visual vs. auditory). These results suggest that audiovisual integration is not exclusively determined by bottom-up sensory reliabilities. Instead, modality-specific attention and report can flexibly modulate how intraparietal sulcus integrates sensory signals into spatial representations to guide behavioral responses (e.g., localization and orienting). PMID:29527567

  20. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com

    2008-06-09

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.

  1. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun

    2008-01-01

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity

  2. Spectral methods. Fundamentals in single domains

    International Nuclear Information System (INIS)

    Canuto, C.

    2006-01-01

    Since the publication of ''Spectral Methods in Fluid Dynamics'' 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded. (orig.)

  3. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  4. Spectral states evolution of 4U 1728-34 observed by INTEGRAL and RXTE: non-thermal component detection

    NARCIS (Netherlands)

    Tarana, A.; Belloni, T.; Bazzano, A.; Mendez, M.; Ubertini, P.

    We report results of a one-year monitoring of the low-mass X-ray binary (LMXB) source (atoll type) 4U 1728-34 with INTEGRAL and RXTE. Three time intervals were covered by INTEGRAL, during which the source showed strong spectral evolution. We studied the broad-band X-ray spectra in detail by fitting

  5. Measurement of H'(0.07) with pulse height weighting integration method

    International Nuclear Information System (INIS)

    Liye, LIU; Gang, JIN; Jizeng, MA

    2002-01-01

    H'(0.07) is an important quantity for radiation field measurement in health physics. One of the plastic scintillator measurement methods is employing the weak current produced by PMT. However, there are some weaknesses in the current method. For instance: sensitive to environment humidity and temperature, non-linearity energy response. In order to increase the precision of H'(0.07) measurement, a Pulse Height Weighting Integration Method is introduced for its advantages: low noise, high sensitivity, data processable, wide measurement range. Pulse Height Weighting Integration Method seems to be acceptable to measure directional dose equivalent. The representative theoretical energy response of the pre-described method accords with the preliminary experiment result

  6. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  7. Strong correlation effects on the d-wave superconductor- spectral weight analysis by variational wave functions

    International Nuclear Information System (INIS)

    Chou, C-P; Lee, T K; Ho, C-M

    2009-01-01

    We examine the strong correlation effects of the d-wave superconducting state by including the Gutzwiller projection for no electron double occupancy at each lattice site. The spectral weights (SW's) for adding and removing an electron on the projected superconducting state, the ground state of the 2-dimensional t-t'-t - J model with moderate doped holes describing the high T c cuprates, are studied numerically on finite lattices and compared with the observation made by low-temperature tunneling (particle asymmetry of tunneling conductance) and angle-resolved photoemission (SW transfer from the projected Fermi liquid state) spectroscopies. The contrast with the d-wave case without projection is alo presented.

  8. Integrated Spectral Energy Distributions and Absorption Feature Indices of Single Stellar Populations

    OpenAIRE

    Zhang, Fenghui; Han, Zhanwen; Li, Lifang; Hurley, Jarrod R.

    2004-01-01

    Using evolutionary population synthesis, we present integrated spectral energy distributions and absorption-line indices defined by the Lick Observatory image dissector scanner (referred to as Lick/IDS) system, for an extensive set of instantaneous burst single stellar populations (SSPs). The ages of the SSPs are in the range 1-19 Gyr and the metallicities [Fe/H] are in the range -2.3 - 0.2. Our models use the rapid single stellar evolution algorithm of Hurley, Pols and Tout for the stellar e...

  9. Precise Multi-Spectral Dermatological Imaging

    DEFF Research Database (Denmark)

    Gomez, David Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2004-01-01

    In this work, an integrated imaging system to obtain accurate and reproducible multi-spectral dermatological images is proposed. The system is made up of an integrating sphere, light emitting diodes and a generic monochromatic camera. The system can collect up to 10 different spectral bands....... These spectral bands vary from ultraviolet to near infrared. The welldefined and diffuse illumination of the optically closed scene aims to avoid shadows and specular reflections. Furthermore, the system has been developed to guarantee the reproducibility of the collected images. This allows for comparative...

  10. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP

    NARCIS (Netherlands)

    Muñoz, P.; García-Olcina, R.; Habib, C.; Chen, L.R.; Leijtens, X.J.M.; Vries, de T.; Robbins, D.J.; Capmany, J.

    2011-01-01

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in

  11. Spectral evolution of the Atoll source 4U 1728-34 with RXTE and INTEGRAL: evidence for hard X-ray tail

    NARCIS (Netherlands)

    Tarana, A.; Belloni, T.; Bazzano, A.; Homan, J.; Méndez, M.; Ubertini, P.; Comastri, A.; Angelini, L.; Cappi, M.

    We report the temporal and spectral results on the INTEGRAL and RXTE 2006-2007 observation campaign of the Atoll source 4U 1728-34 (GX 354-0). The source shows, more than once, spectral evolution as revealed by the hardness intensity diagram. The soft state is well described by a Comptonization with

  12. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.

    Science.gov (United States)

    Chen, Hong; Fu, Houqiang; Huang, Xuanqi; Zhang, Xiaodong; Yang, Tsung-Han; Montes, Jossue A; Baranowski, Izak; Zhao, Yuji

    2017-12-11

    We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

  13. Spectral flow and conformal blocks in AdS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cagnacci, Yago [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Iguri, Sergio M. [Instituto de Astronomía y Física del Espacio (IAFE, CONICET-UBA),Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina); Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette Cedex (France)

    2015-09-08

    In this article we investigate the structure of the four-point functions of the AdS{sub 3}-WZNW model. We consider the integral expression for the unflowed four-point correlator involving at least one state in the discrete part of the spectrum derived by analytic continuation from the H{sub 3}{sup +}-WZNW model and we show that the conformal blocks can be obtained from those with an extremal-weight state by means of an intertwining operator. We adapt the procedure for dealing with correlators with a single unit of spectral flow charge and we get a factorized integral expression for the corresponding four-point function. We finally transform the formulas back to the space-time picture.

  14. Integrating Iris and Signature Traits for Personal Authentication Using User-SpecificWeighting

    Directory of Open Access Journals (Sweden)

    Serestina Viriri

    2012-03-01

    Full Text Available Biometric systems based on uni-modal traits are characterized by noisy sensor data, restricted degrees of freedom, non-universality and are susceptible to spoof attacks. Multi-modal biometric systems seek to alleviate some of these drawbacks by providing multiple evidences of the same identity. In this paper, a user-score-based weighting technique for integrating the iris and signature traits is presented. This user-specific weighting technique has proved to be an efficient and effective fusion scheme which increases the authentication accuracy rate of multi-modal biometric systems. The weights are used to indicate the importance of matching scores output by each biometrics trait. The experimental results show that our biometric system based on the integration of iris and signature traits achieve a false rejection rate (FRR of 0.08% and a false acceptance rate (FAR of 0.01%.

  15. Numerical evolutions of fields on the 2-sphere using a spectral method based on spin-weighted spherical harmonics

    International Nuclear Information System (INIS)

    Beyer, Florian; Daszuta, Boris; Frauendiener, Jörg; Whale, Ben

    2014-01-01

    Many applications in science call for the numerical simulation of systems on manifolds with spherical topology. Through the use of integer spin-weighted spherical harmonics, we present a method which allows for the implementation of arbitrary tensorial evolution equations. Our method combines two numerical techniques that were originally developed with different applications in mind. The first is Huffenberger and Wandelt’s spectral decomposition algorithm to perform the mapping from physical to spectral space. The second is the application of Luscombe and Luban’s method, to convert numerically divergent linear recursions into stable nonlinear recursions, to the calculation of reduced Wigner d-functions. We give a detailed discussion of the theory and numerical implementation of our algorithm. The properties of our method are investigated by solving the scalar and vectorial advection equation on the sphere, as well as the 2 + 1 Maxwell equations on a deformed sphere. (paper)

  16. Label swapper device for spectral amplitude coded optical packet networks monolithically integrated on InP.

    Science.gov (United States)

    Muñoz, P; García-Olcina, R; Habib, C; Chen, L R; Leijtens, X J M; de Vries, T; Robbins, D; Capmany, J

    2011-07-04

    In this paper the design, fabrication and experimental characterization of an spectral amplitude coded (SAC) optical label swapper monolithically integrated on Indium Phosphide (InP) is presented. The device has a footprint of 4.8x1.5 mm2 and is able to perform label swapping operations required in SAC at a speed of 155 Mbps. The device was manufactured in InP using a multiple purpose generic integration scheme. Compared to previous SAC label swapper demonstrations, using discrete component assembly, this label swapper chip operates two order of magnitudes faster.

  17. Integrated Design Optimization of a 5-DOF Assistive Light-weight Anthropomorphic Arm

    DEFF Research Database (Denmark)

    Zhou, Lelai; Bai, Shaoping; Hansen, Michael Rygaard

    2011-01-01

    An integrated dimensional and drive train optimization method was developed for light-weight robotic arm design. The method deals with the determination of optimal link lengths and the optimal selection of motors and gearboxes from commercially available components. Constraints are formulated...... on the basis of kinematic performance and dynamic requirements, whereas the main objective is to minimize the weight. The design of a human-like arm, which is 10 kg in weight with a load capacity of 5 kg, is described....

  18. New series of 3 D lattice integrable models

    International Nuclear Information System (INIS)

    Mangazeev, V.V.; Sergeev, S.M.; Stroganov, Yu.G.

    1993-01-01

    In this paper we present a new series of 3-dimensional integrable lattice models with N colors. The weight functions of the models satisfy modified tetrahedron equations with N states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η. 12 refs

  19. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  20. Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky's truncation coefficients

    Science.gov (United States)

    Bucha, Blažej; Hirt, Christian; Kuhn, Michael

    2018-04-01

    Spectral gravity forward modelling is a technique that converts a band-limited topography into its implied gravitational field. This conversion implicitly relies on global integration of topographic masses. In this paper, a modification of the spectral technique is presented that provides gravity effects induced only by the masses located inside or outside a spherical cap centred at the evaluation point. This is achieved by altitude-dependent Molodensky's truncation coefficients, for which we provide infinite series expansions and recurrence relations with a fixed number of terms. Both representations are generalized for an arbitrary integer power of the topography and arbitrary radial derivative. Because of the altitude-dependency of the truncation coefficients, a straightforward synthesis of the near- and far-zone gravity effects at dense grids on irregular surfaces (e.g. the Earth's topography) is computationally extremely demanding. However, we show that this task can be efficiently performed using an analytical continuation based on the gradient approach, provided that formulae for radial derivatives of the truncation coefficients are available. To demonstrate the new cap-modified spectral technique, we forward model the Earth's degree-360 topography, obtaining near- and far-zone effects on gravity disturbances expanded up to degree 3600. The computation is carried out on the Earth's surface and the results are validated against an independent spatial-domain Newtonian integration (1 μGal RMS agreement). The new technique is expected to assist in mitigating the spectral filter problem of residual terrain modelling and in the efficient construction of full-scale global gravity maps of highest spatial resolution.

  1. New Internet search volume-based weighting method for integrating various environmental impacts

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Changyoon, E-mail: changyoon@yonsei.ac.kr; Hong, Taehoon, E-mail: hong7@yonsei.ac.kr

    2016-01-15

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

  2. New Internet search volume-based weighting method for integrating various environmental impacts

    International Nuclear Information System (INIS)

    Ji, Changyoon; Hong, Taehoon

    2016-01-01

    Weighting is one of the steps in life cycle impact assessment that integrates various characterized environmental impacts as a single index. Weighting factors should be based on the society's preferences. However, most previous studies consider only the opinion of some people. Thus, this research proposes a new weighting method that determines the weighting factors of environmental impact categories by considering public opinion on environmental impacts using the Internet search volumes for relevant terms. To validate the new weighting method, the weighting factors for six environmental impacts calculated by the new weighting method were compared with the existing weighting factors. The resulting Pearson's correlation coefficient between the new and existing weighting factors was from 0.8743 to 0.9889. It turned out that the new weighting method presents reasonable weighting factors. It also requires less time and lower cost compared to existing methods and likewise meets the main requirements of weighting methods such as simplicity, transparency, and reproducibility. The new weighting method is expected to be a good alternative for determining the weighting factor. - Highlight: • A new weighting method using Internet search volume is proposed in this research. • The new weighting method reflects the public opinion using Internet search volume. • The correlation coefficient between new and existing weighting factors is over 0.87. • The new weighting method can present the reasonable weighting factors. • The proposed method can be a good alternative for determining the weighting factors.

  3. Multi-stage En/decoders integrated in low loss Si3N4-SiO2 for incoherent spectral amplitude OCDMA on PON

    NARCIS (Netherlands)

    Huiszoon, B.; Leinse, Arne; Geuzebroek, D.H.; Augustin, L.M.; Klein, E.J.; de Waardt, H.; Khoe, G.D.; Koonen, A.M.J.; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaert, P.; Leijtens, X

    2007-01-01

    In this paper, we show and analyze, for the first time, the static performance of integrated multi-stage cascade and tree spectral amplitude OCDMA en/decoders (E/Ds) which are fabricated in the low loss Si3N4–SiO2 material system. Combined with incoherent broad spectral sources these E/Ds enable

  4. Spectral integration in binaural signal detection

    NARCIS (Netherlands)

    Breebaart, D.J.; Par, van de S.L.J.D.E.; Kohlrausch, A.G.

    1997-01-01

    For both monaural and binaural masking, the spectral content of the masker and of the signal to be detected are important stimulus properties influencing the detection process. It is generally accepted that the auditory system separates the incoming signals in several frequency bands. It is not

  5. Integrative analysis of many weighted co-expression networks using tensor computation.

    Directory of Open Access Journals (Sweden)

    Wenyuan Li

    2011-06-01

    Full Text Available The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks.

  6. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    Science.gov (United States)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  7. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F; Plessier, R; Till, M; Marie, B; Djavdan, E [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1997-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  8. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  9. Spectral combination of spherical gravitational curvature boundary-value problems

    Science.gov (United States)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error

  10. Locating new uranium occurrence by integrated weighted analysis in Kaladgi basin, Karnataka

    International Nuclear Information System (INIS)

    Sridhar, M.; Chaturvedi, A.K.; Rai, A.K.

    2014-01-01

    This study aims at identifying uranium potential zones by integrated analysis of thematic layer interpreted and derived from airborne radiometric and magnetic data, satellite data along with available ground geochemical data in western part of Kaladgi basin. Integrated weighted analysis of spatial datasets which included airborne radiometric data (eU, eTh and % K conc.), litho-structural map. hydrogeochemical U conc., and geomorphological data pertaining to study area, was attempted. The weightage analysis was done in GIS environment where different spatial dataset were brought on to a single platform and were analyzed by integration

  11. Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions

    Directory of Open Access Journals (Sweden)

    Yeguo Sun

    2012-01-01

    Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.

  12. Weighting Function Integrated in Grid-interfacing Converters for Unbalanced Voltage Correction

    NARCIS (Netherlands)

    Wang, F.; Duarte, J.L.; Hendrix, M.A.M.

    2008-01-01

    In this paper a weighting function for voltage unbalance correction is proposed to be integrated into the control of distributed grid-interfacing systems. The correction action can help decrease the negative-sequence voltage at the point of connection with the grid. Based on the voltage unbalance

  13. Integrated optics refractometry: sensitivity in relation to spectral shifts

    NARCIS (Netherlands)

    Hoekstra, Hugo; Hammer, M.

    2013-01-01

    A new variant of the Vernier-effect based sensor reported in ref. 1 is introduced. Both sensor types may show a huge index induced spectral shift. It will be shown in a poster presentation that with such sensors, as well as with surface plasmon based sensors, the constraints on the spectral

  14. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  15. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    International Nuclear Information System (INIS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-01-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  16. Spectral Kurtosis Entropy and Weighted SaE-ELM for Bogie Fault Diagnosis under Variable Conditions

    Directory of Open Access Journals (Sweden)

    Zhipeng Wang

    2018-05-01

    Full Text Available Bogies are crucial for the safe operation of rail transit systems and usually work under uncertain and variable operating conditions. However, the diagnosis of bogie faults under variable conditions has barely been discussed until now. Thus, it is valuable to develop effective methods to deal with variable conditions. Besides, considering that the normal data for training are much more than the faulty data in practice, there is another problem in that only a small amount of data is available that includes faults. Concerning these issues, this paper proposes two new algorithms: (1 A novel feature parameter named spectral kurtosis entropy (SKE is proposed based on the protrugram. The SKE not only avoids the manual post-processing of the protrugram but also has strong robustness to the operating conditions and parameter configurations, which have been validated by a simulation experiment in this paper. In this paper, the SKE, in conjunction with variational mode decomposition (VMD, is employed for feature extraction under variable conditions. (2 A new learning algorithm named weighted self-adaptive evolutionary extreme learning machine (WSaE-ELM is proposed. WSaE-ELM gives each sample an extra sample weight to rebalance the training data and optimizes these weights along with the parameters of hidden neurons by means of the self-adaptive differential evolution algorithm. Finally, the hybrid method based on VMD, SKE, and WSaE-ELM is verified by using the vibration signals gathered from real bogies with speed variations. It is demonstrated that the proposed method of bogie fault diagnosis outperforms the conventional methods by up to 4.42% and 6.22%, respectively, in percentages of accuracy under variable conditions.

  17. Multi-octave spectral beam combiner on ultra-broadband photonic integrated circuit platform.

    Science.gov (United States)

    Stanton, Eric J; Heck, Martijn J R; Bovington, Jock; Spott, Alexander; Bowers, John E

    2015-05-04

    We present the design of a novel platform that is able to combine optical frequency bands spanning 4.2 octaves from ultraviolet to mid-wave infrared into a single, low M2 output waveguide. We present the design and realization of a key component in this platform that combines the wavelength bands of 350 nm - 1500 nm and 1500 nm - 6500 nm with demonstrated efficiency greater than 90% in near-infrared and mid-wave infrared. The multi-octave spectral beam combiner concept is realized using an integrated platform with silicon nitride waveguides and silicon waveguides. Simulated bandwidth is shown to be over four octaves, and measured bandwidth is shown over two octaves, limited by the availability of sources.

  18. Reduction theorems for weighted integral inequalities on the cone of monotone functions

    International Nuclear Information System (INIS)

    Gogatishvili, A; Stepanov, V D

    2013-01-01

    This paper surveys results related to the reduction of integral inequalities involving positive operators in weighted Lebesgue spaces on the real semi-axis and valid on the cone of monotone functions, to certain more easily manageable inequalities valid on the cone of non-negative functions. The case of monotone operators is new. As an application, a complete characterization for all possible integrability parameters is obtained for a number of Volterra operators. Bibliography: 118 titles

  19. Computation of conditional Wiener integrals by the composite approximation formulae with weight

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Sidorova, O.V.; Zhidkov, E.P.

    1988-01-01

    New approximation formulae with weight for the functional integrals with conditional Wiener measure are derived. The formulae are exact on a class of polynomial functionals of a given degree. The convergence of approximations to the exact value of integral is proved, the estimate of the remainder is obtained. The results are illustrated with numerical examples. The advantages of the formulae over lattice Monte Carlo method are demonstrated in computation of some quantities in Euclidean quantum mechanics

  20. Spectral Noise Logging for well integrity analysis in the mineral water well in Asselian aquifer

    Directory of Open Access Journals (Sweden)

    R.R. Kantyukov

    2017-06-01

    Full Text Available This paper describes a mineral water well with decreasing salinity level according to lab tests. A well integrity package including Spectral Noise Logging (SNL, High-Precision Temperature (HPT logging and electromagnetic defectoscopy (EmPulse was performed in the well which allowed finding casing leaks and fresh water source. In the paper all logging data were thoroughly analyzed and recommendation for workover was mentioned. The SNL-HPT-EmPulse survey allowed avoiding well abandonment.

  1. Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2017-01-01

    Full Text Available Abstract In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators I α $I_{\\alpha}$ in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutators [ b , I α ] $[b,I_{\\alpha}]$ formed by b and I α $I_{\\alpha}$ are established. Also we study related problems about two-weight, weak type inequalities for I α $I_{\\alpha}$ and [ b , I α ] $[b,I_{\\alpha}]$ in the Morrey-type spaces and give partial results.

  2. Evaluation of Fourier integral. Spectral analysis of seismic events

    International Nuclear Information System (INIS)

    Chitaru, Cristian; Enescu, Dumitru

    2003-01-01

    Spectral analysis of seismic events represents a method for great earthquake prediction. The seismic signal is not a sinusoidal signal; for this, it is necessary to find a method for best approximation of real signal with a sinusoidal signal. The 'Quanterra' broadband station allows the data access in numerical and/or graphical forms. With the numerical form we can easily make a computer program (MSOFFICE-EXCEL) for spectral analysis. (authors)

  3. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  4. An integrated video- and weight-monitoring system for the surveillance of highly enriched uranium blend down operations

    International Nuclear Information System (INIS)

    Lenarduzzi, R.; Castleberry, K.; Whitaker, M.; Martinez, R.

    1998-01-01

    An integrated video-surveillance and weight-monitoring system has been designed and constructed for tracking the blending down of weapons-grade uranium by the US Department of Energy. The instrumentation is being used by the International Atomic Energy Agency in its task of tracking and verifying the blended material at the Portsmouth Gaseous Diffusion Plant, Portsmouth, Ohio. The weight instrumentation developed at the Oak Ridge National Laboratory monitors and records the weight of cylinders of the highly enriched uranium as their contents are fed into the blending facility while the video equipment provided by Sandia National Laboratory records periodic and event triggered images of the blending area. A secure data network between the scales, cameras, and computers insures data integrity and eliminates the possibility of tampering. The details of the weight monitoring instrumentation, video- and weight-system interaction, and the secure data network is discussed

  5. Terrain Extraction by Integrating Terrestrial Laser Scanner Data and Spectral Information

    Science.gov (United States)

    Lau, C. L.; Halim, S.; Zulkepli, M.; Azwan, A. M.; Tang, W. L.; Chong, A. K.

    2015-10-01

    The extraction of true terrain points from unstructured laser point cloud data is an important process in order to produce an accurate digital terrain model (DTM). However, most of these spatial filtering methods just utilizing the geometrical data to discriminate the terrain points from nonterrain points. The point cloud filtering method also can be improved by using the spectral information available with some scanners. Therefore, the objective of this study is to investigate the effectiveness of using the three-channel (red, green and blue) of the colour image captured from built-in digital camera which is available in some Terrestrial Laser Scanner (TLS) for terrain extraction. In this study, the data acquisition was conducted at a mini replica landscape in Universiti Teknologi Malaysia (UTM), Skudai campus using Leica ScanStation C10. The spectral information of the coloured point clouds from selected sample classes are extracted for spectral analysis. The coloured point clouds which within the corresponding preset spectral threshold are identified as that specific feature point from the dataset. This process of terrain extraction is done through using developed Matlab coding. Result demonstrates that a higher spectral resolution passive image is required in order to improve the output. This is because low quality of the colour images captured by the sensor contributes to the low separability in spectral reflectance. In conclusion, this study shows that, spectral information is capable to be used as a parameter for terrain extraction.

  6. Perceptual weights for loudness reflect central spectral processing

    DEFF Research Database (Denmark)

    Joshi, Suyash Narendra; Jesteadt, Walt

    2011-01-01

    Weighting patterns for loudness obtained using the reverse correlation method are thought to reveal the relative contributions of different frequency regions to total loudness, the equivalent of specific loudness. Current models of loudness assume that specific loudness is determined by peripheral...... processes such as compression and masking. Here we test this hypothesis using 20-tone harmonic complexes (200Hz f0, 200 to 4000Hz, 250 ms, 65 dB/Component) added in opposite phase relationships (Schroeder positive and negative). Due to the varying degree of envelope modulations, these time-reversed harmonic...... processes and reflect a central frequency weighting template....

  7. Radiative characteristics of a thin solid fuel at discrete levels of pyrolysis: Angular, spectral, and thermal dependencies

    Science.gov (United States)

    Pettegrew, Richard Dale

    Numerical models of solid fuel combustion rely on accurate radiative property values to properly account for radiative heat transfer to and from the surface. The spectral properties can change significantly over the temperature range from ambient to burnout temperature. The variations of these properties are due to mass loss (as the sample pyrolyzes), chemical changes, and surface finish changes. In addition, band-integrated properties can vary due to the shift in the peak of the Planck curve as the temperature increases, which results in differing weightings of the spectral values. These effects were quantified for a thin cellulosic fuel commonly used in microgravity combustion studies (KimWipesRTM). Pyrolytic effects were simulated by heat-treating the samples in a constant temperature oven for varying times. Spectral data was acquired using a Fourier Transform Infrared (FTIR) spectrometer, along with an integrating sphere. Data was acquired at different incidence angles by mounting the samples at different angles inside the sphere. Comparisons of samples of similar area density created using different heat-treatment regimens showed that thermal history of the samples was irrelevant in virtually all spectral regions, with overall results correlating well with changes in area density. Spectral, angular, and thermal dependencies were determined for a representative data set, showing that the spectral absorptance decreases as the temperature increases, and decreases as the incidence angle varies from normal. Changes in absorptance are primarily offset by corresponding changes in transmittances, with reflectance values shown to be low over the tested spectral region of 2.50 mum to 24.93 mum. Band-integrated values were calculated as a function of temperature for the entire tested spectral region, as well as limited bands relevant for thermal imaging applications. This data was used to demonstrate the significant error that is likely if incorrect emittance values are

  8. Variational Multi-Scale method with spectral approximation of the sub-scales.

    KAUST Repository

    Dia, Ben Mansour

    2015-01-07

    A variational multi-scale method where the sub-grid scales are computed by spectral approximations is presented. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a nite number of modes.

  9. An Integrative Review of Multicomponent Weight Management Interventions for Adults with Intellectual Disabilities

    Science.gov (United States)

    Doherty, Alison J.; Jones, Stephanie P.; Chauhan, Umesh; Gibson, Josephine M. E.

    2018-01-01

    Background: Obesity is more prevalent in people with intellectual disabilities and increases the risk of developing serious medical conditions. UK guidance recommends multicomponent weight management interventions (MCIs), tailored for different population groups. Methods: An integrative review utilizing systematic review methodology was conducted…

  10. Overweight and weight dissatisfaction related to socio-economic position, integration and dietary indicators among south Asian immigrants in Oslo.

    Science.gov (United States)

    Råberg, Marte; Kumar, Bernadette; Holmboe-Ottesen, Gerd; Wandel, Margareta

    2010-05-01

    To investigate how socio-economic position, demographic factors, degree of integration and dietary indicators are related to BMI/waist:hip ratio (WHR) and to weight dissatisfaction and slimming among South Asians in Oslo, Norway. Cross-sectional study consisting of a health check including anthropometric measures and two self-administered questionnaires. Oslo, Norway. Pakistanis and Sri Lankans (n 629), aged 30-60 years, residing in Oslo. BMI was positively associated with female gender (P = 0.004) and Pakistani origin (P integration (measured by a composite index, independent of duration of residence; P = 0.017). One-third of those with normal weight and most of those obese were dissatisfied with their weight. Among these, about 40 % had attempted to slim during the past year. Dissatisfaction with weight was positively associated with education in women (P = 0.006) and with integration in men (P = 0.026), and inversely associated with physical activity (P = 0.044) in men. Women who had made slimming attempts had breakfast and other meals less frequently than others (P < 0.05). Weight dissatisfaction exists among South Asian immigrants. More research is needed regarding bodily dissatisfaction and the relationship between perception of weight and weight-change attempts among immigrants in Norway, in order to prevent and treat both obesity and eating disorders.

  11. A Concept Lattice for Semantic Integration of Geo-Ontologies Based on Weight of Inclusion Degree Importance and Information Entropy

    Directory of Open Access Journals (Sweden)

    Jia Xiao

    2016-11-01

    Full Text Available Constructing a merged concept lattice with formal concept analysis (FCA is an important research direction in the field of integrating multi-source geo-ontologies. Extracting essential geographical properties and reducing the concept lattice are two key points of previous research. A formal integration method is proposed to address the challenges in these two areas. We first extract essential properties from multi-source geo-ontologies and use FCA to build a merged formal context. Second, the combined importance weight of each single attribute of the formal context is calculated by introducing the inclusion degree importance from rough set theory and information entropy; then a weighted formal context is built from the merged formal context. Third, a combined weighted concept lattice is established from the weighted formal context with FCA and the importance weight value of every concept is defined as the sum of weight of attributes belonging to the concept’s intent. Finally, semantic granularity of concept is defined by its importance weight; we, then gradually reduce the weighted concept lattice by setting up diminishing threshold of semantic granularity. Additionally, all of those reduced lattices are organized into a regular hierarchy structure based on the threshold of semantic granularity. A workflow is designed to demonstrate this procedure. A case study is conducted to show feasibility and validity of this method and the procedure to integrate multi-source geo-ontologies.

  12. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  13. Effect of preliminary annealing of silicon substrates on the spectral sensitivity of photodetectors in bipolar integrated circuits

    International Nuclear Information System (INIS)

    Blynskij, V.I.; Bozhatkin, O.A.; Golub, E.S.; Lemeshevskaya, A.M.; Shvedov, S.V.

    2010-01-01

    We examine the results of an effect of preliminary annealing on the spectral sensitivity of photodetectors in bipolar integrated circuits, formed in silicon grown by the Czochralski method. We demonstrate the possibility of substantially improving the sensitivity of photodetectors in the infrared region of the spectrum with twostep annealing. The observed effect is explained by participation of oxidation in the gettering process, where oxidation precedes formation of a buried n + layer in the substrate. (authors)

  14. Integration of Absorption Feature Information from Visible to Longwave Infrared Spectral Ranges for Mineral Mapping

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-09-01

    Full Text Available Merging hyperspectral data from optical and thermal ranges allows a wider variety of minerals to be mapped and thus allows lithology to be mapped in a more complex way. In contrast, in most of the studies that have taken advantage of the data from the visible (VIS, near-infrared (NIR, shortwave infrared (SWIR and longwave infrared (LWIR spectral ranges, these different spectral ranges were analysed and interpreted separately. This limits the complexity of the final interpretation. In this study a presentation is made of how multiple absorption features, which are directly linked to the mineral composition and are present throughout the VIS, NIR, SWIR and LWIR ranges, can be automatically derived and, moreover, how these new datasets can be successfully used for mineral/lithology mapping. The biggest advantage of this approach is that it overcomes the issue of prior definition of endmembers, which is a requested routine employed in all widely used spectral mapping techniques. In this study, two different airborne image datasets were analysed, HyMap (VIS/NIR/SWIR image data and Airborne Hyperspectral Scanner (AHS, LWIR image data. Both datasets were acquired over the Sokolov lignite open-cast mines in the Czech Republic. It is further demonstrated that even in this case, when the absorption feature information derived from multispectral LWIR data is integrated with the absorption feature information derived from hyperspectral VIS/NIR/SWIR data, an important improvement in terms of more complex mineral mapping is achieved.

  15. Intersection numbers of spectral curves

    CERN Document Server

    Eynard, B.

    2011-01-01

    We compute the symplectic invariants of an arbitrary spectral curve with only 1 branchpoint in terms of integrals of characteristic classes in the moduli space of curves. Our formula associates to any spectral curve, a characteristic class, which is determined by the laplace transform of the spectral curve. This is a hint to the key role of Laplace transform in mirror symmetry. When the spectral curve is y=\\sqrt{x}, the formula gives Kontsevich--Witten intersection numbers, when the spectral curve is chosen to be the Lambert function \\exp{x}=y\\exp{-y}, the formula gives the ELSV formula for Hurwitz numbers, and when one chooses the mirror of C^3 with framing f, i.e. \\exp{-x}=\\exp{-yf}(1-\\exp{-y}), the formula gives the Marino-Vafa formula, i.e. the generating function of Gromov-Witten invariants of C^3. In some sense this formula generalizes ELSV, Marino-Vafa formula, and Mumford formula.

  16. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  17. Perturbation results for the Estrada index in weighted networks

    Energy Technology Data Exchange (ETDEWEB)

    Shang Yilun, E-mail: shylmath@hotmail.com [Institute for Cyber Security, University of Texas at San Antonio, San Antonio, TX 78249 (United States)

    2011-02-18

    The logarithm of the Estrada index has been proposed recently as a spectral measure to character efficiently the robustness of complex networks. In this paper, we explore the Estrada index in weighted networks and develop various perturbation results based on spectral graph theory. It is shown that the robustness of a network may be enhanced even when some edge weights are reduced. This is of particular theoretical and practical significance to network design and optimization.

  18. Perturbation results for the Estrada index in weighted networks

    International Nuclear Information System (INIS)

    Shang Yilun

    2011-01-01

    The logarithm of the Estrada index has been proposed recently as a spectral measure to character efficiently the robustness of complex networks. In this paper, we explore the Estrada index in weighted networks and develop various perturbation results based on spectral graph theory. It is shown that the robustness of a network may be enhanced even when some edge weights are reduced. This is of particular theoretical and practical significance to network design and optimization.

  19. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Science.gov (United States)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  20. Hybrid Spectral Micro-CT: System Design, Implementation, and Preliminary Results

    CERN Document Server

    Bennett, James R; Xu, Qiong; Yu, Hengyong; Walsh, Michael; Butler, Anthony; Butler, Phillip; Cao, Guohua; Mohs, Aaron; Wang, Ge

    2014-01-01

    Spectral CT has proven an important development in biomedical imaging, and there have been several publications in the past years demonstrating its merits in pre-clinical and clinical applications. In 2012, Xu et al. reported that near-term implementation of spectral micro-CT could be enhanced by a hybrid architecture: a narrow-beam spectral "interior" imaging chain integrated with a traditional wide-beam "global" imaging chain. This hybrid integration coupled with compressive sensing (CS)-based interior tomography demonstrated promising results for improved contrast resolution, and decreased system cost and radiation dose. The motivation for the current study is implementation and evaluation of the hybrid architecture with a first-of-its-kind hybrid spectral micro-CT system. Preliminary results confirm improvements in both contrast and spatial resolution. This technology is shown to merit further investigation and potential application in future spectral CT scanner design.

  1. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    Science.gov (United States)

    Hanselaer, P.; Keppens, A.; Forment, S.; Ryckaert, W. R.; Deconinck, G.

    2009-09-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup.

  2. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes

    International Nuclear Information System (INIS)

    Hanselaer, P; Keppens, A; Forment, S; Ryckaert, W R; Deconinck, G

    2009-01-01

    Light-emitting diode (LED) technology is developing very quickly and may be considered an alternative for traditional light sources. However, at this moment, manufacturers and end users of LEDs are facing a rather basic but major problem. The lack of standardization regarding optical and electrical characterization of LEDs appears to compromise a successful implementation. In particular, numbers quoted for the luminous flux, and consequently for the efficacy of LEDs, are very sensitive data because they are used to impress and push the LED market. In this paper, the most was made of the typical hemispherical radiation of high-power LEDs to increase the accuracy of the flux determination using a custom-made integrating sphere. Recently developed measurement techniques such as the use of an external spectral irradiance standard and an optimized spectral irradiance detection head are combined with a very particular port geometry and a minimized baffle area. This results in a uniform spatial response distribution function (SRDF), which guarantees an accurate radiant and luminous flux determination, irrespective of the spatial intensity distribution of the LED package or luminaire. The effect of the directional response of the detector head on the SRDF has been explored. Measurements on LED devices with and without external optics are presented, illustrating the possibilities of the measurement setup

  3. THE MEASUREMENT, TREATMENT, AND IMPACT OF SPECTRAL COVARIANCE AND BAYESIAN PRIORS IN INTEGRAL -FIELD SPECTROSCOPY OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Greco, Johnny P. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Brandt, Timothy D. [Institute for Advanced Study, Princeton, NJ (United States)

    2016-12-20

    The recovery of an exoplanet’s atmospheric parameters from its spectrum requires accurate knowledge of the spectral errors and covariances. Unfortunately, the complex image processing used in high-contrast integral-field spectrograph (IFS) observations generally produces spectral covariances that are poorly understood and often ignored. In this work, we show how to measure the spectral errors and covariances and include them self-consistently in parameter retrievals. By combining model exoplanet spectra with a realistic noise model generated from the Gemini Planet Imager (GPI) early science data, we show that ignoring spectral covariance in high-contrast IFS data can both bias inferred parameters and lead to unreliable confidence regions on those parameters. This problem is made worse by the common practice of scaling the χ {sup 2} per degree of freedom to unity; the input parameters then fall outside the 95% confidence regions in as many as ∼80% of noise realizations. The biases we observe can approach the typical levels of precision achieved in high-contrast spectroscopy. Accounting for realistic priors in fully Bayesian retrievals can also have a significant impact on the inferred parameters. Plausible priors on effective temperature and surface gravity can vary by an order of magnitude across the confidence regions appropriate for objects with weak age constraints; priors for objects with good age constraints are dominated by modeling uncertainties. Our methods are directly applicable to existing high-contrast IFSs including GPI and SPHERE, as well as upcoming instruments like CHARIS and, ultimately, WFIRST-AFTA.

  4. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  5. On spectral resolutions of differential vector-operators

    International Nuclear Information System (INIS)

    Ashurov, R.R.; Sokolov, M.S.

    2004-04-01

    We show that spectral resolutions of differential vector-operators may be represented as a specific direct sum integral operator with a kernel written in terms of generalized vector-operator eigenfunctions. Then we prove that a generalized eigenfunction measurable with respect to the spectral parameter may be decomposed using a set of analytical defining systems of coordinate operators. (author)

  6. Spectral integration of broadband signals in diotoc and dichotic masking experiments

    NARCIS (Netherlands)

    Langhans, A.; Kohlrausch, A.G.

    1992-01-01

    The method of Gässler [Acustica 4, 408–414 (1954)] was used to measure the audibility of multicomponent signals as a function of their bandwidth against a broadband, white-noise masker. Test signals were composed of 1 to 41 sinusoids with a spectral spacing of 10 Hz and were always spectrally

  7. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  8. Spectrally adjustable quasi-monochromatic radiance source based on LEDs and its application for measuring spectral responsivity of a luminance meter

    International Nuclear Information System (INIS)

    Hirvonen, Juha-Matti; Poikonen, Tuomas; Vaskuri, Anna; Kärhä, Petri; Ikonen, Erkki

    2013-01-01

    A spectrally adjustable radiance source based on light-emitting diodes (LEDs) has been constructed for spectral responsivity measurements of radiance and luminance meters. A 300 mm integrating sphere source with adjustable output port is illuminated using 30 thermally stabilized narrow-band LEDs covering the visible wavelength range of 380–780 nm. The functionality of the measurement setup is demonstrated by measuring the relative spectral responsivities of a luminance meter and a photometer head with cosine-corrected input optics. (paper)

  9. Learning theory of distributed spectral algorithms

    International Nuclear Information System (INIS)

    Guo, Zheng-Chu; Lin, Shao-Bo; Zhou, Ding-Xuan

    2017-01-01

    Spectral algorithms have been widely used and studied in learning theory and inverse problems. This paper is concerned with distributed spectral algorithms, for handling big data, based on a divide-and-conquer approach. We present a learning theory for these distributed kernel-based learning algorithms in a regression framework including nice error bounds and optimal minimax learning rates achieved by means of a novel integral operator approach and a second order decomposition of inverse operators. Our quantitative estimates are given in terms of regularity of the regression function, effective dimension of the reproducing kernel Hilbert space, and qualification of the filter function of the spectral algorithm. They do not need any eigenfunction or noise conditions and are better than the existing results even for the classical family of spectral algorithms. (paper)

  10. Infinitely many conservation laws for two integrable lattice hierarchies associated with a new discrete Schroedinger spectral problem

    International Nuclear Information System (INIS)

    Zhu, Zuo-nong; Tam, Hon-Wah; Ding, Qing

    2003-01-01

    In this Letter, by means of considering matrix form of a new Schroedinger discrete spectral operator equation, and constructing opportune time evolution equations, and using discrete zero curvature representation, two discrete integrable lattice hierarchies proposed by Boiti et al. [J. Phys. A: Math. Gen. 36 (2003) 139] are re-derived. From the matrix Lax representations, we demonstrate the existence of infinitely many conservation laws for the two lattice hierarchies and give the corresponding conserved densities and the associated fluxes by means of formulae. Thus their integrability is further confirmed. Specially we obtain the infinitely many conservation laws for a new discrete version of the KdV equation. A connection between the conservation laws of the discrete KdV equation and the ones of the KdV equation is discussed by two examples

  11. Spectral functions from hadronic τ decays

    International Nuclear Information System (INIS)

    Davier, Michel

    2002-01-01

    Hadronic decays of the τ lepton provide a clean environment to study hadron dynamics in an energy regime dominated by romances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonpertubative contributions. the τ vector spectral functions for the 2π and 4π final states are used together with e p+ e p- data in order to compute vacuum polarization integrals occurring in the calculations of the anomalous magnetic moment of the muon and the running of the electromagnetic coupling

  12. The use of wavelength-selective plastic cladding materials in horticulture: understanding of crop and fungal responses through the assessment of biological spectral weighting functions.

    Science.gov (United States)

    Paul, Nigel D; Jacobson, Rob J; Taylor, Anna; Wargent, Jason J; Moore, Jason P

    2005-01-01

    Plant responses to light spectral quality can be exploited to deliver a range of agronomically desirable end points in protected crops. This can be achieved using plastics with specific spectral properties as crop covers. We have studied the responses of a range of crops to plastics that have either (a) increased transmission of UV compared with standard horticultural covers, (b) decreased transmission of UV or (c) increased the ratio of red (R) : far-red (FR) radiation. Both the UV-transparent and R : FR increasing films reduced leaf area and biomass, offering potential alternatives to chemical growth regulators. The UV-opaque film increased growth, but while this may be useful in some crops, there were trade-offs with elements of quality, such as pigmentation and taste. UV manipulation may also influence disease control. Increasing UV inhibited not only the pathogenic fungus Botrytis cinerea but also the disease biocontrol agent Trichoderma harzianum. Unlike B. cinerea, T. harzianum was highly sensitive to UV-A radiation. These fungal responses and those for plant growth in the growth room and the field under different plastics are analyzed in terms of alternative biological spectral weighting functions (BSWF). The role of BSWF in assessing general patterns of response to UV modification in horticulture is also discussed.

  13. Integrating mobile technology with routine dietetic practice: the case of myPace for weight management.

    Science.gov (United States)

    Harricharan, Michelle; Gemen, Raymond; Celemín, Laura Fernández; Fletcher, David; de Looy, Anne E; Wills, Josephine; Barnett, Julie

    2015-05-01

    The field of Mobile health (mHealth), which includes mobile phone applications (apps), is growing rapidly and has the potential to transform healthcare by increasing its quality and efficiency. The present paper focuses particularly on mobile technology for body weight management, including mobile phone apps for weight loss and the available evidence on their effectiveness. Translation of behaviour change theory into weight management strategies, including integration in mobile technology is also discussed. Moreover, the paper presents and discusses the myPace platform as a case in point. There is little clinical evidence on the effectiveness of currently available mobile phone apps in enabling behaviour change and improving health-related outcomes, including sustained body weight loss. Moreover, it is unclear to what extent these apps have been developed in collaboration with health professionals, such as dietitians, and the extent to which apps draw on and operationalise behaviour change techniques has not been explored. Furthermore, presently weight management apps are not built for use as part of dietetic practice, or indeed healthcare more widely, where face-to-face engagement is fundamental for instituting the building blocks for sustained lifestyle change. myPace is an innovative mobile technology for weight management meant to be embedded into and to enhance dietetic practice. Developed out of systematic, iterative stages of engagement with dietitians and consumers, it is uniquely designed to complement and support the trusted health practitioner-patient relationship. Future mHealth technology would benefit if engagement with health professionals and/or targeted patient groups, and behaviour change theory stood as the basis for technology development. Particularly, integrating technology into routine health care practice, rather than replacing one with the other, could be the way forward.

  14. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    Pulkkinen, A; Kaipio, J P; Tarvainen, T; Cox, B T; Arridge, S R

    2014-01-01

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  15. Feasibility study of a novel miniaturized spectral imaging system architecture in UAV surveillance

    Science.gov (United States)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    The spectral imaging technology is able to analysis the spectral and spatial geometric character of the target at the same time. To break through the limitation brought by the size, weight and cost of the traditional spectral imaging instrument, a miniaturized novel spectral imaging based on CMOS processing has been introduced in the market. This technology has enabled the possibility of applying spectral imaging in the UAV platform. In this paper, the relevant technology and the related possible applications have been presented to implement a quick, flexible and more detailed remote sensing system.

  16. Extracting attosecond delays from spectrally overlapping interferograms

    Science.gov (United States)

    Jordan, Inga; Wörner, Hans Jakob

    2018-02-01

    Attosecond interferometry is becoming an increasingly popular technique for measuring the dynamics of photoionization in real time. Whereas early measurements focused on atomic systems with very simple photoelectron spectra, the technique is now being applied to more complex systems including isolated molecules and solids. The increase in complexity translates into an augmented spectral congestion, unavoidably resulting in spectral overlap in attosecond interferograms. Here, we discuss currently used methods for phase retrieval and introduce two new approaches for determining attosecond photoemission delays from spectrally overlapping photoelectron spectra. We show that the previously used technique, consisting in the spectral integration of the areas of interest, does in general not provide reliable results. Our methods resolve this problem, thereby opening the technique of attosecond interferometry to complex systems and fully exploiting its specific advantages in terms of spectral resolution compared to attosecond streaking.

  17. Design of integrated optics all-optical label swappers for spectral amplitude code label swapping optical packet networks on active/passive InP technology

    NARCIS (Netherlands)

    Habib, C.; Munoz, P.; Leijtens, X.J.M.; Chen, Lawrence; Smit, M.K.; Capmany, J.

    2009-01-01

    In this paper the designs of optical label swapper devices, for spectral amplitude coded labels, monolithically integrated on InP active/passive technology are pre sented. The devices are based on cross-gain modulation in a semiconductor optical amplifier. Multi-wavelength operation is enabled by

  18. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  19. Improving Allergen Prediction in Main Crops Using a Weighted Integrative Method.

    Science.gov (United States)

    Li, Jing; Wang, Jing; Li, Jing

    2017-12-01

    As a public health problem, food allergy is frequently caused by food allergy proteins, which trigger a type-I hypersensitivity reaction in the immune system of atopic individuals. The food allergens in our daily lives are mainly from crops including rice, wheat, soybean and maize. However, allergens in these main crops are far from fully uncovered. Although some bioinformatics tools or methods predicting the potential allergenicity of proteins have been proposed, each method has their limitation. In this paper, we built a novel algorithm PREAL W , which integrated PREAL, FAO/WHO criteria and motif-based method by a weighted average score, to benefit the advantages of different methods. Our results illustrated PREAL W has better performance significantly in the crops' allergen prediction. This integrative allergen prediction algorithm could be useful for critical food safety matters. The PREAL W could be accessed at http://lilab.life.sjtu.edu.cn:8080/prealw .

  20. Spectral Interpolation on 3 x 3 Stencils for Prediction and Compression

    Energy Technology Data Exchange (ETDEWEB)

    Ibarria, L; Lindstrom, P; Rossignac, J

    2007-06-25

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show through several applications that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  1. Fractional multilinear integrals with rough kernels on generalized weighted Morrey spaces

    Directory of Open Access Journals (Sweden)

    Akbulut Ali

    2016-01-01

    Full Text Available In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ which is a generalization of the higher-order commutator of the rough fractional integral on the generalized weighted Morrey spaces Mp,ϕ (w. We find the sufficient conditions on the pair (ϕ1, ϕ2 with w ∈ Ap,q which ensures the boundedness of the operators TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ from Mp,φ1wptoMp,φ2wq${M_{p,{\\varphi _1}}}\\left( {{w^p}} \\right\\,{\\rm{to}}\\,{M_{p,{\\varphi _2}}}\\left( {{w^q}} \\right$ for 1 < p < q < ∞. In all cases the conditions for the boundedness of the operator TΩ,αA1,A2,…,Ak,$T_{\\Omega ,\\alpha }^{{A_1},{A_2}, \\ldots ,{A_k}},$ are given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2 and w, which do not assume any assumption on monotonicity of ϕ1 (x,r, ϕ2(x, r in r.

  2. Spectral analysis of difference and differential operators in weighted spaces

    International Nuclear Information System (INIS)

    Bichegkuev, M S

    2013-01-01

    This paper is concerned with describing the spectrum of the difference operator K:l α p (Z,X)→l α p (Z......athscrKx)(n)=Bx(n−1),  n∈Z,  x∈l α p (Z,X), with a constant operator coefficient B, which is a bounded linear operator in a Banach space X. It is assumed that K acts in the weighted space l α p (Z,X), 1≤p≤∞, of two-sided sequences of vectors from X. The main results are obtained in terms of the spectrum σ(B) of the operator coefficient B and properties of the weight function. Applications to the study of the spectrum of a differential operator with an unbounded operator coefficient (the generator of a strongly continuous semigroup of operators) in weighted function spaces are given. Bibliography: 23 titles

  3. Coaching and barriers to weight loss: an integrative review

    Directory of Open Access Journals (Sweden)

    Muñoz Obino KF

    2016-12-01

    Full Text Available Karen Fernanda Muñoz Obino,1 Caroline Aguiar Pereira,1 Rafaela Siviero Caron-Lienert2 1Nutrology/Clinical Nutrition Unit, Ernesto Dornelles Hospital, 2Nutrition of the Educational and Research Institute of Moinhos de Vento Hospital, Porto Alegre, Brazil Introduction: Coaching is proposed to raise a patient’s awareness and responsibility for their health behaviour change by transforming the professional–patient relationship.Objective: To review the scientific literature on how coaching can assist in weight loss and improve a patient’s state of health.Methodology: An integrative literature search was performed using PubMed, Latin American and Caribbean Literature in Health Sciences, and Scientific Electronic Library Online. We selected articles that were published in Portuguese, English, and Spanish over the last 10 years. Data analysis was performed using a validated data collection instrument.Results: Among the 289 articles identified in the search, 276 were excluded because they did not address the leading research question, their full texts were not available on the Internet, or they were duplicate publications. Therefore, for the analysis, we selected 13 articles that we classified as randomized clinical studies (46.15%; n=6, cohort studies (30.76%; n=4, cross-sectional studies (7.69%; n=1, case studies (7.69%; n=1, and review articles (7.69%; n=1. Joint intervention (combined in-person and telecoaching sessions constituted the majority of session types. The use of technical coaching was superior in reducing anthropometric measurements and increasing the levels of motivation and personal satisfaction compared with formal health education alone.Conclusion: Coaching is an efficient, cost-effective method for combining formal education and treatment of health in the weight-loss process. Additional randomized studies are needed to demonstrate its effectiveness with respect to chronic disease indicators. Keywords: coaching, weight loss

  4. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  5. Spectral properties of 441 radio pulsars

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-02-01

    We present a study of the spectral properties of 441 pulsars observed with the Parkes radio telescope near the centre frequencies of 728, 1382 and 3100 MHz. The observations at 728 and 3100 MHz were conducted simultaneously using the dual-band 10-50 cm receiver. These high-sensitivity, multifrequency observations provide a systematic and uniform sample of pulsar flux densities. We combine our measurements with spectral data from the literature in order to derive the spectral properties of these pulsars. Using techniques from robust regression and information theory, we classify the observed spectra in an objective, robust and unbiased way into five morphological classes: simple or broken power law, power law with either low- or high-frequency cut-off and log-parabolic spectrum. While about 79 per cent of the pulsars that could be classified have simple power-law spectra, we find significant deviations in 73 pulsars, 35 of which have curved spectra, 25 with a spectral break and 10 with a low-frequency turn-over. We identify 11 gigahertz-peaked spectrum (GPS) pulsars, with 3 newly identified in this work and 8 confirmations of known GPS pulsars; 3 others show tentative evidence of GPS, but require further low-frequency measurements to support this classification. The weighted mean spectral index of all pulsars with simple power-law spectra is -1.60 ± 0.03. The observed spectral indices are well described by a shifted log-normal distribution. The strongest correlations of spectral index are with spin-down luminosity, magnetic field at the light-cylinder and spin-down rate. We also investigate the physical origin of the observed spectral features and determine emission altitudes for three pulsars.

  6. On spectral distribution of high dimensional covariation matrices

    DEFF Research Database (Denmark)

    Heinrich, Claudio; Podolskij, Mark

    In this paper we present the asymptotic theory for spectral distributions of high dimensional covariation matrices of Brownian diffusions. More specifically, we consider N-dimensional Itô integrals with time varying matrix-valued integrands. We observe n equidistant high frequency data points...... of the underlying Brownian diffusion and we assume that N/n -> c in (0,oo). We show that under a certain mixed spectral moment condition the spectral distribution of the empirical covariation matrix converges in distribution almost surely. Our proof relies on method of moments and applications of graph theory....

  7. GIS-Based Integration of Subjective and Objective Weighting Methods for Regional Landslides Susceptibility Mapping

    Directory of Open Access Journals (Sweden)

    Suhua Zhou

    2016-04-01

    Full Text Available The development of landslide susceptibility maps is of great importance due to rapid urbanization. The purpose of this study is to present a method to integrate the subjective weight with objective weight for regional landslide susceptibility mapping on the geographical information system (GIS platform. The analytical hierarchy process (AHP, which is subjective, was employed to weight predictive factors’ contribution to landslide occurrence. The frequency ratio (FR method, which is objective, was used to derive subclasses’ frequency ratio with respect to landslides that indicate the relative importance of a subclass within each predictive factor. A case study was carried out at Tsushima Island, Japan, using a historical inventory of 534 landslides and seven predictive factors: elevation, slope, aspect, terrain roughness index (TRI, lithology, land cover and mean annual precipitation (MAP. The landslide susceptibility index (LSI was calculated using the weighted linear combination of factors’ weights and subclasses’ weights. The study area was classified into five susceptibility zones according to the LSI. In addition, the produced susceptibility map was compared with maps generated using the conventional FR and AHP method and validated using the relative landslide index (RLI. The validation result showed that the proposed method performed better than the conventional application of the FR method and AHP method. The obtained landslide susceptibility maps could serve as a scientific basis for urban planning and landslide hazard management.

  8. Spectral functions for the flat plasma sheet model

    International Nuclear Information System (INIS)

    Pirozhenko, I G

    2006-01-01

    The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen. 38 11027) where the spectral analysis of the electromagnetic field on the background of an infinitely thin flat plasma layer is carried out. The solutions to Maxwell equations with the appropriate matching conditions at the plasma layer are derived and the spectrum of electromagnetic oscillations is determined. The spectral zeta function and the integrated heat kernel are constructed for different branches of the spectrum in an explicit form. The asymptotic expansion of the integrated heat kernel at small values of the evolution parameter is derived. The local heat kernels are considered also

  9. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  10. Spectral parameters for scattering amplitudes in N=4 super Yang-Mills theory

    International Nuclear Information System (INIS)

    Ferro, Livia; Łukowski, Tomasz; Meneghelli, Carlo; Plefka, Jan; Staudacher, Matthias

    2014-01-01

    Planar N=4 Super Yang-Mills theory appears to be a quantum integrable four-dimensional conformal theory. This has been used to find equations believed to describe its exact spectrum of anomalous dimensions. Integrability seemingly also extends to the planar space-time scattering amplitudes of the N=4 model, which show strong signs of Yangian invariance. However, in contradistinction to the spectral problem, this has not yet led to equations determining the exact amplitudes. We propose that the missing element is the spectral parameter, ubiquitous in integrable models. We show that it may indeed be included into recent on-shell approaches to scattering amplitude integrands, providing a natural deformation of the latter. Under some constraints, Yangian symmetry is preserved. Finally we speculate that the spectral parameter might also be the regulator of choice for controlling the infrared divergences appearing when integrating the integrands in exactly four dimensions

  11. Integrative Multi-Spectral Sensor Device for Far-Infrared and Visible Light Fusion

    Science.gov (United States)

    Qiao, Tiezhu; Chen, Lulu; Pang, Yusong; Yan, Gaowei

    2018-06-01

    Infrared and visible light image fusion technology is a hot spot in the research of multi-sensor fusion technology in recent years. Existing infrared and visible light fusion technologies need to register before fusion because of using two cameras. However, the application effect of the registration technology has yet to be improved. Hence, a novel integrative multi-spectral sensor device is proposed for infrared and visible light fusion, and by using the beam splitter prism, the coaxial light incident from the same lens is projected to the infrared charge coupled device (CCD) and visible light CCD, respectively. In this paper, the imaging mechanism of the proposed sensor device is studied with the process of the signals acquisition and fusion. The simulation experiment, which involves the entire process of the optic system, signal acquisition, and signal fusion, is constructed based on imaging effect model. Additionally, the quality evaluation index is adopted to analyze the simulation result. The experimental results demonstrate that the proposed sensor device is effective and feasible.

  12. Harmonic R-matrices for scattering amplitudes and spectral regularization

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, Livia; Plefka, Jan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Lukowski, Tomasz [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Univ. Berlin (Germany). IRIS Adlershof; Meneghelli, Carlo [Hamburg Univ. (Germany). Fachbereich 11 - Mathematik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group; Staudacher, Matthias [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany)

    2012-12-15

    Planar N=4 super Yang-Mills appears to be integrable. While this allows to find this theory's exact spectrum, integrability has hitherto been of no direct use for scattering amplitudes. To remedy this, we deform all scattering amplitudes by a spectral parameter. The deformed tree-level four-point function turns out to be essentially the one-loop R-matrix of the integrable N=4 spin chain satisfying the Yang-Baxter equation. Deformed on-shell three-point functions yield novel three-leg R-matrices satisfying bootstrap equations. Finally, we supply initial evidence that the spectral parameter might find its use as a novel symmetry-respecting regulator replacing dimensional regularization. Its physical meaning is a local deformation of particle helicity, a fact which might be useful for a much larger class of non-integrable four-dimensional field theories.

  13. Doping-induced redistribution of magnetic spectral weight in the substituted hexaborides Ce1 -xLaxB6 and Ce1 -xNdxB6

    Science.gov (United States)

    Nikitin, S. E.; Portnichenko, P. Y.; Dukhnenko, A. Â. V.; Shitsevalova, N. Yu.; Filipov, V. B.; Qiu, Y.; Rodriguez-Rivera, J. A.; Ollivier, J.; Inosov, D. S.

    2018-02-01

    We investigate the doping-induced changes in the electronic structure of CeB6 on a series of substituted Ce1 -xRxB6 samples (R =La , Nd) using diffuse neutron scattering. We observe a redistribution of magnetic spectral weight across the Brillouin zone, which we associate with the changes in the Fermi-surface nesting properties related to the modified charge carrier concentration. In particular, a strong diffuse peak at the corner of the Brillouin zone (R point), which coincides with the propagation vector of the elusive antiferroquadrupolar (AFQ) order in CeB6, is rapidly suppressed by both La and Nd doping, like the AFQ order itself. The corresponding spectral weight is transferred to the X (00 1/2 ) point, ultimately stabilizing a long-range AFM order at this wave vector at the Nd-rich side of the phase diagram. At an intermediate Nd concentration, a broad diffuse peak with multiple local maxima of intensity is observed around the X point, evidencing itinerant frustration that gives rise to multiple ordered phases for which Ce1 -xNdxB6 is known. On the La-rich side of the phase diagram, however, dilution of the magnetic moments prevents the formation of a similar (00 1/2 ) -type order despite the presence of nesting. Our results demonstrate how diffuse neutron scattering can be used to probe the nesting vectors in complex f -electron systems directly, without reference to the single-particle band structure, and emphasize the role of Fermi surface geometry in stabilizing magnetic order in rare-earth hexaborides.

  14. Audiovisual Integration in Children Listening to Spectrally Degraded Speech

    Science.gov (United States)

    Maidment, David W.; Kang, Hi Jee; Stewart, Hannah J.; Amitay, Sygal

    2015-01-01

    Purpose: The study explored whether visual information improves speech identification in typically developing children with normal hearing when the auditory signal is spectrally degraded. Method: Children (n = 69) and adults (n = 15) were presented with noise-vocoded sentences from the Children's Co-ordinate Response Measure (Rosen, 2011) in…

  15. Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers

    Science.gov (United States)

    Davis, Anthony B.; Xu, Feng; Diner, David J.

    2018-01-01

    We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.

  16. WE-DE-BRA-07: Megavoltage Spectral Imaging with a Layered Detector

    Energy Technology Data Exchange (ETDEWEB)

    Myronakis, M; Rottmann, J; Berbeco, R [Brigham and Women’s Hospital, Boston, MA (United States); Hu, Y [Dana Farber Cancer Institute, Boston, MA (United States); Wang, A; Shedlock, D; Star-Lack, J [Varian Medical Systems, Palo Alto, CA (United States); Morf, D [Varian Medical Systems, Dattwil, Aargau (Switzerland)

    2016-06-15

    Purpose: The aim of the current work is to investigate the feasibility of megavoltage spectral imaging using a multiple layered detector for enhancement of low contrast detectability through material segmentation and discrimination (such as bone, markers and metal implants). Potentially the technique can be applied to improve detection and reduce dose in Megavoltage Cone Beam Computed Tomography (MV-CBCT). Methods: Experiments were performed with a prototype multi-layer imager (MLI) which has higher detective efficiency and lower noise characteristics than conventional Electronic Portal Imaging Devices (EPIDs). Images of a solid water phantom were acquired at 2.5 MV, 6MV and 6MV without flattening filter (FFF). The following materials were placed within a stack of solid water: aluminum, copper and gold. Material separation was assessed based on Contrast-to-Noise Ratio (CNR) of the weighted image, formed by a weighted subtraction of the images from two layers of the MLI. A range of weighting factors were investigated for material separation. Results: CNR can be minimized for each material by appropriate selection of the subtraction weighting factor. This is equivalent to a selective subtraction of specific materials from the image. Using multiple layers simultaneously also decreases the dose requirement and removes any registration errors. The minimum CNR for aluminum, copper and gold at the weighted image formed with 2.5MV was obtained at weighting factors equal to 0.92, 0.76 and 0.64 respectively. The corresponding values at 6MVFFF were 0.99, 0.92 and 0.78 respectively. Conclusion: In the current work, an MV spectral imaging feasibility study was attempted using a novel multi-layer prototype EPID imager. Initial results suggest that material separation based on spectral differences between different layers is possible. This spectral imaging technique has potential advantages in MV-CBCT for real-time target tracking, patient set-up imaging and adaptive radiotherapy

  17. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    Science.gov (United States)

    Gratton, Steven

    2011-09-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain “Youngness Paradox”-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  18. Path integral for stochastic inflation: Nonperturbative volume weighting, complex histories, initial conditions, and the end of inflation

    International Nuclear Information System (INIS)

    Gratton, Steven

    2011-01-01

    In this paper we present a path integral formulation of stochastic inflation. Volume weighting can be naturally implemented from this new perspective in a very straightforward way when compared to conventional Langevin approaches. With an in-depth study of inflation in a quartic potential, we investigate how the inflaton evolves and how inflation typically ends both with and without volume weighting. The calculation can be carried to times beyond those accessible to conventional Fokker-Planck approaches. Perhaps unexpectedly, complex histories sometimes emerge with volume weighting. The reward for this excursion into the complex plane is an insight into how volume-weighted inflation both loses memory of initial conditions and ends via slow roll. The slow-roll end of inflation mitigates certain ''Youngness Paradox''-type criticisms of the volume-weighted paradigm. Thus it is perhaps time to rehabilitate proper-time volume weighting as a viable measure for answering at least some interesting cosmological questions.

  19. Particulate characterization by PIXE multivariate spectral analysis

    International Nuclear Information System (INIS)

    Antolak, Arlyn J.; Morse, Daniel H.; Grant, Patrick G.; Kotula, Paul G.; Doyle, Barney L.; Richardson, Charles B.

    2007-01-01

    Obtaining particulate compositional maps from scanned PIXE (proton-induced X-ray emission) measurements is extremely difficult due to the complexity of analyzing spectroscopic data collected with low signal-to-noise at each scan point (pixel). Multivariate spectral analysis has the potential to analyze such data sets by reducing the PIXE data to a limited number of physically realizable and easily interpretable components (that include both spectral and image information). We have adapted the AXSIA (automated expert spectral image analysis) program, originally developed by Sandia National Laboratories to quantify electron-excited X-ray spectroscopy data, for this purpose. Samples consisting of particulates with known compositions and sizes were loaded onto Mylar and paper filter substrates and analyzed by scanned micro-PIXE. The data sets were processed by AXSIA and the associated principal component spectral data were quantified by converting the weighting images into concentration maps. The results indicate automated, nonbiased, multivariate statistical analysis is useful for converting very large amounts of data into a smaller, more manageable number of compositional components needed for locating individual particles-of-interest on large area collection media

  20. Coaching and barriers to weight loss: an integrative review.

    Science.gov (United States)

    Muñoz Obino, Karen Fernanda; Aguiar Pereira, Caroline; Caron-Lienert, Rafaela Siviero

    2017-01-01

    Coaching is proposed to raise a patient's awareness and responsibility for their health behaviour change by transforming the professional-patient relationship. To review the scientific literature on how coaching can assist in weight loss and improve a patient's state of health. An integrative literature search was performed using PubMed, Latin American and Caribbean Literature in Health Sciences, and Scientific Electronic Library Online. We selected articles that were published in Portuguese, English, and Spanish over the last 10 years. Data analysis was performed using a validated data collection instrument. Among the 289 articles identified in the search, 276 were excluded because they did not address the leading research question, their full texts were not available on the Internet, or they were duplicate publications. Therefore, for the analysis, we selected 13 articles that we classified as randomized clinical studies (46.15%; n=6), cohort studies (30.76%; n=4), cross-sectional studies (7.69%; n=1), case studies (7.69%; n=1), and review articles (7.69%; n=1). Joint intervention (combined in-person and telecoaching sessions) constituted the majority of session types. The use of technical coaching was superior in reducing anthropometric measurements and increasing the levels of motivation and personal satisfaction compared with formal health education alone. Coaching is an efficient, cost-effective method for combining formal education and treatment of health in the weight-loss process. Additional randomized studies are needed to demonstrate its effectiveness with respect to chronic disease indicators.

  1. Spectral-Product Methods for Electronic Structure Calculations (Preprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Mills, J. E; Boatz, J. A

    2006-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  2. Spectral-Product Methods for Electronic Structure Calculations (Postprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A

    2007-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  3. A Soliton Hierarchy Associated with a Spectral Problem of 2nd Degree in a Spectral Parameter and Its Bi-Hamiltonian Structure

    Directory of Open Access Journals (Sweden)

    Yuqin Yao

    2016-01-01

    Full Text Available Associated with so~(3,R, a new matrix spectral problem of 2nd degree in a spectral parameter is proposed and its corresponding soliton hierarchy is generated within the zero curvature formulation. Bi-Hamiltonian structures of the presented soliton hierarchy are furnished by using the trace identity, and thus, all presented equations possess infinitely commuting many symmetries and conservation laws, which implies their Liouville integrability.

  4. On the area spectral efficiency improvement of heterogeneous network by exploiting the integration of macro-femto cellular networks

    KAUST Repository

    Shakir, Muhammad

    2012-06-01

    Heterogeneous networks are an attractive means of expanding mobile network capacity. A heterogeneous network is typically composed of multiple radio access technologies (RATs) where the base stations are transmitting with variable power. In this paper, we consider a Heterogeneous network where we complement the macrocell network with low-power low-cost user deployed nodes, such as femtocell base stations to increase the mean achievable capacity of the system. In this context, we integrate macro-femto cellular networks and derive the area spectral efficiency of the proposed two tier Heterogeneous network. We consider the deployment of femtocell base stations around the edge of the macrocell such that this configuration is referred to as femto-on-edge (FOE) configuration. Moreover, FOE configuration mandates reduction in intercell interference due to the mobile users which are located around the edge of the macrocell since these femtocell base stations are low-power nodes which has significantly lower transmission power than macrocell base stations. We present a mathematical analysis to calculate the instantaneous carrier to interference ratio (CIR) of the desired mobile user in macro and femto cellular networks and determine the total area spectral efficiency of the Heterogeneous network. Details of the simulation processes are included to support the analysis and show the efficacy of the proposed deployment. It has been shown that the proposed setup of the Heterogeneous network offers higher area spectral efficiency which aims to fulfill the expected demand of the future mobile users. © 2012 IEEE.

  5. Intrasurgical Human Retinal Imaging With Manual Instrument Tracking Using a Microscope-Integrated Spectral-Domain Optical Coherence Tomography Device.

    Science.gov (United States)

    Hahn, Paul; Carrasco-Zevallos, Oscar; Cunefare, David; Migacz, Justin; Farsiu, Sina; Izatt, Joseph A; Toth, Cynthia A

    2015-07-01

    To characterize the first in-human intraoperative imaging using a custom prototype spectral-domain microscope-integrated optical coherence tomography (MIOCT) device during vitreoretinal surgery with instruments in the eye. Under institutional review board approval for a prospective intraoperative study, MIOCT images were obtained at surgical pauses with instruments held static in the vitreous cavity and then concurrently with surgical maneuvers. Postoperatively, MIOCT images obtained at surgical pauses were compared with images obtained with a high-resolution handheld spectral-domain OCT (HHOCT) system with objective endpoints, including acquisition of images acceptable for analysis and identification of predefined macular morphologic or pathologic features. Human MIOCT images were successfully obtained before incision and during pauses in surgical maneuvers. MIOCT imaging confirmed preoperative diagnoses, such as epiretinal membrane, full-thickness macular hole, and vitreomacular traction and demonstrated successful achievement of surgical goals. MIOCT and HHOCT images obtained at surgical pauses in two cohorts of five patients were comparable with greater than or equal to 80% correlation in 80% of patients. Real-time video-imaging concurrent with surgical manipulations enabled, for the first time using this device, visualization of dynamic instrument-retina interaction with targeted OCT tracking. MIOCT is successful for imaging at surgical pauses and for real-time image guidance with implementation of targeted OCT tracking. Even faster acquisition speeds are currently being developed with incorporation of a swept-source MIOCT engine. Further refinements and investigations will be directed toward continued integration for real-time volumetric imaging of surgical maneuvers. Ongoing development of seamless MIOCT systems will likely transform surgical visualization, approaches, and decision-making.

  6. A New Pansharpening Method Based on Spatial and Spectral Sparsity Priors.

    Science.gov (United States)

    He, Xiyan; Condat, Laurent; Bioucas-Diaz, Jose; Chanussot, Jocelyn; Xia, Junshi

    2014-06-27

    The development of multisensor systems in recent years has led to great increase in the amount of available remote sensing data. Image fusion techniques aim at inferring high quality images of a given area from degraded versions of the same area obtained by multiple sensors. This paper focuses on pansharpening, which is the inference of a high spatial resolution multispectral image from two degraded versions with complementary spectral and spatial resolution characteristics: a) a low spatial resolution multispectral image; and b) a high spatial resolution panchromatic image. We introduce a new variational model based on spatial and spectral sparsity priors for the fusion. In the spectral domain we encourage low-rank structure, whereas in the spatial domain we promote sparsity on the local differences. Given the fact that both panchromatic and multispectral images are integrations of the underlying continuous spectra using different channel responses, we propose to exploit appropriate regularizations based on both spatial and spectral links between panchromatic and the fused multispectral images. A weighted version of the vector Total Variation (TV) norm of the data matrix is employed to align the spatial information of the fused image with that of the panchromatic image. With regard to spectral information, two different types of regularization are proposed to promote a soft constraint on the linear dependence between the panchromatic and the fused multispectral images. The first one estimates directly the linear coefficients from the observed panchromatic and low resolution multispectral images by Linear Regression (LR) while the second one employs the Principal Component Pursuit (PCP) to obtain a robust recovery of the underlying low-rank structure. We also show that the two regularizers are strongly related. The basic idea of both regularizers is that the fused image should have low-rank and preserve edge locations. We use a variation of the recently proposed

  7. Atmospheric weighting functions and surface partial derivatives for remote sensing of scattering planetary atmospheres in thermal spectral region: general adjoint approach

    International Nuclear Information System (INIS)

    Ustinov, Eugene A.

    2005-01-01

    An approach to formulation of inversion algorithms for remote sensing in the thermal spectral region in the case of a scattering planetary atmosphere, based on the adjoint equation of radiative transfer (Ustinov (JQSRT 68 (2001) 195; JQSRT 73 (2002) 29); referred to as Papers 1 and 2, respectively, in the main text), is applied to the general case of retrievals of atmospheric and surface parameters for the scattering atmosphere with nadir viewing geometry. Analytic expressions for corresponding weighting functions for atmospheric parameters and partial derivatives for surface parameters are derived. The case of pure atmospheric absorption with a scattering underlying surface is considered and convergence to results obtained for the non-scattering atmospheres (Ustinov (JQSRT 74 (2002) 683), referred to as Paper 3 in the main text) is demonstrated

  8. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    Science.gov (United States)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  9. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  10. An improved pulse coupled neural network with spectral residual for infrared pedestrian segmentation

    Science.gov (United States)

    He, Fuliang; Guo, Yongcai; Gao, Chao

    2017-12-01

    Pulse coupled neural network (PCNN) has become a significant tool for the infrared pedestrian segmentation, and a variety of relevant methods have been developed at present. However, these existing models commonly have several problems of the poor adaptability of infrared noise, the inaccuracy of segmentation results, and the fairly complex determination of parameters in current methods. This paper presents an improved PCNN model that integrates the simplified framework and spectral residual to alleviate the above problem. In this model, firstly, the weight matrix of the feeding input field is designed by the anisotropic Gaussian kernels (ANGKs), in order to suppress the infrared noise effectively. Secondly, the normalized spectral residual saliency is introduced as linking coefficient to enhance the edges and structural characteristics of segmented pedestrians remarkably. Finally, the improved dynamic threshold based on the average gray values of the iterative segmentation is employed to simplify the original PCNN model. Experiments on the IEEE OTCBVS benchmark and the infrared pedestrian image database built by our laboratory, demonstrate that the superiority of both subjective visual effects and objective quantitative evaluations in information differences and segmentation errors in our model, compared with other classic segmentation methods.

  11. A spectral measurement method for determining white OLED average junction temperatures

    Science.gov (United States)

    Zhu, Yiting; Narendran, Nadarajah

    2016-09-01

    The objective of this study was to investigate an indirect method of measuring the average junction temperature of a white organic light-emitting diode (OLED) based on temperature sensitivity differences in the radiant power emitted by individual emitter materials (i.e., "blue," "green," and "red"). The measured spectral power distributions (SPDs) of the white OLED as a function of temperature showed amplitude decrease as a function of temperature in the different spectral bands, red, green, and blue. Analyzed data showed a good linear correlation between the integrated radiance for each spectral band and the OLED panel temperature, measured at a reference point on the back surface of the panel. The integrated radiance ratio of the spectral band green compared to red, (G/R), correlates linearly with panel temperature. Assuming that the panel reference point temperature is proportional to the average junction temperature of the OLED panel, the G/R ratio can be used for estimating the average junction temperature of an OLED panel.

  12. Integrating two spectral imaging systems in an automated mineralogy application

    CSIR Research Space (South Africa)

    Harris, D

    2009-11-01

    Full Text Available is treated in batches, with trays of mono-layered material presented to various imaging systems. The identification of target grains is achieved by means of spectral imaging in two wavelength bands (Visible, and Long Wave Infrared). Target grains...

  13. The experience of weight management in normal weight adults.

    Science.gov (United States)

    Hernandez, Cheri Ann; Hernandez, David A; Wellington, Christine M; Kidd, Art

    2016-11-01

    No prior research has been done with normal weight persons specific to their experience of weight management. The purpose of this research was to discover the experience of weight management in normal weight individuals. Glaserian grounded theory was used. Qualitative data (focus group) and quantitative data (food diary, study questionnaire, and anthropometric measures) were collected. Weight management was an ongoing process of trying to focus on living (family, work, and social), while maintaining their normal weight targets through five consciously and unconsciously used strategies. Despite maintaining normal weights, the nutritional composition of foods eaten was grossly inadequate. These five strategies can be used to develop new weight management strategies that could be integrated into existing weight management programs, or could be developed into novel weight management interventions. Surprisingly, normal weight individuals require dietary assessment and nutrition education to prevent future negative health consequences. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Aspiring to Spectral Ignorance in Earth Observation

    Science.gov (United States)

    Oliver, S. A.

    2016-12-01

    Enabling robust, defensible and integrated decision making in the Era of Big Earth Data requires the fusion of data from multiple and diverse sensor platforms and networks. While the application of standardised global grid systems provides a common spatial analytics framework that facilitates the computationally efficient and statistically valid integration and analysis of these various data sources across multiple scales, there remains the challenge of sensor equivalency; particularly when combining data from different earth observation satellite sensors (e.g. combining Landsat and Sentinel-2 observations). To realise the vision of a sensor ignorant analytics platform for earth observation we require automation of spectral matching across the available sensors. Ultimately, the aim is to remove the requirement for the user to possess any sensor knowledge in order to undertake analysis. This paper introduces the concept of spectral equivalence and proposes a methodology through which equivalent bands may be sourced from a set of potential target sensors through application of equivalence metrics and thresholds. A number of parameters can be used to determine whether a pair of spectra are equivalent for the purposes of analysis. A baseline set of thresholds for these parameters and how to apply them systematically to enable relation of spectral bands amongst numerous different sensors is proposed. The base unit for comparison in this work is the relative spectral response. From this input, determination of a what may constitute equivalence can be related by a user, based on their own conceptualisation of equivalence.

  16. Auditory sensitivity to spectral modulation phase reversal as a function of modulation depth.

    Science.gov (United States)

    Buss, Emily; Grose, John

    2018-01-01

    The present study evaluated auditory sensitivity to spectral modulation by determining the modulation depth required to detect modulation phase reversal. This approach may be preferable to spectral modulation detection with a spectrally flat standard, since listeners appear unable to perform the task based on the detection of temporal modulation. While phase reversal thresholds are often evaluated by holding modulation depth constant and adjusting modulation rate, holding rate constant and adjusting modulation depth supports rate-specific assessment of modulation processing. Stimuli were pink noise samples, filtered into seven octave-wide bands (0.125-8 kHz) and spectrally modulated in dB. Experiment 1 measured performance as a function of modulation depth to determine appropriate units for adaptive threshold estimation. Experiment 2 compared thresholds in dB for modulation detection with a flat standard and modulation phase reversal; results supported the idea that temporal cues were available at high rates for the former but not the latter. Experiment 3 evaluated spectral modulation phase reversal thresholds for modulation that was restricted to either one or two neighboring bands. Flanking bands of unmodulated noise had a larger detrimental effect on one-band than two-band targets. Thresholds for high-rate modulation improved with increasing carrier frequency up to 2 kHz, whereas low-rate modulation appeared more consistent across frequency, particularly in the two-band condition. Experiment 4 measured spectral weights for spectral modulation phase reversal detection and found higher weights for bands in the spectral center of the stimulus than for the lowest (0.125 kHz) or highest (8 kHz) band. Experiment 5 compared performance for highly practiced and relatively naïve listeners, and found weak evidence of a larger practice effect at high than low spectral modulation rates. These results provide preliminary data for a task that may provide a better estimate of

  17. Spectral structure of mesoscale winds over the water

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Vincent, Claire Louise; Larsen, Søren Ejling

    2013-01-01

    to describe the spectral slope transition as well as the limit for application of the Taylor hypothesis. The stability parameter calculated from point measurements, the bulk Richardson number, is found insufficient to represent the various atmospheric structures that have their own spectral behaviours under...... spectra show universal characteristics, in agreement with the findings in literature, including the energy amplitude and the −5/3 spectral slope in the mesoscale range transitioning to a slope of −3 for synoptic and planetary scales. The integral time-scale of the local weather is found to be useful...... different stability conditions, such as open cells and gravity waves. For stationary conditions, the mesoscale turbulence is found to bear some characteristics of two-dimensional isotropy, including (1) very minor vertical variation of spectra; (2) similar spectral behaviour for the along- and across...

  18. Integrated optoelectronic oscillator.

    Science.gov (United States)

    Tang, Jian; Hao, Tengfei; Li, Wei; Domenech, David; Baños, Rocio; Muñoz, Pascual; Zhu, Ninghua; Capmany, José; Li, Ming

    2018-04-30

    With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm 2 . By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of -91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of -92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

  19. Comparison of Background Parenchymal Enhancement at Contrast-enhanced Spectral Mammography and Breast MR Imaging.

    Science.gov (United States)

    Sogani, Julie; Morris, Elizabeth A; Kaplan, Jennifer B; D'Alessio, Donna; Goldman, Debra; Moskowitz, Chaya S; Jochelson, Maxine S

    2017-01-01

    Purpose To assess the extent of background parenchymal enhancement (BPE) at contrast material-enhanced (CE) spectral mammography and breast magnetic resonance (MR) imaging, to evaluate interreader agreement in BPE assessment, and to examine the relationships between clinical factors and BPE. Materials and Methods This was a retrospective, institutional review board-approved, HIPAA-compliant study. Two hundred seventy-eight women from 25 to 76 years of age with increased breast cancer risk who underwent CE spectral mammography and MR imaging for screening or staging from 2010 through 2014 were included. Three readers independently rated BPE on CE spectral mammographic and MR images with the ordinal scale: minimal, mild, moderate, or marked. To assess pairwise agreement between BPE levels on CE spectral mammographic and MR images and among readers, weighted κ coefficients with quadratic weights were calculated. For overall agreement, mean κ values and bootstrapped 95% confidence intervals were calculated. The univariate and multivariate associations between BPE and clinical factors were examined by using generalized estimating equations separately for CE spectral mammography and MR imaging. Results Most women had minimal or mild BPE at both CE spectral mammography (68%-76%) and MR imaging (69%-76%). Between CE spectral mammography and MR imaging, the intrareader agreement ranged from moderate to substantial (κ = 0.55-0.67). Overall agreement on BPE levels between CE spectral mammography and MR imaging and among readers was substantial (κ = 0.66; 95% confidence interval: 0.61, 0.70). With both modalities, BPE demonstrated significant association with menopausal status, prior breast radiation therapy, hormonal treatment, breast density on CE spectral mammographic images, and amount of fibroglandular tissue on MR images (P spectral mammographic and MR images. © RSNA, 2016.

  20. The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer

    International Nuclear Information System (INIS)

    Modest, M.F.

    1991-01-01

    In this paper the weighted-sum-of-gray-gases approach for radiative transfer in non-gray participating media, first developed by Hottel in the context of the zonal method, has been shown to be applicable to the general radiative equation of transfer. Within the limits of the weighted-sum-of-gray-gases model (non-scattering media within a black-walled enclosure) any non-gray radiation problem can be solved by any desired solution method after replacing the medium by an equivalent small number of gray media with constant absorption coefficients. Some examples are presented for isothermal media and media at radiative equilibrium, using the exact integral equations as well as the popular P-1 approximation of the equivalent gray media solution. The results demonstrate the equivalency of the method with the quadrature of spectral results, as well as the tremendous computer times savings (by a minimum of 95%) which are achieved

  1. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao

    2009-03-11

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  2. Efficient Multiple Exciton Generation Observed in Colloidal PbSe Quantum Dots with Temporally and Spectrally Resolved Intraband Excitation

    KAUST Repository

    Ji, Minbiao; Park, Sungnam; Connor, Stephen T.; Mokari, Taleb; Cui, Yi; Gaffney, Kelly J.

    2009-01-01

    We have spectrally resolved the intraband transient absorption of photogenerated excitons to quantify the exciton population dynamics in colloidal PbSe quantum dots (QDs). These measurements demonstrate that the spectral distribution, as well as the amplitude, of the transient spectrum depends on the number of excitons excited in a QD. To accurately quantify the average number of excitons per QD, the transient spectrum must be spectrally integrated. With spectral integration, we observe efficient multiple exciton generation In colloidal PbSe QDs. © 2009 American Chemical Society.

  3. Adaptive Federal Kalman Filtering for SINS/GPS Integrated System

    Institute of Scientific and Technical Information of China (English)

    杨勇; 缪玲娟

    2003-01-01

    A new adaptive federal Kalman filter for a strapdown integrated navigation system/global positioning system (SINS/GPS) is given. The developed federal Kalman filter is based on the trace operation of parameters estimation's error covariance matrix and the spectral radius of update measurement noise variance-covariance matrix for the proper choice of the filter weight and hence the filter gain factors. Theoretical analysis and results from simulation in which the SINS/GPS was compared to conventional Kalman filter are presented. Results show that the algorithm of this adaptive federal Kalman filter is simpler than that of the conventional one. Furthermore, it outperforms the conventional Kalman filter when the system is undertaken measurement malfunctions because of its possession of adaptive ability. This filter can be used in the vehicle integrated navigation system.

  4. Noncommutativity from spectral flow

    Energy Technology Data Exchange (ETDEWEB)

    Heinzl, Thomas; Ilderton, Anton [School of Mathematics and Statistics, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2007-07-27

    We investigate the transition from second- to first-order systems. Quantum mechanically, this transforms configuration space into phase space and hence introduces noncommutativity in the former. This transition may be described in terms of spectral flow. Gaps in the energy or mass spectrum may become large which effectively truncates the available state space. Using both operator and path integral languages we explicitly discuss examples in quantum mechanics (light-front) quantum field theory and string theory.

  5. Frequency domain Monte Carlo simulation method for cross power spectral density driven by periodically pulsed spallation neutron source using complex-valued weight Monte Carlo

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro

    2014-01-01

    Highlights: • The cross power spectral density in ADS has correlated and uncorrelated components. • A frequency domain Monte Carlo method to calculate the uncorrelated one is developed. • The method solves the Fourier transformed transport equation. • The method uses complex-valued weights to solve the equation. • The new method reproduces well the CPSDs calculated with time domain MC method. - Abstract: In an accelerator driven system (ADS), pulsed spallation neutrons are injected at a constant frequency. The cross power spectral density (CPSD), which can be used for monitoring the subcriticality of the ADS, is composed of the correlated and uncorrelated components. The uncorrelated component is described by a series of the Dirac delta functions that occur at the integer multiples of the pulse repetition frequency. In the present paper, a Monte Carlo method to solve the Fourier transformed neutron transport equation with a periodically pulsed neutron source term has been developed to obtain the CPSD in ADSs. Since the Fourier transformed flux is a complex-valued quantity, the Monte Carlo method introduces complex-valued weights to solve the Fourier transformed equation. The Monte Carlo algorithm used in this paper is similar to the one that was developed by the author of this paper to calculate the neutron noise caused by cross section perturbations. The newly-developed Monte Carlo algorithm is benchmarked to the conventional time domain Monte Carlo simulation technique. The CPSDs are obtained both with the newly-developed frequency domain Monte Carlo method and the conventional time domain Monte Carlo method for a one-dimensional infinite slab. The CPSDs obtained with the frequency domain Monte Carlo method agree well with those with the time domain method. The higher order mode effects on the CPSD in an ADS with a periodically pulsed neutron source are discussed

  6. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  7. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    Science.gov (United States)

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Integrable Hamiltonian systems and spectral theory

    CERN Document Server

    Moser, J

    1981-01-01

    Classical integrable Hamiltonian systems and isospectral deformations ; geodesics on an ellipsoid and the mechanical system of C. Neumann ; the Schrödinger equation for almost periodic potentials ; finite band potentials ; limit cases, Bargmann potentials.

  9. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  10. Integrating weight bias awareness and mental health promotion into obesity prevention delivery: a public health pilot study.

    Science.gov (United States)

    McVey, Gail L; Walker, Kathryn S; Beyers, Joanne; Harrison, Heather L; Simkins, Sari W; Russell-Mayhew, Shelly

    2013-04-04

    Promoting healthy weight is a top priority in Canada. Recent federal guidelines call for sustained, multisectoral partnerships that address childhood obesity on multiple levels. Current healthy weight messaging does not fully acknowledge the influence of social determinants of health on weight. An interactive workshop was developed and implemented by a team of academic researchers and health promoters from the psychology and public health disciplines to raise awareness about 1) weight bias and its negative effect on health, 2) ways to balance healthy weight messaging to prevent the triggering of weight and shape preoccupation, and 3) the incorporation of mental health promotion into healthy weight messaging. We conducted a full-day workshop with 342 Ontario public health promoters and administered a survey at preintervention, postintervention, and follow-up. Participation in the full-day workshop led to significant decreases in antifat attitudes and the internalization of media stereotypes and to significant increases in self-efficacy to address weight bias. Participants reported that the training heightened their awareness of their own personal weight biases and the need to broaden their scope of healthy weight promotion to include mental health promotion. There was consensus that additional sessions are warranted to help translate knowledge into action. Buy-in and resource support at the organizational level was also seen as pivotal. Professional development training in the area of weight bias awareness is associated with decreases in antifat attitudes and the internalization of media stereotypes around thinness. Health promoters' healthy weight messaging was improved by learning to avoid messages that trigger weight and shape preoccupation or unhealthful eating practices among children and youth. Participants also learned ways to integrate mental health promotion and resiliency-building into daily practice.

  11. PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

    International Nuclear Information System (INIS)

    Doyle, B.L.; Provencio, P.P.; Kotula, P.G.; Antolak, A.J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

    2006-01-01

    Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other

  12. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    International Nuclear Information System (INIS)

    Bredice, F.; Pacheco Martinez, P.; Sánchez-Aké, C.; Villagrán-Muniz, M.

    2015-01-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ jl I j /g j A jl ), where I j is the integrated intensity of the spectral line, g j is the statistical weight of the level j, λ jl is the wavelength of the considered line and A jl is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B i , and δ i , we developed as a power series of time, the logarithm of I n (t)/I n (t 0 ), where I n (t) is the integrated intensity of any spectral line at time t, and I n (t 0 ) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B i and δ i and therefore the Boltzmann plot surface from the temporal evolution of carbon lines obtained from a plasma generated by a Nd:YAG laser

  13. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  14. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners.

    Science.gov (United States)

    Won, Jong Ho; Jones, Gary L; Drennan, Ward R; Jameyson, Elyse M; Rubinstein, Jay T

    2011-10-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an "ideal observer," showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. © 2011 Acoustical Society of America

  15. Weighted -Integral Representations of -Functions in

    Directory of Open Access Journals (Sweden)

    Arman H. Karapetyan

    2012-01-01

    Full Text Available For 1-functions , given in the complex space , integral representations of the form =(−( are obtained. Here, is the orthogonal projector of the space 2{;−||||(} onto its subspace of entire functions and the integral operator appears by means of explicitly constructed kernel Φ which is investigated in detail.

  16. National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach

    Directory of Open Access Journals (Sweden)

    Ruxing Gao

    2017-12-01

    Full Text Available While the prospects look bright for nuclear energy development in China, no consensus about an optimum transitional path towards sustainability of the nuclear fuel cycle has been achieved. Herein, we present a preliminary study of decision making for China’s future nuclear energy systems, combined with a dynamic analysis model. In terms of sustainability assessment based on environmental, economic, and social considerations, we compared and ranked the four candidate options of nuclear fuel cycles combined with an integrated evaluation analysis using the Multi-Criteria Decision Making (MCDM method. An improved integrated weighting method was first applied in the nuclear fuel cycle evaluation study. This method synthesizes diverse subjective/objective weighting methods to evaluate conflicting criteria among the competing decision makers at different levels of expertise and experience. The results suggest that the fuel cycle option of direct recycling of spent fuel through fast reactors is the most competitive candidate, while the fuel cycle option of direct disposal of all spent fuel without recycling is the least attractive for China, from a sustainability perspective. In summary, this study provided a well-informed decision-making tool to support the development of national nuclear energy strategies.

  17. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  18. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes

    Science.gov (United States)

    Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.

    2015-01-01

    The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609

  19. A fast conservative spectral solver for the nonlinear Boltzmann collision operator

    International Nuclear Information System (INIS)

    Gamba, Irene M.; Haack, Jeffrey R.; Hu, Jingwei

    2014-01-01

    We present a conservative spectral method for the fully nonlinear Boltzmann collision operator based on the weighted convolution structure in Fourier space developed by Gamba and Tharkabhushnanam. This method can simulate a broad class of collisions, including both elastic and inelastic collisions as well as angularly dependent cross sections in which grazing collisions play a major role. The extension presented in this paper consists of factorizing the convolution weight on quadrature points by exploiting the symmetric nature of the particle interaction law, which reduces the computational cost and memory requirements of the method to O(M 2 N 4 logN) from the O(N 6 ) complexity of the original spectral method, where N is the number of velocity grid points in each velocity dimension and M is the number of quadrature points in the factorization, which can be taken to be much smaller than N. We present preliminary numerical results

  20. Variables separation of the spectral BRDF for better understanding color variation in special effect pigment coatings.

    Science.gov (United States)

    Ferrero, Alejandro; Rabal, Ana María; Campos, Joaquín; Pons, Alicia; Hernanz, María Luisa

    2012-06-01

    A type of representation of the spectral bidirectional reflectance distribution function (BRDF) is proposed that distinctly separates the spectral variable (wavelength) from the geometrical variables (spherical coordinates of the irradiation and viewing directions). Principal components analysis (PCA) is used in order to decompose the spectral BRDF in decorrelated spectral components, and the weight that they have at every geometrical configuration of irradiation/viewing is established. This method was applied to the spectral BRDF measurement of a special effect pigment sample, and four principal components with relevant variance were identified. These four components are enough to reproduce the great diversity of spectral reflectances observed at different geometrical configurations. Since this representation is able to separate spectral and geometrical variables, it facilitates the interpretation of the color variation of special effect pigments coatings versus the geometrical configuration of irradiation/viewing.

  1. The continuous end-state comfort effect: weighted integration of multiple biases.

    Science.gov (United States)

    Herbort, Oliver; Butz, Martin V

    2012-05-01

    The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.

  2. Trace formulae and spectral statistics for discrete Laplacians on regular graphs (I)

    Energy Technology Data Exchange (ETDEWEB)

    Oren, Idan; Godel, Amit; Smilansky, Uzy [Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: idan.oren@weizmann.ac.il, E-mail: amit.godel@weizmann.ac.il, E-mail: uzy.smilansky@weizmann.ac.il

    2009-10-16

    Trace formulae for d-regular graphs are derived and used to express the spectral density in terms of the periodic walks on the graphs under consideration. The trace formulae depend on a parameter w which can be tuned continuously to assign different weights to different periodic orbit contributions. At the special value w = 1, the only periodic orbits which contribute are the non-back-scattering orbits, and the smooth part in the trace formula coincides with the Kesten-McKay expression. As w deviates from unity, non-vanishing weights are assigned to the periodic walks with backscatter, and the smooth part is modified in a consistent way. The trace formulae presented here are the tools to be used in the second paper in this sequence, for showing the connection between the spectral properties of d-regular graphs and the theory of random matrices.

  3. Difference equations having bases with powerlike growth which are perturbed by a spectral parameter

    International Nuclear Information System (INIS)

    Tulyakov, Dmitrii N

    2009-01-01

    The asymptotic behaviour of solutions with powerlike growth of recurrence relations with a spectral parameter is investigated. A class of recurrence relations in which all basis solutions have powerlike growth is introduced. Recurrence relations in this class are linearly perturbed by a spectral parameter; for solutions of the new recurrence relations asymptotic formulae are obtained which are uniform with respect to the spectral parameter ranging within appropriate bounds. The theorems obtained are used for deriving new local asymptotic formulae for orthogonal and multiple orthogonal polynomials in a neighbourhood of the end-points of the support of the orthogonality weights. Bibliography: 14 titles.

  4. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  5. Spectral analysis of the turbulent mixing of two fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.

    1996-02-01

    The authors describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  6. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners a

    Science.gov (United States)

    Ho Won, Jong; Jones, Gary L.; Drennan, Ward R.; Jameyson, Elyse M.; Rubinstein, Jay T.

    2011-01-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an “ideal observer,” showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. PMID:21973363

  7. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    Science.gov (United States)

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  8. Planck constant as spectral parameter in integrable systems and KZB equations

    Science.gov (United States)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2014-10-01

    We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.

  9. Information theory, spectral geometry, and quantum gravity.

    Science.gov (United States)

    Kempf, Achim; Martin, Robert

    2008-01-18

    We show that there exists a deep link between the two disciplines of information theory and spectral geometry. This allows us to obtain new results on a well-known quantum gravity motivated natural ultraviolet cutoff which describes an upper bound on the spatial density of information. Concretely, we show that, together with an infrared cutoff, this natural ultraviolet cutoff beautifully reduces the path integral of quantum field theory on curved space to a finite number of ordinary integrations. We then show, in particular, that the subsequent removal of the infrared cutoff is safe.

  10. Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F., E-mail: faustob@ciop.unlp.edu.ar [Centro de Investigaciones Ópticas, P.O. Box 3 C. P.1897 Gonnet, La Plata (Argentina); Pacheco Martinez, P. [Grupo de Espectroscopía Óptica de Emisión y Láser, Universidad del Atlántico, Barranquilla (Colombia); Sánchez-Aké, C.; Villagrán-Muniz, M. [Laboratorio de Fotofísica, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Apartado Postal 70-186, México D.F. 04510 (Mexico)

    2015-05-01

    In this work, we propose an extended Boltzmann plot method to determine the usefulness of spectral lines for plasma parameter calculations. Based on the assumption that transient plasmas are under ideal conditions during an specific interval of time Δt, (i.e. thin, homogeneous and in local thermodynamic equilibrium (LTE)), the associated Boltzmann plots describe a surface in the space defined by the coordinates X = Energy, Y = Time and Z = ln (λ{sub jl}I{sub j}/g{sub j}A{sub jl}), where I{sub j} is the integrated intensity of the spectral line, g{sub j} is the statistical weight of the level j, λ{sub jl} is the wavelength of the considered line and A{sub jl} is its transition rate. In order to express the Boltzmann plot surface in terms of a reduced set of constants B{sub i}, and δ{sub i}, we developed as a power series of time, the logarithm of I{sub n}(t)/I{sub n}(t{sub 0}), where I{sub n}(t) is the integrated intensity of any spectral line at time t, and I{sub n}(t{sub 0}) at initial time. Moreover, the temporal evolution of the intensity of any spectral line and consequently the temperature of the plasma can be also expressed with these constants. The comparison of the temporal evolution of the line intensity calculated using these constants with their experimental values, can be used as a criterion for selecting useful lines in plasma analysis. Furthermore, this method can also be applied to determine self-absorption or enhancement of the spectral lines, to evaluate a possible departure of LTE, and to check or estimate the upper level energy value of any spectral line. An advantage of this method is that the value of these constants does not depend on the spectral response of the detection system, the uncertainty of the transition rates belonging to the analyzed spectral lines or any other time-independent parameters. In order to prove our method, we determined the constants B{sub i} and δ{sub i} and therefore the Boltzmann plot surface from the temporal

  11. Spectral properties and lattice-size dependences in cluster algorithms

    OpenAIRE

    Kerler, W.

    1993-01-01

    Simulation results of Ising systems for several update rules, observables, and dimensions are analyzed. The lattice-size dependence is discussed for the autocorrelation times and for the weights of eigenvalues, giving fit results in the case of power laws. Implications of spectral properties are pointed out and the behavior of a particular observable not governed by detailed balance is explained.

  12. 3DMADMAC|SPECTRAL: Hardware and Software Solution for Integrated Digitization of 3D Shape, Multispectral Color and BRDF for Cultural Heritage Documentation

    Directory of Open Access Journals (Sweden)

    Robert Sitnik

    2011-12-01

    Full Text Available In this article a new 3D measurement system along with the study on 3D printing technology is presented from the perspective of quality of reproduction. In the first part of the paper the 3DMADMAC|SPECTRAL system which integrates 3D shape with additional color and angular reflectance measurement capabilities is presented (see Figure 1. The shape measurement system is based on structured light projection with the use of a DLP projector. The 3D shape measurement method is based on sinusoidal fringes and Gray codes projection. Color is being measured using multispectral images with a set of interference filters to separate spectral channels. Additionally the set up includes an array of compact light sources for measuring angular reflectance based on image analysis and 3D data processing. All three components of the integrated system use the same greyscale camera as a detector. The purpose of the system is to obtain complete information about shape, color and reflectance characteristic of mea sured surface, especially for cultural heritage objects - in order to create high quality 3D documentation. In the second part of the paper the 3D printing technology will be tested on real measured cultural heritage objects. Tests allow to assess measurement and color accuracy of reproduction by selected 3D printing technology and shed some light on how current 3D printing technology can be applied into cultural heritage.

  13. Spectral amplitude coding OCDMA using and subtraction technique.

    Science.gov (United States)

    Hasoon, Feras N; Aljunid, S A; Samad, M D A; Abdullah, Mohamad Khazani; Shaari, Sahbudin

    2008-03-20

    An optical decoding technique is proposed for a spectral-amplitude-coding-optical code division multiple access, namely, the AND subtraction technique. The theory is being elaborated and experimental results have been done by comparing a double-weight code against the existing code, Hadamard. We have proved that the and subtraction technique gives better bit error rate performance than the conventional complementary subtraction technique against the received power level.

  14. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  15. APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Crepp, Justin R.; Hinkley, Sasha; Hillenbrand, Lynne; Dekany, Richard; Bouchez, Antonin; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C.; Shao, Mike; Burruss, Rick; Brenner, Douglas; Oppenheimer, Ben R.; Zimmerman, Neil; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    High-contrast imaging instruments are now being equipped with integral field spectrographs (IFSs) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely on aggressive point-spread function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy owing to unwanted mixing with residual starlight. This spectrophotometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call 'damped LOCI', that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construct PSF reference images, and also forcing those coefficients to be positive, it is possible to extract companion spectra with a precision that is set by calibration of the instrument response and transmission of the atmosphere, and not by post-processing. We demonstrate the utility of this approach using on-sky data obtained with the Project 1640 IFS at Palomar. Damped LOCI does not require any iterations on the underlying spectral type of the companion, nor does it rely on priors involving the chromatic and statistical properties of speckles. It is a general technique that can readily be applied to other current and planned instruments that employ IFSs.

  16. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    Science.gov (United States)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  17. On weighted dyadic Carleson's inequalities

    Directory of Open Access Journals (Sweden)

    Tachizawa K

    2001-01-01

    Full Text Available We give an alternate proof of weighted dyadic Carleson's inequalities which are essentially proved by Sawyer and Wheeden. We use the Bellman function approach of Nazarov and Treil. As an application we give an alternate proof of weighted inequalities for dyadic fractional maximal operators. A result on weighted inequalities for fractional integral operators is given.

  18. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  19. A climate index derived from satellite measured spectral infrared radiation. Ph.D. Thesis

    Science.gov (United States)

    Abel, M. D.; Fox, S. K.

    1982-01-01

    The vertical infrared radiative emitting structure (VIRES) climate index, based on radiative transfer theory and derived from the spectral radiances typically used to retrieve temperature profiles, is introduced. It is assumed that clouds and climate are closely related and a change in one will result in a change in the other. The index is a function of the cloud, temperature, and moisture distributions. It is more accurately retrieved from satellite data than is cloudiness per se. The VIRES index is based upon the shape and relative magnitude of the broadband weighting function of the infrared radiative transfer equation. The broadband weighting curves are retrieved from simulated satellite infrared sounder data (spectral radiances). The retrieval procedure is described and the error error sensitivities of the method investigated. Index measuring options and possible applications of the VIRES index are proposed.

  20. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    validation of simplified CFD models. In the second results section, spectral measurements (2.4 - 5.4 {mu}m) of a 70 kW turbulent natural gas ame in air blown combustion and in wet and dry oxyfuel combustion were compared with simulated spectra based on measured gas atmospheres. The line-by-line database HITEMP2010 and the two statistical-narrow-band models EM2C and RADCAL were used for the numerical simulation. The measured spectra showed large fluctuations due to turbulence. The averaged experimental intensity was found to be up to 75% higher than the simulated intensity, thus demonstrating the importance of the effect of turbulence-radiation-interaction in combustion simulations. Finally, total emissivities were calculated with the most common spectral models and compared with benchmark calculations by the detailed spectral line-by-line model HITEMP2010. The models were compared at path lengths ranging from 0.001m to 100m and at temperatures from 800 C to 1800 C for atmospheres of pure gases and of various combustion processes (air blown and oxyfuel combustion with wet and dry recirculation) as well as with different fuels (natural gas, brown coal and anthracite). The statistical-narrow-band models RADCAL and EM2C, the exponential-wide-band model and the statistical-line-width model were chosen as models, which are valid for oxyfuel combustion without modifications. A number of weighted-sum-of-grey-gases models from different authors were chosen as computationally efficient models especially developed for oxyfuel combustion. The statistical-narrow-band model EM2C had the highest accuracy with maximum deviations of up to 12%. The weighted-sum-of-grey-gases model from Johansson et al. [64] proved to be the most valid and versatile model for computationally efficient simulations of spectral gas properties with an overall accuracy of 21% or better.

  1. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  2. Fourier spectral methods for fractional-in-space reaction-diffusion equations

    KAUST Repository

    Bueno-Orovio, Alfonso; Kay, David; Burrage, Kevin

    2014-01-01

    approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction

  3. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  4. Spectral methods in chemistry and physics applications to kinetic theory and quantum mechanics

    CERN Document Server

    Shizgal, Bernard

    2015-01-01

    This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficient...

  5. Magnetic Raman Scattering in Two-Dimensional Spin-1/2 Heisenberg Antiferromagnets: Explanation of the Spectral Shape Anomaly

    Science.gov (United States)

    Nori, F.; Merlin, R.; Haas, S.; Sandvick, A.; Dagotto, E.

    1996-03-01

    We calculate(F. Nori, R.Merlin, S. Haas, A.W. Sandvik, and E. Dagotto, Physical Review Letters) 75, 553 (1995). the Raman spectrum of the two-dimensional (2D) spin-1/2 Heisenberg antiferromagnet by exact diagonalization and quantum Monte Carlo techniques on clusters of up to 144 sites. On a 16-site cluster, we consider the phonon-magnon interaction which leads to random fluctuations of the exchange integral. Results are in good agreement with experiments on various high-Tc precursors, such as La_2CuO4 and YBa_2Cu_3O_6.2. In particular, our calculations reproduce the broad lineshape of the two-magnon peak, the asymmetry about its maximum, the existence of spectral weight at high energies, and the observation of nominally forbidden A_1g scattering.

  6. SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR

    Directory of Open Access Journals (Sweden)

    J. Hauser

    2017-10-01

    Full Text Available Spectral imaging (SI refers to the acquisition of the three-dimensional (3D spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI refers to the instantaneous acquisition (in a single shot of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL, weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser and (ii tailored compressed sensing (CS methods for digital processing of the diffused and dispersed (DD image recorded on the image sensor. The diffuser is designed to mix the spectral cube data spectrally and spatially and thus to enable convergence in its reconstruction by CS-based algorithms. In addition to performing SSI, this SSI camera is capable to perform color imaging using a monochromatic or gray-scale image sensor without color filter arrays.

  7. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  8. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    International Nuclear Information System (INIS)

    Foxley, Sean; Karczmar, Gregory S.; Domowicz, Miriam; Schwartz, Nancy

    2015-01-01

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T 2 * -weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T 2 * and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm 3 and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T 2 * -weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in the water resonance that is not

  9. Evaluating the Effects of Fire on Semi-Arid Savanna Ecosystem Productivity Using Integrated Spectral and Gas Exchange Measurements

    Science.gov (United States)

    Raub, H. D.; Jimenez, J. R.; Gallery, R. E.; Sutter, L., Jr.; Barron-Gafford, G.; Smith, W. K.

    2017-12-01

    content upon monsoonal onset, but requires further validation by leaf-level chemistry. This work suggests that the integration of spectral, gas exchange, and soil measurements could be a powerful framework toward advancing our understanding of fire-ecosystem productivity feedbacks across spatiotemporal scales.

  10. Spectrotemporal processing in spectral tuning modules of cat primary auditory cortex.

    Directory of Open Access Journals (Sweden)

    Craig A Atencio

    Full Text Available Spectral integration properties show topographical order in cat primary auditory cortex (AI. Along the iso-frequency domain, regions with predominantly narrowly tuned (NT neurons are segregated from regions with more broadly tuned (BT neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences--and thus distinct physiological functions--for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed.

  11. Taking the Universe's Temperature with Spectral Distortions of the Cosmic Microwave Background.

    Science.gov (United States)

    Hill, J Colin; Battaglia, Nick; Chluba, Jens; Ferraro, Simone; Schaan, Emmanuel; Spergel, David N

    2015-12-31

    The cosmic microwave background (CMB) energy spectrum is a near-perfect blackbody. The standard model of cosmology predicts small spectral distortions to this form, but no such distortion of the sky-averaged CMB spectrum has yet been measured. We calculate the largest expected distortion, which arises from the inverse Compton scattering of CMB photons off hot, free electrons, known as the thermal Sunyaev-Zel'dovich (TSZ) effect. We show that the predicted signal is roughly one order of magnitude below the current bound from the COBE-FIRAS experiment, but it can be detected at enormous significance (≳1000σ) by the proposed Primordial Inflation Explorer (PIXIE). Although cosmic variance reduces the effective signal-to-noise ratio to 230σ, this measurement will still yield a subpercent constraint on the total thermal energy of electrons in the observable Universe. Furthermore, we show that PIXIE can detect subtle relativistic effects in the sky-averaged TSZ signal at 30σ, which directly probe moments of the optical depth-weighted intracluster medium electron temperature distribution. These effects break the degeneracy between the electron density and the temperature in the mean TSZ signal, allowing a direct inference of the mean baryon density at low redshift. Future spectral distortion probes will thus determine the global thermodynamic properties of ionized gas in the Universe with unprecedented precision. These measurements will impose a fundamental "integral constraint" on models of galaxy formation and the injection of feedback energy over cosmic time.

  12. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  13. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  14. Order and correlations in genomic DNA sequences. The spectral approach

    International Nuclear Information System (INIS)

    Lobzin, Vasilii V; Chechetkin, Vladimir R

    2000-01-01

    The structural analysis of genomic DNA sequences is discussed in the framework of the spectral approach, which is sufficiently universal due to the reciprocal correspondence and mutual complementarity of Fourier transform length scales. The spectral characteristics of random sequences of the same nucleotide composition possess the property of self-averaging for relatively short sequences of length M≥100-300. Comparison with the characteristics of random sequences determines the statistical significance of the structural features observed. Apart from traditional applications to the search for hidden periodicities, spectral methods are also efficient in studying mutual correlations in DNA sequences. By combining spectra for structure factors and correlation functions, not only integral correlations can be estimated but also their origin identified. Using the structural spectral entropy approach, the regularity of a sequence can be quantitatively assessed. A brief introduction to the problem is also presented and other major methods of DNA sequence analysis described. (reviews of topical problems)

  15. An efficient spatial spectral integral-equation method for EM scattering from finite objects in layered media

    NARCIS (Netherlands)

    Dilz, R.J.; van Beurden, M.C.

    2016-01-01

    We propose a mixed spatial spectral method aimed directly at aperiodic, finite scatterers in a layered medium. By using a Gabor frame to discretize the problem a straightforward and fast way to Fourier transform is available. The poles and branchcuts in the spectral-domain Green function can be

  16. Design of a miniaturized integrated spectrometer for spectral tissue sensing

    Science.gov (United States)

    Belay, Gebirie Yizengaw; Hoving, Willem; Ottevaere, Heidi; van der Put, Arthur; Weltjens, Wim; Thienpont, Hugo

    2016-04-01

    Minimally-invasive image-guided procedures become increasingly used by physicians to obtain real-time characterization feedback from the tissue at the tip of their interventional device (needle, catheter, endoscopic or laparoscopic probes, etc…) which can significantly improve the outcome of diagnosis and treatment, and ultimately reduce cost of the medical treatment. Spectral tissue sensing using compact photonic probes has the potential to be a valuable tool for screening and diagnostic purposes, e.g. for discriminating between healthy and tumorous tissue. However, this technique requires a low-cost broadband miniature spectrometer so that it is commercially viable for screening at point-of-care locations such as physicians' offices and outpatient centers. Our goal is therefore to develop a miniaturized spectrometer based on diffractive optics that combines the functionalities of a visible/near-infrared (VIS/NIR) and shortwave-infrared (SWIR) spectrometer in one very compact housing. A second goal is that the hardware can be produced in high volume at low cost without expensive time consuming alignment and calibration steps. We have designed a miniaturized spectrometer which operates both in the visible/near-infrared and shortwave-infrared wavelength regions ranging from 400 nm to 1700 nm. The visible/near-infrared part of the spectrometer is designed for wavelengths from 400 nm to 800 nm whereas the shortwave-infrared segment ranges from 850 nm to 1700 nm. The spectrometer has a resolution of 6 nm in the visible/near-infrared wavelength region and 10 nm in the shortwave-infrared. The minimum SNR of the spectrometer for the intended application is about 151 in the VIS/NIR range and 6000 for SWIR. In this paper, the modelling and design, and power budget analysis of the miniaturized spectrometer are presented. Our work opens a door for future affordable micro- spectrometers which can be integrated with smartphones and tablets, and used for point

  17. Monte-Carlo error analysis in x-ray spectral deconvolution

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hoffman, N.M.

    1985-01-01

    The deconvolution of spectral information from sparse x-ray data is a widely encountered problem in data analysis. An often-neglected aspect of this problem is the propagation of random error in the deconvolution process. We have developed a Monte-Carlo approach that enables us to attach error bars to unfolded x-ray spectra. Our Monte-Carlo error analysis has been incorporated into two specific deconvolution techniques: the first is an iterative convergent weight method; the second is a singular-value-decomposition (SVD) method. These two methods were applied to an x-ray spectral deconvolution problem having m channels of observations with n points in energy space. When m is less than n, this problem has no unique solution. We discuss the systematics of nonunique solutions and energy-dependent error bars for both methods. The Monte-Carlo approach has a particular benefit in relation to the SVD method: It allows us to apply the constraint of spectral nonnegativity after the SVD deconvolution rather than before. Consequently, we can identify inconsistencies between different detector channels

  18. A time-spectral approach to numerical weather prediction

    Science.gov (United States)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  19. Weighted local Hardy spaces associated with operators

    Indian Academy of Sciences (India)

    RUMING GONG

    2018-04-24

    5 days ago ... Studies 116 (1985) (Amsterdam: North Holland). [12] Gong R M and Yan L X, Littlewood–Paley and spectral multipliers on weighted L p spaces, J. Geom. Anal. 24 (2014) 873–900. [13] Gong R M, Li J and Yan L X, A local version of Hardy spaces associated with operators on metric spaces, Sci. China Math.

  20. Uniform convergence of the empirical spectral distribution function

    NARCIS (Netherlands)

    Mikosch, T; Norvaisa, R

    1997-01-01

    Let X be a linear process having a finite fourth moment. Assume F is a class of square-integrable functions. We consider the empirical spectral distribution function J(n,X) based on X and indexed by F. If F is totally bounded then J(n,X) satisfies a uniform strong law of large numbers. If, in

  1. Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4

    Directory of Open Access Journals (Sweden)

    Zhang Jian

    2017-03-01

    Full Text Available In our paper, the theory of bi-integrable and tri-integrable couplings is generalized to the discrete case. First, based on the six-dimensional real special orthogonal Lie algebra SO(4, we construct bi-integrable and tri-integrable couplings associated with SO(4 for a hierarchy from the enlarged matrix spectral problems and the enlarged zero curvature equations. Moreover, Hamiltonian structures of the obtained bi-integrable and tri-integrable couplings are constructed by the variational identities.

  2. Recent progress of push-broom infrared hyper-spectral imager in SITP

    Science.gov (United States)

    Wang, Yueming; Hu, Weida; Shu, Rong; Li, Chunlai; Yuan, Liyin; Wang, Jianyu

    2017-02-01

    In the past decades, hyper-spectral imaging technologies were well developed in SITP, CAS. Many innovations for system design and key parts of hyper-spectral imager were finished. First airborne hyper-spectral imager operating from VNIR to TIR in the world was emerged in SITP. It is well known as OMIS(Operational Modular Imaging Spectrometer). Some new technologies were introduced to improve the performance of hyper-spectral imaging system in these years. A high spatial space-borne hyper-spectral imager aboard Tiangong-1 spacecraft was launched on Sep.29, 2011. Thanks for ground motion compensation and high optical efficiency prismatic spectrometer, a large amount of hyper-spectral imagery with high sensitivity and good quality were acquired in the past years. Some important phenomena were observed. To diminish spectral distortion and expand field of view, new type of prismatic imaging spectrometer based curved prism were proposed by SITP. A prototype of hyper-spectral imager based spherical fused silica prism were manufactured, which can operate from 400nm 2500nm. We also made progress in the development of LWIR hyper-spectral imaging technology. Compact and low F number LWIR imaging spectrometer was designed, manufactured and integrated. The spectrometer operated in a cryogenically-cooled vacuum box for background radiation restraint. The system performed well during flight experiment in an airborne platform. Thanks high sensitivity FPA and high performance optics, spatial resolution and spectral resolution and SNR of system are improved enormously. However, more work should be done for high radiometric accuracy in the future.

  3. Algorithms for spectral calibration of energy-resolving small-pixel detectors

    International Nuclear Information System (INIS)

    Scuffham, J; Veale, M C; Wilson, M D; Seller, P

    2013-01-01

    Small pixel Cd(Zn)Te detectors often suffer from inter-pixel variations in gain, resulting in shifts in the individual energy spectra. These gain variations are mainly caused by inclusions and defects within the crystal structure, which affect the charge transport within the material causing a decrease in the signal pulse height. In imaging applications, spectra are commonly integrated over a particular peak of interest. This means that the individual pixels must be accurately calibrated to ensure that the same portion of the spectrum is integrated in every pixel. The development of large-area detectors with fine pixel pitch necessitates automated algorithms for this spectral calibration, due to the very large number of pixels. Algorithms for automatic spectral calibration require accurate determination of characteristic x-ray or photopeak positions on a pixelwise basis. In this study, we compare two peak searching spectral calibration algorithms for a small-pixel CdTe detector in gamma spectroscopic imaging. The first algorithm uses rigid search ranges to identify peaks in each pixel spectrum, based on the average peak positions across all pixels. The second algorithm scales the search ranges on the basis of the position of the highest-energy peak relative to the average across all pixels. In test spectra acquired with Tc-99m, we found that the rigid search algorithm failed to correctly identify the target calibraton peaks in up to 4% of pixels. In contrast, the scaled search algorithm failed in only 0.16% of pixels. Failures in the scaled search algorithm were attributed to the presence of noise events above the main photopeak, and possible non-linearities in the spectral response in a small number of pixels. We conclude that a peak searching algorithm based on scaling known peak spacings is simple to implement and performs well for the spectral calibration of pixellated radiation detectors

  4. Numerical evaluation of integrals containing a spherical Bessel function by product integration

    International Nuclear Information System (INIS)

    Lehman, D.R.; Parke, W.C.; Maximon, L.C.

    1981-01-01

    A method is developed for numerical evaluation of integrals with k-integration range from 0 to infinity that contain a spherical Bessel function j/sub l/(kr) explicitly. The required quadrature weights are easily calculated and the rate of convergence is rapid: only a relatively small number of quadrature points is needed: for an accurate evaluation even when r is large. The quadrature rule is obtained by the method of product integration. With the abscissas chosen to be those of Clenshaw--Curtis and the Chebyshev polynomials as the interpolating polynomials, quadrature weights are obtained that depend on the spherical Bessel function. An inhomogenous recurrence relation is derived from which the weights can be calculated without accumulation of roundoff error. The procedure is summarized as an easily implementable algorithm. Questions of convergence are discussed and the rate of convergence demonstrated for several test integrals. Alternative procedures are given for generating the integration weights and an error analysis of the method is presented

  5. Spectral functions from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Aarts, G.; Allton, C. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Amato, A. [Helsinki Institute of Physics and University of Helsinki, Helsinki (Finland); Evans, W. [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics Universitat Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Giudice, P. [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, T. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kelly, A. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Kim, S.Y. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, M.P. [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Praki, K. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Ryan, S.M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Skullerud, J.-I. [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland)

    2016-12-15

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  6. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  7. [Analysis of software for identifying spectral line of laser-induced breakdown spectroscopy based on LabVIEW].

    Science.gov (United States)

    Hu, Zhi-yu; Zhang, Lei; Ma, Wei-guang; Yan, Xiao-juan; Li, Zhi-xin; Zhang, Yong-zhi; Wang, Le; Dong, Lei; Yin, Wang-bao; Jia, Suo-tang

    2012-03-01

    Self-designed identifying software for LIBS spectral line was introduced. Being integrated with LabVIEW, the soft ware can smooth spectral lines and pick peaks. The second difference and threshold methods were employed. Characteristic spectrum of several elements matches the NIST database, and realizes automatic spectral line identification and qualitative analysis of the basic composition of sample. This software can analyze spectrum handily and rapidly. It will be a useful tool for LIBS.

  8. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  9. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  10. The high throughput virtual slit enables compact, inexpensive Raman spectral imagers

    Science.gov (United States)

    Gooding, Edward; Deutsch, Erik R.; Huehnerhoff, Joseph; Hajian, Arsen R.

    2018-02-01

    Raman spectral imaging is increasingly becoming the tool of choice for field-based applications such as threat, narcotics and hazmat detection; air, soil and water quality monitoring; and material ID. Conventional fiber-coupled point source Raman spectrometers effectively interrogate a small sample area and identify bulk samples via spectral library matching. However, these devices are very slow at mapping over macroscopic areas. In addition, the spatial averaging performed by instruments that collect binned spectra, particularly when used in combination with orbital raster scanning, tends to dilute the spectra of trace particles in a mixture. Our design, employing free space line illumination combined with area imaging, reveals both the spectral and spatial content of heterogeneous mixtures. This approach is well suited to applications such as detecting explosives and narcotics trace particle detection in fingerprints. The patented High Throughput Virtual Slit1 is an innovative optical design that enables compact, inexpensive handheld Raman spectral imagers. HTVS-based instruments achieve significantly higher spectral resolution than can be obtained with conventional designs of the same size. Alternatively, they can be used to build instruments with comparable resolution to large spectrometers, but substantially smaller size, weight and unit cost, all while maintaining high sensitivity. When used in combination with laser line imaging, this design eliminates sample photobleaching and unwanted photochemistry while greatly enhancing mapping speed, all with high selectivity and sensitivity. We will present spectral image data and discuss applications that are made possible by low cost HTVS-enabled instruments.

  11. Medical weight loss versus bariatric surgery: does method affect body composition and weight maintenance after 15% reduction in body weight?

    Science.gov (United States)

    Kulovitz, Michelle G; Kolkmeyer, Deborah; Conn, Carole A; Cohen, Deborah A; Ferraro, Robert T

    2014-01-01

    The aim of this study was to investigate body composition changes in fat mass (FM) to lean body mass (LBM) ratios following 15% body weight loss (WL) in both integrated medical treatment and bariatric surgery groups. Obese patients (body mass index [BMI] 46.6 ± 6.5 kg/m(2)) who underwent laparoscopic gastric bypass surgery (BS), were matched with 24 patients undergoing integrated medical and behavioral treatment (MT). The BS and MT groups were evaluated for body weight, BMI, body composition, and waist circumference (WC) at baseline and after 15% WL. Following 15% body WL, there were significant decreases in %FM and increased %LBM (P maintenance of WL at 1 y were found. For both groups, baseline FM was found to be negatively correlated with percentage of weight regained (%WR) at 1 y post-WL (r = -0.457; P = 0.007). Baseline WC and rate of WL to 15% were significant predictors of %WR only in the BS group (r = 0.713; P = 0.020). If followed closely by professionals during the first 15% body WL, patients losing 15% weight by either medical or surgical treatments can attain similar FM:LBM loss ratios and can maintain WL for 1 y. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spectral analysis of point-vortex dynamics: first application to vortex polygons in a circular domain

    International Nuclear Information System (INIS)

    Speetjens, M F M; Meleshko, V V; Van Heijst, G J F

    2014-01-01

    The present study addresses the classical problem of the dynamics and stability of a cluster of N-point vortices of equal strength arranged in a polygonal configuration (‘N-vortex polygons’). In unbounded domains, such N-vortex polygons are unconditionally stable for N⩽7. Confinement in a circular domain tightens the stability conditions to N⩽6 and a maximum polygon size relative to the domain radius. This work expands on existing studies on stability and integrability by a first giving an exploratory spectral analysis of the dynamics of N vortex polygons in circular domains. Key to this is that the spectral signature of the time evolution of vortex positions reflects their qualitative behaviour. Expressing vortex motion by a generic evolution operator (the so-called Koopman operator) provides a rigorous framework for such spectral analyses. This paves the way to further differentiation and classification of point-vortex behaviour beyond stability and integrability. The concept of Koopman-based spectral analysis is demonstrated for N-vortex polygons. This reveals that conditional stability can be seen as a local form of integrability and confirms an important generic link between spectrum and dynamics: discrete spectra imply regular (quasi-periodic) motion; continuous (sub-)spectra imply chaotic motion. Moreover, this exposes rich nonlinear dynamics as intermittency between regular and chaotic motion and quasi-coherent structures formed by chaotic vortices. (ss 1)

  13. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  14. Contrast-enhanced spectral mammography with a photon-counting detector.

    Science.gov (United States)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederström, Björn; Aslund, Magnus; Danielsson, Mats

    2010-05-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another approximately 70%-90% improvement was found to be within reach for an optimized system. Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  15. Contrast-enhanced spectral mammography with a photon-counting detector

    Energy Technology Data Exchange (ETDEWEB)

    Fredenberg, Erik; Hemmendorff, Magnus; Cederstroem, Bjoern; Aaslund, Magnus; Danielsson, Mats [Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Sectra Mamea AB, Smidesvaegen 5, SE-171 41 Solna (Sweden); Department of Physics, Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden)

    2010-05-15

    Purpose: Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. The authors have investigated a photon-counting spectral imaging system with two energy bins for contrast-enhanced mammography. System optimization and the potential benefit compared to conventional non-energy-resolved absorption imaging was studied. Methods: A framework for system characterization was set up that included quantum and anatomical noise and a theoretical model of the system was benchmarked to phantom measurements. Results: Optimal combination of the energy-resolved images corresponded approximately to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging in the phantom study. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, yielded only a minute improvement. In a simulation of a clinically more realistic case, spectral imaging was predicted to perform approximately 30% better than absorption imaging for an average glandularity breast with an average level of anatomical noise. For dense breast tissue and a high level of anatomical noise, however, a rise in detectability by a factor of 6 was predicted. Another {approx}70%-90% improvement was found to be within reach for an optimized system. Conclusions: Contrast-enhanced spectral mammography is feasible and beneficial with the current system, and there is room for additional improvements. Inclusion of anatomical noise is essential for optimizing spectral imaging systems.

  16. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  17. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  18. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  19. Visual-Haptic Integration: Cue Weights are Varied Appropriately, to Account for Changes in Haptic Reliability Introduced by Using a Tool

    Directory of Open Access Journals (Sweden)

    Chie Takahashi

    2011-10-01

    Full Text Available Tools such as pliers systematically change the relationship between an object's size and the hand opening required to grasp it. Previous work suggests the brain takes this into account, integrating visual and haptic size information that refers to the same object, independent of the similarity of the ‘raw’ visual and haptic signals (Takahashi et al., VSS 2009. Variations in tool geometry also affect the reliability (precision of haptic size estimates, however, because they alter the change in hand opening caused by a given change in object size. Here, we examine whether the brain appropriately adjusts the weights given to visual and haptic size signals when tool geometry changes. We first estimated each cue's reliability by measuring size-discrimination thresholds in vision-alone and haptics-alone conditions. We varied haptic reliability using tools with different object-size:hand-opening ratios (1:1, 0.7:1, and 1.4:1. We then measured the weights given to vision and haptics with each tool, using a cue-conflict paradigm. The weight given to haptics varied with tool type in a manner that was well predicted by the single-cue reliabilities (MLE model; Ernst and Banks, 2002. This suggests that the process of visual-haptic integration appropriately accounts for variations in haptic reliability introduced by different tool geometries.

  20. An integrated approach to fingerprint indexing using spectral clustering based on minutiae points

    CSIR Research Space (South Africa)

    Mngenge, NA

    2015-07-01

    Full Text Available this problem by constructing a rotational, scale and translation (RST) invariant fingerprint descriptor based on minutiae points. The proposed RST invariant descriptor dimensions are then reduced and passed to a spectral clustering algorithm which automatically...

  1. On the complete integrability of the discrete Nahm equations

    International Nuclear Information System (INIS)

    Murray, M.K.

    2000-01-01

    The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)

  2. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  3. New integrable lattice hierarchies

    International Nuclear Information System (INIS)

    Pickering, Andrew; Zhu Zuonong

    2006-01-01

    In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula

  4. Spectral mapping of thermal conductivity through nanoscale ballistic transport

    Science.gov (United States)

    Hu, Yongjie; Zeng, Lingping; Minnich, Austin J.; Dresselhaus, Mildred S.; Chen, Gang

    2015-08-01

    Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

  5. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis; Mouhot, Clé ment

    2011-01-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  6. Analysis of spectral methods for the homogeneous Boltzmann equation

    KAUST Repository

    Filbet, Francis

    2011-04-01

    The development of accurate and fast algorithms for the Boltzmann collision integral and their analysis represent a challenging problem in scientific computing and numerical analysis. Recently, several works were devoted to the derivation of spectrally accurate schemes for the Boltzmann equation, but very few of them were concerned with the stability analysis of the method. In particular there was no result of stability except when the method was modified in order to enforce the positivity preservation, which destroys the spectral accuracy. In this paper we propose a new method to study the stability of homogeneous Boltzmann equations perturbed by smoothed balanced operators which do not preserve positivity of the distribution. This method takes advantage of the "spreading" property of the collision, together with estimates on regularity and entropy production. As an application we prove stability and convergence of spectral methods for the Boltzmann equation, when the discretization parameter is large enough (with explicit bound). © 2010 American Mathematical Society.

  7. Defining the spectral and amplitude domain of music---a window into audio

    Science.gov (United States)

    Nam, Myoung W.

    In terms of 'visualizing music', this thesis presents the first critical measurements for the selected musical instruments (piano, violin, cello, flute, piccolo, drums, double bass, electric bass, and electric guitar) seeking to describe their place in the spectral and amplitude domain. All data presented as a part of this research were measured with Z-weighting (un-weighted) from 12.5Hz to 20kHz along the frequency axis, in 1/3 octave bands, evaluated statistically and in equivalent sound level. Measuring musical performances can be a very subjective process. Therefore, this research proceeded under some strategically chosen conditions and limitations. The measurements were made with each musician playing at several different intensities of musical performance. Chosen musical genres were classical, pop and jazz for the selected musical instruments. To obtain data representative of real world conditions, musical instrument measurements were made mostly in professional recording studios by professional players. The results seek to define the spectral and amplitude domain occupied by these instruments when playing typical works.

  8. Airborne spectral measurements of surface anisotropy during SCAR-B

    Science.gov (United States)

    Tsay, Si-Chee; King, Michael D.; Arnold, G. Thomas; Li, Jason Y.

    1998-12-01

    During the Smoke, Clouds, and Radiation-Brazil (SCAR-B) deployment, angular distributions of spectral reflectance for vegetated surfaces and smoke layers were measured using the scanning cloud absorption radiometer (CAR) mounted on the University of Washington C-131A research aircraft. The CAR contains 13 narrowband spectral channels between 0.3 and 2.3 μm with a 190° scan aperture (5° before zenith to 5° past nadir) and 1° instantaneous field of view. The bidirectional reflectance is obtained by flying a clockwise circular orbit above the surface, resulting in a ground track ˜3 km in diameter within about 2 min. Although the CAR measurements are contaminated by minor atmospheric effects, results show distinct spectral characteristics for various types of surfaces. Spectral bidirectional reflectances of three simple and well-defined surfaces are presented: cerrado (August 18, 1995) and dense forest (August 25, 1995), both measured in Brazil under nearly clear-sky conditions, and thick smoke layers over dense forest (September 6 and 11, 1995). The bidirectional reflectances of cerrado and dense forest revealed fairly symmetric patterns along the principal plane, with varying maximal strengths and widths spectrally in the backscattering direction. In the shortwave-infrared region the aerosol effect is very small due to low spectral optical depth. Also, these backscattering maxima can be seen on the bidirectional reflectance of smoke layer over dense forest. These detailed measurements of the angular distribution of spectral reflectance can be parameterized by a few independent variables and utilized to retrieve either surface characteristics or aerosol microphysical and optical properties (e.g., size distribution and single-scattering parameters), if proper physical and radiation models are used. The spectral-hemispherical albedo of these surfaces is obtained directly by integrating all angular measurements and is compared with the measured nadir reflectance

  9. Increased power to weight ratio of piezoelectric energy harvesters through integration of cellular honeycomb structures

    International Nuclear Information System (INIS)

    Chandrasekharan, N; Thompson, L L

    2016-01-01

    The limitations posed by batteries have compelled the need to investigate energy harvesting methods to power small electronic devices that require very low operational power. Vibration based energy harvesting methods with piezoelectric transduction in particular has been shown to possess potential towards energy harvesters replacing batteries. Current piezoelectric energy harvesters exhibit considerably lower power to weight ratio or specific power when compared to batteries the harvesters seek to replace. To attain the goal of battery-less self-sustainable device operation the power to weight ratio gap between piezoelectric energy harvesters and batteries need to be bridged. In this paper the potential of integrating lightweight honeycomb structures with existing piezoelectric device configurations (bimorph) towards achieving higher specific power is investigated. It is shown in this study that at low excitation frequency ranges, replacing the solid continuous substrate of conventional bimorph with honeycomb structures of the same material results in a significant increase in power to weight ratio of the piezoelectric harvester. At higher driving frequency ranges it is shown that unlike the traditional piezoelectric bimorph with solid continuous substrate, the honeycomb substrate bimorph can preserve optimum global design parameters through manipulation of honeycomb unit cell parameters. Increased operating lifetime and design flexibility of the honeycomb core piezoelectric bimorph is demonstrated as unit cell parameters of the honeycomb structures can be manipulated to alter mass and stiffness properties of the substrate, resulting in unit cell parameter significantly influencing power generation. (paper)

  10. Geometrical interpretation of the topological recursion, and integrable string theories

    CERN Document Server

    Eynard, Bertrand

    2009-01-01

    Symplectic invariants introduced in math-ph/0702045 can be computed for an arbitrary spectral curve. For some examples of spectral curves, those invariants can solve loop equations of matrix integrals, and many problems of enumerative geometry like maps, partitions, Hurwitz numbers, intersection numbers, Gromov-Witten invariants... The problem is thus to understand what they count, or in other words, given a spectral curve, construct an enumerative geometry problem. This is what we do in a semi-heuristic approach in this article. Starting from a spectral curve, i.e. an integrable system, we use its flat connection and flat coordinates, to define a family of worldsheets, whose enumeration is indeed solved by the topological recursion and symplectic invariants. In other words, for any spectral curve, we construct a corresponding string theory, whose target space is a submanifold of the Jacobian.

  11. Gamelan Music Onset Detection based on Spectral Features

    Directory of Open Access Journals (Sweden)

    Yoyon Kusnendar Suprapto

    2013-03-01

    Full Text Available This research detects onsets of percussive instruments by examining the performance on the sound signals of gamelan instruments as one of traditional music instruments in Indonesia. Onset plays important role in determining musical rythmic structure, like beat, tempo, and is highly required in many applications of music information retrieval. There are four onset detection methods compared that employ spectral features, such as magnitude, phase, and the combination of both, which are phase slope (PS, weighted phase deviation (WPD, spectral flux (SF, and rectified complex domain (RCD. These features are extracted by representing the sound signals into time-frequency domain using overlapped Short-time Fourier Transform (STFT and varying the window length. Onset detection functions are processed through peak-picking using dynamic threshold. The results showed that by using suitable window length and parameter setting of dynamic threshold, F-measure which is greater than 0.80 can be obtained for certain methods.

  12. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  13. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  14. Spectral analysis of full field digital mammography data

    International Nuclear Information System (INIS)

    Heine, John J.; Velthuizen, Robert P.

    2002-01-01

    The spectral content of mammograms acquired from using a full field digital mammography (FFDM) system are analyzed. Fourier methods are used to show that the FFDM image power spectra obey an inverse power law; in an average sense, the images may be considered as 1/f fields. Two data representations are analyzed and compared (1) the raw data, and (2) the logarithm of the raw data. Two methods are employed to analyze the power spectra (1) a technique based on integrating the Fourier plane with octave ring sectioning developed previously, and (2) an approach based on integrating the Fourier plane using rings of constant width developed for this work. Both methods allow theoretical modeling. Numerical analysis indicates that the effects due to the transformation influence the power spectra measurements in a statistically significant manner in the high frequency range. However, this effect has little influence on the inverse power law estimation for a given image regardless of the data representation or the theoretical analysis approach. The analysis is presented from two points of view (1) each image is treated independently with the results presented as distributions, and (2) for a given representation, the entire image collection is treated as an ensemble with the results presented as expected values. In general, the constant ring width analysis forms the foundation for a spectral comparison method for finding spectral differences, from an image distribution sense, after applying a nonlinear transformation to the data. The work also shows that power law estimation may be influenced due to the presence of noise in the higher frequency range, which is consistent with the known attributes of the detector efficiency. The spectral modeling and inverse power law determinations obtained here are in agreement with that obtained from the analysis of digitized film-screen images presented previously. The form of the power spectrum for a given image is approximately 1/f 2

  15. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacó n Rebollo, Tomá s; Dia, Ben Mansour

    2015-01-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  16. A variational multi-scale method with spectral approximation of the sub-scales: Application to the 1D advection-diffusion equations

    KAUST Repository

    Chacón Rebollo, Tomás

    2015-03-01

    This paper introduces a variational multi-scale method where the sub-grid scales are computed by spectral approximations. It is based upon an extension of the spectral theorem to non necessarily self-adjoint elliptic operators that have an associated base of eigenfunctions which are orthonormal in weighted L2 spaces. This allows to element-wise calculate the sub-grid scales by means of the associated spectral expansion. We propose a feasible VMS-spectral method by truncation of this spectral expansion to a finite number of modes. We apply this general framework to the convection-diffusion equation, by analytically computing the family of eigenfunctions. We perform a convergence and error analysis. We also present some numerical tests that show the stability of the method for an odd number of spectral modes, and an improvement of accuracy in the large resolved scales, due to the adding of the sub-grid spectral scales.

  17. Land Cover Classification Using Integrated Spectral, Temporal, and Spatial Features Derived from Remotely Sensed Images

    Directory of Open Access Journals (Sweden)

    Yongguang Zhai

    2018-03-01

    Full Text Available Obtaining accurate and timely land cover information is an important topic in many remote sensing applications. Using satellite image time series data should achieve high-accuracy land cover classification. However, most satellite image time-series classification methods do not fully exploit the available data for mining the effective features to identify different land cover types. Therefore, a classification method that can take full advantage of the rich information provided by time-series data to improve the accuracy of land cover classification is needed. In this paper, a novel method for time-series land cover classification using spectral, temporal, and spatial information at an annual scale was introduced. Based on all the available data from time-series remote sensing images, a refined nonlinear dimensionality reduction method was used to extract the spectral and temporal features, and a modified graph segmentation method was used to extract the spatial features. The proposed classification method was applied in three study areas with land cover complexity, including Illinois, South Dakota, and Texas. All the Landsat time series data in 2014 were used, and different study areas have different amounts of invalid data. A series of comparative experiments were conducted on the annual time-series images using training data generated from Cropland Data Layer. The results demonstrated higher overall and per-class classification accuracies and kappa index values using the proposed spectral-temporal-spatial method compared to spectral-temporal classification methods. We also discuss the implications of this study and possibilities for future applications and developments of the method.

  18. Spectral properties of GRBs observed with BeppoSAX

    International Nuclear Information System (INIS)

    Costa, E.; Frontera, F.

    2003-01-01

    The BeppoSAX mission has not only significantly improved the Gamma-Ray Burst science through the discovery of the afterglows but is also providing important data on the prompt events. The Gamma-Ray Burst Monitor is building a catalogue of GRBs that, due to a recently achieved, coarse but suitable positioning capabilities, can usefully integrate and extend the BATSE catalogues. We show the good relative calibration of the two experiments. Wide Field Cameras are providing a sample of about 40 GRBs, in an important band so far relatively ill covered. Moreover the combined use of the two instruments is providing a unique information on the spectral evolution of the GRBs. We show some recent spectral results based on these data and discuss the impact on our knowledge of GRB physics

  19. VizieR Online Data Catalog: Spectral properties of 441 radio pulsars (Jankowski+, 2018)

    Science.gov (United States)

    Jankowski, F.; van Straten, W.; Keane, E. F.; Bailes, M.; Barr, E. D.; Johnston, S.; Kerr, M.

    2018-03-01

    We present spectral parameters for 441 radio pulsars. These were obtained from observations centred at 728, 1382 and 3100MHz using the 10-50cm and the 20cm multibeam receiver at the Parkes radio telescope. In particular, we list the pulsar names (J2000), the calibrated, band-integrated flux densities at 728, 1382 and 3100MHz, the spectral classifications, the frequency ranges the spectral classifications were performed over, the spectral indices for pulsars with simple power-law spectra and the robust modulation indices at all three centre frequencies for pulsars of which we have at least six measurement epochs. The flux density uncertainties include scintillation and a systematic contribution, in addition to the statistical uncertainty. Upper limits are reported at the 3σ level and all other uncertainties at the 1σ level. (1 data file).

  20. New Positive and Negative Hierarchies of Integrable Differential-Difference Equations and Conservation Laws

    International Nuclear Information System (INIS)

    Li Xinyue; Zhao Qiulan

    2009-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.

  1. A Liouville integrable hierarchy, symmetry constraint, new finite-dimensional integrable systems, involutive solution and expanding integrable models

    International Nuclear Information System (INIS)

    Sun Yepeng; Chen Dengyuan

    2006-01-01

    A new spectral problem and the associated integrable hierarchy of nonlinear evolution equations are presented in this paper. It is shown that the hierarchy is completely integrable in the Liouville sense and possesses bi-Hamiltonian structure. An explicit symmetry constraint is proposed for the Lax pairs and the adjoint Lax pairs of the hierarchy. Moreover, the corresponding Lax pairs and adjoint Lax pairs are nonlinearized into a hierarchy of commutative, new finite-dimensional completely integrable Hamiltonian systems in the Liouville sense. Further, an involutive representation of solution of each equation in the hierarchy is given. Finally, expanding integrable models of the hierarchy are constructed by using a new Loop algebra

  2. Reconstruction of MODIS Spectral Reflectance under Cloudy-Sky Condition

    Directory of Open Access Journals (Sweden)

    Bo Gao

    2016-09-01

    Full Text Available Clouds usually cause invalid observations for sensors aboard satellites, which corrupts the spatio-temporal continuity of land surface parameters retrieved from remote sensing data (e.g., MODerate Resolution Imaging Spectroradiometer (MODIS data and prevents the fusing of multi-source remote sensing data in the field of quantitative remote sensing. Based on the requirements of spatio-temporal continuity and the necessity of methods to restore bad pixels, primarily resulting from image processing, this study developed a novel method to derive the spectral reflectance for MODIS band of cloudy pixels in the visual–near infrared (VIS–NIR spectral channel based on the Bidirectional Reflectance Distribution Function (BRDF and multi-spatio-temporal observations. The proposed method first constructs the spatial distribution of land surface reflectance based on the corresponding BRDF and the solar-viewing geometry; then, a geographically weighted regression (GWR is introduced to individually derive the spectral surface reflectance for MODIS band of cloudy pixels. A validation of the proposed method shows that a total root-mean-square error (RMSE of less than 6% and a total R2 of more than 90% are detected, which indicates considerably better precision than those exhibited by other existing methods. Further validation of the retrieved white-sky albedo based on the spectral reflectance for MODIS band of cloudy pixels confirms an RMSE of 3.6% and a bias of 2.2%, demonstrating very high accuracy of the proposed method.

  3. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  4. DSP-enabled reconfigurable and transparent spectral converters for converging optical and mobile fronthaul/backhaul networks.

    Science.gov (United States)

    Mao, M Z; Giddings, R P; Cao, B Y; Xu, Y T; Wang, M; Tang, J M

    2017-06-12

    Dynamically reconfigurable and transparent signal spectral conversion is expected to play a vital role in seamlessly integrating traditional metropolitan optical networks and mobile fronthaul/backhaul networks. In this paper, a simple digital signal processing (DSP)-enabled spectral converter is proposed and extensively investigated, for the first time, which just utilizes a single standard dual-parallel Mach-Zehnder modulator (DP-MZM) driven by SDN-controllable RF signals and DC bias currents. As an important thrust of the paper, optimum operating conditions of the proposed converter are analytically identified, statistically examined and experimentally verified. Optimum operating condition-supported spectral converter performances in IMDD-based network nodes are explored both theoretically and experimentally in terms of frequency detuning range-dependent conversion efficiency, spectral conversion-induced OSNR/power penalty and transparency to input signal characteristics. The proposed spectral converter has unique advantages including low configuration complexity, strict transparency, SDN-controllable performance reconfigurability and flexibility, as well as negligible spectral conversion-induced latency.

  5. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data

    Directory of Open Access Journals (Sweden)

    Georgia Doxani

    2015-10-01

    Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.

  6. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  7. Global Integration of the Hot-State Brain Network of Appetite Predicts Short Term Weight Loss in Older Adult

    Directory of Open Access Journals (Sweden)

    Brielle M Paolini

    2015-05-01

    Full Text Available Obesity is a public health crisis in North America. While lifestyle interventions for weight loss (WL remain popular, the rate of success is highly variable. Clearly, self-regulation of eating behavior is a challenge and patterns of activity across the brain may be an important determinant of success. The current study prospectively examined whether integration across the Hot-State Brain Network of Appetite (HBN-A predicts WL after 6-months of treatment in older adults. Our metric for network integration was global efficiency (GE. The present work is a sub-study (n = 56 of an ongoing randomized clinical trial involving WL. Imaging involved a baseline food-cue visualization functional MRI (fMRI scan following an overnight fast. Using graph theory to build functional brain networks, we demonstrated that regions of the HBN-A (insula, anterior cingulate cortex (ACC, superior temporal pole, amygdala and the parahippocampal gyrus were highly integrated as evidenced by the results of a principal component analysis. After accounting for known correlates of WL (baseline weight, age, sex, and self-regulatory efficacy and treatment condition, which together contributed 36.9% of the variance in WL, greater GE in the HBN-A was associated with an additional 19% of the variance. The ACC of the HBN-A was the primary driver of this effect, accounting for 14.5% of the variance in WL when entered in a stepwise regression following the covariates, p = 0.0001. The HBN-A is comprised of limbic regions important in the processing of emotions and visceral sensations and the ACC is key for translating such processing into behavioral consequences. The improved integration of these regions may enhance awareness of body and emotional states leading to more successful self-regulation and to greater WL. This is the first study among older adults to prospectively demonstrate that, following an overnight fast, GE of the HBN-A during a food visualization task is predictive of

  8. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  9. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    Science.gov (United States)

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  10. Spectral Analysis of Vector Magnetic Field Profiles

    Science.gov (United States)

    Parker, Robert L.; OBrien, Michael S.

    1997-01-01

    We investigate the power spectra and cross spectra derived from the three components of the vector magnetic field measured on a straight horizontal path above a statistically stationary source. All of these spectra, which can be estimated from the recorded time series, are related to a single two-dimensional power spectral density via integrals that run in the across-track direction in the wavenumber domain. Thus the measured spectra must obey a number of strong constraints: for example, the sum of the two power spectral densities of the two horizontal field components equals the power spectral density of the vertical component at every wavenumber and the phase spectrum between the vertical and along-track components is always pi/2. These constraints provide powerful checks on the quality of the measured data; if they are violated, measurement or environmental noise should be suspected. The noise due to errors of orientation has a clear characteristic; both the power and phase spectra of the components differ from those of crustal signals, which makes orientation noise easy to detect and to quantify. The spectra of the crustal signals can be inverted to obtain information about the cross-track structure of the field. We illustrate these ideas using a high-altitude Project Magnet profile flown in the southeastern Pacific Ocean.

  11. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  12. Spectral emissivity measurements of liquid refractory metals by spectrometers combined with an electrostatic levitator

    International Nuclear Information System (INIS)

    Ishikawa, Takehiko; Okada, Junpei T; Paradis, Paul-François; Ito, Yusuke; Masaki, Tadahiko; Watanabe, Yuki

    2012-01-01

    A spectral emissivity measurement system combined with an electrostatic levitator was developed for high-temperature melts. The radiation intensity from a high-temperature sample was measured with a multichannel photospectrometer (MCPD) over the 700–1000 nm spectral range, while a Fourier transform infrared spectrometer (FTIR) measured the radiation over the 1.1–6 µm interval. These spectrometers were calibrated with a blackbody radiation furnace, and the spectral hemispherical emissivity was calculated. The system's capability was evaluated with molten zirconium samples. The spectral hemispherical emissivity of molten zirconium showed a negative wavelength dependence and an almost constant variation over the 1850–2210 K temperature range. The total hemispherical emissivity of zirconium calculated by integrating the spectral hemispherical emissivity was found to be around 0.32, which showed good agreement with the literature values. The constant pressure heat capacity of molten zirconium at melting temperature was calculated to be 40.9 J mol −1 K −1 . (paper)

  13. Energy-weighted sum rules for mesons in hot and dense matter

    NARCIS (Netherlands)

    Cabrera, D.; Polls, A.; Ramos, A.; Tolos Rigueiro, Laura

    2009-01-01

    We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific

  14. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    Science.gov (United States)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  15. Necessary and Sufficient Conditions for Boundedness of Commutators of the General Fractional Integral Operators on Weighted Morrey Spaces

    Directory of Open Access Journals (Sweden)

    Zengyan Si

    2012-01-01

    Full Text Available We prove that b is in Lipβ(ω if and only if the commutator [b,L-α/2] of the multiplication operator by b and the general fractional integral operator L-α/2 is bounded from the weighted Morrey space Lp,k(ω to Lq,kq/p(ω1-(1-α/nq,ω, where 0(1-k/(p/(q-k, and here rω denotes the critical index of ω for the reverse Hölder condition.

  16. Photoreceptor inner segment ellipsoid band integrity on spectral domain optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Saxena S

    2014-12-01

    Full Text Available Sandeep Saxena,1 Khushboo Srivastav,1 Chui M Cheung,2 Joanne YW Ng,3 Timothy YY Lai3 1Retina Service, Department of Ophthalmology, King George’s Medical University Lucknow, India; 2Singapore National Eye Centre, Singapore; 3Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong Abstract: Spectral domain optical coherence tomography cross-sectional imaging of the macula has conventionally been resolved into four bands. However, some doubts were raised regarding authentication of the existence of these bands. Recently, a number of studies have suggested that the second band appeared to originate from the inner segment ellipsoids of the foveal cone photoreceptors, and therefore the previously called inner segment-outer segment junction is now referred to as inner segment ellipsoidband. Photoreceptor dysfunction may be a significant predictor of visual acuity in a spectrum of surgical and medical retinal diseases. This review aims to provide an overview and summarizes the role of the photoreceptor inner segment ellipsoid band in the management and prognostication of various vitreoretinal diseases. Keywords: spectral domain optical coherence tomography, inner segment-outer segment junction, external limiting membrane, macular hole, diabetic macular edema, age relate macular degeneration

  17. Spectral differential imaging detection of planets about nearby stars

    International Nuclear Information System (INIS)

    Smith, W.H.

    1987-01-01

    Direct ground-based optical imaging of planets in orbit about nearby stars may be accomplished by spectral differential imaging using multiple passband acoustooptic filters with a CCD. This technique provides two essential results. First, it provides a means to modulate the stellar flux reflected from a planet while leaving the flux from the star and other sources in the same field of view unmodulated. Second, spectral differential imaging enables the CCD detector to achieve a sufficiently high dynamic range to locate planets near a star in spite of an integrated brightness differential of 5 x 10 8 . Spectral differential imaging at nearby diffraction limited imaging conditions with telescope apodization can reduce the time to conduct a sensitive planetary search to a few hours in some cases. The feasibility of this idea is discussed here and shown to provide, in principle, the discrimination and sensitivity to detect a Jovian-class planet about stars at distances of about 10 parsecs. The detection of brown dwarfs is shown to be feasible as well. 31 references

  18. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.

    2013-01-01

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods

  19. Spectral analysis of the EEG during halothane anaesthesia: Input-output relations

    NARCIS (Netherlands)

    Silva, F.H. Lopes da; Smith, N. Ty; Zwart, Aart; Nichols, W.W.

    1. 1. The “Halothane-brain compartment” system was investigated in dogs. The input was the inspired concentration of Halothane. The output was the intensity of EEG spectral components. The EEG was analysed by a hybrid system (analogue filters and digital integration in a small computer). For the

  20. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  1. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  2. Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach

    Science.gov (United States)

    Liu, Haijian; Wu, Changshan

    2018-06-01

    Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.

  3. Spectral Properties of Homogeneous and Nonhomogeneous Radar Images

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang

    1987-01-01

    On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown that the sp......On the basis of a two-dimensional, nonstationary white noisemodel for the complex radar backscatter, the spectral properties ofa one-look synthetic-aperture radar (SAR) system is derived. It isshown that the power spectrum of the complex SAR image is sceneindependent. It is also shown...... that the spectrum of the intensityimage is in general related to the radar scene spectrum by a linearintegral equation, a Fredholm's integral equation of the third kind.Under simplifying assumptions, a closed-form equation giving theradar scene spectrum as a function of the SAR image spectrum canbe derived....

  4. Development and Application of Coating Weight Control Technology

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Hyoung [Dongbu Steel, Incheon (Korea, Republic of)

    2010-08-15

    Precise coating weight control is very important issue on quality and minimizing operating costs on continuous galvanizing line. These days, many steel making companies are having a new understanding of cost importance by rise raw material prices and customers requirement for cost reduction. Dongbu steel also meets these situations and decided to develop the technologies. Dongbu Steel developed Integrated coating weight control system jointly with Objective Control Ltd. and installed 2CGL and 4CGL. Several technological functions were developed and realized to achieve true hands-off operation and maximum cost benefit by combining model-based preset and dynamic prediction models. We also installed it on 1 CGL on April, 2008. This paper will present the interface, functions and application result of the integrated coating weight control system including Zn saving and coating weight uniformity.

  5. Generation of spectrally stable 6.5-fs visible pulses via filamentation in krypton

    Institute of Scientific and Technical Information of China (English)

    Keisuke Kaneshima; Kengo Takeuchi; Nobuhisa Ishii; Jiro Itatani

    2016-01-01

    We produced 5-μJ, 6.5-fs visible pulses at a repetition rate of 1 kHz using filamentation in a gas cell filled with krypton followed by spectral selection and phase compensation by a combination of dielectric mirrors. The visible pulses have a smooth spectrum from 520 to 650 nm with a shot-to-shot stability in each spectral component of better than 2%(standard deviation). This pulse compression scheme is simple and robust, and can be easily integrated into intense ultrashort-pulse laser systems.

  6. The spectral emissivity of the anode of a carbon arc.

    Science.gov (United States)

    Schurer, K

    1968-03-01

    Data in the literature on the spectral emissivity of carbon and graphite show a great divergence, ranging from 0.75 to 0.99 in the visible region. A new determination has been undertaken at a number of wavelengths using an integrating sphere and modulated light. Emissivities ranging from 0.99 in the visible to 0.96 at 0.28 micro and 1.7 micro have been found for several different graphite anodes; the values for lampblack anodes are about 0.005 lower. There is a good agreement with the highest values thus far published. Most of the literature data on the spectral radiance of the anode are consistent with the emissivities found by the present author.

  7. GTX Reference Vehicle Structural Verification Methods and Weight Summary

    Science.gov (United States)

    Hunter, J. E.; McCurdy, D. R.; Dunn, P. W.

    2002-01-01

    The design of a single-stage-to-orbit air breathing propulsion system requires the simultaneous development of a reference launch vehicle in order to achieve the optimal mission performance. Accordingly, for the GTX study a 300-lb payload reference vehicle was preliminarily sized to a gross liftoff weight (GLOW) of 238,000 lb. A finite element model of the integrated vehicle/propulsion system was subjected to the trajectory environment and subsequently optimized for structural efficiency. This study involved the development of aerodynamic loads mapped to finite element models of the integrated system in order to assess vehicle margins of safety. Commercially available analysis codes were used in the process along with some internally developed spreadsheets and FORTRAN codes specific to the GTX geometry for mapping of thermal and pressure loads. A mass fraction of 0.20 for the integrated system dry weight has been the driver for a vehicle design consisting of state-of-the-art composite materials in order to meet the rigid weight requirements. This paper summarizes the methodology used for preliminary analyses and presents the current status of the weight optimization for the structural components of the integrated system.

  8. Measured Polarized Spectral Responsivity of JPSS J1 VIIRS Using the NIST T-SIRCUS

    Science.gov (United States)

    McIntire, Jeff; Young, James B.; Moyer, David; Waluschka, Eugene; Xiong, Xiaoxiong

    2015-01-01

    Recent pre-launch measurements performed on the Joint Polar Satellite System (JPSS) J1 Visible Infrared Imaging Radiometer Suite (VIIRS) using the National Institute of Standards and Technology (NIST) Traveling Spectral Irradiance and Radiance Responsivity Calibrations Using Uniform Sources (T-SIRCUS) monochromatic source have provided wavelength dependent polarization sensitivity for select spectral bands and viewing conditions. Measurements were made at a number of input linear polarization states (twelve in total) and initially at thirteen wavelengths across the bandpass (later expanded to seventeen for some cases). Using the source radiance information collected by an external monitor, a spectral responsivity function was constructed for each input linear polarization state. Additionally, an unpolarized spectral responsivity function was derived from these polarized measurements. An investigation of how the centroid, bandwidth, and detector responsivity vary with polarization state was weighted by two model input spectra to simulate both ground measurements as well as expected on-orbit conditions. These measurements will enhance our understanding of VIIRS polarization sensitivity, improve the design for future flight models, and provide valuable data to enhance product quality in the post-launch phase.

  9. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    Science.gov (United States)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  10. Multi-layer imager design for mega-voltage spectral imaging

    Science.gov (United States)

    Myronakis, Marios; Hu, Yue-Houng; Fueglistaller, Rony; Wang, Adam; Baturin, Paul; Huber, Pascal; Morf, Daniel; Star-Lack, Josh; Berbeco, Ross

    2018-05-01

    The architecture of multi-layer imagers (MLIs) can be exploited to provide megavoltage spectral imaging (MVSPI) for specific imaging tasks. In the current work, we investigated bone suppression and gold fiducial contrast enhancement as two clinical tasks which could be improved with spectral imaging. A method based on analytical calculations that enables rapid investigation of MLI component materials and thicknesses was developed and validated against Monte Carlo computations. The figure of merit for task-specific imaging performance was the contrast-to-noise ratio (CNR) of the gold fiducial when the CNR of bone was equal to zero after a weighted subtraction of the signals obtained from each MLI layer. Results demonstrated a sharp increase in the CNR of gold when the build-up component or scintillation materials and thicknesses were modified. The potential for low-cost, prompt implementation of specific modifications (e.g. composition of the build-up component) could accelerate clinical translation of MVSPI.

  11. Spectral sum rule for time delay in R2

    International Nuclear Information System (INIS)

    Osborn, T.A.; Sinha, K.B.; Bolle, D.; Danneels, C.

    1985-01-01

    A local spectral sum rule for nonrelativistic scattering in two dimensions is derived for the potential class velement ofL 4 /sup // 3 (R 2 ). The sum rule relates the integral over all scattering energies of the trace of the time-delay operator for a finite region Σis contained inR 2 to the contributions in Σ of the pure point and singularly continuous spectra

  12. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  13. Interactions among spectral components of radiation in the growth responses of rice, tomato and strawberry

    International Nuclear Information System (INIS)

    Inada, K.; Matsuno, A.

    1985-01-01

    Effects of spectral components and their ratios of radiation on simultaneous growth responses were investigated with rice, tomato and strawberry plants exposed to lights with a high fluence rate (350 or 408 μmol m -2 s -1 , 400-700 nm) during every daytime. Both elongation growth and Ieaf area development in rice and strawberry were promoted by red (R) but inhibited by blue (B) component depending on the each fluence rate. However, leaf area in tomato responded in opposite direction to these. The elongation growth was remarkably increased with the fluence rate of far-red (FR) in tomato and strawberry, but not in rice. These responses were lineary increased, except FR and UV effects, with logarithmic R/B ratio in rice and strawberry but not in tomato. A very low R/FR ratio caused a strong promotion of both elongation and leaf area in tomato, while it promoted petiole elengation but inhibited leaf area development in strawberry. The elongation and leaf area development responded to R/FR in reverse way between rice and strawberry. Chlorophyll content of leaves was generally decreased with the increase of logarithmic R/B ratio in all the species. Areal weight of leaf and dry weight increment/leaf area were more or less increased with R/B and R/ FR ratios, Dry weight increment varied with the spectral ratios in almost the same way as leaf area, suggesting that spectral dependence of photosynthetic production was not much different between the species. Some discussions were made on the photoreceptor pigments involved in the elongation growth and leaf area development, and on the selection of light quantity to ensure a normal growth of each plant species

  14. Singular solution of the Feller diffusion equation via a spectral decomposition

    Science.gov (United States)

    Gan, Xinjun; Waxman, David

    2015-01-01

    Feller studied a branching process and found that the distribution for this process approximately obeys a diffusion equation [W. Feller, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (University of California Press, Berkeley and Los Angeles, 1951), pp. 227-246]. This diffusion equation and its generalizations play an important role in many scientific problems, including, physics, biology, finance, and probability theory. We work under the assumption that the fundamental solution represents a probability density and should account for all of the probability in the problem. Thus, under the circumstances where the random process can be irreversibly absorbed at the boundary, this should lead to the presence of a Dirac delta function in the fundamental solution at the boundary. However, such a feature is not present in the standard approach (Laplace transformation). Here we require that the total integrated probability is conserved. This yields a fundamental solution which, when appropriate, contains a term proportional to a Dirac delta function at the boundary. We determine the fundamental solution directly from the diffusion equation via spectral decomposition. We obtain exact expressions for the eigenfunctions, and when the fundamental solution contains a Dirac delta function at the boundary, every eigenfunction of the forward diffusion operator contains a delta function. We show how these combine to produce a weight of the delta function at the boundary which ensures the total integrated probability is conserved. The solution we present covers cases where parameters are time dependent, thereby greatly extending its applicability.

  15. Silicon photodiode with selective Zr/Si coating for extreme ultraviolet spectral range

    International Nuclear Information System (INIS)

    Aruev, P N; Barysheva, Mariya M; Ber, B Ya; Zabrodskaya, N V; Zabrodskii, V V; Lopatin, A Ya; Pestov, Alexey E; Petrenko, M V; Polkovnikov, V N; Salashchenko, Nikolai N; Sukhanov, V L; Chkhalo, Nikolai I

    2012-01-01

    The procedure of manufacturing silicon photodiodes with an integrated Zr/Si filter for extreme ultraviolet (EUV) spectral range is developed. A setup for measuring the sensitivity profile of detectors with spatial resolution better than 100 μm is fabricated. The optical properties of silicon photodiodes in the EUV and visible spectral ranges are investigated. Some characteristics of SPD-100UV diodes with Zr/Si coating and without it, as well as of AXUV-100 diodes, are compared. In all types of detectors a narrow region beyond the operating aperture is found to be sensitive to the visible light. (photodetectors)

  16. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  17. Spectral unmixing of hyperspectral data to map bauxite deposits

    Science.gov (United States)

    Shanmugam, Sanjeevi; Abhishekh, P. V.

    2006-12-01

    This paper presents a study about the potential of remote sensing in bauxite exploration in the Kolli hills of Tamilnadu state, southern India. ASTER image (acquired in the VNIR and SWIR regions) has been used in conjunction with SRTM - DEM in this study. A new approach of spectral unmixing of ASTER image data delineated areas rich in alumina. Various geological and geomorphological parameters that control bauxite formation were also derived from the ASTER image. All these information, when integrated, showed that there are 16 cappings (including the existing mines) that satisfy most of the conditions favouring bauxitization in the Kolli Hills. The study concludes that spectral unmixing of hyperspectral satellite data in the VNIR and SWIR regions may be combined with the terrain parameters to get accurate information about bauxite deposits, including their quality.

  18. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang, E-mail: xu_xixiang@hotmail.co [College of Science, Shandong University of Science and Technology, Qingdao, 266510 (China)

    2010-01-04

    An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.

  19. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family

    International Nuclear Information System (INIS)

    Xu Xixiang

    2010-01-01

    An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.

  20. Mixed-Precision Spectral Deferred Correction: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Grout, Ray W. S.

    2015-09-02

    Convergence of spectral deferred correction (SDC), where low-order time integration methods are used to construct higher-order methods through iterative refinement, can be accelerated in terms of computational effort by using mixed-precision methods. Using ideas from multi-level SDC (in turn based on FAS multigrid ideas), some of the SDC correction sweeps can use function values computed in reduced precision without adversely impacting the accuracy of the final solution. This is particularly beneficial for the performance of combustion solvers such as S3D [6] which require double precision accuracy but are performance limited by the cost of data motion.

  1. Spectral clustering and biclustering learning large graphs and contingency tables

    CERN Document Server

    Bolla, Marianna

    2013-01-01

    Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, mult

  2. Evolving spectral transformations for multitemporal information extraction using evolutionary computation

    Science.gov (United States)

    Momm, Henrique; Easson, Greg

    2011-01-01

    Remote sensing plays an important role in assessing temporal changes in land features. The challenge often resides in the conversion of large quantities of raw data into actionable information in a timely and cost-effective fashion. To address this issue, research was undertaken to develop an innovative methodology integrating biologically-inspired algorithms with standard image classification algorithms to improve information extraction from multitemporal imagery. Genetic programming was used as the optimization engine to evolve feature-specific candidate solutions in the form of nonlinear mathematical expressions of the image spectral channels (spectral indices). The temporal generalization capability of the proposed system was evaluated by addressing the task of building rooftop identification from a set of images acquired at different dates in a cross-validation approach. The proposed system generates robust solutions (kappa values > 0.75 for stage 1 and > 0.4 for stage 2) despite the statistical differences between the scenes caused by land use and land cover changes coupled with variable environmental conditions, and the lack of radiometric calibration between images. Based on our results, the use of nonlinear spectral indices enhanced the spectral differences between features improving the clustering capability of standard classifiers and providing an alternative solution for multitemporal information extraction.

  3. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  4. Accurate and independent spectral response scale based on silicon trap detectors and spectrally invariant detectors

    International Nuclear Information System (INIS)

    Gran, Jarle

    2005-01-01

    of the trap detector is very close to the responisivity of an ideal detector over most of its spectral range. The uncertainties given in (b) are very low uncertainties for the spectral response scales in the visual and infrared. The improvements of using the hybrid self calibration method is clearly demonstrated, though longer integration time and more measurement series in the purely relative method is expected to reduce the uncertainty in that method as well. The suggested methods presented in this thesis would improve if better spectrally invariant detectors were developed. Designing spectrally invariant detectors to be chilled with liquid nitrogen, but without all the facilities needed for a CR, would reduce the noise of' such detectors. This CR-light should preferably be small and the silicon detector should be placed behind the needed window so that window effects are minimised and full advantage of the method is obtained. The disadvantages by this suggested set-up are that the system is more complex and requires vacuum. In addition, the temperature differences will cause condensation problems, which also have to be handled. The uncertainties are obtained with a power levels in the order of 1 microW per nm. If we had access to a smoothly varying spectrally selective system with higher throughput, we expect to reduce the uncertainties accordingly. This could be a continuous laser source or a monochromator system and source with higher brightness. On the other hand, the cost of such a system would be rather high, so the main advantage with the presented methods would therefore be reduced. The evolution of self-calibration is going further. Geist et al has suggested to cool the silicon detectors down to cryogenic temperatures in order to achieve an ultra high accuracy primary standard below the I ppm level. Gran has initiated a NICe (Nordic Innovations Centre) funded project with custom designed silicon detectors where half of the surface is covered with a

  5. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  6. Exploration of Integrated Visible to Near-, Shortwave-, and Longwave-Infrared (Full-Range) Spectral Analysis

    Science.gov (United States)

    2014-09-01

    wavelength region .................................... 67 Table 7. Description of comparison locations...concentration and characteristics of the silicate bonds. Sulfates, phosphates, oxides, and hydroxides also exhibit strong features in the LWIR. Because...authors suggested that full spectral coverage would provide complementary information about the mineralogical and mineral chemistry patterns. The

  7. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  8. Automatic Radiometric Normalization of Multitemporal Satellite Imagery with the Iteratively Re-weighted MAD Transformation

    DEFF Research Database (Denmark)

    Canty, Morton John; Nielsen, Allan Aasbjerg

    2008-01-01

    A recently proposed method for automatic radiometric normalization of multi- and hyper-spectral imagery based on the invariance property of the Multivariate Alteration Detection (MAD) transformation and orthogonal linear regression is extended by using an iterative re-weighting scheme involving no...

  9. PROBING THE TRANSITION BETWEEN THE SYNCHROTRON AND INVERSE-COMPTON SPECTRAL COMPONENTS OF 1ES 1959+650

    International Nuclear Information System (INIS)

    Bottacini, E.; Schady, P.; Rau, A.; Zhang, X.-L.; Greiner, J.; Boettcher, M.; Ajello, M.; Fendt, C.

    2010-01-01

    1ES 1959+650 is one of the most remarkable high-peaked BL Lacertae objects (HBL). In 2002, it exhibited a TeV γ-ray flare without a similar brightening of the synchrotron component at lower energies. This orphan TeV flare remained a mystery. We present the results of a multifrequency campaign, triggered by the INTEGRAL IBIS detection of 1ES 1959+650. Our data range from the optical to hard X-ray energies, thus covering the synchrotron and inverse-Compton components simultaneously. We observed the source with INTEGRAL, the Swift X-Ray Telescope, and the UV-Optical Telescope, and nearly simultaneously with a ground-based optical telescope. The steep spectral component at X-ray energies is most likely due to synchrotron emission, while at soft γ-ray energies the hard spectral index may be interpreted as the onset of the high-energy component of the blazar spectral energy distribution (SED). This is the first clear measurement of a concave X-ray-soft γ-ray spectrum for an HBL. The SED can be well modeled with a leptonic synchrotron self-Compton model. When the SED is fitted this model requires a very hard electron spectral index of q ∼ 1.85, possibly indicating the relevance of second-order Fermi acceleration.

  10. An integrated impact assessment and weighting methodology: evaluation of the environmental consequences of computer display technology substitution.

    Science.gov (United States)

    Zhou, Xiaoying; Schoenung, Julie M

    2007-04-01

    Computer display technology is currently in a state of transition, as the traditional technology of cathode ray tubes is being replaced by liquid crystal display flat-panel technology. Technology substitution and process innovation require the evaluation of the trade-offs among environmental impact, cost, and engineering performance attributes. General impact assessment methodologies, decision analysis and management tools, and optimization methods commonly used in engineering cannot efficiently address the issues needed for such evaluation. The conventional Life Cycle Assessment (LCA) process often generates results that can be subject to multiple interpretations, although the advantages of the LCA concept and framework obtain wide recognition. In the present work, the LCA concept is integrated with Quality Function Deployment (QFD), a popular industrial quality management tool, which is used as the framework for the development of our integrated model. The problem of weighting is addressed by using pairwise comparison of stakeholder preferences. Thus, this paper presents a new integrated analytical approach, Integrated Industrial Ecology Function Deployment (I2-EFD), to assess the environmental behavior of alternative technologies in correlation with their performance and economic characteristics. Computer display technology is used as the case study to further develop our methodology through the modification and integration of various quality management tools (e.g., process mapping, prioritization matrix) and statistical methods (e.g., multi-attribute analysis, cluster analysis). Life cycle thinking provides the foundation for our methodology, as we utilize a published LCA report, which stopped at the characterization step, as our starting point. Further, we evaluate the validity and feasibility of our methodology by considering uncertainty and conducting sensitivity analysis.

  11. Spectral Narrowing of a Varactor-Integrated Resonant-Tunneling-Diode Terahertz Oscillator by Phase-Locked Loop

    Science.gov (United States)

    Ogino, Kota; Suzuki, Safumi; Asada, Masahiro

    2017-12-01

    Spectral narrowing of a resonant-tunneling-diode (RTD) terahertz oscillator, which is useful for various applications of terahertz frequency range, such as an accurate gas spectroscopy, a frequency reference in various communication systems, etc., was achieved with a phase-locked loop system. The oscillator is composed of an RTD, a slot antenna, and a varactor diode for electrical frequency tuning. The output of the RTD oscillating at 610 GHz was down-converted to 400 MHz by a heterodyne detection. The phase noise was transformed to amplitude noise by a balanced mixer and fed back into the varactor diode. The loop filter for a stable operation is discussed. The spectral linewidth of 18.6 MHz in free-running operation was reduced to less than 1 Hz by the feedback.

  12. Spectral curve for open strings attached to the Y=0 brane

    International Nuclear Information System (INIS)

    Bajnok, Zoltán; Kim, Minkyoo; Palla, László

    2014-01-01

    The concept of spectral curve is generalized to open strings in AdS/CFT with integrability preserving boundary conditions. Our definition is based on the logarithms of the eigenvalues of the open monodromy matrix and makes possible to determine all the analytic, symmetry and asymptotic properties of the quasimomenta. We work out the details of the whole construction for the Y=0 brane boundary condition. The quasimomenta of open circular strings are explicitly calculated. We use the asymptotic solutions of the Y-system and the boundary Bethe Ansatz equations to recover the spectral curve in the strong coupling scaling limit. Using the curve the quasiclassical fluctuations of some open string solutions are also studied

  13. WAVELENGTH SELECTION OF HYPERSPECTRAL LIDAR BASED ON FEATURE WEIGHTING FOR ESTIMATION OF LEAF NITROGEN CONTENT IN RICE

    Directory of Open Access Journals (Sweden)

    L. Du

    2016-06-01

    Full Text Available Hyperspectral LiDAR (HSL is a novel tool in the field of active remote sensing, which has been widely used in many domains because of its advantageous ability of spectrum-gained. Especially in the precise monitoring of nitrogen in green plants, the HSL plays a dispensable role. The exiting HSL system used for nitrogen status monitoring has a multi-channel detector, which can improve the spectral resolution and receiving range, but maybe result in data redundancy, difficulty in system integration and high cost as well. Thus, it is necessary and urgent to pick out the nitrogen-sensitive feature wavelengths among the spectral range. The present study, aiming at solving this problem, assigns a feature weighting to each centre wavelength of HSL system by using matrix coefficient analysis and divergence threshold. The feature weighting is a criterion to amend the centre wavelength of the detector to accommodate different purpose, especially the estimation of leaf nitrogen content (LNC in rice. By this way, the wavelengths high-correlated to the LNC can be ranked in a descending order, which are used to estimate rice LNC sequentially. In this paper, a HSL system which works based on a wide spectrum emission and a 32-channel detector is conducted to collect the reflectance spectra of rice leaf. These spectra collected by HSL cover a range of 538 nm – 910 nm with a resolution of 12 nm. These 32 wavelengths are strong absorbed by chlorophyll in green plant among this range. The relationship between the rice LNC and reflectance-based spectra is modeled using partial least squares (PLS and support vector machines (SVMs based on calibration and validation datasets respectively. The results indicate that I wavelength selection method of HSL based on feature weighting is effective to choose the nitrogen-sensitive wavelengths, which can also be co-adapted with the hardware of HSL system friendly. II The chosen wavelength has a high correlation with rice LNC

  14. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...

  15. On asymptotic analysis of spectral problems in elasticity

    Directory of Open Access Journals (Sweden)

    S.A. Nazarov

    Full Text Available The three-dimensional spectral elasticity problem is studied in an anisotropic and inhomogeneous solid with small defects, i.e., inclusions, voids, and microcracks. Asymptotics of eigenfrequencies and the corresponding elastic eigenmodes are constructed and justified. New technicalities of the asymptotic analysis are related to variable coefficients of differential operators, vectorial setting of the problem, and usage of intrinsic integral characteristics of defects. The asymptotic formulae are developed in a form convenient for application in shape optimization and inverse problems.

  16. A Discrete Spectral Problem and Related Hierarchy of Discrete Hamiltonian Lattice Equations

    International Nuclear Information System (INIS)

    Xu Xixiang; Cao Weili

    2007-01-01

    Staring from a discrete matrix spectral problem, a hierarchy of lattice soliton equations is presented though discrete zero curvature representation. The resulting lattice soliton equations possess non-local Lax pairs. The Hamiltonian structures are established for the resulting hierarchy by the discrete trace identity. Liouville integrability of resulting hierarchy is demonstrated.

  17. Impact of carbohydrates on weight regain.

    Science.gov (United States)

    Bosy-Westphal, Anja; Müller, Manfred J

    2015-07-01

    Research on obesity treatment has shifted its focus from weight loss to weight-loss maintenance strategies. The conventional approach of a low-fat diet is challenged by insights from glycemic effects of carbohydrates on body weight regulation. Metabolic and endocrine adaptations to weight loss that contribute to weight regain involve reduced energy expenditure, increased insulin sensitivity, and enhanced orexigenic signals. This review summarizes the impact of carbohydrates on energetic efficiency, partitioning of weight regain as fat and lean mass, and appetite control. Both the amount and frequency of postprandial glycemia add to body weight regulation after weight loss and strengthen the concept of glycemic index and glycemic load. In addition, dietary fiber and slowly or poorly absorbable functional sugars modify gastrointestinal peptides involved in appetite and metabolic regulation and exert prebiotic effects. Current evidence suggests that a low-glycemic load diet with a preference for low-glycemic index foods and integration of slowly digestible, poorly absorbable carbohydrates may improve weight-loss maintenance. Future studies should investigate the health benefits of low glycemic functional sweeteners (e.g., isomaltulose and tagatose).

  18. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  19. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  20. An integrable coupling system of lattice hierarchy and its continuous limits

    International Nuclear Information System (INIS)

    Yu Fajun; Li Li

    2009-01-01

    In [E.G. Fan, Phys. Lett. A 372 (2008) 6368], Fan present a lattice hierarchy and its continuous limits. In this Letter, we extend this method, by introducing a complex discrete spectral problem, a coupling lattice hierarchy is derived. It is shown that a new sequence of combinations of complex lattice spectral problem converges to the integrable coupling couplings of soliton equation hierarchy, which has the integrable coupling system of AKNS hierarchy as a continuous limit.

  1. A multi-domain spectral method for time-fractional differential equations

    Science.gov (United States)

    Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.

    2015-07-01

    This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.

  2. Audiovisual integration in children listening to spectrally degraded speech.

    Science.gov (United States)

    Maidment, David W; Kang, Hi Jee; Stewart, Hannah J; Amitay, Sygal

    2015-02-01

    The study explored whether visual information improves speech identification in typically developing children with normal hearing when the auditory signal is spectrally degraded. Children (n=69) and adults (n=15) were presented with noise-vocoded sentences from the Children's Co-ordinate Response Measure (Rosen, 2011) in auditory-only or audiovisual conditions. The number of bands was adaptively varied to modulate the degradation of the auditory signal, with the number of bands required for approximately 79% correct identification calculated as the threshold. The youngest children (4- to 5-year-olds) did not benefit from accompanying visual information, in comparison to 6- to 11-year-old children and adults. Audiovisual gain also increased with age in the child sample. The current data suggest that children younger than 6 years of age do not fully utilize visual speech cues to enhance speech perception when the auditory signal is degraded. This evidence not only has implications for understanding the development of speech perception skills in children with normal hearing but may also inform the development of new treatment and intervention strategies that aim to remediate speech perception difficulties in pediatric cochlear implant users.

  3. Development of a compact light weight DELRAD probe and its integration with UAV NETRA for aerial radiation surveillance

    International Nuclear Information System (INIS)

    Prasad, Mahaveer; Yadav, Ashok Kumar; Gupta, D.K.; Bhatnagar, Vivek; Singh, Chiman; Mishrilal

    2018-01-01

    The DEfence Laboratory RAdiation Detector - 'DELRAD' is an indigenously developed Hybrid Micro Circuit Module employing Si PIN diodes for detection of gamma radiation. Using this as a detector, the 'DELRAD Probe' has been designed and developed specifically for the UAV, NETRA for aerial surveillance of the nuclear affected areas. The critical requirement of very light weight radiation sensor as payload (<50gm) for the UAV NETRA is met by designing this Probe weighing approx. 40gm. The sensor is capable of measuring gamma radiation levels from 1mR/h to 1000R/h. The Probe has been tested, calibrated and integrated with the UAV NETRA. In addition to this, the radiation testing during flight of UAV NETRA integrated with DELRAD probe has also been carried out and results have been recorded. The work carried out proves the capability of Defence Laboratory, Jodhpur, (DRDO) in the area of 'Aerial Surveillance of Nuclear Radiation Affected Area' using Unmanned Aerial Vehicles (UAVs)

  4. Becoming Overweight Without Gaining a Pound: Weight Evaluations and the Social Integration of Mexicans in the United States.

    Science.gov (United States)

    Altman, Claire E; Van Hook, Jennifer; Gonzalez, Jonathan

    2017-01-01

    Mexican women gain weight with increasing duration in the United States. In the United States, body dissatisfaction tends to be associated with depression, disordered eating, and incongruent weight evaluations, particularly among white women and women of higher socioeconomic status. However, it remains unclear how overweight and obesity is interpreted by Mexican women. Using comparable data of women ages 20-64 from both Mexico (the 2006 Encuesta Nacional de Salud y Nutricion; N=17,012) and the United States (the 1999-2009 National Health and Nutrition Examination Surveys; N=8,487), we compare weight status evaluations among Mexican nationals, Mexican immigrants, U.S.-born Mexicans, U.S.-born non-Hispanic Whites, and U.S.-born non-Hispanic blacks. Logistic regression analyses, which control for demographic and social-economic variables and measured body mass index and adjust for the likelihood of migration for Mexican nationals, indicate that the tendency to self-evaluate as overweight among Mexicans converges with levels among non-Hispanic whites and diverges from blacks over time in the United States. Overall, the results suggest a U.S. integration process in which Mexican-American women's less critical self-evaluations originate in Mexico but fade with time in the United States as they gradually adopt U.S. white norms for thinner body sizes. These results are discussed in light of social comparison and negative health assimilation.

  5. WINDOWS: a program for the analysis of spectral data foil activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references. (JFP)

  6. WINDOWS: a program for the analysis of spectral data foil activation measurements

    International Nuclear Information System (INIS)

    Stallmann, F.W.; Eastham, J.F.; Kam, F.B.K.

    1978-12-01

    The computer program WINDOWS together with its subroutines is described for the analysis of neutron spectral data foil activation measurements. In particular, the unfolding of the neutron differential spectrum, estimated windows and detector contributions, upper and lower bounds for an integral response, and group fluxes obtained from neutron transport calculations. 116 references

  7. Brain network analysis: separating cost from topology using cost-integration.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    Full Text Available A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i differences in weighted costs and (ii differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration.

  8. Brain Network Analysis: Separating Cost from Topology Using Cost-Integration

    Science.gov (United States)

    Ginestet, Cedric E.; Nichols, Thomas E.; Bullmore, Ed T.; Simmons, Andrew

    2011-01-01

    A statistically principled way of conducting brain network analysis is still lacking. Comparison of different populations of brain networks is hard because topology is inherently dependent on wiring cost, where cost is defined as the number of edges in an unweighted graph. In this paper, we evaluate the benefits and limitations associated with using cost-integrated topological metrics. Our focus is on comparing populations of weighted undirected graphs that differ in mean association weight, using global efficiency. Our key result shows that integrating over cost is equivalent to controlling for any monotonic transformation of the weight set of a weighted graph. That is, when integrating over cost, we eliminate the differences in topology that may be due to a monotonic transformation of the weight set. Our result holds for any unweighted topological measure, and for any choice of distribution over cost levels. Cost-integration is therefore helpful in disentangling differences in cost from differences in topology. By contrast, we show that the use of the weighted version of a topological metric is generally not a valid approach to this problem. Indeed, we prove that, under weak conditions, the use of the weighted version of global efficiency is equivalent to simply comparing weighted costs. Thus, we recommend the reporting of (i) differences in weighted costs and (ii) differences in cost-integrated topological measures with respect to different distributions over the cost domain. We demonstrate the application of these techniques in a re-analysis of an fMRI working memory task. We also provide a Monte Carlo method for approximating cost-integrated topological measures. Finally, we discuss the limitations of integrating topology over cost, which may pose problems when some weights are zero, when multiplicities exist in the ranks of the weights, and when one expects subtle cost-dependent topological differences, which could be masked by cost-integration. PMID:21829437

  9. Convexity and Weighted Integral Inequalities for Energy Decay Rates of Nonlinear Dissipative Hyperbolic Systems

    International Nuclear Information System (INIS)

    Alabau-Boussouira, Fatiha

    2005-01-01

    This work is concerned with the stabilization of hyperbolic systems by a nonlinear feedback which can be localized on a part of the boundary or locally distributed. We show that general weighted integral inequalities together with convexity arguments allow us to produce a general semi-explicit formula which leads to decay rates of the energy in terms of the behavior of the nonlinear feedback close to the origin. This formula allows us to unify for instance the cases where the feedback has a polynomial growth at the origin, with the cases where it goes exponentially fast to zero at the origin. We also give three other significant examples of nonpolynomial growth at the origin. We also prove the optimality of our results for the one-dimensional wave equation with nonlinear boundary dissipation. The key property for obtaining our general energy decay formula is the understanding between convexity properties of an explicit function connected to the feedback and the dissipation of energy

  10. Design principles and field performance of a solar spectral irradiance meter

    Energy Technology Data Exchange (ETDEWEB)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reported by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.

  11. Weight Multispectral Reconstruction Strategy for Enhanced Reconstruction Accuracy and Stability With Cerenkov Luminescence Tomography.

    Science.gov (United States)

    Hongbo Guo; Xiaowei He; Muhan Liu; Zeyu Zhang; Zhenhua Hu; Jie Tian

    2017-06-01

    Cerenkov luminescence tomography (CLT) provides a novel technique for 3-D noninvasive detection of radiopharmaceuticals in living subjects. However, because of the severe scattering of Cerenkov light, the reconstruction accuracy and stability of CLT is still unsatisfied. In this paper, a modified weight multispectral CLT (wmCLT) reconstruction strategy was developed which split the Cerenkov radiation spectrum into several sub-spectral bands and weighted the sub-spectral results to obtain the final result. To better evaluate the property of the wmCLT reconstruction strategy in terms of accuracy, stability and practicability, several numerical simulation experiments and in vivo experiments were conducted and the results obtained were compared with the traditional multispectral CLT (mCLT) and hybrid-spectral CLT (hCLT) reconstruction strategies. The numerical simulation results indicated that wmCLT strategy significantly improved the accuracy of Cerenkov source localization and intensity quantitation and exhibited good stability in suppressing noise in numerical simulation experiments. And the comparison of the results achieved from different in vivo experiments further indicated significant improvement of the wmCLT strategy in terms of the shape recovery of the bladder and the spatial resolution of imaging xenograft tumors. Overall the strategy reported here will facilitate the development of nuclear and optical molecular tomography in theoretical study.

  12. Efficient 3D/1D self-consistent integral-equation analysis of ICRH antennae

    International Nuclear Information System (INIS)

    Maggiora, R.; Vecchi, G.; Lancellotti, V.; Kyrytsya, V.

    2004-01-01

    This work presents a comprehensive account of the theory and implementation of a method for the self-consistent numerical analysis of plasma-facing ion-cyclotron resonance heating (ICRH) antenna arrays. The method is based on the integral-equation formulation of the boundary-value problem, solved via a weighted-residual scheme. The antenna geometry (including Faraday shield bars and a recess box) is fairly general and three-dimensional (3D), and the plasma is in the one-dimensional (1D) 'slab' approximation; finite-Larmor radius effects, as well as plasma density and temperature gradients, are considered. Feeding via the voltages in the access coaxial lines is self consistently accounted throughout and the impedance or scattering matrix of the antenna array obtained therefrom. The problem is formulated in both the dual space (physical) and spectral (wavenumber) domains, which allows the extraction and simple handling of the terms that slow the convergence in the spectral domain usually employed. This paper includes validation tests of the developed code against measured data, both in vacuo and in the presence of plasma. An example of application to a complex geometry is also given. (author)

  13. Spectrally Resolved and Functional Super-resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy.

    Science.gov (United States)

    Yan, Rui; Moon, Seonah; Kenny, Samuel J; Xu, Ke

    2018-03-20

    As an elegant integration of the spatial and temporal dimensions of single-molecule fluorescence, single-molecule localization microscopy (SMLM) overcomes the diffraction-limited resolution barrier of optical microscopy by localizing single molecules that stochastically switch between fluorescent and dark states over time. While this type of super-resolution microscopy (SRM) technique readily achieves remarkable spatial resolutions of ∼10 nm, it typically provides no spectral information. Meanwhile, current scanning-based single-location approaches for mapping the positions and spectra of single molecules are limited by low throughput and are difficult to apply to densely labeled (bio)samples. In this Account, we summarize the rationale, design, and results of our recent efforts toward the integration of the spectral dimension of single-molecule fluorescence with SMLM to achieve spectrally resolved SMLM (SR-SMLM) and functional SRM ( f-SRM). By developing a wide-field scheme for spectral measurement and implementing single-molecule fluorescence on-off switching typical of SMLM, we first showed that in densely labeled (bio)samples it is possible to record the fluorescence spectra and positions of millions of single molecules synchronously within minutes, giving rise to ultrahigh-throughput single-molecule spectroscopy and SR-SMLM. This allowed us to first show statistically that for many dyes, single molecules of the same species exhibit near identical emission in fixed cells. This narrow distribution of emission wavelengths, which contrasts markedly with previous results at solid surfaces, allowed us to unambiguously identify single molecules of spectrally similar dyes. Crosstalk-free, multiplexed SRM was thus achieved for four dyes that were merely 10 nm apart in emission spectrum, with the three-dimensional SRM images of all four dyes being automatically aligned within one image channel. The ability to incorporate single-molecule fluorescence measurement with

  14. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  15. Spectral properties near the Mott transition in the two-dimensional Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2013-03-01

    Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.

  16. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  17. [Road Extraction in Remote Sensing Images Based on Spectral and Edge Analysis].

    Science.gov (United States)

    Zhao, Wen-zhi; Luo, Li-qun; Guo, Zhou; Yue, Jun; Yu, Xue-ying; Liu, Hui; Wei, Jing

    2015-10-01

    Roads are typically man-made objects in urban areas. Road extraction from high-resolution images has important applications for urban planning and transportation development. However, due to the confusion of spectral characteristic, it is difficult to distinguish roads from other objects by merely using traditional classification methods that mainly depend on spectral information. Edge is an important feature for the identification of linear objects (e. g. , roads). The distribution patterns of edges vary greatly among different objects. It is crucial to merge edge statistical information into spectral ones. In this study, a new method that combines spectral information and edge statistical features has been proposed. First, edge detection is conducted by using self-adaptive mean-shift algorithm on the panchromatic band, which can greatly reduce pseudo-edges and noise effects. Then, edge statistical features are obtained from the edge statistical model, which measures the length and angle distribution of edges. Finally, by integrating the spectral and edge statistical features, SVM algorithm is used to classify the image and roads are ultimately extracted. A series of experiments are conducted and the results show that the overall accuracy of proposed method is 93% comparing with only 78% overall accuracy of the traditional. The results demonstrate that the proposed method is efficient and valuable for road extraction, especially on high-resolution images.

  18. Emission spectral analysis of nickel-base superalloys with fixed time intergration technique

    International Nuclear Information System (INIS)

    Okochi, Haruno; Takahashi, Katsuyuki; Suzuki, Shunichi; Sudo, Emiko

    1980-01-01

    Simultaneous determination of multielements (C, B, Mo, Ta, Co, Fe, Mn, Cr, Nb, Cu, Ti, Zr, and Al) in nickel-base superalloys (Ni: 68 -- 76%) was performed by emission spectral analysis. At first, samples which had various nickel contents (ni: 68 -- 76%) were prepared by using JAERI R9, nickel and other metals (Fe, Co, or Cr). It was confirmed that in the internal standard method (Ni II 227.73 nm), analytical values of all the elements examined decreased with a decrease of the integration time (ca. 3.9 -- 4.6 s), that is, an increase of the nickel content. On the other hand, according to the fixed time integration method, elements except for C, Mo, and Cr were not interfered within the range of nickel contents examined. A series of nickel-base binary alloys (Al, Si, Ti, Cr, Mn, Fe, Co, Nb, Mo, and W series) were prepared by high frequency induction melting and the centrifugal casting method and formulae for correcting interferences with near spectral lines were obtained. Various synthetic samples were prepared and analysed by this method. The equations of calibration curves were derived from the data for standard samples (JAERI R1 -- R6, NBS 1189, 1203 -- 1205, and B.S. 600B) by curve fitting with orthogonal polynomials using a computer. For the assessment of this method studied, the F-test was performed by comparison of variances of both analytical values of standard and synthetic samples. The surfaces of specimens were polished with a belt grinder using No. 80 of alumina or silicon carbide endless-paper. The preburn period and integration one were decided at 5 and 6 s respectively. A few standard samples which gave worse reproducibility in emission spectral analysis was investigated with an optical microscope and an electron probe X-ray microanalyser. (author)

  19. Quantum spectral curve for the η-deformed AdS5 × S5 superstring

    Science.gov (United States)

    Klabbers, Rob; van Tongeren, Stijn J.

    2017-12-01

    The spectral problem for the AdS5 ×S5 superstring and its dual planar maximally supersymmetric Yang-Mills theory can be efficiently solved through a set of functional equations known as the quantum spectral curve. We discuss how the same concepts apply to the η-deformed AdS5 ×S5 superstring, an integrable deformation of the AdS5 ×S5 superstring with quantum group symmetry. This model can be viewed as a trigonometric version of the AdS5 ×S5 superstring, like the relation between the XXZ and XXX spin chains, or the sausage and the S2 sigma models for instance. We derive the quantum spectral curve for the η-deformed string by reformulating the corresponding ground-state thermodynamic Bethe ansatz equations as an analytic Y system, and map this to an analytic T system which upon suitable gauge fixing leads to a Pμ system - the quantum spectral curve. We then discuss constraints on the asymptotics of this system to single out particular excited states. At the spectral level the η-deformed string and its quantum spectral curve interpolate between the AdS5 ×S5 superstring and a superstring on "mirror" AdS5 ×S5, reflecting a more general relationship between the spectral and thermodynamic data of the η-deformed string. In particular, the spectral problem of the mirror AdS5 ×S5 string, and the thermodynamics of the undeformed AdS5 ×S5 string, are described by a second rational limit of our trigonometric quantum spectral curve, distinct from the regular undeformed limit.

  20. Spectral monodromy of non-self-adjoint operators

    International Nuclear Information System (INIS)

    Phan, Quang Sang

    2014-01-01

    In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)

  1. Spectral monodromy of non-self-adjoint operators

    Science.gov (United States)

    Phan, Quang Sang

    2014-01-01

    In the present paper, we build a combinatorial invariant, called the "spectral monodromy" from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc ["Quantum monodromy in integrable systems," Commun. Math. Phys. 203(2), 465-479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat ["On global action-angle coordinates," Commun. Pure Appl. Math. 33(6), 687-706 (1980)].

  2. Spectral monodromy of non-self-adjoint operators

    Energy Technology Data Exchange (ETDEWEB)

    Phan, Quang Sang, E-mail: quang.phan@uj.edu.pl [Université de Rennes 1, Institut de Recherche Mathématique de Rennes (UMR 6625), Campus de Beaulieu, 35042 Rennes (France)

    2014-01-15

    In the present paper, we build a combinatorial invariant, called the “spectral monodromy” from the spectrum of a single (non-self-adjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting self-adjoint h-pseudodifferential operators, given by S. Vu Ngoc [“Quantum monodromy in integrable systems,” Commun. Math. Phys. 203(2), 465–479 (1999)]. The first simple case that we treat in this work is a normal operator. In this case, the discrete spectrum can be identified with the joint spectrum of an integrable quantum system. The second more complex case we propose is a small perturbation of a self-adjoint operator with a classical integrability property. We show that the discrete spectrum (in a small band around the real axis) also has a combinatorial monodromy. The main difficulty in this case is that we do not know the description of the spectrum everywhere, but only in a Cantor type set. In addition, we also show that the corresponding monodromy can be identified with the classical monodromy, defined by J. Duistermaat [“On global action-angle coordinates,” Commun. Pure Appl. Math. 33(6), 687–706 (1980)].

  3. Multiple spectral channels in branchiopods. I. Vision in dim light and neural correlates.

    Science.gov (United States)

    Lessios, Nicolas; Rutowski, Ronald L; Cohen, Jonathan H; Sayre, Marcel E; Strausfeld, Nicholas J

    2018-05-22

    Animals that have true color vision possess several spectral classes of photoreceptors. Pancrustaceans (Hexapoda+Crustacea) that integrate spectral information about their reconstructed visual world do so from photoreceptor terminals supplying their second optic neuropils, with subsequent participation of the third (lobula) and deeper centers (optic foci). Here, we describe experiments and correlative neural arrangements underlying convergent visual pathways in two species of branchiopod crustaceans that have to cope with a broad range of spectral ambience and illuminance in ephemeral pools, yet possess just two optic neuropils, the lamina and the optic tectum. Electroretinographic recordings and multimodel inference based on modeled spectral absorptance were used to identify the most likely number of spectral photoreceptor classes in their compound eyes. Recordings from the retina provide support for four color channels. Neuroanatomical observations resolve arrangements in their laminas that suggest signal summation at low light intensities, incorporating chromatic channels. Neuroanatomical observations demonstrate that spatial summation in the lamina of the two species are mediated by quite different mechanisms, both of which allow signals from several ommatidia to be pooled at single lamina monopolar cells. We propose that such summation provides sufficient signal for vision at intensities equivalent to those experienced by insects in terrestrial habitats under dim starlight. Our findings suggest that despite the absence of optic lobe neuropils necessary for spectral discrimination utilized by true color vision, four spectral photoreceptor classes have been maintained in Branchiopoda for vision at very low light intensities at variable ambient wavelengths that typify conditions in ephemeral freshwater habitats. © 2018. Published by The Company of Biologists Ltd.

  4. [Estimation of Hunan forest carbon density based on spectral mixture analysis of MODIS data].

    Science.gov (United States)

    Yan, En-ping; Lin, Hui; Wang, Guang-xing; Chen, Zhen-xiong

    2015-11-01

    With the fast development of remote sensing technology, combining forest inventory sample plot data and remotely sensed images has become a widely used method to map forest carbon density. However, the existence of mixed pixels often impedes the improvement of forest carbon density mapping, especially when low spatial resolution images such as MODIS are used. In this study, MODIS images and national forest inventory sample plot data were used to conduct the study of estimation for forest carbon density. Linear spectral mixture analysis with and without constraint, and nonlinear spectral mixture analysis were compared to derive the fractions of different land use and land cover (LULC) types. Then sequential Gaussian co-simulation algorithm with and without the fraction images from spectral mixture analyses were employed to estimate forest carbon density of Hunan Province. Results showed that 1) Linear spectral mixture analysis with constraint, leading to a mean RMSE of 0.002, more accurately estimated the fractions of LULC types than linear spectral and nonlinear spectral mixture analyses; 2) Integrating spectral mixture analysis model and sequential Gaussian co-simulation algorithm increased the estimation accuracy of forest carbon density to 81.5% from 74.1%, and decreased the RMSE to 5.18 from 7.26; and 3) The mean value of forest carbon density for the province was 30.06 t · hm(-2), ranging from 0.00 to 67.35 t · hm(-2). This implied that the spectral mixture analysis provided a great potential to increase the estimation accuracy of forest carbon density on regional and global level.

  5. Integrability and solvability of the simplified two-qubit Rabi model

    International Nuclear Information System (INIS)

    Peng Jie; Ren Zhongzhou; Guo Guangjie; Ju Guoxing

    2012-01-01

    The simplified two-qubit Rabi model is proposed and its analytical solution is presented. There are no level crossings in the spectral graph of the model, which indicates that it is not integrable. The criterion of integrability for the Rabi model proposed by Braak (2011 Phys. Rev. Lett. 107 100401) is also used for the simplified two-qubit Rabi model and the same conclusion, consistent with what the spectral graph shows, can be drawn, which indicates that the criterion remains valid when applied to the two-qubit case. The simplified two-qubit Rabi model is another example of a non-integrable but exactly solvable system except for the generalized Rabi model. (paper)

  6. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  7. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  8. Connecting complexity with spectral entropy using the Laplace transformed solution to the fractional diffusion equation

    Science.gov (United States)

    Liang, Yingjie; Chen, Wen; Magin, Richard L.

    2016-07-01

    Analytical solutions to the fractional diffusion equation are often obtained by using Laplace and Fourier transforms, which conveniently encode the order of the time and the space derivatives (α and β) as non-integer powers of the conjugate transform variables (s, and k) for the spectral and the spatial frequencies, respectively. This study presents a new solution to the fractional diffusion equation obtained using the Laplace transform and expressed as a Fox's H-function. This result clearly illustrates the kinetics of the underlying stochastic process in terms of the Laplace spectral frequency and entropy. The spectral entropy is numerically calculated by using the direct integration method and the adaptive Gauss-Kronrod quadrature algorithm. Here, the properties of spectral entropy are investigated for the cases of sub-diffusion and super-diffusion. We find that the overall spectral entropy decreases with the increasing α and β, and that the normal or Gaussian case with α = 1 and β = 2, has the lowest spectral entropy (i.e., less information is needed to describe the state of a Gaussian process). In addition, as the neighborhood over which the entropy is calculated increases, the spectral entropy decreases, which implies a spatial averaging or coarse graining of the material properties. Consequently, the spectral entropy is shown to provide a new way to characterize the temporal correlation of anomalous diffusion. Future studies should be designed to examine changes of spectral entropy in physical, chemical and biological systems undergoing phase changes, chemical reactions and tissue regeneration.

  9. GOSAT-2014 methane spectral line list

    International Nuclear Information System (INIS)

    Nikitin, A.V.; Lyulin, O.M.; Mikhailenko, S.N.; Perevalov, V.I.; Filippov, N.N.; Grigoriev, I.M.; Morino, I.; Yoshida, Y.; Matsunaga, T.

    2015-01-01

    The updated methane spectral line list GOSAT-2014 for the 5550–6240 cm −1 region with the intensity cutoff of 5×10 –25 cm/molecule at 296 K is presented. The line list is based on the extensive measurements of the methane spectral line parameters performed at different temperatures and pressures of methane without and with buffer gases N 2 , O 2 and air. It contains the following spectral line parameters of about 12150 transitions: line position, line intensity, energy of lower state, air-induced and self-pressure-induced broadening and shift coefficients and temperature exponent of air-broadening coefficient. The accuracy of the line positions and intensities are considerably improved in comparison with the previous version GOSAT-2009. The improvement of the line list is done mainly due to the involving to the line position and intensity retrieval of six new spectra recorded with short path way (8.75 cm). The air-broadening and air-shift coefficients for the J-manifolds of the 2ν 3 (F 2 ) band are refitted using the new more precise values of the line positions and intensities. The line assignment is considerably extended. The lower state J-value was assigned to 6397 lines representing 94.4% of integrated intensity of the considering wavenumber region. The complete assignment was done for 2750 lines. - Highlights: • The upgrade of the GOSAT methane line list in the 5550–6240 cm −1 region is done. • 12,146 experimental methane line positions and intensities are retrieved. • 6376 lower energy levels for methane lines are determined

  10. Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.

    Science.gov (United States)

    Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa

    2009-01-01

    UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).

  11. Weight Measurement Chitosan Molecule using GPC-MALLS

    International Nuclear Information System (INIS)

    Mohd Yusof Hamzah; Norhashidah Talip; Maznah Mahmud

    2011-01-01

    Research on basic characteristics and application of practical chitosan are need in order to understand their physical and chemical properties of this materials. One of the physico chemical properties that important for every polymers is absolute molecular weights. The important of this aspects has give big impacts on non colligative of the polymers, for example, viscosity, solubility and so on. Absolute weight molecular weights of each polymers can be measured by using GPC-MALLS. This device functioned as molecular size separator and molecular weight measurement by integration of the information such as sample concentration, light scattering index and sample reaction information using laser radiation irradiated from 18 angles.In this scope, we will discuss deeply on absolute weight molecular measurement of chitosan by using GPC-MALLS. (author)

  12. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  13. Pairing-induced kinetic energy lowering in doped antiferromagnets

    International Nuclear Information System (INIS)

    Wrobel, P; Eder, R; Fulde, P

    2003-01-01

    We analyse lowering of the kinetic energy in doped antiferromagnets at the transition to the superconducting state. Measurements of optical conductivity indicate that such unconventional behaviour takes place in underdoped Bi-2212. We argue that the definition of the operator representing the kinetic energy is determined by experimental conditions. The thermodynamic average of that operator is related to the integrated spectral weight of the optical conductivity and thus depends on the cut-off frequency limiting that integral. If the upper limit of the integral lies below the charge transfer gap the spectral weight represents the average of the hopping term in the space restricted to the energy range below the gap. We show that the kinetic energy is indeed lowered at the superconducting transition in the t-J model (tJM), which is an effective model defined in the restricted space. That result is in agreement with experimental observations and may be attributed to the formation of spin polarons and the change of roles which are played by the kinetic and the potential energy in the tJM and in some effective model for spin polarons. The total spectral weight represents the kinetic energy in a model defined in a broader space if the upper limit in the integral of the optical conductivity is set above the gap. We demonstrate that the kinetic energy in the Hubbard model is also lowered in the superconducting state. That result does not agree with experimental observations, indicating that the spectral weight is conserved for all temperatures if the upper limit of the integral is set above the charge transfer gap. This discrepancy suggests that a single band model is not capable of describing in some respects the physics of excitations across the gap

  14. A two-channel, spectrally degenerate polarization entangled source on chip

    Science.gov (United States)

    Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-12-01

    Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.

  15. Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation

    International Nuclear Information System (INIS)

    Yang Hongxiang; Xu Xixiang; Sun Yepeng; Ding Haiyong

    2006-01-01

    Starting from a discrete isospectral problem, integrable positive and negative relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies are proven to have discrete zero-curvature representations associated with a discrete spectral problem, and the positive and negative lattice hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The integrable positive and negative coupling systems of the resulting hierarchies are constructed through enlarging Lax pairs. In addition, with the help of gauge transformations of spectral problems, a Darboux transformation is established for the relativistic Toda type lattice. As an application, an exact solution is explicitly presented

  16. Correction of spectral and temporal phases for ultra-intense lasers; Correction des phases spectrale et temporelle pour les lasers ultra-intenses

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, E

    2000-12-15

    The discovery of new regimes of interaction between laser and matter requires to produce laser pulses presenting higher luminous flux density. The only solutions that allow us to reach important power (about ten peta-watts) imply the correction of non-linear effects before compressing the laser pulse so that we do not transfer the phase modulation to the amplitude modulation. The aim of this work is the correction of the spectral phase through the modulation of the temporal phase. The first chapter is dedicated to the review of the physical phenomena involved in the interaction of ultra-intense laser pulse with matter. The peta-watt laser operating on the LIL (integrated laser line), the prototype line of the Megajoule Laser, is described in the second chapter. The third chapter presents the method used and optimized for getting an absolute measurement of the spectral phase in our experimental configuration. The fourth chapter details the analogy existing between the spatial domain and the temporal domain particularly between diffraction and dispersion. This analogy has allowed us to benefit from the knowledge cumulated in the spatial domain, particularly the treatment of the aberrations and their impact on the focal spot and to use it in the temporal domain. The principle of the phase correction is exposed in the fifth chapter. We have formalized the correspondence of the phase modulation between temporal domain and the spectral domain for strongly stretched pulses. In this way a modulation of the temporal phase is turned into a modulation of the spectral phase. All the measurements concerning phases and modulation spectral phase correction are presented in the sixth chapter. In the last chapter we propose an extension of the temporal phase correction by correcting non-linear effects directly in the temporal phase. This correction will improve the performances of the peta-watt laser. Numerical simulations show that the temporal phase correction can lead to a

  17. Experimental demonstration of variable weight SAC-OCDMA system for QoS differentiation

    Science.gov (United States)

    Seyedzadeh, Saleh; Mahdiraji, Ghafour Amouzad; Sahbudin, Ratna Kalos Zakiah; Abas, Ahmad Fauzi; Anas, Siti Barirah Ahmad

    2014-10-01

    In this paper the experimental and simulation results of variable-weight spectral amplitude coding optical code division multiple access (VW-SAC-OCDMA) system is demonstrated. In the proposed system, three users with weights of 6, 4 and 2 each operating at data rate of 1.25 Gb/s represent video, data and voice services, respectively. Results show that for back-to-back system minimum average power of -20 dBm per chip is required to maintain the acceptable performance. Transmission up to 60 km of fiber is demonstrated. Using mathematical approximation the capacity of VW-SAC-OCDMA system is demonstrated.

  18. Time-resolved spectral investigations of laser light induced microplasma

    Science.gov (United States)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  19. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  20. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  1. Nonlocal Coulomb correlations in pure and electron-doped Sr2IrO4 : Spectral functions, Fermi surface, and pseudo-gap-like spectral weight distributions from oriented cluster dynamical mean-field theory

    Science.gov (United States)

    Martins, Cyril; Lenz, Benjamin; Perfetti, Luca; Brouet, Veronique; Bertran, François; Biermann, Silke

    2018-03-01

    We address the role of nonlocal Coulomb correlations and short-range magnetic fluctuations in the high-temperature phase of Sr2IrO4 within state-of-the-art spectroscopic and first-principles theoretical methods. Introducing an "oriented-cluster dynamical mean-field scheme", we compute momentum-resolved spectral functions, which we find to be in excellent agreement with angle-resolved photoemission spectra. We show that while short-range antiferromagnetic fluctuations are crucial to accounting for the electronic properties of Sr2IrO4 even in the high-temperature paramagnetic phase, long-range magnetic order is not a necessary ingredient of the insulating state. Upon doping, an exotic metallic state is generated, exhibiting cuprate-like pseudo-gap spectral properties, for which we propose a surprisingly simple theoretical mechanism.

  2. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  3. Time resolved spectroscopy of GRB 030501 using INTEGRAL

    DEFF Research Database (Denmark)

    Beckmann, V.; Borkowski, J.; Courvoisier, T.J.L.

    2003-01-01

    The gamma-ray instruments on-board INTEGRAL offer an unique opportunity to perform time resolved analysis on GRBs. The imager IBIS allows accurate positioning of GRBs and broad band spectral analysis, while SPI provides high resolution spectroscopy. GRB 030501 was discovered by the INTEGRAL Burst...... the Ulysses and RHESSI experiments....

  4. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru.

    OpenAIRE

    Delgado-Villanueva, Kiko Alexi; Romero Gil, Inmaculada

    2016-01-01

    [EN] Environmental conflict analysis (henceforth ECA) has become a key factor for the viability of projects and welfare of affected populations. In this study, we propose an approach for ECA using an integrated grey clustering and entropy-weight method (The IGCEW method). The case study considered a mining project in northern Peru. Three stakeholder groups and seven criteria were identified. The data were gathered by conducting field interviews. The results revealed that for the groups urban ...

  5. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  6. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  7. Terahertz spectral unmixing based method for identifying gastric cancer

    Science.gov (United States)

    Cao, Yuqi; Huang, Pingjie; Li, Xian; Ge, Weiting; Hou, Dibo; Zhang, Guangxin

    2018-02-01

    At present, many researchers are exploring biological tissue inspection using terahertz time-domain spectroscopy (THz-TDS) techniques. In this study, based on a modified hard modeling factor analysis method, terahertz spectral unmixing was applied to investigate the relationships between the absorption spectra in THz-TDS and certain biomarkers of gastric cancer in order to systematically identify gastric cancer. A probability distribution and box plot were used to extract the distinctive peaks that indicate carcinogenesis, and the corresponding weight distributions were used to discriminate the tissue types. The results of this work indicate that terahertz techniques have the potential to detect different levels of cancer, including benign tumors and polyps.

  8. Spectral analysis of noisy nonlinear maps

    International Nuclear Information System (INIS)

    Hirshman, S.P.; Whitson, J.C.

    1982-01-01

    A path integral equation formalism is developed to obtain the frequency spectrum of nonlinear mappings exhibiting chaotic behavior. The one-dimensional map, x/sub n+1/ = f(x/sub n/), where f is nonlinear and n is a discrete time variable, is analyzed in detail. This map is introduced as a paradigm of systems whose exact behavior is exceedingly complex, and therefore irretrievable, but which nevertheless possess smooth, well-behaved solutions in the presence of small sources of external noise. A Boltzmann integral equation is derived for the probability distribution function p(x,n). This equation is linear and is therefore amenable to spectral analysis. The nonlinear dynamics in f(x) appear as transition probability matrix elements, and the presence of noise appears simply as an overall multiplicative scattering amplitude. This formalism is used to investigate the band structure of the logistic equation and to analyze the effects of external noise on both the invariant measure and the frequency spectrum of x/sub n/ for several values of lambda epsilon [0,1

  9. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  10. On weights which admit the reproducing kernel of Bergman type

    Directory of Open Access Journals (Sweden)

    Zbigniew Pasternak-Winiarski

    1992-01-01

    Full Text Available In this paper we consider (1 the weights of integration for which the reproducing kernel of the Bergman type can be defined, i.e., the admissible weights, and (2 the kernels defined by such weights. It is verified that the weighted Bergman kernel has the analogous properties as the classical one. We prove several sufficient conditions and necessary and sufficient conditions for a weight to be an admissible weight. We give also an example of a weight which is not of this class. As a positive example we consider the weight μ(z=(Imz2 defined on the unit disk in ℂ.

  11. The MIND PALACE: A Multi-Spectral Imaging and Spectroscopy Database for Planetary Science

    Science.gov (United States)

    Eshelman, E.; Doloboff, I.; Hara, E. K.; Uckert, K.; Sapers, H. M.; Abbey, W.; Beegle, L. W.; Bhartia, R.

    2017-12-01

    The Multi-Instrument Database (MIND) is the web-based home to a well-characterized set of analytical data collected by a suite of deep-UV fluorescence/Raman instruments built at the Jet Propulsion Laboratory (JPL). Samples derive from a growing body of planetary surface analogs, mineral and microbial standards, meteorites, spacecraft materials, and other astrobiologically relevant materials. In addition to deep-UV spectroscopy, datasets stored in MIND are obtained from a variety of analytical techniques obtained over multiple spatial and spectral scales including electron microscopy, optical microscopy, infrared spectroscopy, X-ray fluorescence, and direct fluorescence imaging. Multivariate statistical analysis techniques, primarily Principal Component Analysis (PCA), are used to guide interpretation of these large multi-analytical spectral datasets. Spatial co-referencing of integrated spectral/visual maps is performed using QGIS (geographic information system software). Georeferencing techniques transform individual instrument data maps into a layered co-registered data cube for analysis across spectral and spatial scales. The body of data in MIND is intended to serve as a permanent, reliable, and expanding database of deep-UV spectroscopy datasets generated by this unique suite of JPL-based instruments on samples of broad planetary science interest.

  12. MR-guided dynamic PET reconstruction with the kernel method and spectral temporal basis functions

    Science.gov (United States)

    Novosad, Philip; Reader, Andrew J.

    2016-06-01

    Recent advances in dynamic positron emission tomography (PET) reconstruction have demonstrated that it is possible to achieve markedly improved end-point kinetic parameter maps by incorporating a temporal model of the radiotracer directly into the reconstruction algorithm. In this work we have developed a highly constrained, fully dynamic PET reconstruction algorithm incorporating both spectral analysis temporal basis functions and spatial basis functions derived from the kernel method applied to a co-registered T1-weighted magnetic resonance (MR) image. The dynamic PET image is modelled as a linear combination of spatial and temporal basis functions, and a maximum likelihood estimate for the coefficients can be found using the expectation-maximization (EM) algorithm. Following reconstruction, kinetic fitting using any temporal model of interest can be applied. Based on a BrainWeb T1-weighted MR phantom, we performed a realistic dynamic [18F]FDG simulation study with two noise levels, and investigated the quantitative performance of the proposed reconstruction algorithm, comparing it with reconstructions incorporating either spectral analysis temporal basis functions alone or kernel spatial basis functions alone, as well as with conventional frame-independent reconstruction. Compared to the other reconstruction algorithms, the proposed algorithm achieved superior performance, offering a decrease in spatially averaged pixel-level root-mean-square-error on post-reconstruction kinetic parametric maps in the grey/white matter, as well as in the tumours when they were present on the co-registered MR image. When the tumours were not visible in the MR image, reconstruction with the proposed algorithm performed similarly to reconstruction with spectral temporal basis functions and was superior to both conventional frame-independent reconstruction and frame-independent reconstruction with kernel spatial basis functions. Furthermore, we demonstrate that a joint spectral

  13. Spectral transform and solvability of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Degasperis, A.

    1979-01-01

    These lectures deal with an exciting development of the last decade, namely the resolving method based on the spectral transform which can be considered as an extension of the Fourier analysis to nonlinear evolution equations. Since many important physical phenomena are modeled by nonlinear partial wave equations this method is certainly a major breakthrough in mathematical physics. We follow the approach, introduced by Calogero, which generalizes the usual Wronskian relations for solutions of a Sturm-Liouville problem. Its application to the multichannel Schroedinger problem will be the subject of these lectures. We will focus upon dynamical systems described at time t by a multicomponent field depending on one space coordinate only. After recalling the Fourier technique for linear evolution equations we introduce the spectral transform method taking the integral equations of potential scattering as an example. The second part contains all the basic functional relationships between the fields and their spectral transforms as derived from the Wronskian approach. In the third part we discuss a particular class of solutions of nonlinear evolution equations, solitons, which are considered by many physicists as a first step towards an elementary particle theory, because of their particle-like behaviour. The effect of the polarization time-dependence on the motion of the soliton is studied by means of the corresponding spectral transform, leading to new concepts such as the 'boomeron' and the 'trappon'. The rich dynamic structure is illustrated by a brief report on the main results of boomeron-boomeron and boomeron-trappon collisions. In the final section we discuss further results concerning important properties of the solutions of basic nonlinear equations. We introduce the Baecklund transform for the special case of scalar fields and demonstrate how it can be used to generate multisoliton solutions and how the conservation laws are obtained. (HJ)

  14. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    Rosenberg, D; Pouquet, A; Mininni, P D

    2007-01-01

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  15. Discrimination and streaming of speech sounds based on differences in interaural and spectral cues.

    Science.gov (United States)

    David, Marion; Lavandier, Mathieu; Grimault, Nicolas; Oxenham, Andrew J

    2017-09-01

    Differences in spatial cues, including interaural time differences (ITDs), interaural level differences (ILDs) and spectral cues, can lead to stream segregation of alternating noise bursts. It is unknown how effective such cues are for streaming sounds with realistic spectro-temporal variations. In particular, it is not known whether the high-frequency spectral cues associated with elevation remain sufficiently robust under such conditions. To answer these questions, sequences of consonant-vowel tokens were generated and filtered by non-individualized head-related transfer functions to simulate the cues associated with different positions in the horizontal and median planes. A discrimination task showed that listeners could discriminate changes in interaural cues both when the stimulus remained constant and when it varied between presentations. However, discrimination of changes in spectral cues was much poorer in the presence of stimulus variability. A streaming task, based on the detection of repeated syllables in the presence of interfering syllables, revealed that listeners can use both interaural and spectral cues to segregate alternating syllable sequences, despite the large spectro-temporal differences between stimuli. However, only the full complement of spatial cues (ILDs, ITDs, and spectral cues) resulted in obligatory streaming in a task that encouraged listeners to integrate the tokens into a single stream.

  16. Alignment and integration of complex networks by hypergraph-based spectral clustering

    Science.gov (United States)

    Michoel, Tom; Nachtergaele, Bruno

    2012-11-01

    Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of theoretical and computational methods to address these problems. Here we introduce a framework for clustering and community detection in such systems using hypergraph representations. Our main result is a generalization of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein interaction networks between multiple species, for tripartite community detection in folksonomies, and for detecting clusters of overlapping regulatory pathways in directed networks.

  17. Monitoring urban greenness dynamics using multiple endmember spectral mixture analysis.

    Directory of Open Access Journals (Sweden)

    Muye Gan

    Full Text Available Urban greenness is increasingly recognized as an essential constituent of the urban environment and can provide a range of services and enhance residents' quality of life. Understanding the pattern of urban greenness and exploring its spatiotemporal dynamics would contribute valuable information for urban planning. In this paper, we investigated the pattern of urban greenness in Hangzhou, China, over the past two decades using time series Landsat-5 TM data obtained in 1990, 2002, and 2010. Multiple endmember spectral mixture analysis was used to derive vegetation cover fractions at the subpixel level. An RGB-vegetation fraction model, change intensity analysis and the concentric technique were integrated to reveal the detailed, spatial characteristics and the overall pattern of change in the vegetation cover fraction. Our results demonstrated the ability of multiple endmember spectral mixture analysis to accurately model the vegetation cover fraction in pixels despite the complex spectral confusion of different land cover types. The integration of multiple techniques revealed various changing patterns in urban greenness in this region. The overall vegetation cover has exhibited a drastic decrease over the past two decades, while no significant change occurred in the scenic spots that were studied. Meanwhile, a remarkable recovery of greenness was observed in the existing urban area. The increasing coverage of small green patches has played a vital role in the recovery of urban greenness. These changing patterns were more obvious during the period from 2002 to 2010 than from 1990 to 2002, and they revealed the combined effects of rapid urbanization and greening policies. This work demonstrates the usefulness of time series of vegetation cover fractions for conducting accurate and in-depth studies of the long-term trajectories of urban greenness to obtain meaningful information for sustainable urban development.

  18. Toward a Middle-Range Theory of Weight Management.

    Science.gov (United States)

    Pickett, Stephanie; Peters, Rosalind M; Jarosz, Patricia A

    2014-07-01

    The authors of this paper present the middle-range theory of weight management that focuses on cultural, environmental, and psychosocial factors that influence behaviors needed for weight control. The theory of weight management was developed deductively from Orem's theory of self-care, a constituent theory within the broader self-care deficit nursing theory and from research literature. Linkages between the conceptual and middle-range theory concepts are illustrated using a substruction model. The development of the theory of weight management serves to build nursing science by integrating extant nursing theory and empirical knowledge. This theory may help predict weight management in populations at risk for obesity-related disorders. © The Author(s) 2014.

  19. Systems and methods for selective detection and imaging in coherent Raman microscopy by spectral excitation shaping

    Science.gov (United States)

    Xie, Xiaoliang Sunney; Freudiger, Christian; Min, Wei

    2016-03-15

    A microscopy imaging system is disclosed that includes a light source system, a spectral shaper, a modulator system, an optics system, an optical detector and a processor. The light source system is for providing a first train of pulses and a second train of pulses. The spectral shaper is for spectrally modifying an optical property of at least some frequency components of the broadband range of frequency components such that the broadband range of frequency components is shaped producing a shaped first train of pulses to specifically probe a spectral feature of interest from a sample, and to reduce information from features that are not of interest from the sample. The modulator system is for modulating a property of at least one of the shaped first train of pulses and the second train of pulses at a modulation frequency. The optical detector is for detecting an integrated intensity of substantially all optical frequency components of a train of pulses of interest transmitted or reflected through the common focal volume. The processor is for detecting a modulation at the modulation frequency of the integrated intensity of substantially all of the optical frequency components of the train of pulses of interest due to the non-linear interaction of the shaped first train of pulses with the second train of pulses as modulated in the common focal volume, and for providing an output signal for a pixel of an image for the microscopy imaging system.

  20. Diagrammatic expansion for positive spectral functions beyond GW: Application to vertex corrections in the electron gas

    Science.gov (United States)

    Stefanucci, G.; Pavlyukh, Y.; Uimonen, A.-M.; van Leeuwen, R.

    2014-09-01

    We present a diagrammatic approach to construct self-energy approximations within many-body perturbation theory with positive spectral properties. The method cures the problem of negative spectral functions which arises from a straightforward inclusion of vertex diagrams beyond the GW approximation. Our approach consists of a two-step procedure: We first express the approximate many-body self-energy as a product of half-diagrams and then identify the minimal number of half-diagrams to add in order to form a perfect square. The resulting self-energy is an unconventional sum of self-energy diagrams in which the internal lines of half a diagram are time-ordered Green's functions, whereas those of the other half are anti-time-ordered Green's functions, and the lines joining the two halves are either lesser or greater Green's functions. The theory is developed using noninteracting Green's functions and subsequently extended to self-consistent Green's functions. Issues related to the conserving properties of diagrammatic approximations with positive spectral functions are also addressed. As a major application of the formalism we derive the minimal set of additional diagrams to make positive the spectral function of the GW approximation with lowest-order vertex corrections and screened interactions. The method is then applied to vertex corrections in the three-dimensional homogeneous electron gas by using a combination of analytical frequency integrations and numerical Monte Carlo momentum integrations to evaluate the diagrams.

  1. Spectral nodal method for one-speed X,Y-geometry Eigenvalue diffusion problems

    International Nuclear Information System (INIS)

    Dominguez, Dany S.; Lorenzo, Daniel M.; Hernandez, Carlos G.; Barros, Ricardo C.; Silva, Fernando C. da

    2001-01-01

    Presented here is a new numerical nodal method for steady-state multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the transverse-integrated nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X and Y directions, and then considering flat approximations for the transverse leakage terms. These flat approximations are the only approximations that we consider in this method; as a result the numerical solutions are completely free from truncation errors in slab geometry. We show numerical results to illustrate the method's accuracy for coarse mesh calculations in a heterogeneous medium. (author)

  2. Energy-weighted moments in the problems of fragmentation

    International Nuclear Information System (INIS)

    Kuz'min, V.A.

    1986-01-01

    The problem of fragmentation of simple nuclear states on the complex ones is reduced to real symmetrical matrix eigenvectors and eigenvalue problem. Based on spectral decomposition of this matrix the simple and economical from computing point of view algorithm to calculate energetically-weighted strength function moments is obtained. This permitted one to investigate the sensitivity of solving the fragmentation problem to reducing the basis of complex states. It is shown that the full width of strength function is determined only by the complex states connected directly with the simple ones

  3. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard

    Directory of Open Access Journals (Sweden)

    Clara Rey-Caramés

    2015-10-01

    Full Text Available Implementation of precision viticulture techniques requires the use of emerging sensing technologies to assess the vineyard spatial variability. This work shows the capability of multispectral imagery acquired from a remotely piloted aerial system (RPAS, and the derived spectral indices to assess the vegetative, productive, and berry composition spatial variability within a vineyard (Vitis vinifera L.. Multi-spectral imagery of 17 cm spatial resolution was acquired using a RPAS. Classical vegetation spectral indices and two newly defined normalised indices, NVI1 = (R802 − R531/(R802 + R531 and NVI2 = (R802 − R570/(R802 + R570, were computed. Their spatial distribution and relationships with grapevine vegetative, yield, and berry composition parameters were studied. Most of the spectral indices and field data varied spatially within the vineyard, as showed through the variogram parameters. While the correlations were significant but moderate among the spectral indices and the field variables, the kappa index showed that the spatial pattern of the spectral indices agreed with that of the vegetative variables (0.38–0.70 and mean cluster weight (0.40. These results proved the utility of the multi-spectral imagery acquired from a RPAS to delineate homogeneous zones within the vineyard, allowing the grapegrower to carry out a specific management of each subarea.

  4. Associations of neighbourhood walkability indices with weight gain.

    Science.gov (United States)

    Koohsari, Mohammad Javad; Oka, Koichiro; Shibata, Ai; Liao, Yung; Hanibuchi, Tomoya; Owen, Neville; Sugiyama, Takemi

    2018-04-03

    Inconsistent associations of neighbourhood walkability with adults' body weight have been reported. Most studies examining the relationships of walkability and adiposity are cross-sectional in design. We examined the longitudinal relationships of two walkability indices - conventional walkability and space syntax walkability, and their individual components, with weight change among adults over four years. Data were from the Physical Activity in Localities and Community study in Adelaide, Australia. In 2003-2004, 2650 adults living in 154 Census Collection Districts (CCDs) returned baseline questionnaires; in 2007-2008, the follow-up survey was completed by 1098. Participants reported their weight at baseline and at follow-up. Neighbourhood walkability indices were calculated using geographic information systems and space syntax software. Linear marginal models using generalized estimating equations with robust standard errors were fitted to examine associations of the two walkability indices and their individual components with the weight at follow-up, adjusting for baseline weight, socio-demographic variables, and spatial clustering at the level of CCD. The overall mean weight gain over four years was 1.5 kg. The two walkability indices were closely correlated (r = 0.76, p walkability indices and weight change. Among walkability components, there was a marginally significant negative association between space syntax measure of street integration and weight change: one standard deviation increment in street integration was associated with 0.31 kg less weight gain (p = 0.09). Using a prospective study design and a novel space-syntax based measure of walkability, we were not able to identify relationships between neighbourhood walkability with weight gain. This is consistent with other inconclusive findings on the built environment and obesity. Research on the built environment and adults' weight gain may need to consider not just local environments but

  5. 4 pitfalls to clinical integration.

    Science.gov (United States)

    Redding, John

    2012-11-01

    Four common mistakes can easily thwart clinical integration: Assuming that EHR adoption is the cornerstone of successful integration; Delaying the development of ambulatory services that support clinical integration; Believing that knowledge of clinical integration initiatives will passively diffuse through the ranks; Attaching too much weight to Federal Trade Commission/Department of Justice approval of a clinical integration model.

  6. Two new discrete integrable systems

    International Nuclear Information System (INIS)

    Chen Xiao-Hong; Zhang Hong-Qing

    2013-01-01

    In this paper, we focus on the construction of new (1+1)-dimensional discrete integrable systems according to a subalgebra of loop algebra à 1 . By designing two new (1+1)-dimensional discrete spectral problems, two new discrete integrable systems are obtained, namely, a 2-field lattice hierarchy and a 3-field lattice hierarchy. When deriving the two new discrete integrable systems, we find the generalized relativistic Toda lattice hierarchy and the generalized modified Toda lattice hierarchy. Moreover, we also obtain the Hamiltonian structures of the two lattice hierarchies by means of the discrete trace identity

  7. Optimization of spectral printer modeling based on a modified cellular Yule-Nielsen spectral Neugebauer model.

    Science.gov (United States)

    Liu, Qiang; Wan, Xiaoxia; Xie, Dehong

    2014-06-01

    The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule-Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.

  8. Solvability of Urysohn and Urysohn-Volterra equations with hysteresis in weighted spaces

    International Nuclear Information System (INIS)

    Darwish Mohamed Abdalla

    2005-09-01

    The existence of solutions to nonlinear integral equations of the second kind with hysteresis, of Urysohn-Volterra and Urysohn types has been established. We develop the solvability theory of Urysohn-Volterra equation with hysteresis in weighted spaces proposed by the author [M.A. Darwish, On solvability of Urysohn-Volterra equations with hysteresis in weighted spaces, J. Integral Equations and Application, 14(2) (2002), 151-163]. (author)

  9. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  10. Integrated model of assisted parking system and performance evaluation with entropy weight extended analytic hierarchy process and two-tuple linguistic information

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2016-06-01

    Full Text Available Evaluating comprehensive performance of assisted parking system has been a very important issue for car companies for years, because the overall performance of assisted parking system directly influences car intellectualization and customers’ degree of satisfaction. Therefore, this article proposes two-tuple linguistic analytic hierarchy process to evaluate assisted parking system so as to avoid information loss during the processes of evaluation integration. The performance evaluation attributes for assisted parking system are established initially. Subsequently, the information entropy theory is proposed to improve the evaluation attribute weight determined by analytic hierarchy process for the influencing factors of the randomness in parking test process. Furthermore, the evaluation attribute measure values of comprehensive performance are calculated and the assisted parking system evaluation results are obtained with ordered weighted averaging operator. Finally, numerical examples of vehicle types equipped with eight different assisted parking systems and computational results are presented.

  11. Total and Spectral Solar Irradiance Sensor (TSIS) Project Status

    Science.gov (United States)

    Carlisle, Candace

    2018-01-01

    TSIS-1 studies the Sun's energy input to Earth and how solar variability affects climate. TSIS-1 will measure both the total amount of light that falls on Earth, known as the total solar irradiance (TSI), and how that light is distributed among ultraviolet, visible and infrared wavelengths, called solar spectral irradiance (SSI). TSIS-1 will provide the most accurate measurements of sunlight and continue the long-term climate data record. TSIS-1 includes two instruments: the Total Irradiance Monitor (TIM) and the Spectral Irradiance Monitor (SIM), integrated into a single payload on the International Space Station (ISS). The TSIS-1 TIM and SIM instruments are upgraded versions of the two instruments that are flying on the Solar Radiation and Climate Experiment (SORCE) mission launched in January 2003. NASA Goddard's TSIS project responsibilities include project management, system engineering, safety and mission assurance, and engineering oversight for TSIS-1. TSIS-1 was installed on the International Space Station in December 2017. At the end of the 90-day commissioning phase, responsibility for TSIS-1 operations transitions to the Earth Science Mission Operations (ESMO) project at Goddard for its 5-year operations. NASA contracts with the University of Colorado Laboratory for Atmospheric and Space Physics (LASP) for the design, development and testing of TSIS-1, support for ISS integration, science operations of the TSIS-1 instrument, data processing, data evaluation, calibration and delivery to the Goddard Earth Science Data and Information Services Center (GES DISC).

  12. Millimetre spectral indices of transition disks and their relation to the cavity radius

    Science.gov (United States)

    Pinilla, P.; Benisty, M.; Birnstiel, T.; Ricci, L.; Isella, A.; Natta, A.; Dullemond, C. P.; Quiroga-Nuñez, L. H.; Henning, T.; Testi, L.

    2014-04-01

    Context. Transition disks are protoplanetary disks with inner depleted dust cavities that are excellent candidates for investigating the dust evolution when there is a pressure bump. A pressure bump at the outer edge of the cavity allows dust grains from the outer regions to stop their rapid inward migration towards the star and to efficiently grow to millimetre sizes. Dynamical interactions with planet(s) have been one of the most exciting theories to explain the clearing of the inner disk. Aims: We look for evidence of millimetre dust particles in transition disks by measuring their spectral index αmm with new and available photometric data. We investigate the influence of the size of the dust depleted cavity on the disk integrated millimetre spectral index. Methods: We present the 3-mm (100 GHz) photometric observations carried out with the Plateau de Bure Interferometer of four transition disks: LkHα 330, UX Tau A, LRLL 31, and LRLL 67. We used the available values of their fluxes at 345 GHz to calculate their spectral index, as well as the spectral index for a sample of twenty transition disks. We compared the observations with two kinds of models. In the first set of models, we considered coagulation and fragmentation of dust in a disk in which a cavity is formed by a massive planet located at different positions. The second set of models assumes disks with truncated inner parts at different radii and with power-law dust-size distributions, where the maximum size of grains is calculated considering turbulence as the source of destructive collisions. Results: We show that the integrated spectral index is higher for transition disks (TD) than for regular protoplanetary disks (PD) with mean values of bar{αmmTD} = 2.70 ± 0.13 and bar{αmmPD} = 2.20 ± 0.07 respectively. For transition disks, the probability that the measured spectral index is positively correlated with the cavity radius is 95%. High angular resolution imaging of transition disks is needed to

  13. Quantitative contrast-enhanced spectral mammography based on photon-counting detectors: A feasibility study.

    Science.gov (United States)

    Ding, Huanjun; Molloi, Sabee

    2017-08-01

    To investigate the feasibility of accurate quantification of iodine mass thickness in contrast-enhanced spectral mammography. A computer simulation model was developed to evaluate the performance of a photon-counting spectral mammography system in the application of contrast-enhanced spectral mammography. A figure-of-merit (FOM), which was defined as the decomposed iodine signal-to-noise ratio (SNR) with respect to the square root of the mean glandular dose (MGD), was chosen to optimize the imaging parameters, in terms of beam energy, splitting energy, and prefiltrations for breasts of various thicknesses and densities. Experimental phantom studies were also performed using a beam energy of 40 kVp and a splitting energy of 34 keV with 3 mm Al prefiltration. A two-step calibration method was investigated to quantify the iodine mass thickness, and was validated using phantoms composed of a mixture of glandular and adipose materials, for various breast thicknesses and densities. Finally, the traditional dual-energy log-weighted subtraction method was also studied as a comparison. The measured iodine signal from both methods was compared to the known value to characterize the quantification accuracy and precision. The optimal imaging parameters, which lead to the highest FOM, were found at a beam energy between 42 and 46 kVp with a splitting energy at 34 keV. The optimal tube voltage decreased as the breast thickness or the Al prefiltration increased. The proposed quantification method was able to measure iodine mass thickness on phantoms of various thicknesses and densities with high accuracy. The root-mean-square (RMS) error for cm-scale lesion phantoms was estimated to be 0.20 mg/cm 2 . The precision of the technique, characterized by the standard deviation of the measurements, was estimated to be 0.18 mg/cm 2 . The traditional weighted subtraction method also predicted a linear correlation between the measured signal and the known iodine mass thickness. However

  14. Photonic Integrated Circuits

    Science.gov (United States)

    Krainak, Michael; Merritt, Scott

    2016-01-01

    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  15. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  16. [Applications of spectral analysis technique to monitoring grasshoppers].

    Science.gov (United States)

    Lu, Hui; Han, Jian-guo; Zhang, Lu-da

    2008-12-01

    grasshoppers can be developed in the future. First, it is needed to find the relationship between the grasshopper and its environment. Second, the new spectral technology including thermal infrared, microwave, UV detection, and laser technique will be widely practiced in grasshopper monitoring. Finally, it is obvious that the integration of all methods will drive the research into a bright direction of synthetically monitoring grasshoppers. Such approaches will greatly decrease the likelihood of grasshopper outbreaks.

  17. Improving the Reliability of Network Metrics in Structural Brain Networks by Integrating Different Network Weighting Strategies into a Single Graph

    Directory of Open Access Journals (Sweden)

    Stavros I. Dimitriadis

    2017-12-01

    Full Text Available Structural brain networks estimated from diffusion MRI (dMRI via tractography have been widely studied in healthy controls and patients with neurological and psychiatric diseases. However, few studies have addressed the reliability of derived network metrics both node-specific and network-wide. Different network weighting strategies (NWS can be adopted to weight the strength of connection between two nodes yielding structural brain networks that are almost fully-weighted. Here, we scanned five healthy participants five times each, using a diffusion-weighted MRI protocol and computed edges between 90 regions of interest (ROI from the Automated Anatomical Labeling (AAL template. The edges were weighted according to nine different methods. We propose a linear combination of these nine NWS into a single graph using an appropriate diffusion distance metric. We refer to the resulting weighted graph as an Integrated Weighted Structural Brain Network (ISWBN. Additionally, we consider a topological filtering scheme that maximizes the information flow in the brain network under the constraint of the overall cost of the surviving connections. We compared each of the nine NWS and the ISWBN based on the improvement of: (a intra-class correlation coefficient (ICC of well-known network metrics, both node-wise and per network level; and (b the recognition accuracy of each subject compared to the remainder of the cohort, as an attempt to access the uniqueness of the structural brain network for each subject, after first applying our proposed topological filtering scheme. Based on a threshold where the network level ICC should be >0.90, our findings revealed that six out of nine NWS lead to unreliable results at the network level, while all nine NWS were unreliable at the node level. In comparison, our proposed ISWBN performed as well as the best performing individual NWS at the network level, and the ICC was higher compared to all individual NWS at the node

  18. Weight Management for Athletes: Important Things to be Considered

    OpenAIRE

    Chara Odysseos Maria Avraamidou; Maria Avraamidou

    2017-01-01

    Weight management is difficult for most individuals, as indicated by the high numbers of obesity around the world. Obesity has increased dramatically over the past decades. Unfortunately, this epidemic is not limited to adults but also to children in both globally and Cyprus. Developing a weight management plan is essential for everyone. Regarding to an athlete, weight management is an increasingly integral part, as consuming the right kind of food can lead them in success or failure. The spe...

  19. Fitting Analysis using Differential evolution Optimization (FADO):. Spectral population synthesis through genetic optimization under self-consistency boundary conditions

    Science.gov (United States)

    Gomes, J. M.; Papaderos, P.

    2017-07-01

    with various other currently unique elements in its mathematical concept and numerical realization (e.g., mid-analysis optimization of the spectral library using artificial intelligence, test for convergence through a procedure inspired by Markov chain Monte Carlo techniques, quasi-parallelization embedded within a modular architecture) results in key improvements with respect to computational efficiency and uniqueness of the best-fitting SFHs. Furthermore, fado incorporates within a single code the entire chain of pre-processing, modeling, post-processing, storage and graphical representation of the relevant output from pss, including emission-line measurements and estimates of uncertainties for all primary and secondary products from spectral synthesis (e.g., mass contributions of individual stellar populations, mass- and luminosity-weighted stellar ages and metallicities). This integrated concept greatly simplifies and accelerates a lengthy sequence of individual time-consuming steps that are generally involved in pss modeling, further enhancing the overall efficiency of the code and inviting to its automated application to large spectroscopic data sets. The distribution package of the FADO v.1 tool contains the binary and its auxiliary files. FADO v.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A63

  20. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    International Nuclear Information System (INIS)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed; Birk, Manfred; Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu

    2010-01-01

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  1. Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder

    Energy Technology Data Exchange (ETDEWEB)

    De Lange, Gert; Boersma, Dick; Dercksen, Johannes; Ermakov, Andrey B; Golstein, Hans; Hoogeveen, Ruud W M; De Jong, Leo; Khudchenko, Andrey V; Kinev, Nickolay V; Kiselev, Oleg S; Van Kuik, Bart; De Lange, Arno; Van Rantwijk, Joris; Selig, Avri M; De Vries, Ed [SRON Netherlands Institute for Space Research, PO Box 800, 9700 AV Groningen (Netherlands); Birk, Manfred [DLR German Aerospace Centre, Remote Sensing Technology Institute, D-82234 Wessling (Germany); Dmitriev, Pavel; Filippenko, Lyudmila V; Sobolev, Alexander S; Torgashin, Mikhail Yu, E-mail: G.de.Lange@sron.n, E-mail: valery@hitech.cplire.r [Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Science, 11/7 Mokhovaya Street, 125009, Moscow (Russian Federation)

    2010-04-15

    The balloon-borne instrument TELIS (TErahertz and submillimetre LImb Sounder) is a three-channel superconducting heterodyne spectrometer for atmospheric research use. It detects spectral emission lines of stratospheric trace gases that have their rotational transitions at THz frequencies. One of the channels is based on the superconducting integrated receiver (SIR) technology. We demonstrate for the first time the capabilities of the SIR technology for heterodyne spectroscopy in general, and atmospheric limb sounding in particular. We also show that the application of SIR technology is not limited to laboratory environments, but that it is well suited for remote operation under harsh environmental conditions. Within a SIR the main components needed for a superconducting heterodyne receiver such as a superconductor-insulator-superconductor (SIS) mixer with a quasi-optical antenna, a flux-flow oscillator (FFO) as the local oscillator, and a harmonic mixer to phase lock the FFO are integrated on a single chip. Light weight and low power consumption combined with broadband operation and nearly quantum limited sensitivity make the SIR a perfect candidate for use in future airborne and space-borne missions. The noise temperature of the SIR was measured to be as low as 120 K, with an intermediate frequency band of 4-8 GHz in double-sideband operation. The spectral resolution is well below 1 MHz, confirmed by our measurements. Remote control of the SIR under flight conditions has been demonstrated in a successful balloon flight in Kiruna, Sweden. The sensor and instrument design are presented, as well as the preliminary science results from the first flight.

  2. Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Zhu Fubo; Ji Jie; Zhang Jianbin

    2008-01-01

    Two hierarchies of multi-component Kaup-Newell equations are derived from an arbitrary order matrix spectral problem, including positive non-isospectral Kaup-Newell hierarchy and negative non-isospectral Kaup-Newell hierarchy. Moreover, new integrable couplings of the resulting Kaup-Newell soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  3. Semi-direct sums of Lie algebras and continuous integrable couplings

    International Nuclear Information System (INIS)

    Ma Wenxiu; Xu Xixiang; Zhang Yufeng

    2006-01-01

    A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems

  4. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2017-12-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  5. Fermionic Approach to Weighted Hurwitz Numbers and Topological Recursion

    Science.gov (United States)

    Alexandrov, A.; Chapuy, G.; Eynard, B.; Harnad, J.

    2018-06-01

    A fermionic representation is given for all the quantities entering in the generating function approach to weighted Hurwitz numbers and topological recursion. This includes: KP and 2 D Toda {τ} -functions of hypergeometric type, which serve as generating functions for weighted single and double Hurwitz numbers; the Baker function, which is expanded in an adapted basis obtained by applying the same dressing transformation to all vacuum basis elements; the multipair correlators and the multicurrent correlators. Multiplicative recursion relations and a linear differential system are deduced for the adapted bases and their duals, and a Christoffel-Darboux type formula is derived for the pair correlator. The quantum and classical spectral curves linking this theory with the topological recursion program are derived, as well as the generalized cut-and-join equations. The results are detailed for four special cases: the simple single and double Hurwitz numbers, the weakly monotone case, corresponding to signed enumeration of coverings, the strongly monotone case, corresponding to Belyi curves and the simplest version of quantum weighted Hurwitz numbers.

  6. Spectral Amplitude Coding (SAC)-OCDMA Network with 8DPSK

    Science.gov (United States)

    Aldhaibani, A. O.; Aljunid, S. A.; Fadhil, Hilal A.; Anuar, M. S.

    2013-09-01

    Optical code division multiple access (OCDMA) technique is required to meet the increased demand for high speed, large capacity communications in optical networks. In this paper, the transmission performance of a spectral amplitude coding (SAC)-OCDMA network is investigated when a conventional single-mode fiber (SMF) is used as the transmission link using 8DPSK modulation. The DW has a fixed weight of two. Simulation results reveal that the transmission distance is limited mainly by the fiber dispersion when high coding chip rate is used. For a two-user SAC-OCDMA network operating with 2 Gbit/s data rate and two wavelengths for each user, the maximum allowable transmission distance is about 15 km.

  7. Spectral L2/L1 norm: A new perspective for spectral kurtosis for characterizing non-stationary signals

    Science.gov (United States)

    Wang, Dong

    2018-05-01

    Thanks to the great efforts made by Antoni (2006), spectral kurtosis has been recognized as a milestone for characterizing non-stationary signals, especially bearing fault signals. The main idea of spectral kurtosis is to use the fourth standardized moment, namely kurtosis, as a function of spectral frequency so as to indicate how repetitive transients caused by a bearing defect vary with frequency. Moreover, spectral kurtosis is defined based on an analytic bearing fault signal constructed from either a complex filter or Hilbert transform. On the other hand, another attractive work was reported by Borghesani et al. (2014) to mathematically reveal the relationship between the kurtosis of an analytical bearing fault signal and the square of the squared envelope spectrum of the analytical bearing fault signal for explaining spectral correlation for quantification of bearing fault signals. More interestingly, it was discovered that the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum corresponds to the raw 4th order moment. Inspired by the aforementioned works, in this paper, we mathematically show that: (1) spectral kurtosis can be decomposed into squared envelope and squared L2/L1 norm so that spectral kurtosis can be explained as spectral squared L2/L1 norm; (2) spectral L2/L1 norm is formally defined for characterizing bearing fault signals and its two geometrical explanations are made; (3) spectral L2/L1 norm is proportional to the square root of the sum of peaks at cyclic frequencies in the square of the squared envelope spectrum; (4) some extensions of spectral L2/L1 norm for characterizing bearing fault signals are pointed out.

  8. A framelet-based iterative maximum-likelihood reconstruction algorithm for spectral CT

    Science.gov (United States)

    Wang, Yingmei; Wang, Ge; Mao, Shuwei; Cong, Wenxiang; Ji, Zhilong; Cai, Jian-Feng; Ye, Yangbo

    2016-11-01

    Standard computed tomography (CT) cannot reproduce spectral information of an object. Hardware solutions include dual-energy CT which scans the object twice in different x-ray energy levels, and energy-discriminative detectors which can separate lower and higher energy levels from a single x-ray scan. In this paper, we propose a software solution and give an iterative algorithm that reconstructs an image with spectral information from just one scan with a standard energy-integrating detector. The spectral information obtained can be used to produce color CT images, spectral curves of the attenuation coefficient μ (r,E) at points inside the object, and photoelectric images, which are all valuable imaging tools in cancerous diagnosis. Our software solution requires no change on hardware of a CT machine. With the Shepp-Logan phantom, we have found that although the photoelectric and Compton components were not perfectly reconstructed, their composite effect was very accurately reconstructed as compared to the ground truth and the dual-energy CT counterpart. This means that our proposed method has an intrinsic benefit in beam hardening correction and metal artifact reduction. The algorithm is based on a nonlinear polychromatic acquisition model for x-ray CT. The key technique is a sparse representation of iterations in a framelet system. Convergence of the algorithm is studied. This is believed to be the first application of framelet imaging tools to a nonlinear inverse problem.

  9. Development of new two-dimensional spectral/spatial code based on dynamic cyclic shift code for OCDMA system

    Science.gov (United States)

    Jellali, Nabiha; Najjar, Monia; Ferchichi, Moez; Rezig, Houria

    2017-07-01

    In this paper, a new two-dimensional spectral/spatial codes family, named two dimensional dynamic cyclic shift codes (2D-DCS) is introduced. The 2D-DCS codes are derived from the dynamic cyclic shift code for the spectral and spatial coding. The proposed system can fully eliminate the multiple access interference (MAI) by using the MAI cancellation property. The effect of shot noise, phase-induced intensity noise and thermal noise are used to analyze the code performance. In comparison with existing two dimensional (2D) codes, such as 2D perfect difference (2D-PD), 2D Extended Enhanced Double Weight (2D-Extended-EDW) and 2D hybrid (2D-FCC/MDW) codes, the numerical results show that our proposed codes have the best performance. By keeping the same code length and increasing the spatial code, the performance of our 2D-DCS system is enhanced: it provides higher data rates while using lower transmitted power and a smaller spectral width.

  10. Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band

    Science.gov (United States)

    Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve

    2018-01-01

    The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.

  11. Vowel Inherent Spectral Change

    CERN Document Server

    Assmann, Peter

    2013-01-01

    It has been traditional in phonetic research to characterize monophthongs using a set of static formant frequencies, i.e., formant frequencies taken from a single time-point in the vowel or averaged over the time-course of the vowel. However, over the last twenty years a growing body of research has demonstrated that, at least for a number of dialects of North American English, vowels which are traditionally described as monophthongs often have substantial spectral change. Vowel Inherent Spectral Change has been observed in speakers’ productions, and has also been found to have a substantial effect on listeners’ perception. In terms of acoustics, the traditional categorical distinction between monophthongs and diphthongs can be replaced by a gradient description of dynamic spectral patterns. This book includes chapters addressing various aspects of vowel inherent spectral change (VISC), including theoretical and experimental studies of the perceptually relevant aspects of VISC, the relationship between ar...

  12. Communication system and spectral analysis for Ge-Li and GeHp detectors

    International Nuclear Information System (INIS)

    Fernandez, J.; Castano, P.; Bonino, A.D.; Righetti, M.A.

    1990-01-01

    An integral communication and spectral analysis system (SICADE) was developed and implemented to satisfy the need to optimize and automate the measurement system used in Atucha I nuclear power plant for the activity in the primary loop's water extracted by the TV system. The importance of these measurements is based on the fact that from the spectrometric analysis of the samples extracted, the Iodines-GN and Iodines-Iodines relations, which allow to detect the presence of deficient fuel elements, are calculated. The system developed is based on two modules integrated in a unique set commanded by the operators through the screen dialogue. (Author) [es

  13. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Energy Technology Data Exchange (ETDEWEB)

    Bilguun, Amarsaikhan, E-mail: bilguun@pes.ee.tut.ac.jp; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi, E-mail: takikawa@ee.tut.ac.jp [Toyohashi University of Technology, 1-1 Habarigaoka, Tempaku, Toyohashi 441-8580 (Japan); Tanoue, Hideto [Kitakyushu National College of Technology, 5-20-1, Kokuraminami, Kitakyushu, Fukuoka 802-0985 (Japan)

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  14. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    Science.gov (United States)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-02-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD.

  15. Development of simple band-spectral pyranometer and quantum meter using photovoltaic cells and bandpass filters

    International Nuclear Information System (INIS)

    Bilguun, Amarsaikhan; Nakaso, Tetsushi; Harigai, Toru; Suda, Yoshiyuki; Takikawa, Hirofumi; Tanoue, Hideto

    2016-01-01

    In recent years, greenhouse automatic-control, based on the measurement of solar irradiance, has been attracting attention. This control is an effective method for improving crop production. In the agricultural field, it is necessary to measure Photon Flux Density (PFD), which is an important parameter in the promotion of plant growth. In particular, the PFD of Photosynthetically Active Radiation (PAR, 400-700 nm) and Plant Biologically Active Radiation (PBAR, 300-800 nm) have been discussed in agricultural plant science. The commercial quantum meter (QM, PAR meter) can only measure Photosynthetically Photon Flux Density (PPFD) which is the integrated PFD quantity on the PAR wavelength. In this research, a band-spectral pyranometer or quantum meter using PVs with optical bandpass filters for dividing the PBAR wavelength into 100 nm bands (five independent channels) was developed. Before field testing, calibration of the instruments was carried out using a solar simulator. Next, a field test was conducted in three differing weather conditions such as clear, partly cloudy and cloudy skies. As a result, it was found that the response rate of the developed pyranometer was faster by four seconds compared with the response rate of the commercial pyranometer. Moreover, the outputs of each channel in the developed pyranometer were very similar to the integrated outputs of the commercial spectroradiometer. It was confirmed that the solar irradiance could be measured in each band separately using the developed band-spectral pyranometer. It was indicated that the developed band-spectral pyranometer could also be used as a PV band-spectral quantum meter which is obtained by converting the band irradiance into band PFD

  16. Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems

    Science.gov (United States)

    Zuchowski, Loïc; Brun, Michael; De Martin, Florent

    2018-05-01

    The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.

  17. Instrumental broadening of spectral line profiles due to discrete representation of a continuous physical quantity

    International Nuclear Information System (INIS)

    Dulov, E.N.; Khripunov, D.M.

    2008-01-01

    It is the usual situation in spectroscopy that a continuous physical quantity, which plays the role of a spectral function argument (i.e. the abscissa of a spectrum), is sampled electronically as discrete point clouds or channels. Each channel corresponds to the midpoint of a small interval of the continuous argument. The experimentally registered value of intensity in the channel describes the averaged spectral intensity in this interval. However, an approximation of spectra by a continuous theoretical model function often assumes that the interval is small enough, and tabulation of the theoretical model function may be used without appreciable disadvantages for the fitting results. At this point, a new type of approximation error appears, such as the error of midpoint approximation to a definite integral in the rectangle method of numeric integration. This paper aims at quantitative estimation of this error in the cases of a pure Lorentz lineshape and a generalized Voigt contour. It is shown that discrete representation of continuous spectral data leads to some non-physical broadening in comparison with the tabulated model function. As a first approximation it is normal broadening. We show that even in the case of a Lorentz true lineshape we must use the tabulated Voigt function measured in channels fixed Gauss linewidth rather than a tabulated Lorentzian. Application of the results of this paper is demonstrated on Moessbauer spectra

  18. A broadband beam-steered fiber mm-wave link with high energy-spectral-spatial efficiency for 5G coverage

    NARCIS (Netherlands)

    Cao, Z.; Zhao, X.; Jiao, Y.; Deng, X.; Tessema, N.; Raz, O.; Koonen, A.M.J.

    2017-01-01

    Utilizing an integrated optical-tunable-delay-line, reversely-modulated single sideband modulation, and Nyquist subcarrier modulation, we demonstrate an 8 Gbps mm-wave beam steered link with a spatial-spectral efficiency of 16 bits/s/Hz.

  19. Prediction of impurity spectral emission in plasmas

    International Nuclear Information System (INIS)

    Gordon, H.; Summers, H.P.

    1985-01-01

    This paper summarises the development of a set of general purpose computational procedures for the prediction of spectral emission from plasmas, with emphasis on fusion plasmas. The first stage was concerned with the calculation of populations of low levels of impurity ions in a statistical balance approximation in thermal plasmas of arbitrary electron and proton temperatures and densities. This was merged with associated calculations of ionisation stage abundances in equilibrium, time dependent and spatially inhomogeneous conditions to yield spectrum line emissivities of direct relevance for comparative and diagnostic studies of observed spectra. The integrated computer program package draws upon sets or basic atomic data. In the present work the compilation of this basic data is adressed. A set of computer programs has beeen developed and used to convert systematically atomic rate data, drawn from the literature, to standard forms and parameter ranges. Regularities in this data along isoelectronic sequences are exploited to infer rates for an arbitrary ion from a set of representative data (termed the 'general Z' database). From this, the input for the spectral prediction codes above is generated. Presently data in the H, He, Li and Be isoelectronic sequences is prepared. The operation of the procedures is illustrated. (orig.)

  20. Assessing the role of spectral and intensity cues in spectral ripple detection and discrimination in cochlear-implant users.

    Science.gov (United States)

    Anderson, Elizabeth S; Oxenham, Andrew J; Nelson, Peggy B; Nelson, David A

    2012-12-01

    Measures of spectral ripple resolution have become widely used psychophysical tools for assessing spectral resolution in cochlear-implant (CI) listeners. The objective of this study was to compare spectral ripple discrimination and detection in the same group of CI listeners. Ripple detection thresholds were measured over a range of ripple frequencies and were compared to spectral ripple discrimination thresholds previously obtained from the same CI listeners. The data showed that performance on the two measures was correlated, but that individual subjects' thresholds (at a constant spectral modulation depth) for the two tasks were not equivalent. In addition, spectral ripple detection was often found to be possible at higher rates than expected based on the available spectral cues, making it likely that temporal-envelope cues played a role at higher ripple rates. Finally, spectral ripple detection thresholds were compared to previously obtained speech-perception measures. Results confirmed earlier reports of a robust relationship between detection of widely spaced ripples and measures of speech recognition. In contrast, intensity difference limens for broadband noise did not correlate with spectral ripple detection measures, suggesting a dissociation between the ability to detect small changes in intensity across frequency and across time.

  1. Weighted oscillator strengths and lifetimes for the S VII spectrum

    International Nuclear Information System (INIS)

    Borges, F.O.; Cavalcanti, G.H.; Trigueiros, A.G.; Jupen, C.

    2004-01-01

    The weighted oscillator strengths (gf) and the lifetimes presented in this work were carried out in a multiconfiguration Hartree-Fock relativistic approach. In this calculation, the electrostatic parameters were optimized by a least-squares procedure, in order to improve the adjustment to experimental energy levels. This method produces gf-values that are in better agreement with intensity observations and lifetime values that are closer to the experimental ones. In this work, we presented all the experimentally known electric dipole S VII spectral lines

  2. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.

    Science.gov (United States)

    Knauer, Uwe; Matros, Andrea; Petrovic, Tijana; Zanker, Timothy; Scott, Eileen S; Seiffert, Udo

    2017-01-01

    Hyperspectral imaging is an emerging means of assessing plant vitality, stress parameters, nutrition status, and diseases. Extraction of target values from the high-dimensional datasets either relies on pixel-wise processing of the full spectral information, appropriate selection of individual bands, or calculation of spectral indices. Limitations of such approaches are reduced classification accuracy, reduced robustness due to spatial variation of the spectral information across the surface of the objects measured as well as a loss of information intrinsic to band selection and use of spectral indices. In this paper we present an improved spatial-spectral segmentation approach for the analysis of hyperspectral imaging data and its application for the prediction of powdery mildew infection levels (disease severity) of intact Chardonnay grape bunches shortly before veraison. Instead of calculating texture features (spatial features) for the huge number of spectral bands independently, dimensionality reduction by means of Linear Discriminant Analysis (LDA) was applied first to derive a few descriptive image bands. Subsequent classification was based on modified Random Forest classifiers and selective extraction of texture parameters from the integral image representation of the image bands generated. Dimensionality reduction, integral images, and the selective feature extraction led to improved classification accuracies of up to [Formula: see text] for detached berries used as a reference sample (training dataset). Our approach was validated by predicting infection levels for a sample of 30 intact bunches. Classification accuracy improved with the number of decision trees of the Random Forest classifier. These results corresponded with qPCR results. An accuracy of 0.87 was achieved in classification of healthy, infected, and severely diseased bunches. However, discrimination between visually healthy and infected bunches proved to be challenging for a few samples

  3. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination.

    Science.gov (United States)

    Kuo, R J; Wu, P; Wang, C P

    2002-09-01

    Sales forecasting plays a very prominent role in business strategy. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average (ARMA). However, sales forecasting is very complicated owing to influence by internal and external environments. Recently, artificial neural networks (ANNs) have also been applied in sales forecasting since their promising performances in the areas of control and pattern recognition. However, further improvement is still necessary since unique circumstances, e.g. promotion, cause a sudden change in the sales pattern. Thus, this study utilizes a proposed fuzzy neural network (FNN), which is able to eliminate the unimportant weights, for the sake of learning fuzzy IF-THEN rules obtained from the marketing experts with respect to promotion. The result from FNN is further integrated with the time series data through an ANN. Both the simulated and real-world problem results show that FNN with weight elimination can have lower training error compared with the regular FNN. Besides, real-world problem results also indicate that the proposed estimation system outperforms the conventional statistical method and single ANN in accuracy.

  4. Spatiotemporal Evolution of Hanle and Zeeman Synthetic Polarization in a Chromospheric Spectral Line

    Energy Technology Data Exchange (ETDEWEB)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.es [Istituto Ricerche Solari Locarno, 6600, Locarno, Switzerland, associated to USI, Università della Svizzera Italiana (Switzerland)

    2017-07-01

    Due to the quick evolution of the solar chromosphere, its magnetic field cannot be inferred reliably without accounting for the temporal variations of its polarized light. This has been broadly overlooked in the modeling and interpretation of the polarization, due to technical problems (e.g., lack of temporal resolution or of time-dependent MHD solar models) and/or because many polarization measurements can apparently be explained without dynamics. Here, we show that the temporal evolution is critical for explaining the spectral-line scattering polarization because of its sensitivity to rapidly varying physical quantities and the possibility of signal cancellations and attenuation during extended time integration. For studying the combined effect of time-varying magnetic fields and kinematics, we solved the 1.5D non-LTE problem of the second kind in time-dependent 3D R-MHD solar models and synthesized the Hanle and Zeeman polarization in forward scattering for the chromospheric λ 4227 line. We find that the quiet-Sun polarization amplitudes depend on the periodicity and spectral coherence of the signal enhancements produced by kinematics, but that substantially larger linear polarization signals should exist all over the solar disk for short integration times. The spectral morphology of the polarization is discussed as a combination of Hanle, Zeeman, partial redistribution and dynamic effects. We give physical references for observations by degrading and characterizing our slit time series in different spatiotemporal resolutions. The implications of our results for the interpretation of the second solar spectrum and for the investigation of the solar atmospheric heatings are discussed.

  5. Towards Efficient Spectral Converters through Materials Design for Luminescent Solar Devices.

    Science.gov (United States)

    McKenna, Barry; Evans, Rachel C

    2017-07-01

    Single-junction photovoltaic devices exhibit a bottleneck in their efficiency due to incomplete or inefficient harvesting of photons in the low- or high-energy regions of the solar spectrum. Spectral converters can be used to convert solar photons into energies that are more effectively captured by the photovoltaic device through a photoluminescence process. Here, recent advances in the fields of luminescent solar concentration, luminescent downshifting, and upconversion are discussed. The focus is specifically on the role that materials science has to play in overcoming barriers in the optical performance in all spectral converters and on their successful integration with both established (e.g., c-Si, GaAs) and emerging (perovskite, organic, dye-sensitized) cell types. Current challenges and emerging research directions, which need to be addressed for the development of next-generation luminescent solar devices, are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es; Sala, Gabriel, E-mail: ruben.nunez@ies-def.upm.es [Instituto de Energía Solar - Universidad Politécnica de Madrid, Instituto de Energía Solar, ETSI Telecomunicación, Ciudad Universitaria 28040 Madrid (Spain)

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  7. Calibration with near-continuous spectral measurements

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg; Rasmussen, Michael; Madsen, Henrik

    2001-01-01

    In chemometrics traditional calibration in case of spectral measurements express a quantity of interest (e.g. a concentration) as a linear combination of the spectral measurements at a number of wavelengths. Often the spectral measurements are performed at a large number of wavelengths and in thi...... by an example in which the octane number of gasoline is related to near infrared spectral measurements. The performance is found to be much better that for the traditional calibration methods....

  8. Computational analyses of spectral trees from electrospray multi-stage mass spectrometry to aid metabolite identification.

    Science.gov (United States)

    Cao, Mingshu; Fraser, Karl; Rasmussen, Susanne

    2013-10-31

    Mass spectrometry coupled with chromatography has become the major technical platform in metabolomics. Aided by peak detection algorithms, the detected signals are characterized by mass-over-charge ratio (m/z) and retention time. Chemical identities often remain elusive for the majority of the signals. Multi-stage mass spectrometry based on electrospray ionization (ESI) allows collision-induced dissociation (CID) fragmentation of selected precursor ions. These fragment ions can assist in structural inference for metabolites of low molecular weight. Computational investigations of fragmentation spectra have increasingly received attention in metabolomics and various public databases house such data. We have developed an R package "iontree" that can capture, store and analyze MS2 and MS3 mass spectral data from high throughput metabolomics experiments. The package includes functions for ion tree construction, an algorithm (distMS2) for MS2 spectral comparison, and tools for building platform-independent ion tree (MS2/MS3) libraries. We have demonstrated the utilization of the package for the systematic analysis and annotation of fragmentation spectra collected in various metabolomics platforms, including direct infusion mass spectrometry, and liquid chromatography coupled with either low resolution or high resolution mass spectrometry. Assisted by the developed computational tools, we have demonstrated that spectral trees can provide informative evidence complementary to retention time and accurate mass to aid with annotating unknown peaks. These experimental spectral trees once subjected to a quality control process, can be used for querying public MS2 databases or de novo interpretation. The putatively annotated spectral trees can be readily incorporated into reference libraries for routine identification of metabolites.

  9. Geometrical Description in Binary Composites and Spectral Density Representation

    Directory of Open Access Journals (Sweden)

    Enis Tuncer

    2010-01-01

    Full Text Available In this review, the dielectric permittivity of dielectric mixtures is discussed in view of the spectral density representation method. A distinct representation is derived for predicting the dielectric properties, permittivities ε, of mixtures. The presentation of the dielectric properties is based on a scaled permittivity approach, ξ = (εe − εm(εi − εm−1, where the subscripts e, m and i denote the dielectric permittivities of the effective, matrix and inclusion media, respectively [Tuncer, E. J. Phys.: Condens. Matter 2005, 17, L125]. This novel representation transforms the spectral density formalism to a form similar to the distribution of relaxation times method of dielectric relaxation. Consequently, I propose that any dielectric relaxation formula, i.e., the Havriliak-Negami empirical dielectric relaxation expression, can be adopted as a scaled permittivity. The presented scaled permittivity representation has potential to be improved and implemented into the existing data analyzing routines for dielectric relaxation; however, the information to extract would be the topological/morphological description in mixtures. To arrive at the description, one needs to know the dielectric properties of the constituents and the composite prior to the spectral analysis. To illustrate the strength of the representation and confirm the proposed hypothesis, the Landau-Lifshitz/Looyenga (LLL [Looyenga, H. Physica 1965, 31, 401] expression is selected. The structural information of a mixture obeying LLL is extracted for different volume fractions of phases. Both an in-house computational tool based on the Monte Carlo method to solve inverse integral transforms and the proposed empirical scaled permittivity expression are employed to estimate the spectral density function of the LLL expression. The estimated spectral functions for mixtures with different inclusion concentration compositions show similarities; they are composed of a couple of bell

  10. Modern quantum kinetic theory and spectral line shapes

    International Nuclear Information System (INIS)

    Monchick, L.

    1991-01-01

    The modern quantum kinetic theory of spectral line shapes is outlined and a typical calculation of a Raman scattered line shape described. The distinguishing feature of this calculation is that it was completely ab initio and therefore constituted a test of modern quantum kinetic theory, the state of the art in computing molecular-scattering cross sections, and novel methods of solving kinetic equations. The computation employed a large assortment of tools: group theory, finite-element methods, classic methods of solving coupled sets of ordinary differential equations, graph methods of combining angular momenta, and matrix methods of solving integral equations. Agreement with experimental results was excellent. 13 refs

  11. Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations

    Science.gov (United States)

    Moghaderi, Hamid; Dehghan, Mehdi; Donatelli, Marco; Mazza, Mariarosa

    2017-12-01

    Fractional diffusion equations (FDEs) are a mathematical tool used for describing some special diffusion phenomena arising in many different applications like porous media and computational finance. In this paper, we focus on a two-dimensional space-FDE problem discretized by means of a second order finite difference scheme obtained as combination of the Crank-Nicolson scheme and the so-called weighted and shifted Grünwald formula. By fully exploiting the Toeplitz-like structure of the resulting linear system, we provide a detailed spectral analysis of the coefficient matrix at each time step, both in the case of constant and variable diffusion coefficients. Such a spectral analysis has a very crucial role, since it can be used for designing fast and robust iterative solvers. In particular, we employ the obtained spectral information to define a Galerkin multigrid method based on the classical linear interpolation as grid transfer operator and damped-Jacobi as smoother, and to prove the linear convergence rate of the corresponding two-grid method. The theoretical analysis suggests that the proposed grid transfer operator is strong enough for working also with the V-cycle method and the geometric multigrid. On this basis, we introduce two computationally favourable variants of the proposed multigrid method and we use them as preconditioners for Krylov methods. Several numerical results confirm that the resulting preconditioning strategies still keep a linear convergence rate.

  12. INTEGRAL/SPI γ-ray line spectroscopy. Response and background characteristics

    Science.gov (United States)

    Diehl, Roland; Siegert, Thomas; Greiner, Jochen; Krause, Martin; Kretschmer, Karsten; Lang, Michael; Pleintinger, Moritz; Strong, Andrew W.; Weinberger, Christoph; Zhang, Xiaoling

    2018-03-01

    Context. The space based γ-ray observatory INTEGRAL of the European Space Agency (ESA) includes the spectrometer instrument "SPI". This is a coded mask telescope featuring a 19-element Germanium detector array for high-resolution γ-ray spectroscopy, encapsulated in a scintillation detector assembly that provides a veto for background from charged particles. In space, cosmic rays irradiate spacecraft and instruments, which, in spite of the vetoing detectors, results in a large instrumental background from activation of those materials, and leads to deterioration of the charge collection properties of the Ge detectors. Aim. We aim to determine the measurement characteristics of our detectors and their evolution with time, that is, their spectral response and instrumental background. These incur systematic variations in the SPI signal from celestial photons, hence their determination from a broad empirical database enables a reduction of underlying systematics in data analysis. For this, we explore compromises balancing temporal and spectral resolution within statistical limitations. Our goal is to enable modelling of background applicable to spectroscopic studies of the sky, accounting separately for changes of the spectral response and of instrumental background. Methods: We use 13.5 years of INTEGRAL/SPI data, which consist of spectra for each detector and for each pointing of the satellite. Spectral fits to each such spectrum, with independent but coherent treatment of continuum and line backgrounds, provides us with details about separated background components. From the strongest background lines, we first determine how the spectral response changes with time. Applying symmetry and long-term stability tests, we eliminate degeneracies and reduce statistical fluctuations of background parameters, with the aim of providing a self-consistent description of the spectral response for each individual detector. Accounting for this, we then determine how the

  13. Calibrating spectral images using penalized likelihood

    NARCIS (Netherlands)

    Heijden, van der G.W.A.M.; Glasbey, C.

    2003-01-01

    A new method is presented for automatic correction of distortions and for spectral calibration (which band corresponds to which wavelength) of spectral images recorded by means of a spectrograph. The method consists of recording a bar-like pattern with an illumination source with spectral bands

  14. Path integral discussion for Smorodinsky-Winternitz potentials. Pt. 1

    International Nuclear Information System (INIS)

    Grosche, C.; Pogosyan, G.S.; Sissakian, A.N.

    1994-02-01

    Path integral formulations for the Smorodinsky-Winternitz potentials in two- and three-dimensional Euclidean space are presented. We mention all coordinate systems which separate the Smorodinsky-Winternitz potentials and state the corresponding path integral formulations. Whereas in many coordinate systems an explicit path integralformulation is not possible, we list in all soluble cases the path integral evaluations explicity in terms of the propagators and the spectral expansions into the wave-functions. (orig.)

  15. Sensitivity Evaluation of Spectral Nudging Schemes in Historical Dynamical Downscaling for South Asia

    Directory of Open Access Journals (Sweden)

    Mehwish Ramzan

    2017-01-01

    Full Text Available Sensitivity experiments testing two scale-selective bias correction (SSBC methods have been carried out to identify an optimal spectral nudging scheme for historical dynamically downscaled simulations of South Asia, using the coordinated regional climate downscaling experiment (CORDEX protocol and the regional spectral model (RSM. Two time periods were selected under the category of short-term extreme summer and long-term decadal analysis. The new SSBC version applied nudging to full wind components, with an increased relaxation time in the lower model layers, incorporating a vertical weighted damping coefficient. An evaluation of the extraordinary weather conditions experienced in South Asia in the summer of 2005 confirmed the advantages of the new SSBC when modeling monsoon precipitation. Furthermore, the new SSBC scheme was found to predict precipitation and wind patterns more accurately than the older version in decadal analysis, which applies nudging only to the rotational wind field, with a constant strength at all heights.

  16. Generalized optical code construction for enhanced and Modified Double Weight like codes without mapping for SAC-OCDMA systems

    Science.gov (United States)

    Kumawat, Soma; Ravi Kumar, M.

    2016-07-01

    Double Weight (DW) code family is one of the coding schemes proposed for Spectral Amplitude Coding-Optical Code Division Multiple Access (SAC-OCDMA) systems. Modified Double Weight (MDW) code for even weights and Enhanced Double Weight (EDW) code for odd weights are two algorithms extending the use of DW code for SAC-OCDMA systems. The above mentioned codes use mapping technique to provide codes for higher number of users. A new generalized algorithm to construct EDW and MDW like codes without mapping for any weight greater than 2 is proposed. A single code construction algorithm gives same length increment, Bit Error Rate (BER) calculation and other properties for all weights greater than 2. Algorithm first constructs a generalized basic matrix which is repeated in a different way to produce the codes for all users (different from mapping). The generalized code is analysed for BER using balanced detection and direct detection techniques.

  17. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, MR; Martin-Hernandez, NL; Lenorzer, A; de Koter, A; Tielens, AGGA

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of 0 main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  18. Metallicity and the spectral energy distribution and spectral types of dwarf O-stars

    NARCIS (Netherlands)

    Mokiem, M.R.; Martín-Hernández, N.L.; Lenorzer, A.; de Koter, A.; Tielens, A.G.G.M.

    2004-01-01

    We present a systematic study of the effect of metallicity on the stellar spectral energy distribution (SED) of O main sequence (dwarf) stars, focussing on the hydrogen and helium ionizing continua, and on the optical and near-IR lines used for spectral classification. The spectra are based on

  19. Brain nuclear receptors and body weight regulation

    Science.gov (United States)

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essent...

  20. A polychromatic adaption of the Beer-Lambert model for spectral decomposition

    Science.gov (United States)

    Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.

    2017-03-01

    We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.

  1. Comparison of Reflectance Measurements Acquired with a Contact Probe and an Integration Sphere: Implications for the Spectral Properties of Vegetation at a Leaf Level

    Directory of Open Access Journals (Sweden)

    Markéta Potůčková

    2016-10-01

    Full Text Available Laboratory spectroscopy in visible and infrared regions is an important tool for studies dealing with plant ecophysiology and early recognition of plant stress due to changing environmental conditions. Leaf optical properties are typically acquired with a spectroradiometer coupled with an integration sphere (IS in a laboratory or with a contact probe (CP, which has the advantage of operating flexibility and the provision of repetitive in-situ reflectance measurements. Experiments comparing reflectance spectra measured with different devices and device settings are rarely reported in literature. Thus, in our study we focused on a comparison of spectra collected with two ISs on identical samples ranging from a Spectralon and coloured papers as reference standards to vegetation samples with broadleaved (Nicotiana Rustica L. and coniferous (Picea abies L. Karst. leaf types. First, statistical measures such as mean absolute difference, median of differences, standard deviation and paired-sample t-test were applied in order to evaluate differences between collected reflectance values. The possibility of linear transformation between spectra was also tested. Moreover, correlation between normalised differential indexes (NDI derived for each device and all combinations of wavelengths between 450 nm and 1800 nm were assessed. Finally, relationships between laboratory measured leaf compounds (total chlorophyll, carotenoids and water content, NDI and selected spectral indices often used in remote sensing were studied. The results showed differences between spectra acquired with different devices. While differences were negligible in the case of the Spectralon and they were possible to be modelled with a linear transformation in the case of coloured papers, the spectra collected with the CP and the ISs differed significantly in the case of vegetation samples. Regarding the spectral indices calculated from the reflectance data collected with the three

  2. Impact of spectral nudging and domain size in studies of RCM response to parameter modification

    Energy Technology Data Exchange (ETDEWEB)

    Separovic, Leo; Laprise, Rene [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Universite du Quebec a Montreal (UQAM), Montreal, QC (Canada); Elia, Ramon de [Universite du Quebec a Montreal, Centre pour l' Etude et la Simulation du Climat a l' Echelle Regionale (ESCER), Montreal, QC (Canada); Consortium Ouranos, Montreal, QC (Canada)

    2012-04-15

    The paper aims at finding an RCM configuration that facilitates studies devoted to quantifying RCM response to parameter modification. When using short integration times, the response of the time-averaged variables to RCM modification tend to be blurred by the noise originating in the lack of predictability of the instantaneous atmospheric states. Two ways of enhancing the signal-to-noise ratio are studied in this work: spectral nudging and reduction of the computational domain size. The approach followed consists in the analysis of the sensitivity of RCM-simulated seasonal averages to perturbations of two parameters controlling deep convection and stratiform condensation, perturbed one at a time. Sensitivity is analyzed within different simulation configurations obtained by varying domain size and using the spectral nudging option. For each combination of these factors multiple members of identical simulations that differ exclusively in initial conditions are also generated to provide robust estimates of the sensitivities (the signal) and sample the noise. Results show that the noise magnitude is decreased both by reduction of domain size and the spectral nudging. However, the reduction of domain size alters some sensitivity signals. When spectral nudging is used significant alterations of the signal are not found. (orig.)

  3. Accurate powder patterns and new spectral shape in orthorrombic symmetry

    International Nuclear Information System (INIS)

    Gonzalez-Tovany, L.

    1991-01-01

    The shape of the powder pattern of the center resonance line (M= 1/2 ↔ -1/2) for electron paramagnetic resonance (EPR) in orthorhombic symmetry, or nuclear magnetic resonance (NMR) with quadrupole interaction, is determined for all values of the crystal field symmetry parameter N by means of a general analytical method developed by Beltran-Lopez and Castro-Tello. Analytical functions in terms of elliptical integrals are obtained which are good approximations to the true powder pattern except in a narrow region around the field value corresponding to E=-2n 2 /3. numerical gaussian quadrature of the powder pattern from the single-variable integral arising in the analytical method is shown to be a very efficient semianalytical method of calculation for computer work, being much smoother and requiring only a few seconds of CPU time versus the several minutes needed with the grid of the Monte Carlo methods. The semianalytical powder patterns reveal the existence of a previous unknown EPR spectral feature in orthorhombic symmetry resembling a divergence. This feature which should appear at E=-2n 2 /3 for asymmetry parameter values near N=√ of 2/3, is hidden in the experimental spectra by the broadening effect of the linewidth of the individual crystallites. Comparison of experimental and simulated spectra obtained by convoluting powder patterns with first-derivate lorentzian lineshapes of convenient width are also shown. Semianalytical spectra are much smoother than Monte Carlo simulated spectra, revealing finer spectral features. (Author)

  4. Spectral measurements at different spatial scales in potato: relating leaf, plant and canopy nitrogen status

    Science.gov (United States)

    Jongschaap, Raymond E. E.; Booij, Remmie

    2004-09-01

    Chlorophyll contents in vegetation depend on soil nitrogen availability and on crop nitrogen uptake, which are important management factors in arable farming. Crop nitrogen uptake is important, as nitrogen is needed for chlorophyll formation, which is important for photosynthesis, i.e. the conversion of absorbed radiance into plant biomass. The objective of this study was to estimate leaf and canopy nitrogen contents by near and remote sensing observations and to link observations at leaf, plant and canopy level. A theoretical base is presented for scaling-up leaf optical properties to whole plants and crops, by linking different optical recording techniques at leaf, plant and canopy levels through the integration of vertical nitrogen distribution. Field data come from potato experiments in The Netherlands in 1997 and 1998, comprising two potato varieties: Eersteling and Bintje, receiving similar nitrogen treatments (0, 100, 200 and 300 kg N ha -1) in varying application schemes to create differences in canopy nitrogen status during the growing season. Ten standard destructive field samplings were performed to follow leaf area index and crop dry weight evolution. Samples were analysed for inorganic nitrogen and total nitrogen contents. At sampling dates, spectral measurements were taken both at leaf level and at canopy level. At leaf level, an exponential relation between SPAD-502 readings and leaf organic nitrogen contents with a high correlation factor of 0.91 was found. At canopy level, an exponential relation between canopy organic nitrogen contents and red edge position ( λrep, nm) derived from reflectance measurements was found with a good correlation of 0.82. Spectral measurements (SPAD-502) at leaf level of a few square mm were related to canopy reflectance measurements (CropScan™) of approximately 0.44 m 2. Statistical regression techniques were used to optimise theoretical vertical nitrogen profiles that allowed scaling-up leaf chlorophyll measurements

  5. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  6. Influence of temporal–spectral effects on ultrafast fiber coherent polarization beam combining system

    International Nuclear Information System (INIS)

    Yu, H L; Ma, P F; Wang, X L; Su, R T; Zhou, P; Chen, J B

    2015-01-01

    The active coherent polarization beam combining (CPBC) technique has been experimentally proved to be a promising approach for the energy and power scaling of ultrashort laser pulses, despite the tremendous challenge in temporal synchronization, dispersion management and nonlinearity control. In order to develop a comprehensive theoretical model to investigate the influence of temporal–spectral effects on ultrafast fiber active CPBC systems, a generalized nonlinear Schrödinger equation carrying spectral factors is used to depict the propagation of ultrashort pulses in fiber amplifier channels and ultrashort-pulsed Gaussian beams (PGBs) carrying temporal–spatial factors are utilized to picture the propagation of ultrashort pulses in the free space. To the best of our knowledge, the influence of different temporal–spectral effects has been segregated for the first time and corresponding analytical equations have been strictly derived to link the combining efficiency with specific factors. Based on our analysis, the optical path difference (OPD) has the most detrimental impact on the combining efficiency because of the high controlling accuracy and anti-interference requirements. For instance, the OPD must be controlled in ∼  ±14 μm to achieve a combining efficiency of above 95% for combining ultrashort laser pulses with a 3 dB spectral bandwidth of 13 nm centered at 1064 nm. Besides, the analytical expression also demonstrates that the impact of self-phase modulation on the combining efficiency has no dependence on spectral bandwidth and only depends on the B integral difference if neglecting the direct influence of the peak power difference. Our analysis also indicates that the group velocity dispersion has relatively small influence on the combining efficiency. These formulas can be used to diagnose the influence of temporal–spectral effects and provide useful guidelines for the design or optimization of the active CPBC system of ultrafast

  7. Spectral filtering for plant production

    Energy Technology Data Exchange (ETDEWEB)

    Young, R.E.; McMahon, M.J.; Rajapakse, N.C.; Becoteau, D.R.

    1994-12-31

    Research to date suggests that spectral filtering can be an effective alternative to chemical growth regulators for altering plant development. If properly implemented, it can be nonchemical and environmentally friendly. The aqueous CuSO{sub 4}, and CuCl{sub 2} solutions in channelled plastic panels have been shown to be effective filters, but they can be highly toxic if the solutions contact plants. Some studies suggest that spectral filtration limited to short EOD intervals can also alter plant development. Future research should be directed toward confirmation of the influence of spectral filters and exposure times on a broader range of plant species and cultivars. Efforts should also be made to identify non-noxious alternatives to aqueous copper solutions and/or to incorporate these chemicals permanently into plastic films and panels that can be used in greenhouse construction. It would also be informative to study the impacts of spectral filters on insect and microbal populations in plant growth facilities. The economic impacts of spectral filtering techniques should be assessed for each delivery methodology.

  8. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  9. Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites

    International Nuclear Information System (INIS)

    Alonso-Abella, M.; Chenlo, F.; Nofuentes, G.; Torres-Ramírez, M.

    2014-01-01

    This work is aimed at looking into the impact of the solar spectrum distribution on the energy yield of some PV (photovoltaic) materials on both monthly and annual time scales. The relative spectral responses of eight different PV solar cells – representative of each considered technology – have been selected. Modeling solar spectra in four sites located in the north hemisphere together with a 12-month experimental campaign in which spectral irradiances were periodically recorded in two of these sites located in Spain have provided highly interesting results. Regardless of the site, the considered amorphous silicon and cadmium telluride PV cells experience the most noticeable modeled and experimental variations of their monthly spectral gains, whilst flatter seasonal ones are identified in the remaining considered PV technologies. Thus, the maximum monthly variations of these spectral gains take place in the a-Si PV cell, ranging from −16% (winter) to 4% (summer) in Stuttgart. Anyway, the monthly spread of the spectral effects decreases as the latitude of the site does. Last, the impact of the solar spectrum distribution is remarkably reduced when the period of integration is enlarged up to a year. In fact, annual spectral gains keep below 2.2% for all the studied technologies and sites. - Highlights: • Monthly and annual spectral effects on eight different PV (photovoltaic) technologies studied. • Modeled spectra in four sites combined with relative spectral responses. • Measured spectra (12 months) in two sites combined with relative spectral responses. • Higher bandgap technologies: noticeable monthly variations in their spectral gains. • Annual spectral gains keep below 2.2% for all the studied technologies and sites

  10. An Adaptive Spectrally Weighted Structure Tensor Applied to Tensor Anisotropic Nonlinear Diffusion for Hyperspectral Images

    Science.gov (United States)

    Marin Quintero, Maider J.

    2013-01-01

    The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…

  11. Integrating Field Spectra and Worldview-2 Data for Grapevine Productivity in Different Irrigation Treatments

    Science.gov (United States)

    Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.

    2015-12-01

    Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.

  12. The influence of spectral and spatial characteristics of early reflections on speech intelligibility

    DEFF Research Database (Denmark)

    Arweiler, Iris; Buchholz, Jörg; Dau, Torsten

    The auditory system employs different strategies to facilitate speech intelligibility in complex listening conditions. One of them is the integration of early reflections (ER’s) with the direct sound (DS) to increase the effective speech level. So far the underlying mechanisms of ER processing have...... of listeners that speech intelligibility improved with added ER energy, but less than with added DS energy. An efficiency factor was introduced to quantify this effect. The difference in speech intelligibility could be mainly ascribed to the differences in the spectrum between the speech signals....... binaural). The direction-dependency could be explained by the spectral changes introduced by the pinna, head, and torso. The results will be important with regard to the influence of signal processing strategies in modern hearing aids on speech intelligibility, because they might alter the spectral...

  13. Integrability and Linear Stability of Nonlinear Waves

    Science.gov (United States)

    Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo

    2018-03-01

    It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

  14. On Longitudinal Spectral Coherence

    DEFF Research Database (Denmark)

    Kristensen, Leif

    1979-01-01

    It is demonstrated that the longitudinal spectral coherence differs significantly from the transversal spectral coherence in its dependence on displacement and frequency. An expression for the longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between ...... observation sites and the turbulence intensity influence the results. The limitations of the theory are discussed....

  15. Speech recognition from spectral dynamics

    Indian Academy of Sciences (India)

    Carrier nature of speech; modulation spectrum; spectral dynamics ... the relationships between phonetic values of sounds and their short-term spectral envelopes .... the number of free parameters that need to be estimated from training data.

  16. Entropy-Weighted Instance Matching Between Different Sourcing Points of Interest

    Directory of Open Access Journals (Sweden)

    Lin Li

    2016-01-01

    Full Text Available The crucial problem for integrating geospatial data is finding the corresponding objects (the counterpart from different sources. Most current studies focus on object matching with individual attributes such as spatial, name, or other attributes, which avoids the difficulty of integrating those attributes, but at the cost of an ineffective matching. In this study, we propose an approach for matching instances by integrating heterogeneous attributes with the allocation of suitable attribute weights via information entropy. First, a normalized similarity formula is developed, which can simplify the calculation of spatial attribute similarity. Second, sound-based and word segmentation-based methods are adopted to eliminate the semantic ambiguity when there is a lack of a normative coding standard in geospatial data to express the name attribute. Third, category mapping is established to address the heterogeneity among different classifications. Finally, to address the non-linear characteristic of attribute similarity, the weights of the attributes are calculated by the entropy of the attributes. Experiments demonstrate that the Entropy-Weighted Approach (EWA has good performance both in terms of precision and recall for instance matching from different data sets.

  17. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  18. Meson spectral functions at finite temperature

    International Nuclear Information System (INIS)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S.

    2002-01-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T c . The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64) 3 x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature

  19. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S

    2002-03-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature.

  20. Meson spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wetzorke, I.; Karsch, F.; Laermann, E.; Petreczky, P.; Stickan, S. [Bielefeld Univ. (Germany). Fakultaet fuer Physik

    2001-10-01

    The Maximum Entropy Method provides a Bayesian approach to reconstruct the spectral functions from discrete points in Euclidean time. The applicability of the approach at finite temperature is probed with the thermal meson correlation function. Furthermore the influence of fuzzing/smearing techniques on the spectral shape is investigated. We present first results for meson spectral functions at several temperatures below and above T{sub c}. The correlation functions were obtained from quenched calculations with Clover fermions on large isotropic lattices of the size (24 - 64){sup 3} x 16. We compare the resulting pole masses with the ones obtained from standard 2-exponential fits of spatial and temporal correlation functions at finite temperature and in the vacuum. The deviation of the meson spectral functions from free spectral functions is examined above the critical temperature. (orig.)

  1. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2000-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed

  2. Measurement of residual stresses using fracture mechanics weight functions

    International Nuclear Information System (INIS)

    Fan, Y.

    2001-01-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed. (author)

  3. The development of a modified spectral ripple test.

    Science.gov (United States)

    Aronoff, Justin M; Landsberger, David M

    2013-08-01

    Poor spectral resolution can be a limiting factor for hearing impaired listeners, particularly for complex listening tasks such as speech understanding in noise. Spectral ripple tests are commonly used to measure spectral resolution, but these tests contain a number of potential confounds that can make interpretation of the results difficult. To measure spectral resolution while avoiding those confounds, a modified spectral ripple test with dynamically changing ripples was created, referred to as the spectral-temporally modulated ripple test (SMRT). This paper describes the SMRT and provides evidence that it is sensitive to changes in spectral resolution.

  4. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  5. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  6. The spectral energy distribution of the scattered light from dark clouds

    Science.gov (United States)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  7. Spectral properties of a two dimensional photonic crystal with quasi-integrable geometry

    International Nuclear Information System (INIS)

    Cruz-Bueno, J J; Méndez-Bermúdez, J A; Arriaga, J

    2013-01-01

    In this paper we study the statistical properties of the allowed frequencies for electromagnetic waves propagating in two-dimensional photonic crystals with quasi-integrable geometry. We compute the level spacing, group velocity, and curvature distributions (P(s), P(v), and P(c), respectively) and compare them with the corresponding random matrix theory predictions. Due to the quasi-integrability of the crystal we observe signatures of intermediate statistics in P(s) and P(c) for high refractive index contrasts

  8. ℓ0 -based sparse hyperspectral unmixing using spectral information and a multi-objectives formulation

    Science.gov (United States)

    Xu, Xia; Shi, Zhenwei; Pan, Bin

    2018-07-01

    Sparse unmixing aims at recovering pure materials from hyperpspectral images and estimating their abundance fractions. Sparse unmixing is actually ℓ0 problem which is NP-h ard, and a relaxation is often used. In this paper, we attempt to deal with ℓ0 problem directly via a multi-objective based method, which is a non-convex manner. The characteristics of hyperspectral images are integrated into the proposed method, which leads to a new spectra and multi-objective based sparse unmixing method (SMoSU). In order to solve the ℓ0 norm optimization problem, the spectral library is encoded in a binary vector, and a bit-wise flipping strategy is used to generate new individuals in the evolution process. However, a multi-objective method usually produces a number of non-dominated solutions, while sparse unmixing requires a single solution. How to make the final decision for sparse unmixing is challenging. To handle this problem, we integrate the spectral characteristic of hyperspectral images into SMoSU. By considering the spectral correlation in hyperspectral data, we improve the Tchebycheff decomposition function in SMoSU via a new regularization item. This regularization item is able to enforce the individual divergence in the evolution process of SMoSU. In this way, the diversity and convergence of population is further balanced, which is beneficial to the concentration of individuals. In the experiments part, three synthetic datasets and one real-world data are used to analyse the effectiveness of SMoSU, and several state-of-art sparse unmixing algorithms are compared.

  9. Comparative Analysis of Alternative Spectral Bands of CO2 and O2 for the Sensing of CO2 Mixing Ratios

    Science.gov (United States)

    Pliutau, Denis; Prasad, Narasimha S.

    2013-01-01

    We performed comparative studies to establish favorable spectral regions and measurement wavelength combinations in alternative bands of CO2 and O2, for the sensing of CO2 mixing ratios (XCO2) in missions such as ASCENDS. The analysis employed several simulation approaches including separate layers calculations based on pre-analyzed atmospheric data from the modern-era retrospective analysis for research and applications (MERRA), and the line-byline radiative transfer model (LBLRTM) to obtain achievable accuracy estimates as a function of altitude and for the total path over an annual span of variations in atmospheric parameters. Separate layer error estimates also allowed investigation of the uncertainties in the weighting functions at varying altitudes and atmospheric conditions. The parameters influencing the measurement accuracy were analyzed independently and included temperature sensitivity, water vapor interferences, selection of favorable weighting functions, excitations wavelength stabilities and other factors. The results were used to identify favorable spectral regions and combinations of on / off line wavelengths leading to reductions in interferences and the improved total accuracy.

  10. Spectral properties of generalized eigenparameter dependent ...

    African Journals Online (AJOL)

    Jost function, spectrum, the spectral singularities, and the properties of the principal vectors corresponding to the spectral singularities of L, if. ∞Σn=1 n(∣1 - an∣ + ∣bnl) < ∞. Mathematics Subject Classication (2010): 34L05, 34L40, 39A70, 47A10, 47A75. Key words: Discrete equations, eigenparameter, spectral analysis, ...

  11. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  12. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  13. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  14. CRISS power spectral density

    International Nuclear Information System (INIS)

    Vaeth, W.

    1979-04-01

    The correlation of signal components at different frequencies like higher harmonics cannot be detected by a normal power spectral density measurement, since this technique correlates only components at the same frequency. This paper describes a special method for measuring the correlation of two signal components at different frequencies: the CRISS power spectral density. From this new function in frequency analysis, the correlation of two components can be determined quantitatively either they stem from one signal or from two diverse signals. The principle of the method, suitable for the higher harmonics of a signal as well as for any other frequency combinations is shown for the digital frequency analysis technique. Two examples of CRISS power spectral densities demonstrates the operation of the new method. (orig.) [de

  15. Using GIS servers and interactive maps in spectral data sharing and administration: Case study of Ahvaz Spectral Geodatabase Platform (ASGP)

    Science.gov (United States)

    Karami, Mojtaba; Rangzan, Kazem; Saberi, Azim

    2013-10-01

    With emergence of air-borne and space-borne hyperspectral sensors, spectroscopic measurements are gaining more importance in remote sensing. Therefore, the number of available spectral reference data is constantly increasing. This rapid increase often exhibits a poor data management, which leads to ultimate isolation of data on disk storages. Spectral data without precise description of the target, methods, environment, and sampling geometry cannot be used by other researchers. Moreover, existing spectral data (in case it accompanied with good documentation) become virtually invisible or unreachable for researchers. Providing documentation and a data-sharing framework for spectral data, in which researchers are able to search for or share spectral data and documentation, would definitely improve the data lifetime. Relational Database Management Systems (RDBMS) are main candidates for spectral data management and their efficiency is proven by many studies and applications to date. In this study, a new approach to spectral data administration is presented based on spatial identity of spectral samples. This method benefits from scalability and performance of RDBMS for storage of spectral data, but uses GIS servers to provide users with interactive maps as an interface to the system. The spectral files, photographs and descriptive data are considered as belongings of a geospatial object. A spectral processing unit is responsible for evaluation of metadata quality and performing routine spectral processing tasks for newly-added data. As a result, by using internet browser software the users would be able to visually examine availability of data and/or search for data based on descriptive attributes associated to it. The proposed system is scalable and besides giving the users good sense of what data are available in the database, it facilitates participation of spectral reference data in producing geoinformation.

  16. Spectral Element Method for the Simulation of Unsteady Compressible Flows

    Science.gov (United States)

    Diosady, Laslo Tibor; Murman, Scott M.

    2013-01-01

    This work uses a discontinuous-Galerkin spectral-element method (DGSEM) to solve the compressible Navier-Stokes equations [1{3]. The inviscid ux is computed using the approximate Riemann solver of Roe [4]. The viscous fluxes are computed using the second form of Bassi and Rebay (BR2) [5] in a manner consistent with the spectral-element approximation. The method of lines with the classical 4th-order explicit Runge-Kutta scheme is used for time integration. Results for polynomial orders up to p = 15 (16th order) are presented. The code is parallelized using the Message Passing Interface (MPI). The computations presented in this work are performed using the Sandy Bridge nodes of the NASA Pleiades supercomputer at NASA Ames Research Center. Each Sandy Bridge node consists of 2 eight-core Intel Xeon E5-2670 processors with a clock speed of 2.6Ghz and 2GB per core memory. On a Sandy Bridge node the Tau Benchmark [6] runs in a time of 7.6s.

  17. Integrated colors in the solar neighborhood

    International Nuclear Information System (INIS)

    Malagnini, M.L.

    1979-01-01

    The bivariate spectral type-luminosity class distribution combined with the z-distribution and broad-band photometric data have been used in order to derive integrated colors in Johnson's UBVRIJKL system for the solar neighborhood. The frequency distribution of white dwarfs is also taken into account for the U-B,B-V colors. (Auth.)

  18. A note on the Pfaffian integration theorem

    International Nuclear Information System (INIS)

    Borodin, Alexei; Kanzieper, Eugene

    2007-01-01

    Two alternative, fairly compact proofs are presented of the Pfaffian integration theorem that surfaced in the recent studies of spectral properties of Ginibre's Orthogonal Ensemble. The first proof is based on a concept of the Fredholm Pfaffian; the second proof is purely linear algebraic. (fast track communication)

  19. Ground-Based Correction of Remote-Sensing Spectral Imagery

    Science.gov (United States)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander

    2007-01-01

    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  20. Hierarchies of multi-component mKP equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Ji Jie; Yao Yuqin; Zhu Fubo; Chen Dengyuan

    2008-01-01

    First, a new multi-component modified Kadomtsev-Petviashvill (mKP) spectral problem is constructed by k-constraint imposed on a general pseudo-differential operator. Then, two hierarchies of multi-component mKP equations are derived, including positive non-isospectral mKP hierarchy and negative non-isospectral mKP hierarchy. Moreover, new integrable couplings of the resulting mKP soliton hierarchies are constructed by enlarging the associated matrix spectral problem