WorldWideScience

Sample records for integrated space transportation

  1. Integrated design for space transportation system

    CERN Document Server

    Suresh, B N

    2015-01-01

    The book addresses the overall integrated design aspects of a space transportation system involving several disciplines like propulsion, vehicle structures, aerodynamics, flight mechanics, navigation, guidance and control systems, stage auxiliary systems, thermal systems etc. and discusses the system approach for design, trade off analysis, system life cycle considerations, important aspects in mission management, the risk assessment, etc. There are several books authored to describe the design aspects of various areas, viz., propulsion, aerodynamics, structures, control, etc., but there is no book which presents space transportation system (STS) design in an integrated manner. This book attempts to fill this gap by addressing systems approach for STS design, highlighting the integrated design aspects, interactions between various subsystems and interdependencies. The main focus is towards the complex integrated design to arrive at an optimum, robust and cost effective space transportation system. The orbit...

  2. T-SDN architecture for space and ground integrated optical transport network

    Science.gov (United States)

    Nie, Kunkun; Hu, Wenjing; Gao, Shenghua; Chang, Chengwu

    2015-11-01

    Integrated optical transport network is the development trend of the future space information backbone network. The space and ground integrated optical transport network(SGIOTN) may contain a variety of equipment and systems. Changing the network or meeting some innovation missions in the network will be an expensive implement. Software Defined Network(SDN) provides a good solution to flexibly adding process logic, timely control states and resources of the whole network, as well as shielding the differences of heterogeneous equipment and so on. According to the characteristics of SGIOTN, we propose an transport SDN architecture for it, with hierarchical control plane and data plane composed of packet networks and optical transport networks.

  3. Electrical Power Systems for NASA's Space Transportation Program

    Science.gov (United States)

    Lollar, Louis F.; Maus, Louis C.

    1998-01-01

    Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.

  4. A monograph of the National Space Transportation System Office (NSTSO) integration activities conducted at the NASA Lyndon B. Johnson Space Center for the EASE/ACCESS payload flown on STS 61-B

    Science.gov (United States)

    Chassay, Charles

    1987-01-01

    The integration process of activities conducted at the NASA Lyndon B. Johnson Space Center (JSC) for the Experimental Assembly of Structures in Extravehicular activity (EASE)/Assembly Concept for Construction of Erectable Space Structures (ACCESS) payload is provided as a subset to the standard payload integration process used by the NASA Space Transportation System (STS) to fly payloads on the Space Shuttle. The EASE/ACCESS payload integration activities are chronologically reviewed beginning with the initiation of the flight manifesting and integration process. The development and documentation of the EASE/ACCESS integration requirements are also discussed along with the implementation of the mission integration activities and the engineering assessments supporting the flight integration process. In addition, the STS management support organizations, the payload safety process leading to the STS 61-B flight certification, and the overall EASE/ACCESS integration schedule are presented.

  5. High-Payoff Space Transportation Design Approach with a Technology Integration Strategy

    Science.gov (United States)

    McCleskey, C. M.; Rhodes, R. E.; Chen, T.; Robinson, J.

    2011-01-01

    A general architectural design sequence is described to create a highly efficient, operable, and supportable design that achieves an affordable, repeatable, and sustainable transportation function. The paper covers the following aspects of this approach in more detail: (1) vehicle architectural concept considerations (including important strategies for greater reusability); (2) vehicle element propulsion system packaging considerations; (3) vehicle element functional definition; (4) external ground servicing and access considerations; and, (5) simplified guidance, navigation, flight control and avionics communications considerations. Additionally, a technology integration strategy is forwarded that includes: (a) ground and flight test prior to production commitments; (b) parallel stage propellant storage, such as concentric-nested tanks; (c) high thrust, LOX-rich, LOX-cooled first stage earth-to-orbit main engine; (d) non-toxic, day-of-launch-loaded propellants for upper stages and in-space propulsion; (e) electric propulsion and aero stage control.

  6. A Path Space Extension for Robust Light Transport Simulation

    DEFF Research Database (Denmark)

    Hachisuka, Toshiya; Pantaleoni, Jacopo; Jensen, Henrik Wann

    2012-01-01

    We present a new sampling space for light transport paths that makes it possible to describe Monte Carlo path integration and photon density estimation in the same framework. A key contribution of our paper is the introduction of vertex perturbations, which extends the space of paths with loosely...

  7. Approach to an Affordable and Sustainable Space Transportation System

    Science.gov (United States)

    McCleskey, Caey M.; Rhodes, R. E.; Robinson, J. W.; Henderson, E. M.

    2012-01-01

    This paper describes an approach and a general procedure for creating space transportation architectural concepts that are at once affordable and sustainable. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on a functional system breakdown structure for an architecture and definition of high-payoff design techniques with a technology integration strategy. This paper follows up by using a structured process that derives architectural solutions focused on achieving life cycle affordability and sustainability. Further, the paper includes an example concept that integrates key design techniques discussed in previous papers. !

  8. NASA Space Radiation Program Integrative Risk Model Toolkit

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hu, Shaowen; Plante, Ianik; Ponomarev, Artem L.; Sandridge, Chris

    2015-01-01

    NASA Space Radiation Program Element scientists have been actively involved in development of an integrative risk models toolkit that includes models for acute radiation risk and organ dose projection (ARRBOD), NASA space radiation cancer risk projection (NSCR), hemocyte dose estimation (HemoDose), GCR event-based risk model code (GERMcode), and relativistic ion tracks (RITRACKS), NASA radiation track image (NASARTI), and the On-Line Tool for the Assessment of Radiation in Space (OLTARIS). This session will introduce the components of the risk toolkit with opportunity for hands on demonstrations. The brief descriptions of each tools are: ARRBOD for Organ dose projection and acute radiation risk calculation from exposure to solar particle event; NSCR for Projection of cancer risk from exposure to space radiation; HemoDose for retrospective dose estimation by using multi-type blood cell counts; GERMcode for basic physical and biophysical properties for an ion beam, and biophysical and radiobiological properties for a beam transport to the target in the NASA Space Radiation Laboratory beam line; RITRACKS for simulation of heavy ion and delta-ray track structure, radiation chemistry, DNA structure and DNA damage at the molecular scale; NASARTI for modeling of the effects of space radiation on human cells and tissue by incorporating a physical model of tracks, cell nucleus, and DNA damage foci with image segmentation for the automated count; and OLTARIS, an integrated tool set utilizing HZETRN (High Charge and Energy Transport) intended to help scientists and engineers study the effects of space radiation on shielding materials, electronics, and biological systems.

  9. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  10. A variable-order time-dependent neutron transport method for nuclear reactor kinetics using analytically-integrated space-time characteristics

    International Nuclear Information System (INIS)

    Hoffman, A. J.; Lee, J. C.

    2013-01-01

    A new time-dependent neutron transport method based on the method of characteristics (MOC) has been developed. Whereas most spatial kinetics methods treat time dependence through temporal discretization, this new method treats time dependence by defining the characteristics to span space and time. In this implementation regions are defined in space-time where the thickness of the region in time fulfills an analogous role to the time step in discretized methods. The time dependence of the local source is approximated using a truncated Taylor series expansion with high order derivatives approximated using backward differences, permitting the solution of the resulting space-time characteristic equation. To avoid a drastic increase in computational expense and memory requirements due to solving many discrete characteristics in the space-time planes, the temporal variation of the boundary source is similarly approximated. This allows the characteristics in the space-time plane to be represented analytically rather than discretely, resulting in an algorithm comparable in implementation and expense to one that arises from conventional time integration techniques. Furthermore, by defining the boundary flux time derivative in terms of the preceding local source time derivative and boundary flux time derivative, the need to store angularly-dependent data is avoided without approximating the angular dependence of the angular flux time derivative. The accuracy of this method is assessed through implementation in the neutron transport code DeCART. The method is employed with variable-order local source representation to model a TWIGL transient. The results demonstrate that this method is accurate and more efficient than the discretized method. (authors)

  11. Commercial Space Transportation and Approaches to landing sites over Maritime Areas

    OpenAIRE

    Morlang, Frank; Hampe, Jens; Kaltenhäuser, Sven; Schmitt, Dirk-Roger

    2015-01-01

    Commercial Space Transportation becomes an international business and requires landing opportunities all over the world. Hence the integration of space vehicles in other airspace than the US NAS is an important topic to be considered. The Single European Sky ATM Research Programme (SESAR) is preparing the implementation of a new ATM system in Europe. The requirements are defined by the concept of the shared Business Trajectory and System Wide Information Management (SWIM). Space vehicle op...

  12. Transport Corridors in the Russian Integration Projects, the Case of the Eurasian Economic Union

    Directory of Open Access Journals (Sweden)

    Olga A. Podberezkina

    2015-01-01

    Full Text Available The article discusses the political importance of transport corridors in terms of the development of integration projects in the post-Soviet space. The world is witnessing the formation of a single market and transport and communication infrastructure, which intensifies competition among regional and world leaders, both states and non-state actors, such as businesses, markets over the routes of transporting goods. In the medium and long term the value of the control over the transport routes will increase due to the dynamics of economic development in the Asia-Pacific region. Competition for the development of projects of international transport corridors (ITC between the leading countries in the region will increase, because the ITC entail the formation of a common political space, the reduction of tariff and customs barriers, which provides easy access to the markets of countries linked by ITCs and creates the preconditions for economic integration. The growing political importance of ITC is reflected in the fact that global leaders such as China, the US, the EU, are trying to create their own versions of international land transport corridors connecting Europe and Asia. China is trying to promote their transport project "Economic Belt Silk Road" European countries develop cooperation on ITC TRACECA with other countries of Eurasia. US also embody their interests through the implementation of the project by the ITC in Afghanistan. Transport corridors in Russia are seen as a way to integrate it into the global transportation system and logistics space. To do this, Russia needs to develop Eurasian transport corridors through its territory. As a result of the implementation of transport projects Russia will be able to ensure the transit of goods from China to Europe, which has a positive impact on the economic development of the regions through which they pass. Development of international transportation through Russia will unite many of the

  13. Monoenergetic neutral particle transport in an anisotropically scattering half-space

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Garth, J.C.; Woolf, S.

    1995-01-01

    During the past several years, a considerable effort has been underway to develop reliable analytical benchmark solutions to the one-speed transport equation in various geometries. The reader may well ask open-quotes whyclose quotes such a task has been undertaken, given the recent rapid advances in numerical transport theory. The simple answer is that reliable numerical solutions do not yet exist, and their development still represents a mathematical challenge. However, regardless of how mathematically challenging the development is, there are more compelling reasons for this effort which are rooted in the very fundamentals of science and technology. In particular, these solutions, which are highly accurate numerical evaluations of analytical solution representations, serve as open-quotes industry standardsclose quotes to which other more approximate methods or approximations can be compared. Thus analytical benchmarks are part of the process control and continuous improvement of numerical transport methods and are therefore integral components in TQM (Total Quality Management) as applied to transport methods development. With the above reasoning in mind, the authors begin the development and application of a new analytical solution and evaluation for a half-space featuring anisotropic scattering. This work is an extension of previous efforts in which isotropically scattering half-spaces were treated. The previous benchmarks were obtained most conveniently via a numerical Laplace transform inversion which could be applied in a straightforward manner to the case of isotropic scattering. The application of the Laplace transform method is problematical for anisotropic scattering and does not admit to the direct identification of the scalar flux from integral transport theory

  14. Soft space regional planning as an approach for integrated transport and land use planning in Sweden – challenges and ways forward

    Directory of Open Access Journals (Sweden)

    Fredrik Pettersson

    2016-01-01

    Full Text Available Current mobility patterns mean that many trips cross one or several municipal borders. This emphasises the need to integrate land-use and transport planning at regional functional scales. However, the Swedish planning system is characterised by a ‘municipal planning monopoly’, where local governments control the formal planning instruments. The lack of formal means for regional-level planning has sparked initiatives that can be characterised as soft spaces in planning. The paper analyses how soft space planning as spatial strategy making at regional level is influencing local-level planning. The analysis covers 10 municipalities in the Swedish Region of Skåne. The results illustrate that the dialogue-based process has established a broad consensus on the need to consider the regional scale in municipal planning. However, the results also show that the impact on planning is limited since the consensus-based process resulted in strategic objectives with limited influence on prevailing planning practices. Findings also illustrate that key concepts for operationalising the strategies – including densification and public transport accessibility – were defined and used differently in different municipalities. Consequently, a more stringent use, and stricter definitions, of core concepts could be a way to strengthen the capacity of soft space regional planning.

  15. 75 FR 70347 - Commercial Space Transportation Advisory Committee; Renewal

    Science.gov (United States)

    2010-11-17

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Regulations, notice is hereby given that the Commercial Space Transportation Advisory Committee (COMSTAC) has... matters concerning the U.S. commercial space transportation industry. The [[Page 70348

  16. PATH: a lumped-element beam-transport simulation program with space charge

    International Nuclear Information System (INIS)

    Farrell, J.A.

    1983-01-01

    PATH is a group of computer programs for simulating charged-particle beam-transport systems. It was developed for evaluating the effects of some aberrations without a time-consuming integration of trajectories through the system. The beam-transport portion of PATH is derived from the well-known program, DECAY TURTLE. PATH contains all features available in DECAY TURTLE (including the input format) plus additional features such as a more flexible random-ray generator, longitudinal phase space, some additional beamline elements, and space-charge routines. One of the programs also provides a simulation of an Alvarez linear accelerator. The programs, originally written for a CDC 7600 computer system, also are available on a VAX-VMS system. All of the programs are interactive with input prompting for ease of use

  17. Integral Transport Theory in One-dimensional Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1966-06-15

    A method called DIT (Discrete Integral Transport) has been developed for the numerical solution of the transport equation in one-dimensional systems. The characteristic features of the method are Gaussian integration over the coordinate as described by Kobayashi and Nishihara, and a particular scheme for the calculation of matrix elements in annular and spherical geometry that has been used for collision probabilities in earlier Flurig programmes. The paper gives a general theory including such things as anisotropic scattering and multi-pole fluxes, and it gives a brief description of the Flurig scheme. Annular geometry is treated in some detail, and corresponding formulae are given for spherical and plane geometry. There are many similarities between DIT and the method of collision probabilities. DIT is in many cases faster, because for a certain accuracy in the fluxes DIT often needs fewer space points than the method of collision probabilities needs regions. Several computer codes using DIT, both one-group and multigroup, have been written. It is anticipated that experience gained in calculations with these codes will be reported in another paper.

  18. Resonance controlled transport in phase space

    Science.gov (United States)

    Leoncini, Xavier; Vasiliev, Alexei; Artemyev, Anton

    2018-02-01

    We consider the mechanism of controlling particle transport in phase space by means of resonances in an adiabatic setting. Using a model problem describing nonlinear wave-particle interaction, we show that captures into resonances can be used to control transport in momentum space as well as in physical space. We design the model system to provide creation of a narrow peak in the distribution function, thus producing effective cooling of a sub-ensemble of the particles.

  19. Extension of Applicability of integral neutron transport theory in reactor cell and core investigation

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Bosevski, T.; Kocic, A.; Altiparmakov, D.

    1980-01-01

    A Space-Point Energy-Group integral transport theory method (SPEG) is developed and applied to the local and global calculations of the Yugoslav RA reactor. Compared to other integral transport theory methods, the SPEG distinguishes by (1) the arbitrary order of the polynomial, (2) the effective determination of integral parameters through point flux values, (3) the use of neutron balance condition. as a posterior measure of the accuracy of the calculation and (4) the elimination of the subdivisions- into zones, in realistic cases. In addition, different direct (collision probability) and indirect (Monte Carlo) approaches to integral transport theory have been investigated and Some effective acceleration procedures introduced. The study was performed on three test problems in plane and cylindrical geometry, as well as on the nine-region cell of the RA reactor. In particular, the limitations of the integral transport theory including its non-applicability to optically large material regions and to global reactor calculations were examined. The proposed strictly multipoint approach, avoiding the subdivision into zones and groups, seems to provide a good starting point to overcome these limitations of the integral transport theory. (author)

  20. 14 CFR 401.1 - The Office of Commercial Space Transportation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false The Office of Commercial Space Transportation. 401.1 Section 401.1 Aeronautics and Space COMMERCIAL SPACE TRANSPORTATION, FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL ORGANIZATION AND DEFINITIONS § 401.1 The Office of Commercial Space Transportation. The Office of...

  1. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, B.V.; Lund, H.; Nørgård, Per Bromand

    2007-01-01

    Governments worldwide aim at reducing CO2 emissions and expanding renewable energy. A key element in achieving such a goal is to use renewable energy in transport such as biofuels. However, efforts to promote single transport technologies and single fuels only represent a partial solution...... transport. It is concluded that a 100 per cent renewable energy transport system is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production. The integration of the transport with the remaining energy....... No single technology can solve the problem of ever increasing CO2 emissions from transport. Transport must be integrated into energy planning, as electricity and heating. In this paper, a coherent effort to integrate transport into energy planning is proposed, using multiple means promoting sustainable...

  2. Path integration in conical space

    International Nuclear Information System (INIS)

    Inomata, Akira; Junker, Georg

    2012-01-01

    Quantum mechanics in conical space is studied by the path integral method. It is shown that the curvature effect gives rise to an effective potential in the radial path integral. It is further shown that the radial path integral in conical space can be reduced to a form identical with that in flat space when the discrete angular momentum of each partial wave is replaced by a specific non-integral angular momentum. The effective potential is found proportional to the squared mean curvature of the conical surface embedded in Euclidean space. The path integral calculation is compatible with the Schrödinger equation modified with the Gaussian and the mean curvature. -- Highlights: ► We study quantum mechanics on a cone by the path integral approach. ► The path integral depends only on the metric and the curvature effect is built in. ► The approach is consistent with the Schrödinger equation modified by an effective potential. ► The effective potential is found to be of the “Jensen–Koppe” and “da Costa” type.

  3. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  4. Path integral in Snyder space

    Energy Technology Data Exchange (ETDEWEB)

    Mignemi, S., E-mail: smignemi@unica.it [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy); Štrajn, R. [Dipartimento di Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); INFN, Sezione di Cagliari, Cittadella Universitaria, 09042 Monserrato (Italy)

    2016-04-29

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  5. Path integral in Snyder space

    International Nuclear Information System (INIS)

    Mignemi, S.; Štrajn, R.

    2016-01-01

    The definition of path integrals in one- and two-dimensional Snyder space is discussed in detail both in the traditional setting and in the first-order formalism of Faddeev and Jackiw. - Highlights: • The definition of the path integral in Snyder space is discussed using phase space methods. • The same result is obtained in the first-order formalism of Faddeev and Jackiw. • The path integral formulation of the two-dimensional Snyder harmonic oscillator is outlined.

  6. 76 FR 42160 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Space Transportation Operations Working Group of the Commercial Space Transportation Advisory...

  7. Power unit-cargo space link in transport

    Directory of Open Access Journals (Sweden)

    Radmilović Zoran R.

    2005-01-01

    Full Text Available This paper deals with transportation technology regarding links between power unit and cargo space. These links can be divided into two groups: rigid and flexible. Rigid link, established between power unit and cargo space, is dominant in maritime and road transport (sea ships and trucks, and occasionally in transport on inland waterways (self- propelled barges. Flexible link is used in the railroad transport (systems with trailers and semi trailers, and in inland waterway transport (push - towing and pulling systems, and combinations of the systems. The main goal of this research is determination of possible link types and organization of the means of transportation.

  8. 76 FR 621 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  9. 76 FR 41323 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  10. 76 FR 4988 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  11. 76 FR 78329 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of a teleconference of the Commercial Space Transportation Advisory Committee (COMSTAC). The...

  12. 77 FR 44707 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-07-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation...: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section... given of three teleconferences of the Systems Working Group of the Commercial Space Transportation...

  13. 76 FR 4412 - Commercial Space Transportation Advisory Committee-Closed Session

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a... Commercial Space Transportation Advisory Committee (COMSTAC). The special closed session will be an...

  14. 78 FR 70093 - Commercial Space Transportation Advisory Committee-Closed Session

    Science.gov (United States)

    2013-11-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  15. 76 FR 17474 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2011-03-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  16. 77 FR 16891 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2012-03-22

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  17. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  18. 76 FR 51461 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2011-08-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee open meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  19. 78 FR 69742 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2013-11-20

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  20. 77 FR 52108 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2012-08-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  1. 75 FR 54002 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  2. 78 FR 53497 - Commercial Space Transportation Advisory Committee; Closed Session

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Special Closed Session. SUMMARY: Pursuant to Section 10(a...), notice is hereby given of a special closed session of the Commercial Space Transportation Advisory...

  3. 78 FR 18416 - Commercial Space Transportation Advisory Committee; Open Meeting

    Science.gov (United States)

    2013-03-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open Meeting. SUMMARY: Pursuant to Section 10(a)(2) of the... the Commercial Space Transportation Advisory Committee (COMSTAC). The meeting will take place on...

  4. 76 FR 20070 - Commercial Space Transportation Safety Approval Performance Criteria

    Science.gov (United States)

    2011-04-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation (AST), 800 Independence Avenue SW., Room 331, Washington, DC 20591, telephone.... Nield, Associate Administrator for Commercial Space Transportation. [FR Doc. 2011-8534 Filed 4-8-11; 8...

  5. 75 FR 16901 - Commercial Space Transportation Advisory Committee-Open Meeting

    Science.gov (United States)

    2010-04-02

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Commercial Space Transportation Advisory Committee Open meeting. SUMMARY: Pursuant to section 10(a)(2) of the... of the Commercial Space Transportation Advisory Committee (COMSTAC). The meetings will take place on...

  6. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  7. 78 FR 37648 - Space Transportation Infrastructure Matching (STIM) Grants Program

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Space Transportation Infrastructure...-availability of Space Transportation Infrastructure Matching Grants in FY 2013. SUMMARY: The Office of... Administrator for Commercial Space Transportation. [FR Doc. 2013-14859 Filed 6-20-13; 8:45 am] BILLING CODE 4910...

  8. Nonlinear transport of dynamic system phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1993-01-01

    The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example

  9. Integrated transport and renewable energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik; Nørgaard, P.

    2008-01-01

    No single technology can solve the problem of ever increasing CO2 emissions from transport. Here, a coherent effort to integrate transport into energyplanning is proposed, using multiple means promoting sustainable transport. It is concluded that a 100 per cent renewable energy transport system...... is possible but is connected to significant challenges in the path towards it. Biomass is a limited resource and it is important to avoid effecting the production of food. The integration of the transport with the energy system is crucial as is a multi-pronged strategy. Short term solutions have to consider...

  10. Space transportation and destination considerations for extraterrestrial disposal of radioactive waste

    Science.gov (United States)

    Zimmerman, A. V.; Thompson, R. L.; Lubick, R. J.

    1973-01-01

    A feasibility study is summarized of extraterrestrial (space) disposal of radioactive waste. The initial work on the evaluation and comparison of possible space destinations and launch vehicles is reported. Only current or planned space transportation systems were considered. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles, by about a factor of two. The space shuttle will require a third stage to perform the disposal missions. Depending on the particular mission this could be either a reusable space tug or an expendable stage such as a Centaur. Of the destinations considered, high earth orbits (between geostationary and lunar orbit altitudes), solar orbits (such as a 0.90 AU circular solar orbit) or a direct injection to solar system escape appear to be the best candidates. Both earth orbits and solar orbits have uncertainties regarding orbit stability and waste package integrity for times on the order of a million years.

  11. Integral type operators from normal weighted Bloch spaces to QT,S spaces

    Directory of Open Access Journals (Sweden)

    Yongyi GU

    2016-08-01

    Full Text Available Operator theory is an important research content of the analytic function space theory. The discussion of simultaneous operator and function space is an effective way to study operator and function space. Assuming that  is an analytic self map on the unit disk Δ, and the normal weighted bloch space μ-B is a Banach space on the unit disk Δ, defining a composition operator C∶C(f=f on μ-B for all f∈μ-B, integral type operator JhC and CJh are generalized by integral operator and composition operator. The boundeness and compactness of the integral type operator JhC acting from normal weighted Bloch spaces to QT,S spaces are discussed, as well as the boundeness of the integral type operators CJh acting from normal weighted Bloch spaces to QT,S spaces. The related sufficient and necessary conditions are given.

  12. Space Transportation System Liftoff Debris Mitigation Process Overview

    Science.gov (United States)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  13. 77 FR 71474 - Commercial Space Transportation Advisory Committee-Charter Renewal

    Science.gov (United States)

    2012-11-30

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation... Transportation (DOT). ACTION: Announcement of Charter Renewal of the Commercial Space Transportation Advisory... Administrator of the Federal Aviation Administration (FAA) on the critical matters facing the U.S. commercial...

  14. Transport processes in space physics and astrophysics

    CERN Document Server

    Zank, Gary P

    2014-01-01

    Transport Processes in Space Physics and Astrophysics' is aimed at graduate level students to provide the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. Subjects emphasized in the work include collisional and collisionless processes in gases (neutral or plasma), analogous processes in turbulence fields and radiation fields, and allows for a simplified treatment of the statistical description of the system. A systematic study that addresses the common tools at a graduate level allows students to progress to a point where they can begin their research in a variety of fields within space physics and astrophysics. This book is for graduate students who expect to complete their research in an area of plasma space physics or plasma astrophysics. By providing a broad synthesis in several areas of transport theory and modeling, the work also benefits resear...

  15. Asymptotic formulae for solutions of the two-group integral neutron-transport equation

    International Nuclear Information System (INIS)

    Duracz, T.

    1976-01-01

    The steady-state, two-group integral neutron-transport equation is considered for two cases. First, for plane geometry, formulae for the asymptotic flux are obtained, under assumptions of homogeneous medium with isotropic scattering, extended to infinity (whole space and half-space), with sources vanishing at infinity as 0(esup(-IXI)). Next, for spherical geometry, the Milne problem is considered and formulae for the asymptotic flux are obtained. These formulae have the form of asymptotic expansions for small and large radii of the black sphere. (orig.) [de

  16. 76 FR 12211 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-04

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference (COMSTAC). SUMMARY: Pursuant...

  17. INTEGRATION OF UKRAINIAN INDUSTRY SCIENTIFIC PERIODACLS INTO WORLD SCIENTIFIC INFORMATION SPACE: PROBLEMS AND SOLUTIONS

    Directory of Open Access Journals (Sweden)

    T. O. Kolesnykova

    2013-11-01

    Full Text Available Purpose. Problem of representation lack of scientists’ publications, including transport scientists, in the international scientometric databases is the urgent one for Ukrainian science. To solve the problem one should study the structure and quality of the information flow of scientific periodicals of railway universities in Ukraine and to determine the integration algorithm of scientific publications of Ukrainian scientists into the world scientific information space. Methodology. Applying the methods of scientific analysis, synthesis, analogy, comparison and prediction the author has investigated the problem of scientific knowledge distribution using formal communications. The readiness of Ukrainian railway periodicals to registration procedure in the international scientometric systems was analyzed. The level of representation of articles and authors of Ukrainian railway universities in scientometric database Scopus was studied. Findings. Monitoring of the portals of railway industry universities of Ukraine and the sites of their scientific periodicals and analysis of obtained data prove insufficient readiness of most scientific publications for submission to scientometric database. The ways providing sufficient "visibility" of industry periodicals of Ukrainian universities in the global scientific information space were proposed. Originality. The structure and quality of documentary flow of scientific periodicals in railway transport universities of Ukraine and its reflection in scientometric DB Scopus were first investigated. The basic directions of university activities to integrate the results of transport scientists research into the global scientific digital environment were outlined. It was determined the leading role of university libraries in the integration processes of scientific documentary resources of universities into the global scientific and information communicative space. Practical value. Implementation of the proposed

  18. 76 FR 82031 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2011-12-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Risk Management Working Group Teleconference...

  19. 76 FR 4743 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-01-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  20. 75 FR 51332 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-19

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  1. 77 FR 48585 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-08-14

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  2. 78 FR 53496 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-08-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  3. 76 FR 15041 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-03-18

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  4. 76 FR 67018 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2011-10-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  5. 75 FR 38866 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  6. 78 FR 14401 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2013-03-05

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  7. 77 FR 35102 - Commercial Space Transportation Advisory Committee; Public Teleconference

    Science.gov (United States)

    2012-06-12

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee; Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  8. 77 FR 65443 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2012-10-26

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee--Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section...

  9. Integrated transport code system for a multicomponent plasma in a gas dynamic trap

    International Nuclear Information System (INIS)

    Anikeev, A.V.; Karpushov, A.N.; Noak, K.; Strogalova, S.L.

    2000-01-01

    This report is focused on the development of the theoretical and numerical models of multicomponent high-β plasma confinement and transport in the gas-dynamic trap (GDT). In order to simulate the plasma behavior in the GDT as well as that in the GDT-based neutron source the Integrated Transport Code System is developed from existing stand-alone codes calculating the target plasma, the fast ions and the neutral gas in the GDT. The code system considers the full dependence of the transport phenomena on space, time, energy and angle variables as well as the interactions between the particle fields [ru

  10. 75 FR 52058 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-08-24

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Commercial Space Transportation Advisory Committee-Public Teleconference AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of Commercial Space Transportation Advisory Committee Teleconference. SUMMARY: Pursuant to Section 10...

  11. How Important is the Integration of Public Passenger Transport

    Directory of Open Access Journals (Sweden)

    Mrníková Michaela

    2017-11-01

    Full Text Available The significance of the issue of an effective mode of passenger transport is currently increasing. On the one hand, there is the increasing economic demand of public passenger transport, on the other hand, there is the growing traffic share of individual automobile transport. The objective of the paper is to analyze public passenger transport without mutual integration of individual transport systems resulting in the fact that it is not sufficiently able to compete with individual automobile transport. It is proposed the integration of different modes of public passenger transport as a way to increase the competitiveness of public passenger transport. Aim of this paper is to analyze the individual elements of integration systems and describe why integration of public passenger transport systems is needed.

  12. Space transportation systems within ESA programmes: Current status and perspectives

    Science.gov (United States)

    Delahais, Maurice

    1993-03-01

    An overview of the space transportation aspects of the ESA (European Space Agency) programs as they result from history, present status, and decisions taken at the ministerial level conference in Granada, Spain is presented. The new factors taken into consideration for the long term plan proposed in Munich, Germany, the three strategic options for the reorientation of the ESA long term plan, and the essential elements of space transportation in the Granada long term plan in three areas of space activities, scientific, and commercial launches with expendable launch vehicles, manned flight and in-orbit infrastructure, and future transportation systems are outlined. The new ESA long term plan, in the field of space transportation systems, constitutes a reorientation of the initial program contemplated in previous councils at ministerial level. It aims at balancing the new economic situation with the new avenues of cooperation, and the outcome will be a new implementation of the space transportation systems policy.

  13. Path integration on hyperbolic spaces

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S{sub 1} {approx equal} SO (n,1)/SO(n) and S{sub 2} {approx equal} SU(n,1)/S(U(1) x U(n)) in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E{sub O} = h{sup 2} /8m(m{sub {alpha}} +2m{sub 2} {alpha}){sup 2} (m {alpha} and m{sub 2}{alpha} denote the dimension of the root subspace corresponding to the roots {alpha} and 2{alpha}, respectively). I also discuss the case, where a constant magnetic field on H{sup n} is incorporated. (orig.).

  14. Path integration on hyperbolic spaces

    International Nuclear Information System (INIS)

    Grosche, C.

    1991-11-01

    Quantum mechanics on the hyperbolic spaces of rank one is discussed by path integration technique. Hyperbolic spaces are multi-dimensional generalisation of the hyperbolic plane, i.e. the Poincare upper half-plane endowed with a hyperbolic geometry. We evalute the path integral on S 1 ≅ SO (n,1)/SO(n) and S 2 ≅ SU(n,1)/S[U(1) x U(n)] in a particular coordinate system, yielding explicitly the wave-functions and the energy spectrum. Futhermore we can exploit a general property of all these spaces, namely that they can be parametrized by a pseudopolar coordinate system. This allows a separation in path integration over spheres and an additional path integration over the remaining hyperbolic coordinate, yielding effectively a path integral for a modified Poeschl-Teller potential. Only continuous spectra can exist in all the cases. For all the hyperbolic spaces of rank one we find a general formula for the largest lower bound (zero-point energy) of the spectrum which is given by E O = h 2 /8m(m α +2m 2 α) 2 (m α and m 2 α denote the dimension of the root subspace corresponding to the roots α and 2α, respectively). I also discuss the case, where a constant magnetic field on H n is incorporated. (orig.)

  15. A Common Communications, Navigation and Surveillance Infrastructure for Accommodating Space Vehicles in the Next Generation Air Transportation System

    Science.gov (United States)

    VanSuetendael, RIchard; Hayes, Alan; Birr, Richard

    2008-01-01

    Suborbital space flight and space tourism are new potential markets that could significantly impact the National Airspace System (NAS). Numerous private companies are developing space flight capabilities to capture a piece of an emerging commercial space transportation market. These entrepreneurs share a common vision that sees commercial space flight as a profitable venture. Additionally, U.S. space exploration policy and national defense will impose significant additional demands on the NAS. Air traffic service providers must allow all users fair access to limited airspace, while ensuring that the highest levels of safety, security, and efficiency are maintained. The FAA's Next Generation Air Transportation System (NextGen) will need to accommodate spacecraft transitioning to and from space through the NAS. To accomplish this, space and air traffic operations will need to be seamlessly integrated under some common communications, navigation and surveillance (CNS) infrastructure. As part of NextGen, the FAA has been developing the Automatic Dependent Surveillance Broadcast (ADS-B) which utilizes the Global Positioning System (GPS) to track and separate aircraft. Another key component of NextGen, System-Wide Information Management/ Network Enabled Operations (SWIM/NEO), is an open architecture network that will provide NAS data to various customers, system tools and applications. NASA and DoD are currently developing a space-based range (SBR) concept that also utilizes GPS, communications satellites and other CNS assets. The future SBR will have very similar utility for space operations as ADS-B and SWIM has for air traffic. Perhaps the FAA, NASA, and DoD should consider developing a common space-based CNS infrastructure to support both aviation and space transportation operations. This paper suggests specific areas of research for developing a CNS infrastructure that can accommodate spacecraft and other new types of vehicles as an integrated part of NextGen.

  16. Viability of a Reusable In-Space Transportation System

    Science.gov (United States)

    Jefferies, Sharon A.; McCleskey, Carey M.; Nufer, Brian M.; Lepsch, Roger A.; Merrill, Raymond G.; North, David D.; Martin, John G.; Komar, David R.

    2015-01-01

    The National Aeronautics and Space Administration (NASA) is currently developing options for an Evolvable Mars Campaign (EMC) that expands human presence from Low Earth Orbit (LEO) into the solar system and to the surface of Mars. The Hybrid in-space transportation architecture is one option being investigated within the EMC. The architecture enables return of the entire in-space propulsion stage and habitat to cis-lunar space after a round trip to Mars. This concept of operations opens the door for a fully reusable Mars transportation system from cis-lunar space to a Mars parking orbit and back. This paper explores the reuse of in-space transportation systems, with a focus on the propulsion systems. It begins by examining why reusability should be pursued and defines reusability in space-flight context. A range of functions and enablers associated with preparing a system for reuse are identified and a vision for reusability is proposed that can be advanced and implemented as new capabilities are developed. Following this, past reusable spacecraft and servicing capabilities, as well as those currently in development are discussed. Using the Hybrid transportation architecture as an example, an assessment of the degree of reusability that can be incorporated into the architecture with current capabilities is provided and areas for development are identified that will enable greater levels of reuse in the future. Implications and implementation challenges specific to the architecture are also presented.

  17. Electric Vehicle Grid Integration | Transportation Research | NREL

    Science.gov (United States)

    Electric Vehicle Grid Integration Electric Vehicle Grid Integration Illustration of a house with a in the garage, is connected via a power cord to a household outlet. A sustainable transportation sustainable transportation technologies to increase the capacity, efficiency, and stability of the grid

  18. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    Science.gov (United States)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  19. Advanced Engineering Environments for Space Transportation System Development

    Science.gov (United States)

    Thomas, L. Dale; Smith, Charles A.; Beveridge, James

    2000-01-01

    There are significant challenges facing today's launch vehicle industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker, all face the developer of a space transportation system. Within NASA, multiple technology development and demonstration projects are underway toward the objectives of safe, reliable, and affordable access to space. New information technologies offer promising opportunities to develop advanced engineering environments to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. At the Marshall Space Flight Center, work has begun on development of an advanced engineering environment specifically to support the design, modeling, and analysis of space transportation systems. This paper will give an overview of the challenges of developing space transportation systems in today's environment and subsequently discuss the advanced engineering environment and its anticipated benefits.

  20. Achievable space elevators for space transportation and starship acceleration

    Science.gov (United States)

    Pearson, Jerome

    1990-04-01

    Space elevator concepts for low-cost space launches are reviewed. Previous concepts suffered from requirements for ultra-high-strength materials, dynamically unstable systems, or from danger of collision with space debris. The use of magnetic grain streams solves these problems. Magnetic grain streams can support short space elevators for lifting payloads cheaply into Earth orbit, overcoming the material strength problem in building space elevators. Alternatively, the stream could support an international spaceport circling the Earth daily tens of miles above the equator, accessible to advanced aircraft. Mars could be equipped with a similar grain stream, using material from its moons Phobos and Deimos. Grain-stream arcs about the sun could be used for fast launches to the outer planets and for accelerating starships to near lightspeed for interstellar reconnaisance. Grain streams are essentially impervious to collisions, and could reduce the cost of space transportation by an order of magnitude.

  1. Modernization of NASA's Johnson Space Center Chamber: A Payload Transport Rail System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    Garcia, Sam; Homan, Jonathan; Speed, John

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the "Great Observatories", scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describe the challenges of developing, integrating and modifying new payload rails capable of transporting payloads within the thermal vacuum chamber up to 65,000 pounds. Ambient and Cryogenic Operations required to configure for testing will be explained. Lastly review historical payload configurations stretching from the Apollo program era to current James Webb Space Telescope testing.

  2. Approach to Integrate Global-Sun Models of Magnetic Flux Emergence and Transport for Space Weather Studies

    Science.gov (United States)

    Mansour, Nagi N.; Wray, Alan A.; Mehrotra, Piyush; Henney, Carl; Arge, Nick; Godinez, H.; Manchester, Ward; Koller, J.; Kosovichev, A.; Scherrer, P.; hide

    2013-01-01

    The Sun lies at the center of space weather and is the source of its variability. The primary input to coronal and solar wind models is the activity of the magnetic field in the solar photosphere. Recent advancements in solar observations and numerical simulations provide a basis for developing physics-based models for the dynamics of the magnetic field from the deep convection zone of the Sun to the corona with the goal of providing robust near real-time boundary conditions at the base of space weather forecast models. The goal is to develop new strategic capabilities that enable characterization and prediction of the magnetic field structure and flow dynamics of the Sun by assimilating data from helioseismology and magnetic field observations into physics-based realistic magnetohydrodynamics (MHD) simulations. The integration of first-principle modeling of solar magnetism and flow dynamics with real-time observational data via advanced data assimilation methods is a new, transformative step in space weather research and prediction. This approach will substantially enhance an existing model of magnetic flux distribution and transport developed by the Air Force Research Lab. The development plan is to use the Space Weather Modeling Framework (SWMF) to develop Coupled Models for Emerging flux Simulations (CMES) that couples three existing models: (1) an MHD formulation with the anelastic approximation to simulate the deep convection zone (FSAM code), (2) an MHD formulation with full compressible Navier-Stokes equations and a detailed description of radiative transfer and thermodynamics to simulate near-surface convection and the photosphere (Stagger code), and (3) an MHD formulation with full, compressible Navier-Stokes equations and an approximate description of radiative transfer and heating to simulate the corona (Module in BATS-R-US). CMES will enable simulations of the emergence of magnetic structures from the deep convection zone to the corona. Finally, a plan

  3. A new type of phase-space path integral

    International Nuclear Information System (INIS)

    Marinov, M.S.

    1991-01-01

    Evolution of Wigner's quasi-distribution of a quantum system is represented by means of a path integral in phase space. Instead of the Hamiltonian action, a new functional is present in the integral, and its extrema in the functional space are also given by the classical trajectories. The phase-space paths appear in the integral with real weights, so complex integrals are not necessary. The semiclassical approximation and some applications are discussed briefly. (orig.)

  4. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  5. Air Traffic Management and Space Transportation - System Wide Information Management and the Integration in European Airspace

    OpenAIRE

    Kaltenhäuser, Sven; Morlang, Frank; Hampe, Jens; Jakobi, Jörn; Schmitt, Dirk-Roger

    2015-01-01

    Space Travel becomes an international business and requires landing opportunities all over the world. The integration of space vehicles in airspace therefore is an increasingly important topic to be considered on an international scale. With the Single European Sky ATM Research Programme (SESAR) preparing the implementation of a new ATM system in Europe, requirements have been defined for Shared and Reference Business Trajectories as well as System Wide Information Management (SWIM). The s...

  6. Reliable Transport over SpaceWire for James Webb Space Telescope (JWST) Focal Plane Electronics (FPE) Network

    Science.gov (United States)

    Rakow, Glenn; Schnurr, Richard; Dailey, Christopher; Shakoorzadeh, Kamdin

    2003-01-01

    combination of requirements necessitates a redundant, fault tolerant, high- speed, low mass, low power network with a low Bit error Rate(1E-9- 1E-12). The ISIM systems team performed many studies of the various network architectures that meeting these requirements. The architecture selected uses the Spacewire protocol, with the addition of a new transport and network layer added to implement end-to-end reliable transport. The network and reliable transport mechanism must be implemented in hardware because of the high average information rate and the restriction on the ability of the detectors to buffer data due to power and size restrictions. This network and transport mechanism was designed to be compatible with existing Spacewire links and routers so that existing equipment and designs may be leveraged upon. The transport layer specification is being coordinated with European Space Agency (ESA), Spacewire Working Group and the Consultative Committee for Space Data System (CCSDS) PlK Standard Onboard Interface (SOIF) panel, with the intent of developing a standard for reliable transport for Spacewire. Changes to the protocol presented are likely since negotiations are ongoing with these groups. A block of RTL VHDL that implements a multi-port Spacewire router with an external user interface will be developed and integrated with an existing Spacewire Link design. The external user interface will be the local interface that sources and sinks packets onto and off of the network (Figure 3). The external user interface implements the network and transport layer and handles acknowledgements and re-tries of packets for reliable transport over the network. Because the design is written in RTL, it may be ported to any technology but will initially be targeted to the new Actel Accelerator series (AX) part. Each link will run at 160 Mbps and the power will be about 0.165 Watt per link worst case in the Actel AX.

  7. Space Transportation Infrastructure Supported By Propellant Depots

    Science.gov (United States)

    Smitherman, David; Woodcock, Gordon

    2012-01-01

    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  8. Space transportation activities in the United States

    Science.gov (United States)

    Gabris, Edward A.

    1994-01-01

    The status of the existing space transportation systems in the U.S. and options for increased capability is being examined in the context of mission requirements, options for new vehicles, cost to operate the existing vehicles, cost to develop new vehicles, and the capabilities and plans of other suppliers. This assessment is addressing the need to build and resupply the space station, to maintain necessary military assets in a rapidly changing world, and to continue a competitive commercial space transportation industry. The Department of Defense (DOD) and NASA each conducted an 'access to space' study using a common mission model but with the emphasis on their unique requirements. Both studies considered three options: maintain and improve the existing capability, build a new launch vehicle using contemporary technology, and build a new launch vehicle using advanced technology. While no decisions have been made on a course of action, it will be influenced by the availability of funds in the U.S. budget, the changing need for military space assets, the increasing competition among space launch suppliers, and the emerging opportunity for an advanced technology, low cost system and international partnerships to develop it.

  9. Is It Worth It? - the Economics of Reusable Space Transportation

    Science.gov (United States)

    Webb, Richard

    2016-01-01

    Over the past several decades billions of dollars have been invested by governments and private companies in the pursuit of lower cost access to space through earth-to-orbit (ETO) space transportation systems. Much of that investment has been focused on the development and operation of various forms of reusable transportation systems. From the Space Shuttle to current efforts by private commercial companies, the overarching belief of those making such investments has been that reusing system elements will be cheaper than utilizing expendable systems that involve throwing away costly engines, avionics, and other hardware with each flight. However, the view that reusable systems are ultimately a "better" approach to providing ETO transportation is not held universally by major stakeholders within the space transportation industry. While the technical feasibility of at least some degree of reusability has been demonstrated, there continues to be a sometimes lively debate over the merits and drawbacks of reusable versus expendable systems from an economic perspective. In summary, is it worth it? Based on our many years of direct involvement with the business aspects of several expendable and reusable transportation systems, it appears to us that much of the discussion surrounding reusability is hindered by a failure to clearly define and understand the financial and other metrics by which the financial "goodness" of a reusable or expandable approach is measured. As stakeholders, the different users and suppliers of space transportation have a varied set of criteria for determining the relative economic viability of alternative strategies, including reusability. Many different metrics have been used to measure the affordability of space transportation, such as dollars per payload pound (kilogram) to orbit, cost per flight, life cycle cost, net present value/internal rate of return, and many others. This paper will examine the key considerations that influence

  10. An assessment of advanced displays and controls technology applicable to future space transportation systems

    Science.gov (United States)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  11. An Integrated Hybrid Transportation Architecture for Human Mars Expeditions

    Science.gov (United States)

    Merrill, Raymond G.; Chai, Patrick R.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture that uses both chemical and electric propulsion systems on the same vehicle to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By applying chemical and electrical propulsion where each is most effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper presents an integrated Hybrid in-space transportation architecture for piloted missions and delivery of cargo. A concept for a Mars campaign including orbital and Mars surface missions is described in detail including a system concept of operations and conceptual design. Specific constraints, margin, and pinch points are identified for the architecture and opportunities for critical path commercial and international collaboration are discussed.

  12. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-10-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  13. University of Tennessee Center for Space Transportation and Applied Research (CSTAR)

    Science.gov (United States)

    1995-01-01

    The Center for Space Transportation and Applied Research had projects with space applications in six major areas: laser materials processing, artificial intelligence/expert systems, space transportation, computational methods, chemical propulsion, and electric propulsion. The closeout status of all these projects is addressed.

  14. Nonlinear transport of accelerator beam phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1995-01-01

    Based on the any order analytical solution of accelerator beam dynamics, the general theory for nonlinear transport of accelerator beam phase space is developed by inverse transformation method. The method is general by itself, and hence can also be applied to the nonlinear transport of various dynamic systems in physics, chemistry and biology

  15. The SIMPSONS project: An integrated Mars transportation system

    Science.gov (United States)

    Kaplan, Matthew; Carlson, Eric; Bradfute, Sherie; Allen, Kent; Duvergne, Francois; Hernandez, Bert; Le, David; Nguyen, Quan; Thornhill, Brett

    In response to the Request for Proposal (RFP) for an integrated transportation system network for an advanced Martian base, Frontier Transportation Systems (FTS) presents the results of the SIMPSONS project (Systems Integration for Mars Planetary Surface Operations Networks). The following topics are included: the project background, vehicle design, future work, conclusions, management status, and cost breakdown. The project focuses solely on the surface-to-surface transportation at an advanced Martian base.

  16. Considerations when analyzing investment in space transportation business ventures

    Science.gov (United States)

    S. Greenberg, Joel

    2000-07-01

    Private sector investment in space transportation, as in most business situations, requires the development of realistic and believable business plans that demonstrate that if an investment is made that there is a reasonable chance that the indicated financial performance will attract the necessary financing. The business plan must also indicate the assumptions upon which the plan rests, and as has become almost second nature to the space transportation industry, the necessary role of the government in risk reduction and/or capital formation [i.e., government actions that are necessary to make the business venture financially attractive]. This paper discusses and describes several factors that must be considered, by both government and industry, when developing a business plan for obtaining financing for space transportation business ventures.

  17. Propulsion/ASME Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1998-01-01

    NASA's Office Of Aeronautics and Space Transportation Technology (OASTT) has establish three major coals. "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center in Huntsville,Ala. focuses on future space transportation technologies under the "Access to Space" pillar. The Advanced Reusable Technologies (ART) Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. The main activity over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the year 2000 decision to determine the path this country will take for Space Shuttle and RLV. In February of this year, additional technology efforts in the reusable technologies were awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion. Aerojet, Boeing-Rocketdyne and Pratt & Whitney were selected for a two-year period to design, build and ground test their RBCC engine concepts. In addition, ASTROX, Pennsylvania State University (PSU) and University of Alabama in Huntsville also conducted supporting activities. The activity included ground testing of components (e.g., injectors, thrusters, ejectors and inlets) and integrated flowpaths. An area that has caused a large amount of difficulty in the testing efforts is the means of initiating the rocket combustion process. All three of the prime contractors above were using silane (SiH4) for ignition of the thrusters. This follows from the successful use of silane in the NASP program for scramjet ignition. However, difficulties were immediately encountered when silane (an 80/20 mixture of hydrogen/silane) was used for rocket

  18. Quadrupole transport experiment with space charge dominated cesium ion beam

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.; Kim, C.; Rosenblum, S.; Tiefenback, M.; Warwick, A.

    1984-08-01

    The purpose of the experiment is to investigate the beam current transport limit in a long quadrupole-focussed transport channel in the space charge dominated region where the space charge defocussing force is almost as large as the average focussing force of the channel

  19. Challenges of Integrating NASA's Space Communications Networks

    Science.gov (United States)

    Reinert, Jessica; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  20. Challenges of Integrating NASAs Space Communication Networks

    Science.gov (United States)

    Reinert, Jessica M.; Barnes, Patrick

    2013-01-01

    The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a

  1. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  2. A user interface development tool for space science systems Transportable Applications Environment (TAE) Plus

    Science.gov (United States)

    Szczur, Martha R.

    1990-01-01

    The Transportable Applications Environment Plus (TAE PLUS), developed at NASA's Goddard Space Flight Center, is a portable What You See Is What You Get (WYSIWYG) user interface development and management system. Its primary objective is to provide an integrated software environment that allows interactive prototyping and development that of user interfaces, as well as management of the user interface within the operational domain. Although TAE Plus is applicable to many types of applications, its focus is supporting user interfaces for space applications. This paper discusses what TAE Plus provides and how the implementation has utilized state-of-the-art technologies within graphic workstations, windowing systems and object-oriented programming languages.

  3. Indian space transportation programme: Near term outlook and issues for commercialisation

    Science.gov (United States)

    Nagendra, Narayan Prasad

    2015-05-01

    The Indian space transportation programme has grown from strength to strength with the launching of sounding rockets in the 60's to the development of heavy lift vehicles for telecommunication satellites in the present decade. With the growing market confidence in Indian Space Research Organisation's ability to reliably deliver payloads to low Earth orbit with its Polar Satellite Launch Vehicle, there is an inherent opportunity for India to cater to the commercial market. The present work assesses the current launch capacity of India in retrospect of international launches and provides India's outlook for the space transportation in the current decade. Launch capacity correlation with the requirements within the Indian space programme as well as the current space transportation infrastructure have been considered to identify bottlenecks in catering to the current national requirements alongside securing a greater market share in the international launch market. The state of commercialisation of launch vehicle development has been presented to provide an overview of policy and organisational issues for commercialisation of space transportation in India.

  4. Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.

    Science.gov (United States)

    Gavazza, Sergio

    Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods

  5. Space Transportation System Availability Relationships to Life Cycle Cost

    Science.gov (United States)

    Rhodes, Russel E.; Donahue, Benjamin B.; Chen, Timothy T.

    2009-01-01

    provides the decision makers with the understanding necessary to place constraints on the design definition. This methodology for the major drivers will determine the inherent availability, safety, reliability, maintainability, and the life cycle cost of the fielded system. This methodology will focus on the achievement of an affordable, responsive space transportation system. It is the intent of this paper to not only provide the visibility of the relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also to provide the capability to bound the variables, thus providing the insight required to control the system's engineering solution. An example of this visibility is the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also, selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement, or require accepting a larger parts count with the resulting higher individual part reliability requirements. This paper will provide an understanding of the relationship of mean repair time (mean downtime) to maintainability (accessibility for repair), and both mean time between failure (reliability of hardware) and the system inherent availability.

  6. Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions

    Science.gov (United States)

    Caruso, Pamela W.

    2009-01-01

    This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.

  7. Path integration on space times with symmetry

    International Nuclear Information System (INIS)

    Low, S.G.

    1985-01-01

    Path integration on space times with symmetry is investigated using a definition of path integration of Gaussian integrators. Gaussian integrators, systematically developed using the theory of projective distributions, may be defined in terms of a Jacobi operator Green function. This definition of the path integral yields a semiclassical expansion of the propagator which is valid on caustics. The semiclassical approximation to the free particle propagator on symmetric and reductive homogeneous spaces is computed in terms of the complete solution of the Jacobi equation. The results are used to test the validity of using the Schwinger-DeWitt transform to compute an approximation to the coincidence limit of a field theory Green function from a WKB propagator. The method is found not to be valid except for certain special cases. These cases include manifolds constructed from the direct product of flat space and group manifolds, on which the free particle WKB approximation is exact and two sphere. The multiple geodesic contribution to 2 > on Schwarzschild in the neighborhood of rho = 3M is computed using the transform

  8. Integrating passenger and freight transportation : model formulation and insights

    NARCIS (Netherlands)

    Ghilas, V.; Demir, E.; Woensel, van T.

    2013-01-01

    Integrating passenger and freight ows creates attractive business opportunities because the same transportation needs can be met with fewer vehicles and emissions. This paper seeks an integrated solution for the transportation of passenger and freight simultaneously, so that fewer vehicles are

  9. Future space transportation systems systems analysis study, phase 1 technical report

    Science.gov (United States)

    1975-01-01

    The requirements of projected space programs (1985-1995) for transportation vehicles more advanced than the space shuttle are discussed. Several future program options are described and their transportation needs are analyzed. Alternative systems approaches to meeting these needs are presented.

  10. Investments and Operation in an Integrated Power and Transport System

    DEFF Research Database (Denmark)

    Juul, Nina; Boomsma, Trine Krogh

    2013-01-01

    This chapter analyses an integrated power and road transport system. For analysing the influences of including passenger road transport in the energy system, a road transport model is developed. Based on this model, the benefits of integration of the two systems and using electric-drive vehicles ...

  11. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Greenspan, E.

    1976-01-01

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  12. Continuous imaging space in three-dimensional integral imaging

    International Nuclear Information System (INIS)

    Zhang Lei; Yang Yong; Wang Jin-Gang; Zhao Xing; Fang Zhi-Liang; Yuan Xiao-Cong

    2013-01-01

    We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Integrated Systems Health Management for Space Exploration

    Science.gov (United States)

    Uckun, Serdar

    2005-01-01

    Integrated Systems Health Management (ISHM) is a system engineering discipline that addresses the design, development, operation, and lifecycle management of components, subsystems, vehicles, and other operational systems with the purpose of maintaining nominal system behavior and function and assuring mission safety and effectiveness under off-nominal conditions. NASA missions are often conducted in extreme, unfamiliar environments of space, using unique experimental spacecraft. In these environments, off-nominal conditions can develop with the potential to rapidly escalate into mission- or life-threatening situations. Further, the high visibility of NASA missions means they are always characterized by extraordinary attention to safety. ISHM is a critical element of risk mitigation, mission safety, and mission assurance for exploration. ISHM enables: In-space maintenance and repair; a) Autonomous (and automated) launch abort and crew escape capability; b) Efficient testing and checkout of ground and flight systems; c) Monitoring and trending of ground and flight system operations and performance; d) Enhanced situational awareness and control for ground personnel and crew; e) Vehicle autonomy (self-sufficiency) in responding to off-nominal conditions during long-duration and distant exploration missions; f) In-space maintenance and repair; and g) Efficient ground processing of reusable systems. ISHM concepts and technologies may be applied to any complex engineered system such as transportation systems, orbital or planetary habitats, observatories, command and control systems, life support systems, safety-critical software, and even the health of flight crews. As an overarching design and operational principle implemented at the system-of-systems level, ISHM holds substantial promise in terms of affordability, safety, reliability, and effectiveness of space exploration missions.

  14. Transport regimes spanning magnetization-coupling phase space

    Science.gov (United States)

    Baalrud, Scott D.; Daligault, Jérôme

    2017-10-01

    The manner in which transport properties vary over the entire parameter-space of coupling and magnetization strength is explored. Four regimes are identified based on the relative size of the gyroradius compared to other fundamental length scales: the collision mean free path, Debye length, distance of closest approach, and interparticle spacing. Molecular dynamics simulations of self-diffusion and temperature anisotropy relaxation spanning the parameter space are found to agree well with the predicted boundaries. Comparison with existing theories reveals regimes where they succeed, where they fail, and where no theory has yet been developed.

  15. National Space Transportation System (NSTS) technology needs

    Science.gov (United States)

    Winterhalter, David L.; Ulrich, Kimberly K.

    1990-01-01

    The National Space Transportation System (NSTS) is one of the Nation's most valuable resources, providing manned transportation to and from space in support of payloads and scientific research. The NSTS program is currently faced with the problem of hardware obsolescence, which could result in unacceptable schedule and cost impacts to the flight program. Obsolescence problems occur because certain components are no longer being manufactured or repair turnaround time is excessive. In order to achieve a long-term, reliable transportation system that can support manned access to space through 2010 and beyond, NASA must develop a strategic plan for a phased implementation of enhancements which will satisfy this long-term goal. The NSTS program has initiated the Assured Shuttle Availability (ASA) project with the following objectives: eliminate hardware obsolescence in critical areas, increase reliability and safety of the vehicle, decrease operational costs and turnaround time, and improve operational capability. The strategy for ASA will be to first meet the mandatory needs - keep the Shuttle flying. Non-mandatory changes that will improve operational capability and enhance performance will then be considered if funding is adequate. Upgrade packages should be developed to install within designated inspection periods, grouped in a systematic approach to reduce cost and schedule impacts, and allow the capability to provide a Block 2 Shuttle (Phase 3).

  16. Engineering America's Current and Future Space Transportation Systems: 50 Years of Systems Engineering Innovation for Sustainable Exploration

    Science.gov (United States)

    Dmbacher, Daniel L.; Lyles, Garry M.; McConnaughey, Paul

    2008-01-01

    Over the past 50 years, the National Aeronautics and Space Administration (NASA) has delivered space transportation solutions for America's complex missions, ranging from scientific payloads that expand knowledge, such as the Hubble Space Telescope, to astronauts and lunar rovers destined for voyages to the Moon. Currently, the venerable Space Shuttle, which has been in service since 1981, provides the United States' (U.S.) capability for both crew and heavy cargo to low-Earth orbit to' construct the International Space Station, before the Shuttle is retired in 2010. In the next decade, NASA will replace this system with a duo of launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle (Figure 1). The goals for this new system include increased safety and reliability coupled with lower operations costs that promote sustainable space exploration for decades to come. The Ares I will loft the Orion Crew Exploration Vehicle, while the heavy-lift Ares V will carry the Altair Lunar Lander and the equipment and supplies needed to construct a lunar outpost for a new generation of human and robotic space pioneers. This paper will provide details of the in-house systems engineering and vehicle integration work now being performed for the Ares I and planned for the Ares V. It will give an overview of the Ares I system-level test activities, such as the ground vibration testing that will be conducted in the Marshall Center's Dynamic Test Stand to verify the integrated vehicle stack's structural integrity and to validate computer modeling and simulation (Figure 2), as well as the main propulsion test article analysis to be conducted in the Static Test Stand. These activities also will help prove and refine mission concepts of operation, while supporting the spectrum of design and development work being performed by Marshall's Engineering Directorate, ranging from launch vehicles and lunar rovers to scientific spacecraft and associated experiments

  17. Integral management of hazardous materials transport

    International Nuclear Information System (INIS)

    Moran, M.

    2002-01-01

    As a result of outsourcing transport operations and complementary services on the part of the producers and shippers, there is a growing demand for global services that integrate the whole external logistics value chain, the latter being understood to signify the process that includes the storage, transport (monomodal or bi-multi-modal) and delivery to destination. This circumstance has obliged transport firms to undertake a process of internal transformation: from offering an activity purely of transport to becoming logistics operators. Express Truck, S. a. (hereinafter ETSA) could not ignore this market requirement. We will explain the evolutionary process of ETSA in this sense. (Author)

  18. METHODS OF INTEGRATED OPTIMIZATION MAGLEV TRANSPORT SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. Lasher

    2013-09-01

    Full Text Available Purpose. To demonstrate feasibility of the proposed integrated optimization of various MTS parameters to reduce capital investments as well as decrease any operational and maintenance expense. This will make use of MTS reasonable. At present, the Maglev Transport Systems (MTS for High-Speed Ground Transportation (HSGT almost do not apply. Significant capital investments, high operational and maintenance costs are the main reasons why Maglev Transport Systems (MTS are hardly currently used for the High-Speed Ground Transportation (HSGT. Therefore, this article justifies use of Theory of Complex Optimization of Transport (TCOT, developed by one of the co-authors, to reduce MTS costs. Methodology. According to TCOT, authors developed an abstract model of the generalized transport system (AMSTG. This model mathematically determines the optimal balance between all components of the system and thus provides the ultimate adaptation of any transport systems to the conditions of its application. To identify areas for effective use of MTS, by TCOT, the authors developed a dynamic model of distribution and expansion of spheres of effective use of transport systems (DMRRSEPTS. Based on this model, the most efficient transport system was selected for each individual track. The main estimated criterion at determination of efficiency of application of MTS is the size of the specific transportation tariff received from calculation of payback of total given expenses to a standard payback period or term of granting the credit. Findings. The completed multiple calculations of four types of MTS: TRANSRAPID, MLX01, TRANSMAG and TRANSPROGRESS demonstrated efficiency of the integrated optimization of the parameters of such systems. This research made possible expending the scope of effective usage of MTS in about 2 times. The achieved results were presented at many international conferences in Germany, Switzerland, United States, China, Ukraine, etc. Using MTS as an

  19. 76 FR 15039 - Commercial Space Transportation Grants Program

    Science.gov (United States)

    2011-03-18

    ... infrastructure system, which supports the National Space Policy and Congressional intent. Begun in 2010, the... funding for Commercial Space Transportation infrastructure projects. It must be noted that with the FY... deadline, pursuant to 49 United States Code (U.S.C.) Chapter 703 (to be recodified at 51 U.S.C. Chapter 511...

  20. Improved method for solving the neutron transport problem by discretization of space and energy variables

    International Nuclear Information System (INIS)

    Bosevski, T.

    1971-01-01

    The polynomial interpolation of neutron flux between the chosen space and energy variables enabled transformation of the integral transport equation into a system of linear equations with constant coefficients. Solutions of this system are the needed values of flux for chosen values of space and energy variables. The proposed improved method for solving the neutron transport problem including the mathematical formalism is simple and efficient since the number of needed input data is decreased both in treating the spatial and energy variables. Mathematical method based on this approach gives more stable solutions with significantly decreased probability of numerical errors. Computer code based on the proposed method was used for calculations of one heavy water and one light water reactor cell, and the results were compared to results of other very precise calculations. The proposed method was better concerning convergence rate, decreased computing time and needed computer memory. Discretization of variables enabled direct comparison of theoretical and experimental results

  1. Integral-Type Operators from Bloch-Type Spaces to QK Spaces

    Directory of Open Access Journals (Sweden)

    Stevo Stević

    2011-01-01

    Full Text Available The boundedness and compactness of the integral-type operator Iφ,g(nf(z=∫0zf(n(φ(ζg(ζdζ, where n∈N0, φ is a holomorphic self-map of the unit disk D, and g is a holomorphic function on D, from α-Bloch spaces to QK spaces are characterized.

  2. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  3. Mathematical methods linear algebra normed spaces distributions integration

    CERN Document Server

    Korevaar, Jacob

    1968-01-01

    Mathematical Methods, Volume I: Linear Algebra, Normed Spaces, Distributions, Integration focuses on advanced mathematical tools used in applications and the basic concepts of algebra, normed spaces, integration, and distributions.The publication first offers information on algebraic theory of vector spaces and introduction to functional analysis. Discussions focus on linear transformations and functionals, rectangular matrices, systems of linear equations, eigenvalue problems, use of eigenvectors and generalized eigenvectors in the representation of linear operators, metric and normed vector

  4. Integration in Orlicz-Bochner Spaces

    Directory of Open Access Journals (Sweden)

    Marian Nowak

    2018-01-01

    Full Text Available Let (Ω,Σ,μ be a complete σ-finite measure space, φ be a Young function, and X and Y be Banach spaces. Let Lφ(X denote the Orlicz-Bochner space, and Tφ∧ denote the finest Lebesgue topology on Lφ(X. We study the problem of integral representation of (Tφ∧,·Y-continuous linear operators T:Lφ(X→Y with respect to the representing operator-valued measures. The relationships between (Tφ∧,·Y-continuous linear operators T:Lφ(X→Y and the topological properties of their representing operator measures are established.

  5. Planning for Integrated Transport in Indonesia: Some Lessons from the UK’s Experience

    Directory of Open Access Journals (Sweden)

    Yos Sunitiyoso

    2012-01-01

    Full Text Available Traffic congestion has been a major problem in many cities in Indonesia, thus requiring abetter transport policy. Many developed countries, including the United Kingdom, has beenimplementing the integrated transport policy to replace traditional transport policy that focuson only building roads to anticipate traffic demand. This paper provides a highlight on theimplementation of integrated transport policy in the United Kingdom. Some key issues thatcan be learnt by the Indonesian government from their experience are discussed. This includesthe integration within and between all types of transport, integration with land use planning,integration with environment policy and integration with policies for education, health andwealth creations. In the implementation, the policy requires continuity and stability inorganization and politics, coordination in local transport plans, more devolution on powerand revenue funding from the government in addition to capital funding.Key words: traffic congestion, integrated transport policy

  6. Final report of the SPS space transportation workshop

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    After a brief description of space power system concepts and the current status of the SPS program, issues relevant to earth-surface-to-low-earth-orbit (ESLEO) and orbit-to-orbit transport are discussed. For ESLEO, vehicle concepts include shuttle transportation systems, heavy lift launch vehicles, and single-stage-to-orbit vehicles. Orbit transfer vehicle missions include transport of cargo and the SPS module from low earth orbit to geosynchronous earth orbit as well as personnel transport. Vehicles discussed for such missions include chemical rocket orbital transfer vehicles, and electric orbital transfer vehicles. Further discussions include SPS station-keeping and attitude control, intra-orbit transport, and advanced propulsion and vehicle concepts. (LEW)

  7. Integrating Efficiency of Industry Processes and Practices Alongside Technology Effectiveness in Space Transportation Cost Modeling and Analysis

    Science.gov (United States)

    Zapata, Edgar

    2012-01-01

    This paper presents past and current work in dealing with indirect industry and NASA costs when providing cost estimation or analysis for NASA projects and programs. Indirect costs, when defined as those costs in a project removed from the actual hardware or software hands-on labor; makes up most of the costs of today's complex large scale NASA space/industry projects. This appears to be the case across phases from research into development into production and into the operation of the system. Space transportation is the case of interest here. Modeling and cost estimation as a process rather than a product will be emphasized. Analysis as a series of belief systems in play among decision makers and decision factors will also be emphasized to provide context.

  8. Finite-difference solution of the space-angle-lethargy-dependent slowing-down transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Matausek, M V [Boris Kidric Vinca Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1972-07-01

    A procedure has been developed for solving the slowing-down transport equation for a cylindrically symmetric reactor system. The anisotropy of the resonance neutron flux is treated by the spherical harmonics formalism, which reduces the space-angle-Iethargy-dependent transport equation to a matrix integro-differential equation in space and lethargy. Replacing further the lethargy transfer integral by a finite-difference form, a set of matrix ordinary differential equations is obtained, with lethargy-and space dependent coefficients. If the lethargy pivotal points are chosen dense enough so that the difference correction term can be ignored, this set assumes a lower block triangular form and can be solved directly by forward block substitution. As in each step of the finite-difference procedure a boundary value problem has to be solved for a non-homogeneous system of ordinary differential equations with space-dependent coefficients, application of any standard numerical procedure, for example, the finite-difference method or the method of adjoint equations, is too cumbersome and would make the whole procedure practically inapplicable. A simple and efficient approximation is proposed here, allowing analytical solution for the space dependence of the spherical-harmonics flux moments, and hence the derivation of the recurrence relations between the flux moments at successive lethargy pivotal points. According to the procedure indicated above a computer code has been developed for the CDC -3600 computer, which uses the KEDAK nuclear data file. The space and lethargy distribution of the resonance neutrons can be computed in such a detailed fashion as the neutron cross-sections are known for the reactor materials considered. The computing time is relatively short so that the code can be efficiently used, either autonomously, or as part of some complex modular scheme. Typical results will be presented and discussed in order to prove and illustrate the applicability of the

  9. Research on the Special Railway Intelligence Transportation Hierarchy and System Integration Methodology

    Directory of Open Access Journals (Sweden)

    Meng-Jie WANG

    2013-05-01

    Full Text Available Following the rapid development of information technology in the field of railway transportation, the problems of establishing a digital, integrated and intelligent special railway system need to be solved immediately. This paper designs and implements the intelligent transportation information system based on the unique pattern of transportation organization, the characteristics of transportation operations and the workflow of special railway. Through the detailed analysis of system architecture and framework design, the main subsystems and the internal comprehensive integrated principle, business system from a system integration perspective of the special railway is optimized, which can be able to realize the integration of all kinds of information resources. The implementation of integration and the special railway intelligent system is a great change in terms of maximizing transportation capacity, improving efficiency and guaranteeing the safety of special railway transportation.

  10. Space transportation. [user needs met by information derived from satellites and the interface with space transportation systems

    Science.gov (United States)

    1975-01-01

    User-oriented panels were formed to examine practical applications of information or services derived from earth orbiting satellites. Topics discussed include: weather and climate; uses of communication; land use planning; agriculture, forest, and range; inland water resources; retractable resources; environmental quality; marine and maritime uses; and materials processing in space. Emphasis was placed on the interface of the space transportation system (STS) with the applications envisioned by the user panels. User requirements were compared with expected STS capabilities in terms of availability, carrying payload to orbit, and estimated costs per launch. Conclusions and recommendations were reported.

  11. Optimal solution of full fuzzy transportation problems using total integral ranking

    Science.gov (United States)

    Sam’an, M.; Farikhin; Hariyanto, S.; Surarso, B.

    2018-03-01

    Full fuzzy transportation problem (FFTP) is a transportation problem where transport costs, demand, supply and decision variables are expressed in form of fuzzy numbers. To solve fuzzy transportation problem, fuzzy number parameter must be converted to a crisp number called defuzzyfication method. In this new total integral ranking method with fuzzy numbers from conversion of trapezoidal fuzzy numbers to hexagonal fuzzy numbers obtained result of consistency defuzzyfication on symmetrical fuzzy hexagonal and non symmetrical type 2 numbers with fuzzy triangular numbers. To calculate of optimum solution FTP used fuzzy transportation algorithm with least cost method. From this optimum solution, it is found that use of fuzzy number form total integral ranking with index of optimism gives different optimum value. In addition, total integral ranking value using hexagonal fuzzy numbers has an optimal value better than the total integral ranking value using trapezoidal fuzzy numbers.

  12. Controlling Urban Sprawl with Integrated Approach of Space-Transport Development Strategies

    NARCIS (Netherlands)

    Ambarwati, L.; Verhaeghe, R.; Pel, A.J.; Van Arem, B.

    2014-01-01

    Urban sprawl phenomenon has been a huge issue since 20th century characterized by a rapid and unbalanced settlement development with transportation network particularly in a suburban area. The improvement of public transport system is a major requirement to minimize urban sprawl. Academic

  13. Longitudinal and transverse space charge limitations on transport of maximum power beams

    International Nuclear Information System (INIS)

    Khoe, T.K.; Martin, R.L.

    1977-01-01

    The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams

  14. 'Complexity' and anomalous transport in space plasmas

    International Nuclear Information System (INIS)

    Chang, Tom; Wu Chengchin

    2002-01-01

    'Complexity' has become a hot topic in nearly every field of modern physics. Space plasma is of no exception. In this paper, it is demonstrated that the sporadic and localized interactions of magnetic coherent structures are the origin of 'complexity' in space plasmas. The intermittent localized interactions, which generate the anomalous diffusion, transport, and evolution of the macroscopic state variables of the overall dynamical system, may be modeled by a triggered (fast) localized chaotic growth equation of a set of relevant order parameters. Such processes would generally pave the way for the global system to evolve into a 'complex' state of long-ranged interactions of fluctuations, displaying the phenomenon of forced and/or self-organized criticality. An example of such type of anomalous transport and evolution in a sheared magnetic field is provided via two-dimensional magnetohydrodynamic simulations. The coarse-grained dissipation due to the intermittent triggered interactions among the magnetic coherent structures induces a 'fluctuation-induced nonlinear instability' that reconfigures the sheared magnetic field into an X-point magnetic geometry (in the mean field sense), leading to the anomalous acceleration of the magnetic coherent structures. A phenomenon akin to such type of anomalous transport and acceleration, the so-called bursty bulk flows, has been commonly observed in the plasma sheet of the Earth's magnetotail

  15. Space Transportation and the Computer Industry: Learning from the Past

    Science.gov (United States)

    Merriam, M. L.; Rasky, D.

    2002-01-01

    Since the space shuttle began flying in 1981, NASA has made a number of attempts to advance the state of the art in space transportation. In spite of billions of dollars invested, and several concerted attempts, no replacement for the shuttle is expected before 2010. Furthermore, the cost of access to space has dropped very slowly over the last two decades. On the other hand, the same two decades have seen dramatic progress in the computer industry. Computational speeds have increased by about a factor of 1000 and available memory, disk space, and network bandwidth has seen similar increases. At the same time, the cost of computing has dropped by about a factor of 10000. Is the space transportation problem simply harder? Or is there something to be learned from the computer industry? In looking for the answers, this paper reviews the early history of NASA's experience with supercomputers and NASA's visionary course change in supercomputer procurement strategy.

  16. Economic Analysis on the Space Transportation Architecture Study (STAS) NASA Team

    Science.gov (United States)

    Shaw, Eric J.

    1999-01-01

    The National Aeronautics and Space Administration (NASA) performed the Space Transportation Architecture Study (STAS) to provide information to support end-of-the-decade decisions on possible near-term US Government (USG) investments in space transportation. To gain a clearer understanding of the costs and benefits of the broadest range of possible space transportation options, six teams, five from aerospace industry companies and one internal to NASA, were tasked to answer three primary questions: a) If the Space Shuttle system should be replaced; b) If so, when the replacement should take place and how the transition should be implemented; and c) If not, what is the upgrade strategy to continue safe and affordable flight of the Space Shuttle beyond 2010. The overall goal of the Study was "to develop investment options to be considered by the Administration for the President's FY2001 budget to meet NASA's future human space flight requirements with significant reductions in costs." This emphasis on government investment, coupled with the participation by commercial f'trms, required an unprecedented level of economic analysis of costs and benefits from both industry and government viewpoints. This paper will discuss the economic and market models developed by the in-house NASA Team to analyze space transportation architectures, the results of those analyses, and how those results were reflected in the conclusions and recommendations of the STAS NASA Team. Copyright 1999 by the American Institute of Aeronautics and Astronautics, Inc. No copyright is asserted in the United States under Title 17, U.$. Code. The U.S. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental purposes. All other rights are reserved by the copyright owner.

  17. Application of space-angle synthesis to two-dimensional neutral-particle transport problems of weapon physics

    International Nuclear Information System (INIS)

    Roberds, R.M.

    1975-01-01

    A space-angle synthesis (SAS) method has been developed for treating the steady-state, two-dimensional transport of neutrons and gamma rays from a point source of simulated nuclear weapon radiation in air. The method was validated by applying it to the problem of neutron transport from a point source in air over a ground interface, and then comparing the results to those obtained by DOT, a state-of-the-art, discrete-ordinates code. In the SAS method, the energy dependence of the Boltzmann transport equation was treated in the standard multigroup manner. The angular dependence was treated by expanding the flux in specially tailored trial functions and applying the method of weighted residuals which analytically integrated the transport equation over all angles. The weighted-residual approach was analogous to the conventional spherical-harmonics (P/sub N/) method with the exception that the tailored expansion allowed for more rapid convergence than a spherical-harmonics P 1 expansion and resulted in a greater degree of accuracy. The trial functions used in the expansion were odd and even combinations of selected trial solutions, the trial solutions being shaped ellipsoids which approximated the angular distribution of the neutron flux in one-dimensional space. The parameters which described the shape of the ellipsoid varied with energy group and the spatial medium, only, and were obtained from a one-dimensional discrete-ordinates calculation. Thus, approximate transport solutions were made available for all two-dimensional problems of a certain class by using tabulated parameters obtained from a single, one-dimensional calculation

  18. Vertical integration from the large Hilbert space

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian

    2017-12-01

    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  19. An introduction to Space Weather Integrated Modeling

    Science.gov (United States)

    Zhong, D.; Feng, X.

    2012-12-01

    The need for a software toolkit that integrates space weather models and data is one of many challenges we are facing with when applying the models to space weather forecasting. To meet this challenge, we have developed Space Weather Integrated Modeling (SWIM) that is capable of analysis and visualizations of the results from a diverse set of space weather models. SWIM has a modular design and is written in Python, by using NumPy, matplotlib, and the Visualization ToolKit (VTK). SWIM provides data management module to read a variety of spacecraft data products and a specific data format of Solar-Interplanetary Conservation Element/Solution Element MHD model (SIP-CESE MHD model) for the study of solar-terrestrial phenomena. Data analysis, visualization and graphic user interface modules are also presented in a user-friendly way to run the integrated models and visualize the 2-D and 3-D data sets interactively. With these tools we can locally or remotely analysis the model result rapidly, such as extraction of data on specific location in time-sequence data sets, plotting interplanetary magnetic field lines, multi-slicing of solar wind speed, volume rendering of solar wind density, animation of time-sequence data sets, comparing between model result and observational data. To speed-up the analysis, an in-situ visualization interface is used to support visualizing the data 'on-the-fly'. We also modified some critical time-consuming analysis and visualization methods with the aid of GPU and multi-core CPU. We have used this tool to visualize the data of SIP-CESE MHD model in real time, and integrated the Database Model of shock arrival, Shock Propagation Model, Dst forecasting model and SIP-CESE MHD model developed by SIGMA Weather Group at State Key Laboratory of Space Weather/CAS.

  20. Validation of comprehensive space radiation transport code

    International Nuclear Information System (INIS)

    Shinn, J.L.; Simonsen, L.C.; Cucinotta, F.A.

    1998-01-01

    The HZETRN code has been developed over the past decade to evaluate the local radiation fields within sensitive materials on spacecraft in the space environment. Most of the more important nuclear and atomic processes are now modeled and evaluation within a complex spacecraft geometry with differing material components, including transition effects across boundaries of dissimilar materials, are included. The atomic/nuclear database and transport procedures have received limited validation in laboratory testing with high energy ion beams. The codes have been applied in design of the SAGE-III instrument resulting in material changes to control injurious neutron production, in the study of the Space Shuttle single event upsets, and in validation with space measurements (particle telescopes, tissue equivalent proportional counters, CR-39) on Shuttle and Mir. The present paper reviews the code development and presents recent results in laboratory and space flight validation

  1. Normalizations of Eisenstein integrals for reductive symmetric spaces

    NARCIS (Netherlands)

    van den Ban, E.P.; Kuit, Job

    2017-01-01

    We construct minimal Eisenstein integrals for a reductive symmetric space G/H as matrix coefficients of the minimal principal series of G. The Eisenstein integrals thus obtained include those from the \\sigma-minimal principal series. In addition, we obtain related Eisenstein integrals, but with

  2. Lunar transportation scenarios utilising the Space Elevator.

    Science.gov (United States)

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. c2005 Elsevier Ltd. All rights reserved.

  3. Lunar transportation scenarios utilising the Space Elevator

    Science.gov (United States)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  4. Integrated Transport Planning Framework Involving Combined Utility Regret Approach

    DEFF Research Database (Denmark)

    Wang, Yang; Monzon, Andres; Di Ciommo, Floridea

    2014-01-01

    Sustainable transport planning requires an integrated approach involving strategic planning, impact analysis, and multicriteria evaluation. This study aimed at relaxing the utility-based decision-making assumption by newly embedding anticipated-regret and combined utility regret decision mechanisms...... in a framework for integrated transport planning. The framework consisted of a two-round Delphi survey, integrated land use and transport model for Madrid, and multicriteria analysis. Results show that (a) the regret-based ranking has a similar mean but larger variance than the utility-based ranking does, (b......) the least-regret scenario forms a compromise between the desired and the expected scenarios, (c) the least-regret scenario can lead to higher user benefits in the short term and lower user benefits in the long term, (d) the utility-based, the regret-based, and the combined utility- and regret...

  5. Continuous improvement of the BNFL transport integrated management system

    International Nuclear Information System (INIS)

    Hale, J.A.

    1998-01-01

    The integrated Management System of BNFL Transport and Pacific Nuclear Transport Limited (PNTL) is subject to continuous improvement by the application of established improvement techniques adopted by BNFL. The technique currently being used is the application of a Total Quality Management (TQM) philosophy, involving the identification of key processes, benchmarking against existing measures, initiating various improvement projects and applying process changes within the Company. The measurement technique being used is based upon the European Foundation for Quality Management Model (EFQM). A major initiative was started in 1996 to include the requirements of the Environmental Management Systems standard ISO 14001 within the existing integrated management system. This resulted in additional activities added to the system, modification to some existing activities and additional training for personnel. The system was audited by a third party certification organisation, Lloyds Register Quality Assurance (LRQA), during 1997. This paper describes the arrangements to review and update the integrated management system of BNFL Transport and PNTL to include the requirements of the environmental standard ISO 14001 and it also discusses the continuous improvement process adopted by BNFL Transport. (authors)

  6. Intermodal transport as an integral part of logistics system

    Directory of Open Access Journals (Sweden)

    Agnieszka Bitkowska

    2016-06-01

    Full Text Available The experience of companies that are successful in the carriage of goods prove that intermodal transport is now a major factor in determining the success of logistics system. A modern approach to the transport is based on intermodal transport. The article is based on the method of external observation. It presents the essence of intermodal transport and its benefits. It specifies transportation as an integral part of logistics system.

  7. 14 CFR 401.3 - The Associate Administrator for Commercial Space Transportation.

    Science.gov (United States)

    2010-01-01

    ... space transportation by the United States private sector. [Doc. No. FAA-2006-24197, 72 FR 17016, Apr. 6... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL ORGANIZATION AND DEFINITIONS § 401.3 The...

  8. User community development for the space transportation system/Skylab

    Science.gov (United States)

    Archer, J. L.; Beauchamp, N. A.

    1974-01-01

    The New User Function plan for identifying beneficial uses of space is described. Critical issues such as funding, manpower, and protection of user proprietary rights are discussed along with common barriers which impede the development of a user community. Studies for developing methodologies of identifying new users and uses of the space transportation system are included.

  9. Integrated policy analysis of sustainable urban and transportation development

    NARCIS (Netherlands)

    Zhang, J.; Feng, T.; Fujiwara, A.; Fujiwara, A.; Zhang, Junyi

    2013-01-01

    Sustainable urban and transportation development needs to balance economic sustainability, environmental sustainability, and social equity. This study conducts integrated policy analyses by explicitly incorporating these sustainability goals and optimizing the performance of transportation networks.

  10. NASA's Commercial Crew Program, The Next Step in U.S. Space Transportation

    Science.gov (United States)

    Mango, Edward J.; Thomas, Rayelle E.

    2013-01-01

    The Commercial Crew Program (CCP) is leading NASA's efforts to develop the next U.S. capability for crew transportation and rescue services to and from the International Space Station (ISS) by the mid-decade timeframe. The outcome of this capability is expected to stimulate and expand the U.S. space transportation industry. NASA is relying on its decades of human space flight experience to certify U.S. crewed vehicles to the ISS and is doing so in a two phase certification approach. NASA Certification will cover all aspects of a crew transportation system, including development, test, evaluation, and verification; program management and control; flight readiness certification; launch, landing, recovery, and mission operations; sustaining engineering and maintenance/upgrades. To ensure NASA crew safety, NASA Certification will validate technical and performance requirements, verify compliance with NASA requirements, validate the crew transportation system operates in appropriate environments, and quantify residual risks.

  11. The YES2 Experience : Towards Sustainable Space Transportation using Tethers

    NARCIS (Netherlands)

    Van der Heide, E.J.; Kruijff, M.; Ockels, W.J.

    2008-01-01

    Today there is no common vision on sustainable space transportation. Rockets expel gasses and solid rockets often small particles. These have negative effect on the environment, but it is not understood to what extent. With ever growing demand for access to space, sustainable technology developments

  12. Integrated heat transport simulation of high ion temperature plasma of LHD

    International Nuclear Information System (INIS)

    Murakami, S.; Yamaguchi, H.; Sakai, A.

    2014-10-01

    A first dynamical simulation of high ion temperature plasma with carbon pellet injection of LHD is performed by the integrated simulation GNET-TD + TASK3D. NBI heating deposition of time evolving plasma is evaluated by the 5D drift kinetic equation solver, GNET-TD and the heat transport of multi-ion species plasma (e, H, He, C) is studied by the integrated transport simulation code, TASK3D. Achievement of high ion temperature plasma is attributed to the 1) increase of heating power per ion due to the temporal increase of effective charge, 2) reduction of effective neoclassical transport with impurities, 3) reduction of turbulence transport. The reduction of turbulence transport is most significant contribution to achieve the high ion temperature and the reduction of the turbulent transport from the L-mode plasma (normal hydrogen plasma) is evaluated to be a factor about five by using integrated heat transport simulation code. Applying the Z effective dependent turbulent reduction model we obtain a similar time behavior of ion temperature after the C pellet injection with the experimental results. (author)

  13. A development of logistics management models for the Space Transportation System

    Science.gov (United States)

    Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.

    1983-01-01

    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.

  14. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russell E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  15. Space Transportation System Availability Requirement and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russel E.; Adams, Timothy C.; McCleskey, Carey M.

    2008-01-01

    It is important that engineering and management accept the need for an availability requirement that is derived with its influencing attributes. It is the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability. Also important to provide bounds of the variables providing engineering the insight required to control the system's engineering solution, e.g., these influencing attributes become design requirements also. These variables will drive the need to provide integration of similar discipline functions or technology selection to allow control of the total parts count. The relationship of selecting a reliability requirement will place a constraint on parts count to achieve a given availability requirement or if allowed to increase the parts count will drive the system reliability requirement higher. They also provide the understanding for the relationship of mean repair time (or mean down time) to maintainability, e.g., accessibility for repair, and both the mean time between failure, e.g., reliability of hardware and availability. The concerns and importance of achieving a strong availability requirement is driven by the need for affordability, the choice of using the two launch solution for the single space application, or the need to control the spare parts count needed to support the long stay in either orbit or on the surface of the moon. Understanding the requirements before starting the architectural design concept will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable

  16. The Passenger Satisfaction Survey in the Regional Integrated Public Transport System

    Directory of Open Access Journals (Sweden)

    Martina Valaskova

    2008-11-01

    Full Text Available This article describes the Quality criteria Method of the Servicesin the Integrated Public Transport System in Slovak Republic.The proposed method is based on the detailed list of theQuality criteria of the Services in Public Transport from theview of passengers. The criteria are determined based on theSlovak Technical Norm STN EN 138 16 which is related toquality of transport. The method has been applied in RegionalIntegrated Public Transport System of Zilina (ZRIDS in theform of Passenger Quality Satisfaction Survey.

  17. Transport, space and society in Copenhagen and Bogotá, 1940-2010

    DEFF Research Database (Denmark)

    Pineda, Andres Felipe Valderrama

    This paper explores the way urban space, transportation networks and urban societies co-evolve and shape each other in time and how this process impacts the development of specific infrastructure projects in cities. To illustrate and analyse these processes, I examine the space design and transport...... as both the Metro and Transmilenio were promoted as high end means to move commuters out of their cars and into the public transport system. Based on the work of Ulrik Jørgensen, I propose that a city can be considered as an arena of development where different actor-networks interact and thus shape...... and are shaped by social processes such as the space development of the city, the enactment of certain discourse of self representation (cities as regional poles of development for instance) and the daily routines of city dwellers and their living choices, among others. This type of sociological analysis...

  18. Space station operations task force. Panel 4 report: Management integration

    Science.gov (United States)

    1987-01-01

    The Management Integration Panel of the Space Station Operations Task Force was chartered to provide a structure and ground rules for integrating the efforts of the other three panels and to address a number of cross cutting issues that affect all areas of space station operations. Issues addressed include operations concept implementation, alternatives development and integration process, strategic policy issues and options, and program management emphasis areas.

  19. Walkability and walking for transport: characterizing the built environment using space syntax.

    Science.gov (United States)

    Koohsari, Mohammad Javad; Owen, Neville; Cerin, Ester; Giles-Corti, Billie; Sugiyama, Takemi

    2016-11-24

    Neighborhood walkability has been shown to be associated with walking behavior. However, the availability of geographical data necessary to construct it remains a limitation. Building on the concept of space syntax, we propose an alternative walkability index, space syntax walkability (SSW). This study examined associations of the full walkability index and SSW with walking for transport (WT). Data were collected in 2003-2004 from 2544 adults living in 154 Census Collection Districts (CCD) in Adelaide, Australia. Participants reported past week WT frequency. Full walkability (consisting of net residential density, intersection density, land use mix, and net retail area ratio) and SSW (consisting of gross population density and a space syntax measure of street integration) were calculated for each CCD using geographic information systems and space syntax software. Generalized linear models with negative binomial variance and logarithmic link functions were employed to examine the associations of each walkability index with WT frequency, adjusting for socio-demographic variables. Two walkability indices were closely correlated (ρ = 0.76, p walkability and SSW with WT frequency were positive, with regression coefficients of 1.12 (95% CI: 1.08, 1.17) and 1.14 (95% CI: 1.10, 1.19), respectively. SSW employs readily-available geographic data, yet is comparable to full walkability in its association with WT. The concept and methods of space syntax provide a novel approach to further understanding how urban design influences walking behaviors.

  20. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  1. Market Integration and Transport Costs in France 1825-1903

    DEFF Research Database (Denmark)

    Ejrnæs, Mette; Persson, Karl Gunnar

    2000-01-01

    This article argues that the appropriate standard for the analysis of commodity market integration is the transport cost adjusted law of one price. A threshold error correction model that incorporates that property is developed and applied to French wheat prices in the 19th century. This type...... to equilibrium price differentials between markets. Unlike previous studies this article shows that French wheat markets were well integrated by the middle of the 19th century...... of modeling acknowledges the fact that error corrections only take place when price differentials between markets exceed transport costs. The method used produces estimates of implied transport costs, which are quite close to observed costs, and generates more accurate estimates of the adjustment speed...

  2. Ventilation Transport Trade Study for Future Space Suit Life Support Systems

    Science.gov (United States)

    Kempf, Robert; Vogel, Matthew; Paul, Heather L.

    2008-01-01

    A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.

  3. Space transportation main engine reliability and safety

    Science.gov (United States)

    Monk, Jan C.

    1991-01-01

    Viewgraphs are used to illustrate the reliability engineering and aerospace safety of the Space Transportation Main Engine (STME). A technology developed is called Total Quality Management (TQM). The goal is to develop a robust design. Reducing process variability produces a product with improved reliability and safety. Some engine system design characteristics are identified which improves reliability.

  4. Integral and Lagrangian simulations of particle and radiation transport in plasma

    International Nuclear Information System (INIS)

    Christlieb, A J; Hitchon, W N G; Lawler, J E; Lister, G G

    2009-01-01

    Accurate integral and Lagrangian models of transport in plasmas, in which the models reflect the actual physical behaviour as closely as possible, are presented. These methods are applied to the behaviour of particles and photons in plasmas. First, to show how these types of models arise in a wide range of plasma physics applications, an application to radiation transport in a lighting discharge is given. The radiation transport is solved self-consistently with a model of the discharge to provide what are believed to be very accurate 1D simulations of fluorescent lamps. To extend these integral methods to higher dimensions is computationally very costly. The wide utility of 'treecodes' in solving massive integral problems in plasma physics is discussed, and illustrated in modelling vortex formation in a Penning trap, where a remarkably detailed simulation of vortex formation in the trap is obtained. Extension of treecode methods to other integral problems such as radiation transport is under consideration.

  5. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  6. Space reactor electric systems: system integration studies, Phase 1 report

    International Nuclear Information System (INIS)

    Anderson, R.V.; Bost, D.; Determan, W.R.; Harty, R.B.; Katz, B.; Keshishian, V.; Lillie, A.F.; Thomson, W.B.

    1983-01-01

    This report presents the results of preliminary space reactor electric system integration studies performed by Rockwell International's Energy Systems Group (ESG). The preliminary studies investigated a broad range of reactor electric system concepts for powers of 25 and 100 KWe. The purpose of the studies was to provide timely system information of suitable accuracy to support ongoing mission planning activities. The preliminary system studies were performed by assembling the five different subsystems that are used in a system: the reactor, the shielding, the primary heat transport, the power conversion-processing, and the heat rejection subsystems. The subsystem data in this report were largely based on Rockwell's recently prepared Subsystem Technology Assessment Report. Nine generic types of reactor subsystems were used in these system studies. Several levels of technology were used for each type of reactor subsystem. Seven generic types of power conversion-processing subsystems were used, and several levels of technology were again used for each type. In addition, various types and levels of technology were used for the shielding, primary heat transport, and heat rejection subsystems. A total of 60 systems were studied

  7. 75 FR 71791 - Commercial Space Transportation Advisory Committee-Public Teleconference

    Science.gov (United States)

    2010-11-24

    ... debris questions asked by the FAA; continuing the group's review of the Concept of Operation for Global Space Vehicle Debris Threat Management Report, and updating the list of top issues that should require... given of a teleconference of the Space Transportation Operations Working Group (STOWG) of the Commercial...

  8. Space-time transformations in radial path integrals

    International Nuclear Information System (INIS)

    Steiner, F.

    1984-09-01

    Nonlinear space-time transformations in the radial path integral are discussed. A transformation formula is derived, which relates the original path integral to the Green's function of a new quantum system with an effective potential containing an observable quantum correction proportional(h/2π) 2 . As an example the formula is applied to spherical Brownian motion. (orig.)

  9. Space Transportation Engine Program (STEP), phase B

    Science.gov (United States)

    1990-01-01

    The Space Transportation Engine Program (STEP) Phase 2 effort includes preliminary design and activities plan preparation that will allow smooth and time transition into a Prototype Phase and then into Phases 3, 4, and 5. A Concurrent Engineering approach using Total Quality Management (TQM) techniques, is being applied to define an oxygen-hydrogen engine. The baseline from Phase 1/1' studies was used as a point of departure for trade studies and analyses. Existing STME system models are being enhanced as more detailed module/component characteristics are determined. Preliminary designs for the open expander, closed expander, and gas generator cycles were prepared, and recommendations for cycle selection made at the Design Concept Review (DCR). As a result of July '90 DCR, and information subsequently supplied to the Technical Review Team, a gas generator cycle was selected. Results of the various Advanced Development Programs (ADP's) for the Advanced Launch Systems (ALS) were contributive to this effort. An active vehicle integration effort is supplying the NASA, Air Force, and vehicle contractors with engine parameters and data, and flowing down appropriate vehicle requirements. Engine design and analysis trade studies are being documented in a data base that was developed and is being used to organize information. To date, seventy four trade studies were input to the data base.

  10. Space Power Integration: Perspectives from Space Weapons Officers

    Science.gov (United States)

    2006-12-01

    staff at Air University Press, Dr. Philip Adkins, Mrs. Sherry Terrell , and Mrs. Vivian O’Neal. Their creation of an integrated book from nine...Techniques of Complex Systems Science: An Overview ( Ann Arbor, MI: Center for the Study of Complex Sys- tems, University of Michigan, 9 July 2003), 34...Depart- ment of the Navy Space Policy, 26 August 1993. Shalizi, Cosma Rohilla. Methods and Techniques of Complex Systems Science: An Overview. Ann

  11. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  12. Convergence theorems for Banach space valued integrable multifunctions

    Directory of Open Access Journals (Sweden)

    Nikolaos S. Papageorgiou

    1987-01-01

    Full Text Available In this work we generalize a result of Kato on the pointwise behavior of a weakly convergent sequence in the Lebesgue-Bochner spaces LXP(Ω (1≤p≤∞. Then we use that result to prove Fatou's type lemmata and dominated convergence theorems for the Aumann integral of Banach space valued measurable multifunctions. Analogous convergence results are also proved for the sets of integrable selectors of those multifunctions. In the process of proving those convergence theorems we make some useful observations concerning the Kuratowski-Mosco convergence of sets.

  13. Weather information integration in transportation management center (TMC) operations.

    Science.gov (United States)

    2011-01-02

    This report presents the results of the third phase of an on-going FHWA study on weather integration in Transportation Management Center (TMC) operations. The report briefly describes the earlier phases of the integration study, summarizes the findin...

  14. Center for Space Transportation and Applied Research Fifth Annual Technical Symposium Proceedings

    Science.gov (United States)

    1993-01-01

    This Fifth Annual Technical Symposium, sponsored by the UT-Calspan Center for Space Transportation and Applied Research (CSTAR), is organized to provide an overview of the technical accomplishments of the Center's five Research and Technology focus areas during the past year. These areas include chemical propulsion, electric propulsion, commerical space transportation, computational methods, and laser materials processing. Papers in the area of artificial intelligence/expert systems are also presented.

  15. Space Medicine in the Human System Integration Process

    Science.gov (United States)

    Scheuring, Richard A.

    2010-01-01

    This slide presentation reviews the importance of integration of space medicine in the human system of lunar exploration. There is a review of historical precedence in reference to lunar surface operations. The integration process is reviewed in a chart which shows the steps from research to requirements development, requirements integration, design, verification, operations and using the lessons learned, giving more information and items for research. These steps are reviewed in view of specific space medical issues. Some of the testing of the operations are undertaken in an environment that is an analog to the exploration environment. Some of these analog environments are reviewed, and there is some discussion of the benefits of use of an analog environment in testing the processes that are derived.

  16. A Status of the Advanced Space Transportation Program from Planning to Action

    Science.gov (United States)

    Lyles, Garry; Griner, Carolyn

    1998-01-01

    A Technology Plan for Enabling Commercial Space Business was presented at the 48th International Astronautical Congress in Turin, Italy. This paper presents a status of the program's accomplishments. Technology demonstrations have progressed in each of the four elements of the program; (1) Low Cost Technology, (2) Advanced Reusable Technology, (3) Space Transfer Technology and (4) Space Transportation Research. The Low Cost Technology program element is primarily focused at reducing development and acquisition costs of aerospace hardware using a "design to cost" philosophy with robust margins, adapting commercial manufacturing processes and commercial off-the-shelf hardware. The attributes of this philosophy for small payload launch are being demonstrated at the component, sub-system, and system level. The X-34 "Fastrac" engine has progressed through major component and subsystem demonstrations. A propulsion system test bed has been implemented for system-level demonstration of component and subsystem technologies; including propellant tankage and feedlines, controls, pressurization, and engine systems. Low cost turbopump designs, commercial valves and a controller are demonstrating the potential for a ten-fold reduction in engine and propulsion system costs. The Advanced Reusable Technology program element is focused on increasing life through high strength-to-weight structures and propulsion components, highly integrated propellant tanks, automated checkout and health management and increased propulsion system performance. The validation of rocket based combined cycle (RBCC) propulsion is pro,-,ressing through component and subsystem testing. RBCC propulsion has the potential to provide performance margin over an all rocket system that could result in lower gross liftoff weight, a lower propellant mass fraction or a higher payload mass fraction. The Space Transfer Technology element of the program is pursuing technology that can improve performance and

  17. SWIFF: Space weather integrated forecasting framework

    Directory of Open Access Journals (Sweden)

    Frederiksen Jacob Trier

    2013-02-01

    Full Text Available SWIFF is a project funded by the Seventh Framework Programme of the European Commission to study the mathematical-physics models that form the basis for space weather forecasting. The phenomena of space weather span a tremendous scale of densities and temperature with scales ranging 10 orders of magnitude in space and time. Additionally even in local regions there are concurrent processes developing at the electron, ion and global scales strongly interacting with each other. The fundamental challenge in modelling space weather is the need to address multiple physics and multiple scales. Here we present our approach to take existing expertise in fluid and kinetic models to produce an integrated mathematical approach and software infrastructure that allows fluid and kinetic processes to be modelled together. SWIFF aims also at using this new infrastructure to model specific coupled processes at the Solar Corona, in the interplanetary space and in the interaction at the Earth magnetosphere.

  18. Discrete nodal integral transport-theory method for multidimensional reactor physics and shielding calculations

    International Nuclear Information System (INIS)

    Lawrence, R.D.; Dorning, J.J.

    1980-01-01

    A coarse-mesh discrete nodal integral transport theory method has been developed for the efficient numerical solution of multidimensional transport problems of interest in reactor physics and shielding applications. The method, which is the discrete transport theory analogue and logical extension of the nodal Green's function method previously developed for multidimensional neutron diffusion problems, utilizes the same transverse integration procedure to reduce the multidimensional equations to coupled one-dimensional equations. This is followed by the conversion of the differential equations to local, one-dimensional, in-node integral equations by integrating back along neutron flight paths. One-dimensional and two-dimensional transport theory test problems have been systematically studied to verify the superior computational efficiency of the new method

  19. A resolution of the integration region problem for the supermoduli space integral

    Science.gov (United States)

    Davis, Simon

    2014-12-01

    The integration region of the supermoduli space integral is defined in the super-Schottky group parametrization. The conditions on the super-period matrix elements are translated to relations on the parameters. An estimate of the superstring amplitude at arbitrary genus is sufficient for an evaluation of the cross-section to all orders in the expansion of the scattering matrix.

  20. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  1. Collaborative Approaches in Developing Environmental and Safety Management Systems for Commercial Space Transportation

    Science.gov (United States)

    Zee, Stacey; Murray, D.

    2009-01-01

    The Federal Aviation Administration (FAA), Office of Commercial Space Transportation (AST) licenses and permits U.S. commercial space launch and reentry activities, and licenses the operation of non-federal launch and reentry sites. ASTs mission is to ensure the protection of the public, property, and the national security and foreign policy interests of the United States during commercial space transportation activities and to encourage, facilitate, and promote U.S. commercial space transportation. AST faces unique challenges of ensuring the protection of public health and safety while facilitating and promoting U.S. commercial space transportation. AST has developed an Environmental Management System (EMS) and a Safety Management System (SMS) to help meet its mission. Although the EMS and SMS were developed independently, the systems share similar elements. Both systems follow a Plan-Do-Act-Check model in identifying potential environmental aspects or public safety hazards, assessing significance in terms of severity and likelihood of occurrence, developing approaches to reduce risk, and verifying that the risk is reduced. This paper will describe the similarities between ASTs EMS and SMS elements and how AST is building a collaborative approach in environmental and safety management to reduce impacts to the environment and risks to the public.

  2. Notation for integrals of transport theory

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1993-01-01

    Like many authors in nuclear reactor physics, I have been careless in my notation but now I regret my deficiences! This letter attempts redress in calling upon my colleagues to take more care in writing integrals as they occur in our trade. I draw attention to what are common errors, with examples drawn from standard tests and well-established journals. I mean no disrespect to their authors and editors; we have, nearly all of us, not written what we meant. I propose that we should undertake to follow a more rigorous notation. It is convenient to divide the examination into a section studying integrals over the unit directional vector Ω and subsequently apply the principles appropriate to that class of integrals to integrals over a vector phase-space. (Author)

  3. NASA space radiation transport code development consortium

    International Nuclear Information System (INIS)

    Townsend, L. W.

    2005-01-01

    Recently, NASA established a consortium involving the Univ. of Tennessee (lead institution), the Univ. of Houston, Roanoke College and various government and national laboratories, to accelerate the development of a standard set of radiation transport computer codes for NASA human exploration applications. This effort involves further improvements of the Monte Carlo codes HETC and FLUKA and the deterministic code HZETRN, including developing nuclear reaction databases necessary to extend the Monte Carlo codes to carry out heavy ion transport, and extending HZETRN to three dimensions. The improved codes will be validated by comparing predictions with measured laboratory transport data, provided by an experimental measurements consortium, and measurements in the upper atmosphere on the balloon-borne Deep Space Test Bed (DSTB). In this paper, we present an overview of the consortium members and the current status and future plans of consortium efforts to meet the research goals and objectives of this extensive undertaking. (authors)

  4. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  5. Path integrals over phase space, their definition and simple properties

    International Nuclear Information System (INIS)

    Tarski, J.; Technische Univ. Clausthal, Clausthal-Zellerfeld

    1981-10-01

    Path integrals over phase space are defined in two ways. Some properties of these integrals are established. These properties concern the technique of integration and the quantization rule isup(-I)deltasub(q) p. (author)

  6. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  7. Rocket-Based Combined Cycle Activities in the Advanced Space Transportation Program Office

    Science.gov (United States)

    Hueter, Uwe; Turner, James

    1999-01-01

    NASA's Office of Aero-Space Technology (OAST) has established three major goals, referred to as, "The Three Pillars for Success". The Advanced Space Transportation Program Office (ASTP) at the NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala. focuses on future space transportation technologies Under the "Access to Space" pillar. The Core Technologies Project, part of ASTP, focuses on the reusable technologies beyond those being pursued by X-33. One of the main activities over the past two and a half years has been on advancing the rocket-based combined cycle (RBCC) technologies. In June of last year, activities for reusable launch vehicle (RLV) airframe and propulsion technologies were initiated. These activities focus primarily on those technologies that support the decision to determine the path this country will take for Space Shuttle and RLV. This year, additional technology efforts in the reusable technologies will be awarded. The RBCC effort that was completed early this year was the initial step leading to flight demonstrations of the technology for space launch vehicle propulsion.

  8. Transport and matching of low energy space charge dominated beams

    International Nuclear Information System (INIS)

    Pandit, V.S.

    2013-01-01

    The transport and matching of low energy high intensity beams from the ion source to the subsequent accelerating structure are of considerable interest in recent years for variety of applications such as Accelerator driven system (ADSS), transmutation of nuclear waste, spallation neutron sources etc. It is essential to perform detailed simulations with experimentation to predict the beam evolution in the presence of nonlinear self as well as external fields before the design of the next accelerating structure is finalized. In order to study and settle various physics and technical issues related with transport of space charge dominated beams we have developed a 2.45 GHz microwave ion source at VECC which is now delivering more than 10 mA proton beam current at 80 keV. We have successfully transported well collimated 8 mA proton beam through the solenoid based 3 meter long transport line and studied various beam properties. We have also studied the transport of beam through spiral inflector at low beam current ∼ 1mA. In this article we will discuss the beam transport issues and describe a technique for simulation of beam envelopes in presence of linear space charge effects. We use canonical description of the motion of a single particle and then obtain first order differential equations for evolution of the moments of beam ensemble by assuming uniform distribution of the beam. We will also discuss the methodology used in the simulations to understand the observed beam behaviour during transport. (author)

  9. Interfacial and Wall Transport Models for SPACE-CAP Code

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul; Choi, Hoon; Ha, Sang Jun

    2009-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code

  10. Interfacial and Wall Transport Models for SPACE-CAP Code

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.

  11. On linearity of pan-integral and pan-integrable functions space

    Czech Academy of Sciences Publication Activity Database

    Ouyang, Y.; Li, J.; Mesiar, Radko

    2017-01-01

    Roč. 90, č. 1 (2017), s. 307-318 ISSN 0888-613X Institutional support: RVO:67985556 Keywords : linearity * monotone measure * Pan-integrable space Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/E/mesiar-0477549.pdf

  12. INTEGRATED TICKETING SYSTEM OF PUBLIC TRANSPORT IN JAKARTA VS VÄRMLAND, SWEDEN

    Directory of Open Access Journals (Sweden)

    Teguh Himawan Ronggosusanto

    2015-05-01

    Full Text Available The heightened mobility of people in the DKI Jakarta province and surrounding area requires balance of the development public transport services. One of service attributes in public transportation is ticketing system. Currently, the ticketing system in Jakarta needs to be improved and still not integrated. Therefore, the importance to develop and implement a new integrated ticketing system to increase the competitiveness and attractiveness of public transports. It also gives an opportunity to the operators in order to implement several of ticket prices. There are some of barriers that faced by operators in development a new integrated ticketing system such as; institutional issue, resources integration, and financial problems. In order to describe and analyze the development of a new integrated ticketing system, this thesis uses a qualitative research approach and five sources of evidence i.e. documentation, archival records, an interview, direct and participant observations through a survey using the form of questionnaires that distributed to the public transport users. Further, this study also uses the case of Värmlandstrafik AB as the comparative study and the theoretical basis of the new services development as an approach to assess the possibility of implement a new integrated ticketing system. It aims to investigate the ticketing system phenomenon using information and data observations as materials to analyze, explore, and provide depth explanation. By analyzing data from a survey of passengers, this study gave a description and explanation related the characteristic and the travel behavior of passenger, also an assessment of ticketing system that underlies the development a new integrated ticketing system. Then, using the comparative case study of Värmlandstrafik AB that already implement an integrated ticketing system and the self-services in provision of public transport services gave an analysis what needs to prepare for implement a

  13. Concepts for Life Cycle Cost Control Required to Achieve Space Transportation Affordability and Sustainability

    Science.gov (United States)

    Rhodes, Russel E.; Zapata, Edgar; Levack, Daniel J. H.; Robinson, John W.; Donahue, Benjamin B.

    2009-01-01

    Cost control must be implemented through the establishment of requirements and controlled continually by managing to these requirements. Cost control of the non-recurring side of life cycle cost has traditionally been implemented in both commercial and government programs. The government uses the budget process to implement this control. The commercial approach is to use a similar process of allocating the non-recurring cost to major elements of the program. This type of control generally manages through a work breakdown structure (WBS) by defining the major elements of the program. If the cost control is to be applied across the entire program life cycle cost (LCC), the approach must be addressed very differently. A functional breakdown structure (FBS) is defined and recommended. Use of a FBS provides the visibifity to allow the choice of an integrated solution reducing the cost of providing many different elements of like function. The different functional solutions that drive the hardware logistics, quantity of documentation, operational labor, reliability and maintainability balance, and total integration of the entire system from DDT&E through the life of the program must be fully defined, compared, and final decisions made among these competing solutions. The major drivers of recurring cost have been identified and are presented and discussed. The LCC requirements must be established and flowed down to provide control of LCC. This LCC control will require a structured rigid process similar to the one traditionally used to control weight/performance for space transportation systems throughout the entire program. It has been demonstrated over the last 30 years that without a firm requirement and methodically structured cost control, it is unlikely that affordable and sustainable space transportation system LCC will be achieved.

  14. Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

    Science.gov (United States)

    Chen, Xueli; Gao, Xinbo; Qu, Xiaochao; Chen, Duofang; Ma, Xiaopeng; Liang, Jimin; Tian, Jie

    2010-10-10

    The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

  15. Integrated Atmosphere Resource Recovery and Environmental Monitoring Technology Demonstration for Deep Space Exploration

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Knox, James C.; Parrish, Keith J.; Roman, Monserrate C.; Jan, Darrell L.

    2012-01-01

    Exploring the frontiers of deep space continues to be defined by the technological challenges presented by safely transporting a crew to and from destinations of scientific interest. Living and working on that frontier requires highly reliable and efficient life support systems that employ robust, proven process technologies. The International Space Station (ISS), including its environmental control and life support (ECLS) system, is the platform from which humanity's deep space exploration missions begin. The ISS ECLS system Atmosphere Revitalization (AR) subsystem and environmental monitoring (EM) technical architecture aboard the ISS is evaluated as the starting basis for a developmental effort being conducted by the National Aeronautics and Space Administration (NASA) via the Advanced Exploration Systems (AES) Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project.. An evolutionary approach is employed by the ARREM project to address the strengths and weaknesses of the ISS AR subsystem and EM equipment, core technologies, and operational approaches to reduce developmental risk, improve functional reliability, and lower lifecycle costs of an ISS-derived subsystem architecture suitable for use for crewed deep space exploration missions. The most promising technical approaches to an ISS-derived subsystem design architecture that incorporates promising core process technology upgrades will be matured through a series of integrated tests and architectural trade studies encompassing expected exploration mission requirements and constraints.

  16. Specific Space Transportation Costs to GEO - Past, Present and Future

    Science.gov (United States)

    Koelle, Dietrich E.

    2002-01-01

    The largest share of space missions is going to the Geosynchronous Orbit (GEO); they have the highest commercial importance. The paper first shows the historic trend of specific transportation costs to GEO from 1963 to 2002. It started out with more than 500 000 /kg(2002-value) and has come down to 36 000 /kg. This reduction looks impressive, however, the reason is NOT improved technology or new techniques but solely the growth of GEO payloads`unit mass. The first GEO satellite in 1963 did have a mass of 36 kg mass (BoL) . This has grown to a weight of 1600 kg (average of all GEO satellites) in the year 2000. Mass in GEO after injection is used here instead of GTO mass since the GTO mass depends on the launch site latitude. The specific cost reduction is only due to the "law-of-scale", valid in the whole transportation business: the larger the payload, the lower the specific transportation cost. The paper shows the actual prices of launch services to GTO by the major launch vehicles. Finally the potential GEO transportation costs of future launch systems are evaluated. What is the potential reduction of specific transportation costs if reusable elements are introduced in future systems ? Examples show that cost reductions up to 75 % seem achievable - compared to actual costs - but only with launch systems optimized according to modern principles of cost engineering. 1. 53rd International Astronautical Congress, World Space Congress Houston 2. First Submission 3. Specific Space Transportation Costs to GEO - Past, Present and Future 4. KOELLE, D.E. 5. IAA.1.1 Launch Vehicles' Cost Engineering and Economic Competitiveness 6. D.E. Koelle; A.E. Goldstein 7. One overhead projector and screen 8. Word file attached 9. KOELLE I have approval to attend the Congress. I am not willing to present this paper at the IAC Public Outreach Program.

  17. The Integration of Sustainable Transport into Future Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen

    use are largely lost in the current fossil fuel dominated energy systems. Sustainable transport development requires solutions from an overall renewable energy system in which integration of large-scale intermittent renewable energy needs assistance. Technologies of alternative vehicle fuels...... in transport may play a role in furthering such integration. The objective of this research is to make a contribution to the development of methodologies to identify and develop future sustainable transport systems as well as to apply such methodologies to the case of China. In particular, the methodological...... development focuses on 1) identifying suitable transport technologies and strategies based on renewable energy and 2) evaluating such technologies from the perspective of overall renewable energy system integration. For this purpose, a methodological framework involving the research fields of both...

  18. Heavy-ion transport codes for radiotherapy and radioprotection in space

    International Nuclear Information System (INIS)

    Mancusi, Davide

    2006-06-01

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n 40 Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets

  19. Modeling sediment transport with an integrated view of the biofilm effects

    Science.gov (United States)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  20. Comments on the integrability of the loop-space chiral equations

    International Nuclear Information System (INIS)

    Gu, C.; Wang, L.L.C.

    1980-01-01

    A demonstration is given how the ordinary space chiral equations provide the existence conditions for the infinite number of conserved currents and how these currents are related to the so-called inverse-scattering equations, whose integrability is provided by the original chiral equations. Loop-space chiral equations are introduced. The integrability conditions of the non-local currents in two possible different situations are discussed. In the first case, the generating functions are functionals of the loop alone. The integrability conditions are not satisfied and higher order conserved non-local currents do not exist. In the second case, the generating functions are functionals of the loop as well as a parameter the integrability conditions at a restricted point of the parameter are satisfied, however there is an infinite fold of arbitrariness. It indicates that additional guiding principles are needed in addition to the original loop-space chiral equation in order to uniquely determine the infinite conserved non-local currents as functionals of the loop and the parameter

  1. Ethics and public integrity in space exploration

    Science.gov (United States)

    Greenstone, Adam F.

    2018-02-01

    This paper discusses the National Aeronautics and Space Administration's (NASA) work to support ethics and public integrity in human space exploration. Enterprise Risk Management (ERM) to protect an organization's reputation has become widespread in the private sector. Government ethics law and practice is integral to a government entity's ERM by managing public sector reputational risk. This activity has also increased on the international plane, as seen by the growth of ethics offices in UN organizations and public international financial institutions. Included in this area are assessments to ensure that public office is not used for private gain, and that external entities are not given inappropriate preferential treatment. NASA has applied rules supporting these precepts to its crew since NASA's inception. The increased focus on public sector ethics principles for human activity in space is important because of the international character of contemporary space exploration. This was anticipated by the 1998 Intergovernmental Agreement for the International Space Station (ISS), which requires a Code of Conduct for the Space Station Crew. Negotiations among the ISS Partners established agreed-upon ethics principles, now codified for the United States in regulations at 14 C.F.R. § 1214.403. Understanding these ethics precepts in an international context requires cross-cultural dialogue. Given NASA's long spaceflight experience, a valuable part of this dialogue is understanding NASA's implementation of these requirements. Accordingly, this paper will explain how NASA addresses these and related issues, including for human spaceflight and crew, as well as the development of U.S. Government ethics law which NASA follows as a U.S. federal agency. Interpreting how the U.S. experience relates constructively to international application involves parsing out which dimensions relate to government ethics requirements that the international partners have integrated into the

  2. First integrals of geodesics in the Einstein-Schwarzschild space

    International Nuclear Information System (INIS)

    Meshkov, A.G.; Dordzhiev, P.B.

    1984-01-01

    Linear and quadratic velocity integrals of geodesics in the Einstein-Schwarzschild space are calculated. The Schwarzschild geodesics equations have only four independent linear integrals. Quadratic integrals are polynomials from linear ones with constant coefficients. Total separation of variables in the Hamilton-Jacobi equation with Schwarzschild metric is possible only in two coordinate systems: ''spherical'' and ''conic'' systems

  3. Drop analysis for structural integrity evaluation of KJRR fuel transport container

    International Nuclear Information System (INIS)

    Yang, Yun Young; Lim, Jong Min; Choi, Woo Seok; Lee, Ju Chan

    2016-01-01

    A fuel transport container for KiJang Research Reactor(KJRR) has been developed to transport fresh fuel assemblies and fission molly targets which are used for a research reactor built in Kijang. The KJRR fuel transport container is a type-A(F) container, which is defined in domestic and foreign regulations of a radioactive substance container. According to Nuclear Safety and Security Commission's notification, the container should meet the accident conditions defined in IAEA safety Standard Series, US NRC and etc. In this study, a structural integrity of the KJRR fuel transport container is evaluated by conducting computational analyses of 9-meter free drop and 1 meter puncture. It is confirmed that structural integrity of the KJRR fuel transport container can be maintained in the transportation accident condition. Hereafter, when the test model is produced, a safety test will be conducted and its result will be compared with the result of drop and puncture analyses.

  4. Integral representation of nonlinear heat transport

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Mima, K.; Haines, M.G.

    1985-07-01

    The electron distribution function in a plasma with steep temperature gradient is obtained from a Fokker-Planck equation by Green's function method. The formula describes the nonlocal effects on thermal transport over the range, λ e /L e /L → 0. As an example, the heat wave is analyzed numerically by the integral formula and it is found that the previous simulation results are well reproduced. (author)

  5. Space station operations task force. Panel 3 report: User development and integration

    Science.gov (United States)

    1987-01-01

    The User Development and Integration Panel of the Space Station Operations Task Force was chartered to develop concepts relating to the operations of the Space Station manned base and the platforms, user accommodation and integration activities. The needs of the user community are addressed in the context with the mature operations phase of the Space Station. Issues addressed include space station pricing options, marketing strategies, payload selection and resource allocation options, and manifesting techniques.

  6. Business integration between manufacturing and transport-logistics firms

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, Olga W.

    electronically through EDI. The current business integration practices are primarily restricted to some sub-processes in three key SC processes: Customer service management, order fulfillment and backwards logistics. In the future the manufacturers want a better integration with the TLSPs, but at the same time......Purpose - This paper analyses how manufacturers and transport-logistics service providers (TLSPs) work together and integrate their business processes. The information technologies used to support the integration, the processes currently integrated, and the expected future integration, are searched......, manufacturers would like to have the freedom of breaking the relationship, if the party does not fulfill the requisites and expectations. The future developments associated to the "commoditization" of TLSPs' services would reinforce this trend. Originality/value - This research has shed light on a relatively...

  7. Space Transportation System Availability Requirements and Its Influencing Attributes Relationships

    Science.gov (United States)

    Rhodes, Russel E.; Adams, TImothy C.

    2008-01-01

    the intent of this paper to provide the visibility of relationships of these major attribute drivers (variables) to each other and the resultant system inherent availability, but also provide the capability to bound the variables providing engineering the insight required to control the system's engineering solution. An example of this visibility will be the need to provide integration of similar discipline functions to allow control of the total parts count of the space transportation system. Also the relationship visibility of selecting a reliability requirement will place a constraint on parts count to achieve a given inherent availability requirement or accepting a larger parts count with the resulting higher reliability requirement. This paper will provide an understanding for the relationship of mean repair time (mean downtime) to maintainability, e.g., accessibility for repair, and both mean time between failure, e.g., reliability of hardware and the system inherent availability. Having an understanding of these relationships and resulting requirements before starting the architectural design concept definition will avoid considerable time and money required to iterate the design to meet the redesign and assessment process required to achieve the results required of the customer's space transportation system. In fact the impact to the schedule to being able to deliver the system that meets the customer's needs, goals, and objectives may cause the customer to compromise his desired operational goal and objectives resulting in considerable increased life cycle cost of the fielded space transportation system.

  8. The Integrated Approach versus the Traditional Approach: Analyzing the Benefits of a Dance and Transportation Integrated Curriculum

    Science.gov (United States)

    LaMotte, Megan

    2018-01-01

    The purpose of the study was to examine the effects of a dance and transportation integrated curriculum on student learning and engagement. The curriculum, entitled Consequences of Our Actions: Dance and Transportation, synthesized transportation content with the art form of dance. The experimental and control groups were comprised of fifth-grade…

  9. Metropolitan ITS integration : a cross-cutting study : working together to improve transportation

    Science.gov (United States)

    2002-08-01

    The purpose of this report is to inform transportation managers and decision-makers of the value of Intelligent Transportation Systems (ITS) integration. The report is intended for operations and planning departments of transportation-related agencie...

  10. Phase III Simplified Integrated Test (SIT) results - Space Station ECLSS testing

    Science.gov (United States)

    Roberts, Barry C.; Carrasquillo, Robyn L.; Dubiel, Melissa Y.; Ogle, Kathryn Y.; Perry, Jay L.; Whitley, Ken M.

    1990-01-01

    During 1989, phase III testing of Space Station Freedom Environmental Control and Life Support Systems (ECLSS) began at Marshall Space Flight Center (MSFC) with the Simplified Integrated Test. This test, conducted at the MSFC Core Module Integration Facility (CMIF), was the first time the four baseline air revitalization subsystems were integrated together. This paper details the results and lessons learned from the phase III SIT. Future plans for testing at the MSFC CMIF are also discussed.

  11. Microwave integrated circuits for space applications

    Science.gov (United States)

    Leonard, Regis F.; Romanofsky, Robert R.

    1991-01-01

    Monolithic microwave integrated circuits (MMIC), which incorporate all the elements of a microwave circuit on a single semiconductor substrate, offer the potential for drastic reductions in circuit weight and volume and increased reliability, all of which make many new concepts in electronic circuitry for space applications feasible, including phased array antennas. NASA has undertaken an extensive program aimed at development of MMICs for space applications. The first such circuits targeted for development were an extension of work in hybrid (discrete component) technology in support of the Advanced Communication Technology Satellite (ACTS). It focused on power amplifiers, receivers, and switches at ACTS frequencies. More recent work, however, focused on frequencies appropriate for other NASA programs and emphasizes advanced materials in an effort to enhance efficiency, power handling capability, and frequency of operation or noise figure to meet the requirements of space systems.

  12. Heavy-ion transport codes for radiotherapy and radioprotection in space

    Energy Technology Data Exchange (ETDEWEB)

    Mancusi, Davide

    2006-06-15

    Simulation of the transport of heavy ions in matter is a field of nuclear science that has recently received attention in view of its importance for some relevant applications. Accelerated heavy ions can, for example, be used to treat cancers (heavy-ion radiotherapy) and show some superior qualities with respect to more conventional treatment systems, like photons (x-rays) or protons. Furthermore, long-term manned space missions (like a possible future mission to Mars) pose the challenge to protect astronauts and equipment on board against the harmful space radiation environment, where heavy ions can be responsible for a significant share of the exposure risk. The high accuracy expected from a transport algorithm (especially in the case of radiotherapy) and the large amount of semi-empirical knowledge necessary to even state the transport problem properly rule out any analytical approach; the alternative is to resort to numerical simulations in order to build treatment-planning systems for cancer or to aid space engineers in shielding design. This thesis is focused on the description of HIBRAC, a one-dimensional deterministic code optimised for radiotherapy, and PHITS (Particle and Heavy- Ion Transport System), a general-purpose three-dimensional Monte-Carlo code. The structure of both codes is outlined and some relevant results are presented. In the case of PHITS, we also report the first results of an ongoing comprehensive benchmarking program for the main components of the code; we present the comparison of partial charge-changing cross sections for a 400 MeV/n {sup 40}Ar beam impinging on carbon, polyethylene, aluminium, copper, tin and lead targets.

  13. On the calculation of soft phase space integral

    International Nuclear Information System (INIS)

    Zhu, Hua Xing

    2015-01-01

    The recent discovery of the Higgs boson at the LHC attracts much attention to the precise calculation of its production cross section in quantum chromodynamics. In this work, we discuss the calculation of soft triple-emission phase space integral, which is an essential ingredient in the recently calculated soft-virtual corrections to Higgs boson production at next-to-next-to-next-to-leading order. The main techniques used this calculation are method of differential equation for Feynman integral, and integration of harmonic polylogarithms.

  14. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  15. CONCEPTION OF ONTOLOGY-BASED SECTOR EDUCATIONAL SPACE

    Directory of Open Access Journals (Sweden)

    V. I. Khabarov

    2014-09-01

    Full Text Available PurposeThe aim of the research is to demonstrate the need for the Conception of Ontology-based Sector Educational Space. This Conception could become the basis for the integration of transport sector university information resources into the open virtual network information resource and global educational space. Its content will be presented by standardized ontology-based knowledge packages for educational programs in Russian and English languages.MethodologyComplex-based, ontological, content-based approaches and scientific principles of interdisciplinarity and standardization of knowledge are suggested as the methodological basis of the research. ResultsThe Conception of Ontology-based Sector Educational Space (railway transport, the method of the development of knowledge packages as ontologies in Russian and English languages, the Russian-English Transport Glossary as a separate ontology are among the expected results of the project implementation.Practical implicationsThe Conception could become the basis for the open project to establish the common resource center for transport universities (railway transport. The Conception of ontology-based sector educational space (railway transport could be adapted to the activity of universities of other economic sectors.

  16. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    Science.gov (United States)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  17. Integration of space geodesy: A US National Geodetic Observatory

    Science.gov (United States)

    Yunck, Thomas P.; Neilan, Ruth E.

    2005-11-01

    In the interest of improving the performance and efficiency of space geodesy a diverse group in the US, in collaboration with IGGOS, has begun to establish a unified National Geodetic Observatory (NGO). To launch this effort an international team will conduct a multi-year program of research into the technical issues of integrating SLR, VLBI, and GPS geodesy to produce a unified set of global geodetic products. The goal is to improve measurement accuracy by up to an order of magnitude while lowering the cost to current sponsors. A secondary goal is to expand and diversify international sponsorship of space geodesy. Principal benefits will be to open new vistas of research in geodynamics and surface change while freeing scarce NASA funds for scientific studies. NGO will proceed in partnership with, and under the auspices of, the International Association of Geodesy (IAG) as an element of the Integrated Global Geodetic Observation System project. The collaboration will be conducted within, and will make full use of, the IAG's existing international services: the IGS, IVS, ILRS, and IERS. Seed funding for organizational activities and technical analysis will come from NASA's Solid Earth and Natural Hazards Program. Additional funds to develop an integrated geodetic data system known as Inter-service Data Integration for Geodetic Operations (INDIGO), will come from a separate NASA program in Earth science information technology. INDIGO will offer ready access to the full variety of NASA's space geodetic data and will extend the GPS Seamless Archive (GSAC) philosophy to all space geodetic data types.

  18. Safety And Promotion in the Federal Aviation Administration- Enabling Safe and Successful Commercial Space Transportation

    Science.gov (United States)

    Repcheck, Randall J.

    2010-09-01

    The United States Federal Aviation Administration’s Office of Commercial Space Transportation(AST) authorizes the launch and reentry of expendable and reusable launch vehicles and the operation of launch and reentry sites by United States citizens or within the United States. It authorizes these activities consistent with public health and safety, the safety of property, and the national security and foreign policy interests of the United States. In addition to its safety role, AST has the role to encourage, facilitate, and promote commercial space launches and reentries by the private sector. AST’s promotional role includes, among other things, the development of information of interest to industry, the sharing of information of interest through a variety of methods, and serving as an advocate for Commercial Space Transportation within the United States government. This dual safety and promotion role is viewed by some as conflicting. AST views these two roles as complementary, and important for the current state of commercial space transportation. This paper discusses how maintaining a sound safety decision-making process, maintaining a strong safety culture, and taking steps to avoid complacency can together enable safe and successful commercial space transportation.

  19. Phase-space path-integral calculation of the Wigner function

    International Nuclear Information System (INIS)

    Samson, J H

    2003-01-01

    The Wigner function W(q, p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the midpoint of their ends; short paths where the midpoint is close to (q, p) and which lie in regions of low energy (low P function of the Hamiltonian) will dominate, and the enclosed area will determine the sign of the Wigner function. As a demonstration, the method is applied to a sequence of density matrices interpolating between a Poissonian number distribution and a number state, each member of which can be represented exactly by a discretized path integral with a finite number of vertices. Saddle-point evaluation of these integrals recovers (up to a constant factor) the WKB approximation to the Wigner function of a number state

  20. Continuous local martingales and stochastic integration in UMD Banach spaces

    NARCIS (Netherlands)

    Veraar, M.C.

    2007-01-01

    Recently, van Neerven, Weis and the author, constructed a theory for stochastic integration of UMD Banach space valued processes. Here the authors use a (cylindrical) Brownian motion as an integrator. In this note we show how one can extend these results to the case where the integrator is an

  1. Integrating routing decisions in public transportation problems

    CERN Document Server

    Schmidt, Marie E

    2014-01-01

    This book treats three planning problems arising in public railway transportation planning: line planning, timetabling, and delay management, with the objective to minimize passengers’ travel time. While many optimization approaches simplify these problems by assuming that passengers’ route choice is independent of the solution, this book focuses on models which take into account that passengers will adapt their travel route to the implemented planning solution. That is, a planning solution and passengers’ routes are determined and evaluated simultaneously. This work is technically deep, with insightful findings regarding complexity and algorithmic approaches to public transportation problems with integrated passenger routing. It is intended for researchers in the fields of mathematics, computer science, or operations research, working in the field of public transportation from an optimization standpoint. It is also ideal for students who want to gain intuition and experience in doing complexity proofs ...

  2. INTEGRAL EDUCATION, TIME AND SPACE: PROBLEMATIZING CONCEPTS

    Directory of Open Access Journals (Sweden)

    Ana Elisa Spaolonzi Queiroz Assis

    2018-03-01

    Full Text Available Integral Education, despite being the subject of public policy agenda for some decades, still carries disparities related to its concept. In this sense, this article aims to problematize not only the concepts of integral education but also the categories time and space contained in the magazines Em Aberto. They were organized and published by the National Institute of Educational Studies Anísio Teixeira (INEP, numbers 80 (2009 and 88 (2012, respectively entitled "Educação Integral e tempo integral" and " Políticas de educação integral em jornada ampliada". The methodology is based on Bardin’s content analysis, respecting the steps of pre-analysis (research corpus formed by the texts in the journals; material exploration (reading the texts encoding data choosing the registration units for categorization; and processing and interpretation of results, based on Saviani’s Historical-Critical Pedagogy. The work reveals convergent and divergent conceptual multiplicity, provoking a discussion about a critical conception of integral education. Keywords: Integral Education. Historical-Critical Pedagogy. Content Analysis.

  3. properties of the SN - equivalent integral transport operator in slab geometry and the iterative acceleration of neutron transport methods

    International Nuclear Information System (INIS)

    Massimiliano, Rosa; Azmy, Y.Y.; Morel, J.E.

    2005-01-01

    The general expressions for the matrix elements of the discrete Sn-equivalent integral transport operator have been derived in slab geometry. Their asymptotic behavior has been investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in a diffusive limit obtained as the thick limit of computational cell size for a highly scattering medium, has shown that the discretized integral transport operator is approximated by a sparse matrix characterized by a tri-diagonal diffusion-like coupling stencil. Also, the tri-diagonal matrix structure, characteristic of the diffusion coupling stencil, is approached at a fast exponential rate. In the case of periodically heterogeneous slab configurations, the asymptotic behavior investigated is that in which the cells' optical thicknesses are pushed apart, i.e. the thick is made thicker while the thin is made thinner at a prescribed rate. It has been shown that in this limit the discretized integral transport operator is approximated by a penta-diagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tri-diagonal structure at a fast exponential rate. The existence of a low order tri-diagonal approximation to the full discrete integral transport operator in the case of a periodically heterogeneous slab might provide a basic understanding of the superior convergence properties of diffusion-based acceleration schemes observed in slab geometry, even in the presence of sharp material discontinuities. The obtained results also suggest that a sparse approximation to the S n -equivalent integral transport operator might itself be used as the low-order operator in an acceleration scheme for the

  4. En Route Care in Confined Spaces: Impact of Transport, Immobilization Practices, Space Constraints, and Medical Awareness Enhancements

    Science.gov (United States)

    2017-10-01

    physical space , ergonomics , and enhancement of medical awareness. Outcomes of the project will provide significant information and tools that can be...This group of research projects was designed to look at various aspects of transport, immobilization, optimal physical space , ergonomics , and...Devereux, J. 2002. The nature of work -related neck and upper limb musculoskeletal disorders. Applied Ergonomics . 33(3): 207-17. Chaffin, D.B

  5. Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model

    Science.gov (United States)

    Florinski, V.

    2009-04-01

    We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.

  6. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  7. Update of KSC activities for the space transportation system

    Science.gov (United States)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  8. Structures of the fractional spaces generated by the difference neutron transport operator

    International Nuclear Information System (INIS)

    Ashyralyev, Allaberen; Taskin, Abdulgafur

    2015-01-01

    The initial boundary value problem for the neutron transport equation is considered. The first, second and third order of accuracy difference schemes for the approximate solution of this problem are presented. Highly accurate difference schemes for neutron transport equation based on Padé approximation are constructed. In applications, stability estimates for solutions of difference schemes for the approximate solution of the neutron transport equation are obtained.The positivity of the neutron transport operator in Slobodeckij spaces is proved. Numerical techniques are developed and algorithms are tested on an example in MATLAB

  9. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  10. Waste Information Management System with Integrated Transportation Forecast Data

    International Nuclear Information System (INIS)

    Upadhyay, H.; Quintero, W.; Shoffner, P.; Lagos, L.

    2009-01-01

    The Waste Information Management System with Integrated Transportation Forecast Data was developed to support the Department of Energy (DOE) mandated accelerated cleanup program. The schedule compression required close coordination and a comprehensive review and prioritization of the barriers that impeded treatment and disposition of the waste streams at each site. Many issues related to site waste treatment and disposal were potential critical path issues under the accelerated schedules. In order to facilitate accelerated cleanup initiatives, waste managers at DOE field sites and at DOE Headquarters in Washington, D.C., needed timely waste forecast and transportation information regarding the volumes and types of waste that would be generated by the DOE sites over the next 40 years. Each local DOE site has historically collected, organized, and displayed site waste forecast information in separate and unique systems. However, waste and shipment information from all sites needed a common application to allow interested parties to understand and view the complete complex-wide picture. The Waste Information Management System with Integrated Transportation Forecast Data allows identification of total forecasted waste volumes, material classes, disposition sites, choke points, technological or regulatory barriers to treatment and disposal, along with forecasted waste transportation information by rail, truck and inter-modal shipments. The Applied Research Center (ARC) at Florida International University (FIU) in Miami, Florida, has deployed the web-based forecast and transportation system and is responsible for updating the waste forecast and transportation data on a regular basis to ensure the long-term viability and value of this system. (authors)

  11. Transport (and logistic integration of Slovenia with EU

    Directory of Open Access Journals (Sweden)

    Igor Trupac

    2012-10-01

    Full Text Available The article deals with transporl (and logistic integration ofSlovenia with EU. Because of its position Slovenia has goodopportunities for transportation activities. Transpmtation (andlogistics is also of extraordinwy imp01tance for economic developmentand appearance on the European and other markets.

  12. The role of space charge compensation for ion beam extraction and ion beam transport (invited)

    International Nuclear Information System (INIS)

    Spädtke, Peter

    2014-01-01

    Depending on the specific type of ion source, the ion beam is extracted either from an electrode surface or from a plasma. There is always an interface between the (almost) space charge compensated ion source plasma, and the extraction region in which the full space charge is influencing the ion beam itself. After extraction, the ion beam is to be transported towards an accelerating structure in most cases. For lower intensities, this transport can be done without space charge compensation. However, if space charge is not negligible, the positive charge of the ion beam will attract electrons, which will compensate the space charge, at least partially. The final degree of Space Charge Compensation (SCC) will depend on different properties, like the ratio of generation rate of secondary particles and their loss rate, or the fact whether the ion beam is pulsed or continuous. In sections of the beam line, where the ion beam is drifting, a pure electrostatic plasma will develop, whereas in magnetic elements, these space charge compensating electrons become magnetized. The transport section will provide a series of different plasma conditions with different properties. Different measurement tools to investigate the degree of space charge compensation will be described, as well as computational methods for the simulation of ion beams with partial space charge compensation

  13. From microsystems technology to the Saenger II space transportation system

    Science.gov (United States)

    Vogels, Hanns Arnt

    The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.

  14. A Technology Plan for Enabling Commercial Space Business

    Science.gov (United States)

    Lyles, Garry M.

    1997-01-01

    The National Aeronautics and Space Administration's (NASA) Advanced Space Transportation Program is a customer driven, focused technology program that supports the NASA Strategic Plan and considers future commercial space business projections. The initial cycle of the Advanced Space Transportation Program implementation planning was conducted from December 1995 through February 1996 and represented increased NASA emphasis on broad base technology development with the goal of dramatic reductions in the cost of space transportation. The second planning cycle, conducted in January and February 1997, updated the program implementation plan based on changes in the external environment, increased maturity of advanced concept studies, and current technology assessments. The program has taken a business-like approach to technology development with a balanced portfolio of near, medium, and long-term strategic targets. Strategic targets are influenced by Earth science, space science, and exploration objectives as well as commercial space markets. Commercial space markets include those that would be enhanced by lower cost transportation as well as potential markets resulting in major increases in space business induced by reductions in transportation cost. The program plan addresses earth-to-orbit space launch, earth orbit operations and deep space systems. It also addresses all critical transportation system elements; including structures, thermal protection systems, propulsion, avionics, and operations. As these technologies are matured, integrated technology flight experiments such as the X-33 and X-34 flight demonstrator programs support near-term (one to five years) development or operational decisions. The Advanced Space Transportation Program and the flight demonstrator programs combine business planning, ground-based technology demonstrations and flight demonstrations that will permit industry and NASA to commit to revolutionary new space transportation systems

  15. Iterative resonance self-shielding methods using resonance integral table in heterogeneous transport lattice calculations

    International Nuclear Information System (INIS)

    Hong, Ser Gi; Kim, Kang-Seog

    2011-01-01

    This paper describes the iteration methods using resonance integral tables to estimate the effective resonance cross sections in heterogeneous transport lattice calculations. Basically, these methods have been devised to reduce an effort to convert resonance integral table into subgroup data to be used in the physical subgroup method. Since these methods do not use subgroup data but only use resonance integral tables directly, these methods do not include an error in converting resonance integral into subgroup data. The effective resonance cross sections are estimated iteratively for each resonance nuclide through the heterogeneous fixed source calculations for the whole problem domain to obtain the background cross sections. These methods have been implemented in the transport lattice code KARMA which uses the method of characteristics (MOC) to solve the transport equation. The computational results show that these iteration methods are quite promising in the practical transport lattice calculations.

  16. Design and implementation of space physics multi-model application integration based on web

    Science.gov (United States)

    Jiang, Wenping; Zou, Ziming

    With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into

  17. Transport processes in space plasmas

    International Nuclear Information System (INIS)

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth's magnetosphere and associated waves, the Earth's magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth's magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior

  18. Space Station - An integrated approach to operational logistics support

    Science.gov (United States)

    Hosmer, G. J.

    1986-01-01

    Development of an efficient and cost effective operational logistics system for the Space Station will require logistics planning early in the program's design and development phase. This paper will focus on Integrated Logistics Support (ILS) Program techniques and their application to the Space Station program design, production and deployment phases to assure the development of an effective and cost efficient operational logistics system. The paper will provide the methodology and time-phased programmatic steps required to establish a Space Station ILS Program that will provide an operational logistics system based on planned Space Station program logistics support.

  19. Real analysis measure theory, integration, and Hilbert spaces

    CERN Document Server

    Stein, Elias M

    2005-01-01

    Real Analysis is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After

  20. Thermionic integrated circuit technology for high power space applications

    International Nuclear Information System (INIS)

    Yadavalli, S.R.

    1984-01-01

    Thermionic triode and integrated circuit technology is in its infancy and it is emerging. The Thermionic triode can operate at relatively high voltages (up to 2000V) and at least tens of amperes. These devices, including their use in integrated circuitry, operate at high temperatures (800 0 C) and are very tolerant to nuclear and other radiations. These properties can be very useful in large space power applications such as that represented by the SP-100 system which uses a nuclear reactor. This paper presents an assessment of the application of thermionic integrated circuitry with space nuclear power system technology. A comparison is made with conventional semiconductor circuitry considering a dissipative shunt regulator for SP-100 type nuclear power system rated at 100 kW. The particular advantages of thermionic circuitry are significant reductions in size and mass of heat dissipation and radiation shield subsystems

  1. Second Generation Reusable Launch Vehicle Development and Global Competitiveness of US Space Transportation Industry: Critical Success Factors Assessment

    Science.gov (United States)

    Enyinda, Chris I.

    2002-01-01

    In response to the unrelenting call in both public and private sectors fora to reduce the high cost associated with space transportation, many innovative partially or fully RLV (Reusable Launch Vehicles) designs (X-34-37) were initiated. This call is directed at all levels of space missions including scientific, military, and commercial and all aspects of the missions such as nonrecurring development, manufacture, launch, and operations. According to Wertz, tbr over thirty years, the cost of space access has remained exceedingly high. The consensus in the popular press is that to decrease the current astronomical cost of access to space, more safer, reliable, and economically viable second generation RLVs (SGRLV) must be developed. Countries such as Brazil, India, Japan, and Israel are now gearing up to enter the global launch market with their own commercial space launch vehicles. NASA and the US space launch industry cannot afford to lag behind. Developing SGRLVs will immeasurably improve the US's space transportation capabilities by helping the US to regain the global commercial space markets while supporting the transportation capabilities of NASA's space missions, Developing the SGRLVs will provide affordable commercial space transportation that will assure the competitiveness of the US commercial space transportation industry in the 21st century. Commercial space launch systems are having difficulty obtaining financing because of the high cost and risk involved. Access to key financial markets is necessary for commercial space ventures. However, public sector programs in the form of tax incentives and credits, as well as loan guarantees are not yet available. The purpose of this paper is to stimulate discussion and assess the critical success factors germane for RLVs development and US global competitiveness.

  2. FLRW cosmology in Weyl-integrable space-time

    Energy Technology Data Exchange (ETDEWEB)

    Gannouji, Radouane [Department of Physics, Faculty of Science, Tokyo University of Science, 1–3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Nandan, Hemwati [Department of Physics, Gurukula Kangri Vishwavidayalaya, Haridwar 249404 (India); Dadhich, Naresh, E-mail: gannouji@rs.kagu.tus.ac.jp, E-mail: hntheory@yahoo.co.in, E-mail: nkd@iucaa.ernet.in [IUCAA, Post Bag 4, Ganeshkhind, Pune 411 007 (India)

    2011-11-01

    We investigate the Weyl space-time extension of general relativity (GR) for studying the FLRW cosmology through focusing and defocusing of the geodesic congruences. We have derived the equations of evolution for expansion, shear and rotation in the Weyl space-time. In particular, we consider the Starobinsky modification, f(R) = R+βR{sup 2}−2Λ, of gravity in the Einstein-Palatini formalism, which turns out to reduce to the Weyl integrable space-time (WIST) with the Weyl vector being a gradient. The modified Raychaudhuri equation takes the form of the Hill-type equation which is then analysed to study the formation of the caustics. In this model, it is possible to have a Big Bang singularity free cyclic Universe but unfortunately the periodicity turns out to be extremely short.

  3. Demands for Space Transportation Systems for the next 30 years

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Demands for Space Transportation Systems for the next 30 years. Meeting the in-house and commercial launch demand for Communication and Remote Sensing spacecraft. Payload capability enhancement for expendable launch vehicles to meet the national needs.

  4. On the path integral in imaginary Lobachevsky space

    International Nuclear Information System (INIS)

    Grosche, C.

    1993-10-01

    The path integral on the single-sheeted hyperboloid, i.e. in D-dimensional imaginary Lobachevsky space, is evaluated. A potential problem which we call 'Kepler-problem', and the case of a constant magnetic field are also discussed. (orig.)

  5. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  6. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  7. Use of burnup credit for transportation and storage

    International Nuclear Information System (INIS)

    Sanders, T.L.; Ewing, R.I.; Lake, W.H.

    1991-01-01

    Burnup credit is the application of the effects of fuel burnup to nuclear criticality design. When burnup credit is considered in the design of storage facilities and transportation casks for spent fuel, the objectives are to reduce the requirements for storage space and to increase the payload of casks with acceptable nuclear criticality safety margins. The spent-fuel carrying capacities of previous-generation transport casks have been limited primarily by requirements to remove heat and/or to provide shielding. Shielding and heat transfer requirements for casks designed to transport older spent fuel with longer decay times are reduced significantly. Thus a considerable weight margin is available to the designer for increasing the payload capacity. One method to achieve an increase in capacity is to reduce fuel assembly spacing. The amount of reduction in assembly spacing is limited by criticality and fuel support structural concerns. The optimum fuel assembly spacing provides the maximum cask loading within a basket that has adequate criticality control and sufficient structural integrity for regulatory accident scenarios. The incorporation of burnup credit in cask designs could result in considerable benefits in the transport of spent fuel. The acceptance of burnup credit for the design of transport casks depends on the resolution of system safety issues and the uncertainties that affect the determination of criticality safety margins. The remainder of this report will examine these issues and the integrated approach under way to resolve them. 20 refs., 2 figs

  8. Generalized Fractional Integral Operators on Generalized Local Morrey Spaces

    Directory of Open Access Journals (Sweden)

    V. S. Guliyev

    2015-01-01

    Full Text Available We study the continuity properties of the generalized fractional integral operator Iρ on the generalized local Morrey spaces LMp,φ{x0} and generalized Morrey spaces Mp,φ. We find conditions on the triple (φ1,φ2,ρ which ensure the Spanne-type boundedness of Iρ from one generalized local Morrey space LMp,φ1{x0} to another LMq,φ2{x0}, 1space WLMq,φ2{x0}, 1integral inequalities on (φ1,φ2,ρ and (φ,ρ, which do not assume any assumption on monotonicity of φ1(x,r, φ2(x,r, and φ(x,r in r.

  9. Some improved methods in neutron transport theory

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J; Stefanovic, D; Kocic, A; Matausek, M; Bosevski, T [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

    1973-07-01

    The methods described in this paper are: analytical approach to neutron spectra in case of energy dependent anisotropy of elastic scattering; Monte Carlo estimations of neutron absorption reaction rate during slowing down process; spherical harmonics treatment of space-angle-lethargy dependent slowing down transport equation; integral transport theory based on point-wise representation of variables.

  10. Numerical design of electron guns and space charge limited transport systems

    International Nuclear Information System (INIS)

    Herrmannsfeldt, W.B.

    1980-10-01

    This paper describes the capabilities and limitations of computer programs used to design electron guns and similarly space-charge limited transport systems. Examples of computer generated plots from several different types of gun problems are included

  11. An integral equation arising in two group neutron transport theory

    International Nuclear Information System (INIS)

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  12. Determination of albumin transport rate between plasma and peritoneal space in decompensated cirrhosis

    DEFF Research Database (Denmark)

    Ring-Larsen, H; Henriksen, Jens Henrik Sahl

    1984-01-01

    Plasma-to-peritoneal transport rate of albumin (TERperit.space) was determined in eighteen patients with decompensated cirrhosis by sampling ascitic fluid after i.v. injection of 125I-labelled serum albumin. Median TERperit.space was 0.30% of the intravascular albumin mass (IVM) per hour (range 0...

  13. Gauge and integrable theories in loop spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.; Luchini, G.

    2012-01-01

    We propose an integral formulation of the equations of motion of a large class of field theories which leads in a quite natural and direct way to the construction of conservation laws. The approach is based on generalized non-abelian Stokes theorems for p-form connections, and its appropriate mathematical language is that of loop spaces. The equations of motion are written as the equality of a hyper-volume ordered integral to a hyper-surface ordered integral on the border of that hyper-volume. The approach applies to integrable field theories in (1+1) dimensions, Chern-Simons theories in (2+1) dimensions, and non-abelian gauge theories in (2+1) and (3+1) dimensions. The results presented in this paper are relevant for the understanding of global properties of those theories. As a special byproduct we solve a long standing problem in (3+1)-dimensional Yang-Mills theory, namely the construction of conserved charges, valid for any solution, which are invariant under arbitrary gauge transformations.

  14. Energy efficiency of urban transportation system in Xiamen, China. An integrated approach

    International Nuclear Information System (INIS)

    Meng, Fanxin; Liu, Gengyuan; Yang, Zhifeng; Casazza, Marco; Cui, Shenghui; Ulgiati, Sergio

    2017-01-01

    Highlights: • An integrated life cycle approach is used to study Urban Transport Metabolism (UTM). • A selection of different material, energy and environmental assessment methods is synergically applied. • The study is based on an accurate inventory of infrastructure, machinery and operative resource costs. • Results show that the different methods provide much needed insight into different aspects of UTM. • Innovative Bus Rapid Transport shows better resource and environmental performance than Normal Bus Transport system. - Abstract: An integrated life cycle approach framework, including material flow analysis (MFA), Cumulative Energy Demand (CED), exergy analysis (EXA), Emergy Assessment (EMA), and emissions (EMI) has been constructed and applied to examine the energy efficiency of high speed urban bus transportation systems compared to conventional bus transport in the city of Xiamen, Fujian province, China. This paper explores the consistency of the results achieved by means of several evaluation methods, and explores the sustainability of innovation in urban public transportation systems. The case study dealt with in this paper is a Bus Rapid Transit (BRT) system compared to Normal Bus Transit (NBT). All the analyses have been performed based on a common yearly database of natural resources, material, labor, energy and fuel input flows used in all life cycle phases (resource extraction, processing and manufacturing, use and end of life) of the infrastructure, vehicle and vehicle fuel. Cumulative energy, material and environmental support demands of transport are accounted for. Selected pressure indicators are compared to yield a comprehensive picture of the public transportation system. Results show that Bus Rapid Transit system (BRT) shows much better energy and environmental performance than NBT, as indicated by the set of sustainability indicators calculated by means of our integrated approach. This is because of the higher efficiency of such

  15. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.

    2014-12-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method\\'s efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  16. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  17. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  18. Economic Analysis of a Postulated space Tourism Transportation System

    Science.gov (United States)

    Hill, Allan S.

    2002-01-01

    Design concepts and associated costs were defined for a family of launch vehicles supporting a space tourism endeavor requiring the weekly transport of space tourists to and from an Earth- orbiting facility. The stated business goal for the Space Tourist Transportation System (STTS) element of the proposed commercial space venture was to transport and return ~50 passengers a week to LEO at a cost of roughly 50 K per seat commencing in 2005. This paper summarizes the economic analyses conducted within a broader Systems Engineering study of the postulated concept. Parametric costs were derived using TransCostSystems' (TCS) Cost Engineering Handbook, version 7. Costs were developed as a function of critical system characteristics and selected business scenarios. Various economic strategies directed toward achieving a cost of ~50 K per seat were identified and examined. The study indicated that with a `nominal' business scenario, the initial cost for developing and producing a fully reusable, 2-stage STTS element for a baseline of 46-passengers was about 15.5 B assuming a plausible `commercialization factor' of 0.333. The associated per-seat ticket cost was ~890 K, more than an order of magnitude higher than desired. If the system is enlarged to 104 passengers for better efficiency, the STTS initial cost for the nominal business scenario is increased to about 19.8 B and the per-seat ticket cost is reduced to ~530 K. It was concluded that achieving the desired ticket cost of 50 K per seat is not feasible unless the size of the STTS, and therefore of the entire system, is substantially increased. However, for the specified operational characteristics, it was shown that a system capacity of thousands of passengers per week is required. This implies an extremely high total system development cost, which is not very realistic as a commercial venture, especially in the proposed time frame. These results suggested that ambitious commercial space ventures may have to rely on

  19. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    MacLeod, Todd; Gagliano, Larry; Percy, Thomas; Mason, Shane

    2015-01-01

    Effective Space Asset Management is one key to addressing the ever-growing issue of space congestion. It is imperative that agencies around the world have access to data regarding the numerous active assets and pieces of space junk currently tracked in orbit around the Earth. At the center of this issues is the effective management of data of many types related to orbiting objects. As the population of tracked objects grows, so too should the data management structure used to catalog technical specifications, orbital information, and metadata related to those populations. Marshall Space Flight Center's Space Asset Management Database (SAM-D) was implemented in order to effectively catalog a broad set of data related to known objects in space by ingesting information from a variety of database and processing that data into useful technical information. Using the universal NORAD number as a unique identifier, the SAM-D processes two-line element data into orbital characteristics and cross-references this technical data with metadata related to functional status, country of ownership, and application category. The SAM-D began as an Excel spreadsheet and was later upgraded to an Access database. While SAM-D performs its task very well, it is limited by its current platform and is not available outside of the local user base. Further, while modeling and simulation can be powerful tools to exploit the information contained in SAM-D, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. This paper provides a summary of SAM-D development efforts to date and outlines a proposed data management infrastructure that extends SAM-D to support the larger data sets to be generated. A service-oriented architecture model using an information sharing platform named SIMON will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for

  20. Method for Controlling Space Transportation System Life Cycle Costs

    Science.gov (United States)

    McCleskey, Carey M.; Bartine, David E.

    2006-01-01

    A structured, disciplined methodology is required to control major cost-influencing metrics of space transportation systems during design and continuing through the test and operations phases. This paper proposes controlling key space system design metrics that specifically influence life cycle costs. These are inclusive of flight and ground operations, test, and manufacturing and infrastructure. The proposed technique builds on today's configuration and mass properties control techniques and takes on all the characteristics of a classical control system. While the paper does not lay out a complete math model, key elements of the proposed methodology are explored and explained with both historical and contemporary examples. Finally, the paper encourages modular design approaches and technology investments compatible with the proposed method.

  1. Measuring accessibility of sustainable transportation using space syntax in Bojonggede area

    Science.gov (United States)

    Suryawinata, B. A.; Mariana, Y.; Wijaksono, S.

    2017-12-01

    Changes in the physical structure of regional space as a result of the increase of planned and unplanned settlements in the Bojonggede area have an impact on the road network pattern system. Changes in road network patterns will have an impact on the permeability of the area. Permeability measures the extent to which road network patterns provide an option in traveling. If the permeability increases the travel distance decreases and the route of travel choice increases, permeability like this can create an easy access system and physically integrated. This study aims to identify the relationship of physical characteristics of residential area and road network pattern to the level of space permeability in Bojonggede area. By conducting this research can be a reference for the arrangement of circulation, accessibility, and land use in the vicinity of Bojonggede. This research uses quantitative method and space syntax method to see global integration and local integration on the region which become the parameter of permeability level. The results showed that the level of permeability globally and locally high in Bojonggede physical area is the physical characteristics of the area that has a grid pattern of road network grid.

  2. Sustainable transport planning using GIS and remote sensing: an integrated approach

    Science.gov (United States)

    Giorgoudis, Marios D.; Hadjimitsis, Diofantos G.; Shiftan, Yoram

    2014-08-01

    The main advantage of using GIS is its ability to access and analyze spatially distributed data. The applications of GIS to transportation can be viewed as involving either on data retrieval; data integrator; or data analysis. The use of remote sensing can assist the retrieval of land use changes. Indeed, the integration of GIS and remote sensing will be used to fill the gap in the smart transport planning. A four step research is going to be done in order to try to integrate the usage of GIS and remote sensing to sustainable transport planning. The proposed research will be held in the city of Limassol, Cyprus. The data that are going to be used are data that are going to be collected through questionnaires, and other available data from the Cyprus Public Works Department and from the Remote Sensing Laboratory and Geo-Environment Research Lab of the Cyprus University of Technology. Overall, statistical analysis and market segmentation of data will be done, the land usage will be examined, and a scenario building on mode choice will be held. This paper presents an overview of the methodology that will be adopted.

  3. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    Science.gov (United States)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  4. Integrative Analysis of the Physical Transport Network into Australia.

    Directory of Open Access Journals (Sweden)

    Robert C Cope

    Full Text Available Effective biosecurity is necessary to protect nations and their citizens from a variety of threats, including emerging infectious diseases, agricultural or environmental pests and pathogens, and illegal wildlife trade. The physical pathways by which these threats are transported internationally, predominantly shipping and air traffic, have undergone significant growth and changes in spatial distributions in recent decades. An understanding of the specific pathways and donor-traffic hotspots created by this integrated physical transport network is vital for the development of effective biosecurity strategies into the future. In this study, we analysed the physical transport network into Australia over the period 1999-2012. Seaborne and air traffic were weighted to calculate a "weighted cumulative impact" score for each source region worldwide, each year. High risk source regions, and those source regions that underwent substantial changes in risk over the study period, were determined. An overall risk ranking was calculated by integrating across all possible weighting combinations. The source regions having greatest overall physical connectedness with Australia were Singapore, which is a global transport hub, and the North Island of New Zealand, a close regional trading partner with Australia. Both those regions with large amounts of traffic across multiple vectors (e.g., Hong Kong, and those with high levels of traffic of only one type (e.g., Bali, Indonesia with respect to passenger flights, were represented among high risk source regions. These data provide a baseline model for the transport of individuals and commodities against which the effectiveness of biosecurity controls may be assessed, and are a valuable tool in the development of future biosecurity policy.

  5. The Capacity to Integrate and Deal with Environmental Issues in Local Transport Policy and Planning

    DEFF Research Database (Denmark)

    Hansen, Carsten Jahn

    2002-01-01

    The article identifies and discuss the capacity to integrate and deal with environmental issues in local transport policy-making and planning processes.......The article identifies and discuss the capacity to integrate and deal with environmental issues in local transport policy-making and planning processes....

  6. Optimation of Operation System Integration between Main and Feeder Public Transport (Case Study: Trans Jakarta-Kopaja Bus Services)

    Science.gov (United States)

    Miharja, M.; Priadi, Y. N.

    2018-05-01

    Promoting a better public transport is a key strategy to cope with urban transport problems which are mostly caused by a huge private vehicle usage. A better public transport service quality not only focuses on one type of public transport mode, but also concerns on inter modes service integration. Fragmented inter mode public transport service leads to a longer trip chain as well as average travel time which would result in its failure to compete with a private vehicle. This paper examines the optimation process of operation system integration between Trans Jakarta Bus as the main public transport mode and Kopaja Bus as feeder public transport service in Jakarta. Using scoring-interview method combined with standard parameters in operation system integration, this paper identifies the key factors that determine the success of the two public transport operation system integrations. The study found that some key integration parameters, such as the cancellation of “system setoran”, passenger get in-get out at official stop points, and systematic payment, positively contribute to a better service integration. However, some parameters such as fine system, time and changing point reliability, and information system reliability are among those which need improvement. These findings are very useful for the authority to set the right strategy to improve operation system integration between Trans Jakarta and Kopaja Bus services.

  7. Integration of Transport-relevant Data within Image Record of the Surveillance System

    Directory of Open Access Journals (Sweden)

    Adam Stančić

    2016-10-01

    Full Text Available Integration of the collected information on the road within the image recorded by the surveillance system forms a unified source of transport-relevant data about the supervised situation. The basic assumption is that the procedure of integration changes the image to the extent that is invisible to the human eye, and the integrated data keep identical content. This assumption has been proven by studying the statistical properties of the image and integrated data using mathematical model modelled in the programming language Python using the combinations of the functions of additional libraries (OpenCV, NumPy, SciPy and Matplotlib. The model has been used to compare the input methods of meta-data and methods of steganographic integration by correcting the coefficients of Discrete Cosine Transform JPEG compressed image. For the procedures of steganographic data processing the steganographic algorithm F5 was used. The review paper analyses the advantages and drawbacks of the integration methods and present the examples of situations in traffic in which the formed unified sources of transport-relevant information could be used.

  8. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    Science.gov (United States)

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  9. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  10. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  11. Integrated design and manufacturing for the high speed civil transport

    Science.gov (United States)

    1993-01-01

    In June 1992, Georgia Tech's School of Aerospace Engineering was awarded a NASA University Space Research Association (USRA) Advanced Design Program (ADP) to address 'Integrated Design and Manufacturing for the High Speed Civil Transport (HSCT)' in its graduate aerospace systems design courses. This report summarizes the results of the five courses incorporated into the Georgia Tech's USRA ADP program. It covers AE8113: Introduction to Concurrent Engineering, AE4360: Introduction to CAE/CAD, AE4353: Design for Life Cycle Cost, AE6351: Aerospace Systems Design One, and AE6352: Aerospace Systems Design Two. AE8113: Introduction to Concurrent Engineering was an introductory course addressing the basic principles of concurrent engineering (CE) or integrated product development (IPD). The design of a total system was not the objective of this course. The goal was to understand and define the 'up-front' customer requirements, their decomposition, and determine the value objectives for a complex product, such as the high speed civil transport (HSCT). A generic CE methodology developed at Georgia Tech was used for this purpose. AE4353: Design for Life Cycle Cost addressed the basic economic issues for an HSCT using a robust design technique, Taguchi's parameter design optimization method (PDOM). An HSCT economic sensitivity assessment was conducted using a Taguchi PDOM approach to address the robustness of the basic HSCT design. AE4360: Introduction to CAE/CAD permitted students to develop and utilize CAE/CAD/CAM knowledge and skills using CATIA and CADAM as the basic geometric tools. AE6351: Aerospace Systems Design One focused on the conceptual design refinement of a baseline HSCT configuration as defined by Boeing, Douglas, and NASA in their system studies. It required the use of NASA's synthesis codes FLOPS and ACSYNT. A criterion called the productivity index (P.I.) was used to evaluate disciplinary sensitivities and provide refinements of the baseline HSCT

  12. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  13. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2016-12-01

    Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

  14. The integrated evaluation of the macro environment of companies providing transport services

    Directory of Open Access Journals (Sweden)

    A. Žvirblis

    2008-09-01

    Full Text Available The article presents the main principles of the integrated evaluation of macro environment components and factors influencing the performance of transport companies as well as providing the validated quantitative evaluation models and results obtained in evaluating the macro environment of Lithuanian companies providing transport services. Since quantitative evaluation is growing in importance, the process of developing the principles and methods of business macro environment quantitative evaluation is becoming relevant from both theoretical and practical perspectives. The created methodology is based on the concept of macro environment as an integrated whole of components, formalization and the principle of three-stage quantitative evaluation. The methodology suggested involves the quantitative evaluation of primary factors and macro environment components as an integral dimension (expressed in points. On the basis of this principle, an integrated macro environment evaluation parameter is established as its level index. The methodology integrates the identification of significant factors, building scenarios, a primary analysis of factors, expert evaluation, the quantitative evaluation of macro environment components and their whole. The application of the multi-criteria Simple Additive Weighting (SAW method is validated. The integrated evaluation of the macro environment of Lithuanian freight transportation companies was conducted. As a result, the level indices of all components as well as the level index of macro environment considered as a whole of components were identified. The latter reflects the extent of deviation from an average level of a favourable macro environment. This is important for developing strategic marketing decisions and expanding a strategic area.

  15. Transport coefficients for deeply inelastic scattering from the Feynman path integral method

    International Nuclear Information System (INIS)

    Brink, D.M.; Neto, J.; Weidenmueller, H.A.

    1979-01-01

    Friction and diffusion coefficients can be derived simply by combining statistical arguments with the Feynman path integral method. A transport equation for Feynman's influence functional is obtained, and transport coefficients are deduced from it. The expressions are discussed in the limits of weak, and of strong coupling. (Auth.)

  16. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  17. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.

    1993-01-01

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  18. Calculations of Neutron Flux Distributions by Means of Integral Transport Methods

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I

    1967-05-15

    Flux distributions have been calculated mainly in one energy group, for a number of systems representing geometries interesting for reactor calculations. Integral transport methods of two kinds were utilised, collision probabilities (CP) and the discrete method (DIT). The geometries considered comprise the three one-dimensional geometries, planes, sphericals and annular, and further a square cell with a circular fuel rod and a rod cluster cell with a circular outer boundary. For the annular cells both methods (CP and DIT) were used and the results were compared. The purpose of the work is twofold, firstly to demonstrate the versatility and efficacy of integral transport methods and secondly to serve as a guide for anybody who wants to use the methods.

  19. Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study

    Directory of Open Access Journals (Sweden)

    Yuyao Ye

    2017-12-01

    Full Text Available Optimising the spatial structure of cities to promote low-carbon travel is a primary goal of urban planning and construction innovation in the low-carbon era. There is a need for basic research on the structural characteristics that help to reduce motor traffic, thereby promoting energy conservation. We first review the existing literature on the influence of urban spatial structure on transport carbon dioxide emissions and summarise the influence mechanisms. We then present two low-carbon transportation oriented patterns of urban spatial structure including the traditional walking city and the modern transit metropolis, illustrated by case studies. Furthermore, we propose an improved model Green Transportation System Oriented Development (GTOD, which is an extension of traditional transit-oriented development (TOD and includes the additional features of a walking city and an emphasis on the integration of land use with a green transportation system, consisting of the public transportation and non-auto travel system. A compact urban form, effective mix of land use and appropriate scale of block are the basic structural features of a low-carbon transportation city. However, these features are only effective at promoting low-carbon transportation when integrated with the green traffic systems. Proper integration of the urban structural system with the green space system is also required. The optimal land use/transportation integration strategy is to divide traffic corridors with wedge-shaped green spaces and limit development along the transit corridors. This strategy forms the basis of the proposed urban structural model to promote low-carbon transportation and sustainable urban growth management.

  20. Integrated Structural Health Sensors for Inflatable Space Habitats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development of integrated high-definition fiber optic sensors (HD-FOS) and carbon nanotube (CNT)-graphene piezoresistive sensors for...

  1. Intelligent transportation systems problems and perspectives

    CERN Document Server

    Pamuła, Wiesław

    2016-01-01

    This book presents a discussion of problems encountered in the deployment of Intelligent Transport Systems (ITS). It puts emphasis on the early tasks of designing and proofing the concept of integration of technologies in Intelligent Transport Systems. In its first part the book concentrates on the design problems of urban ITS. The second part of the book features case studies representative for the different modes of transport. These are freight transport, rail transport and aerospace transport encompassing also space stations. The book provides ideas for deployment which may be developed by scientists and engineers engaged in the design of Intelligent Transport Systems. It can also be used in the training of specialists, students and post-graduate students in universities and transport high schools.    .

  2. Quantum mechanical path integrals in curved spaces and the type-A trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2017-04-10

    Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.

  3. A solution of the monoenergetic neutral particle transport equation for adjacent half-spaces with anisotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.D., E-mail: ganapol@cowboy.ame.arizona.edu [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ (United States); Mostacci, D.; Previti, A. [Montecuccolino Laboratory, University of Bologna, Via dei Colli, 16, I-40136 Bologna (Italy)

    2016-07-01

    We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination of highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.

  4. Integrated human-machine intelligence in space systems

    Science.gov (United States)

    Boy, Guy A.

    1992-01-01

    The integration of human and machine intelligence in space systems is outlined with respect to the contributions of artificial intelligence. The current state-of-the-art in intelligent assistant systems (IASs) is reviewed, and the requirements of some real-world applications of the technologies are discussed. A concept of integrated human-machine intelligence is examined in the contexts of: (1) interactive systems that tolerate human errors; (2) systems for the relief of workloads; and (3) interactive systems for solving problems in abnormal situations. Key issues in the development of IASs include the compatibility of the systems with astronauts in terms of inputs/outputs, processing, real-time AI, and knowledge-based system validation. Real-world applications are suggested such as the diagnosis, planning, and control of enginnered systems.

  5. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  6. A Belief-Space Approach to Integrated Intelligence - Research Area 10.3: Intelligent Networks

    Science.gov (United States)

    2017-12-05

    A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks The views, opinions and/or findings contained in this...Technology (MIT) Title: A Belief-Space Approach to Integrated Intelligence- Research Area 10.3: Intelligent Networks Report Term: 0-Other Email: tlp...students presented progress and received feedback from the research group . o wrote papers on their research and submitted them to leading conferences

  7. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  8. Systems integration processes for space nuclear electric propulsion systems

    International Nuclear Information System (INIS)

    Olsen, C.S.; Rice, J.W.; Stanley, M.L.

    1991-01-01

    The various components and subsystems that comprise a nuclear electric propulsion system should be developed and integrated so that each functions ideally and so that each is properly integrated with the other components and subsystems in the optimum way. This paper discusses how processes similar to those used in the development and intergration of the subsystems that comprise the Multimegawatt Space Nuclear Power System concepts can be and are being efficiently and effectively utilized for these purposes. The processes discussed include the development of functional and operational requirements at the system and subsystem level; the assessment of individual nuclear power supply and thruster concepts and their associated technologies; the conduct of systems integration efforts including the evaluation of the mission benefits for each system; the identification and resolution of concepts development, technology development, and systems integration feasibility issues; subsystem, system, and technology development and integration; and ground and flight subsystem and integrated system testing

  9. Cis-Lunar Reusable In-Space Transportation Architecture for the Evolvable Mars Campaign

    Science.gov (United States)

    McVay, Eric S.; Jones, Christopher A.; Merrill, Raymond G.

    2016-01-01

    Human exploration missions to Mars or other destinations in the solar system require large quantities of propellant to enable the transportation of required elements from Earth's sphere of influence to Mars. Current and proposed launch vehicles are incapable of launching all of the requisite mass on a single vehicle; hence, multiple launches and in-space aggregation are required to perform a Mars mission. This study examines the potential of reusable chemical propulsion stages based in cis-lunar space to meet the transportation objectives of the Evolvable Mars Campaign and identifies cis-lunar propellant supply requirements. These stages could be supplied with fuel and oxidizer delivered to cis-lunar space, either launched from Earth or other inner solar system sources such as the Moon or near Earth asteroids. The effects of uncertainty in the model parameters are evaluated through sensitivity analysis of key parameters including the liquid propellant combination, inert mass fraction of the vehicle, change in velocity margin, and change in payload masses. The outcomes of this research include a description of the transportation elements, the architecture that they enable, and an option for a campaign that meets the objectives of the Evolvable Mars Campaign. This provides a more complete understanding of the propellant requirements, as a function of time, that must be delivered to cis-lunar space. Over the selected sensitivity ranges for the current payload and schedule requirements of the 2016 point of departure of the Evolvable Mars Campaign destination systems, the resulting propellant delivery quantities are between 34 and 61 tonnes per year of hydrogen and oxygen propellant, or between 53 and 76 tonnes per year of methane and oxygen propellant, or between 74 and 92 tonnes per year of hypergolic propellant. These estimates can guide future propellant manufacture and/or delivery architectural analysis.

  10. An Affordability Comparison Tool (ACT) for Space Transportation

    Science.gov (United States)

    McCleskey, C. M.; Bollo, T. R.; Garcia, J. L.

    2012-01-01

    NASA bas recently emphasized the importance of affordability for Commercial Crew Development Program (CCDP), Space Launch Systems (SLS) and Multi-Purpose Crew Vehicle (MPCV). System architects and designers are challenged to come up with architectures and designs that do not bust the budget. This paper describes the Affordability Comparison Tool (ACT) analyzes different systems or architecture configurations for affordability that allows for a comparison of: total life cycle cost; annual recurring costs, affordability figures-of-merit, such as cost per pound, cost per seat, and cost per flight, as well as productivity measures, such as payload throughput. Although ACT is not a deterministic model, the paper develops algorithms and parametric factors that use characteristics of the architectures or systems being compared to produce important system outcomes (figures-of-merit). Example applications of outcome figures-of-merit are also documented to provide the designer with information on the relative affordability and productivity of different space transportation applications.

  11. Risk Assessment of Structural Integrity of Transportation Casks after Extended Storage

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Luis; Medina, Ricardo; Yang, Haori

    2018-03-23

    This study assessed the risk of loss of structural integrity of transportation casks and fuel cladding after extended storage. Although it is known that fuel rods discharged from NPPs have a small percentage of rod cladding defects, the behavior of fuel cladding and the structural elements of assemblies during transportation after long-term storage is not well understood. If the fuel degrades during extended storage, it could be susceptible to damage from vibration and impact loads during transport operations, releasing fission-product gases into the canister or the cask interior (NWTRB 2010). Degradation of cladding may occur due to mechanisms associated with hydrogen embrittlement, delayed hydride cracking, low temperature creep, and stress corrosion cracking (SCC) that may affect fuel cladding and canister components after extended storage of hundreds of years. Over extended periods at low temperatures, these mechanisms affect the ductility, strength, and fracture toughness of the fuel cladding, which becomes brittle. For transportation purposes, the fuel may be transferred from storage to shipping casks, or dual-purpose casks may be used for storage and transportation. Currently, most of the transportation casks will be the former case. A risk assessment evaluation is conducted based on results from experimental tests and simulations with advanced numerical models. A novel contribution of this study is the evaluation of the combined effect of component aging and vibration/impact loads in transportation scenarios. The expected levels of deterioration will be obtained from previous and current studies on the effect of aging on fuel and cask components. The emphasis of the study is placed on the structural integrity of fuel cladding and canisters.

  12. Path integral quantization of the Aharonov-Bohm-Coulomb system in momentum space

    International Nuclear Information System (INIS)

    Lin, De-Hone

    2001-01-01

    The Coulomb system with a charge moving in the fields of Ahanorov and Bohm is quantized via path integral in momentum space. Due to the dynamics of the system in momentum space being in curve space, our result not only gives the Green function of this interesting system in momentum space but provides the second example to answer an open problem of quantum dynamics in curved spaces posed by DeWitt in 1957: We find that the physical Hamiltonian in curved spaces does not contain the Riemannian scalar curvature R

  13. Designing Clinical Space for the Delivery of Integrated Behavioral Health and Primary Care.

    Science.gov (United States)

    Gunn, Rose; Davis, Melinda M; Hall, Jennifer; Heintzman, John; Muench, John; Smeds, Brianna; Miller, Benjamin F; Miller, William L; Gilchrist, Emma; Brown Levey, Shandra; Brown, Jacqueline; Wise Romero, Pam; Cohen, Deborah J

    2015-01-01

    This study sought to describe features of the physical space in which practices integrating primary care and behavioral health care work and to identify the arrangements that enable integration of care. We conducted an observational study of 19 diverse practices located across the United States. Practice-level data included field notes from 2-4-day site visits, transcripts from semistructured interviews with clinicians and clinical staff, online implementation diary posts, and facility photographs. A multidisciplinary team used a 4-stage, systematic approach to analyze data and identify how physical layout enabled the work of integrated care teams. Two dominant spatial layouts emerged across practices: type-1 layouts were characterized by having primary care clinicians (PCCs) and behavioral health clinicians (BHCs) located in separate work areas, and type-2 layouts had BHCs and PCCs sharing work space. We describe these layouts and the influence they have on situational awareness, interprofessional "bumpability," and opportunities for on-the-fly communication. We observed BHCs and PCCs engaging in more face-to-face methods for coordinating integrated care for patients in type 2 layouts (41.5% of observed encounters vs 11.7%; P < .05). We show that practices needed to strike a balance between professional proximity and private work areas to accomplish job tasks. Private workspace was needed for focused work, to see patients, and for consults between clinicians and clinical staff. We describe the ways practices modified and built new space and provide 2 recommended layouts for practices integrating care based on study findings. Physical layout and positioning of professionals' workspace is an important consideration in practices implementing integrated care. Clinicians, researchers, and health-care administrators are encouraged to consider the role of professional proximity and private working space when creating new facilities or redesigning existing space to foster

  14. The space shuttle program from challenge to achievement: Space exploration rolling on tires

    Science.gov (United States)

    Felder, G. L.

    1985-01-01

    The Space Shuttle Transportation System is the first space program to employ the pneumatic tire as a part of space exploration. For aircraft tires, this program establishes new expectations as to what constitutes acceptable performance within a set of tough environmental and operational conditions. Tire design, stresses the usual low weight, high load, high speed, and excellent air retention features but at extremes well outside industry standards. Tires will continue to be an integral part of the Shuttle's landing phase in the immediate future since they afford a unique combination of directional control, braking traction, flotation and shock absorption not available by other systems.

  15. Integrated risk assessment for spent fuel transportation using developed software

    International Nuclear Information System (INIS)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun; Lee, Sang hoon

    2016-01-01

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed

  16. Integrated risk assessment for spent fuel transportation using developed software

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi Rae; Christian, Robby; Kim, Bo Gyung; Almomani, Belal; Ham, Jae Hyun; Kang, Gook Hyun [KAIST, Daejeon (Korea, Republic of); Lee, Sang hoon [Keimyung University, Daegu (Korea, Republic of)

    2016-05-15

    As on-site spent fuel storage meets limitation of their capacity, spent fuel need to be transported to other place. In this research, risk of two ways of transportation method, maritime transportation and on-site transportation, and interim storage facility were analyzed. Easier and integrated risk assessment for spent fuel transportation will be possible by applying this software. Risk assessment for spent fuel transportation has not been researched and this work showed a case for analysis. By using this analysis method and developed software, regulators can get some insights for spent fuel transportation. For example, they can restrict specific region for preventing ocean accident and also they can arrange spend fuel in interim storage facility avoiding most risky region which have high risk from aircraft engine shaft. Finally, they can apply soft material on the floor for specific stage for on-site transportation. In this software, because we targeted Korea, we need to use Korean reference data. However, there were few Korean reference data. Especially, there was no food chain data for Korean ocean. In MARINRAD, they used steady state food chain model, but it is far from reality. Therefore, to get Korean realistic reference data, dynamic food chain model for Korean ocean need to be developed.

  17. Experience in developing control integrated multilevel systems for gas transport; Developpement de systemes integres de gestion multi-niveaux pour le transport du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Kostyukov, V.Y. [NIIIS, (Russian Federation); Bityukov, V.S. [Gasprom, (Russian Federation)

    2000-07-01

    This report describes the experience of the integrated control multilevel system (IACS) development and implementation for gas transport at the regional enterprises of JSC 'Gasprom', specificity of IACS creation by the Russian enterprises on the basis of the technical and licensed basic software SCADA Geamatics purchased from AEG company under the contract. (authors)

  18. Onboard Space Autonomy Through Integration of Health Management and Control Reconfiguration, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project we propose to integrate spacecraft control and vehicle health functions to improve the robustness and productivity of space operations. The main...

  19. Integrable systems with quadratic nonlinearity in Fourier space

    International Nuclear Information System (INIS)

    Marikhin, V.G.

    2003-01-01

    The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed

  20. On integral formulation of the Mach principle in a conformally flat space

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1976-01-01

    The integral formulation of the Mach principle represents a rather complicated mathematical formalism in which many aspects of the physical content of theory are not clear. Below an attempt is made to consider the integral representation for the most simple case of conformally flat spaces. The fact that this formalism there is only one scalar function makes it possible to analyse in more detail many physical peculiarities of this representation of the Mach principle: the absence of asymptotically flat spaces, problems of inertia and gravity, constraints on state equations, etc

  1. Integration of transport concepts for risk assessment of pesticide erosion

    NARCIS (Netherlands)

    Yang, Xiaomei; Zee, van der Sjoerd E.A.T.M.; Gai, Lingtong; Wesseling, Jan G.; Ritsema, Coen J.; Geissen, Violette

    2016-01-01

    Environmental contamination by agrochemicals has been a large problem for decades. Pesticides are transported in runoff and remain attached to eroded soil particles, posing a risk to water and soil quality and human health. We have developed a parsimonious integrative model of pesticide

  2. Integrated transportation and energy sector CO2 emission control strategies

    DEFF Research Database (Denmark)

    Lund, Henrik; Münster, Ebbe

    2006-01-01

    is the use of biofuel (ethanol) and synthetic fuel (methanol) for internal combustion cars. An increase in the fraction of electricity delivered by fluctuating sources like wind power will lead to excess electricity production and the two aforementioned scenarios have a substantial effect on the decrease...... and power production (CHP), while the transport sector can assist the energy system in integrating a higher degree of intermittent energy and CHP. Two scenarios for partial conversion of the transport fleet have been considered. One is battery cars combined with hydrogen fuel cell cars, while the other...

  3. Control-oriented Automatic System for Transport Analysis (ASTRA)-Matlab integration for Tokamaks

    International Nuclear Information System (INIS)

    Sevillano, M.G.; Garrido, I.; Garrido, A.J.

    2011-01-01

    The exponential growth in energy consumption has led to a renewed interest in the development of alternatives to fossil fuels. Between the unconventional resources that may help to meet this energy demand, nuclear fusion has arisen as a promising source, which has given way to an unprecedented interest in solving the different control problems existing in nuclear fusion reactors such as Tokamaks. The aim of this manuscript is to show how one of the most popular codes used to simulate the performance of Tokamaks, the Automatic System For Transport Analysis (ASTRA) code, can be integrated into the Matlab-Simulink tool in order to make easier and more comfortable the development of suitable controllers for Tokamaks. As a demonstrative case study to show the feasibility and the goodness of the proposed ASTRA-Matlab integration, a modified anti-windup Proportional Integral Derivative (PID)-based controller for the loop voltage of a Tokamak has been implemented. The integration achieved represents an original and innovative work in the Tokamak control area and it provides new possibilities for the development and application of advanced control schemes to the standardized and widely extended ASTRA transport code for Tokamaks. -- Highlights: → The paper presents a useful tool for rapid prototyping of different solutions to deal with the control problems arising in Tokamaks. → The proposed tool embeds the standardized Automatic System For Transport Analysis (ASTRA) code for Tokamaks within the well-known Matlab-Simulink software. → This allows testing and combining diverse control schemes in a unified way considering the ASTRA as the plant of the system. → A demonstrative Proportional Integral Derivative (PID)-based case study is provided to show the feasibility and capabilities of the proposed integration.

  4. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  5. Transport and environmental sustainability: An adapted SPE approach for modelling interactions between transport, infrastructure, economy and environment

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, Erik; Van den Bergh, Jeroen [Department of Spatial Economics, Faculty of Economics and Econometrics, Free University Amsterdam, Amsterdam (Netherlands)

    1994-05-01

    The present paper aims at shedding some light on the concept of `sustainable transport`. Within the context of a sustainable development, the consequences of interdependencies between transport, infrastructure, economy and environment for the formulation of optimal regulatory policies are investigated. The Spatial Price Equilibrium approach is adapted for the analysis of sustainable spatio-economic development, and for the evaluation of first-best and second-best regulatory policies on the issues at hand. The analysis demonstrates the need for integration of elements concerning economic structure, infrastructure, transportation, environment and space in one single analytical framework when considering questions on sustainability in relation to transport. 2 figs., 1 appendix, 10 refs.

  6. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  7. EBQ code: Transport of space-charge beams in axially symmetric devices

    Science.gov (United States)

    Paul, A. C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WODF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present.

  8. EBQ code: transport of space-charge beams in axially symmetric devices

    International Nuclear Information System (INIS)

    Paul, A.C.

    1982-11-01

    Such general-purpose space charge codes as EGUN, BATES, WOLF, and TRANSPORT do not gracefully accommodate the simulation of relativistic space-charged beams propagating a long distance in axially symmetric devices where a high degree of cancellation has occurred between the self-magnetic and self-electric forces of the beam. The EBQ code was written specifically to follow high current beam particles where space charge is important in long distance flight in axially symmetric machines possessing external electric and magnetic field. EBQ simultaneously tracks all trajectories so as to allow procedures for charge deposition based on inter-ray separations. The orbits are treated in Cartesian geometry (position and momentum) with z as the independent variable. Poisson's equation is solved in cylindrical geometry on an orthogonal rectangular mesh. EBQ can also handle problems involving multiple ion species where the space charge from each must be included. Such problems arise in the design of ion sources where different charge and mass states are present

  9. STARS - Supportability Trend Analysis and Reporting System for the National Space Transportation System

    Science.gov (United States)

    Graham, Leroy J.; Doempke, Gerald T.

    1990-01-01

    The concept, implementation, and long-range goals of a Supportability Trend Analysis and Reporting System (STARS) for the National Space Transportation System (NSTS) are discussed. The requirement was established as a direct result of the recommendations of the Rogers Commission investigation of the circumstances of the Space Shuttle Challenger accident. STARS outlines the requirements for the supportability-trend data collection, analysis, and reporting requirements that each of the project offices supporting the Space Shuttle are required to provide to the NSTS program office. STARS data give the historic and predictive logistics information necessary for all levels of NSTS management to make safe and cost-effective decisions concerning the smooth flow of Space Shuttle turnaround.

  10. Space evolution model and empirical analysis of an urban public transport network

    Science.gov (United States)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  11. Fractional type Marcinkiewicz integrals over non-homogeneous metric measure spaces

    Directory of Open Access Journals (Sweden)

    Guanghui Lu

    2016-10-01

    Full Text Available Abstract The main goal of the paper is to establish the boundedness of the fractional type Marcinkiewicz integral M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ on non-homogeneous metric measure space which includes the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel satisfies a certain Hörmander-type condition, the authors prove that M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded from Lebesgue space L 1 ( μ $L^{1}(\\mu$ into the weak Lebesgue space L 1 , ∞ ( μ $L^{1,\\infty}(\\mu$ , from the Lebesgue space L ∞ ( μ $L^{\\infty}(\\mu$ into the space RBLO ( μ $\\operatorname{RBLO}(\\mu$ , and from the atomic Hardy space H 1 ( μ $H^{1}(\\mu$ into the Lebesgue space L 1 ( μ $L^{1}(\\mu$ . Moreover, the authors also get a corollary, that is, M β , ρ , q $\\mathcal{M}_{\\beta,\\rho,q}$ is bounded on L p ( μ $L^{p}(\\mu$ with 1 < p < ∞ $1< p<\\infty$ .

  12. Development of a conceptual framework toward an integrated transportation system (continued).

    Science.gov (United States)

    2011-07-01

    As a continuing effort documented in the first phase project UMAR19-13, this research focuses : on the design of a prototype application under the framework toward an Integrated : Transportation System. More specifically, this research aims at improv...

  13. Integrated Yard Space Allocation and Yard Crane Deployment Problem in Resource-Limited Container Terminals

    Directory of Open Access Journals (Sweden)

    Caimao Tan

    2016-01-01

    Full Text Available Yard storage space and yard crane equipment are the core resources in the container terminal yard area. This paper studies the integrated yard space allocation (outbound container space and yard crane deployment problem in resource-limited container terminals where yard space and yard cranes are extremely scarce. Two corresponding counterstrategies are introduced, respectively, and the integrated problem is solved as mixed integer programming. The model this paper formulated considers the container volume fluctuation of the service line, and the objective is a trade-off between yard sharing space and terminal operation cost. In numerical experiments, this paper tries to reveal the management meaning in practical operation of container terminal and provides decision support for terminal managers; therefore a series of scenarios are presented to analyze the relations among the yard sharing space, the number of yard cranes, the size of yard subblock, and the cost of terminal operation.

  14. Space Shuttle GN and C Development History and Evolution

    Science.gov (United States)

    Zimpfer, Douglas; Hattis, Phil; Ruppert, John; Gavert, Don

    2011-01-01

    Completion of the final Space Shuttle flight marks the end of a significant era in Human Spaceflight. Developed in the 1970 s, first launched in 1981, the Space Shuttle embodies many significant engineering achievements. One of these is the development and operation of the first extensive fly-by-wire human space transportation Guidance, Navigation and Control (GN&C) System. Development of the Space Shuttle GN&C represented first time inclusions of modern techniques for electronics, software, algorithms, systems and management in a complex system. Numerous technical design trades and lessons learned continue to drive current vehicle development. For example, the Space Shuttle GN&C system incorporated redundant systems, complex algorithms and flight software rigorously verified through integrated vehicle simulations and avionics integration testing techniques. Over the past thirty years, the Shuttle GN&C continued to go through a series of upgrades to improve safety, performance and to enable the complex flight operations required for assembly of the international space station. Upgrades to the GN&C ranged from the addition of nose wheel steering to modifications that extend capabilities to control of the large flexible configurations while being docked to the Space Station. This paper provides a history of the development and evolution of the Space Shuttle GN&C system. Emphasis is placed on key architecture decisions, design trades and the lessons learned for future complex space transportation system developments. Finally, some of the interesting flight operations experience is provided to inform future developers of flight experiences.

  15. Feynman rules and generalized ward identities in phase space functional integral

    International Nuclear Information System (INIS)

    Li Ziping

    1996-01-01

    Based on the phase-space generating functional of Green function, the generalized canonical Ward identities are derived. It is point out that one can deduce Feynman rules in tree approximation without carrying out explicit integration over canonical momenta in phase-space generating functional. If one adds a four-dimensional divergence term to a Lagrangian of the field, then, the propagator of the field can be changed

  16. Space charge compensation in the Linac4 low energy beam transport line with negative hydrogen ions

    Energy Technology Data Exchange (ETDEWEB)

    Valerio-Lizarraga, Cristhian A., E-mail: cristhian.alfonso.valerio.lizarraga@cern.ch [CERN, Geneva (Switzerland); Departamento de Investigación en Física, Universidad de Sonora, Hermosillo (Mexico); Lallement, Jean-Baptiste; Lettry, Jacques; Scrivens, Richard [CERN, Geneva (Switzerland); Leon-Monzon, Ildefonso [Facultad de Ciencias Fisico-Matematicas, Universidad Autónoma de Sinaloa, Culiacan (Mexico); Midttun, Øystein [CERN, Geneva (Switzerland); University of Oslo, Oslo (Norway)

    2014-02-15

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Transport using the package IBSimu [T. Kalvas et al., Rev. Sci. Instrum. 81, 02B703 (2010)], which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H{sup −} beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  17. Renewable Hydrogen-Economically Viable: Integration into the U.S. Transportation Sector

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer; Peters, Mike; Muratori, Matteo; Gearhart, Chris

    2018-03-01

    The U.S. transportation sector is expected to meet numerous goals in differing applications. These goals address security, safety, fuel source, emissions reductions, advanced mobility models, and improvements in quality and accessibility. Solutions to meeting these goals include a variety of alternative-fuel technologies, including batteries, fuel cells, synthetic fuels, and biofuels, as well as modifying how current transportation systems are used and integrating new systems, such as storing renewable energy. Overall, there are many combinations of problems, objectives, and solutions.

  18. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  19. Integrated freight network model : a GIS-based platform for transportation analyses.

    Science.gov (United States)

    2015-01-01

    The models currently used to examine the behavior transportation systems are usually mode-specific. That is, they focus on a single mode (i.e. railways, highways, or waterways). The lack of : integration limits the usefulness of models to analyze the...

  20. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  1. Integrating transportation and production: an international study case

    OpenAIRE

    L Bertazzi; O Zappa

    2012-01-01

    The problem we study is inspired by the real case of Mesdan S.p.A., an Italian company worldwide leader in the textile machinery sector, which has two production units with two warehouses, one located in Italy (Brescia) and the other in China (Foshan). The critical point in this logistic system is the integration between production and transportation management, given the long distance between Brescia and Foshan. Shipments are performed by the means of different types of vehicles with differe...

  2. Design of shipping packages to transport varying radioisotopic source materials for future space and terrestrial missions

    International Nuclear Information System (INIS)

    Barklay, C.D.

    1995-01-01

    The exploration of space will begin with manned missions to the moon and to Mars, first for scientific discoveries, then for mining and manufacturing. Because of the great financial costs of this type of exploration, it can only be accomplished through an international team effort. This unified effort must include the design, planning and, execution phases of future space missions, extending down to such activities as isotope processing, and shipping package design, fabrication, and certification. All aspects of this effort potentially involve the use of radioisotopes in some capacity, and the transportation of these radioisotopes will be impossible without a shipping package that is certified by the Nuclear Regulatory Commission or the U.S. Department of Energy for domestic shipments, and the U.S. Department of Transportation or the International Atomic Energy Agency for international shipments. To remain without the international regulatory constraints, and still support the needs of new and challenging space missions conducted within ever-shrinking budgets, shipping package concepts must be innovative. A shipping package must also be versatile enough to be reconfigured to transport the varying radioisotopic source materials that may be required to support future space and terrestrial missions. One such package is the Mound USA/9516/B(U)F. Taking into consideration the potential need to transport specific types of radioisotopes, approximations of dose rates at specific distances were determined taking into account the attenuation of dose rate with distance for varying radioisotopic source materials. As a result, it has been determined that the shipping package requirements that will be demanded by future space (and terrestrial) missions can be met by making minor modifications to the USA/9516/B(U)F. copyright 1995 American Institute of Physics

  3. Integrated visualization of simulation results and experimental devices in virtual-reality space

    International Nuclear Information System (INIS)

    Ohtani, Hiroaki; Ishiguro, Seiji; Shohji, Mamoru; Kageyama, Akira; Tamura, Yuichi

    2011-01-01

    We succeeded in integrating the visualization of both simulation results and experimental device data in virtual-reality (VR) space using CAVE system. Simulation results are shown using Virtual LHD software, which can show magnetic field line, particle trajectory, and isosurface of plasma pressure of the Large Helical Device (LHD) based on data from the magnetohydrodynamics equilibrium simulation. A three-dimensional mouse, or wand, determines the initial position and pitch angle of a drift particle or the starting point of a magnetic field line, interactively in the VR space. The trajectory of a particle and the stream-line of magnetic field are calculated using the Runge-Kutta-Huta integration method on the basis of the results obtained after pointing the initial condition. The LHD vessel is objectively visualized based on CAD-data. By using these results and data, the simulated LHD plasma can be interactively drawn in the objective description of the LHD experimental vessel. Through this integrated visualization, it is possible to grasp the three-dimensional relationship of the positions between the device and plasma in the VR space, opening a new path in contribution to future research. (author)

  4. Comparison of heavy-ion transport simulations: Collision integral in a box

    Science.gov (United States)

    Zhang, Ying-Xun; Wang, Yong-Jia; Colonna, Maria; Danielewicz, Pawel; Ono, Akira; Tsang, Manyee Betty; Wolter, Hermann; Xu, Jun; Chen, Lie-Wen; Cozma, Dan; Feng, Zhao-Qing; Das Gupta, Subal; Ikeno, Natsumi; Ko, Che-Ming; Li, Bao-An; Li, Qing-Feng; Li, Zhu-Xia; Mallik, Swagata; Nara, Yasushi; Ogawa, Tatsuhiko; Ohnishi, Akira; Oliinychenko, Dmytro; Papa, Massimo; Petersen, Hannah; Su, Jun; Song, Taesoo; Weil, Janus; Wang, Ning; Zhang, Feng-Shou; Zhang, Zhen

    2018-03-01

    Simulations by transport codes are indispensable to extract valuable physical information from heavy-ion collisions. In order to understand the origins of discrepancies among different widely used transport codes, we compare 15 such codes under controlled conditions of a system confined to a box with periodic boundary, initialized with Fermi-Dirac distributions at saturation density and temperatures of either 0 or 5 MeV. In such calculations, one is able to check separately the different ingredients of a transport code. In this second publication of the code evaluation project, we only consider the two-body collision term; i.e., we perform cascade calculations. When the Pauli blocking is artificially suppressed, the collision rates are found to be consistent for most codes (to within 1 % or better) with analytical results, or completely controlled results of a basic cascade code. In orderto reach that goal, it was necessary to eliminate correlations within the same pair of colliding particles that can be present depending on the adopted collision prescription. In calculations with active Pauli blocking, the blocking probability was found to deviate from the expected reference values. The reason is found in substantial phase-space fluctuations and smearing tied to numerical algorithms and model assumptions in the representation of phase space. This results in the reduction of the blocking probability in most transport codes, so that the simulated system gradually evolves away from the Fermi-Dirac toward a Boltzmann distribution. Since the numerical fluctuations are weaker in the Boltzmann-Uehling-Uhlenbeck codes, the Fermi-Dirac statistics is maintained there for a longer time than in the quantum molecular dynamics codes. As a result of this investigation, we are able to make judgements about the most effective strategies in transport simulations for determining the collision probabilities and the Pauli blocking. Investigation in a similar vein of other ingredients

  5. Development of a conceptual framework toward an integrated transportation system : final report, April 10, 2009.

    Science.gov (United States)

    2009-04-10

    This report documents research on the conceptual framework of an integrated transportation system with a prototype application under the framework. Three levels of control are involved in this framework: at the global level (an entire transportation ...

  6. Integration of transport and handling equipment at CERN criteria to satisfy operational needs and safety aspects

    CERN Document Server

    Bertone, C; CERN. Geneva. TS Department

    2004-01-01

    Within the last 4 years TS-IC-HM (former ST-HM group) integrated about 150 transport and handling supplies including 29 cranes, 20 fork lift trucks, 60 tunnel vehicles. Most of these are standardised supplies, but very often special functionality has been implemented and the complexity of the equipment has been increased. With the Rocla cryo-dipol transporters even prototype equipment was integrated that had been specially designed for CERN. This paper discusses the differences regarding the actions that have to be performed when the different kind of equipment have to be integrated.

  7. Integrable Flows for Starlike Curves in Centroaffine Space

    Directory of Open Access Journals (Sweden)

    Annalisa Calini

    2013-03-01

    Full Text Available We construct integrable hierarchies of flows for curves in centroaffine R^3 through a natural pre-symplectic structure on the space of closed unparametrized starlike curves. We show that the induced evolution equations for the differential invariants are closely connected with the Boussinesq hierarchy, and prove that the restricted hierarchy of flows on curves that project to conics in RP^2 induces the Kaup-Kuperschmidt hierarchy at the curvature level.

  8. An integrated mission approach to the space exploration initiative will ensure success

    Science.gov (United States)

    Coomes, Edmund P.; Dagle, Jefferey E.; Bamberger, Judith A.; Noffsinger, Kent E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ``return on investment'' and ``commercial product potential'' of the technologies developed. This integrated approach will win the Congressional support needed to secure the financial backing necessary to assure

  9. Space charge compensation on the low energy beam transport of Linac4

    CERN Document Server

    AUTHOR|(SzGeCERN)733270; Scrivens, Richard; Jesus Castillo, Santos

    Part of the upgrade program in the injector chains of the CERN accelerator complex is the replacement of the the proton accelerator Linac2 for the brand new Linac4 which will accelerate H$^-$ and its main goal is to increase the beam intensity in the next sections of the LHC accelerator chain. The Linac4 is now under commissioning and will use several ion sources to produce high intensity unbunched H$^-$ beams with different properties, and the low energy beam transport (LEBT) is the system in charge of match all these different beams to the Radio frequency quadrupole (RFQ). The space charge forces that spread the beam ions apart of each other and cause emittance growth limits the maximum intensity that can be transported in the LEBT, but the space charge of intense unbunched ion beams can be compensated by the generated ions by the impact ionization of the residual gas, which creates a source of secondary particles inside the beam pipe. For negative ion beams, the effect of the beam electric field is to ex...

  10. A Markovian state-space framework for integrating flexibility into space system design decisions

    Science.gov (United States)

    Lafleur, Jarret M.

    The past decades have seen the state of the art in aerospace system design progress from a scope of simple optimization to one including robustness, with the objective of permitting a single system to perform well even in off-nominal future environments. Integrating flexibility, or the capability to easily modify a system after it has been fielded in response to changing environments, into system design represents a further step forward. One challenge in accomplishing this rests in that the decision-maker must consider not only the present system design decision, but also sequential future design and operation decisions. Despite extensive interest in the topic, the state of the art in designing flexibility into aerospace systems, and particularly space systems, tends to be limited to analyses that are qualitative, deterministic, single-objective, and/or limited to consider a single future time period. To address these gaps, this thesis develops a stochastic, multi-objective, and multi-period framework for integrating flexibility into space system design decisions. Central to the framework are five steps. First, system configuration options are identified and costs of switching from one configuration to another are compiled into a cost transition matrix. Second, probabilities that demand on the system will transition from one mission to another are compiled into a mission demand Markov chain. Third, one performance matrix for each design objective is populated to describe how well the identified system configurations perform in each of the identified mission demand environments. The fourth step employs multi-period decision analysis techniques, including Markov decision processes from the field of operations research, to find efficient paths and policies a decision-maker may follow. The final step examines the implications of these paths and policies for the primary goal of informing initial system selection. Overall, this thesis unifies state-centric concepts of

  11. Space-charge limits on the transport of ion beams in a long alternating gradient system

    International Nuclear Information System (INIS)

    Tiefenback, M.G.

    1986-11-01

    We have experimentally studied the space-charge-dominated transport of ion beams in an alternating-gradient channel, without acceleration. We parameterize the focusing strength in terms of the zero-current ''betatron'' oscillation phase advance rate, σ 0 (degrees per focusing period). We have investigated the conditions for ''stability'', defined as the constancy of the total current and phase space area of the beam during transport. We find that the beam may be transported with neither loss of current nor growth in phase area if σ 0 0 . In this regime, the space-charge repulsive force can counter 98-99% of the externally applied focusing field, and the oscillation frequency of the beam particles can be depressed by self-forces to almost a factor of 10 below the zero-current value, limited only by the optical quality of our ion source. For σ 0 > 90 0 , we find that collective interactions bound the maintainable density of the beam, and we present a simple, semi-empirical characterization for stability, within our ability to distinguish the growth rate from zero in our apparatus. Our channel comprises 87 quadrupole lenses, 5 of which are used to prepare the beam for injection into the non-azimuthally-symmetric focusing channel

  12. Effect of space structures against development of transport infrastructure in Banda Aceh by using the concept of transit oriented development

    Science.gov (United States)

    Noer, Fadhly; Matondang, A. Rahim; Sirojuzilam, Saleh, Sofyan M.

    2017-11-01

    Due to the shifting of city urban development causing the shift of city services center, so there is a change in space pattern and space structure in Banda Aceh, then resulting urban sprawl which can lead to congestion problem occurs on the arterial road in Banda Aceh, it can be seen from the increasing number of vehicles per year by 6%. Another issue occurs by urban sprawl is not well organized of settlement due to the uncontrolled use of space so that caused grouping or the differences in socioeconomic strata that can impact to the complexity of population mobility problem. From this background problem considered to be solved by a concept that is Transit Oriented Development (TOD), that is a concept of transportation development in co-operation with spatial. This research will get the model of transportation infrastructure development with TOD concept that can handle transportation problem in Banda Aceh, due to change of spatial structure, and to find whether TOD concept can use for the area that has a population in medium density range. The result that is obtained equation so the space structure is: Space Structure = 0.520 + 0.206X3 + 0.264X6 + 0.100X7 and Transportation Infrastructure Development = -1.457 + 0.652X1 + 0.388X5 + 0.235X6 + 0.222X7 + 0.327X8, So results obtained with path analysis method obtained variable influences, node ratio, network connectivity, travel frequency, travel destination, travel cost, and travel time, it has a lower value when direct effect with transportation infrastructure development, but if the indirect effect through the structure of space has a greater influence, can be seen from spatial structure path scheme - transportation infrastructure development.

  13. System Performance of an Integrated Airborne Spacing Algorithm with Ground Automation

    Science.gov (United States)

    Swieringa, Kurt A.; Wilson, Sara R.; Baxley, Brian T.

    2016-01-01

    The National Aeronautics and Space Administration's (NASA's) first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature ATM technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise time-based scheduling in the Terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools to enable precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise spacing behind another aircraft. Recent simulations and IM algorithm development at NASA have focused on trajectory-based IM operations where aircraft equipped with IM avionics are expected to achieve a spacing goal, assigned by air traffic controllers, at the final approach fix. The recently published IM Minimum Operational Performance Standards describe five types of IM operations. This paper discusses the results and conclusions of a human-in-the-loop simulation that investigated three of those IM operations. The results presented in this paper focus on system performance and integration metrics. Overall, the IM operations conducted in this simulation integrated well with ground-based decisions support tools and certain types of IM operational were able to provide improved spacing precision at the final approach fix; however, some issues were identified that should be addressed prior to implementing IM procedures into real-world operations.

  14. Highly reusable space transportation: Approaches for reducing ETO launch costs to $100 - $200 per pound of payload

    Science.gov (United States)

    Olds, John R.

    1995-01-01

    The Commercial Space Transportation Study (CSTS) suggests that considerable market expansion in earth-to-orbit transportation would take place if current launch prices could be reduced to around $400 per pound of payload. If these low prices can be achieved, annual payload delivered to low earth orbit (LEO) is predicted to reach 6.7 million pounds. The primary market growth will occur in communications, government missions, and civil transportation. By establishing a cost target of $100-$200 per pound of payload for a new launch system, the Highly Reusable Space Transportation (HRST) program has clearly set its sights on removing the current restriction on market growth imposed by today's high launch costs. In particular, achieving the goal of $100-$200 per pound of payload will require significant coordinated efforts in (1) marketing strategy development, (2) business planning, (3) system operational strategy, (4) vehicle technical design, and (5) vehicle maintenance strategy.

  15. Integrated management platform of nuclear fuel storage and transportation based on RFID

    International Nuclear Information System (INIS)

    Song Yafeng; Ma Yanqin; Chen Liyu; Jiang Yong; Wu Jianlei; Yang Haibo; Zhang Haiyan

    2012-01-01

    This paper describes integrated system model to improve work efficiency and optimize control measures of nuclear fuel storage and transportation, RFID and information integration technology is introduced, traditional management processes are innovated in data acquisition and monitoring fields as well, system solutions and design model are given by emphasizing on the following key technologies: cascade protection of information system, security protocol of RFID information, algorithm of collision. (authors)

  16. Decomposing passenger transport futures : Comparing results of global integrated assessment models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.; McCollum, D. L.; van Vuuren, Detlef; Bertram, C.; Carrara, S.; Daly, H.; Fujimori, S.; Kitous, A.; Kyle, P.; Ó Broin, E.; Karkatsoulis, P.; Sano, F.

    The transport sector is growing fast in terms of energy use and accompanying greenhouse gas emissions. Integrated assessment models (IAMs) are used widely to analyze energy system transitions over a decadal time frame to help inform and evaluating international climate policy. As part of this, IAMs

  17. Boltzmann Solver with Adaptive Mesh in Velocity Space

    International Nuclear Information System (INIS)

    Kolobov, Vladimir I.; Arslanbekov, Robert R.; Frolova, Anna A.

    2011-01-01

    We describe the implementation of direct Boltzmann solver with Adaptive Mesh in Velocity Space (AMVS) using quad/octree data structure. The benefits of the AMVS technique are demonstrated for the charged particle transport in weakly ionized plasmas where the collision integral is linear. We also describe the implementation of AMVS for the nonlinear Boltzmann collision integral. Test computations demonstrate both advantages and deficiencies of the current method for calculations of narrow-kernel distributions.

  18. Space-compatible strain gauges as an integration aid for the James Webb Space Telescope Mid-Infrared Instrument

    DEFF Research Database (Denmark)

    Samara-Ratna, Piyal; Sykes, Jon; Bicknell, Chris

    2015-01-01

    Space instruments are designed to be highly optimised, mass efficient hardware required to operate in extreme environments. Building and testing is extremely costly, and damage that appears to have no impact on performance at normal ambient conditions can have disastrous implications when...... to protect the structure from damage. Compatible with space flight requirements, the gauges have been used in both ambient and cryogenic environments and were successfully used to support various tasks including integration to the spacecraft. The article also discusses limitations to using the strain gauge...

  19. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  20. Application of the numerical Laplace transform inversion to neutron transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1989-01-01

    A numerical Laplace transform inversion is developed using the Hurwitz-Zweifel method of evaluating the Fourier cosine integral coupled with an Euler-Knopp transformation. The numerical inversion is then applied to problems in linear transport theory concerning slowing down, time-dependence and featuring the determination of the interior scalar flux solution to the one-group stationary transport equation in half-space geometry

  1. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism.

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J; Verkman, Alan S

    2016-12-01

    A "glymphatic system," which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier-Stokes and convection-diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. © 2016 Jin et al.

  2. Study of extraterrestrial disposal of radioactive wastes. Part 1: Space transportation and destination considerations for extraterrestrial disposal of radioactive wastes. [feasibility of using space shuttle

    Science.gov (United States)

    Thompson, R. L.; Ramler, J. R.; Stevenson, S. M.

    1974-01-01

    A feasibility study of extraterrestrial disposal of radioactive waste is reported. This report covers the initial work done on only one part of the NASA study, that evaluates and compares possible space destinations and space transportation systems. The currently planned space shuttle was found to be more cost effective than current expendable launch vehicles by about a factor of 2. The space shuttle requires a third stage to perform the waste disposal missions. Depending on the particular mission, this third stage could be either a reusable space tug or an expendable stage such as a Centaur.

  3. Integrated risk reduction framework to improve railway hazardous materials transportation safety

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: liu94@illinois.edu; Saat, M. Rapik, E-mail: mohdsaat@illinois.edu; Barkan, Christopher P.L., E-mail: cbarkan@illinois.edu

    2013-09-15

    Highlights: • An integrated framework is developed to optimize risk reduction. • A negative binomial regression model is developed to analyze accident-cause-specific railcar derailment probability. • A Pareto-optimality technique is applied to determine the lowest risk given any level of resource. • A multi-attribute decision model is developed to determine the optimal amount of investment for risk reduction. • The models could aid the government and rail industry in developing cost-efficient risk reduction policy and practice. -- Abstract: Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation.

  4. Integrated water management system - Description and test results. [for Space Station waste water processing

    Science.gov (United States)

    Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.

    1983-01-01

    Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.

  5. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 2. Darboux spaces D{sub III} and D{sub IV}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-08-15

    This is the second paper on the path integral approach of superintegrable systems on Darboux spaces, spaces of non-constant curvature. We analyze in the spaces D{sub III} and D{sub IV} five respectively four superintegrable potentials, which were first given by Kalnins et al. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is determined by a higher order polynomial equation. We show that also the free motion in Darboux space of type III can contain bound states, provided the boundary conditions are appropriate. We state the energy spectrum and the wave-functions, respectively. (orig.)

  6. Comprehensive understandings of energy confinement in LHD plasmas through extensive application of the integrated transport analysis suite

    International Nuclear Information System (INIS)

    Yokoyama, M.; Seki, R.; Suzuki, C.; Ida, K.; Osakabe, M.; Satake, S.; Yamada, H.; Murakami, S.

    2014-10-01

    The integrated transport analysis suite, TASK3D-a, has enhanced energy transport analyses in LHD. It has clearly elucidated (1) the systematic dependence of ion and electron energy confinement on wide variation of plasma parameters, and (2) statistically-derived fitting expressions for the ion and electron heat diffusivities (χ i and χ e ), separately, taking also those radial-profile information into account. In particular, the latter approach can outstrip the conventional scaling laws for the global confinement time (τ E ) in terms of its considerations on profiles (temperature, density, heating depositions etc.). This has been made possible with the analysis database accumulated by the extensive application of the integrated transport analysis suite to experiment data. In this proceeding, TASK3D-a analysis-database for high-ion-temperature (high-T i ) plasmas in LHD (Large Helical Device) are exemplified. This approach should be applicable to any other combinations of integrated transport analysis suites and fusion experiments. (author)

  7. Transport fuel demand responses to fuel price and income projections : Comparison of integrated assessment models

    NARCIS (Netherlands)

    Edelenbosch, O. Y.; van Vuuren, Detlef; Bertram, C.; Carrara, S.; Emmerling, J.; Daly, H.; Kitous, A.; McCollum, D. L.; Saadi Failali, N.

    Income and fuel price pathways are key determinants in projections of the energy system in integrated assessment models. In recent years, more details have been added to the transport sector representation in these models. To better understand the model dynamics, this manuscript analyses transport

  8. Improvements of the integral transport theory method

    International Nuclear Information System (INIS)

    Kavenoky, A.; Lam-Hime, M.; Stankovski, Z.

    1979-01-01

    The integral transport theory is widely used in practical reactor design calculations however it is computer time consuming for two dimensional calculations of large media. In the first part of this report a new treatment is presented; it is based on the Galerkin method: inside each region the total flux is expanded over a three component basis. Numerical comparison shows that this method can considerably reduce the computing time. The second part of the this report is devoted to homogeneization theory: a straightforward calculation of the fundamental mode for an heterogeneous cell is presented. At first general presentation of the problem is given, then it is simplified to plane geometry and numerical results are presented

  9. Connection between Feynman integrals having different values of the space-time dimension

    International Nuclear Information System (INIS)

    Tarasov, O.V.

    1996-05-01

    A systematic algorithm for obtaining recurrence relations for dimensionally regularized Feynman integrals w.r.t. the space-time dimension d is proposed. The relation between d and d-2 dimensional integrals is given in terms of a differential operator for which an explicit formula can be obtained for each Feynman diagram. We show how the method works for one-, two- and three-loop integrals. The new recurrence relations w.r.t. d are complementary to the recurrence relations which derive from the method of integration by parts. We find that the problem of the irreducible numerators in Feynman integrals can be naturally solved in the framework of the proposed generalized recurrence relations. (orig.)

  10. Hybrid state-space time integration of rotating beams

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2012-01-01

    An efficient time integration algorithm for the dynamic equations of flexible beams in a rotating frame of reference is presented. The equations of motion are formulated in a hybrid state-space format in terms of local displacements and local components of the absolute velocity. With inspiration...... of the system rotation enter via global operations with the angular velocity vector. The algorithm is based on an integrated form of the equations of motion with energy and momentum conserving properties, if a kinematically consistent non-linear formulation is used. A consistent monotonic scheme for algorithmic...... energy dissipation in terms of local displacements and velocities, typical of structural vibrations, is developed and implemented in the form of forward weighting of appropriate mean value terms in the algorithm. The algorithm is implemented for a beam theory with consistent quadratic non...

  11. Business process integration between European manufacturers and transport and logistics service providers

    DEFF Research Database (Denmark)

    Mortensen, Ole; Lemoine, W

    2005-01-01

    The goal of the Supply Chain Management process is to create value for customers, stakeholders and all supply chain members, through the integration of disparate processes like manufacturing flow management, customer service and order fulfillment. However, many firms fail in the path of achieving...... a total integration. This study illustrates, from an empirical point of view, the problems associated to SC integration among European firms operating in global/international markets. The focus is on the relationship between two echelons in the supply chain: manufacturers and their transport and logistics...... service providers (TLSPs). The paper examines (1) the characteristics of the collaborative partnerships established between manufacturers and their TLSPs; (2) to what extent manufacturers and their TLSPs have integrated SC business processes; (3) the IT used to support the SC cooperation and integration...

  12. In-Space Transportation for NASA's Evolvable Mars Campaign

    Science.gov (United States)

    Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara

    2015-01-01

    As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars

  13. Null Space Integration Method for Constrained Multibody Systems with No Constraint Violation

    International Nuclear Information System (INIS)

    Terze, Zdravko; Lefeber, Dirk; Muftic, Osman

    2001-01-01

    A method for integrating equations of motion of constrained multibody systems with no constraint violation is presented. A mathematical model, shaped as a differential-algebraic system of index 1, is transformed into a system of ordinary differential equations using the null-space projection method. Equations of motion are set in a non-minimal form. During integration, violations of constraints are corrected by solving constraint equations at the position and velocity level, utilizing the metric of the system's configuration space, and projective criterion to the coordinate partitioning method. The method is applied to dynamic simulation of 3D constrained biomechanical system. The simulation results are evaluated by comparing them to the values of characteristic parameters obtained by kinematics analysis of analyzed motion based unmeasured kinematics data

  14. Fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave and free-space-optics architecture with an adaptive diversity combining technique.

    Science.gov (United States)

    Zhang, Junwen; Wang, Jing; Xu, Yuming; Xu, Mu; Lu, Feng; Cheng, Lin; Yu, Jianjun; Chang, Gee-Kung

    2016-05-01

    We propose and experimentally demonstrate a novel fiber-wireless integrated mobile backhaul network based on a hybrid millimeter-wave (MMW) and free-space-optics (FSO) architecture using an adaptive combining technique. Both 60 GHz MMW and FSO links are demonstrated and fully integrated with optical fibers in a scalable and cost-effective backhaul system setup. Joint signal processing with an adaptive diversity combining technique (ADCT) is utilized at the receiver side based on a maximum ratio combining algorithm. Mobile backhaul transportation of 4-Gb/s 16 quadrature amplitude modulation frequency-division multiplexing (QAM-OFDM) data is experimentally demonstrated and tested under various weather conditions synthesized in the lab. Performance improvement in terms of reduced error vector magnitude (EVM) and enhanced link reliability are validated under fog, rain, and turbulence conditions.

  15. Integration of transport concepts for risk assessment of pesticide erosion.

    Science.gov (United States)

    Yang, Xiaomei; Van Der Zee, Sjoerd E A T M; Gai, Lingtong; Wesseling, Jan G; Ritsema, Coen J; Geissen, Violette

    2016-05-01

    Environmental contamination by agrochemicals has been a large problem for decades. Pesticides are transported in runoff and remain attached to eroded soil particles, posing a risk to water and soil quality and human health. We have developed a parsimonious integrative model of pesticide displacement by runoff and erosion that explicitly accounts for water infiltration, erosion, runoff, and pesticide transport and degradation in soil. The conceptual framework was based on broadly accepted assumptions such as the convection-dispersion equation and lognormal distributions of soil properties associated with transport, sorption, degradation, and erosion. To illustrate the concept, a few assumptions are made with regard to runoff in relatively flat agricultural fields: dispersion is ignored and erosion is modelled by a functional relationship. A sensitivity analysis indicated that the total mass of pesticide associated with soil eroded by water scouring increased with slope, rain intensity, and water field capacity of the soil. The mass of transported pesticide decreased as the micro-topography of the soil surface became more distinct. The timing of pesticide spraying and rate of degradation before erosion negatively affected the total amount of transported pesticide. The mechanisms involved in pesticide displacement, such as runoff, infiltration, soil erosion, and pesticide transport and decay in the topsoil, were all explicitly accounted for, so the mathematical complexity of their description can be high, depending on the situation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Path integral approach for superintegrable potentials on spaces of non-constant curvature. Pt. 1. Darboux spaces D{sub I} and D{sub II}

    Energy Technology Data Exchange (ETDEWEB)

    Grosche, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Pogosyan, G.S. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics]|[Guadalajara Univ., Jalisco (Mexico). Dept. de Matematicas CUCEI; Sissakian, A.N. [Joint Inst. of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics

    2006-07-15

    In this paper the Feynman path integral technique is applied for superintegrable potentials on two-dimensional spaces of non-constant curvature: these spaces are Darboux spaces D{sub I} and D{sub II}, respectively. On D{sub I} there are three and on D{sub II} foru such potentials, respectively. We are able to evaluate the path integral in most of the separating coordinate systems, leading to expressions for the Green functions, the discrete and continuous wave-functions, and the discrete energy-spectra. In some cases, however, the discrete spectrum cannot be stated explicitly, because it is either determined by a transcendental equation involving parabolic cylinder functions (Darboux space I), or by a higher order polynomial equation. The solutions on D{sub I} in particular show that superintegrable systems are not necessarily degenerate. We can also show how the limiting cases of flat space (Constant curvature zero) and the two-dimensional hyperboloid (constant negative curvature) emerge. (Orig.)

  17. Large Scale System Safety Integration for Human Rated Space Vehicles

    Science.gov (United States)

    Massie, Michael J.

    2005-12-01

    Since the 1960s man has searched for ways to establish a human presence in space. Unfortunately, the development and operation of human spaceflight vehicles carry significant safety risks that are not always well understood. As a result, the countries with human space programs have felt the pain of loss of lives in the attempt to develop human space travel systems. Integrated System Safety is a process developed through years of experience (since before Apollo and Soyuz) as a way to assess risks involved in space travel and prevent such losses. The intent of Integrated System Safety is to take a look at an entire program and put together all the pieces in such a way that the risks can be identified, understood and dispositioned by program management. This process has many inherent challenges and they need to be explored, understood and addressed.In order to prepare truly integrated analysis safety professionals must gain a level of technical understanding of all of the project's pieces and how they interact. Next, they must find a way to present the analysis so the customer can understand the risks and make decisions about managing them. However, every organization in a large-scale project can have different ideas about what is or is not a hazard, what is or is not an appropriate hazard control, and what is or is not adequate hazard control verification. NASA provides some direction on these topics, but interpretations of those instructions can vary widely.Even more challenging is the fact that every individual/organization involved in a project has different levels of risk tolerance. When the discrete hazard controls of the contracts and agreements cannot be met, additional risk must be accepted. However, when one has left the arena of compliance with the known rules, there can be no longer be specific ground rules on which to base a decision as to what is acceptable and what is not. The integrator must find common grounds between all parties to achieve

  18. Microfour-point probe for studying electronic transport through surface states

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Shiraki, I.

    2000-01-01

    Microfour-point probes integrated on silicon chips have been fabricated with probe spacings in the range 4-60 mum. They provide a simple robust device for electrical transport measurements at surfaces, bridging the gap between conventional macroscopic four-point probes and scanning tunneling...... transport through surface states, which is not observed on the macroscopic scale, presumably due to scattering at atomic steps. (C) 2000 American Institute of Physics....

  19. Deterministic methods to solve the integral transport equation in neutronic

    International Nuclear Information System (INIS)

    Warin, X.

    1993-11-01

    We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

  20. Monolithic microwave integrated circuit technology for advanced space communication

    Science.gov (United States)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  1. Allocating city space to multiple transportation modes: A new modeling approach consistent with the physics of transport

    OpenAIRE

    Gonzales, Eric J.; Geroliminis, Nikolas; Cassidy, Michael J.; Daganzo, Carlos F.

    2008-01-01

    A macroscopic modeling approach is proposed for allocating a city’s road space among competing transport modes. In this approach, a city or neighborhood street network is viewed as a reservoir with aggregated traffic. Taking the number of vehicles (accumulation) in a reservoir as input, we show how one can reliably predict system performance in terms of person and vehicle hours spent in the system and person and vehicle kilometers traveled. The approach is used here to unveil two important ...

  2. NASA/BAE SYSTEMS SpaceWire Effort

    Science.gov (United States)

    Rakow, Glenn Parker; Schnurr, Richard G.; Kapcio, Paul

    2003-01-01

    This paper discusses the state of the NASA and BAE SYSTEMS developments of SpaceWire. NASA has developed intellectual property that implements SpaceWire in Register Transfer Level (RTL) VHDL for a SpaceWire link and router. This design has been extensively verified using directed tests from the SpaceWire Standard and design specification, as well as being randomly tested to flush out hard to find bugs in the code. The high level features of the design will be discussed, including the support for multiple time code masters, which will be useful for the James Webb Space Telescope electrical architecture. This design is now ready to be targeted to FPGA's and ASICs. Target utilization and performance information will be presented for Spaceflight worthy FPGA's and a discussion of the ASIC implementations will be addressed. In particular, the BAE SYSTEMS ASIC will be highlighted which will be implemented on their .25micron rad-hard line. The chip will implement a 4-port router with the ability to tie chips together to make larger routers without external glue logic. This part will have integrated LVDS drivers/receivers, include a PLL and include skew control logic. It will be targeted to run at greater than 300 MHz and include the implementation for the proposed SpaceWire transport layer. The need to provide a reliable transport mechanism for SpaceWire has been identified by both NASA And ESA, who are attempting to define a transport layer standard that utilizes a low overhead, low latency connection oriented approach that works end-to-end. This layer needs to be implemented in hardware to prevent bottlenecks.

  3. Design of integrated autopilot/autothrottle for NASA TSRV airplane using integral LQG methodology. [transport systems research vehicle

    Science.gov (United States)

    Kaminer, Isaac; Benson, Russell A.

    1989-01-01

    An integrated autopilot/autothrottle control system has been developed for the NASA transport system research vehicle using a two-degree-of-freedom approach. Based on this approach, the feedback regulator was designed using an integral linear quadratic regulator design technique, which offers a systematic approach to satisfy desired feedback performance requirements and guarantees stability margins in both control and sensor loops. The resulting feedback controller was discretized and implemented using a delta coordinate concept, which allows for transient free controller switching by initializing all controller states to zero and provides a simple solution for dealing with throttle limiting cases.

  4. Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    Production of transportation fuels from biorefineries via biomass gasification has been suggested as a way of introducing renewable alternatives in the transportation system with an aim to reduce greenhouse gas emissions to the atmosphere. By co-locating gasification-based processes within heat demanding industries, excess heat from the gasification process can replace fossil or renewable fuels. The objective of this study was to compare the heat integration potential of four different gasification-based biorefinery concepts with a chemical pulp and paper mill. The results showed that the choice of end-product which was either methanol, Fischer-Tropsch crude, synthetic natural gas or electricity, can have significant impact on the heat integration potential with a pulp and paper mill and that the heat saving measures implemented in the mill in connection to integration of a gasification process can increase the biomass resource efficiency by up to 3%-points. Heat saving measures can reduce the necessary biomass input to the biorefinery by 50% if the sizing constraint is to replace the bark boiler with excess heat from the biorefinery. A large integrated gasification process with excess steam utilisation in a condensing turbine was beneficial only if grid electricity is produced at below 30% electrical efficiency. - Highlights: • Biomass gasification integrated with a pulp and paper mill. • Different sizing constraints of integrated biofuel production. • The biofuel product largely influence the heat integration potential. • An oversized gasifier for increased power production could be favourable.

  5. An Analysis and Review of Measures and Relationships in Space Transportation Affordability

    Science.gov (United States)

    Zapata, Edgar; McCleskey, Carey

    2014-01-01

    The affordability of transportation to or from space is of continued interest across numerous and diverse stakeholders in our aerospace industry. Such an important metric as affordability deserves a clear understanding among stakeholders about what is meant by affordability, costs, and related terms, as otherwise it's difficult to see where specific improvements are needed or where to target specific investments. As captured in the famous words of Lewis Carroll, "If you don't know where you are going, any road will get you there". As important as understanding a metric may be, with terms such as costs, prices, specific costs, average costs, marginal costs, etc., it is equally important to understand the relationship among these measures. In turn, these measures intermingle with caveats and factors that introduce more measures in need of a common understanding among stakeholders. These factors include flight rates, capability, and payload. This paper seeks to review the costs of space transportation systems and the relationships among the many factors involved in costs from the points of view of diverse decision makers. A decision maker may have an interest in acquiring a single launch considering the best price (along with other factors in their business case), or an interest in many launches over time. Alternately, a decision maker may have a specific interest in developing a space transportation system that will offer certain prices, or flight rate capability, or both, at a certain up-front cost. The question arises for the later, to reuse or to expend? As it is necessary in thinking about the future to clearly understand the past and the present, this paper will present data and graphics to assist stakeholders in visualizing trends and the current state of affairs in the launch industry. At all times, raw data will be referenced (or made available separately) alongside detailed explanations about the data, so as to avoid the confusion or misleading conclusions

  6. A Systems Approach to Developing an Affordable Space Ground Transportation Architecture using a Commonality Approach

    Science.gov (United States)

    Garcia, Jerry L.; McCleskey, Carey M.; Bollo, Timothy R.; Rhodes, Russel E.; Robinson, John W.

    2012-01-01

    This paper presents a structured approach for achieving a compatible Ground System (GS) and Flight System (FS) architecture that is affordable, productive and sustainable. This paper is an extension of the paper titled "Approach to an Affordable and Productive Space Transportation System" by McCleskey et al. This paper integrates systems engineering concepts and operationally efficient propulsion system concepts into a structured framework for achieving GS and FS compatibility in the mid-term and long-term time frames. It also presents a functional and quantitative relationship for assessing system compatibility called the Architecture Complexity Index (ACI). This paper: (1) focuses on systems engineering fundamentals as it applies to improving GS and FS compatibility; (2) establishes mid-term and long-term spaceport goals; (3) presents an overview of transitioning a spaceport to an airport model; (4) establishes a framework for defining a ground system architecture; (5) presents the ACI concept; (6) demonstrates the approach by presenting a comparison of different GS architectures; and (7) presents a discussion on the benefits of using this approach with a focus on commonality.

  7. CITY TRANSPORT IN BARRIER-FREE ARCHITECTURAL PLANNING SPACE FOR PEOPLE WITH LIMITED MOBILITY

    Directory of Open Access Journals (Sweden)

    Pryadko Igor’ Petrovich

    2014-09-01

    Full Text Available This paper reviews the current state of transport organization for people with limited mobility. The article evaluates the results of the actions the executive authorities of Moscow and Moscow Region take. Barrier-free space organization for disabled people and parents with prams is given a special attention. The lack of strategy in the sphere leads to considerable difficulties for people with limited ability. This problem should be solved in cooperation with the survey of other peoples' needs. The article gives examples of comfortable urban space in Sochi, Moscow, Chita, Mytishchi and analyses the ways urbanism influences people with limited abilities.

  8. Path integral approach for electron transport in disturbed magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori

    2002-05-01

    A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)

  9. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  10. An integrated approach to transportation policy in BC : assessing greenhouse gas reductions opportunities in freight transportation

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, B.; Ries, F.; Reynolds, C.; Mazzi, E. [British Columbia Univ., Vancouver, BC (Canada). Inst. for Resources, Environment and Sustainability; Lim, C. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Civil Engineering, Bureau of Intelligent Transportation Systems and Freight Security; Dowlatabadi, H. [British Columbia Univ., Vancouver, BC (Canada). Inst. for Resources, Environment and Sustainability; British Columbia Univ., Vancouver, BC (Canada). Liu Inst. for Global Issues

    2008-11-15

    This paper presented an integrated assessment for the design of greenhouse gas (GHG) emission reduction policies in British Columbia (BC) with particular reference to the drivers of GHG emissions from the transportation sector. Transportation services are central to the movement of goods and people in modern economies and their provision involves tradeoffs between economic benefits, health effects, and social and environmental impacts. More than a dozen BC initiatives were reviewed, with a specific focus on freight movement. The paper emphasized that consequences of proposals such as low carbon fuel standards need to be carefully assessed, along with mandated vehicle technologies, congestion fees and investment in alternative transportation infrastructure. The Activity, Modal Share, Intensity and Fuel (ASIF) framework was shown to provide insight into drivers of GHG emissions and the potential impact of policy decisions. The framework refers to factors such as the amount of kilometres traveled, share of activity per mode of travel, energy intensity, and GHG emissions per unit of energy for fuel type used in the transportation mode. The relationship between factors indicates that GHG emissions increase as energy intensity increases and as the carbon intensity of fuel increases. The overall intensity of the fleet depends greatly on vehicle composition and the share of travel between different modes. refs., tabs., figs.

  11. Project ARGO: The design and analysis of an all-propulsive and an aeroassisted version of a manned space transportation vehicle

    Science.gov (United States)

    Wang, H.; Seifert, D.; Waidelich, J.; Mileski, M.; Herr, D.; Wilks, M.; Law, G.; Folz, A.

    1989-01-01

    The Senior Aerospace System Design class at the University of Michigan undertook the design of a manned space transportation vehicle (STV) that would transport payloads between low earth orbit (LEO) and geosynchronous earth orbit (GEO). Designated ARGO after the ship of the Greek adventurer Jason, two different versions of an STV that would be based, refueled, and serviced at the Space Station Freedom were designed and analyzed by the class. With the same 2-man/7-day nominal mission of transporting a 10,000-kg payload up to GEO and bringing a 5000-kg payload back to LEO, the two versions of ARGO differ in the manner in which the delta V is applied to insert the vehicle into LEO upon return from GEO. The all-propulsive ARGO (or CSTV for chemical STV) uses thrust from its LH2/LOX rocket engines to produce the delta V during all phases of its mission. While the aeroassisted ARGO (or ASTV for aeroassisted STV) also uses the same engines for the majority of the mission, the final delta V used to insert the ASTV into LEO is produced by skimming the Earth's atmosphere and using the drag on the vehicle to apply the required delta V. This procedure allows for large propellant, and thus cost, savings, but creates many design problems such as the high heating rates and decelerations experienced by a vehicle moving through the atmosphere at hypersonic velocities. The design class, consisting of 43 senior aerospace engineering students, was divided into one managerial and eight technical groups. The technical groups consisted of spacecraft configuration and integration, mission analysis, atmospheric flight, propulsion, power and communications, life support and human factors, logistics and support, and systems analysis. Two committees were set up with members from each group to create the scale models of the STV's and to produce the final report.

  12. almaBTE : A solver of the space-time dependent Boltzmann transport equation for phonons in structured materials

    Science.gov (United States)

    Carrete, Jesús; Vermeersch, Bjorn; Katre, Ankita; van Roekeghem, Ambroise; Wang, Tao; Madsen, Georg K. H.; Mingo, Natalio

    2017-11-01

    almaBTE is a software package that solves the space- and time-dependent Boltzmann transport equation for phonons, using only ab-initio calculated quantities as inputs. The program can predictively tackle phonon transport in bulk crystals and alloys, thin films, superlattices, and multiscale structures with size features in the nm- μm range. Among many other quantities, the program can output thermal conductances and effective thermal conductivities, space-resolved average temperature profiles, and heat-current distributions resolved in frequency and space. Its first-principles character makes almaBTE especially well suited to investigate novel materials and structures. This article gives an overview of the program structure and presents illustrative examples for some of its uses. PROGRAM SUMMARY Program Title:almaBTE Program Files doi:http://dx.doi.org/10.17632/8tfzwgtp73.1 Licensing provisions: Apache License, version 2.0 Programming language: C++ External routines/libraries: BOOST, MPI, Eigen, HDF5, spglib Nature of problem: Calculation of temperature profiles, thermal flux distributions and effective thermal conductivities in structured systems where heat is carried by phonons Solution method: Solution of linearized phonon Boltzmann transport equation, Variance-reduced Monte Carlo

  13. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    Science.gov (United States)

    1998-09-01

    A unique opportunity for journalists and cameramen to view INTEGRAL will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 22 September. On show will be the full-size structural thermal model which is now beeing examined in ESA's test centre. Following introductions to the project, the INTEGRAL spacecraft can be seen, filmed and photographed in its special clean room environment.. Media representatives wishing to participate in the visit to ESA's test centre and the presentation of INTEGRAL are kindly requested to return by fax the attached registration form to ESA Public relations, Tel. +33 (0) 1.53.69.71.55 - Fax. +33 (0) 1.53.69.76.90. For details please see the attached programme Gamma-ray astronomy - why ? Gamma-rays cannot be detected from the ground since the earth's atmosphere shields us from high energetic radiation. Only space technology has made gamma-astronomy possible. To avoid background radiation effects INTEGRAL will spend most of its time in the orbit outside earth's radiation belts above an altitude of 40'000 km. Gamma-rays are the highest energy form of electromagnetic radiation. Therefore gamma-ray astronomy explores the most energetic phenomena occurring in nature and addresses some of the most fundamental problems in physics. We know for instance that most of the chemical elements in our bodies come from long-dead stars. But how were these elements formed? INTEGRAL will register gamma-ray evidence of element-making. Gamma-rays also appear when matter squirms in the intense gravity of collapsed stars or black holes. One of the most important scientific objectives of INTEGRAL is to study such compact objects as neutron stars or black holes. Besides stellar black holes there may exist much bigger specimens of these extremely dense objects. Most astronomers believe that in the heart of our Milky Way as in the centre of other galaxies there may lurk giant black holes. INTEGRAL will have to find evidence of these exotic objects. Even

  14. SPLET - A program for calculating the space-lethargy distribution of epithermal neutrons in a reactor lattice cell

    International Nuclear Information System (INIS)

    Matausek, M.V.; Zmijatevic, I.

    1981-01-01

    A procedure to solve the space-single-lethargy dependent transport equation for epithermal neutrons in a cylindricised multi-region reactor lattice cell has been developed and proposed in the earlier papers. Here, the computational algorithm is comprised and the computing program SPLET, which calculates the space-lethargy distribution of the spherical harmonics neutron flux moments, as well as the related integral quantities as reaction rates and resonance integrals, is described. (author)

  15. Integrated risk reduction framework to improve railway hazardous materials transportation safety.

    Science.gov (United States)

    Liu, Xiang; Saat, M Rapik; Barkan, Christopher P L

    2013-09-15

    Rail transportation plays a critical role to safely and efficiently transport hazardous materials. A number of strategies have been implemented or are being developed to reduce the risk of hazardous materials release from train accidents. Each of these risk reduction strategies has its safety benefit and corresponding implementation cost. However, the cost effectiveness of the integration of different risk reduction strategies is not well understood. Meanwhile, there has been growing interest in the U.S. rail industry and government to best allocate resources for improving hazardous materials transportation safety. This paper presents an optimization model that considers the combination of two types of risk reduction strategies, broken rail prevention and tank car safety design enhancement. A Pareto-optimality technique is used to maximize risk reduction at a given level of investment. The framework presented in this paper can be adapted to address a broader set of risk reduction strategies and is intended to assist decision makers for local, regional and system-wide risk management of rail hazardous materials transportation. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. A space-qualified experiment integrating HTS digital circuits and small cryocoolers

    International Nuclear Information System (INIS)

    Silver, A.; Akerling, G.; Auten, R.

    1996-01-01

    High temperature superconductors (HTS) promise to achieve electrical performance superior to that of conventional electronics. For application in space systems, HTS systems must simultaneously achieve lower power, weight, and volume than conventional electronics, and meet stringent space qualification and reliability requirements. Most effort to date has focused on passive RF/microwave applications. However, incorporation of active microwave components such as amplifiers, mixers, and phase shifters, and on-board high data rate digital signal processing is limited by the power and weight of their spacecraft electronic and support modules. Absence of data on active HTS components will prevent their utilization in space. To validate the feasibility in space of HTS circuits and components based on Josephson junctions, one needs to demonstrate HTS circuits and critical supporting technologies, such as space-qualified packaging and interconnects, closed-cycle cryocooling, and interface electronics. This paper describes the packaging, performance, and space test plan of an integrated, space-qualified experimental package consisting of HTS Josephson junction circuits and all the supporting components for NRL's high temperature superconductor space experiment (HTSSE-II). Most of the technical challenges and approaches are equally applicable to passive and active RF/microwave and digital electronic components, and this experiment will provide valuable validation data

  17. Integrating National Space Visions

    Science.gov (United States)

    Sherwood, Brent

    2006-01-01

    This paper examines value proposition assumptions for various models nations may use to justify, shape, and guide their space programs. Nations organize major societal investments like space programs to actualize national visions represented by leaders as investments in the public good. The paper defines nine 'vision drivers' that circumscribe the motivations evidently underpinning national space programs. It then describes 19 fundamental space activity objectives (eight extant and eleven prospective) that nations already do or could in the future use to actualize the visions they select. Finally the paper presents four contrasting models of engagement among nations, and compares these models to assess realistic pounds on the pace of human progress in space over the coming decades. The conclusion is that orthogonal engagement, albeit unlikely because it is unprecedented, would yield the most robust and rapid global progress.

  18. Stochastic integration in Banach spaces theory and applications

    CERN Document Server

    Mandrekar, Vidyadhar

    2015-01-01

    Considering Poisson random measures as the driving sources for stochastic (partial) differential equations allows us to incorporate jumps and to model sudden, unexpected phenomena. By using such equations the present book introduces a new method for modeling the states of complex systems perturbed by random sources over time, such as interest rates in financial markets or temperature distributions in a specific region. It studies properties of the solutions of the stochastic equations, observing the long-term behavior and the sensitivity of the solutions to changes in the initial data. The authors consider an integration theory of measurable and adapted processes in appropriate Banach spaces as well as the non-Gaussian case, whereas most of the literature only focuses on predictable settings in Hilbert spaces. The book is intended for graduate students and researchers in stochastic (partial) differential equations, mathematical finance and non-linear filtering and assumes a knowledge of the required integrati...

  19. Space Station Freedom environmental control and life support system phase 3 simplified integrated test detailed report

    Science.gov (United States)

    Roberts, B. C.; Carrasquillo, R. L.; Dubiel, M. Y.; Ogle, K. Y.; Perry, J. L.; Whitley, K. M.

    1990-01-01

    A description of the phase 3 simplified integrated test (SIT) conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) in 1989 is presented. This was the first test in the phase 3 series integrated environmental control and life support systems (ECLSS) tests. The basic goal of the SIT was to achieve full integration of the baseline air revitalization (AR) subsystems for Space Station Freedom. Included is a description of the SIT configuration, a performance analysis of each subsystem, results from air and water sampling, and a discussion of lessons learned from the test. Also included is a full description of the preprototype ECLSS hardware used in the test.

  20. Particle integrity, sampling, and application of a DNA-tagged tracer for aerosol transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Kaeser, Cynthia Jeanne [Michigan State Univ., East Lansing, MI (United States)

    2017-07-21

    Aerosols are an ever-present part of our daily environment and have extensive effects on both human and environmental health. Particles in the inhalable range (1-10 μm diameter) are of particular concern because their deposition in the lung can lead to a variety of illnesses including allergic reactions, viral or bacterial infections, and cancer. Understanding the transport of inhalable aerosols across both short and long distances is necessary to predict human exposures to aerosols. To assess the transport of hazardous aerosols, surrogate tracer particles are required to measure their transport through occupied spaces. These tracer particles must not only possess similar transport characteristics to those of interest but also be easily distinguished from the background at low levels and survive the environmental conditions of the testing environment. A previously-developed DNA-tagged particle (DNATrax), composed of food-grade sugar and a DNA oligonucleotide as a “barcode” label, shows promise as a new aerosol tracer. Herein, the use of DNATrax material is validated for use in both indoor and outdoor environments. Utilizing passive samplers made of materials commonly found in indoor environments followed by quantitative polymerase chain reaction (qPCR) assay for endpoint particle detection, particles detection was achieved up to 90 m from the aerosolization location and across shorter distances with high spatial resolution. The unique DNA label and PCR assay specificity were leveraged to perform multiple simultaneous experiments. This allowed the assessment of experimental reproducibility, a rare occurrence among aerosol field tests. To transition to outdoor testing, the solid material provides some protection of the DNA label when exposed to ultraviolet (UV) radiation, with 60% of the DNA remaining intact after 60 minutes under a germicidal lamp and the rate of degradation declining with irradiation time. Additionally, exposure of the DNATrax material using

  1. Geoinformation Systems as a Tool of the Integrated Tourist Spaces Management

    Directory of Open Access Journals (Sweden)

    Kolesnikovich Victor

    2014-09-01

    Full Text Available Introduction. Currently tourist activity management is in need of creating special conditions for the development of integrated management tools based on the general information and analytical base. Material and methods. The creation of architecture and the content of geoinformation and hybrid information systems are oriented at the usage of the Integrated Tourist Spaces Management (ITSM to set up a specific claim related to the features of management model. The authors created the concept of tourist space. The information and the analytical system are used to create the information model of tourist space. Information support development of ITSM system is a sort of a hybrid system: an expert system constructed on the basis of GIS. Results and conclusions. By means of GIS collecting, storage, analysis and graphic visualization of spatial data and the related information on the objects presented in an expert system is provided. The offered approach leads to the formation of an information system and the analytical maintenance of not only human decision-making, but it also promotes the creation of new tourist products based on more and more differentiated inquiries of clients or a ratio of the price and quality (from the point of view of satisfaction of inquiries.

  2. The magnetic touch illusion: A perceptual correlate of visuo-tactile integration in peripersonal space.

    Science.gov (United States)

    Guterstam, Arvid; Zeberg, Hugo; Özçiftci, Vedat Menderes; Ehrsson, H Henrik

    2016-10-01

    To accurately localize our limbs and guide movements toward external objects, the brain must represent the body and its surrounding (peripersonal) visual space. Specific multisensory neurons encode peripersonal space in the monkey brain, and neurobehavioral studies have suggested the existence of a similar representation in humans. However, because peripersonal space lacks a distinct perceptual correlate, its involvement in spatial and bodily perception remains unclear. Here, we show that applying brushstrokes in mid-air at some distance above a rubber hand-without touching it-in synchrony with brushstrokes applied to a participant's hidden real hand results in the illusory sensation of a "magnetic force" between the brush and the rubber hand, which strongly correlates with the perception of the rubber hand as one's own. In eight experiments, we characterized this "magnetic touch illusion" by using quantitative subjective reports, motion tracking, and behavioral data consisting of pointing errors toward the rubber hand in an intermanual pointing task. We found that the illusion depends on visuo-tactile synchrony and exhibits similarities with the visuo-tactile receptive field properties of peripersonal space neurons, featuring a non-linear decay at 40cm that is independent of gaze direction and follows changes in the rubber hand position. Moreover, the "magnetic force" does not penetrate physical barriers, thus further linking this phenomenon to body-specific visuo-tactile integration processes. These findings provide strong support for the notion that multisensory integration within peripersonal space underlies bodily self-attribution. Furthermore, we propose that the magnetic touch illusion constitutes a perceptual correlate of visuo-tactile integration in peripersonal space. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. A two stage launch vehicle for use as an advanced space transportation system for logistics support of the space station

    Science.gov (United States)

    1987-01-01

    This report describes the preliminary design specifications for an Advanced Space Transportation System consisting of a fully reusable flyback booster, an intermediate-orbit cargo vehicle, and a shuttle-type orbiter with an enlarged cargo bay. It provides a comprehensive overview of mission profile, aerodynamics, structural design, and cost analyses. These areas are related to the overall feasibility and usefullness of the proposed system.

  4. An integrated mission approach to the space exploration initiative will ensure success

    International Nuclear Information System (INIS)

    Coomes, E.P.; Dagle, J.E.; Bamberger, J.A.; Noffsinger, K.E.

    1991-01-01

    The direction of the American space program, as defined by President Bush and the National Commission on Space, is to expand human presence into the solar system. Landing an American on Mars by the 50th anniversary of the Apollo 11 lunar landing is the goal. This challenge has produced a level of excitement among young Americans not seen for nearly three decades. The exploration and settlement of the space frontier will occupy the creative thoughts and energies of generations of Americans well into the next century. The return of Americans to the moon and beyond must be viewed as a national effort with strong public support if it is to become a reality. Key to making this an actuality is the mission approach selected. Developing a permanent presence in space requires a continual stepping outward from Earch in a logical progressive manner. If we seriously plan to go and to stay, then not only must we plan what we are to do and how we are to do it, we must address the logistic support infrastructure that will allow us to stay there once we arrive. A fully integrated approach to mission planning is needed if the Space exploration Initiative (SEI) is to be successful. Only in this way can a permanent human presence in space be sustained. An integrated infrastructure approach would reduce the number of new systems and technologies requiring development. The resultant horizontal commonality of systems and hardware would reduce the direct economic impact of SEI while an early return on investment through technology spin-offs would be an economic benefit by greatly enhancing our international technical competitiveness. If the exploration, development, and colonization of space is to be affordable and acceptable, careful consideration must be given to such things as ''return on investment'' and ''commercial product potential'' of the technologies developed

  5. Integrated ELM simulation with edge MHD stability and transport of SOL-divertor plasmas

    International Nuclear Information System (INIS)

    Hayashi, Nobuhiko; Takizuka, Tomonori; Aiba, Nobuyuki; Ozeki, Takahisa; Oyama, Naoyuki

    2007-07-01

    The effect of the pressure profile on the energy loss caused by edge localized modes (ELMs) has been investigated by using an integrated simulation code TOPICS-IB based on a core transport code with a stability code for the peeling-ballooning modes and a transport model for scrape-off-layer and divertor plasmas. The steep pressure gradient inside the pedestal top is found to broaden the region of the ELM enhanced transport through the broadening of eigenfunctions and enhance the ELM energy loss. The ELM energy loss in the simulation becomes larger than 15% of the pedestal energy, as is shown in the database of multi-machine experiments. (author)

  6. Spatial model of convective solute transport in brain extracellular space does not support a “glymphatic” mechanism

    Science.gov (United States)

    Jin, Byung-Ju; Smith, Alex J.

    2016-01-01

    A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS. PMID:27836940

  7. Integration Processes on Civil Service Reform in the Eurasian Space

    Directory of Open Access Journals (Sweden)

    George A. Borshevskiy

    2016-01-01

    Full Text Available In the article was studied the process of reforming the institute of civil service in the countries of the Eurasian space (e.g. Russia, Belarus and Kazakhstan. The integration of national systems of public administration and, in particular, the civil service, is an important factor contributing to the implementation of the centripetal tendencies in the post-Soviet space. The research methodology is based on a combination of comparative legal analysis, historical retrospective method, normalization and scaling, structural-functional and system analysis. A comparison of the legal models of public service was made in research. The author puts forward the hypothesis that it is presence the relationship between the quantitative changes (for example, number of employees of civil service and the dynamics of macroeconomic indicators (e.g. number of employed in the economy. In this regard were observed common trends. On materials of the statistical surveys were considered quantitative changes in national systems of civil service. The study of the socio-demographic characteristics of the public service (gender, age, profession allowed to formulate conclusions about the general and specific trends in the reform of the civil service of the analyzed countries. A number of values were first calculated by the author. The work is intended to become the basis for a broad international research on the development of civil service, which is the central mechanism for implementation the integration in the post-Soviet space.

  8. The Challenges of Integrating NASA's Human, Budget, and Data Capital within the Constellation Program's Exploration Launch Projects Office

    Science.gov (United States)

    Kidd, Luanne; Morris, Kenneth B.; Self, Tim

    2006-01-01

    The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into usehl knowledge that equips the team to design and develop superior products for customers and stakeholders. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates these resources to create an engineering business environment that promotes mission success.

  9. Public Participation Procedure in Integrated Transport and Green Infrastructure Planning

    Science.gov (United States)

    Finka, Maroš; Ondrejička, Vladimír; Jamečný, Ľubomír; Husár, Milan

    2017-10-01

    The dialogue among the decision makers and stakeholders is a crucial part of any decision-making processes, particularly in case of integrated transportation planning and planning of green infrastructure where a multitude of actors is present. Although the theory of public participation is well-developed after several decades of research, there is still a lack of practical guidelines due to the specificity of public participation challenges. The paper presents a model of public participation for integrated transport and green infrastructure planning for international project TRANSGREEN covering the area of five European countries - Slovakia, Czech Republic, Austria, Hungary and Romania. The challenge of the project is to coordinate the efforts of public actors and NGOs in international environment in oftentimes precarious projects of transport infrastructure building and developing of green infrastructure. The project aims at developing and environmentally-friendly and safe international transport network. The proposed public participation procedure consists of five main steps - spread of information (passive), collection of information (consultation), intermediate discussion, engagement and partnership (empowerment). The initial spread of information is a process of communicating with the stakeholders, informing and educating them and it is based on their willingness to be informed. The methods used in this stage are public displays, newsletters or press releases. The second step of consultation is based on transacting the opinions of stakeholders to the decision makers. Pools, surveys, public hearings or written responses are examples of the multitude of ways to achieve this objective and the main principle of openness of stakeholders. The third step is intermediate discussion where all sides of are invited to a dialogue using the tools such as public meetings, workshops or urban walks. The fourth step is an engagement based on humble negotiation, arbitration and

  10. Space allowance of young goats during transportation to slaughter = Beladingsdichtheid tijdens het wegtransport van jonge geiten

    NARCIS (Netherlands)

    Hindle, V.A.; Reimert, H.G.M.; Werf, van der J.T.N.; Lambooij, E.

    2011-01-01

    Research was performed during long distance road transportations of young goats (6-8 weeks). Effects of three space allowances on physiological responses (blood parameters, heart rate and body temperature) were measured.

  11. A Study of the Time–Space Evolution Characteristics of Urban–Rural Integration Development in a Mountainous Area Based on ESDA-GIS: The Case of the Qinling-Daba Mountains in China

    Directory of Open Access Journals (Sweden)

    Xin Wu

    2016-10-01

    Full Text Available The multi-index comprehensive evaluation method is used in this paper to estimate the urban–rural integration development level of the Qinling-Daba Mountains in China and build an evaluation index system that is composed by five subsystems and 18 basic indexes. The integration of the indexes is conducted through linear weight sum method and the weight of each index is determined through analytic network process to get the urban–rural integration development coordination indexes of each county in the Qinling-Daba Mountains. Meanwhile, the time–space evolution characteristic of urban–rural integration development in the Qinling-Daba Mountains in the past 10 years is studied through exploratory spatial data analysis and GIS technology. The results indicate that urban–rural integration displays a spatial imbalance, with a situation of polarization, i.e., high–level counties gathering with each other; the spatial aggregation rule of west–high, east–low is coupled with land conditions, industrial activity, and the transportation situation to affect the urban–rural development. Finally, we propose that development priorities should be circular industry, eco-agriculture, and tourism to accelerate urban–rural development and work towards a comprehensive modern transportation system and other infrastructure in the Qinling-Daba Mountains.

  12. Problems in manufacturing and transport of pressure vessels of integral reactors

    International Nuclear Information System (INIS)

    Kralovec, J.

    1997-01-01

    Integral water-cooled reactors are typical with eliminating large-diameter primary pipes and placing primary components, i.e. steam generators and pressurizers in reactor vessels. This arrangement leads to reactor pressure vessels of large dimensions: diameters, heights and thick walls and subsequently to great weights. Thus, even medium power units have pressure vessels which are on the very limit of present manufacturing capabilities. Principal manufacturing and inspection operations as well as pertinent equipment are concerned: welding, cladding, heat treatment, machining, shop-handling, non-destructive testing, hydraulic pressure tests etc. Tile transport of such a large and heavy component makes a problem which effects its design as well as the selection of the plant site. Railway, road and ship are possible ways of transport each of them having its advantages and limitations. Specific features and limits of the manufacture and transport of large pressure vessels are discussed in the paper. (author)

  13. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    Science.gov (United States)

    Ismail, M. A.; Said, M. N.

    2014-06-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis.

  14. Integration of geospatial multi-mode transportation Systems in Kuala Lumpur

    International Nuclear Information System (INIS)

    Ismail, M A; Said, M N

    2014-01-01

    Public transportation serves people with mobility and accessibility to workplaces, health facilities, community resources, and recreational areas across the country. Development in the application of Geographical Information Systems (GIS) to transportation problems represents one of the most important areas of GIS-technology today. To show the importance of GIS network analysis, this paper highlights the determination of the optimal path between two or more destinations based on multi-mode concepts. The abstract connector is introduced in this research as an approach to integrate urban public transportation in Kuala Lumpur, Malaysia including facilities such as Light Rapid Transit (LRT), Keretapi Tanah Melayu (KTM) Komuter, Express Rail Link (ERL), KL Monorail, road driving as well as pedestrian modes into a single intelligent data model. To assist such analysis, ArcGIS's Network Analyst functions are used whereby the final output includes the total distance, total travelled time, directional maps produced to find the quickest, shortest paths, and closest facilities based on either time or distance impedance for multi-mode route analysis

  15. The Integrated Knowledge Space - the Foundation for Enhancing the Effectiveness of the University’s Innovative Activity

    Directory of Open Access Journals (Sweden)

    Yury TELNOV

    2009-01-01

    Full Text Available The paper examines the implementation of Integrated Knowledge Space as an effective method for knowledge management in a global university network which will integrate all interested parties of the educational space: the faculty, scholars and business people within the framework of distributed departments on the basis of Information Centre of Disciplines (ICD. ICD enables higher education institutions to accumulate and make on-line renewal of knowledge for teaching and learning processes and for enhancing innovation potential. ICD facilitates the development of human and relational capital of integrated and interconnected educational, research and business communities.

  16. Integration of the Belarusian Space Research Potential Into International University Nanosatellite Programm

    Science.gov (United States)

    Saetchnikov, Vladimir; Ablameyko, Sergey; Ponariadov, Vladimir

    astrometry and ballistic data processing. Next point is university satellite. We are developing now several modules for education: data acquisition, telemetry, communication systems and also are very interested to cooperate in this field with international partners. Space Research is certainly a “high end” of any science system such as material sciences and engineering, applied mathematics, cybernetics, ICT, radio physics, electronics, etc. Moreover, space research capacities enable cutting edge research works in such areas as Environment (e.g. Earth observation), Biotechnologies, Health, New Materials, etc. Progress in integrating Belarusian Space Research potential into international society will serve as a catalyst and enabler for all critically important scientific and technological fields to advance on the way of development and global integration.

  17. Towards the integration of orbital space use in Life Cycle Impact Assessment.

    Science.gov (United States)

    Maury, Thibaut; Loubet, Philippe; Ouziel, Jonathan; Saint-Amand, Maud; Dariol, Ludovic; Sonnemann, Guido

    2017-10-01

    A rising sustainability concern is occurring in the space sector: 29,000 human-made objects, larger than 10cm are orbiting the Earth but only 6% are operational spacecrafts. Today, space debris is today a significant and constant danger to all space missions. Consequently, it becomes compelled to design new space missions considering End-of-Life requirements in order to ensure the sustainable use of space orbits. Furthermore, Life Cycle Assessment (LCA) has been identified by the European Space Agency as an adequate tool to measure the environmental impact of spacecraft missions. Hence, our challenge is to integrate orbital space use into Life Cycle Impact Assessment (LCIA) to broaden the scope of LCA for space systems. The generation of debris in the near-Earth's orbital regions leads to a decrease in volume availability. The Area-of-Protection (AoP) 'resources' seems to be the most relevant reflection of this depletion. To address orbital space use in a comprehensive way, we propose a first attempt at establishing an impact pathway linking outer space use to resources. This framework will be the basis for defining new indicator(s) related to orbital space use. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Path integration and separation of variables in spaces of constant curvature in two and three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    1993-10-01

    In this paper path integration in two- and three-dimensional spaces of constant curvature is discussed: i.e. the flat spaces R 2 and R 3 , the two- and three-dimensional sphere and the two- and three dimensional pseudosphere. The Laplace operator in these spaces admits separation of variables in various coordinate systems. In all these coordinate systems the path integral formulation will be stated, however in most of them an explicit solution in terms of the spectral expansion can be given only on a formal level. What can be stated in all cases, are the propagator and the corresponding Green function, respectively, depending on the invariant distance which is a coordinate independent quantity. This property gives rise to numerous identities connecting the corresponding path integral representations and propagators in various coordinate systems with each other. (orig.)

  19. Directions of development of transport infrastructure of Ukraine

    Directory of Open Access Journals (Sweden)

    V.I. Kopytko

    2012-08-01

    Full Text Available The trends of the transport infrastructure development as a basic factor of national security, the stable and dynamic economic growth, its integration into the European and world economic space are considered. The most important element of the transport infrastructure in the modern economy is a network of logistic providers, which reduce transaction costs and improve the quality of transport service. And the main direction of government policy according to infrastructure should be a gradual transition of activities for establishing and operating the infrastructure objects, that is a burden for the State, from a cost sphere to an efficient business based on the state-private partnership.

  20. F4 quantum integrable, rational and trigonometric models: space-of-orbits view

    International Nuclear Information System (INIS)

    Turbiner, A V; Vieyra, J C Lopez

    2014-01-01

    Algebraic-rational nature of the four-dimensional, F 4 -invariant integrable quantum Hamiltonians, both rational and trigonometric, is revealed and reviewed. It was shown that being written in F 4 Weyl invariants, polynomial and exponential, respectively, both similarity-transformed Hamiltonians are in algebraic form, they are quite similar the second order differential operators with polynomial coefficients; the flat metric in the Laplace-Beltrami operator has polynomial (in invariants) matrix elements. Their potentials are calculated for the first time: they are meromorphic (rational) functions with singularities at the boundaries of the configuration space. Ground state eigenfunctions are algebraic functions in a form of polynomials in some degrees. Both Hamiltonians preserve the same infinite flag of polynomial spaces with characteristic vector (1, 2, 2, 3), it manifests exact solvability. A particular integral common for both models is derived. The first polynomial eigenfunctions are presented explicitly.

  1. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    Science.gov (United States)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  2. Path Integrals and Anomalies in Curved Space

    International Nuclear Information System (INIS)

    Louko, Jorma

    2007-01-01

    Bastianelli and van Nieuwenhuizen's monograph 'Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaume and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a

  3. Transport simulation of EAST long-pulse H-mode discharge with integrated modeling

    Science.gov (United States)

    Wu, M. Q.; Li, G. Q.; Chen, J. L.; Du, H. F.; Gao, X.; Ren, Q. L.; Li, K.; Chan, Vincent; Pan, C. K.; Ding, S. Y.; Jian, X.; Zhu, X.; Lian, H.; Qian, J. P.; Gong, X. Z.; Zang, Q.; Duan, Y. M.; Liu, H. Q.; Lyu, B.

    2018-04-01

    In the 2017 EAST experimental campaign, a steady-state long-pulse H-mode discharge lasting longer than 100 s has been obtained using only radio frequency heating and current drive, and the confinement quality is slightly better than standard H-mode, H98y2 ~ 1.1, with stationary peaked electron temperature profiles. Integrated modeling of one long-pulse H-mode discharge in the 2016 EAST experimental campaign has been performed with equilibrium code EFIT, and transport codes TGYRO and ONETWO under integrated modeling framework OMFIT. The plasma current is fully-noninductively driven with a combination of ~2.2 MW LHW, ~0.3 MW ECH and ~1.1 MW ICRF. Time evolution of the predicted electron and ion temperature profiles through integrated modeling agree closely with that from measurements. The plasma current (I p ~ 0.45 MA) and electron density are kept constantly. A steady-state is achieved using integrated modeling, and the bootstrap current fraction is ~28%, the RF drive current fraction is ~72%. The predicted current density profile matches the experimental one well. Analysis shows that electron cyclotron heating (ECH) makes large contribution to the plasma confinement when heating in the core region while heating in large radius does smaller improvement, also a more peaked LHW driven current profile is got when heating in the core. Linear analysis shows that the high-k modes instability (electron temperature gradient driven modes) is suppressed in the core region where exists weak electron internal transport barriers. The trapped electron modes dominates in the low-k region, which is mainly responsible for driving the electron energy flux. It is found that the ECH heating effect is very local and not the main cause to sustained the good confinement, the peaked current density profile has the most important effect on plasma confinement improvement. Transport analysis of the long-pulse H-mode experiments on EAST will be helpful to build future experiments.

  4. An Integrated Inventory-Transportation System with Periodic Pick-Ups and Leveled Replenishment

    Directory of Open Access Journals (Sweden)

    Thomas Volling

    2013-11-01

    Full Text Available In this paper we develop a combined inventory-transportation system. The general idea is to integrate a simple replenishment policy with a routing component to derive operationally consistent standard routes as a basis for milk run design. The most interesting feature of the approach is that we combine stochastic vehicle routing with a replenishment policy which makes use of inventory to level the variability propagated into transportation operations. To evaluate the approach, we compare its performance with stochastic vehicle routing as well as sequential vehicle routing and replenishment planning. With respect to these approaches, substantial gains are achieved.

  5. An integrated transient model for simulating the operation of natural gas transport systems

    NARCIS (Netherlands)

    Pambour, Kwabena Addo; Bolado-Lavin, Ricardo; Dijkema, Gerard P. J.

    This paper presents an integrated transient hydraulic model that describes the dynamic behavior of natural gas transport systems (GTS). The model includes sub models of the most important facilities comprising a GTS, such as pipelines, compressor stations, pressure reduction stations, underground

  6. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    Science.gov (United States)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  7. Flat tori in three-dimensional space and convex integration.

    Science.gov (United States)

    Borrelli, Vincent; Jabrane, Saïd; Lazarus, Francis; Thibert, Boris

    2012-05-08

    It is well-known that the curvature tensor is an isometric invariant of C(2) Riemannian manifolds. This invariant is at the origin of the rigidity observed in Riemannian geometry. In the mid 1950s, Nash amazed the world mathematical community by showing that this rigidity breaks down in regularity C(1). This unexpected flexibility has many paradoxical consequences, one of them is the existence of C(1) isometric embeddings of flat tori into Euclidean three-dimensional space. In the 1970s and 1980s, M. Gromov, revisiting Nash's results introduced convex integration theory offering a general framework to solve this type of geometric problems. In this research, we convert convex integration theory into an algorithm that produces isometric maps of flat tori. We provide an implementation of a convex integration process leading to images of an embedding of a flat torus. The resulting surface reveals a C(1) fractal structure: Although the tangent plane is defined everywhere, the normal vector exhibits a fractal behavior. Isometric embeddings of flat tori may thus appear as a geometric occurrence of a structure that is simultaneously C(1) and fractal. Beyond these results, our implementation demonstrates that convex integration, a theory still confined to specialists, can produce computationally tractable solutions of partial differential relations.

  8. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method

    DEFF Research Database (Denmark)

    Chen, Jingzhe; Thygesen, Kristian S.; Jacobsen, Karsten W.

    2012-01-01

    We present an efficient implementation of a nonequilibrium Green's function method for self-consistent calculations of electron transport and forces in nanostructured materials. The electronic structure is described at the level of density functional theory using the projector augmented wave method...... over k points and real space makes the code highly efficient and applicable to systems containing several hundreds of atoms. The method is applied to a number of different systems, demonstrating the effects of bias and gate voltages, multiterminal setups, nonequilibrium forces, and spin transport....

  9. Classically integrable boundary conditions for symmetric-space sigma models

    International Nuclear Information System (INIS)

    MacKay, N.J.; Young, C.A.S.

    2004-01-01

    We investigate boundary conditions for the non-linear sigma model on the compact symmetric space G/H. The Poisson brackets and the classical local conserved charges necessary for integrability are preserved by boundary conditions which correspond to involutions which commute with the involution defining H. Applied to SO(3)/SO(2), the non-linear sigma model on S 2 , these yield the great circles as boundary submanifolds. Applied to GxG/G, they reproduce known results for the principal chiral model

  10. Divergences in the moduli space integral and accumulating handles in the infinite-genus limit

    International Nuclear Information System (INIS)

    Davis, S.

    1992-12-01

    The symmetries associated with the bosonic string partition function integral are examined so that the integration region in Teichmuller space can be determined. The translation of the conditions on the period matrix defining the fundamental region can be translated to relations on the parameters of the uniformising Schottky group. The growth of the lower bound for the regularized partition function is derived through integration over a subset of the fundamental region. (author). 20 refs

  11. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  12. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  13. Integrating ISHM with Flight Avionics Architectures for Cyber-Physical Space Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Substantial progress has been made by NASA in integrating flight avionics and ISHM with well-defined caution and warning system, however, the scope of ACAW alerting...

  14. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    , and cultural differences, to ensure an efficient response to customer issues using a small Customer Service Team (CST) and adaptability, constant communication with customers, technical expertise and knowledge of services, and dedication to customer service. The HOSC Customer Support Team has implemented a variety of processes, and procedures that help to mitigate the potential problems that arise when integrating ground system services for a variety of complex missions and the lessons learned from this experience will lead the future of customer service in the space operations industry.

  15. Integration of weather information in transportation management center operations : self-evaluation and planning guide

    Science.gov (United States)

    2008-06-30

    The Federal Highway Administrations Road Weather Management Program is helping to reduce the adverse impacts of weather on the transportation system by assisting agencies in integrating weather information and technologies into their daily Transpo...

  16. Integrated risk management of safety and development on transportation corridors

    International Nuclear Information System (INIS)

    Thekdi, Shital A.; Lambert, James H.

    2015-01-01

    Prioritization of investments to protect safety and performance of multi-regional transportation networks from adjacent land development is a key concern for infrastructure agencies, land developers, and other stakeholders. Despite ample literature describing relationships between transportation and land use, no evidence-based methods exist for monitoring corridor needs on a large scale. Risk analysis is essential to the preservation of system safety and capacity, including avoidance of costly retrofits, regret, and belated action. This paper introduces the Corridor Trace Analysis (CTA) for prioritizing corridor segments that are vulnerable to adjacent land development. The method integrates several components: (i) estimation of likelihood of adjacent land development, using influence diagram and rule-based modeling, (ii) characterization of access point density using geospatial methods, and (iii) plural-model evaluation of corridors, monitoring indices of land development likelihood, access point densities, and traffic volumes. The results inform deployment of options that include closing access points, restricting development, and negotiation of agencies and developers. The CTA method is demonstrated on a region encompassing 6000 centerline miles (about 10,000 km) of transportation corridors. The method will be of interest to managers investing in safety and performance of infrastructure systems, balancing safety, financial, and other criteria of concern for diverse stakeholders. - Highlights: • The Corridor Trace Analysis (CTA) method for prioritizing transportation corridors. • The CTA method studies corridors vulnerable to adjacent land development. • The CTA method quantifies the influence of risk scenarios on agency priorities. • The CTA method is demonstrated on 6000 miles of critical transportation corridor

  17. Electre III method in assessment of variants of integrated urban public transport system in Cracow

    Directory of Open Access Journals (Sweden)

    Katarzyna SOLECKA

    2014-12-01

    Full Text Available There is a lot of methods which are currently used for assessment of urban public transport system development and operation e.g. economic analysis, mostly Cost-Benefit Analysis – CBA, Cost-Effectiveness Analysis - CEA, hybrid methods, measurement methods (survey e.g. among passengers and measurement of traffic volume, vehicles capacity etc., and multicriteria decision aiding methods (multicriteria analysis. The main aim of multicriteria analysis is the choice of the most desirable solution from among alternative variants according to different criteria which are difficult to compare against one another. There are several multicriteria methods for assessment of urban public transport system development and operation, e.g. AHP, ANP, Electre, Promethee, Oreste. The paper presents an application of one of the most popular variant ranking methods – Electre III method. The algorithm of Electre III method usage is presented in detail and then its application for assessment of variants of urban public transport system integration in Cracow is shown. The final ranking of eight variants of integration of urban public transport system in Cracow (from the best to the worst variant was drawn up with the application of the Electre III method. For assessment purposes 10 criteria were adopted: economical, technical, environmental, and social; they form a consistent criteria family. The problem was analyzed with taking into account different points of view: city authorities, public transport operators, city units responsible for transport management, passengers and others users. Separate models of preferences for all stakeholders were created.

  18. Transport and handling LHC components A permanent challenge

    CERN Document Server

    Bertone, C

    2004-01-01

    The LHC project, collider and experiments, is an assembly of thousands of elements, large or small, heavy or light, fragile or robust. Each element has its own transport requirements that constitute a real challenge to handle. Even simple manoeuvres could lead to difficulties in integration, routing and execution due to the complex environment and confined underground spaces. Examples of typical LHC elements transport and handling will be detailed such as the 16-m long, 34-t heavy, fragile cryomagnets from the surface to the final destination in the tunnel, or the delicate cryogenic cold-boxes down to pits and detector components. This challenge did not only require a lot of imagination but also a close cooperation between all the involved parties, in particular with colleagues from safety, cryogenics, civil engineering, integration and logistics.

  19. The Space Shuttle and expendable launch systems - A U.S. commercial customer perspective

    Science.gov (United States)

    Savage, M.; Chagnon, R.

    1985-10-01

    The development of space transportation systems for commercial satellite launches is reviewed. A comparison of the Ariane system with the Space Shuttle is presented. The performance capability, reliability, and availability of the two systems are analyzed; the Ariane 4 is capable of launching payloads of 1900-4200 kg into transfer orbits and is better positioned than the Shuttle to handle commercial payloads greater than 1900 kg. The insurance costs, and spacecraft and launcher integration complexity for the two systems are discussed. The launch cost and postponement penalties are studied. NASA's launch cost is based on the length or mass of the payload multiplied by the fixed Shuttle cost, with Ariane attempting to keep prices $1-3 million lower, in order to be competitive with the Shuttle. NASA offers one free postponement and penalties as high as 55 percent; Ariane's penalties range from 6-18 percent of the launch price. The need for lower prices, an easier integration process, customer convience, and less severe postponement and reflight policies in order for the space transportation systems to be commercially useful, is discussed.

  20. Methodology for coupling computational fluid dynamics and integral transport neutronics

    International Nuclear Information System (INIS)

    Thomas, J. W.; Zhong, Z.; Sofu, T.; Downar, T. J.

    2004-01-01

    The CFD code STAR-CD was coupled to the integral transport code DeCART in order to provide high-fidelity, full physics reactor simulations. An interface program was developed to perform the tasks of mapping the STAR-CD mesh to the DeCART mesh, managing all communication between STAR-CD and DeCART, and monitoring the convergence of the coupled calculations. The interface software was validated by comparing coupled calculation results with those obtained using an independently developed interface program. An investigation into the convergence characteristics of coupled calculations was performed using several test models on a multiprocessor LINUX cluster. The results indicate that the optimal convergence of the coupled field calculation depends on several factors, to include the tolerance of the STAR-CD solution and the number of DeCART transport sweeps performed before exchanging data between codes. Results for a 3D, multi-assembly PWR problem on 12 PEs of the LINUX cluster indicate the best performance is achieved when the STAR-CD tolerance and number of DeCART transport sweeps are chosen such that the two fields converge at approximately the same rate. (authors)

  1. The principal series for a reductive symmetric space, II. Eisenstein integrals.

    NARCIS (Netherlands)

    Ban, E.P. van den

    1991-01-01

    In this paper we develop a theory of Eisenstein integrals related to the principal series for a reductive symmetric space G=H: Here G is a real reductive group of Harish-Chandra's class, ? an involution of G and H an open subgroup of the group G ? of xed points for ?: The group G itself is a

  2. Weighted inequalities for fractional integral operators and linear commutators in the Morrey-type spaces

    Directory of Open Access Journals (Sweden)

    Hua Wang

    2017-01-01

    Full Text Available Abstract In this paper, we first introduce some new Morrey-type spaces containing generalized Morrey space and weighted Morrey space with two weights as special cases. Then we give the weighted strong type and weak type estimates for fractional integral operators I α $I_{\\alpha}$ in these new Morrey-type spaces. Furthermore, the weighted strong type estimate and endpoint estimate of linear commutators [ b , I α ] $[b,I_{\\alpha}]$ formed by b and I α $I_{\\alpha}$ are established. Also we study related problems about two-weight, weak type inequalities for I α $I_{\\alpha}$ and [ b , I α ] $[b,I_{\\alpha}]$ in the Morrey-type spaces and give partial results.

  3. Integrated Space Asset Management Database and Modeling

    Science.gov (United States)

    Gagliano, L.; MacLeod, T.; Mason, S.; Percy, T.; Prescott, J.

    The Space Asset Management Database (SAM-D) was implemented in order to effectively track known objects in space by ingesting information from a variety of databases and performing calculations to determine the expected position of the object at a specified time. While SAM-D performs this task very well, it is limited by technology and is not available outside of the local user base. Modeling and simulation can be powerful tools to exploit the information contained in SAM-D. However, the current system does not allow proper integration options for combining the data with both legacy and new M&S tools. A more capable data management infrastructure would extend SAM-D to support the larger data sets to be generated by the COI. A service-oriented architecture model will allow it to easily expand to incorporate new capabilities, including advanced analytics, M&S tools, fusion techniques and user interface for visualizations. Based on a web-centric approach, the entire COI will be able to access the data and related analytics. In addition, tight control of information sharing policy will increase confidence in the system, which would encourage industry partners to provide commercial data. SIMON is a Government off the Shelf information sharing platform in use throughout DoD and DHS information sharing and situation awareness communities. SIMON providing fine grained control to data owners allowing them to determine exactly how and when their data is shared. SIMON supports a micro-service approach to system development, meaning M&S and analytic services can be easily built or adapted. It is uniquely positioned to fill this need as an information-sharing platform with a proven track record of successful situational awareness system deployments. Combined with the integration of new and legacy M&S tools, a SIMON-based architecture will provide a robust SA environment for the NASA SA COI that can be extended and expanded indefinitely. First Results of Coherent Uplink from a

  4. Data Transport Subsystem - The SFOC glue

    Science.gov (United States)

    Parr, Stephen J.

    1988-01-01

    The design and operation of the Data Transport Subsystem (DTS) for the JPL Space Flight Operation Center (SFOC) are described. The SFOC is the ground data system under development to serve interplanetary space probes; in addition to the DTS, it comprises a ground interface facility, a telemetry-input subsystem, data monitor and display facilities, and a digital TV system. DTS links the other subsystems via an ISO OSI presentation layer and an LAN. Here, particular attention is given to the DTS services and service modes (virtual circuit, datagram, and broadcast), the DTS software architecture, the logical-name server, the role of the integrated AI library, and SFOC as a distributed system.

  5. Cryo-Vacuum Testing of the Integrated Science Instrument Module for the James Webb Space Telescope

    Science.gov (United States)

    Kimble, Randy A.; Davila, P. S.; Drury, M. P.; Glazer, S. D.; Krom, J. R.; Lundquist, R. A.; Mann, S. D.; McGuffey, D. B.; Perry, R. L.; Ramey, D. D.

    2011-01-01

    With delivery of the science instruments for the James Webb Space Telescope (JWST) to Goddard Space Flight Center (GSFC) expected in 2012, current plans call for the first cryo-vacuum test of the Integrated Science Instrument Module (ISIM) to be carried out at GSFC in early 2013. Plans are well underway for conducting this ambitious test, which will perform critical verifications of a number of optical, thermal, and operational requirements of the IS 1M hardware, at its deep cryogenic operating temperature. We describe here the facilities, goals, methods, and timeline for this important Integration & Test milestone in the JWST program.

  6. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    Science.gov (United States)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  7. Self-consistent study of space-charge-dominated beams in a misaligned transport system

    International Nuclear Information System (INIS)

    Sing Babu, P.; Goswami, A.; Pandit, V.S.

    2013-01-01

    A self-consistent particle-in-cell (PIC) simulation method is developed to investigate the dynamics of space-charge-dominated beams through a misaligned solenoid based transport system. Evolution of beam centroid, beam envelope and emittance is studied as a function of misalignment parameters for various types of beam distributions. Simulation results performed up to 40 mA of proton beam indicate that centroid oscillations induced by the displacement and rotational misalignments of solenoids do not depend of the beam distribution. It is shown that the beam envelope around the centroid is independent of the centroid motion for small centroid oscillation. In addition, we have estimated the loss of beam during the transport caused by the misalignment for various beam distributions

  8. Marshall Space Flight Center Ground Systems Development and Integration

    Science.gov (United States)

    Wade, Gina

    2016-01-01

    Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.

  9. Implementation green and low cost on landscape design of Manggarai Integrated Station, Jakarta

    Science.gov (United States)

    Suryanti, T.; Meilianti, H.

    2018-01-01

    The Manggarai Integrated Station is the transit of various transportation modes. The Integrated Station located in Manggarai Jakarta and managed by PT. KAI. The Manggarai station is integrated and have terminal nature of transit areas (switching mode of transportation). There are several problems in the site, such as the problem of the site conditions in the urban area, topography, soil, vegetation, space, visual, users on the site can provide ideas for the concepts. The data was analyzed using the quantitative descriptive methode. The purpose of this research is to design the integrated station atmosphere, not only can support of the activities station users, but can also accommodate the needs of the community. It will “Green, Low cost” at the Manggarai integrated transport transit station in Jakarta. The potential that exists in this area is the lowliest integrated from various areas of the mode of transportation that make the users to facilitate transit transportation to the other. The basic concept of this design refers to the “Green, Low Cost” which unite with theme “user friendly” land use on a more efficient and effective site. The result of this research is landscape design development of Manggarai integrated station. Its consists of landscape design in west and east area, transition area, parking area, solar panel area, and social interaction area.

  10. Industrial & Engineering Systems Career Cluster ITAC for Career-Focused Education: Transportation Sub-Cluster. Integrated Technical & Academic Competencies.

    Science.gov (United States)

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Designed for Ohio educators responsible for planning programs to prepare high school students for careers in transportation, this document presents an overview of Ohio's Integrated Technical and Academic Competencies (ITAC) system of career-focused education and specific information about the transportation subcluster of the industrial and…

  11. Extending helicopter operations to meet future integrated transportation needs.

    Science.gov (United States)

    Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Harvey, Catherine; Thomas, T Glyn

    2016-03-01

    Helicopters have the potential to be an integral part of the future transport system. They offer a means of rapid transit in an overly populated transport environment. However, one of the biggest limitations on rotary wing flight is their inability to fly in degraded visual conditions in the critical phases of approach and landing. This paper presents a study that developed and evaluated a Head up Display (HUD) to assist rotary wing pilots by extending landing to degraded visual conditions. The HUD was developed with the assistance of the Cognitive Work Analysis method as an approach for analysing the cognitive work of landing the helicopter. The HUD was tested in a fixed based flight simulator with qualified helicopter pilots. A qualitative analysis to assess situation awareness and workload found that the HUD enabled safe landing in degraded conditions whilst simultaneously enhancing situation awareness and reducing workload. Continued development in this area has the potential to extend the operational capability of helicopters in the future. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  13. AN/FSY-3 Space Fence System – Sensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  14. An integrated control scheme for space robot after capturing non-cooperative target

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-06-01

    How to identify the mass properties and eliminate the unknown angular momentum of space robotic system after capturing a non-cooperative target is of great challenge. This paper focuses on designing an integrated control framework which includes detumbling strategy, coordination control and parameter identification. Firstly, inverted and forward chain approaches are synthesized for space robot to obtain dynamic equation in operational space. Secondly, a detumbling strategy is introduced using elementary functions with normalized time, while the imposed end-effector constraints are considered. Next, a coordination control scheme for stabilizing both base and end-effector based on impedance control is implemented with the target's parameter uncertainty. With the measurements of the forces and torques exerted on the target, its mass properties are estimated during the detumbling process accordingly. Simulation results are presented using a 7 degree-of-freedom kinematically redundant space manipulator, which verifies the performance and effectiveness of the proposed method.

  15. Space shuttle auxiliary propulsion system design study. Phase C report: Oxygen-hydrogen RCS/OMS integration study

    Science.gov (United States)

    Bruns, A. E.; Regnier, W. W.

    1972-01-01

    A comparison of the concepts of auxiliary propulsion systems proposed for the space shuttle vehicle is discussed. An evaluation of the potential of integration between the reaction control system and the orbit maneuvering system was conducted. Numerous methods of implementing the various levels of integration were evaluated. Preferred methods were selected and design points were developed for two fully integrated systems, one partially integrated system, and one separate system.

  16. Qualitative Simulation of Photon Transport in Free Space Based on Monte Carlo Method and Its Parallel Implementation

    Directory of Open Access Journals (Sweden)

    Xueli Chen

    2010-01-01

    Full Text Available During the past decade, Monte Carlo method has obtained wide applications in optical imaging to simulate photon transport process inside tissues. However, this method has not been effectively extended to the simulation of free-space photon transport at present. In this paper, a uniform framework for noncontact optical imaging is proposed based on Monte Carlo method, which consists of the simulation of photon transport both in tissues and in free space. Specifically, the simplification theory of lens system is utilized to model the camera lens equipped in the optical imaging system, and Monte Carlo method is employed to describe the energy transformation from the tissue surface to the CCD camera. Also, the focusing effect of camera lens is considered to establish the relationship of corresponding points between tissue surface and CCD camera. Furthermore, a parallel version of the framework is realized, making the simulation much more convenient and effective. The feasibility of the uniform framework and the effectiveness of the parallel version are demonstrated with a cylindrical phantom based on real experimental results.

  17. A Quality Function Deployment Method Applied to Highly Reusable Space Transportation

    Science.gov (United States)

    Zapata, Edgar

    2016-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  18. A quality function deployment method applied to highly reusable space transportation

    Science.gov (United States)

    Zapata, Edgar

    1997-01-01

    This paper will describe a Quality Function Deployment (QFD) currently in work the goal of which is to add definition and insight to the development of long term Highly Reusable Space Transportation (HRST). The objective here is twofold. First, to describe the process, the actual QFD experience as applies to the HRST study. Second, to describe the preliminary results of this process, in particular the assessment of possible directions for future pursuit such as promising candidate technologies or approaches that may finally open the space frontier. The iterative and synergistic nature of QFD provides opportunities in the process for the discovery of what is key in so far as it is useful, what is not, and what is merely true. Key observations on the QFD process will be presented. The importance of a customer definition as well as the similarity of the process of developing a technology portfolio to product development will be shown. Also, the relation of identified cost and operating drivers to future space vehicle designs that are robust to an uncertain future will be discussed. The results in particular of this HRST evaluation will be preliminary given the somewhat long term (or perhaps not?) nature of the task being considered.

  19. Testing for Level Shifts in Fractionally Integrated Processes: a State Space Approach

    DEFF Research Database (Denmark)

    Monache, Davide Delle; Grassi, Stefano; Santucci de Magistris, Paolo

    Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based on the autocorrela......Short memory models contaminated by level shifts have similar long-memory features as fractionally integrated processes. This makes hard to verify whether the true data generating process is a pure fractionally integrated process when employing standard estimation methods based...... on the autocorrelation function or the periodogram. In this paper, we propose a robust testing procedure, based on an encompassing parametric specification that allows to disentangle the level shifts from the fractionally integrated component. The estimation is carried out on the basis of a state-space methodology...... and it leads to a robust estimate of the fractional integration parameter also in presence of level shifts. Once the memory parameter is correctly estimated, we use the KPSS test for presence of level shift. The Monte Carlo simulations show how this approach produces unbiased estimates of the memory parameter...

  20. Integrability and symmetric spaces. II- The coset spaces

    International Nuclear Information System (INIS)

    Ferreira, L.A.

    1987-01-01

    It shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a fundamental Poisson bracket relation, and consequently charges involution, is that it must be a symmetric space. The conditions a hamiltonian, or any function of the canonical variables, has to satisfy in order to commute with these charges are studied. It is shown that, for the case of non compact symmetric space, these conditions lead to an algebraic structure which plays an important role in the construction of conserved quantities. (author) [pt

  1. Space Charge Compensation in the Linac4 Low Energy Beam Transport Line with Negative Hydrogen Ions

    CERN Document Server

    Valerio-Lizarraga, C; Leon-Monzon, I; Lettry, J; Midttun, O; Scrivens, R

    2014-01-01

    The space charge effect of low energy, unbunched ion beams can be compensated by the trapping of ions or electrons into the beam potential. This has been studied for the 45 keV negative hydrogen ion beam in the CERN Linac4 Low Energy Beam Tranport (LEBT) using the package IBSimu1, which allows the space charge calculation of the particle trajectories. The results of the beam simulations will be compared to emittance measurements of an H- beam at the CERN Linac4 3 MeV test stand, where the injection of hydrogen gas directly into the beam transport region has been used to modify the space charge compensation degree.

  2. Compactly packaged monolithic four-wavelength VCSEL array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport.

    Science.gov (United States)

    Lee, Eun-Gu; Mun, Sil-Gu; Lee, Sang Soo; Lee, Jyung Chan; Lee, Jong Hyun

    2015-01-12

    We report a cost-effective transmitter optical sub-assembly using a monolithic four-wavelength vertical-cavity surface-emitting laser (VCSEL) array with 100-GHz wavelength spacing for future-proof mobile fronthaul transport using the data rate of common public radio interface option 6. The wavelength spacing is achieved using selectively etched cavity control layers and fine current adjustment. The differences in operating current and output power for maintaining the wavelength spacing of four VCSELs are fiber without any dispersion-compensation techniques.

  3. Organizational Change: A Study of the Integrated Customer Support System at United States Transportation Command

    National Research Council Canada - National Science Library

    Williams, Kim

    2001-01-01

    ...) System, a Customer Relationship Management solution. This strategic objective to integrate ICS into the Defense Transportation System working environment is an attempt to provide immediate and complete responsiveness to external customer needs...

  4. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 3: Space power and thermal management

    International Nuclear Information System (INIS)

    1991-06-01

    Viewgraphs of briefings from the SSTAC/ARTS review of the draft integrated technology plan on thermal power and thermal management are presented. Topics covered include: space energy conversion research and technology; space photovoltaic energy conversion; chemical energy conversion and storage; thermal energy conversion; power management; thermal management; space nuclear power; high capacity power; surface power and thermal management; space platforms power and thermal management; and project SELENE

  5. Latest Progress in Research on the SpaceLiner High-Speed Passenger Transportation Concept

    OpenAIRE

    Sippel, Martin; van Foreest, Arnold

    2007-01-01

    A vision aimed at revolutionizing ultra-long distance travel between different points on earth could be realized by a high-speed intercontinental passenger transport using rocket based, suborbital launchers. The paper gives an overview on the latest progress in conceptual design of the DLR SpaceLiner presenting geometrical size and mass data and describing results of trajectory simulations. The rockets are based on an advanced but technically conservative approach not relying on e...

  6. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  7. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Vasyl P. Oleksyuk

    2013-06-01

    Full Text Available The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and educational space of the Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University.

  8. The Random Ray Method for neutral particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Tramm, John R., E-mail: jtramm@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States); Smith, Kord S., E-mail: kord@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Forget, Benoit, E-mail: bforget@mit.edu [Massachusetts Institute of Technology, Department of Nuclear Science Engineering, 77 Massachusetts Avenue, 24-107, Cambridge, MA 02139 (United States); Siegel, Andrew R., E-mail: siegela@mcs.anl.gov [Argonne National Laboratory, Mathematics and Computer Science Department 9700 S Cass Ave, Argonne, IL 60439 (United States)

    2017-08-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  9. The Random Ray Method for neutral particle transport

    International Nuclear Information System (INIS)

    Tramm, John R.; Smith, Kord S.; Forget, Benoit; Siegel, Andrew R.

    2017-01-01

    A new approach to solving partial differential equations (PDEs) based on the method of characteristics (MOC) is presented. The Random Ray Method (TRRM) uses a stochastic rather than deterministic discretization of characteristic tracks to integrate the phase space of a problem. TRRM is potentially applicable in a number of transport simulation fields where long characteristic methods are used, such as neutron transport and gamma ray transport in reactor physics as well as radiative transfer in astrophysics. In this study, TRRM is developed and then tested on a series of exemplar reactor physics benchmark problems. The results show extreme improvements in memory efficiency compared to deterministic MOC methods, while also reducing algorithmic complexity, allowing for a sparser computational grid to be used while maintaining accuracy.

  10. Divergences in the moduli space integral and accumulating handles in the infinite-genus limit

    Science.gov (United States)

    Davis, Simon

    1995-02-01

    The symmetries associated with the closed bosonic string partition function are examined so that the integration region in Teichmuller space can be determined. The conditions on the period matrix defining the fundamental region can be translated to relations on the parameters of the uniformizing Schottky group. The growth of the lower bound for the regularized partition function is derived through integration over a subset of the fundamental region.

  11. A nu-space for ICS: characterization and application to measure protein transport in live cells.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency ( ν , nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for STICS that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins ( α 6- and αLβ 2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and ICAM ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrinligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  12. MPL-A program for computations with iterated integrals on moduli spaces of curves of genus zero

    Science.gov (United States)

    Bogner, Christian

    2016-06-01

    We introduce the Maple program MPL for computations with multiple polylogarithms. The program is based on homotopy invariant iterated integrals on moduli spaces M0,n of curves of genus 0 with n ordered marked points. It includes the symbol map and procedures for the analytic computation of period integrals on M0,n. It supports the automated computation of a certain class of Feynman integrals.

  13. A shared-world conceptual model for integrating space station life sciences telescience operations

    Science.gov (United States)

    Johnson, Vicki; Bosley, John

    1988-01-01

    Mental models of the Space Station and its ancillary facilities will be employed by users of the Space Station as they draw upon past experiences, perform tasks, and collectively plan for future activities. The operational environment of the Space Station will incorporate telescience, a new set of operational modes. To investigate properties of the operational environment, distributed users, and the mental models they employ to manipulate resources while conducting telescience, an integrating shared-world conceptual model of Space Station telescience is proposed. The model comprises distributed users and resources (active elements); agents who mediate interactions among these elements on the basis of intelligent processing of shared information; and telescience protocols which structure the interactions of agents as they engage in cooperative, responsive interactions on behalf of users and resources distributed in space and time. Examples from the life sciences are used to instantiate and refine the model's principles. Implications for transaction management and autonomy are discussed. Experiments employing the model are described which the authors intend to conduct using the Space Station Life Sciences Telescience Testbed currently under development at Ames Research Center.

  14. Deciphering Equatorial Pacific Deep Sea Sediment Transport Regimes by Core-Log-Seismic Integration

    Science.gov (United States)

    Ortiz, E.; Tominaga, M.; Marcantonio, F.

    2017-12-01

    Investigating deep-sea sediment transportation and deposition regimes is a key to accurately understand implications from geological information recorded by pelagic sediments, e.g. climate signals. However, except for physical oceanographic particle trap experiments, geochemical analyses of in situsediments, and theoretical modeling of the relation between the bottom currents and sediment particle flux, it has remained a challenging task to document the movement of deep sea sediments, that takes place over time. We utilized high-resolution, multichannel reflection seismic data from the eastern equatorial Pacific region with drilling and logging results from two Integrated Ocean Drilling Program (IODP) sites, the Pacific Equatorial Age Transect (PEAT) 7 (Site U1337) and 8 (Site U1338), to characterize sediment transportation regimes on 18-24 Ma oceanic crust. Site U1337, constructed by a series of distinct abyssal hills and abyssal basins; Site U1338, located 570 km SE from Site U1337 site and constructed by a series of ridges, seamounts, and abyssal hills. These sites are of particular interest due to their proximity to the equatorial productivity zone, areas with high sedimentation rates and preservation of carbonate-bearing sediment that provide invaluable insights on equatorial Pacific ecosystems and carbon cycle. We integrate downhole geophysical logging data as well as geochemistry and physical properties measurements on recovered cores from IODP Sites U1337 and U1338 to comprehensively examine the mobility of deep-sea sediments and sediment diagenesis over times in a quasi-3D manner. We also examine 1100 km of high resolution underway seismic surveys from site survey lines in between PEAT 7 and 8 in order to investigate changes in sediment transportation between both sites. Integrating detailed seismic interpretations, high resolution core data, and 230Th flux measurements we aim to create a detailed chronological sedimentation and sediment diagenesis history

  15. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    Energy Technology Data Exchange (ETDEWEB)

    Butko, Yana A., E-mail: yanabutko@yandex.ru, E-mail: kinderknecht@math.uni-sb.de [Bauman Moscow State Technical University, 2nd Baumanskaya street, 5, Moscow 105005, Russia and University of Saarland, Postfach 151150, D-66041 Saarbrücken (Germany); Grothaus, Martin, E-mail: grothaus@mathematik.uni-kl.de [University of Kaiserslautern, 67653 Kaiserslautern (Germany); Smolyanov, Oleg G., E-mail: Smolyanov@yandex.ru [Lomonosov Moscow State University, Vorob’evy gory 1, Moscow 119992 (Russian Federation)

    2016-02-15

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures.

  16. Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions

    International Nuclear Information System (INIS)

    Butko, Yana A.; Grothaus, Martin; Smolyanov, Oleg G.

    2016-01-01

    Evolution semigroups generated by pseudo-differential operators are considered. These operators are obtained by different (parameterized by a number τ) procedures of quantization from a certain class of functions (or symbols) defined on the phase space. This class contains Hamilton functions of particles with variable mass in magnetic and potential fields and more general symbols given by the Lévy-Khintchine formula. The considered semigroups are represented as limits of n-fold iterated integrals when n tends to infinity. Such representations are called Feynman formulae. Some of these representations are constructed with the help of another pseudo-differential operator, obtained by the same procedure of quantization; such representations are called Hamiltonian Feynman formulae. Some representations are based on integral operators with elementary kernels; these are called Lagrangian Feynman formulae. Langrangian Feynman formulae provide approximations of evolution semigroups, suitable for direct computations and numerical modeling of the corresponding dynamics. Hamiltonian Feynman formulae allow to represent the considered semigroups by means of Feynman path integrals. In the article, a family of phase space Feynman pseudomeasures corresponding to different procedures of quantization is introduced. The considered evolution semigroups are represented as phase space Feynman path integrals with respect to these Feynman pseudomeasures, i.e., different quantizations correspond to Feynman path integrals with the same integrand but with respect to different pseudomeasures. This answers Berezin’s problem of distinguishing a procedure of quantization on the language of Feynman path integrals. Moreover, the obtained Lagrangian Feynman formulae allow also to calculate these phase space Feynman path integrals and to connect them with some functional integrals with respect to probability measures

  17. Scaling laws for oxygen transport across the space-filling system of respiratory membranes in the human lung

    Science.gov (United States)

    Hou, Chen

    Space-filling fractal surfaces play a fundamental role in how organisms function at various levels and in how structure determines function at different levels. In this thesis, we develop a quantitative theory of oxygen transport to and across the surface of the highly branched, space-filling system of alveoli, the fundamental gas exchange unit (acinar airways), in the human lung. Oxygen transport in the acinar airways is by diffusion, and we treat the two steps---diffusion through the branched airways, and transfer across the alveolar membranes---as a stationary diffusion-reaction problem, taking into account that there may be steep concentration gradients between the entrance and remote alveoli (screening). We develop a renormalization treatment of this screening effect and derive an analytic formula for the oxygen current across the cumulative alveolar membrane surface, modeled as a fractal, space-filling surface. The formula predicts the current from a minimum of morphological data of the acinus and appropriate values of the transport parameters, through a number of power laws (scaling laws). We find that the lung at rest operates near the borderline between partial screening and no screening; that it switches to no screening under exercise; and that the computed currents agree with measured values within experimental uncertainties. From an analysis of the computed current as a function of membrane permeability, we find that the space-filling structure of the gas exchanger is simultaneously optimal with respect to five criteria. The exchanger (i) generates a maximum oxygen current at minimum permeability; (ii) 'wastes' a minimum of surface area; (iii) maintains a minimum residence time of oxygen in the acinar airways; (iv) has a maximum fault tolerance to loss of permeability; and (v) generates a maximum current increase when switching from rest to exercise.

  18. A Monte Carlo transport code study of the space radiation environment using FLUKA and ROOT

    CERN Document Server

    Wilson, T; Carminati, F; Brun, R; Ferrari, A; Sala, P; Empl, A; MacGibbon, J

    2001-01-01

    We report on the progress of a current study aimed at developing a state-of-the-art Monte-Carlo computer simulation of the space radiation environment using advanced computer software techniques recently available at CERN, the European Laboratory for Particle Physics in Geneva, Switzerland. By taking the next-generation computer software appearing at CERN and adapting it to known problems in the implementation of space exploration strategies, this research is identifying changes necessary to bring these two advanced technologies together. The radiation transport tool being developed is tailored to the problem of taking measured space radiation fluxes impinging on the geometry of any particular spacecraft or planetary habitat and simulating the evolution of that flux through an accurate model of the spacecraft material. The simulation uses the latest known results in low-energy and high-energy physics. The output is a prediction of the detailed nature of the radiation environment experienced in space as well a...

  19. The influence of territory planning and social development on strategic decisions in passenger transport development

    Directory of Open Access Journals (Sweden)

    D. Griškevičienė

    2004-10-01

    Full Text Available The main factors of space planning and social development which play an important role in making strategic decisions in passenger transportation have been analysed. A number of strategic aims based on major principles of territory transport planning have been formulated. The investigation made has shown that the operation of public transport is not closely connected with the main carcass of urban territories. This decreases the efficiency of public transport, making it less popular and competitive compared to automobiles. The creation of the strategy of public transport development for the period of its integration into the EU system requires the use of methods taking into account territory planning and social and economic development of the country. The integration of new territories into the existing transportation system, optimization of routes and the increase of transport service quality are aimed to provide higher living standards and better social and economic conditions for the inhabitants. The appropriate tactical decisions in planning the development of modern passenger transport may be made only if the harmonized and well-grounded strategic aims are defined.

  20. ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes

    International Nuclear Information System (INIS)

    Halbleib, J.A.; Mehlhorn, T.A.

    1985-01-01

    The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence

  1. Transport methods: general. 8. Formulation of Transport Equation in a Split Form

    International Nuclear Information System (INIS)

    Stancic, V.

    2001-01-01

    The singular eigenfunction expansion method has enabled the application of functional analysis methods in transport theory. However, when applying it, the users were discouraged, since in most problems, including slab problems, an extra problem has occurred. It appears necessary to solve the Fredholm integral equation in order to determine the expansion coefficients. There are several reasons for this difficulty. One reason might be the use of the full-range expansion techniques even in the regions where the function is singular. Such an example is the free boundary condition that requires the distribution to be equal to zero. Moreover, at μ = 0, the transport equation becomes an integral one. Both reasons motivated us to redefine the transport equation in a more natural way. Similar to scattering theory, here we define the flux distribution as a direct sum of forward- and backward-directed neutrons, e.g., μ ≥ 0 and μ < 0, respectively. As a result, the plane geometry transport equation is being split into coupled-pair equations. Further, using an appropriate transformation, this pair of equations reduces to a self-adjoint one having the same form as the known full-range single flux. It is interesting that all the methods of full-range theory are applicable here provided the flux as well as the transformed transport operator are two-dimensional matrices. Applying this to the slab problem, we find explicit expressions for reflected and transmitted particles caused by an arbitrary plane source. That is the news in this paper. Because of space constraints, only fundamentals of this approach will be presented here. We assume that the reader is familiar with this field; therefore, the applications are noted only at the end. (author)

  2. Integration of cabs and hired cars in urban transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Bernauer,

    1984-01-01

    Integrating taxis and limousine services into the public transit system has become a major goal in designing new forms of public transportation. Expanding the spectrum of possible use for these vehicles - for both scheduled and on-demand service - requires, first of all, a qualitative and quantitative analysis of the current state of affairs in this area. Administrative, organizational, technical, and legal issues as well as the respective traffic patterns had to be investigated. This investigation was to find out if, and in what ways, taxis and limousine services could actually be incorporated into the public transit system. In addition, the results were interpreted against the background of experiments and tentative models for regular, scheduled and supplementary public transit. As a result, we developed a generalized concept for integrating the two systems and proposed possible forms of service, organization, and financial calculation. Included were legal issues and comments on contractual relations between the partners.

  3. Positive solution of a time and energy dependent neutron transport problem

    International Nuclear Information System (INIS)

    Pao, C.V.

    1975-01-01

    A constructive method is given for the determination of a solution and an existence--uniqueness theorem for some nonlinear time and energy dependent neutron transport problems, including the linear transport system. The geometry of the medium under consideration is allowed to be either bounded or unbounded which includes the geometry of a finite or infinite cylinder, a half-space and the whole space R/subm/ (m=1,2,center-dotcenter-dotcenter-dot). Our approach to the problem is by successive approximation which leads to various recursion formulas for the approximations in terms of explicit integrations. It is shown under some Lipschitz conditions on the nonlinear functions, which describe the process of neutrons absorption, fission, and scattering, that the sequence of approximations converges to a unique positive solution. Since these conditions are satisfied by the linear transport equation, all the results for the nonlinear system are valid for the linear transport problem. In the general nonlinear problem, the existence of both local and global solutions are discussed, and an iterative process for the construction of the solution is given

  4. EXPERIENCE OF THE INTEGRATION OF CLOUD SERVICES GOOGLE APPS INTO INFORMATION AND EDUCATIONAL SPACE OF HIGHER EDUCATIONAL INSTITUTION

    OpenAIRE

    Vasyl P. Oleksyuk

    2013-01-01

    The article investigated the concept of «information and educational space» and determined the aspects of integration of its services. The unified authentication is an important component of information and educational space. It can be based on LDAP-directory. The article analyzes the concept of «cloud computing». This study presented the main advantages of using Google Apps in process of learning. We described the experience of the cloud Google Apps integration into information and education...

  5. The Future of Asset Management for Human Space Exploration: Supply Classification and an Integrated Database

    Science.gov (United States)

    Shull, Sarah A.; Gralla, Erica L.; deWeck, Olivier L.; Shishko, Robert

    2006-01-01

    One of the major logistical challenges in human space exploration is asset management. This paper presents observations on the practice of asset management in support of human space flight to date and discusses a functional-based supply classification and a framework for an integrated database that could be used to improve asset management and logistics for human missions to the Moon, Mars and beyond.

  6. Integrating Satellite, Radar and Surface Observation with Time and Space Matching

    Science.gov (United States)

    Ho, Y.; Weber, J.

    2015-12-01

    The Integrated Data Viewer (IDV) from Unidata is a Java™-based software framework for analyzing and visualizing geoscience data. It brings together the ability to display and work with satellite imagery, gridded data, surface observations, balloon soundings, NWS WSR-88D Level II and Level III RADAR data, and NOAA National Profiler Network data, all within a unified interface. Applying time and space matching on the satellite, radar and surface observation datasets will automatically synchronize the display from different data sources and spatially subset to match the display area in the view window. These features allow the IDV users to effectively integrate these observations and provide 3 dimensional views of the weather system to better understand the underlying dynamics and physics of weather phenomena.

  7. Multidimensional singular integrals and integral equations

    CERN Document Server

    Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S

    1965-01-01

    Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals

  8. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

    Science.gov (United States)

    Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre

    The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.

  9. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  10. Active and Passive Technology Integration: A Novel Approach for Managing Technology's Influence on Learning Experiences in Context-Aware Learning Spaces

    Science.gov (United States)

    Laine, Teemu H.; Nygren, Eeva

    2016-01-01

    Technology integration is the process of overcoming different barriers that hinder efficient utilisation of learning technologies. The authors divide technology integration into two components based on technology's role in the integration process. In active integration, the technology integrates learning resources into a learning space, making it…

  11. Representing Space through the Interplay between Attention and Multisensory Integration

    Directory of Open Access Journals (Sweden)

    Emiliano Macaluso

    2011-10-01

    Full Text Available Multisensory integration has been traditionally thought to rely on a restricted set of multisensory brain areas, and to occur automatically and pre-attentively. More recently, it has become evident that multisensory interactions can be found almost everywhere in the brain, including areas involved in attention control and areas modulated by attention. In a series of fMRI experiments, we manipulated concurrently the position of multisensory stimuli and the distribution of spatial attention. This enabled us to highlight the role of high-order fronto-parietal areas, as well as sensory-specific occipital cortex, for multisensory processing and spatial attention control. We found that specific task constraints regarding the nature of attentional deployment (endogenous vs. exogenous, the spatial relationship between stimulus position and attended location, and attentional load shape the interplay between attention and multisensory processing. We suggest that multisensory integration acts as a saliency-defining process that can interact with attentional control beyond any within-modality mechanism. We propose that an anatomically-distributed, but functionally-integrated, representation of space makes use of multisensory interactions to help attention selecting relevant spatial locations. Stimuli at the attended location undergo enhanced processing, including boosting of multisensory signals there. In this perspective, attention and multisensory integration operate in an interactive manner jointly determining the activity of a wide-spread network that includes high-order fronto-parietal regions and sensory-specific areas.

  12. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    Science.gov (United States)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    observed and predicted results; however, transport of pathogens from vegetated surface has been challenging. This paper will provide concepts of the pathogen transport model, integration with WEPP, and results obtained from the modeling framework.

  13. On-chip integrated labelling, transport and detection of tumour cells.

    Science.gov (United States)

    Woods, Jane; Docker, Peter T; Dyer, Charlotte E; Haswell, Stephen J; Greenman, John

    2011-11-01

    Microflow cytometry represents a promising tool for the investigation of diagnostic and prognostic cellular cancer markers, particularly if integrated within a device that allows primary cells to be freshly isolated from the solid tumour biopsies that more accurately reflect patient-specific in vivo tissue microenvironments at the time of staining. However, current tissue processing techniques involve several sequential stages with concomitant cell losses, and as such are inappropriate for use with small biopsies. Accordingly, we present a simple method for combined antibody-labelling and dissociation of heterogeneous cells from a tumour mass, which reduces the number of processing steps. Perfusion of ex vivo tissue at 4°C with antibodies and enzymes slows cellular activity while allowing sufficient time for the diffusion of minimally active enzymes. In situ antibody-labelled cells are then dissociated at 37°C from the tumour mass, whereupon hydrogel-filled channels allow the release of relatively low cell numbers (<1000) into a biomimetic microenvironment. This novel approach to sample processing is then further integrated with hydrogel-based electrokinetic transport of the freshly liberated fluorescent cells for downstream detection. It is anticipated that this integrated microfluidic methodology will have wide-ranging biomedical and clinical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    Science.gov (United States)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  15. Interfacing Space Communications and Navigation Network Simulation with Distributed System Integration Laboratories (DSIL)

    Science.gov (United States)

    Jennings, Esther H.; Nguyen, Sam P.; Wang, Shin-Ywan; Woo, Simon S.

    2008-01-01

    NASA's planned Lunar missions will involve multiple NASA centers where each participating center has a specific role and specialization. In this vision, the Constellation program (CxP)'s Distributed System Integration Laboratories (DSIL) architecture consist of multiple System Integration Labs (SILs), with simulators, emulators, testlabs and control centers interacting with each other over a broadband network to perform test and verification for mission scenarios. To support the end-to-end simulation and emulation effort of NASA' exploration initiatives, different NASA centers are interconnected to participate in distributed simulations. Currently, DSIL has interconnections among the following NASA centers: Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC) and Jet Propulsion Laboratory (JPL). Through interconnections and interactions among different NASA centers, critical resources and data can be shared, while independent simulations can be performed simultaneously at different NASA locations, to effectively utilize the simulation and emulation capabilities at each center. Furthermore, the development of DSIL can maximally leverage the existing project simulation and testing plans. In this work, we describe the specific role and development activities at JPL for Space Communications and Navigation Network (SCaN) simulator using the Multi-mission Advanced Communications Hybrid Environment for Test and Evaluation (MACHETE) tool to simulate communications effects among mission assets. Using MACHETE, different space network configurations among spacecrafts and ground systems of various parameter sets can be simulated. Data that is necessary for tracking, navigation, and guidance of spacecrafts such as Crew Exploration Vehicle (CEV), Crew Launch Vehicle (CLV), and Lunar Relay Satellite (LRS) and orbit calculation data are disseminated to different NASA centers and updated periodically using the High Level Architecture (HLA). In

  16. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  17. Child-friendly integrated public spaces (RPTRA): Uses and sense of attachment

    Science.gov (United States)

    Prakoso, S.; Dewi, J.

    2018-03-01

    The Jakarta City Provincial Government undertook an extensive citywide initiative to build small public urban green spaces, called child-friendly integrated public spaces (RPTRA). Studies on how citizens, including children, use RPTRA was limited, and questions regarding whether children had become attached to the RPTRA as one of their favorite places remain unanswered. This paper presents a preliminary study on ten RPTRA located in Jakarta. We examine how children and citizens use the spaces, based on data from respondents who completed on-site questionnaires during the course of their visit to the RPTRA. We also measure the degree of children’s sense of attachment to RPTRA. The results show that children primarily use RPTRA for playing and learning. Women and girls use RPTRA the most, and elderly citizens use it the least. The results of the study also demonstrate that children had developed a sense of attachment to RPTRA and it had become one of their favorite places. This study may have implications on the existence of small public urban green spaces like RPTRA as valuable assets in the everyday lives of children and citizens. It proposes that RPTRA should be taken into account for future planning of densely populated urban areas.

  18. On the use of space photography for identifying transportation routes: A summary of problems

    Science.gov (United States)

    Simonett, D. S.; Henderson, F. M.; Egbert, D. D.

    1970-01-01

    It has been widely suggested that space photography may be used for updating maps of transportation networks. Proponents of the argument have suggested that color space photographs of the resolution obtained with Hasselblad 80 mm lenses (about 300 feet) contain enough useful information to update the extensions of major U. S. highways. The present study systematically documents for the Dallas-Fort Worth area the potential of such space photography in detecting, and to a lesser degree identifying, the existing road networks. Color separation plates and an enlargement of the color photograph were produced and all visible roads traced onto transparencies for study. Major roads and roads under construction were the most visible while lower class roads and roads in urban areas had the poorest return. Road width and classification were found to be the major determinant in visibility, varying from 100 per cent visible for divided highways to 15 per cent visible of bladed earth roads. In summary, space photographs of this resolution proved to be difficult to use for accurate road delineation. Only super highways in rural areas with the greatest road-width were completely identifiable, the width being about 1/3 that of the resolution cell.

  19. Integrated Intermodal Passenger Transportation System

    Science.gov (United States)

    Klock, Ryan; Owens, David; Schwartz, Henry; Plencner, Robert

    2012-01-01

    Modern transportation consists of many unique modes of travel. Each of these modes and their respective industries has evolved independently over time, forming a largely incoherent and inefficient overall transportation system. Travelers today are forced to spend unnecessary time and efforts planning a trip through varying modes of travel each with their own scheduling, pricing, and services; causing many travelers to simply rely on their relatively inefficient and expensive personal automobile. This paper presents a demonstration program system to not only collect and format many different sources of trip planning information, but also combine these independent modes of travel in order to form optimal routes and itineraries of travel. The results of this system show a mean decrease in inter-city travel time of 10 percent and a 25 percent reduction in carbon dioxide emissions over personal automobiles. Additionally, a 55 percent reduction in carbon dioxide emissions is observed for intra-city travel. A conclusion is that current resources are available, if somewhat hidden, to drastically improve point to point transportation in terms of time spent traveling, the cost of travel, and the ecological impact of a trip. Finally, future concepts are considered which could dramatically improve the interoperability and efficiency of the transportation infrastructure.

  20. DRAGON solutions to the 3D transport benchmark over a range in parameter space

    International Nuclear Information System (INIS)

    Martin, Nicolas; Hebert, Alain; Marleau, Guy

    2010-01-01

    DRAGON solutions to the 'NEA suite of benchmarks for 3D transport methods and codes over a range in parameter space' are discussed in this paper. A description of the benchmark is first provided, followed by a detailed review of the different computational models used in the lattice code DRAGON. Two numerical methods were selected for generating the required quantities for the 729 configurations of this benchmark. First, S N calculations were performed using fully symmetric angular quadratures and high-order diamond differencing for spatial discretization. To compare S N results with those of another deterministic method, the method of characteristics (MoC) was also considered for this benchmark. Comparisons between reference solutions, S N and MoC results illustrate the advantages and drawbacks of each methods for this 3-D transport problem.

  1. Activity markers and household space in Swahili urban contexts: An integrated geoarchaeological approach

    DEFF Research Database (Denmark)

    Wynne-Jones, Stephanie; Sulas, Federica

    , this paper draws from recent work at a Swahili urban site to illustrate the potential and challenges of an integrated geoarchaeological approach to the study of household space. The site of Songo Mnara (14th–16thc. AD) thrived as a Swahili stonetown off the coast of Tanzania. Here, our work has concentrated...

  2. Pure radiation in space-time models that admit integration of the eikonal equation by the separation of variables method

    Science.gov (United States)

    Osetrin, Evgeny; Osetrin, Konstantin

    2017-11-01

    We consider space-time models with pure radiation, which admit integration of the eikonal equation by the method of separation of variables. For all types of these models, the equations of the energy-momentum conservation law are integrated. The resulting form of metric, energy density, and wave vectors of radiation as functions of metric for all types of spaces under consideration is presented. The solutions obtained can be used for any metric theories of gravitation.

  3. Roles of Solar Power from Space for Europe - Space Exploration and Combinations with Terrestrial Solar Plant Concepts

    Science.gov (United States)

    Summerer, L.; Pipoli, T.; Galvez, A.; Ongaro, F.; Vasile, M.

    The paper presents the prospective roles of SPS concepts for Europe, shows the outcome of recent studies undertaken by ESA's Advanced Concepts Team (ACT) together with European industry and research centres and gives insight into planned activities. The main focus is on the assessment of the principal validity and economic viability of solar power from space concepts in the light of advances in alternative sustainable, clean and potentially abundant solar-based terrestrial concepts. The paper takes into account expected changes in the European energy system (e.g. gradual introduction of hydrogen as energy vector). Special emphasis is given to the possibilities of integrating space and terrestrial solar plants. The relative geographic proximity of areas in North Africa with high average solar irradiation to the European energy consumer market puts Europe in a special position regarding the integration of space and terrestrial solar power concepts. The paper presents a method to optimise such an integration, taking into account different possible orbital constellations, terrestrial locations, plant number and sizes as well as consumer profiles and extends the scope from the European-only to a multi continental approach including the fast growing Chinese electricity market. The work intends to contribute to the discussion on long-term options for the European commitment to worldwide CO2 emission reduction. Cleaner electricity generation and environmentally neutral transport fuels (e.g. solar generated hydrogen) might be two major tools in reaching this goal.

  4. Biological challenges of true space settlement

    Science.gov (United States)

    Mankins, John C.; Mankins, Willa M.; Walter, Helen

    2018-05-01

    "Space Settlements" - i.e., permanent human communities beyond Earth's biosphere - have been discussed within the space advocacy community since the 1970s. Now, with the end of the International Space Station (ISS) program fast approaching (planned for 2024-2025) and the advent of low cost Earth-to-orbit (ETO) transportation in the near future, the concept is coming once more into mainstream. Considerable attention has been focused on various issues associated with the engineering and human health considerations of space settlement such as artificial gravity and radiation shielding. However, relatively little attention has been given to the biological implications of a self-sufficient space settlement. Three fundamental questions are explored in this paper: (1) what are the biological "foundations" of truly self-sufficient space settlements in the foreseeable future, (2) what is the minimum scale for such self-sustaining human settlements, and (3) what are the integrated biologically-driven system requirements for such settlements? The paper examines briefly the implications of the answers to these questions in relevant potential settings (including free space, the Moon and Mars). Finally, this paper suggests relevant directions for future research and development in order for such space settlements to become viable in the future.

  5. Integration of two RAB5 groups during endosomal transport in plants

    Science.gov (United States)

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  6. Proceedings of the International Conference on Integrated Micro/Nanotechnology for Space Applications

    Science.gov (United States)

    1995-01-01

    The recent evolution of microelectronic technologies coupled with the growth of micro-electro-mechanical systems (MEMS) has had significant impact in the commercial sector. The focus of this conference was to anticipate and extend the incorporation of nano-electronics and MEMS into application specific integrated microinstruments (ASIM's) in space systems. Presentations ranged from mission application of nano-satellites to silicon micromachining for photonic applications.

  7. Shenzhen Comprehensive Transport System Planning:An Exploration of Sustainable Urban Transport Development on Condition of Limited Resources

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    With "integration" as the direction,Shenzhen Comprehensive Transport Planning integrates the plan,construction and management of all kinds of transport mode in the transport system,and integrates the transport with the social,economic and environment development.The planning specifies the strategic targets,key indicators,development strategies as well as major policies of the comprehensive transport system,which explores an alternative way for the sustainable urban transport development under the condition of limited resources in Shenzhen.

  8. Integrated model of port oil piping transportation system safety including operating environment threats

    Directory of Open Access Journals (Sweden)

    Kołowrocki Krzysztof

    2017-06-01

    Full Text Available The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  9. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  10. Solutions to Improve Person Transport System in the Pitesti City by Analyzing Public Transport vs. Private Transport

    Science.gov (United States)

    Mihaela, Istrate; Alexandru, Boroiu; Viorel, Nicolae; Ionel, Vieru

    2017-10-01

    One of the major problems facing the Pitesti city is the road congestion that occurs in the central area of the city during the peak hours. With all the measures taken in recent years - the widening of road arteries, increasing the number of parking spaces, the creation of overground road passages - it is obvious that the problem can only be solved by a new philosophy regarding urban mobility: it is no longer possible to continue through solutions to increase the accessibility of the central area of the city, but it is necessary, on the contrary, to promote a policy of discouraging the penetration of vehicles in the city center, coupled with a policy of improving the connection between urban public transport and county public transport. This new approach is also proposed in the new Urban Mobility Plan of Pitesti city, under development. The most convincing argument for the necessity of this new orientation in the Pitesti city mobility plan is based on the analysis of the current situation of passenger transport on the territory of Pitesti city: the analysis of “public transport versus private transport” reveals a very low occupancy rate for cars and the fact that the road surface required for a passenger (the dynamic area) is much higher in the case of private transport than in the case of public transport. Measurements of passenger flows and vehicle flows on the 6 penetration ways in the city have been made and the calculations clearly demonstrate the benefits of an urban public transport system connected by “transshipment buses” to be made at the edge of the city, to the county public transport system. In terms of inter-county transport, it will continue to be connected to the urban public transport system by existing bus Station, within the city: South Bus Station and North Bus Station. The usefulness of the paper is that it identifies the solutions for sustainable mobility in Pitesti city and proposes concrete solutions for the development of the

  11. The Land Transport Network in the Post-Soviet Space- Problems and Prospective Development

    Directory of Open Access Journals (Sweden)

    Sergej Schlichter

    2012-10-01

    Full Text Available Road and rail networks in the post-Soviet space are analysedin view of the demands in transportation to be expected inthe 2 I st centwy. The road system is found te1ribly underdel'elopedin terms of density and canying capacity. It widely fails tofulfil the necessary feeder function for the rail system. Both railand road ~ystems need substantial improvements to allow forthe wgent economic recove1y of that lQige area between thosevital and dynamic regions in east (China, south (Middle Eastund west (Europe.

  12. ECLSS Integration Analysis: Advanced ECLSS Subsystem and Instrumentation Technology Study for the Space Exploration Initiative

    Science.gov (United States)

    1990-01-01

    In his July 1989 space policy speech, President Bush proposed a long range continuing commitment to space exploration and development. Included in his goals were the establishment of permanent lunar and Mars habitats and the development of extended duration space transportation. In both cases, a major issue is the availability of qualified sensor technologies for use in real-time monitoring and control of integrated physical/chemical/biological (p/c/b) Environmental Control and Life Support Systems (ECLSS). The purpose of this study is to determine the most promising instrumentation technologies for future ECLSS applications. The study approach is as follows: 1. Precursor ECLSS Subsystem Technology Trade Study - A database of existing and advanced Atmosphere Revitalization (AR) and Water Recovery and Management (WRM) ECLSS subsystem technologies was created. A trade study was performed to recommend AR and WRM subsystem technologies for future lunar and Mars mission scenarios. The purpose of this trade study was to begin defining future ECLSS instrumentation requirements as a precursor to determining the instrumentation technologies that will be applicable to future ECLS systems. 2. Instrumentation Survey - An instrumentation database of Chemical, Microbial, Conductivity, Humidity, Flowrate, Pressure, and Temperature sensors was created. Each page of the sensor database report contains information for one type of sensor, including a description of the operating principles, specifications, and the reference(s) from which the information was obtained. This section includes a cursory look at the history of instrumentation on U.S. spacecraft. 3. Results and Recommendations - Instrumentation technologies were recommended for further research and optimization based on a consideration of both of the above sections. A sensor or monitor technology was recommended based on its applicability to future ECLS systems, as defined by the ECLSS Trade Study (1), and on whether its

  13. Space shuttle operations integration plan

    Science.gov (United States)

    1975-01-01

    The Operations Integration Plan is presented, which is to provide functional definition of the activities necessary to develop and integrate shuttle operating plans and facilities to support flight, flight control, and operations. It identifies the major tasks, the organizations responsible, their interrelationships, the sequence of activities and interfaces, and the resultant products related to operations integration.

  14. Hybrid state‐space time integration in a rotating frame of reference

    DEFF Research Database (Denmark)

    Krenk, Steen; Nielsen, Martin Bjerre

    2011-01-01

    displacements and the global velocities are represented by the same shape functions. This leads to a simple generalization of the corresponding equations of motion in a stationary frame in which all inertial effects are represented via the classic global mass matrix. The formulation introduces two gyroscopic......A time integration algorithm is developed for the equations of motion of a flexible body in a rotating frame of reference. The equations are formulated in a hybrid state‐space, formed by the local displacement components and the global velocity components. In the spatial discretization the local...... terms, while the centrifugal forces are represented implicitly via the hybrid state‐space format. An angular momentum and energy conserving algorithm is developed, in which the angular velocity of the frame is represented by its mean value. A consistent algorithmic damping scheme is identified...

  15. Processes of Integration and Fragmentation of Economic Space: The Structure of Settlement Systems

    Directory of Open Access Journals (Sweden)

    Alexander Pavlovich Goryunov

    2017-12-01

    Full Text Available This work presents a study of processes of integration and fragmentation caused by the polarization of economic space. Under integration in economic space the authors understand the formation of new and transformation of existing settlement systems, while fragmentation is the dissolution of settlement systems and their transformation into loosely connected settlement networks. The study focuses on the structure of settlement systems. Authors propose a new method for studying the structure of settlement systems, which combines the use of factor analysis, multidimensional scaling, and cluster analysis. The proposed method utilizes the maximum of available information about the social-economic status of settlements to reveal regularities in their spatial organization. The authors test the proposed method on 35 large cities of the Central and Volga federal districts of Russia, which comprise the spatial surroundings of Moscow. The authors find four groups of cities forming the core of the settlement system centered around Moscow, a group of four cities forming a buffer zone around that system, as well as four cities in the studied sample which do not participate in the settlement system

  16. Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation

    Science.gov (United States)

    Sun, Xin; Xu, Ming; Zhong, Rui

    2017-10-01

    Long space tethers are becoming a rising concern as an alternate way for transportation in space. It benefits from fuel economizing. This paper focuses on the dynamics of the tether transportation system, which consists of two end satellites connected by a flexible tether, and a movable vehicle driven by the actuator carried by itself. The Absolute Nodal Coordinate Formulation is applied to the establishment of the equation of motion, so that the influence caused by the distributed mass and elasticity of the tether is introduced. Moreover, an approximated method for accelerating the calculation of the generalized gravitational forces on the tether is proposed by substituting the volume integral every step into summation of finite terms. Afterwards, dynamic evolutions of such a system in different configurations are illustrated using numerical simulations. The deflection of the tether and the trajectory of the crawler during the transportation is investigated. Finally, the effect on the orbit of the system due to the crawler is revealed.

  17. Kinetic solvers with adaptive mesh in phase space

    Science.gov (United States)

    Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.

    2013-12-01

    An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.

  18. Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations

    NARCIS (Netherlands)

    de Jong, S.A.|info:eu-repo/dai/nl/41200836X; Hoefnagels, E.T.A.|info:eu-repo/dai/nl/313935998; Wetterlund, Elisabeth; Pettersson, Karin; Faaij, André; Junginger, H.M.|info:eu-repo/dai/nl/202130703

    2017-01-01

    This study uses a geographically-explicit cost optimization model to analyze the impact of and interrelation between four cost reduction strategies for biofuel production: economies of scale, intermodal transport, integration with existing industries, and distributed supply chain configurations

  19. The selection of a mode of urban transportation: Integrating psychological variables to discrete choice models

    International Nuclear Information System (INIS)

    Cordoba Maquilon, Jorge E; Gonzalez Calderon, Carlos A; Posada Henao, John J

    2011-01-01

    A study using revealed preference surveys and psychological tests was conducted. Key psychological variables of behavior involved in the choice of transportation mode in a population sample of the Metropolitan Area of the Valle de Aburra were detected. The experiment used the random utility theory for discrete choice models and reasoned action in order to assess beliefs. This was used as a tool for analysis of the psychological variables using the sixteen personality factor questionnaire (16PF test). In addition to the revealed preference surveys, two other surveys were carried out: one with socio-economic characteristics and the other with latent indicators. This methodology allows for an integration of discrete choice models and latent variables. The integration makes the model operational and quantifies the unobservable psychological variables. The most relevant result obtained was that anxiety affects the choice of urban transportation mode and shows that physiological alterations, as well as problems in perception and beliefs, can affect the decision-making process.

  20. Integration and Testing Challenges of Small Satellite Missions: Experiences from the Space Technology 5 Project

    Science.gov (United States)

    Sauerwein, Timothy A.; Gostomski, Tom

    2007-01-01

    The Space Technology 5(ST5) payload was successfully carried into orbit on an OSC Pegasus XL launch vehicle, which was carried aloft and dropped from the OSC Lockheed L-1011 from Vandenberg Air Force Base March 22,2006, at 9:03 am Eastern time, 6:03 am Pacific time. In order to reach the completion of the development and successful launch of ST 5, the systems integration and test(I&T) team determined that a different approach was required to meet the project requirements rather than the standard I&T approach used for single, room-sized satellites. The ST5 payload, part of NASA's New Millennium Program headquartered at JPL, consisted of three micro satellites (approximately 30 kg each) and the Pegasus Support Structure (PSS), the system that connected the spacecrafts to the launch vehicle and deployed the spacecrafts into orbit from the Pegasus XL launch vehicle. ST5 was a technology demonstration payload, intended to test six (6) new technologies for potential use for future space flights along with demonstrating the ability of small satellites to perform quality science. The main technology was a science grade magnetometer designed to take measurements of the earth's magnetic field. The three spacecraft were designed, integrated, and tested at NASA Goddard Space Flight Center with integration and environmental testing occurring in the Bldg. 7-1 0-15-29. The three spacecraft were integrated and tested by the same I&T team. The I&T Manager determined that there was insufficient time in the schedule to perform the three I&T spacecraft activities in series used standard approaches. The solution was for spacecraft #1 to undergo integration and test first, followed by spacecraft #2 and #3 simultaneously. This simultaneous integration was successful for several reasons. Each spacecraft had a Lead Test Conductor who planned and coordinated their spacecraft through its integration and test activities. One team of engineers and technicians executed the integration of all